Science.gov

Sample records for vcsel polarization control

  1. Polarization Control of VCSELs

    NASA Astrophysics Data System (ADS)

    Ostermann, Johannes Michael; Michalzik, Rainer

    In most types of VCSELs, the light output polarization is inherently unstable. While, in case of single-mode oscillation, the emitted light is mainly linearly polarized, its orientation is not well defined. This is because both the resonator and the gain medium are quasi isotropic in the plane of the active layers. Since a stable polarization is required for almost all sensing and some datacom applications, extensive and in-depth investigations have been undertaken during the last twenty years in order to stabilize the polarization of VCSELs without affecting their favorable operation parameters. Polarization control of VCSELs can be achieved by introducing a polarization-dependent gain, an asymmetric resonator, or mirrors with a polarization-dependent reflectivity. It has turned out that the last approach is most promising. It can be realized by incorporating a shallow surface grating in the upper mirror of a top-emitting VCSEL. Several million grating VCSELs are in reliable operation meanwhile, mainly in optical computer mice.

  2. VCSEL polarization control for chip-scale atomic clocks.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Wendt, Joel Robert; Serkland, Darwin Keith; Keeler, Gordon Arthur

    2007-01-01

    Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.

  3. Volume production of polarization controlled single-mode VCSELs

    NASA Astrophysics Data System (ADS)

    Grabherr, Martin; King, Roger; Jäger, Roland; Wiedenmann, Dieter; Gerlach, Philipp; Duckeck, Denise; Wimmer, Christian

    2008-02-01

    Over the past 3 years laser based tracking systems for optical PC mice have outnumbered the traditional VCSEL market datacom by far. Whereas VCSEL for datacom in the 850 nm regime emit in multipe transverse modes, all laser based tracking systems demand for single-mode operation which require advanced manufacturing technology. Next generation tracking systems even require single-polarization characteristics in order to avoid unwanted movement of the pointer due to polarization flips. High volume manufacturing and optimized production methods are crucial for achieving the addressed technical and commercial targets of this consumer market. The resulting ideal laser source which emits single-mode and single-polarization at low cost is also a promising platform for further applications like tuneable diode laser absorption spectroscopy (TDLAS) or miniature atomic clocks when adapted to the according wavelengths.

  4. Mechanism of the polarization control in intracavity- contacted VCSEL with rhomboidal oxide current aperture

    NASA Astrophysics Data System (ADS)

    Bobrov, M. A.; Maleev, N. A.; Blokhin, S. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Blokhin, A. A.; Kulagina, M. M.; Guseva, Yu A.; Troshkov, S. I.; Ustinov, V. M.

    2016-08-01

    The possible mechanisms of the polarization control in single-mode intracavity- contacted vertical-cavity surface-emitting lasers (IC-VCSELs) with the rhomboidal selectively- oxidized current aperture were investigated. It was found that the lasing emission polarization of all single-mode VCSELs is fixed along the minor diagonal of the rhomboidal-shape aperture (the [110] direction). Numerical modelling of carrier transport did not reveal any sufficient injection anisotropy in the laser active region, while the transverse optical confinement factors calculated for the fundamental mode with two orthogonal polarizations are identical. Optical loss anisotropy and/or gain anisotropy are the most likely mechanisms of inducing the polarization fixation.

  5. Polarization mode control of long-wavelength VCSELs by intracavity patterning

    DOE PAGES

    Long, Christopher Michael; Mickovic, Zlatko; Dwir, Benjamin; Caliman, Andrei; Iakovlev, Vladimir; Mereuta, Alexandru; Sirbu, Alexei; Kapon, Eli

    2016-04-26

    Polarization mode control is enhanced in wafer-fused vertical-cavity surface-emitting lasers emitting at 1310 nm wavelength by etching two symmetrically arranged arcs above the gain structure within the laser cavity. The intracavity patterning introduces birefringence and dichroism, which discriminates between the two polarization states of the fundamental transverse modes. We find that the cavity modifications define the polarization angle at threshold with respect to the crystal axes, and increase the gain anisotropy and birefringence on average, leading to an increase in the polarization switching current. As a result, experimental measurements are explained using the spin-flip model of VCSEL polarization dynamics.

  6. Polarization properties of localized structures in VCSELs

    NASA Astrophysics Data System (ADS)

    Averlant, Etienne; Tlidi, Mustapha; Ackemann, Thorsten; Thienpont, Hugo; Panajotov, Krassimir

    2016-04-01

    Broad area Vertical-Cavity Surface-Emitting Lasers (VCSELs) have peculiar polarization properties which are a field of study by itself.1-3 These properties have already been used for localized structure generation, in a simple configuration, where only one polarization component was used.4 Here, we present new experimental and theoretical results on the complex polarization behavior of localized structures generated in an optically-injected broad area VCSEL. A linear stability analysis of the spin-flip VCSEL model is performed for the case of broad area devices, in a restrained and experimentally relevant parameter set. Numerical simulations are performed, in one and two dimensions. They reveal existence of vector localized structures. These structures have a complex polarization state, which is not simply a linear polarization following the one of the optical injection. Experimental results confirm theoretical predictions. Applications of this work can lead to the encoding of small color images in the polarization state of an ensemble of localized structures at the surface of a broad area VCSEL.

  7. Photonic heterostructure High Contrast Grating as a novel polarization control and light confinement system in HCG VCSEL

    NASA Astrophysics Data System (ADS)

    Gebski, M.; Dems, M.; Chen, J.; Qijie, W.; Dao Hua, Z.; Czyszanowski, T.

    2014-05-01

    In this paper we present results of computer optical simulations of VCSEL with modified high refractive index contrast grating (HCG) as a top mirror. We consider the HCG of two different designs which determine the lateral aperture. Such HCG mirror provides selective guiding effect. We show that proper design of aperture of HCG results in almost sixfold increase in cavity Q-factor for zero order mode and a discrimination of higher order modes.

  8. Dynamics of dual-polarization VCSEL-based optical frequency combs under optical injection locking.

    PubMed

    Prior, E; de Dios, C; Criado, R; Ortsiefer, M; Meissner, P; Acedo, P

    2016-09-01

    The present experimental work studies the dynamics of dual-polarization optical frequency combs (OFCs) based on gain switching (GS) vertical-cavity surface-emitting laser (VCSEL) diodes under optical injection locking (OIL). This study presents two main results. First, we have obtained an overall comb formed by two orthogonally polarized sub-combs with comparable span and power. The overall comb shows enhanced optical span and flatness and high coherence between its modes. The second result is that we have been able to control the polarization state of the overall comb by tuning the polarization state of the injected light by locking the same single teeth of the comb. This produces an overall comb with single polarization that is parallel or orthogonal. These are novel findings that provide for the development of efficient and compact OFCs based on GS VCSEL sources with versatile polarization dynamics. PMID:27607978

  9. In-line rotation sensor based on VCSEL behavior under polarization-rotating optical feedback.

    PubMed

    Ura, Shogo; Shoda, Shinichiro; Nishio, Kenzo; Awatsuji, Yasuhiro

    2011-11-21

    Lasing behavior of a single-transverse-mode vertical-cavity surface-emitting laser (VCSEL) was observed while the polarization direction of an optical feedback was rotated. Optical powers of two polarization modes of a VCSEL showed sinusoidal dependences on the polarization-rotation angle. The power variation was seen when an optical feedback ratio was larger than -20 dB, though the variation depth dropped suddenly as the feedback ratio became smaller than -25 dB. An in-line type rotation sensor utilizing this behavior is proposed. The sensor system was constructed and the detection principle was demonstrated.

  10. All-optical 2-bit header recognition and packet switching using polarization bistable VCSELs.

    PubMed

    Hayashi, Daisuke; Nakao, Kazuya; Katayama, Takeo; Kawaguchi, Hitoshi

    2015-04-01

    We propose and evaluate an all-optical 2-bit header recognition and packet switching method using two 1.55-µm polarization bistable vertical-cavity surface-emitting lasers (VCSELs) and three optical switches. Polarization bistable VCSELs acted as flip-flop devices by using AND-gate operations of the header and set pulses, together with the reset pulses. Optical packets including 40-Gb/s non-return-to-zero pseudo-random bit-sequence payloads were successfully sent to one of four ports according to the state of two bits in the headers with a 4-bit 500-Mb/s return-to-zero format. The input pulse powers were 17.2 to 31.8 dB lower than the VCSEL output power. We also examined an extension of this method to multi-bit header recognition and packet switching.

  11. Theoretical and experimental study of polarization switching in long-wavelength VCSELs subject to parallel optical injection

    NASA Astrophysics Data System (ADS)

    Quirce, A.; Pérez, P.; Popp, A.; Valle, A.; Pesquera, L.; Hong, Y.; Thienpont, H.; Panajotov, K.

    2016-04-01

    We report a theoretical and experimental analysis of the polarization switching found in a single-transverse mode VCSEL when subject to parallel optical injection. We have found a novel situation in which injection locking of the parallel polarization and excitation of the free-running orthogonal polarization of the VCSEL are simultaneously obtained. Analytical expressions for the power of both linear polarizations in the previous steady state are determined. We show that considering two linear polarization modes in a model of a VCSEL subject to parallel optical injection leads to simpler expressions than those found for a VCSEL with only a single linear polarization. We show that the power emitted in both linear polarizations depend linearly on the injected power. The stability region of this solution is measured in the plane injected power versus frequency detuning.

  12. Controlling the parameters of wet lateral oxidation for VCSEL fabrication

    NASA Astrophysics Data System (ADS)

    Riaziat, Majid; Reed, David; Kor, Alex

    2016-03-01

    Physical parameters that need to be controlled during the wet oxidation of VCSEL mesas are numerous and include: temperature uniformity, vapor flow pattern, epitaxial thickness and composition uniformity, diffusion through adjacent layers, oxidation onset delay, etch skirt, and wafer surface prep. We report the results of our studies on some of these factors including vapor flow patterns, and oxidation front monitoring. The results are being used for the optimization of our commercial system for wet lateral oxidation.

  13. Effect of temperature on polarization switching in long-wavelength VCSELs

    NASA Astrophysics Data System (ADS)

    Quirce, Ana; Valle, Angel; Pesquera, Luis; Panajotov, Krassimir; Thienpont, Hugo

    2015-03-01

    We have measured the effect of the temperature on the polarization-resolved characteristics of a 1550-nm singletransverse mode vertical-cavity surface-emitting laser (VCSEL). Two double polarization switchings (PS) are observed. For low temperatures a PS from longer to shorter wavelengths (Type II PS) followed by the opposite PS (Type I) is observed. For higher temperatures Type I followed by Type II PS are measured. A simple expression relating the spin flip rate to the dichroism, differential gain, threshold current and PS current is derived. With this expression the dependence of the spin-flip rate on the temperature is obtained.

  14. Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Khurram, Aliza; Hong, Yanhua

    2016-10-01

    Time delay (TD) signatures are studied experimentally in orthogonal polarizations and in individual transverse modes respectively in a VCSEL operating with three transverse modes. Different types of concealment of the TD signatures are observed when the polarization of feedback is rotated through large angles. Effects of feedback strength and external cavity length on the TD signatures are investigated. Weak feedback leads to better concealment of the TD signatures in the dominant polarization. When the round-trip time difference between the two external cavities is close to a half of the relaxation oscillation period, the TD signatures are minimized.

  15. Enhanced chaotic communication in VCSELs with variable-polarization optical feedback and polarization-preserved optical injection

    NASA Astrophysics Data System (ADS)

    Xiang, Shuiying; Pan, Wei; Luo, Bin; Yan, Lianshan; Zou, Xihua; Li, Nianqiang; Zhang, Liyue

    2012-11-01

    The communication performance and security enhancement in vertical-cavity surface-emitting lasers (VCSELs) subject to variable-polarization optical feedback (VPOF) are investigated numerically. Unidirectional polarization-preserved optical injection (PPOI) scheme is adopted, chaos modulation is utilized for message encryption, and two decoding methods are discussed and compared. The influences of VPOF on the performances of two decoding methods are focused on, and the effects of injection strength and frequency detuning are also considered. The security enhancement is further discussed by analyzing the robustness to mismatched feedback configuration and polarizer angle, as well as the intrinsic parameters. It is shown that, successful message encoding and decoding with Q-factors greater than 6 can be achieved by using unpredictability-enhanced chaotic carrier. In particular, the Q-factors are quite sensitive to the feedback configuration and laser parameters. When an attacker with open-loop is considered, Q-factors are smaller than 3 (6) for division (subtraction) decoding method. Specifically, even when an attacker with close-loop is considered, the Q-factors are lower than 6 when mismatched polarizer angles or intrinsic parameters exceed ±20% for subtraction method, and are more sensitive to parameter mismatch for division method, which enhances significantly the security, and thus is extremely useful for the security-enhanced chaotic communication system.

  16. Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection

    NASA Astrophysics Data System (ADS)

    Zhong, Dongzhou; Luo, Wei; Xu, Geliang

    2016-09-01

    Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light, we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers (VCSELs) with optical-injection. Here, two logic inputs are encoded in the detuning of the injected light from a tunable CW laser. The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs. For the same logic inputs, under electro-optic modulation, we perform various digital signal processing (NOT, AND, NAND, XOR, XNOR, OR, NOR) in the all-optical domain by controlling the logic operation of the applied electric field. Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization. To quantify the reliabilities of these logic gates, we further demonstrate their success probabilities. Project supported by the National Natural Science Foundation of China (Grant No. 61475120) and the Innovative Projects in Guangdong Colleges and Universities, China (Grant Nos. 2014KTSCX134 and 2015KTSCX146).

  17. Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection

    NASA Astrophysics Data System (ADS)

    Zhong, Dongzhou; Luo, Wei; Xu, Geliang

    2016-09-01

    Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light, we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers (VCSELs) with optical-injection. Here, two logic inputs are encoded in the detuning of the injected light from a tunable CW laser. The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs. For the same logic inputs, under electro-optic modulation, we perform various digital signal processing (NOT, AND, NAND, XOR, XNOR, OR, NOR) in the all-optical domain by controlling the logic operation of the applied electric field. Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization. To quantify the reliabilities of these logic gates, we further demonstrate their success probabilities. Project supported by the National Natural Science Foundation of China (Grant No. 61475120) and the Innovative Projects in Guangdong Colleges and Universities, China (Grant Nos. 2014KTSCX134 and 2015KTSCX146).

  18. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    SciTech Connect

    Alharthi, S. S. Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J.; Korpijarvi, V.-M.; Guina, M.

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  19. Evolution of VCSELs

    NASA Astrophysics Data System (ADS)

    Tatum, Jim A.

    2014-02-01

    Over the last 20 years, nearly 1 billion VCSELs have been shipped, the vast majority of them emitting at 850nm using GaAs active regions, and primarily used in data communications and optical tracking applications. Looking to the future, the ever increasing speed of data communications is driving the VCSEL to evolve with more complex active regions, optical mode control, and alternate wavelengths to meet the more stringent requirements. We will discuss the current state of VCSELs for 28Gbps, and higher speeds, focusing on evolution to more complex active regions and alternate wavelength approaches, particularly as the market evolves to more active optical cables. Other high volume applications for VCSELs are driving improvements in single mode and optical power characteristics. We will present several evolving market trends and applications, and the specific VCSEL requirements that are imposed. The ubiquitous 850nm, GaAs active region VCSEL is evolving in multiple ways, and will continue to be a viable optical source well in to the future.

  20. Design of Automotive VCSEL Transmitter with On-Chip Feedforward Optical Power Control

    NASA Astrophysics Data System (ADS)

    Yin, Xin; Bauwelinck, Johan; Ridder, Tine De; Ossieur, Peter; Qiu, Xing-Zhi; Vandewege, Jan; Chasles, Olivier; Devos, Arnaud; Pauw, Piet De

    We propose a novel 50Mb/s optical transmitter fabricated in a 0.6μm BiCMOS technology for automotive applications. The proposed VCSEL driver chip was designed to operate with a single supply voltage ranging from 3.0V to 5.25V. A fully integrated feedforward current control circuit is presented to stabilize the optical output power without any external components. The experimental results show that the optical output power can be stable within a 1.1dB range and the extinction ratio greater than 14dB over the automotive environmental temperature range of -40°C to 105°C.

  1. 850-nm oxide VCSEL development at Hewlett-Packard

    NASA Astrophysics Data System (ADS)

    Deng, Hongyu; Dudley, James J.; Lim, Sui F.; Lei, Chun; Liang, Bing; Tashima, M.; Hodge, Lee A.; Zhang, Xuemei; Herniman, John; Herrick, Robert W.

    1999-04-01

    Oxide confined VCSELs are being developed at Hewlett-Packard for the next-generation low cost fiber optics communication applications. Compared to the existing 850 nm implant confined VCSELs, the oxide VCSELs have lower operating voltages, higher slope efficiencies, and better modal bandwidth characteristics. Preliminary data on epitaxy and oxidation control uniformity, device performance, and reliability will be discussed.

  2. High power VCSEL devices for atomic clock applications

    NASA Astrophysics Data System (ADS)

    Watkins, L. S.; Ghosh, C.; Seurin, J.-F.; Zhou, D.; Xu, G.; Xu, B.; Miglo, A.

    2015-09-01

    We are developing VCSEL technology producing >100mW in single frequency at wavelengths 780nm, 795nm and 850nm. Small aperture VCSELs with few mW output have found major applications in atomic clock experiments. Using an external cavity three-mirror configuration we have been able to operate larger aperture VCSELs and obtain >70mW power in single frequency operation. The VCSEL has been mounted in a fiber pigtailed package with the external mirror mounted on a shear piezo. The package incorporates a miniature Rb cell locker to lock the VCSEL wavelength. This VCSEL operates in single frequency and is tuned by a combination of piezo actuator, temperature and current. Mode-hop free tuning over >30GHz frequency span is obtained. The VCSEL has been locked to the Rb D2 line and feedback control used to obtain line-widths of <100kHz.

  3. High-frequency signal generation using 1550 nm VCSEL subject to two-frequency optical injection

    NASA Astrophysics Data System (ADS)

    Consoli, Antonio; Quirce, Ana; Valle, Angel; Esquivias, Ignacio; Pesquera, Luis; García Tijero, Jose Manuel

    2013-03-01

    We experimentally investigate high-frequency microwave signal generation using a 1550 nm single-mode VCSEL subject to two-frequency optical injection. We first consider a situation in which the injected signals come from two similar VCSELs. The polarization of the injected light is parallel to that of the injected VCSEL. We obtain that the VCSEL can be locked to one of the injected signals, but the observed microwave signal is originated by beating at the photodetector. In a second situation we consider injected signals that come from two external cavity tunable lasers with a significant increase of the injected power with respect to the VCSEL-by-VCSEL injection case. The polarization of the injected light is orthogonal to that of the free-running slave VCSEL. We show that in this case it is possible to generate a microwave signal inside the VCSEL cavity.

  4. VCSEL Applications and Simulation

    NASA Technical Reports Server (NTRS)

    Cheung, Samson; Goorjian, Peter; Ning, Cun-Zheng; Li, Jian-Zhong

    2000-01-01

    This viewgraph presentation gives an overview of Vertical Cavity Surface Emitting Laser (VCSEL) simulation and its applications. Details are given on the optical interconnection in information technology of VCSEL, the formulation of the simulation, its numeric algorithm, and the computational results.

  5. 850nm VCSEL with a liquid crystal overlay

    NASA Astrophysics Data System (ADS)

    Nair, Veena M.; Panajotov, Krassimir; Petrov, Mikov; Thienpont, Hugo; Xie, Yi; Beeckman, Jeroen; Neyts, Kristiaan

    2012-06-01

    We developed an in- house technology to overlay liquid crystal (LC) on top of a 850nm Vertical Cavity Surface Emitting Laser (VCSEL) creating a so-called LC-VCSEL. Prior to this, the effect of the cell thickness on the planar alignment of the E7 LC is investigated. It is observed that the LC orientation is planar, uniformly aligned over the whole cell with an average pre-tilt of 22.50 in a thin a cell of 13μm thickness; such alignment uniformity is not observed in a thick cell of 125μm. Nevertheless, several domains of good uniformity are still present. Further, the polarization resolved LI characteristics of LC-VCSEL are investigated with and without the insertion of LC in a cell glued directly onto VCSEL package. Before filling in the LC, the VCSEL emits linearly polarized light and this linear polarization is lost after LC filling. The output intensity as a function of polarizer angle shows partial planar alignment of the E7 LC, which is very important for the further advancement of the LC-VCSEL integrated system.

  6. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  7. Red vertical cavity surface emitting lasers (VCSELs) for consumer applications

    NASA Astrophysics Data System (ADS)

    Duggan, Geoffrey; Barrow, David A.; Calvert, Tim; Maute, Markus; Hung, Vincent; McGarvey, Brian; Lambkin, John D.; Wipiejewski, Torsten

    2008-02-01

    There are many potential applications of visible, red (650nm - 690nm) vertical cavity surface emitting lasers (VCSELs) including high speed (Gb) communications using plastic optical fiber (POF), laser mouse sensors, metrology, position sensing. Uncertainty regarding the reliability of red VCSELs has long been perceived as the most significant roadblock to their commercialization. In this paper we will present data on red VCSELs optimized for performance and reliability that will allow exploitation of this class of VCSEL in a wide range of high volume consumer, communication and medical applications. VCSELs operating at ~665nm have been fabricated on 4" GaAs substrates using MOCVD as the growth process and using standard VCSEL processing technology. The active region is AlGaInP-based and the DBR mirrors are made from AlGaAs. Threshold currents are typically less than 2mA, the devices operate up to >60C and the light output is polarized in a stable, linear characteristic over all normal operating conditions. The 3dB modulation bandwidth of the devices is in excess of 3GHz and we have demonstrated the operation of a transceiver module operating at 1.25Gb/s over both SI-POF and GI-POF. Ageing experiments carried out using a matrix of current and temperature stress conditions allows us to estimate that the time to failure of 1% of devices (TT1%F) is over 200,000h for reasonable use conditions - making these red VCSELs ready for commercial exploitation in a variety of consumer-type applications. Experiments using appropriate pulsed driving conditions have resulted in operation of 665nm VCSELs at a temperature of 85°C whilst still offering powers useable for eye-safe free space and POF communications.

  8. Progress in high-power high-speed VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Carson, Richard F.; Warren, Mial E.; Dacha, Preethi; Wilcox, Thomas; Maynard, John G.; Abell, David J.; Otis, Kirk J.; Lott, James A.

    2016-03-01

    Flip-chip bonding enables a unique architecture for two-dimensional arrays of VCSELs. Such arrays feature scalable power outputs and the capability to separately address sub-array regions while maintaining fast turn-on and turn-off response times. These substrate-emitting VCSEL arrays can also make use of integrated micro-lenses for beam shaping and directional control. Advances in the performance of these laser arrays will be reviewed and emerging applications are discussed.

  9. VCSEL-based sensors for distance and velocity

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Carpaij, Mark; Gerlach, Philipp; Gronenborn, Stephan; Gudde, Ralph; Hellmig, Jochen; Kolb, Johanna; van der Lee, Alexander

    2016-03-01

    VCSEL based sensors can measure distance and velocity in three dimensional space and are already produced in high quantities for professional and consumer applications. Several physical principles are used: VCSELs are applied as infrared illumination for surveillance cameras. High power arrays combined with imaging optics provide a uniform illumination of scenes up to a distance of several hundred meters. Time-of-flight methods use a pulsed VCSEL as light source, either with strong single pulses at low duty cycle or with pulse trains. Because of the sensitivity to background light and the strong decrease of the signal with distance several Watts of laser power are needed at a distance of up to 100m. VCSEL arrays enable power scaling and can provide very short pulses at higher power density. Applications range from extended functions in a smartphone over industrial sensors up to automotive LIDAR for driver assistance and autonomous driving. Self-mixing interference works with coherent laser photons scattered back into the cavity. It is therefore insensitive to environmental light. The method is used to measure target velocity and distance with very high accuracy at distances up to one meter. Single-mode VCSELs with integrated photodiode and grating stabilized polarization enable very compact and cost effective products. Besides the well know application as computer input device new applications with even higher accuracy or for speed over ground measurement in automobiles and up to 250km/h are investigated. All measurement methods exploit the known VCSEL properties like robustness, stability over temperature and the potential for packages with integrated optics and electronics. This makes VCSEL sensors ideally suited for new mass applications in consumer and automotive markets.

  10. Interferometric Polarization Control

    NASA Technical Reports Server (NTRS)

    Chuss, David T. (Inventor); Wollack, Edward J. (Inventor); Moseley, Samuel H. (Inventor); Novak, Giles A. (Inventor)

    2008-01-01

    A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.

  11. Interferometric polarization control

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J. (Inventor); Moseley, Samuel H. (Inventor); Novak, Giles A. (Inventor); Chuss, David T. (Inventor)

    2009-01-01

    A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.

  12. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Hurtado, A.; Korpijarvi, V.-M.; Guina, M.

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  13. Dynamic Self-Locking of an OEO Containing a VCSEL

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Yu, Nan; Savchenkov, Anatoliy; Maleki, Lute

    2009-01-01

    A method of dynamic self-locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface-emitting laser (VCSEL) that is an active element in the frequency-control loop of an optoelectronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency (EIT) resonance. This scheme can be considered an alternative to the one described in Optical Injection Locking of a VCSEL in an OEO (NPO-43454), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 33. Both schemes are expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. To recapitulate from the cited prior article: In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. This concludes the background information. From the perspective that led to the conception of the optical injection-locking scheme described in the cited prior article, the variation of the VCSEL wavelength with the microwave power circulating in the frequency-control loop is regarded as a disadvantage and optical injection locking is a solution of the problem of stabilizing the wavelength in the presence of uncontrolled fluctuations in the microwave power. The present scheme for dynamic self-locking emerges from a different perspective, in which the dependence of VCSEL wavelength on microwave power is regarded as an advantageous phenomenon that can be exploited as a means of controlling the wavelength. The figure schematically depicts

  14. Integrated high power VCSEL systems

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  15. Frequency tuning of polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Gerhardt, Nils C.; Hofmann, Martin R.

    2016-04-01

    Controlling the coupled spin-photon dynamics in vertical-cavity surface-emitting lasers (VCSELs) is an attractive opportunity to overcome the limitations of conventional, purely charge based semiconductor lasers. Such spin-controlled VCSELs (spin-VCSELs) offer several advantages, like reduced threshold, spin amplification and polarization control. Furthermore the coupling between carrier spin and light polarization bears the potential for ultrafast polarization dynamics. By injecting spin-polarized carriers, the complex polarization dynamics can be controlled and utilized for high-speed applications. Polarization oscillations as resonance oscillations of the coupled spin- photon system can be generated using pulsed spin injection, which can be much faster than the intensity dynamics in conventional devices. We already demonstrated that the oscillations can be switched in a controlled manner. These controllable polarization dynamics can be used for ultrafast polarization-based optical data communication. The polarization oscillation frequency and therefore the possible data transmission rate is assumed to be mainly determined by the birefringence-induced mode-splitting. This provides a direct tool to increase the polarization dynamics toward higher frequencies by adding a high amount of birefringence to the VCSEL structure. Using this technique, we could recently demonstrate experimentally a birefringence splitting of more than 250 GHz using mechanical strain. Here, we employ the well-known spin-flip model to investigate the tuning of the polarization oscillation frequency. The changing mechanical strain is represented by a linear birefringence sweep to values up to 80πGHz. The wide tuning range presented enables us to generate polarization oscillation frequencies exceeding the conventional intensity modulation frequency in the simulated device by far, mainly dependent on the birefringence in the cavity only.

  16. 120 Gbps VCSEL arrays: fabrication and quality aspects

    NASA Astrophysics Data System (ADS)

    Grabherr, Martin; Intemann, Steffan; Wimmer, Christian; Borowski, Lin R.; King, Roger; Wiedenmann, Dieter; Jäger, Roland

    2010-02-01

    Data centers and supercomputers are driving the demand for short reach aggregate bandwidth. E.g. active CXP active optical cables (AOC) with an aggregate bandwidth of 120 Gbps [1] are being installed since about one year in some of the biggest server farms in the world. As these applications require parallel optics, obviously this is a natural playground for VCSEL technology. The 10G VCSEL platform of Philips ULM Photonics is enabling operation of such AOC at less than 3 W total power by low bias currents for the individual VCSEL as low as 3.4 mA at room temperature and 5.5 mA at 85°C ambient. In combination with ideally matched driver electronics, the launch power of the VCSELs can be stabilized within 0.15dB variation across this operating temperature range [2] and thus allow for open loop power control. With more than 108 hours of operation in the field and no field return reported, the FIT rate for the 1x12 VCSEL array can be calculated to be less than 10 FIT.

  17. Optical Injection Locking of a VCSEL in an OEO

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute

    2009-01-01

    Optical injection locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface- emitting laser (VCSEL) that is an active element in the frequency-control loop of an opto-electronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency resonance. This particular optical-injection- locking scheme is expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. Inasmuch as the microwave power circulating in the frequency-control loop is a dynamic frequency-control variable (and, hence, cannot be stabilized), there arises a need for another means of stabilizing the wavelength. The present optical-injection-locking scheme satisfies the need for a means to stabilize the wavelength against microwave- power fluctuations. It is also expected to afford stabilization against temperature and current fluctuations. In an experiment performed to demonstrate this scheme, wavelength locking was observed when about 200 W of the output power of a commercial tunable diode laser was injected into a commercial VCSEL, designed to operate in the wavelength range of 795+/-3 nm, that was generating about 200 microW of optical power. (The use of relatively high injection power levels is a usual practice in injection locking of VCSELs.)

  18. Lithographic VCSEL array multimode and single mode sources for sensing and 3D imaging

    NASA Astrophysics Data System (ADS)

    Leshin, J.; Li, M.; Beadsworth, J.; Yang, X.; Zhang, Y.; Tucker, F.; Eifert, L.; Deppe, D. G.

    2016-05-01

    Sensing applications along with free space data links can benefit from advanced laser sources that produce novel radiation patterns and tight spectral control for optical filtering. Vertical-cavity surface-emitting lasers (VCSELs) are being developed for these applications. While oxide VCSELs are being produced by most companies, a new type of oxide-free VCSEL is demonstrating many advantages in beam pattern, spectral control, and reliability. These lithographic VCSELs offer increased power density from a given aperture size, and enable dense integration of high efficiency and single mode elements that improve beam pattern. In this paper we present results for lithographic VCSELs and describes integration into military systems for very low cost pulsed applications, as well as continuouswave applications in novel sensing applications. The VCSELs are being developed for U.S. Army for soldier weapon engagement simulation training to improve beam pattern and spectral control. Wavelengths in the 904 nm to 990 nm ranges are being developed with the spectral control designed to eliminate unwanted water absorption bands from the data links. Multiple beams and radiation patterns based on highly compact packages are being investigated for improved target sensing and transmission fidelity in free space data links. These novel features based on the new VCSEL sources are also expected to find applications in 3-D imaging, proximity sensing and motion control, as well as single mode sensors such as atomic clocks and high speed data transmission.

  19. 780nm-range VCSEL array for laser printer system and other applications at Ricoh

    NASA Astrophysics Data System (ADS)

    Jikutani, Naoto; Itoh, Akihiro; Harasaka, Kazuhiro; Sasaki, Toshihide; Sato, Shunichi

    2016-03-01

    A 780 nm-range 40 channels vertical-cavity surface-emitting laser (VCSEL) array was developed as a writing light source for printers. A 15° off missoriented GaAs substrate, an aluminum-free GaInAsP/GaInP compressively-strained multiple quantum well and an anisotropic-shape transverse-mode filter were employed to control polarization characteristics. The anisotropic-shape transverse-mode filter also suppressed higher transverse-mode and enabled high-power single-mode operation. Thus, orthogonal-polarization suppression-ratio (OPSR) of over 22 dB and side-mode suppression-ratio (SMSR) of 30 dB were obtained at operation power of 3mW at same time for wide oxide-aperture range below 50 μm2. Moreover, a thermal resistance was reduced for 38% by increasing a thickness of high thermal conductivity layer (3λ/4-AlAs layer) near a cavity. By this structure, a peak-power increased to 1.3 times. Moreover, a power-fall caused by self-heating at pulse-rise was decreased to 10% and the one caused by a thermal-crosstalk between channels was decreased to 46%. The VCSEL array was mounted in a ceramic package with a tilted seal glass to prevent optical-crosstalk caused by other channels. Thus, we achieved stable-output and high-quality beam characteristics for long-duration pulse drive.

  20. Long-distance multi-channel bidirectional chaos communication based on synchronized VCSELs subject to chaotic signal injection

    NASA Astrophysics Data System (ADS)

    Xie, Yi-Yuan; Li, Jia-Chao; He, Chao; Zhang, Zhen-Dong; Song, Ting-Ting; Xu, Chang-Jun; Wang, Gui-Jin

    2016-10-01

    A novel long-distance multi-channel bidirectional chaos communication system over multiple paths based on two synchronized 1550 nm vertical-cavity surface-emitting lasers (VCSELs) is proposed and studied theoretically. These two responding VCSELs (R-VCSELs) can output similar chaotic signals served as chaotic carrier in two linear polarization (LP) modes with identical signal injection from a driving VCSEL (D-VCSEL), which is subject to optical feedback and optical injection, simultaneously. Through the numerical simulations, high quality chaos synchronization between the two R-VCSELs can be obtained. Besides, the effects of varied qualities of chaos synchronization on communication performances in 20 km single mode fiber (SMF) channels are investigated by regulating different internal parameters mismatch after adopting chaos masking (CMS) technique. With the decrease of the maximum cross correlation coefficient (Max-C) between the two R-VCSELs, the bit error rate (BER) of decoded message increase. Meanwhile, the BER can still be less than 10-9 when the Max-C degrades to 0.982. Based on high quality synchronization, when the dispersion compensating fiber (DCF) links are introduced, 4n messages of 10 Gbit/s can transmit in 180 km SMF channels over n coupling paths, bidirectionally and simultaneously. Thorough tests are carried out with detailed analysis, demonstrating long-distance, multi-channel, bidirectional chaos communication based on VCSELs with chaotic signal injection.

  1. Ultrafast Narrow Band Modulation of VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.

  2. VCSEL collimation using self-aligned integrated polymer microlenses

    NASA Astrophysics Data System (ADS)

    Levallois, Christophe; Bardinal, Véronique; Vergnenègre, Corinne; Leïchlé, Thierry; Camps, Thierry; Daran, Emmanuelle; Doucet, Jean-Baptiste

    2008-04-01

    We report on the design and fabrication of polymer microlenses fabricated on patterned SU-8 layers in view of integrating microlenses on VCSEL arrays for laser beam shaping. For a standard top-emitting VCSEL, the lens has to be fabricated on a thick intermediate layer (pedestal) whose optimal thickness can be modelled as a function of the initial and of the aimed optical properties of the VCSEL beam. In this work, pedestals are fabricated with SU-8, which is a negative-tone photoresist transparent at the lasing wavelength. Lens deposition is realized using a robotized silicon microcantilever spotter technique after a simple SU-8 photolithography step in order to define high aspect ratio cylindrical pedestals with wide range diameters [30-140μm]. The effect of pedestal diameter on the final contact angle and curvature radius has been investigated using non contact optical profilometry and scanning electron microscopy. We show that this technique leads to a complete delimitation of the polymer droplets and to a better control of the final lens size. Moreover, lens positioning is fully ensured by the self-alignment of the droplet with the pillar center and consequently with the VCSEL source, and allows for meeting the stringent requirements on alignments.

  3. VCSELs for exascale computing, computer farms, and green photonics

    NASA Astrophysics Data System (ADS)

    Hofmann, Werner; Moser, Philip; Wolf, Philip; Larisch, Gunter; Li, Hui; Li, Wei; Lott, James; Bimberg, Dieter

    2012-11-01

    The bandwidth-induced communication bottleneck due to the intrinsic limitations of metal interconnects is inhibiting the performance and environmental friendliness of todaýs supercomputers, data centers, and in fact all other modern electrically interconnected and interoperable networks such as data farms and "cloud" fabrics. The same is true for systems of optical interconnects (OIs), where even when the metal interconnects are replaced with OIs the systems remain limited by bandwidth, physical size, and most critically the power consumption and lifecycle operating costs. Vertical-cavity surface-emitting lasers (VCSELs) are ideally suited to solve this dilemma. Global communication providers like Google Inc., Intel Inc., HP Inc., and IBM Inc. are now producing optical interconnects based on VCSELs. The optimal bandwidth per link may be analyzed by by using Amdahĺs Law and depends on the architecture of the data center and the performance of the servers within the data center. According to Google Inc., a bandwidth of 40 Gb/s has to be accommodated in the future. IBM Inc. demands 80 Tbps interconnects between solitary server chips in 2020. We recently realized ultrahigh bit rate VCSELs up to 49 Gb/s suited for such optical interconnects emitting at 980 nm. These devices show error-free transmission at temperatures up to 155°C and operate beyond 200°C. Single channel data-rates of 40 Gb/s were achieved up to 75°C. Record high energy efficiencies close to 50 fJ/bit were demonstrated for VCSELs emitting at 850 nm. Our devices are fabricated using a full three-inch wafer process, and the apertures were formed by in-situ controlled selective wet oxidation using stainless steel-based vacuum equipment of our own design. assembly, and operation. All device data are measured, recorded, and evaluated by our proprietary fully automated wafer mapping probe station. The bandwidth density of our present devices is expected to be scalable from about 100 Gbps/mm² to a

  4. Dynamics of long-wavelength VCSELs subject to dual-beam optical injection

    NASA Astrophysics Data System (ADS)

    Pérez, Pablo; Quirce, Ana; Consoli, Antonio; Valle, Angel; Noriega, Ignacio; Pesquera, Luis; Esquivias, Ignacio

    2014-05-01

    We have studied experimentally and theoretically the nonlinear dynamics of a 1550 nm single transverse mode VCSEL subject to two-frequency orthogonal optical injection. In this type of injection both injected fields have a linear polarization that is orthogonal to that of the free-running VCSEL. We have found different behaviors that include irregular and periodic dynamics in the orthogonal polarization, periodic dynamics in both linear polarizations and a situation in which both linearly polarized modes lock to the most intense injection when its wavelength is close to the free-running laser wavelength. In this study we also analyze the generated high-frequency microwave signal found when the VCSEL is emitting only in the orthogonal polarization. The relative strength of peaks in the optical spectra at the frequencies of both master lasers depends on the behaviour of the VCSEL under single optical injection by the most intense master laser. The peak in the optical spectrum that appears at the frequency of the most intense master laser is larger than the peak that appears at the frequency of the other master laser, providing that there is stable locking when only light from the most intense laser is injected. In this case a significant emission of the VCSEL at the frequency of the most intense master laser is observed. On the contrary, if there is not stable locking when only light from the most intense laser is injected, the magnitude of both peaks becomes similar and a significant emission of the VCSEL at the frequency of the weakest master laser is observed. Good agreement is found between our experimental and theoretical results.

  5. Ultrafast Directional Beam Switching in Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Goorjian, Peter

    2001-01-01

    We propose a new approach to performing ultrafast directional beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 microns in diameter placed about 1 micron apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degrees.

  6. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  7. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  8. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

  9. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler. PMID:27464079

  10. Fabrication issues of oxide-confined VCSELs

    SciTech Connect

    Geib, K.M.; Choquette, K.D.; Hou, H.Q.; Hammons, B.E.

    1997-04-01

    To insert high-performance oxide-confined vertical-cavity surface- emitting lasers (VCSELs) into the manufacturing arena, we have examined the critical parameters that must be controlled to establish a repeatable and uniform wet thermal oxidation process for AlGaAs. These parameters include the AlAs mole fraction, sample temperature, carrier gas flow, and bubbler water temperature. Knowledge of these parameters has enable the compilation of oxidation rate data for AlGaAs which exhibits an Arrhenius rate dependence. The compositionally dependent activation energies for Al{sub x}Ga{sub 1-x}As layers of x=1.00, 0.98, and 0.92 are found to be 1.24, 1.75, and 1.88 eV, respectively. 7 figs, 1 tab, 14 refs.

  11. Communication using VCSEL laser array

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2008-01-01

    Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.

  12. Advanced Concepts for High-Power VCSELS and 2-Dimensional VCSEL Arrays

    SciTech Connect

    Allerman, A.A.; Choquette, Kent D.; Chow, W.W.; Geib, K.M.; Hadley, R.; Hou, H.Q.; Mar, A.

    1999-04-01

    We have developed high power vertical cavity surface emitting lasers (VCSELS) for multimode or single mode operation. We have characterized new cavity designs for individual lasers and 2-dimensional VCSEL arrays to maximize output power. Using broad area high power VCSELS under pulsed excitation, we have demonstrated the triggering of a photoconductive semiconductor switch (PCSS) with a VCSEL. We also have developed designs for high output power in a single mode. The first approach is to engineer the oxide aperture profile to influence the optical confinement and thus modal properties. A second approach focuses on "leaky-mode" concepts using lateral modification of the cavity resonance to provide the lateral refractive index difference. To this end, we have developed a regrowth process to fabricate single-mode VCSELS. The overall objective of this work was to develop high-power single-mode or multimode sources appropriate for many applications leveraging the many inherent advantages of VCSELS.

  13. SASE FEL Polarization Control Using Crossed Undulator

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-09-30

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  14. Polarization-controllable TE21 mode converter

    NASA Astrophysics Data System (ADS)

    Chang, T. H.; Yu, C. F.; Fan, C. T.

    2005-07-01

    We report the concept and development of a Ka-band mode and polarization converter that efficiently converts a TE10 rectangular waveguide mode into either a linearly or a circularly polarized TE21 cylindrical waveguide mode. The converter is composed of a power-dividing section, a mode-converting section, and a polarization-transitioning section. The converting process in each section is displayed and the working principles are discussed. A prototype has been built and tested. The measured results agree well with the numerical calculations for both linear and circular polarizations. The measured optimum back-to-back transmission is 94% with a 1-dB bandwidth of 4.1 GHz for the linear polarization. As for the circular polarization, the measured optimum transmission is 97%, but the corresponding bandwidth is indistinct due to some resonant dips. The reasons and impact for the dips are discussed. A bandwidth of 3.9 GHz is obtained for a single circular converter; meanwhile, an approach to eliminating these unwanted dips is presented in theory. For further diagnostics, the field pattern of either polarization is directly displayed on a temperature-sensitive liquid crystal display sheet, where the electric field strength can be discerned from the color spectrum. In addition to high conversion efficiency and broad bandwidth, this converter features easy construction, high mode purity, and polarization controllability.

  15. Ultrafast Beam Switching Using Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Goorjian, Peter

    2001-01-01

    We propose a new approach to performing ultrafast beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The strategy is demonstrated by numerical simulation, showing a beam switching of 10 deg at 42 GHz.

  16. Organic photovoltaic cells with controlled polarization sensitivity

    SciTech Connect

    Awartani, Omar; O'Connor, Brendan T.; Kudenov, Michael W.

    2014-03-03

    In this study, we demonstrate linearly polarized organic photovoltaic cells with a well-controlled level of polarization sensitivity. The polarized devices were created through the application of a large uniaxial strain to the bulk heterojunction poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) film and printing the plastically deformed active layer onto a PEDOT:PSS and indium tin oxide coated glass substrate. The P3HT:PCBM layer is processed such that it is able to accommodate high strains (over 100%) without fracture. After printing the strained films, thermal annealing is used to optimize solar cell performance while maintaining polarization sensitivity. A dichroic ratio and short circuit current ratio of ≈6.1 and ≈1.6 were achieved, respectively.

  17. High finesse external cavity VCSELs: from very low noise lasers to dual frequency lasers

    NASA Astrophysics Data System (ADS)

    Baili, Ghaya; Alouini, Medhi; Morvan, Loic; Bretenaker, Fabien; Sagnes, Isabelle; Garnache, Arnaud; Dolfi, Daniel

    2011-01-01

    Low noise-level optical sources are required for numerous applications such as microwave photonics, fiber-optic sensing and time/frequency references distribution. In this paper, we demonstrate how inserting a SC active medium into a centimetric high-Q external cavity is a simple way to obtain a shot-noise-limited laser source over a very wide frequency bandwidth. This approach ensures, with a compact design, a sufficiently long photon lifetime to reach the oscillation-relaxation- free class-A regime. This concept has been illustrated by inserting a 1/2-VCSEL in an external cavity including an etalon filter. A -156dB/Hz relative intensity noise level is obtained over the 100 MHz to 18 GHz bandwidth of interest. This is several orders of magnitude better than the noise, previously observed in VCSELs, belonging to the class-B regime. The optimization, in terms of noise, is shown to be a trade-off between the cavity length and the laser mode filtering. The transition between the class-B and class-A dynamical behaviors is directly observed by continuously controlling the photon lifetime is a sub-millimetric to a centimetric cavity length. It's proven that the transition occurs progressively, without any discontinuity. Based on the same laser architecture, tunable dual-frequency oscillation is demonstrated by reducing the polarized eigenstates overlap in the gain medium. The class-A dynamics of such a laser, free of relaxation oscillations, enables to suppress the electrical phase noise in excess, usually observed in the vicinity of the beat note. An original technique for jitter reduction in mode-locked VECSELs is also investigated. Such lasers are needed for photonic analog to digital converters.

  18. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller.

    PubMed

    Jofre, M; Anzolin, G; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W

    2012-05-21

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than ∼ 20 ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust.

  19. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller.

    PubMed

    Jofre, M; Anzolin, G; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W

    2012-05-21

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than ∼ 20 ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust. PMID:22714214

  20. VCSELs for interferometric readout of MEMS sensors

    NASA Astrophysics Data System (ADS)

    Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Keeler, Gordon A.; Shaw, Michael J.; Baker, Michael S.; Okandan, Murat

    2016-03-01

    We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.

  1. Interface control of bulk ferroelectric polarization

    SciTech Connect

    Yu, P; Luo, Weidong; Yi, D.; Zhang, J.-X.; Rossell, M.D.; Yang, C.-H.; You, L.; Singh-Bhalla, G. B.; Yang, S.Y; He, Q; Ramasse, Q. M.; Erni, R.; Martin, L. W.; Chu, Y. H.; Pantelides, Sokrates T; Pennycook, Stephen J; Ramesh, R.

    2012-01-01

    The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.

  2. Optimized VCSELs for high-power arrays

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Kolb, Johanna S.; Engelhardt, Andreas P.; Gerlach, Philipp; Jaeger, Roland; Pollmann-Retsch, Jens; Weichmann, Ulrich; Witzigmann, Bernd

    2014-02-01

    High-power VCSEL systems with multi kilowatt output power require a good electro-optical efficiency at the point of operation i.e. at elevated temperature. The large number of optimization parameters can be structured in a way that separates system and assembly considerations from the minimization of electrical and optical losses in the epitaxially grown structure. Temperature dependent functions for gain parameters, internal losses and injection efficiency are derived from a fit to experimental data. The empirical description takes into account diameter dependent effects like current spreading or temperature dependent ones like voltage drops over hetero-interfaces in the DBR mirrors. By evaluating experimental measurements of the light output and voltage characteristics over a large range of temperature and diameter, wafer-characteristic parameters are extracted allowing to predict the performance of VCSELs made from this material in any array and assembly configuration. This approach has several beneficial outcomes: Firstly, it gives a general description of a VCSEL independent of its geometry, mounting and detuning, secondly, insights into the structure and the underlying physics can be gained that lead to the improvement potential of the structure and thirdly the performance of the structure in arrays and modules can be predicted. Experimental results validate the approach and demonstrate the significantly improved VCSEL efficiency and the benefit in high power systems.

  3. Optical power of VCSELs stabilized to 35 ppm/°C without a TEC

    NASA Astrophysics Data System (ADS)

    Downing, John

    2015-03-01

    This paper reports a method and system comprising a light source, an electronic method, and a calibration procedure for stabilizing the optical power of vertical-cavity surface-emitting lasers (VCSELs) and laser diodes (LDs) without the use thermoelectric coolers (TECs). The system eliminates the needs for custom interference coatings, polarization adjustments, and the exact alignment required by the optical method reported in 2013 [1]. It can precisely compensate for the effects of temperature and wavelength drift on photodiode responsivity as well as changes in VCSEL beam quality and polarization angle over a 50°C temperature range. Data obtained from light sources built with single-mode polarization-locked VCSELs demonstrate that 30 ppm/°C stability can be readily obtained. The system has advantages over TECstabilized laser modules that include: 1) 90% lower relative RMS optical power and temperature sensitivity, 2) a five-fold enhancement of wall-plug efficiency, 3) less component testing and sorting, 4) lower manufacturing costs, and 5) automated calibration in batches at time of manufacture is practical. The system is ideally suited for battery-powered environmental and in-home medical monitoring applications.

  4. Fabricating VCSELs in a high-tech start-up

    NASA Astrophysics Data System (ADS)

    Grabherr, Martin; Jaeger, Roland; King, Roger; Schneider, Burghard; Wiedenmann, Dieter

    2003-04-01

    U-L-M photonics GmbH has been set up to develop next-generation vertical-cavity surface-emitting laser (VCSEL) products and to exploit the full potential of these industry-leading devices in terms of performance and application areas. Reliability is important for all application areas for VCSELs. This paper presents the excellent reliability characteristics of U-L-M"s VCSEL technology. Accumulation of all advantageous properties VCSELs are famous for, like low power consumption, circular low divergent beam profile, high modulation bandwidth, and scalability of monolithic arrangements, results in two-dimensional (2D) VCSEL arrays that appear as key components to reach highest aggregate bandwidths of tomorrow"s parallel optical transceivers. We report on 2D VCSEL arrays, substrate emitting although operating at 850 nm and prepared for flip-chip bonding, that are well suited for the customer"s needs in terms of speed, power consumption, and compact integration. Up to now, in most single channel transceivers, the VCSEL is packaged in a TO can and connected to the driver via a printed circuit board. We investigate the performance of a high speed VCSEL in a TO 46 package and demonstrate 10 Gbps transmission. The potential of VCSEL technology in other areas of application than datacom or telecom is just going to be exploited. We present a 760 nm single-mode VCSELs for gas monitoring applications.

  5. Polarization Preservation and Control in a Figure-8 Ring

    NASA Astrophysics Data System (ADS)

    Derbenev, Ya. S.; Morozov, V. S.; Lin, F.; Zhang, Y.; Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu. N.

    2016-02-01

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab’s proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider’s experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design are summarized.

  6. Silicon-on-insulator integrated tunable polarization controller (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarmiento-Merenguel, Jose-Dario; Alonso-Ramos, Carlos; Halir, Robert; Le Roux, Xavier; Vivien, Laurent; Cheben, Pavel; Durán-Valdeiglesias, Elena; Molina-Fernández, Iñigo; Marris-Morini, Delphine; Xu, Danxia; Schmid, Jens H.; Janz, Siegfried; Ortega-Moñux, Alejandro

    2016-05-01

    Polarization management is a key functionality in many photonic applications, including optical communications, imaging or quantum information. Developing integrated devices capable of reliably controlling polarization state would result in compact and low cost circuits with improved stability compared with fiber or bulk optics solutions. However, stringent fabrication tolerances make the integration of polarization managing elements highly challenging. The main challenge in polarization controllers, composed by polarization rotators and polarization phase shifters, is to precisely control rotation angle in integrated polarization rotators. Proposed solutions typically require sophisticated fabrication processes or extremely tight fabrication tolerances, seriously hindering their practical application. Here we present a technology independent polarization controller scheme that relies on phase shifters to largely relax fabrication tolerances of polarization rotators. In addition, these phase shifters enable dynamic wavelength tuning. In our scheme, three polarization rotation elements are interconnected with two tunable phase shifters to adjust the polarization extinction ratio, while an output polarization phase shifter is used to select the relative phase. This way we can achieve any desired output state of polarization. We have implemented this scheme in the silicon-on-insulator platform, experimentally demonstrating a record polarization extinction range of 40 dB (± 20 dB) with a 98% coverage of the Poincaré sphere. Furthermore, the device is tunable in the complete C-band. These results constitute, to the best of our knowledge, the highest polarization extinction range achieved in a fully integrated device.

  7. Self-Sustained Ultrafast Pulsation in Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng

    2001-01-01

    High frequency, narrow-band self-pulsating operation is demonstrated in two coupled vertical-cavity surface-emitting lasers (VCSELs). The coupled VCSELs provide an ideal source for high-repetition rate (over 40 GHz), sinusoidal-like modulated laser source with Gaussian-like near- and far-field profiles. We also show that the frequency of the modulation can be tuned by the inter-VCSEL separation or by DC-bias level.

  8. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    SciTech Connect

    Hurtado, Antonio; Javaloyes, Julien

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  9. VCSEL fault location apparatus and method

    DOEpatents

    Keeler, Gordon A.; Serkland, Darwin K.

    2007-05-15

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  10. Furnace control apparatus using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  11. Process control system using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1994-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  12. Furnace control apparatus using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-03-28

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  13. Process control system using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1994-02-15

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  14. Electrochemical control of cell and tissue polarity.

    PubMed

    Chang, Fred; Minc, Nicolas

    2014-01-01

    Localized ion fluxes at the plasma membrane provide electrochemical gradients at the cell surface that contribute to cell polarization, migration, and division. Ion transporters, local pH gradients, membrane potential, and organization are emerging as important factors in cell polarization mechanisms. The power of electrochemical effects is illustrated by the ability of exogenous electric fields to redirect polarization in cells ranging from bacteria, fungi, and amoebas to keratocytes and neurons. Electric fields normally surround cells and tissues and thus have been proposed to guide cell polarity in development, cancer, and wound healing. Recent studies on electric field responses in model systems and development of new biosensors provide new avenues to dissect molecular mechanisms. Here, we review recent advances that bring molecular understanding of how electrochemistry contributes to cell polarity in various contexts. PMID:25062359

  15. All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer

    NASA Astrophysics Data System (ADS)

    Barozzi, Matteo; Vannucci, Armando; Picchi, Giorgio

    2015-01-01

    We propose an all-optical fiber-based device able to accomplish both polarization control and OSNR enhancement of an amplitude modulated optical signal, affected by unpolarized additive white Gaussian noise, at the same time. The proposed noise cleaning device is made of a nonlinear lossless polarizer (NLP), that performs polarization control, followed by an ideal polarizing filter that removes the orthogonally polarized half of additive noise. The NLP transforms every input signal polarization into a unique, well defined output polarization (without any loss of signal energy) and its task is to impose a signal polarization aligned with the transparent eigenstate of the polarizing filter. In order to effectively control the polarization of the modulated signal, we show that two different NLP configurations (with counter- or co-propagating pump laser) are needed, as a function of the signal polarization coherence time. The NLP is designed so that polarization attraction is effective only on the "noiseless" (i.e., information-bearing) component of the signal and not on noise, that remains unpolarized at the NLP output. Hence, the proposed device is able to discriminate signal power (that is preserved) from in-band noise power (that is partly suppressed). Since signal repolarization is detrimental if applied to polarization-multiplexed formats, the noise cleaner application is limited here to "legacy" links, with 10 Gb/s OOK modulation, still representing the most common format in deployed networks. By employing the appropriate NLP configurations, we obtain an OSNR gain close to 3dB. Furthermore, we show how the achievable OSNR gain can be estimated theoretically.

  16. Broadband laser polarization control with aligned carbon nanotubes.

    PubMed

    Yang, He; Fu, Bo; Li, Diao; Tian, Ying; Chen, Ya; Mattila, Marco; Yong, Zhenzhong; Li, Ru; Hassanien, Abdou; Yang, Changxi; Tittonen, Ilkka; Ren, Zhaoyu; Bai, Jintao; Li, Qingwen; Kauppinen, Esko I; Lipsanen, Harri; Sun, Zhipei

    2015-07-01

    We introduce a simple approach to fabricate an aligned carbon nanotube (ACNT) device for broadband polarization control in fiber laser systems. The ACNT device was fabricated by pulling from as-fabricated vertically-aligned carbon nanotube arrays. Their anisotropic properties are confirmed with various microscopy techniques. The device was then integrated into fiber laser systems (at two technologically important wavelengths of 1 and 1.5 μm) for polarization control. We obtained a linearly-polarized light output with the maximum extinction ratio of ∼12 dB. The output polarization direction could be fully controlled by the ACNT alignment direction in both lasers. To the best of our knowledge, this is the first time that the ACNT device is applied to polarization control in laser systems. Our results exhibit that the ACNT device is a simple, low-cost, and broadband polarizer to control laser polarization dynamics, for various photonic applications (such as material processing, polarization diversity detection in communications etc.), where linear polarization control is necessary. PMID:26060940

  17. Multiplexed gas spectroscopy using tunable VCSELs

    NASA Astrophysics Data System (ADS)

    Bora, Mihail; McCarrick, James; Zumstein, Jim; Bond, Steven; Chang, Allan; Moran, Bryan; Benett, William J.; Bond, Tiziana

    2012-06-01

    Detection and identification of gas species using tunable laser diode laser absorption spectroscopy has been performed using vertical cavity surface emitting lasers (VCSEL). Two detection methods are compared: direct absorbance and wavelength modulation spectroscopy (WMS). In the first, the output of a DC-based laser is directly monitored to detect for any quench at the targeted specie wavelength. In the latter, the emission wavelength of the laser is modulated by applying a sinusoidal component on the drive current of frequency ω, and measuring the harmonics component (2ω) of the photo-detected current. This method shows a better sensitivity measured as signal to noise ratio, and is less susceptible to interference effects such as scattering or fouling. Gas detection was initially performed at room temperature and atmospheric conditions using VCSELs of emission wavelength 763 nm for oxygen and 1392 nm for water, scanning over a range of approximately 10 nm, sufficient to cover 5-10 gas specific absorption lines that enable identification and quantization of gas composition. The amplitude and frequency modulation parameters were optimized for each detected gas species, by performing two dimensional sweeps for both tuning current and either amplitude or frequency, respectively. We found that the highest detected signal is observed for a wavelength modulation amplitude equal to the width of the gas absorbance lines, in good agreement with theoretical calculations, and for modulation frequencies below the time response of the lasers (<50KHz). In conclusion, we will discuss limit of detection studies and further implementation and packaging of VCSELs in diode arrays for continuous and simultaneous monitoring of multiple species in gaseous mixtures.

  18. Multiplexed gas spectroscopy using tunable VCSELs

    SciTech Connect

    Bond, T; Bond, S; McCarrick, J; Zumstein, J; Chang, A; Moran, B; Benett, W J

    2012-04-10

    Detection and identification of gas species using tunable laser diode laser absorption spectroscopy has been performed using vertical cavity surface emitting lasers (VCSEL). Two detection methods are compared: direct absorbance and wavelength modulation spectroscopy (WMS). In the first, the output of a DC-based laser is directly monitored to detect for any quench at the targeted specie wavelength. In the latter, the emission wavelength of the laser is modulated by applying a sinusoidal component on the drive current of frequency {omega}, and measuring the harmonics component (2{omega}) of the photo-detected current. This method shows a better sensitivity measured as signal to noise ratio, and is less susceptible to interference effects such as scattering or fouling. Gas detection was initially performed at room temperature and atmospheric conditions using VCSELs of emission wavelength 763 nm for oxygen and 1392 nm for water, scanning over a range of approximately 10 nm, sufficient to cover 5-10 gas specific absorption lines that enable identification and quantization of gas composition. The amplitude and frequency modulation parameters were optimized for each detected gas species, by performing two dimensional sweeps for both tuning current and either amplitude or frequency, respectively. We found that the highest detected signal is observed for a wavelength modulation amplitude equal to the width of the gas absorbance lines, in good agreement with theoretical calculations, and for modulation frequencies below the time response of the lasers (<50KHz). In conclusion, we will discuss limit of detection studies and further implementation and packaging of VCSELs in diode arrays for continuous and simultaneous monitoring of multiple species in gaseous mixtures.

  19. Full polarization control for fiber optical quantum communication systems using polarization encoding.

    PubMed

    Xavier, G B; Vilela de Faria, G; Temporão, G P; von der Weid, J P

    2008-02-01

    A real-time polarization control system employing two non-orthogonal reference signals multiplexed in either time or wavelength with the data signal is presented. It is shown, theoretically and experimentally, that complete control of multiple polarization states can be attained employing polarization controllers in closed-loop configuration. Experimental results on the wavelength multiplexing setup show that negligible added penalties, corresponding to an average added optical Quantum Bit Error Rate of 0.044%, can be achieved with response times smaller than 10 ms, without significant introduction of noise counts in the quantum channel.

  20. Protein complexes that control renal epithelial polarity

    PubMed Central

    Pieczynski, Jay

    2011-01-01

    Establishment of epithelial apicobasal polarity is crucial for proper kidney development and function. In recent years, there have been important advances in our understanding of the factors that mediate the initiation of apicobasal polarization. Key among these are the polarity complexes that are evolutionarily conserved from simple organisms to humans. Three of these complexes are discussed in this review: the Crumbs complex, the Par complex, and the Scribble complex. The apical Crumbs complex consists of three proteins, Crumbs, PALS1, and PATJ, whereas the apical Par complex consists of Par-3, Par-6, and atypical protein kinase C. The lateral Scribble complex consists of Scribble, discs large, and lethal giant larvae. These complexes modulate kinase and small G protein activity such that the apical and basolateral complexes signal antagonistically, leading to the segregation of the apical and basolateral membranes. The polarity complexes also serve as scaffolds to direct and retain proteins at the apical membrane, the basolateral membrane, or the intervening tight junction. There is plasticity in apicobasal polarity, and this is best seen in the processes of epithelial-to-mesenchymal transition and the converse mesenchymal-to-epithelial transition. These transitions are important in kidney disease as well as kidney development, and modulation of the polarity complexes are critical for these transitions. PMID:21228104

  1. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    NASA Astrophysics Data System (ADS)

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  2. Generation of polarization-resolved wideband unpredictability-enhanced chaotic signals based on vertical-cavity surface-emitting lasers subject to chaotic optical injection.

    PubMed

    Chen, Jian-Jun; Wu, Zheng-Mao; Tang, Xi; Deng, Tao; Fan, Li; Zhong, Zhu-Qiang; Xia, Guang-Qiong

    2015-03-23

    A system framework is proposed and analyzed for generating polarization-resolved wideband unpredictability-enhanced chaotic signals based on a slave vertical-cavity surface-emitting laser (S-VCSEL) driven by an injected optical chaos signal from a master VCSEL (M-VCSEL) under optical feedback. After calculating the time series outputs from the M-VCSEL under optical feedback and the S-VCSEL under chaotic optical injection by using the spin-flip model (SFM), the unpredictability degree (UD) is evaluated by permutation entropy (PE), and the bandwidth of the polarization-resolved outputs from the M-VCSEL and S-VCSEL are numerically investigated. The results show that, under suitable parameters, both the bandwidth and UD of two polarization components (PCs) outputs from the S-VCSEL can be enhanced significantly compared with that of the driving chaotic signals output from the M-VCSEL. By simulating the influences of the feedback and injection parameters on the bandwidth and UD of the polarization-resolved outputs from S-VCSEL, related operating parameters can be optimized.

  3. A Quasioptical Vector Interferometer for Polarization Control

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Moseley, Harvey S.; Novak, Giles

    2005-01-01

    We present a mathematical description of a Quasioptical Vector Interferometer (QVI), a device that maps an input polarization state to an output polarization state by introducing a phase delay between two linear orthogonal components of the input polarization. The advantages of such a device over a spinning wave-plate modulator for measuring astronomical polarization in the far-infrared through millimeter are: 1. The use of small, linear motions eliminates the need for cryogenic rotational bearings, 2. The phase flexibility allows measurement of Stokes V as well as Q and U, and 3. The QVI allows for both multi-wavelength and broadband modulation. We suggest two implementations of this device as an astronomical polarization modulator. The first involves two such modulators placed in series. By adjusting the two phase delays, it is possible to use such a modulator to measure Stokes Q, U, and V for passbands that are not too large. Conversely, a single QVI may be used to measure Q and V independent of frequency. In this implementation, Stokes U must be measured by rotating the instrument. We conclude this paper by presenting initial laboratory results.

  4. Continuous control of spin polarization using a magnetic field

    NASA Astrophysics Data System (ADS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  5. Widely tunable telecom MEMS-VCSEL for terahertz photomixing.

    PubMed

    Haidar, Mohammad Tanvir; Preu, Sascha; Paul, Sujoy; Gierl, Christian; Cesar, Julijan; Emsia, Ali; Küppers, Franko

    2015-10-01

    We report frequency-tunable terahertz (THz) generation with a photomixer driven by an ultra-broadband tunable micro-electro-mechanical system vertical-cavity surface-emitting laser (MEMS-VCSEL) and a fixed-wavelength VCSEL, as well as a tunable MEMS-VCSEL mixed with a distributed feedback (DFB) diode. A total frequency span of 3.4 THz is covered in direct detection mode and 3.23 THz in the homodyne mode. The tuning range is solely limited by the dynamic range of the photomixers and the Schottky diode/photoconductor used in the experiment.

  6. MBE growth of VCSELs for high volume applications

    NASA Astrophysics Data System (ADS)

    Jäger, Roland; Riedl, Michael C.

    2011-05-01

    Mass market applications like laser computer mouse or optical data transmission based on vertical-cavity surface-emitting laser (VCSEL) chips need a high over all yield including epitaxy, processing, dicing, mounting and testing. One yield limitation for VCSEL structures is the emission wavelength variation of the substrate surface area leading to the fraction on laser chips which are below or above the specification limits. For most 850 nm VCSEL products a resonator wavelength variation of ±2 nm is common. This represents an average resonator thickness variation of much less than 1% which is quite challenging to be fulfilled on the entire processed wafer surface area. A high over all yield is demonstrated on MBE grown VCSEL structures.

  7. Electrically pumped semiconductor laser with monolithic control of circular polarization

    PubMed Central

    Rauter, Patrick; Lin, Jiao; Genevet, Patrice; Khanna, Suraj P.; Lachab, Mohammad; Giles Davies, A.; Linfield, Edmund H.; Capasso, Federico

    2014-01-01

    We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by “fishbone” gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field. For devices based on an alternative transverse grating design, degrees of circular polarization as high as 98% are demonstrated for selected far-field regions of the outcoupled THz radiation and within a collection half-angle of about 6°. Potential and limitations of integrated antenna gratings for polarization-controlled emission are discussed. PMID:25512515

  8. Electrically pumped semiconductor laser with monolithic control of circular polarization.

    PubMed

    Rauter, Patrick; Lin, Jiao; Genevet, Patrice; Khanna, Suraj P; Lachab, Mohammad; Giles Davies, A; Linfield, Edmund H; Capasso, Federico

    2014-12-30

    We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by "fishbone" gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field. For devices based on an alternative transverse grating design, degrees of circular polarization as high as 98% are demonstrated for selected far-field regions of the outcoupled THz radiation and within a collection half-angle of about 6°. Potential and limitations of integrated antenna gratings for polarization-controlled emission are discussed. PMID:25512515

  9. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Luk, Ting S.; Figiel, Jeffrey J.; Brener, Igal; Brueck, S. R. J.; Wang, George T.

    2016-02-01

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control overmore » the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  10. Intrinsic polarization control in rectangular GaN nanowire lasers.

    PubMed

    Li, Changyi; Liu, Sheng; Luk, Ting S; Figiel, Jeffrey J; Brener, Igal; Brueck, S R J; Wang, George T

    2016-03-14

    We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm(-2) and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates. PMID:26899502

  11. Polar auxin transport: controlling where and how much

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; DeLong, A.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.

  12. Progress and challenges in electrically pumped GaN-based VCSELs

    NASA Astrophysics Data System (ADS)

    Haglund, A.; Hashemi, E.; Bengtsson, J.; Gustavsson, J.; Stattin, M.; Calciati, M.; Goano, M.

    2016-04-01

    ABSTRACT The Vertical-Cavity Surface-Emitting Laser (VCSEL) is an established optical source in short-distance optical communication links, computer mice and tailored infrared power heating systems. Its low power consumption, easy integration into two-dimensional arrays, and low-cost manufacturing also make this type of semiconductor laser suitable for application in areas such as high-resolution printing, medical applications, and general lighting. However, these applications require emission wavelengths in the blue-UV instead of the established infrared regime, which can be achieved by using GaN-based instead of GaAs-based materials. The development of GaN-based VCSELs is challenging, but during recent years several groups have managed to demonstrate electrically pumped GaN-based VCSELs with close to 1 mW of optical output power and threshold current densities between 3-16 kA/cm2. The performance is limited by challenges such as achieving high-reflectivity mirrors, vertical and lateral carrier confinement, efficient lateral current spreading, accurate cavity length control and lateral optical mode confinement. This paper summarizes different strategies to solve these issues in electrically pumped GaN-VCSELs together with state-of-the-art results. We will highlight our work on combined transverse current and optical mode confinement, where we show that many structures used for current confinement result in unintentionally optically anti-guided resonators. Such resonators can have a very high optical loss, which easily doubles the threshold gain for lasing. We will also present an alternative to the use of distributed Bragg reflectors as high-reflectivity mirrors, namely TiO2/air high contrast gratings (HCGs). Fabricated HCGs of this type show a high reflectivity (>95%) over a 25 nm wavelength span.

  13. Fabrication and performance of tuneable single-mode VCSELs emitting in the 750- to 1000-nm range

    NASA Astrophysics Data System (ADS)

    Grabherr, Martin; Wiedenmann, Dieter; Jaeger, Roland; King, Roger

    2005-03-01

    The growing demand on low cost high spectral purity laser sources at specific wavelengths for applications like tuneable diode laser absorption spectroscopy (TDLAS) and optical pumping of atomic clocks can be met by sophisticated single-mode VCSELs in the 760 to 980 nm wavelength range. Equipped with micro thermo electrical cooler (TEC) and thermistor inside a small standard TO46 package, the resulting wavelength tuning range is larger than +/- 2.5 nm. U-L-M photonics presents manufacturing aspects, device performance and reliability data on tuneable single-mode VCSELs at 760, 780, 794, 852, and 948 nm lately introduced to the market. According applications are O2 sensing, Rb pumping, Cs pumping, and moisture sensing, respectively. The first part of the paper dealing with manufacturing aspects focuses on control of resonance wavelength during epitaxial growth and process control during selective oxidation for current confinement. Acceptable resonance wavelength tolerance is as small as +/- 1nm and typical aperture size of oxide confined single-mode VCSELs is 3 &mum with only few hundred nm tolerance. Both of these major production steps significantly contribute to yield on wafer values. Key performance data for the presented single-mode VCSELs are: >0.5 mW of optical output power, >30 dB side mode suppression ratio, and extrapolated 10E7 h MTTF at room temperature based on several millions of real test hours. Finally, appropriate fiber coupling solutions will be presented and discussed.

  14. Temperature stable mid-infrared GaInAsSb/GaSb Vertical Cavity Surface Emitting Lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Ikyo, A. B.; Marko, I. P.; Hild, K.; Adams, A. R.; Arafin, S.; Amann, M.-C.; Sweeney, S. J.

    2016-01-01

    GaInAsSb/GaSb based quantum well vertical cavity surface emitting lasers (VCSELs) operating in mid-infrared spectral range between 2 and 3 micrometres are of great importance for low cost gas monitoring applications. This paper discusses the efficiency and temperature sensitivity of the VCSELs emitting at 2.6 μm and the processes that must be controlled to provide temperature stable operation. We show that non-radiative Auger recombination dominates the threshold current and limits the device performance at room temperature. Critically, we demonstrate that the combined influence of non-radiative recombination and gain peak – cavity mode de-tuning determines the overall temperature sensitivity of the VCSELs. The results show that improved temperature stable operation around room temperature can only be achieved with a larger gain peak – cavity mode de-tuning, offsetting the significant effect of increasing non-radiative recombination with increasing temperature, a physical effect which must be accounted for in mid-infrared VCSEL design.

  15. Temperature stable mid-infrared GaInAsSb/GaSb Vertical Cavity Surface Emitting Lasers (VCSELs)

    PubMed Central

    Ikyo, A. B.; Marko, I. P.; Hild, K.; Adams, A. R.; Arafin, S.; Amann, M.-C.; Sweeney, S. J.

    2016-01-01

    GaInAsSb/GaSb based quantum well vertical cavity surface emitting lasers (VCSELs) operating in mid-infrared spectral range between 2 and 3 micrometres are of great importance for low cost gas monitoring applications. This paper discusses the efficiency and temperature sensitivity of the VCSELs emitting at 2.6 μm and the processes that must be controlled to provide temperature stable operation. We show that non-radiative Auger recombination dominates the threshold current and limits the device performance at room temperature. Critically, we demonstrate that the combined influence of non-radiative recombination and gain peak – cavity mode de-tuning determines the overall temperature sensitivity of the VCSELs. The results show that improved temperature stable operation around room temperature can only be achieved with a larger gain peak – cavity mode de-tuning, offsetting the significant effect of increasing non-radiative recombination with increasing temperature, a physical effect which must be accounted for in mid-infrared VCSEL design. PMID:26781492

  16. Polarization control for enhanced defect detection on advanced memory devices

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Ho; Ihm, Dong-Chul; Yeo, Jeong-Ho; Gluk, Yael; Meshulach, Doron

    2006-03-01

    Dense repetitive wafer structures, such as memory cells, with a pitch below the wavelength of the illumination light may take on effective birefringent properties, especially in layers of high refractive index materials such as silicon or conductors. Such induced "form birefringence" effects may result in dependency of the optical response on the illumination polarization and direction. In such structures, control over the polarization of the light becomes important to enhance signal-to-noise ratio (SNR) of pattern defects. We present defect detection results and analysis using DUV laser illumination for different polarization configurations and collection perspectives on Flash RAM devices. Improvement in detection SNR of bridge defect type is observed with linear illumination polarization perpendicular to the pattern lines. Generally, for small design rules (smaller than wavelength) polarization effects become more evident. Also, for smaller defect sizes, detection strongly depends on control of the illumination polarization. Linear polarization perpendicular to the pattern showed penetration into the structure even though the pitch is smaller than the illumination wavelength.

  17. Polarization control in ridge-waveguide-laser diodes

    SciTech Connect

    Amann, M.

    1987-04-20

    The polarization dependence of the gain/current relation and threshold current of quasi-index-guided laser diodes is analyzed for the case of lambda = 1.3 ..mu..m InGaAsP-InP ridge-waveguide lasers. Thereby it is shown that three different regimes for the stripe width and the lateral effective index discontinuity can be distinguished where one modal polarization (TE or TM) predominates. The significance of this finding on laser design and polarization control is discussed, and a comparison is performed on experimental results.

  18. Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators.

    PubMed

    Kim, Jun-Whee; Park, Su-Hyun; Chu, Woo-Sung; Oh, Min-Cheol

    2012-05-21

    Polarization controllers based on polymer waveguide technology are demonstrated by incorporating thermo-optic birefringence modulators (BMs) and thin-film wave plates. Highly birefringent polymer materials are used to increase the efficiency of birefringence modulation in proportion to the heating power. Thin-film quarter-wave plates are fabricated by using a crosslinkable liquid crystal, reactive mesogen, and inserted between the BMs to produce static phase retardation and polarization coupling. By applying a triangular AC signal to one BM and a DC signal to another, the polarization states of the output light are modulated to cover the entire surface of the Poincaré sphere. PMID:22714231

  19. Polarization control at spin-driven ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Leo, Naëmi; Bergman, Anders; Cano, Andres; Poudel, Narayan; Lorenz, Bernd; Fiebig, Manfred; Meier, Dennis

    2015-04-01

    Unusual electronic states arise at ferroelectric domain walls due to the local symmetry reduction, strain gradients and electrostatics. This particularly applies to improper ferroelectrics, where the polarization is induced by a structural or magnetic order parameter. Because of the subordinate nature of the polarization, the rigid mechanical and electrostatic boundary conditions that constrain domain walls in proper ferroics are lifted. Here we show that spin-driven ferroelectricity promotes the emergence of charged domain walls. This provides new degrees of flexibility for controlling domain-wall charges in a deterministic and reversible process. We create and position a domain wall by an electric field in Mn0.95Co0.05WO4. With a magnetic field we then rotate the polarization and convert neutral into charged domain walls, while its magnetic properties peg the wall to its location. Using atomistic Landau-Lifshitz-Gilbert simulations we quantify the polarization changes across the two wall types and highlight their general occurrence.

  20. Polarization control at spin-driven ferroelectric domain walls.

    PubMed

    Leo, Naëmi; Bergman, Anders; Cano, Andres; Poudel, Narayan; Lorenz, Bernd; Fiebig, Manfred; Meier, Dennis

    2015-04-14

    Unusual electronic states arise at ferroelectric domain walls due to the local symmetry reduction, strain gradients and electrostatics. This particularly applies to improper ferroelectrics, where the polarization is induced by a structural or magnetic order parameter. Because of the subordinate nature of the polarization, the rigid mechanical and electrostatic boundary conditions that constrain domain walls in proper ferroics are lifted. Here we show that spin-driven ferroelectricity promotes the emergence of charged domain walls. This provides new degrees of flexibility for controlling domain-wall charges in a deterministic and reversible process. We create and position a domain wall by an electric field in Mn0.95Co0.05WO4. With a magnetic field we then rotate the polarization and convert neutral into charged domain walls, while its magnetic properties peg the wall to its location. Using atomistic Landau-Lifshitz-Gilbert simulations we quantify the polarization changes across the two wall types and highlight their general occurrence.

  1. Polarity control in WSe2 double-gate transistors

    PubMed Central

    Resta, Giovanni V.; Sutar, Surajit; Balaji, Yashwanth; Lin, Dennis; Raghavan, Praveen; Radu, Iuliana; Catthoor, Francky; Thean, Aaron; Gaillardon, Pierre-Emmanuel; de Micheli, Giovanni

    2016-01-01

    As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics. PMID:27390014

  2. Polarity control in WSe2 double-gate transistors

    NASA Astrophysics Data System (ADS)

    Resta, Giovanni V.; Sutar, Surajit; Balaji, Yashwanth; Lin, Dennis; Raghavan, Praveen; Radu, Iuliana; Catthoor, Francky; Thean, Aaron; Gaillardon, Pierre-Emmanuel; de Micheli, Giovanni

    2016-07-01

    As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics.

  3. Polarization-controlled optical ring cavity (PORC) tunable pulse stretcher

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew P.; Kiefer, Johannes

    2016-08-01

    A new concept and a theoretical approach for modeling a tunable polarization-controlled optical ring cavity pulse stretcher is demonstrated. The technique discussed herein permits highly simplified and flexible tuning of the temporal shape of nanosecond duration pulses. Using half-wave plates positioned extra- and intracavity, transmission to reflection ratios across both input faces of a polarization beam splitter can easily be controlled. The resulting models indicate a further reduction in peak intensity of 30%, with respect to conventional dielectric beam splitting optical ring cavities, when configured under equivalent and optimized cavity settings.

  4. Stable polarization self-modulation in vertical-cavity surface-emitting lasers

    SciTech Connect

    Li, H.; Hohl, A.; Gavrielides, A.; Hou, H.; Choquette, K.D.

    1998-05-01

    The characteristics of polarization self-modulation in a vertical-cavity surface-emitting laser (VCSEL) were studied for frequencies up to {approx}9 GHz both experimentally and theoretically. Polarization self-modulation was obtained by rotating the linearly polarized output of the VCSEL by 90{degree} and reinjecting it into the laser. Experimentally we simultaneously recorded time traces, optical and radio-frequency spectra. We found for increasing modulation frequencies that the output characteristics changed from square-wave to sinusoidal and the VCSEL system assumed new polarization eigenstates that are different from the free-running VCSEL eigenstates. We modeled polarization self-modulation as an interband process and found a good qualitative agreement between our experimental and numerical results. {copyright} {ital 1998 American Institute of Physics.}

  5. Polarity Control in Group-III Nitrides beyond Pragmatism

    NASA Astrophysics Data System (ADS)

    Mohn, Stefan; Stolyarchuk, Natalia; Markurt, Toni; Kirste, Ronny; Hoffmann, Marc P.; Collazo, Ramón; Courville, Aimeric; Di Felice, Rosa; Sitar, Zlatko; Vennéguès, Philippe; Albrecht, Martin

    2016-05-01

    Controlling the polarity of polar semiconductors on nonpolar substrates offers a wealth of device concepts in the form of heteropolar junctions. A key to realize such structures is an appropriate buffer-layer design that, in the past, has been developed by empiricism. GaN or ZnO on sapphire are prominent examples for that. Understanding the basic processes that mediate polarity, however, is still an unsolved problem. In this work, we study the structure of buffer layers for group-III nitrides on sapphire by transmission electron microscopy as an example. We show that it is the conversion of the sapphire surface into a rhombohedral aluminum-oxynitride layer that converts the initial N-polar surface to Al polarity. With the various AlxOyNz phases of the pseudobinary Al2O3 -AlN system and their tolerance against intrinsic defects, typical for oxides, a smooth transition between the octahedrally coordinated Al in the sapphire and the tetrahedrally coordinated Al in AlN becomes feasible. Based on these results, we discuss the consequences for achieving either polarity and shed light on widely applied concepts in the field of group-III nitrides like nitridation and low-temperature buffer layers.

  6. Genetic Control of Organ Shape and Tissue Polarity

    PubMed Central

    Green, Amelia A.; Kennaway, J. Richard; Hanna, Andrew I.; Bangham, J. Andrew; Coen, Enrico

    2010-01-01

    The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum) flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape. PMID:21085690

  7. Dynamic control of localized plasmonic modes using light polarization

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Ham, Byoung S.

    2013-01-01

    We present a dynamic control of localized plasmonic modes excited by optical fields with orthogonal "X" or "Y" polarization in a combined structure of metamaterials. In this work, a localized asymmetric mode selectively excited by a "Y" polarized light renders the incident light transparent as a result of destructive interference, which is analogous to electromagnetically induced transparency in quantum physics. In contrast, a localized symmetric mode excited by an orthogonally "X" polarized light directly couples with the incident light resulting in absorption, which is analogous to optical nanoantennas. Dynamic control of localized asymmetric and symmetric plasmon modes in a near-field zone, resulting in highly contrasting responses in the far-field zone, holds potential for plasmonic switching in metamaterials.

  8. Independent control of polar and azimuthal anchoring.

    PubMed

    Anquetil-Deck, C; Cleaver, D J; Bramble, J P; Atherton, T J

    2013-07-01

    Monte Carlo simulation, experiment, and continuum theory are used to examine the anchoring exhibited by a nematic liquid crystal at a patterned substrate comprising a periodic array of rectangles that, respectively, promote vertical and planar alignment. It is shown that the easy axis and effective anchoring energy promoted by such surfaces can be readily controlled by adjusting the design of the pattern. The calculations reveal rich behavior: for strong anchoring, as exhibited by the simulated system, for rectangle ratios ≥2 the nematic aligns in the direction of the long edge of the rectangles, the azimuthal anchoring coefficient changing with pattern shape. In weak anchoring scenarios, however, including our experimental systems, preferential anchoring is degenerate between the two rectangle diagonals. Bistability between diagonally aligned and edge-aligned arrangement is predicted for intermediate combinations of anchoring coefficient and system length scale.

  9. Independent control of polar and azimuthal anchoring.

    PubMed

    Anquetil-Deck, C; Cleaver, D J; Bramble, J P; Atherton, T J

    2013-07-01

    Monte Carlo simulation, experiment, and continuum theory are used to examine the anchoring exhibited by a nematic liquid crystal at a patterned substrate comprising a periodic array of rectangles that, respectively, promote vertical and planar alignment. It is shown that the easy axis and effective anchoring energy promoted by such surfaces can be readily controlled by adjusting the design of the pattern. The calculations reveal rich behavior: for strong anchoring, as exhibited by the simulated system, for rectangle ratios ≥2 the nematic aligns in the direction of the long edge of the rectangles, the azimuthal anchoring coefficient changing with pattern shape. In weak anchoring scenarios, however, including our experimental systems, preferential anchoring is degenerate between the two rectangle diagonals. Bistability between diagonally aligned and edge-aligned arrangement is predicted for intermediate combinations of anchoring coefficient and system length scale. PMID:23944468

  10. A pair of dipole antennas for controlling polarizations

    NASA Astrophysics Data System (ADS)

    Okubo, S.; Tokumaru, S.

    1984-07-01

    A technique for reducing the fading pattern appearing when an antenna on a marine vessel receives direct signals from an satellite and interfering signals from reflections off the sea surface is presented. Fading is suppressed by controlling the polarization in the reserved direction, i.e., the polarization is opposite to that from the reflected signal. Numerical models are defined for two half-wave dipole antennas on an infinite reflector. Waves reflected from the sea are either elliptically or left-handed polarized. Increasing the antenna axis ratio in the reserved direction permits control of the polarization in that direction. Inclusion of an attitude monitor on the vessel allows automatic correction of antenna swing and incorporation of pre-calculated current distributions allows maintenance of the correct polarization in the reserved direction. Tests show that only 6 dB gain is possible with the configuration, compared to a required 8 dB. Sufficient gain may be available if two units are used or by installing an array of Yagi elements.

  11. VCSEL-based flexible opto-fluidic fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Kang, Dongseok; Gai, Boju; Yoon, Jongseung

    2016-03-01

    Flexible opto-fluidic fluorescence sensors based on microscale vertical cavity surface emitting lasers (micro-VCSELs) and silicon photodiodes (Si-PDs) are demonstrated, where arrays of 850 nm micro-VCSELs and thin film Si-PDs are heterogeneously integrated on a polyethylene terephthalate (PET) substrate by transfer printing, in conjunction with elastomeric fluidic channel. Enabled with optical isolation trenches together with wavelength- and angle-selective spectral filters implemented to suppress the absorption of excitation light, the integrated flexible fluorescence sensors exhibited significantly enhanced signal-to-background ratio, resulting in a maximum sensitivity of 5 × 10-5 wt% of infrared-absorbing organic dyes.

  12. High-power VCSEL arrays for consumer electronics

    NASA Astrophysics Data System (ADS)

    Graham, Luke A.; Chen, Hao; Cruel, Jonathan; Guenter, James; Hawkins, Bobby; Hawthorne, Bobby; Kelly, David Q.; Melgar, Alirio; Martinez, Mario; Shaw, Edward; Tatum, Jim A.

    2015-03-01

    Finisar has developed a line of high power, high efficiency VCSEL arrays. They are fabricated at 860nm as traditional P side up top emitting devices, leveraging Finisar's existing VCSEL fab and test processes for low cost, high volume capability. A thermal camera is used to accurately measure temperature profiles across the arrays at a variety of operating conditions and further allowing development of a full reliability model. The arrays are shown to demonstrate wear out reliability suitable for a wide range of applications. Typical 1/e^2 beam divergence is near 16 degrees under CW operating conditions at peak wall plug efficiency, narrowing further under pulsed drive conditions.

  13. Full-field interferometric confocal microscopy using a VCSEL array

    PubMed Central

    Redding, Brandon; Bromberg, Yaron; Choma, Michael A.; Cao, Hui

    2014-01-01

    We present an interferometric confocal microscope using an array of 1200 VCSELs coupled to a multimode fiber. Spatial coherence gating provides ~18,000 continuous virtual pinholes allowing an entire en face plane to be imaged in a snapshot. This approach maintains the same optical sectioning as a scanning confocal microscope without moving parts, while the high power of the VCSEL array (~5 mW per laser) enables high-speed image acquisition with integration times as short as 100 µs. Interferometric detection also recovers the phase of the image, enabling quantitative phase measurements and improving the contrast when imaging phase objects. PMID:25078199

  14. Genetic control of polar cell expansion in Arabidopsis thaliana

    SciTech Connect

    Schiefelbein, J.; Ford, S. ); Somerville, C. )

    1990-05-01

    Certain plant cells, like root hairs and pollen tubes, exhibit polar cell growth, with expansion limited to the tip of the growing cell. In order to understand the mechanisms regulating polar cell expansion, we are studying the process of root hair elongation in Arabidopsis thaliana. By visually screening roots from 12,000 mutagenized Arabidopsis seedlings on Petri dishes, more than 40 root hair mutants have been identified. We have focused our attention on mutants that possess nuclear recessive mutations in three genes (RHD2, RHD3, and RDH4) that appear to be involved in controlling polar cell growth in root hairs. We are currently using cellular, genetic, and molecular approaches to understand these genes' normal roles in root hair elongation.

  15. Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Fördös, Tibor; Postava, Kamil; Jaffrès, Henri; Pištora, Jaromír

    2014-06-01

    Spin-polarized light sources such as the spin-polarized light-emitting diodes (spin-LEDs) and spin-polarized lasers (spin-lasers) are prospective devices in which the radiative recombination of spin-polarized carriers results in emission of circularly polarized photons. The main goal of this article is to model emitted radiation and its polarization properties from spin-LED and spin-controlled vertical-cavity surface-emitting laser (spin-VCSEL) solid-state structures. A novel approach based on 4 × 4 transfer matrix formalism is derived for modeling of the interaction of light with matter in active media of resonant multilayer anisotropic structure and enables magneto-optical effects. Quantum transitions, which result in photon emission, are described using general Jones source vectors.

  16. Coherent control of optical polarization effects in metamaterials.

    PubMed

    Mousavi, Seyedmohammad A; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  17. Polarization controllable multispectral symmetry-breaking absorberin mid-infrared

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Pitchappa, Prakash; Ho, Chong Pei; Hasan, Dihan; Kropelnicki, Piotr; Alioto, Massimo; Lee, Chengkuo

    2016-08-01

    The versatility of mid-infrared metamaterial absorbers along with the ease of fabrication has been widely used in thermal imaging, molecule sensing, and many other applications. Controllable multispectral absorption is highly required for small footprint, multi-purpose, and real-time sensing applications. In this paper, we present the polarization control of interchangeable multispectral absorption based on the dual-band metamaterial absorber in split mode. Large modulation depth of absorption is obtained during multi-band transition through polarization control. We perform theoretical and numerical analysis to explain the results by formulating an equivalent circuit for the asymmetric cross resonator. Thermal controllability is also demonstrated to show the reversible and repeatable manipulation of absorption intensity at a given wavelength. Moreover, we characterized the limitation of this device under extreme high temperature. This work offers a design methodology for interchangeable multispectral metamaterial absorber from a new perspective by adopting polarization of incident light as a control mechanism, and this will open up possibilities for many valuable applications in the future.

  18. MT-compatible red VCSEL module for parallel optical interconnections

    NASA Astrophysics Data System (ADS)

    Van Hove, An; Van de Putte, Koen; Naessens, Kris; Dhoedt, Bart; Baets, Roel G.; Van Daele, Peter

    2000-04-01

    In this paper we present the design, fabrication and characterization of a module which directly connectorizes a 1 by 8 red VCSEL array to a small diameter polymer optical fiber array, using a standard MT ferrule. The facets of the POF are prepared by a hot knife cutting, followed by a short polishing step. First coupling results show total losses in the range of 1.1 dB/channel for a 30 cm POF link. Optical crosstalk between adjacent channels is below -45 dB. Plastic micromachined parts surrounding the VCSEL chip ensure the correct alignment of the connector, using the connector, using the connector guiding points. The parts themselves are aligned to the chip with a n index-alignment technique, using an excimer laser ablated mastertool. In a deconnectorizable version of the module, a thin, flat glue layer on the chip acts as a window between the VCSEL chip and the MT terminated POF array. Integrated in a standard ceramic package, clear eye diagrams have been measured at 150 MHz for a 10m POF link, coupled to the VCSEL array. Further efforts on higher speed measurements using dedicated drivers, will also be presented.

  19. Reliability of proton-implanted VCSELs for data communications

    NASA Astrophysics Data System (ADS)

    Guenter, James K.; Hawthorne, Robert A., III; Granville, D. N.; Hibbs-Brenner, Mary K.; Morgan, Robert A.

    1996-04-01

    We describe vertical cavity surface emitting laser (VCSEL) reliability tests comprising hundreds of parts and more than a million device hours. The VCSELs studied were of a previously described production design intended for local-area network data communication at 850 nm. Devices were operated at temperatures of 35, 80, 100, 125, and 150 degrees C and at currents of 5, 10, 15, 20, and 30 mA, and their operating characteristics were measured at room temperature. Additional groups were operated at 225 degrees C. Nominal operation is expected to be at 40 degrees C ambient and near 10mA; stresses due to temperatures and currents above the operating range accelerated degradation. The results support an Arrhenius- type failure-acceleration model with lognormal reliability distribution and lead to an 0.88-1.2- eV estimate for the failure activation energy. When tested at room temperature, typical VCSELs exhibited initial increases in power followed by decreases. The results were essentially independent of the package type (hermetic, unsealed, or overmolded plastic). Time- lapse video of degrading devices was employed in an effort to define the failure mode, which does not appear to be mediated by dark-line defects. Under normal operating conditions the observed VCSEL reliability is equal to, or better than, typical reliability results for other AlGaAs data communications lasers or LEDs.

  20. Research on VCSEL of single-mode multilayer photonic crystal

    NASA Astrophysics Data System (ADS)

    Li, Wenchao; Liu, Zhengjun; Sha, Xiaopeng

    2010-10-01

    Vertical-Cavity Surface-Emitting Lasers (VCSEL) of single mode have the potential advantage in the domains of optical information network, routing interactions, optical information storage and data transmission for their excellent performance. However, operating on the single-mode model in the whole pumped area is not solved, which impacts the technologies and applications. In this paper, a new research on VCSEL of single mode multilayer photonic crystal is presented. In the structure of photonic crystal, defects in the horizontal direction are provided by the micro-cavity, while the AIR-KTP interface on the top and the KTP-DBR (Distributed Bragg Reflection) interface at the bottom of cavity provide the defects in the vertical direction, which form quantum defects of electron-hole pairs. The PC-VCSEL in the paper has excellent mode-selection characteristics, which can operate continuously at 850nm in single mode. The single-mode suppression ratio (SMSR) of 45dB is obtained in a wide dynamic range. The PC-VCSEL is expected to become a high-power single-mode light in the future.

  1. Quantum phase gate and controlled entanglement with polar molecules

    SciTech Connect

    Charron, Eric; Keller, Arne; Atabek, Osman; Milman, Perola

    2007-03-15

    We propose an alternative scenario for the generation of entanglement between rotational quantum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the efficiency of the process, and discuss possible experimental implementations with cold molecules trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures are presented, and their suitability for these two physical situations is analyzed.

  2. Polarization control at spin-driven ferroelectric domain walls.

    PubMed

    Leo, Naëmi; Bergman, Anders; Cano, Andres; Poudel, Narayan; Lorenz, Bernd; Fiebig, Manfred; Meier, Dennis

    2015-01-01

    Unusual electronic states arise at ferroelectric domain walls due to the local symmetry reduction, strain gradients and electrostatics. This particularly applies to improper ferroelectrics, where the polarization is induced by a structural or magnetic order parameter. Because of the subordinate nature of the polarization, the rigid mechanical and electrostatic boundary conditions that constrain domain walls in proper ferroics are lifted. Here we show that spin-driven ferroelectricity promotes the emergence of charged domain walls. This provides new degrees of flexibility for controlling domain-wall charges in a deterministic and reversible process. We create and position a domain wall by an electric field in Mn0.95Co0.05WO4. With a magnetic field we then rotate the polarization and convert neutral into charged domain walls, while its magnetic properties peg the wall to its location. Using atomistic Landau-Lifshitz-Gilbert simulations we quantify the polarization changes across the two wall types and highlight their general occurrence. PMID:25868608

  3. Hemin controls T cell polarization in sickle cell alloimmunization

    PubMed Central

    Zhong, Hui; Bao, Weili; Friedman, David; Yazdanbakhsh, Karina

    2014-01-01

    Patients with sickle cell disease (SCD) often require transfusions to treat and prevent worsening anemia and other SCD complications. However, transfusions can trigger alloimmunization against transfused red blood cells (RBCs) with serious clinical sequelae. Risk factors for alloimmunization in SCD remain poorly understood. We recently reported altered regulatory T cell (Treg) and T helper (Th) responses with higher circulating Th1 (IFN-γ+) cytokines in chronically transfused SCD patients with alloantibodies as compared to those without alloantibodies. Since monocytes play a critical role in polarization of T cell subsets and participate in clearance of transfused RBCs, we tested the hypothesis that in response to RBC breakdown product, hemin, monocyte control of T cell polarization will differ between alloimmunized and non-alloimmunized SCD patients. Exogenous hemin induced Treg polarization in purified T-cell-monocyte cocultures from healthy volunteers through monocyte anti-inflammatory heme degrading enzyme HO-1. Importantly, hemin primarily through its effect on CD16+ monocytes induced an anti-inflammatory (higher Treg/lower Th1) polarization state in non-alloimmunized SCD group, whereas it had little effect in the alloimmunized group. Non-alloimmunized SCD CD16+ monocytes expressed higher basal levels of HO-1. Furthermore, IL-12, which contributed to a pro-inflammatory polarization state (low Treg/high Th1) in SCD, was dampened in hemin-treated stimulated monocytes from non-alloimmunized SCD patients, but not in alloimmunized group. These data suggest that unlike alloimmunized patients, non-alloimmunized SCD CD16+ monocytes in response to transfused RBC breakdown products promote an anti-inflammatory state that is less conductive to alloimmunization. PMID:24879794

  4. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  5. A long-range polarization-controlled optical tractor beam

    NASA Astrophysics Data System (ADS)

    Shvedov, Vladlen; Davoyan, Arthur R.; Hnatovsky, Cyril; Engheta, Nader; Krolikowski, Wieslaw

    2014-11-01

    The laser beam has become an indispensable tool for the controllable manipulation and transport of microscopic objects in biology, physical chemistry and condensed matter physics. In particular, ‘tractor’ laser beams can draw matter towards a laser source and perform, for instance, all-optical remote sampling. Recent advances in lightwave technology have already led to small-scale experimental demonstrations of tractor beams. However, the realization of long-range tractor beams has not gone beyond the realm of theoretical investigations. Here, we demonstrate the stable transfer of gold-coated hollow glass spheres against the power flow of a single inhomogeneously polarized laser beam over tens of centimetres. Additionally, by varying the polarization state of the beam we can stop the spheres or reverse the direction of their motion at will.

  6. Modal loss mechanism of micro-structured VCSELs studied using full vector FDTD method.

    PubMed

    Jo, Du-Ho; Vu, Ngoc Hai; Kim, Jin-Tae; Hwang, In-Kag

    2011-09-12

    Modal properties of vertical cavity surface-emitting lasers (VCSELs) with holey structures are studied using a finite difference time domain (FDTD) method. We investigate loss behavior with respect to the variation of structural parameters, and explain the loss mechanism of VCSELs. We also propose an effective method to estimate the modal loss based on mode profiles obtained using FDTD simulation. Our results could provide an important guideline for optimization of the microstructures of high-power single-mode VCSELs.

  7. Prickle/spiny-legs isoforms control the polarity of the apical microtubule network in planar cell polarity

    PubMed Central

    Olofsson, Jessica; Sharp, Katherine A.; Matis, Maja; Cho, Bomsoo; Axelrod, Jeffrey D.

    2014-01-01

    Microtubules (MTs) are substrates upon which plus- and minus-end directed motors control the directional movement of cargos that are essential for generating cell polarity. Although centrosomal MTs are organized with plus-ends away from the MT organizing center, the regulation of non-centrosomal MT polarity is poorly understood. Increasing evidence supports the model that directional information for planar polarization is derived from the alignment of a parallel apical network of MTs and the directional MT-dependent trafficking of downstream signaling components. The Fat/Dachsous/Four-jointed (Ft/Ds/Fj) signaling system contributes to orienting those MTs. In addition to previously defined functions in promoting asymmetric subcellular localization of ‘core’ planar cell polarity (PCP) proteins, we find that alternative Prickle (Pk-Sple) protein isoforms control the polarity of this MT network. This function allows the isoforms of Pk-Sple to differentially determine the direction in which asymmetry is established and therefore, ultimately, the direction of tissue polarity. Oppositely oriented signals that are encoded by oppositely oriented Fj and Ds gradients produce the same polarity outcome in different tissues or compartments, and the tissue-specific activity of alternative Pk-Sple protein isoforms has been observed to rectify the interpretation of opposite upstream directional signals. The control of MT polarity, and thus the directionality of apical vesicle traffic, by Pk-Sple provides a mechanism for this rectification. PMID:25005476

  8. Free-Space Optical Interconnect Employing VCSEL Diodes

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi

    2009-01-01

    Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.

  9. Effect of optical feedback on a VCSEL TDLAS

    NASA Astrophysics Data System (ADS)

    Vujanic, D.; Jaeger, W.; Tulip, J.

    2010-05-01

    This paper describes the effects of optical feedback on the sensitivity of VCSEL tunable-diode laser spectroscopy (TDLS). Three VCSELs, emitting at different wavelengths in the near-infrared, were used. A TDLS system, subjected to optical feedback, exhibited a common signal-to-noise ratio profile for all three lasers. A catastrophic degradation of TDLS sensitivity occurred when feedback exceeded a level which we associate with coherence collapse. The TDLS system had a CH4 minimum detection limit of 7.5 ppmm without optical feedback. Optical feedback of less than ten percent reduced this sensitivity by two orders of magnitude. This reduction of system sensitivity was accompanied by a second-harmonic absorption signal baseline shift which degraded the system accuracy.

  10. Full-field interferometric confocal microscopy using a VCSEL array.

    PubMed

    Redding, Brandon; Bromberg, Yaron; Choma, Michael A; Cao, Hui

    2014-08-01

    We present an interferometric confocal microscope using an array of 1200 vertical cavity surface emitting lasers (VCSELs) coupled to a multimode fiber. Spatial coherence gating provides ~18,000 continuous virtual pinholes, allowing an entire en face plane to be imaged in a snapshot. This approach maintains the same optical sectioning as a scanning confocal microscope without moving parts, while the high power of the VCSEL array (∼5  mW per laser) enables high-speed image acquisition with integration times as short as 100 μs. Interferometric detection also recovers the phase of the image, enabling quantitative phase measurements and improving the contrast when imaging phase objects. PMID:25078199

  11. A TCAD-based yield and reliability analysis for VCSELs

    NASA Astrophysics Data System (ADS)

    Odermatt, Stefan; Eitel, Sven; Hövel, Rainer; Letay, Gergoe; Witzigmann, Bernd

    2006-02-01

    Yield enhancement and reliability improvement are main requirements in todays industrial VCSEL manufacturing. This requires a thorough understanding of process tolerances and the effects resulting from design variations. So far, this has been done by statistical analysis of experimental data. In this work, we use a state-of-the art technology computer aided design (TCAD) tool to analyze device reliability and yield for multiple VCSEL designs. The starting point is a physics-based simulation model that is calibrated to temperature-dependent static and dynamic measurements for a set of single- and multi-mode VCSELs lasing at 850 nm. Applying statistical variations that result from design modifications and process fluctuations, yield and reliability data are extracted by means of simulation. The yield will be derived by compliance to selected device specifications (such available single-mode power), and the device reliability is determined from an analysis of the internal device properties. As example, the oxide aperture and metal aperture design will be discussed, and a robust design will be presented.

  12. Polarization control of single photon quantum orbital angular momentum states.

    PubMed

    Nagali, E; Sciarrino, F; De Martini, F; Piccirillo, B; Karimi, E; Marrucci, L; Santamato, E

    2009-10-12

    The orbital angular momentum of photons, being defined in an infinite-dimensional discrete Hilbert space, offers a promising resource for high-dimensional quantum information protocols in quantum optics. The biggest obstacle to its wider use is presently represented by the limited set of tools available for its control and manipulation. Here, we introduce and test experimentally a series of simple optical schemes for the coherent transfer of quantum information from the polarization to the orbital angular momentum of single photons and vice versa. All our schemes exploit a newly developed optical device, the so-called "q-plate", which enables the manipulation of the photon orbital angular momentum driven by the polarization degree of freedom. By stacking several q-plates in a suitable sequence, one can also have access to higher-order angular momentum subspaces. In particular, we demonstrate the control of the orbital angular momentum m degree of freedom within the subspaces of |m| = 2h and |m| = 4h per photon.

  13. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE PAGES

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; et al

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  14. Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control.

    PubMed

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S; Luk, Ting S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2015-08-12

    We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter. PMID:26192100

  15. Polarization-controlled directional scattering for nanoscopic position sensing

    PubMed Central

    Neugebauer, Martin; Woźniak, Paweł; Bag, Ankan; Leuchs, Gerd; Banzer, Peter

    2016-01-01

    Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive-index materials such as silicon as an integral part of the antenna design. This development is motivated by the rich spectral properties of individual high-refractive-index nanoparticles. Here we take advantage of the interference of their magnetic and electric resonances to achieve strong lateral directionality. For controlled excitation of a spherical silicon nanoantenna, we use tightly focused radially polarized light. The resultant directional emission depends on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, which might be implemented in modern nanometrology and super-resolution microscopy set-ups. We demonstrate in a proof-of-concept experiment that a lateral resolution in the Ångström regime can be achieved. PMID:27095171

  16. Polarization-independent silicon metadevices for efficient optical wavefront control

    SciTech Connect

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal; Kivshar, Yuri S.

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

  17. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    PubMed

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  18. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    PubMed

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  19. A programmable metasurface with dynamic polarization, scattering and focusing control

    PubMed Central

    Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia

    2016-01-01

    Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997

  20. Dynamic actin controls polarity induction de novo in protoplasts.

    PubMed

    Zaban, Beatrix; Maisch, Jan; Nick, Peter

    2013-02-01

    Cell polarity and axes are central for plant morphogenesis. To study how polarity and axes are induced de novo, we investigated protoplasts of tobacco Nicotiana tabacum cv. BY-2 expressing fluorescently-tagged cytoskeletal markers. We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages. The synthesis of a new cell wall marks the transition to the first stage of regeneration, and proceeds after a long preparatory phase within a few minutes. During this preparatory phase, the nucleus migrates actively, and cytoplasmic strands remodel vigorously. We probed this system for the effect of anti-cytoskeletal compounds, inducible bundling of actin, RGD-peptides, and temperature. Suppression of actin dynamics at an early stage leads to aberrant tripolar cells, whereas suppression of microtubule dynamics produces aberrant sausage-like cells with asymmetric cell walls. We integrated these data into a model, where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis. Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments, and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  1. VCSEL arrays for high-aggregate bandwidth of up to 1.34 Tbps

    NASA Astrophysics Data System (ADS)

    Grabherr, Martin; Intemann, Steffan; King, Roger; Wabra, Stefan; Jäger, Roland; Riedl, Michael

    2014-02-01

    Even though the lane speed of VCSEL based AOC and transceivers has reached 25 Gbps and beyond [1-7], parallel optics are getting even more important in order to meet the increasing demand for aggregate bandwidths in upcoming applications, among others, 100 Gigabit Ethernet, Infiniband EDR, or EOM (embedded optical modules). As 100 Gbps can be achieved by, e.g., 4 times 25 Gbps using standard QSFP form factor, different approaches are using large scale 2D VCSEL arrays operating at lower lane speeds. Early work on 2D VCSEL based transceivers has already been presented beginning of this century [8] and recent work also addressed the potential of this technology [9,10]. In 2013, Compass EOS has introduced a 1.34 Tbps core router solution [11,12,13] that incorporates 2D VCSEL arrays of 14x12 emitters designed and manufactured by Philips U-L-M Photonics. The VCSEL array is mounted face down onto a CMOS ASIC, directly on top of the analog area. The emission wavelength of 1000 nm allows for substrate side emission and thus for flip-chip mounting as well as the possibility of integrating 2D microlens arrays onto the stack of CMOS and VCSEL array. After briefly introducing the router with regard to the incorporated VCSEL technology we discuss the design and performance of the VCSEL array. Finally, the assembly solution for this most compact and dense transceiver solution is presented.

  2. Design and fabrication of polymer microlenses arrays for VCSELs using a cantilever based microsystem

    NASA Astrophysics Data System (ADS)

    Bardinal, Véronique; Daran, Emmanuelle; Vergnenègre, Corinne; Leïchlé, Thierry; Segui, Yvan; Camps, Thierry; Pourciel, Jean-Bernard; Conedera, Véronique; Gavin-Djidina, Léonard; Guirardel, Mathieu

    2006-04-01

    We report on the design and the fabrication of refractive microlenses using a polymer droplet deposition microsystem. The principle of this original technique consists in monomer droplets deposition using a robotized silicon-microcantilevers array. The advantages of this technique rely on the control of droplets dimensions and the positioning accuracy. Microlenses have been first modelled to optimize their geometrical parameters for VCSEL collimation. Results of lens optimization as well as the influence of the fabrication parameters fluctuations on the final divergence are detailed. First results on droplets deposition are presented, demonstrating the technique feasibility. Finally, the possibility of the modification of the surface energy to obtain the most suited contact angle before deposition is also discussed.

  3. Electron-beam-pumped VCSEL light source for projection display

    NASA Astrophysics Data System (ADS)

    Tiberi, Michael D.; Kozlovsky, Vladimir I.

    2005-04-01

    An electron beam pumped vertical cavity laser, or an "eVCSEL", has been developed as a low-cost light source for LCOS and DLP based consumer television. 1000 lumens directed towards the spatial light modulator requires a total power of 144 watts for lasers in the three primary colors. This power surplus allows for high screen brightness for rear projection televisions of diagonals greater than 50 inches and eliminates the need for high gain screens with the benefit of larger viewing angles. Because of the high saturation of laser light, a color gamut approaching that of the human visual system is possible, creating superior image reproduction.

  4. Albedo control of seasonal South Polar cap recession on Mars

    NASA Astrophysics Data System (ADS)

    Schmidt, Frédéric; Douté, Sylvain; Schmitt, Bernard; Vincendon, Mathieu; Bibring, Jean-Pierre; Langevin, Yves; Omega Team

    2009-04-01

    Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO 2 and H 2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO 2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.

  5. Final report on LDRD project :leaky-mode VCSELs for photonic logic circuits.

    SciTech Connect

    Hargett, Terry W.; Hadley, G. Ronald; Serkland, Darwin Keith; Blansett, Ethan L.; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas; Ongstand, Andrea; Medrano, Melissa R.; Peake, Gregory Merwin; Montano, Victoria A.

    2005-11-01

    This report describes the research accomplishments achieved under the LDRD Project ''Leaky-mode VCSELs for photonic logic circuits''. Leaky-mode vertical-cavity surface-emitting lasers (VCSELs) offer new possibilities for integration of microcavity lasers to create optical microsystems. A leaky-mode VCSEL output-couples light laterally, in the plane of the semiconductor wafer, which allows the light to interact with adjacent lasers, modulators, and detectors on the same wafer. The fabrication of leaky-mode VCSELs based on effective index modification was proposed and demonstrated at Sandia in 1999 but was not adequately developed for use in applications. The aim of this LDRD has been to advance the design and fabrication of leaky-mode VCSELs to the point where initial applications can be attempted. In the first and second years of this LDRD we concentrated on overcoming previous difficulties in the epitaxial growth and fabrication of these advanced VCSELs. In the third year, we focused on applications of leaky-mode VCSELs, such as all-optical processing circuits based on gain quenching.

  6. Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems.

    SciTech Connect

    Chow, Weng Wah; Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith

    2011-09-01

    Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth: (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.

  7. Actin nucleation at the centrosome controls lymphocyte polarity

    PubMed Central

    Obino, Dorian; Farina, Francesca; Malbec, Odile; Sáez, Pablo J.; Maurin, Mathieu; Gaillard, Jérémie; Dingli, Florent; Loew, Damarys; Gautreau, Alexis; Yuseff, Maria-Isabel; Blanchoin, Laurent; Théry, Manuel; Lennon-Duménil, Ana-Maria

    2016-01-01

    Cell polarity is required for the functional specialization of many cell types including lymphocytes. A hallmark of cell polarity is the reorientation of the centrosome that allows repositioning of organelles and vesicles in an asymmetric fashion. The mechanisms underlying centrosome polarization are not fully understood. Here we found that in resting lymphocytes, centrosome-associated Arp2/3 locally nucleates F-actin, which is needed for centrosome tethering to the nucleus via the LINC complex. Upon lymphocyte activation, Arp2/3 is partially depleted from the centrosome as a result of its recruitment to the immune synapse. This leads to a reduction in F-actin nucleation at the centrosome and thereby allows its detachment from the nucleus and polarization to the synapse. Therefore, F-actin nucleation at the centrosome—regulated by the availability of the Arp2/3 complex—determines its capacity to polarize in response to external stimuli. PMID:26987298

  8. High-speed low-current-density 850 nm VCSELs

    NASA Astrophysics Data System (ADS)

    Larsson, Anders; Westbergh, Petter; Gustavsson, Johan; Haglund, Åsa

    2010-02-01

    The design of an oxide confined 850 nm VCSEL has been engineered for high speed operation at low current density. Strained InGaAs/AlGaAs QWs, with a careful choice of In and Al concentrations based on rigorous band structure and gain calculations, were used to increase differential gain and reduce threshold carrier density. Various measures, including multiple oxide layers and a binary compound in the lower distributed Bragg reflector, were implemented for reducing capacitance and thermal impedance. Modulation bandwidths > 20 GHz at 25°C and > 15 GHz at 85°C were obtained. At room temperature, the bandwidth was found to be limited primarily by the still relatively large oxide capacitance, while at 85°C the bandwidth was also limited by the thermal saturation of the resonance frequency. Transmission up to 32 Gb/s (on-off keying) over multimode fiber was successfully demonstrated with the VCSEL biased at a current density of only 11 kA/cm2. In addition, using a more spectrally efficient modulation format (16 QAM subcarrier multiplexing), transmission at 40 Gb/s over 200 m multimode fiber was demonstrated.

  9. Transverse Mode Dynamics of VCSELs Undergoing Current Modulation

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind

    2000-01-01

    Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling

  10. Depth-encoded all-fiber swept source polarization sensitive OCT

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Lee, ByungKun; Choi, WooJhon; Potsaid, Benjamin; Liu, Jonathan; Jayaraman, Vijaysekhar; Cable, Alex; Kraus, Martin F.; Liang, Kaicheng; Hornegger, Joachim; Fujimoto, James G.

    2014-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design. PMID:25401008

  11. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication

    NASA Astrophysics Data System (ADS)

    Westbergh, Petter; Safaisini, Rashid; Haglund, Erik; Gustavsson, Johan S.; Larsson, Anders; Joel, Andrew

    2013-03-01

    We present results from our new generation of high performance 850 nm oxide confined vertical cavity surface-emitting lasers (VCSELs). With devices optimized for high-speed operation under direct modulation, we achieve record high 3dB modulation bandwidths of 28 GHz for ~4 μm oxide aperture diameter VCSELs, and 27 GHz for devices with a ~7 μm oxide aperture diameter. Combined with a high-speed photoreceiver, the ~7 μm VCSEL enables error-free transmission at data rates up to 47 Gbit/s at room temperature, and up to 40 Gbit/s at 85°C.

  12. Endomembrane control of cell polarity: Relevance to cancer.

    PubMed

    Baschieri, Francesco; Farhan, Hesso

    2015-01-01

    The role of polarity in cancer is an emerging research area and loss of polarity is widely considered an important event in cancer. Among the polarity regulating molecules, the small GTPase Cdc42 was extensively studied. Most attention was given to Cdc42 signaling at the plasma membrane, but whether and how Cdc42 is regulated at endomembranes remained poorly understood. Moreover, whether the endomembrane pool of Cdc42 is of any relevance to cell polarity was unknown. In our recent work, we identified a complex between the Golgi matrix protein GM130 and RasGRF and showed that it is responsible for regulating the Golgi pool of Cdc42, but had no effect on the plasma membrane pool of Cdc42. Depletion of GM130 disrupted apico-basal polarity as well as front-rear polarity, indicating that the spatial pool of Cdc42 is functionally relevant. The biomedical relevance of this finding was supported by the observation than GM130 is progressively lost in colorectal cancer. These findings support a role of the endomembrane pool of Cdc42 in cell polarity and point to a potential role of alterations of this pool in cancer.

  13. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms.

    PubMed

    Sharp, Katherine A; Axelrod, Jeffrey D

    2016-01-01

    Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  14. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    PubMed Central

    Sharp, Katherine A.; Axelrod, Jeffrey D.

    2016-01-01

    ABSTRACT Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism. PMID:26863941

  15. High Power Dynamic Polarization Control Using Plasma Photonics

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Michel, P.; Chapman, T.; Tubman, E.; Pollock, B. B.; Chen, C. Y.; Goyon, C.; Ross, J. S.; Divol, L.; Woolsey, N.; Moody, J. D.

    2016-05-01

    We report the first experimental demonstration of a plasma wave plate based on laser-induced birefringence. An elliptically polarized input was converted into a nearly ideal circularly polarized beam using an optical system composed of a second laser beam and a plasma. The results are in excellent agreement with linear theory and three-dimensional simulations up to phase delays exceeding π /4 , thus establishing the feasibility of laser-plasma photonic devices that are ultrafast, damage-resistant, and easily tunable.

  16. Kif26b controls endothelial cell polarity through the Dishevelled/Daam1-dependent planar cell polarity-signaling pathway.

    PubMed

    Guillabert-Gourgues, Aude; Jaspard-Vinassa, Beatrice; Bats, Marie-Lise; Sewduth, Raj N; Franzl, Nathalie; Peghaire, Claire; Jeanningros, Sylvie; Moreau, Catherine; Roux, Etienne; Larrieu-Lahargue, Frederic; Dufourcq, Pascale; Couffinhal, Thierry; Duplàa, Cecile

    2016-03-15

    Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b--a kinesin--and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front-rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway-dependent activation. PMID:26792835

  17. 90-deg splicing error control in polarization maintaining fiber resonator based on white-light interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Huizu; Yao, Qiong; Hu, Yongming; Ma, Lina

    2012-05-01

    Polarization fluctuation in polarization maintaining fiber (PMF) resonator is one of the major noise sources in resonant fiber optic gyroscope (R-FOG). 90-deg polarization-axis rotated splicing in R-FOG is an effective way to suppress the polarization-fluctuation induced noise. 90-deg polarization-axis rotated splicing error influences the noise suppression effect. Here, a polarization-coupling testing system based on white-light interferometry is designed to control 90-deg splicing error in double-coupler PMF resonator first time and a result of 0.37-deg splicing error is obtained for the first time. Then the resonant characteristics of the double-coupler PMF resonator are tested using the saw-tooth waveform scanning method. The finesse of this double-coupler PMF resonator is 24.0 and the phase interval of the two eigenstates of polarization (ESOPs) is π.

  18. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene.

    PubMed

    Joshi, Neeraj Kumar; Fuyuki, Masanori; Wada, Akihide

    2014-02-20

    Spectral and kinetic behavior of thermal cis-to-trans isomerization of 4-aminoazobenzene (AAB) is examined in various solvents of different polarities. In contrast to azobenzene (AB), it is found the rate of thermal isomerization of AAB is highly dependent on solvent polarity. Accelerated rates are observed in polar solvents as compared to nonpolar solvents. Moreover, a decrease in the barrier height with an increase in medium polarity is observed. Our observations suggest that inversion is the preferred pathway in cis-to-trans thermal isomerization in a nonpolar medium; however, in a polar medium, the isomerization path deviates from the inversion route and rotational behavior is incorporated. Differences in the kinetics and in mechanisms of isomerization in different media are rationalized in terms of modulation in barrier height by polarity of the medium and solute-solvent interaction. It is found that kinetics as well as the mechanism of thermal isomerization in AAB is controlled by the polarity of the medium.

  19. Polarization switching and injection locking in vertical-cavity surface-emitting lasers subject to parallel optical injection.

    PubMed

    Quirce, Ana; Pérez, Pablo; Popp, Alexandra; Valle, Ángel; Pesquera, Luis; Hong, Yanhua; Thienpont, Hugo; Panajotov, Krassimir

    2016-06-01

    Polarization switching in a long-wavelength vertical-cavity surface-emitting laser (VCSEL) under parallel optical injection is analyzed in a theoretical and experimental way. For the first time, to our knowledge, we report experimentally a state in which injection locking of the parallel polarization and excitation of the free-running orthogonal polarization of the VCSEL are simultaneously obtained. We obtain very simple analytical expressions that describe both linear polarizations. We show that the power of both linear polarizations depend linearly on the injected power in such a way that the total power emitted by the VCSEL is constant. We perform a linear stability analysis of this solution to characterize the region of parameters in which it can be observed. Our measurements qualitatively confirm the previous theoretical predictions. PMID:27244440

  20. Rigorous, highly-efficient optical tools for HCG-VCSEL design

    NASA Astrophysics Data System (ADS)

    Debernardi, Pierluigi; Orta, Renato; Hofmann, Werner

    2013-03-01

    High Contrast Gratings (HCG) have become a hot research topic, because of their new functionalities at very small volumes. However no efficient 3D VCSEL model capable to account for HCG has been reported so far. HCG design is therefore mainly based on 1D simulations. For realistic structures usually FDTD is the most popular approach, with its well known cumbersome computation drawbacks. VELM code,1 the well established VCSEL electromagnetic solver developed in the last ten years in the Torino group, has now been upgraded to rigorously handle HCG layers. The efficiency of the tool is preserved, and an entire set of HCG VCSEL modes can be computed in minutes on an ordinary desktop. A full set of design tools and guidelines, starting from 1D HCG properties up to 3D simulations which include HCG in the VCSEL design, will be presented and applied to the design of a structure that is in fabrication.

  1. Ultrafast spin-polarization control of Dirac fermions in topological insulators

    NASA Astrophysics Data System (ADS)

    Sánchez-Barriga, J.; Golias, E.; Varykhalov, A.; Braun, J.; Yashina, L. V.; Schumann, R.; Minár, J.; Ebert, H.; Kornilov, O.; Rader, O.

    2016-04-01

    Three-dimensional topological insulators (TIs) are characterized by spin-polarized Dirac-cone surface states that are protected from backscattering by time-reversal symmetry. Control of the spin polarization of topological surface states (TSSs) using femtosecond light pulses opens novel perspectives for the generation and manipulation of dissipationless surface spin currents on ultrafast time scales. Using time-, spin-, and angle-resolved spectroscopy, we directly monitor the ultrafast response of the spin polarization of photoexcited TSSs to circularly polarized femtosecond pulses of infrared light. We achieve all-optical switching of the transient out-of-plane spin polarization, which relaxes in about 1.2 ps. Our observations establish the feasibility of ultrafast optical control of spin-polarized Dirac fermions in TIs and pave the way for optospintronic applications at ultimate speeds.

  2. Neuronal polarity selection by topography-induced focal adhesion control.

    PubMed

    Ferrari, Aldo; Cecchini, Marco; Serresi, Michela; Faraci, Paolo; Pisignano, Dario; Beltram, Fabio

    2010-06-01

    Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with nanogratings (alternating lines of ridges and grooves of submicron size) promotes bipolarity and alignment to the substrate topography. Here, we investigate the role of focal adhesions, cell contractility, and actin dynamics in this process. Exploiting nanoimprint lithography techniques and a cyclic olefin copolymer, we engineered biocompatible nanostructured substrates designed for high-resolution live-cell microscopy. Our results reveal that neuronal polarization and contact guidance are based on a geometrical constraint of focal adhesions resulting in an angular modulation of their maturation and persistence. We report on ROCK1/2-myosin-II pathway activity and demonstrate that ROCK-mediated contractility contributes to polarity selection during neuronal differentiation. Importantly, the selection process confined the generation of actin-supported membrane protrusions and the initiation of new neurites at the poles. Maintenance of the established polarity was independent from NGF stimulation. Altogether our results imply that focal adhesions and cell contractility stably link the topographical configuration of the extracellular environment to a corresponding neuronal polarity state. PMID:20304485

  3. High Power Dynamic Polarization Control Using Plasma Photonics.

    PubMed

    Turnbull, D; Michel, P; Chapman, T; Tubman, E; Pollock, B B; Chen, C Y; Goyon, C; Ross, J S; Divol, L; Woolsey, N; Moody, J D

    2016-05-20

    We report the first experimental demonstration of a plasma wave plate based on laser-induced birefringence. An elliptically polarized input was converted into a nearly ideal circularly polarized beam using an optical system composed of a second laser beam and a plasma. The results are in excellent agreement with linear theory and three-dimensional simulations up to phase delays exceeding π/4, thus establishing the feasibility of laser-plasma photonic devices that are ultrafast, damage-resistant, and easily tunable. PMID:27258871

  4. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity.

    PubMed

    Consonni, Vincent; Sarigiannidou, Eirini; Appert, Estelle; Bocheux, Amandine; Guillemin, Sophie; Donatini, Fabrice; Robin, Ivan-Christophe; Kioseoglou, Joseph; Robaut, Florence

    2014-05-27

    Controlling the polarity of ZnO nanowires in addition to the uniformity of their structural morphology in terms of position, vertical alignment, length, diameter, and period is still a technological and fundamental challenge for real-world device integration. In order to tackle this issue, we specifically combine the selective area growth on prepatterned polar c-plane ZnO single crystals using electron-beam lithography, with the chemical bath deposition. The formation of ZnO nanowires with a highly controlled structural morphology and a high optical quality is demonstrated over large surface areas on both polar c-plane ZnO single crystals. Importantly, the polarity of ZnO nanowires can be switched from O- to Zn-polar, depending on the polarity of prepatterned ZnO single crystals. This indicates that no fundamental limitations prevent ZnO nanowires from being O- or Zn-polar. In contrast to their catalyst-free growth by vapor-phase deposition techniques, the possibility to control the polarity of ZnO nanowires grown in solution is remarkable, further showing the strong interest in the chemical bath deposition and hydrothermal techniques. The single O- and Zn-polar ZnO nanowires additionally exhibit distinctive cathodoluminescence spectra. To a broader extent, these findings open the way to the ultimate fabrication of well-organized heterostructures made from ZnO nanowires, which can act as building blocks in a large number of electronic, optoelectronic, and photovoltaic devices.

  5. Optical implementation of polarization-independent, bidirectional, nonblocking Clos network using polarization control technique in free space

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Yang, Jiankun; Li, Xiujian; Chang, Shengli; Su, Xianyu; Ping, Xu

    2011-04-01

    The clos network is one of the earliest multistage interconnection networks. Recently, it has been widely studied in parallel optical information processing systems, and there have been many efforts to develop this network. In this paper, a smart and compact Clos network, including Clos(2,3,2) and Clos(2,4,2), is proposed by using polarizing beam-splitters (PBS), phase spatial light modulators (PSLM), and mirrors. PBS features that are s-component (perpendicular to the incident plane) of the incident light beam is reflected, and the p-component (parallel to the incident plane) passes through it. According to switching logic, under control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e., the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. This new type of configuration grants the features of less optical components, compact in structure, efficient in performance, and insensitive to polarization of signal beam. In addition, the straight, the exchange, and the broadcast functions of the basic switch element are implemented bidirectionally in free-space. Furthermore, the new optical experimental module of 2×3 and 2×4 optical switch is also presented by a cascading polarization-independent bidirectional 2×2 optical switch. Simultaneously, the routing state-table of 2×3 and 2×4 optical switch to perform all permutation output and nonblocking switch for the input signal beam, is achieved. Since the proposed optical setup consists of only optical polarization elements, it is compact in structure, and possesses a low energy loss, a high signal-to-ratio, and an available large number of optical channels. Finally, the discussions and the experimental results show that the Clos network proposed here should be helpful in the design of large-scale network matrix, and may be used in optical communication and optical information processing.

  6. Baseline scheme for polarization preservation and control in the MEIC ion complex

    SciTech Connect

    Derbenev, Yaroslav S.; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M. A.; Filatov, Yury

    2015-09-01

    The scheme for preservation and control of the ion polarization in the Medium-energy Electron-Ion Collider (MEIC) has been under active development in recent years. The figure-8 configuration of the ion rings provides a unique capability to control the polarization of any ion species including deuterons by means of "weak" solenoids rotating the particle spins by small angles. Insertion of "weak" solenoids into the magnetic lattices of the booster and collider rings solves the problem of polarization preservation during acceleration of the ion beam. Universal 3D spin rotators designed on the basis of "weak" solenoids allow one to obtain any polarization orientation at an interaction point of MEIC. This paper presents the baseline scheme for polarization preservation and control in the MEIC ion complex.

  7. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror.

    PubMed

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser-plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser-plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  8. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror

    PubMed Central

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  9. Independent control of differently-polarized waves using anisotropic gradient-index metamaterials

    PubMed Central

    Ma, Hui Feng; Wang, Gui Zhen; Jiang, Wei Xiang; Cui, Tie Jun

    2014-01-01

    We propose a kind of anisotropic gradient-index (GRIN) metamaterials, which can be used to control differently-polarized waves independently. We show that two three- dimensional (3D) planar lenses made of such anisotropic GRIN metamaterials are able to make arbitrary beam deflections for the vertical (or horizontal) polarization but have no response to the horizontal (or vertical) polarization. Then the vertically- and horizontally-polarized waves are separated and controlled independently to deflect to arbitrarily different directions by designing the anisotropic GRIN planar lenses. We make experimental verifications of the lenses using such a special metamaterial, which has both electric and magnetic responses simultaneously to reach approximately equal permittivity and permeability. Hence excellent impedance matching is obtained between the GRIN planar lenses and the air. The measurement results demonstrate good performance on the independent controls of differently-polarized waves, as observed in the numerical simulations. PMID:25231412

  10. Multi-polarization quantum control of rotational motion through dipole coupling

    NASA Astrophysics Data System (ADS)

    Turinici, Gabriel; Rabitz, Herschel

    2010-03-01

    In this work we analyze the quantum controllability of rotational motion under the influence of an external laser field coupled through a permanent dipole moment. The analysis takes into consideration up to three polarization fields, but we also discuss the consequences for working with fewer polarized fields.

  11. Spontaneous and electric field–controlled front–rear polarization of human keratinocytes

    PubMed Central

    Saltukoglu, Deniz; Grünewald, Julian; Strohmeyer, Nico; Bensch, Robert; Ulbrich, Maximilian H.; Ronneberger, Olaf; Simons, Matias

    2015-01-01

    It has long been known that electrical fields (EFs) are able to influence the direction of migrating cells, a process commonly referred to as electrotaxis or galvanotaxis. Most studies have focused on migrating cells equipped with an existing polarity before EF application, making it difficult to delineate EF-specific pathways. Here we study the initial events in front–rear organization of spreading keratinocytes to dissect the molecular requirements for random and EF-controlled polarization. We find that Arp2/3-dependent protrusive forces and Rac1/Cdc42 activity were generally required for both forms of polarization but were dispensable for controlling the direction of EF-controlled polarization. By contrast, we found a crucial role for extracellular pH as well as G protein coupled–receptor (GPCR) or purinergic signaling in the control of directionality. The normal direction of polarization toward the cathode was reverted by lowering extracellular pH. Polarization toward the anode was also seen at neutral pH when GPCR or purinergic signaling was inhibited. However, the stepwise increase of extracellular pH in this scenario led to restoration of cathodal polarization. Overall our work puts forward a model in which the EF uses distinct polarization pathways. The cathodal pathway involves GPCR/purinergic signaling and is dominant over the anodal pathway at neutral pH. PMID:26424799

  12. Coherent control of light-matter interactions in polarization standing waves.

    PubMed

    Fang, Xu; MacDonald, Kevin F; Plum, Eric; Zheludev, Nikolay I

    2016-01-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle. PMID:27514307

  13. Coherent control of light-matter interactions in polarization standing waves.

    PubMed

    Fang, Xu; MacDonald, Kevin F; Plum, Eric; Zheludev, Nikolay I

    2016-08-12

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle.

  14. Coherent control of light-matter interactions in polarization standing waves

    NASA Astrophysics Data System (ADS)

    Fang, Xu; MacDonald, Kevin F.; Plum, Eric; Zheludev, Nikolay I.

    2016-08-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle.

  15. Coherent control of light-matter interactions in polarization standing waves

    PubMed Central

    Fang, Xu; MacDonald, Kevin F.; Plum, Eric; Zheludev, Nikolay I.

    2016-01-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle. PMID:27514307

  16. Control of ferromagnetic and antiferromagnetic couplings in a galvinoxyl triplet chrysene encounter complex through solvent polarity

    NASA Astrophysics Data System (ADS)

    Kawai, Akio; Watanabe, Yasuyuki; Shibuya, Kazuhiko

    2003-04-01

    Energy difference, J, between the quartet and doublet spin states of a galvinoxyl radical-triplet chrysene pair as an encounter complex in solution was investigated by measuring chemically induced dynamic electron polarization (CIDEP) of galvinoxyl with a time-resolved ESR (TR-ESR) method. All the TR-ESR spectra of galvinoxyl show net type CIDEP signals due to doublet-triplet magnetic interactions. The CIDEP phase switches from absorption in non-polar solvent to emission in polar solvent. The signals were analyzed on the basis of the radical-triplet pair mechanism (RTPM) for CIDEP creation, the results of which indicate that galvinoxyl-triplet chrysene pairs show ferromagnetic and antiferromagnetic couplings in non-polar and polar solvents, respectively. This solvent polarity-controlled switching of magnetic coupling in the galvinoxyl-triplet chrysene pair was interpreted by introducing the effect of intermolecular charge transfer interaction on the J value.

  17. Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation

    SciTech Connect

    Li, Jiaming; Wang, Jiajian; Tang, Peng; Liu, Wei; Huang, Tao; Wang, Yanqi; Lin, Feng; Fang, Zheyu; Zhu, Xing

    2015-04-20

    Analyzing the polarization of a circularly polarized light is a critical issue. We have fabricated a spiral nano-structure on the Au film by using focused ion beam etching technique. The fabricated structure can be used as a plasmonic circular polarization analyzer. By designing the relative orientation of two nano-apertures in the spiral structural unit, the propagation direction of the surface plasmon polaritons excited by circularly polarized light of opposite handedness can be controlled. Therefore, the spiral structure could be used to accurately determine the helicity of the excited circularly polarized light. Based on the results of scanning near-field optical microscopy, the obtained circular polarization extinction ratio of this structure was above 500. This structure can be used for a flexible detecting size and a very wide spectrum.

  18. Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces

    NASA Astrophysics Data System (ADS)

    Ma, Hui Feng; Wang, Gui Zhen; Kong, Gu Sheng; Cui, Tie Jun

    2015-04-01

    We propose a kind of anisotropic planar metasurface, which has capacity to manipulate the orthogonally-polarized electromagnetic waves independently in the reflection mode. The metasurface is composed of orthogonally I-shaped structures and a metal-grounded plane spaced by a dielectric isolator, with the thickness of about 1/15 wavelength. The normally incident linear-polarized waves will be totally reflected by the metal plane, but the reflected phases of x- and y-polarized waves can be controlled independently by the orthogonally I-shaped structures. Based on this principle, we design four functional devices using the anisotropic metasurfaces to realize polarization beam splitting, beam deflection, and linear-to-circular polarization conversion with a deflection angle, respectively. Good performances have been observed from both simulation and measurement results, which show good capacity of the anisotropic metasurfaces to manipulate the x- and y-polarized reflected waves independently.

  19. Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces

    PubMed Central

    Ma, Hui Feng; Wang, Gui Zhen; Kong, Gu Sheng; Cui, Tie Jun

    2015-01-01

    We propose a kind of anisotropic planar metasurface, which has capacity to manipulate the orthogonally-polarized electromagnetic waves independently in the reflection mode. The metasurface is composed of orthogonally I-shaped structures and a metal-grounded plane spaced by a dielectric isolator, with the thickness of about 1/15 wavelength. The normally incident linear-polarized waves will be totally reflected by the metal plane, but the reflected phases of x- and y-polarized waves can be controlled independently by the orthogonally I-shaped structures. Based on this principle, we design four functional devices using the anisotropic metasurfaces to realize polarization beam splitting, beam deflection, and linear-to-circular polarization conversion with a deflection angle, respectively. Good performances have been observed from both simulation and measurement results, which show good capacity of the anisotropic metasurfaces to manipulate the x- and y-polarized reflected waves independently. PMID:25873323

  20. High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Koyama, Fumio

    2014-02-01

    This paper presents experimental and modeling results for extending the 3-dB modulation bandwidth of a 980-nm quasi-single-mode (QSM) vertical-cavity surface-emitting laser (VCSEL) with a passive transverse-coupled cavity (TCC). While the bandwidth of a conventional VCSEL is 9 GHz, the 3-dB modulation bandwidth of a QSM TCC VCSEL with the same epi-wafer structure can reach 27 GHz, which is three times larger than the conventional VCSEL without optical feedback. A clear eye opening is obtained for large-signal modulations at 36 Gbps. A numerical simulation for further enhancement of the bandwidth is also conducted.

  1. Invited Article: Broadband highly efficient dielectric metadevices for polarization control

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; Miroshnichenko, Andrey; Neshev, Dragomir N.; Kivshar, Yuri S.

    2016-06-01

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. By employing this novel concept, we demonstrate reflectionless (˜90% transmission) half-wave plates, quarter-wave plates, and vector beam q-plates that can operate across multiple telecom bands with ˜99% polarization conversion efficiency.

  2. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning.

    PubMed

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J; Lu, Haidong; Lee, Jung-Woo; Zhou, Hua; Chang, Wansoo; Mahanthappa, Mahesh K; Tsymbal, Evgeny Y; Gruverman, Alexei; Eom, Chang-Beom

    2016-04-13

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. PMID:26901570

  3. Active-polarization-controlled long-depth focus generated by orthogonal nanoslit array

    NASA Astrophysics Data System (ADS)

    Zhu, Lilin; Li, Yuanjie; Sun, Aihui; Xiong, Zhicheng; Liu, Cheng; Kong, Yan; Wang, Shouyu

    2016-08-01

    In order to realize long-range directional excitation and coupling, active-polarization-controlled Bessel beams with an orthogonal nanoslit array are proposed. Excited with left or right circular polarization light, long-depth focus from Bessel beams can be generated with different propagation directions. Moreover, multiple long-depth foci are also designed according to dual-conical phase settings. Proved with numerical simulations, it is considered that the active-polarization-controlled system can be potentially used in future logic photonic and plasmonic systems for optical switching and multichannel coupling.

  4. An optically controlled phased array antenna based on single sideband polarization modulation.

    PubMed

    Zhang, Yamei; Wu, Huan; Zhu, Dan; Pan, Shilong

    2014-02-24

    A novel optically controlled phased array antenna consisting a simple optical beamforming network and an N element linear patch antenna array is proposed and demonstrated. The optical beamforming network is realized by N independent phase shifters using a shared optical single sideband (OSSB) polarization modulator together with N polarization controllers (PCs), N polarization beam splitters (PBSs) and N photodetectors (PDs). An experiment is carried out. A 4-element linear patch antenna array operating at 14 GHz and a 1 × 4 optical beamforming network (OBFN) is employed to realize the phased array antenna. The radiation patterns of the phased array antenna at -30°, 0° and 30° are achieved.

  5. High-efficiency VCSEL arrays for illumination and sensing in consumer applications

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni

    2016-03-01

    There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.

  6. Developments of VCSELs for printers and optical communications at Fuji Xerox

    NASA Astrophysics Data System (ADS)

    Kondo, Takashi; Takeda, Kazutaka; Otoma, Hiromi; Murakami, Akemi; Sakurai, Jun; Nakayama, Hideo; Gu, Xiaodong; Koyama, Fumio

    2016-03-01

    We review the characteristics of vertical-cavity surface-emitting lasers (VCSELs) for use in printers and optical communications. In 2003, we launched the world's first laser printer with a 780-nm single-mode 8×4 VCSEL array introduced to the light exposure system in order to meet the market demands for improving the image quality and speed for laser printers. The design of the VCSEL array enabled us to increase the pixel density and the printing speed by projecting 32 beams at a time to the photoconductor in the exposure process. High uniformity with less than 5% of variation has been achieved for both the optical output and the divergence angle. Currently, our high-end color printer is capable of producing the resolution of 2400 dpi (dots per inch) at the speed of 137 ppm (pages per minute). In the field of optical interconnections and networks, 850-nm VCSELs are needed as high-speed optical transmitters (>=10Gbps). In order to address communication traffic that will increase further as well as to reduce their power consumption to an even lower level, we assessed the lasing characteristics of 850-nm VCSELs with InGaAs strained quantum-well (QW) active layers by changing the ratio of Indium composition. As a result, we succeeded in reducing the power consumption per bit to 43 fJ/bit at 10-Gbps, which is much lower than that of commercial GaAs QW VCSELs. Also, we studied 850-nm transverse-coupled-cavity VCSELs, which enabled us to achieve a high 3dB modulation bandwidth (>23 GHz) and realize eye-openings at the large-signal modulation rate of 36 Gbps.

  7. Synthesis and Optical Control of Circular Polarization in monolayer Tungsten Disulfide

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Jonker, Berend; Currie, Marc; Kioseoglou, George

    The unique electronic band structure in single layer WS2 provides the ability to selectively populate a desired valley by exciting with circularly polarized light. The valley population is reflected through the circular polarization of photoluminescence (PL). We investigate the circularly polarized PL in WS2 monolayers synthesized using chemical vapor deposition (CVD). The resulting polarization is strongly dependent on the sample preparation. As-grown CVD WS2 (still on the growth substrate) exhibits low polarized emission, regardless of laser excitation or laser power. Removing WS2 from the growth substrate and repositioning on the same substrate significantly impacts the optical properties. In transferred films, the excitonic state is optically controlled via high-powered laser exposure such that subsequent PL is solely from either the charged exciton state or the neutral exciton state. Neutral excitonic emission exhibits zero polarization whereas the trion polarization can exceed 25% at room temperature. The removal process may modify the strain, sample-to-substrate distance, and chemical doping in the WS2 monolayer, and work is underway to determine how these factors influence the valley populations. These results demonstrate a new method to control the excitonic state and PL polarization in monolayer WS2. . Supported by core programs at NRL and the NRL Nanoscience Institute, and by the Air Force Office of Scientific Research #AOARD 14IOA018-134141.

  8. Defect-mediated polarization switching in ferroelectrics and related materials: from mesoscopic mechanisms to atomistic control.

    PubMed

    Kalinin, Sergei V; Rodriguez, Brian J; Borisevich, Albina Y; Baddorf, Arthur P; Balke, Nina; Chang, Hye Jung; Chen, Long-Qing; Choudhury, Samrat; Jesse, Stephen; Maksymovych, Peter; Nikiforov, Maxim P; Pennycook, Stephen J

    2010-01-19

    The plethora of lattice and electronic behaviors in ferroelectric and multiferroic materials and heterostructures opens vistas into novel physical phenomena including magnetoelectric coupling and ferroelectric tunneling. The development of new classes of electronic, energy-storage, and information-technology devices depends critically on understanding and controlling field-induced polarization switching. Polarization reversal is controlled by defects that determine activation energy, critical switching bias, and the selection between thermodynamically equivalent polarization states in multiaxial ferroelectrics. Understanding and controlling defect functionality in ferroelectric materials is as critical to the future of oxide electronics and solid-state electrochemistry as defects in semiconductors are for semiconductor electronics. Here, recent advances in understanding the defect-mediated switching mechanisms, enabled by recent advances in electron and scanning probe microscopy, are discussed. The synergy between local probes and structural methods offers a pathway to decipher deterministic polarization switching mechanisms on the level of a single atomically defined defect.

  9. Microdisk-waveguide system for the control of the polarization state of light

    NASA Astrophysics Data System (ADS)

    Akhavan, Hooman

    In optical fibers and photonic integrated circuits (PIC's), the signal polarization can undergo random rotations. Since strong confinement (SC) microphotonic devices are polarization sensitive, a chip-scale polarization rotator is beneficial for the realization of chip-scale integrated optics. Moreover, control over polarization states of photon(s) is necessary for realization of quantum information technology in optical domain. Optical microdisks vertically-coupled to a waveguide bus due to the precise control over coupling distance in fabrication and relative ease of dense integration have become increasingly important as a building block for photonic integrated circuits. Both passive and active devices have been demonstrated including channel dropping filters, tunable resonant filters and switches, intensity modulators, phase modulators, laser sources, and WDM demultiplexers. In this research it has been proposed and experimentally observed preferential polarization mode conversion and signal amplification due to the existence of non-zero, asymmetric, and geometry dependent cross-polarization coupling coefficients between non-orthogonal modes of the waveguide and the vertically-coupled active microdisk. A theory based on coupled mode theory (CMT) is developed to realize microdisk-waveguide system as a narrowband polarization rotator. An integrated structure consisting of a polarization splitter, a microdisk as a narrowband polarization rotator and a combiner is proposed to be applicable in fiber communication and integrated optics. A broadband polarization rotator on ridge waveguides was designed. However, it is concluded that microdisk application for a polarization rotator is helpful to reduce the device size at the cost of bandwidth. Tuning of the microdisk resonance is required when the operating wavelength is changed. By incorporation of the two properties of the active microdisk as a polarization rotator and tunable phase shifter, two-microdisk device is

  10. Control of Fibrinogen Assembly by Changing a Polarity of Surfaces

    NASA Astrophysics Data System (ADS)

    Koo, Jaseung; Liu, Ying; Snow, Sara; Rambhia, Pooja; Koga, Tadanori; Rafailovich, Miriam; Galanakis, Dennis

    2009-03-01

    Thrombogenesis causes various problems associated with an interruption in the blood flow (e.g., myocardial and cerebral infarction), and a hindrance to use of blood-contact vascular biomaterials (e.g., hemodialysis and cardiopulmonary bypass) with long-term patency since undesired adsorption of blood components occurs on vessels or biomaterials, such as surface-induced thrombosis. we showed that this clotting procedure can be occurred on hydrophobic polymeric surfaces without thrombin cleavage. However, the fibrinogen fibers were not formed on the polar surface such as spun-cast polymer film with pyridine and phenol groups. We also found that αC domains play an important role in initiation of polymerization on surface. Therefore, molecular association was inhibited on the polar surfaces due to confinement of αC chains on the surfaces. These findings were directly applied to stent surface modification. The commercial stent consist of Co-Cr alloy forms undesired fiber formation. However, PS-r-PVPh (13% phenol) coated stent surfaces completely prevent fiber formation.

  11. The BASL Polarity Protein Controls a MAPK Signaling Feedback Loop in Asymmetric Cell Division

    PubMed Central

    Zhang, Ying; Wang, Pengcheng; Shao, Wanchen; Zhu, Jian-Kang; Dong, Juan

    2015-01-01

    SUMMARY Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the lineage determinant SPEECHLESS (SPCH). Here we demonstrate that a positive feedback loop between BASL and the MAPK pathway constitutes a polarity module at the cortex. Cortical localization of BASL requires phosphorylation mediated by MPK3/6. Phosphorylated BASL functions as a scaffold and recruits the MAPKKK YODA and MPK3/6 to spatially concentrate signaling at the cortex. Activated MPK3/6 reinforces the feedback loop by phosphorylating BASL, and inhibits stomatal fate by phosphorylating SPCH. Polarization of the BASL-MAPK signaling feedback module represents a mechanism connecting cell polarity to fate differentiation during asymmetric stem cell division in plants. PMID:25843888

  12. Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing.

    PubMed

    Li, Hongqiang; Ma, Xiangdong; Yuan, Danyang; Zhang, Zanyun; Li, Enbang; Tang, Chunxiao

    2016-09-15

    We propose a fiber Bragg grating (FBG) sensor interrogation system utilizing a III-V vertical cavity surface emitting laser (VCSEL) as the on-chip light source. Binary blazed grating (BBG) for coupling between III-V VCSEL and silicon-on-insulator (SOI) waveguides is demonstrated for interrogation of the FBG sensor. The footprint size of the BBG is only 5.62  μm×5.3  μm, and each BBG coupler period has two subperiods. The diameter of the VCSEL's emitting window is 5 μm, which is slightly smaller than that of the BBG coupler, to be well-matched with the proposed structure. Results show that the coupling efficiency from vertical cavities of the III-V VCSEL to the in-plane waveguides reached as high as 32.6% when coupling the 1550.65 nm light. The heterogeneous integration of the III-V VCSEL and SOI waveguides by BBG plays a fundamental role in inducing a great breakthrough to the miniaturization of an on-chip light source for optical fiber sensing. PMID:27628346

  13. Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity.

    PubMed

    Doignon, François; Laquel, Patricia; Testet, Eric; Tuphile, Karine; Fouillen, Laetitia; Bessoule, Jean-Jacques

    2016-03-01

    Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype.

  14. Control the polarization state of light with symmetry-broken metallic metastructures

    SciTech Connect

    Xiong, Xiang Jiang, Shang-Chi; Hu, Yuan-Sheng; Hu, Yu-Hui; Wang, Zheng-Han; Peng, Ru-Wen; Wang, Mu

    2015-07-15

    Controlling the polarization state, the transmission direction, the amplitude and the phase of light in a very limited space is essential for the development of on-chip photonics. Over the past decades, numerous sub-wavelength metallic microstructures have been proposed and fabricated to fulfill these demands. In this article, we review our efforts in achieving negative refractive index, controlling the polarization state, and tuning the amplitude of light with two-dimensional (2D) and three-dimensional (3D) microstructures. We designed an assembly of stacked metallic U-shaped resonators that allow achieving negative refraction for pure magnetic and electric responses respectively at the same frequency by selecting the polarization of incident light. Based on this, we tune the permittivity and permeability of the structure, and achieve negative refractive index. Further, by control the excitation and radiation of surface electric current on a number of 2D and 3D asymmetric metallic metastructures, we are able to control the polarization state of light. It is also demonstrated that with a stereostructured metal film, the whole metal surfaces can be used to construct either polarization-sensitive or polarization-insensitive prefect absorbers, with the advantage of efficient heat dissipation and electric conductivity. Our practice shows that metamaterials, including metasurface, indeed help to master light in nanoscale, and are promising in the development of new generation of photonics.

  15. Transmission through a scalar wave three-dimensional electromagnetic metamaterial and the implication for polarization control.

    PubMed

    Shin, Jonghwa; Shen, Jung-Tsung; Fan, Shanhui

    2010-03-01

    An interweaving-conductor metamaterial (ICM) is a metamaterial composed of multiple, interlocking, conducting networks. It exhibits unusual optical properties in the low-frequency linear-dispersion regime. In particular, two-network ICM supports only one, non-dispersive mode in the low frequency range, and is best described as an effective medium supporting a scalar wave in full three dimensions. We explore the light transmission properties of such a metamaterial, and the implications of a scalar wave medium for polarization control. Polarizers and polarization rotators with subwavelength sizes are numerically demonstrated.

  16. Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks

    NASA Astrophysics Data System (ADS)

    Al-Samaneh, A.; Bou Sanayeh, M.; Miah, M. J.; Schwarz, W.; Wahl, D.; Kern, A.; Michalzik, R.

    2012-10-01

    Vertical-cavity surface-emitting lasers (VCSELs) with single-mode, single-polarization emission at a wavelength of 894.6 nm have become attractive light sources for miniaturized Cs-based atomic clocks. So far, VCSELs used for these applications are single-mode because of small active diameters which has the drawbacks of increased ohmic resistance and reduced lifetime. By employing surface grating reliefs, enhanced fundamental-mode emission as well as polarization-stable laser oscillation are achieved. VCSELs with 5 μm active diameter show side-mode suppression ratios of 20 dB even at currents close to thermal roll-over with orthogonal polarization suppression ratios better than 20 dB at elevated ambient temperatures up to 100 °C.

  17. Ultrafast direct modulation of transverse-mode coupled-cavity VCSELs far beyond the relaxation oscillation frequency

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Koyama, Fumio

    2014-02-01

    A novel approach for bandwidth augmentation for direct modulation of VCSELs using transverse-coupled-cavity (TCC) scheme is raised, which enables us to tailor the modulation-transfer function. The base structure is similar to that of 3QW VCSELs with 980 nm wavelength operation. While the bandwidth of conventional VCSELs was limited by 9-10 GHz, the 3-dB bandwidth of TCC VCSEL with aperture diameters of 8.5×8.5μm2 and 3×3μm2 are increased by a factor of 3 far beyond the relaxation-oscillation frequency. Our current bandwidth achievement on the larger aperture size is 29 GHz which is limited by the used photo-detector. To the best of our knowledge this is the fastest 980 nm VCSEL.

  18. Phantoms for polarized light exhibiting controllable scattering, birefringence, and optical activity

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Ghosh, Nirmalya; Guo, Xinxin; Vitkin, I. Alex

    2008-02-01

    Recently, the use of polarized light for medical diagnosis and therapeutic management has seen increased interest due the noninvasive nature of light-tissue interactions. Examples of the use of polarized light include polarization imaging to enhance spatial resolution in turbid media, selective imaging of polarized light to increase surface contrast in tissue, polarization-sensitive optical coherence tomography (PS-OCT), and glucose monitoring. With these emerging applications there is a need for controllable phantoms to validate the emerging techniques; however, this has been done only to a limited degree primarily due to the difficulty in creating controllable phantoms. The primary effects of tissue on the polarization of light are scattering, linear birefringence, and optical activity (circular birefringence). An ideal phantom would exhibit all these effects simultaneously in a controllable fashion. We have achieved this through the use of polyacrylamide gels with polystyrene microspheres added as scattering particles, strain applied to the gels to create birefringence, and sucrose added for optical activity. The phantom methodology has been validated using our polarimetry system. Currently, the phantom system is being used to extend our work in birefringence mapping of the myocardium and to further our work in characterizing tissue.

  19. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms.

    PubMed

    Kaur, K S; Subramanian, A Z; Cardile, P; Verplancke, R; Van Kerrebrouck, J; Spiga, S; Meyer, R; Bauwelinck, J; Baets, R; Van Steenberge, G

    2015-11-01

    This article presents the flip-chip bonding of vertical-cavity surface-emitting lasers (VCSELs) to silicon grating couplers (GCs) via SU8 prisms. The SU8 prisms are defined on top of the GCs using non-uniform laser ablation process. The prisms enable perfectly vertical coupling from the bonded VCSELs to the GCs. The VCSELs are flip-chip bonded on top of the silicon GCs employing the laser-induced forward transfer (LIFT)-assisted thermocompression technique. An excess loss of < 1 dB at 1.55 µm measured from the bonded assemblies is reported in this paper. The results of high speed transmission experiments performed on the bonded assemblies with clear eye openings up to 20 Gb/s are also presented. PMID:26561097

  20. Impact of photon lifetime on thermal rollover in 850-nm high-speed VCSELs

    NASA Astrophysics Data System (ADS)

    Baveja, Prashant P.; Kögel, Benjamin; Westbergh, Petter; Gustavsson, Johan S.; Haglund, Åsa; Maywar, Drew N.; Agrawal, Govind P.; Larsson, Anders

    2012-03-01

    We present an empirical thermal model for VCSELs based on extraction of temperature dependence of macroscopic VCSEL parameters from CW measurements. We apply our model to two, oxide-confined, 850-nm VCSELs, fabricated with a 9-μm inner-aperture diameter and optimized for high-speed operation. We demonstrate that for both these devices, the power dissipation due to linear heat sources dominates the total self-heating. We further show that reducing photon lifetime down to 2 ps drastically reduces absorption heating and improves device static performance by delaying the onset of thermal rollover. The new thermal model can identify the mechanisms limiting the thermal performance and help in formulating the design strategies to ameliorate them.

  1. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms.

    PubMed

    Kaur, K S; Subramanian, A Z; Cardile, P; Verplancke, R; Van Kerrebrouck, J; Spiga, S; Meyer, R; Bauwelinck, J; Baets, R; Van Steenberge, G

    2015-11-01

    This article presents the flip-chip bonding of vertical-cavity surface-emitting lasers (VCSELs) to silicon grating couplers (GCs) via SU8 prisms. The SU8 prisms are defined on top of the GCs using non-uniform laser ablation process. The prisms enable perfectly vertical coupling from the bonded VCSELs to the GCs. The VCSELs are flip-chip bonded on top of the silicon GCs employing the laser-induced forward transfer (LIFT)-assisted thermocompression technique. An excess loss of < 1 dB at 1.55 µm measured from the bonded assemblies is reported in this paper. The results of high speed transmission experiments performed on the bonded assemblies with clear eye openings up to 20 Gb/s are also presented.

  2. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning.

    PubMed

    Song, Hai; Hu, Jianxin; Chen, Wen; Elliott, Gene; Andre, Philipp; Gao, Bo; Yang, Yingzi

    2010-07-15

    Defining the three body axes is a central event of vertebrate morphogenesis. Establishment of left-right (L-R) asymmetry in development follows the determination of dorsal-ventral and anterior-posterior (A-P) body axes, although the molecular mechanism underlying precise L-R symmetry breaking in reference to the other two axes is still poorly understood. Here, by removing both Vangl1 and Vangl2, the two mouse homologues of a Drosophila core planar cell polarity (PCP) gene Van Gogh (Vang), we reveal a previously unrecognized function of PCP in the initial breaking of lateral symmetry. The leftward nodal flow across the posterior notochord (PNC) has been identified as the earliest event in the de novo formation of L-R asymmetry. We show that PCP is essential in interpreting the A-P patterning information and linking it to L-R asymmetry. In the absence of Vangl1 and Vangl2, cilia are positioned randomly around the centre of the PNC cells and nodal flow is turbulent, which results in disrupted L-R asymmetry. PCP in mouse, unlike what has been implicated in other vertebrate species, is not required for ciliogenesis, cilium motility, Sonic hedgehog (Shh) signalling or apical docking of basal bodies in ciliated tracheal epithelial cells. Our data suggest that PCP acts earlier than the unidirectional nodal flow during bilateral symmetry breaking in vertebrates and provide insight into the functional mechanism of PCP in organizing the vertebrate tissues in development.

  3. High Efficacy Green LEDs by Polarization Controlled MOVPE

    SciTech Connect

    Wetzel, Christian

    2013-03-31

    Amazing performance in GaInN/GaN based LEDs has become possible by advanced epitaxial growth on a wide variety of substrates over the last decade. An immediate push towards product development and worldwide competition for market share have effectively reduced production cost and generated substantial primary energy savings on a worldwide scale. At all times of the development, this economic pressure forced very fundamental decisions that would shape huge industrial investment. One of those major aspects is the choice of epitaxial growth substrate. The natural questions are to what extend a decision for a certain substrate will limit the ultimate performance and to what extent, the choice of a currently more expensive substrate such as native GaN could overcome any of the remaining performance limitations. Therefore, this project has set out to explore what performance characteristic could be achieved under the utilization of bulk GaN substrate. Our work was guided by the hypotheses that line defects such as threading dislocations in the active region should be avoided and the huge piezoelectric polarization needs to be attenuated – if not turned off – for higher performing LEDs, particularly in the longer wavelength green and deep green portions of the visible spectrum. At their relatively lower performance level, deep green LEDs are a stronger indicator of relative performance improvements and seem particular sensitive to the challenges at hand.

  4. Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity

    PubMed Central

    Laquel, Patricia; Testet, Eric; Tuphile, Karine; Fouillen, Laetitia; Bessoule, Jean-Jacques

    2015-01-01

    Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype. PMID:26711260

  5. Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation

    NASA Astrophysics Data System (ADS)

    Mizunami, Toru; Hirose, Shuji; Yoshinaga, Takeshi; Yamamoto, Ken-ichi

    2013-09-01

    Wavelength tuning with a current of a long-wavelength vertical-cavity surface-emitting laser (VCSEL) was studied for application to wavelength readout of fiber Bragg grating (FBG) sensors. 1.5 µm single-longitudinal-mode VCSELs with a spectral line width of 30 MHz were used. To decrease the variation in the output power with the current, saturated amplification of the VCSEL output by an erbium-doped fiber amplifier (EDFA) was proposed. In the experiment, the wavelength readout of an FBG by variation in the VCSEL current was studied first, and then amplification characteristics using a commercially available EDFA module were measured. Two VCSELs with different wavelengths and tuning ranges were used as input and compared. For a VCSEL with a wavelength tuning range of 2.5 nm, there was a threefold change in the VCSEL output power. However, the variation in the amplified output power was within ±14%. For another VCSEL with a wavelength tuning range of 3.9 nm, the variation in the amplified output power was within ±18% for variation in the VCSEL output power by 2.2 times. The power slope with respect to the wavelength was also decreased by the stabilization. Computer simulation was performed to study the wavelength shift in the measured Bragg wavelength induced by the power slope. The simulation showed that the wavelength shift can be reduced to 1/2.5-1/5 by the stabilization compared with that using a single VCSEL. Application to long-period grating sensors was also discussed.

  6. Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Hui, Zhang; Yun-Hua, Yao; Shi-An, Zhang; Chen-Hui, Lu; Zhen-Rong, Sun

    2016-02-01

    We propose a femtosecond laser polarization modulation scheme to control the up-conversion (UC) luminescence in Er3+-doped NaYF4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304396), the National Natural Science Foundation of China (Grant Nos. 11474096 and 51132004), and the Shanghai Municipal Science and Technology Commission, China (Grant No. 14JC1401500).

  7. Update on High-Resolution Geodetically Controlled LROC Polar Mosaics

    NASA Astrophysics Data System (ADS)

    Archinal, B.; Lee, E.; Weller, L.; Richie, J.; Edmundson, K.; Laura, J.; Robinson, M.; Speyerer, E.; Boyd, A.; Bowman-Cisneros, E.; Wagner, R.; Nefian, A.

    2015-10-01

    We describe progress on high-resolution (1 m/pixel) geodetically controlled LROC mosaics of the lunar poles, which can be used for locating illumination resources (for solar power or cold traps) or landing site and surface operations planning.

  8. Measurements of ECH absorption on ATF using a polarization-controlled beam launcher

    SciTech Connect

    Bigelow, T.S.; Schaich, C.R.; White, T.L.

    1989-01-01

    Electron cyclotron heating (ECH) is used on the Advanced Toroidal Facility (ATF) experiment at ORNL for plasma formation and heating. A 53.2 GHz gyrotron generates 200 kW cw which is transported to ATF in 6.35 cm evacuated waveguide. Power is launched into ATF using a recently completed polarization controlled beam launcher which can launch a linear polarized beam with a /minus/20 dB diameter of 12 cm at the plasma center. The launcher consists of a Vlasov mode converting antenna, a Teflon-copper laminate polarization rotating grating, and a spherical focusing mirror. The plane of polarization can be remotely adjusted by rotating the grating with a motorized vacuum feedthrough. First pass plasma absorption is monitored in two planes of polarization using a dual-polarized detector looking through a dome shaped scattering cut-off screen. During plasma operation, the detected signals indicate that absorption under ideal conditions is nearly complete. With low density or a shifted resonance zone, absorption is small and there are cases where there is mode coupling to the perpendicular polarization. This is presumably due to shear in the ATF magnetic field. 2 refs., 3 figs.

  9. Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures

    PubMed Central

    Balanta, M. A. G.; Brasil, M. J. S. P.; Iikawa, F.; Mendes, Udson C.; Brum, J. A.; Danilov, Yu. A.; Dorokhin, M. V.; Vikhrova, O. V.; Zvonkov, B. N.

    2016-01-01

    We investigated the dynamics of the interaction between spin-polarized photo-created carriers and Mn ions on InGaAs/GaAs: Mn structures. The carriers are confined in an InGaAs quantum well and the Mn ions come from a Mn delta-layer grown at the GaAs barrier close to the well. Even though the carriers and the Mn ions are spatially separated, the interaction between them is demonstrated by time-resolved spin-polarized photoluminescence measurements. Using a pre-pulse laser excitation with an opposite circular-polarization clearly reduces the polarization degree of the quantum-well emission for samples where a strong magnetic interaction is observed. The results demonstrate that the Mn ions act as a spin-memory that can be optically controlled by the polarization of the photocreated carriers. On the other hand, the spin-polarized Mn ions also affect the spin-polarization of the subsequently created carriers as observed by their spin relaxation time. These effects fade away with increasing time delays between the pulses as well as with increasing temperatures. PMID:27080310

  10. GBLD10+: a compact low-power 10 Gb/s VCSEL driver

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Kulis, S.; Gui, P.; Tavernier, F.; Moreira, P.

    2016-01-01

    We report the design and implementation of the GBLD10+, a low-power 10 Gb/s VCSEL driver for High Energy Physics (HEP) applications. With new circuit techniques, the driver consumes only 31 mW and occupies a small area of 400 μm × 1750 μm including the IO PADs and sealrings. These characteristics allow for multiple GBLD10+ ICs to be assembled side by side in a compact module, with each one directly wire bonded to one VCSEL diode. This makes the GBLD10+ a suitable candidate for the Versatile Link PLUS (VL+) project, offering flexibility in configuring multiple transmitters and receivers.

  11. VCSEL-pumped passively Q-switched monolithic solid-state lasers

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, Robert; Xu, Bing; Chen, Tong; Wang, Qing; Seurin, Jean-Francois; Xu, Guoyang; Zhou, Delai; Ghosh, Chuni

    2016-03-01

    High power 808 nm vertical-cavity surface-emitting laser (VCSEL) arrays were used to end-pump diffusion-bonded composite laser rods consisting of an Nd:YAG gain medium and a Cr:YAG saturable absorber. The laser pulse energy, q-switch delay time, and optical efficiency of a passively Q-switched monolithic solid state laser in a compact rugged package were measured as a function of VCSEL power for various heatsink temperatures. Up to 19 mJ laser pulse energy was produced with 13% optical efficiency.

  12. Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection

    SciTech Connect

    Gatare, I.; Panajotov, K.; Sciamanna, M.

    2007-02-15

    We report theoretically on a pure frequency-induced polarization bistability in a vertical-cavity surface-emitting laser (VCSEL) subject to orthogonal optical injection, i.e., the master laser light polarization is orthogonal to that of the slave VCSEL. As the frequency detuning is scanned from negative to positive values and for a fixed injected power, the VCSEL exhibits two successive and possibly bistable polarization switchings. The first switching (from the slave laser polarization to the injected light polarization) exhibits a bistable region whose width is maximum for a given value of the injected power. Such a dependency of hysteresis width on the injected power is similar to that recently found experimentally by Hong et al.[Electron. Lett. 36, 2019 (2000)]. The bistability accompanying the second switching (from the injected light polarization back to the slave laser free-running polarization) exhibits, however, significantly different features related to the occurrence of optical chaos. Interestingly, the width of the bistable region can be tuned over a large range not only by modifying the injection parameters but also by modifying the device parameters, in particular the VCSEL linewidth enhancement factor.

  13. Real-time feedback control of millimeter-wave polarization for LHD

    SciTech Connect

    Felici, F.; Goodman, T.; Sauter, O.; Shimozuma, T.; Ito, S.; Mizuno, Y.; Kubo, S.; Mutoh, T.

    2009-01-15

    Electron cyclotron heating (ECH) is widely used in magnetic fusion devices, and the polarization of the injected millimeter-wave beams plays a crucial role in the propagation and absorption of the beam energy by the plasma. This polarization can be adjusted by grating mirror polarizers placed in the transmission lines which carry the microwaves from the power source to the plasma. In long-pulse devices such as the Large Helical Device (LHD) and ITER, it is desirable to track changes in the plasma and adjust the polarization of the ECH in real time such as to keep the absorption as high as possible and avoid shine-through which may lead to overheating of vessel components. For this purpose a real-time feedback control scheme is envisioned in which a measure of the absorption efficiency can be used to adjust the orientation of the polarizing mirrors toward an optimum. Such a setup has been tested in a low-power test stand as preparation for future implementation in the LHD ECH system. It is shown that a simple search algorithm is efficient and can in principle be used to control either the absorption efficiency or the linear polarization angle.

  14. Real-time feedback control of millimeter-wave polarization for LHD.

    PubMed

    Felici, F; Goodman, T; Sauter, O; Shimozuma, T; Ito, S; Mizuno, Y; Kubo, S; Mutoh, T

    2009-01-01

    Electron cyclotron heating (ECH) is widely used in magnetic fusion devices, and the polarization of the injected millimeter-wave beams plays a crucial role in the propagation and absorption of the beam energy by the plasma. This polarization can be adjusted by grating mirror polarizers placed in the transmission lines which carry the microwaves from the power source to the plasma. In long-pulse devices such as the Large Helical Device (LHD) and ITER, it is desirable to track changes in the plasma and adjust the polarization of the ECH in real time such as to keep the absorption as high as possible and avoid shine-through which may lead to overheating of vessel components. For this purpose a real-time feedback control scheme is envisioned in which a measure of the absorption efficiency can be used to adjust the orientation of the polarizing mirrors toward an optimum. Such a setup has been tested in a low-power test stand as preparation for future implementation in the LHD ECH system. It is shown that a simple search algorithm is efficient and can in principle be used to control either the absorption efficiency or the linear polarization angle. PMID:19191434

  15. Enhancing polarization by electrode-controlled strain relaxation in PbTiO{sub 3} heterostructures

    SciTech Connect

    Peräntie, J. Stratulat, M. S.; Hannu, J.; Jantunen, H.; Tyunina, M.

    2016-01-01

    A large remanent polarization close to theoretical value 80 μC/cm{sup 2} of bulk PbTiO{sub 3} is achieved in epitaxial heterostructures of (120–600)-nm-thick PbTiO{sub 3} films grown by pulsed laser deposition on (001) SrTiO{sub 3} substrate using a 100-nm-thick SrRuO{sub 3} bottom electrode layer. The heterostructures employing a 50-nm-thick electrode exhibit a significantly smaller polarization of ≤60 μC/cm{sup 2}. A detailed x-ray diffraction analysis of the crystal structure allows for relating this large polarization to electrode-controlled relaxation of epitaxial strain in PbTiO{sub 3}. Based on the observed results, we anticipate that the electrode-promoted strain relaxation can be used to enhance polarization in other epitaxial ferroelectric films.

  16. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts.

    PubMed

    Hong, Y; Stronach, B; Perrimon, N; Jan, L Y; Jan, Y N

    2001-12-01

    Establishing cellular polarity is critical for tissue organization and function. Initially discovered in the landmark genetic screen for Drosophila developmental mutants, bazooka, crumbs, shotgun and stardust mutants exhibit severe disruption in apicobasal polarity in embryonic epithelia, resulting in multilayered epithelia, tissue disintegration, and defects in cuticle formation. Here we report that stardust encodes single PDZ domain MAGUK (membrane-associated guanylate kinase) proteins that are expressed in all primary embryonic epithelia from the onset of gastrulation. Stardust colocalizes with Crumbs at the apicolateral boundary, although their expression patterns in sensory organs differ. Stardust binds to the carboxy terminus of Crumbs in vitro, and Stardust and Crumbs are mutually dependent in their stability, localization and function in controlling the apicobasal polarity of epithelial cells. However, for the subset of ectodermal cells that delaminate and form neuroblasts, their polarity requires the function of Bazooka, but not of Stardust or Crumbs.

  17. The control system of the polarized internal target of ANKE at COSY

    NASA Astrophysics Data System (ADS)

    Kleines, H.; Sarkadi, J.; Zwoll, K.; Engels, R.; Grigoryev, K.; Mikirtychyants, M.; Nekipelov, M.; Rathmann, F.; Seyfarth, H.; Kravtsov, P.; Vasilyev, A.

    2006-05-01

    The polarized internal target for the ANKE experiment at the Cooler Synchrotron COSY of the Forschungszentrum Jülich utilizes a polarized atomic beam source to feed a storage cell with polarized hydrogen or deuterium atoms. The nuclear polarization is measured with a Lamb-shift polarimeter. For common control of the two systems, industrial equipment was selected providing reliable, long-term support and remote control of the target as well as measurement and optimization of its operating parameters. The interlock system has been implemented on the basis of SIEMENS SIMATIC S7-300 family of programmable logic controllers. In order to unify the interfacing to the control computer, all front-end equipment is connected via the PROFIBUS DP fieldbus. The process control software was implemented using the Windows-based WinCC toolkit from SIEMENS. The variety of components, to be controlled, and the logical structure of the control and interlock system are described. Finally, a number of applications derived from the present development to other, new installations are briefly mentioned.

  18. A 3D polarizing display system base on backlight control

    NASA Astrophysics Data System (ADS)

    Liu, Pu; Huang, Ziqiang

    2011-08-01

    In this paper a new three-dimensional (3D) liquid crystal display (LCD) display mode based on backlight control is presented to avoid the left and right eye images crosstalk in 3D display. There are two major issues in this new black frame 3D display mode. One is continuously playing every frame images twice. The other is controlling the backlight switch periodically. First, this paper explains the cause of the left and right eye images crosstalk, and presents a solution to avoid this problem. Then, we propose to play the entire frame images twice by repeating each frame image after it was played instead of playing the left images and the right images frame by frame alternately. Finally, the backlight is switched periodically instead of turned on all the time. The backlight is turned off while a frame of image is played for the first time, then turned on during the second time, after that it will be turned off again and run the next period with the next frame of image start to refresh. Controlling the backlight switch periodically like this is the key to achieve the black frame 3D display mode. This mode can not only achieve better 3D display effect by avoid the left and right image crosstalk, but also save the backlight power consumption. Theoretical analysis and experiments show that our method is reasonable and efficient.

  19. Circular dichroism measurements at an x-ray free-electron laser with polarization control.

    PubMed

    Hartmann, G; Lindahl, A O; Knie, A; Hartmann, N; Lutman, A A; MacArthur, J P; Shevchuk, I; Buck, J; Galler, A; Glownia, J M; Helml, W; Huang, Z; Kabachnik, N M; Kazansky, A K; Liu, J; Marinelli, A; Mazza, T; Nuhn, H-D; Walter, P; Viefhaus, J; Meyer, M; Moeller, S; Coffee, R N; Ilchen, M

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source. PMID:27587106

  20. JAGGED Controls Arabidopsis Petal Growth and Shape by Interacting with a Divergent Polarity Field

    PubMed Central

    Sauret-Güeto, Susanna; Schiessl, Katharina; Bangham, Andrew; Sablowski, Robert; Coen, Enrico

    2013-01-01

    A flowering plant generates many different organs such as leaves, petals, and stamens, each with a particular function and shape. These types of organ are thought to represent variations on a common underlying developmental program. However, it is unclear how this program is modulated under different selective constraints to generate the diversity of forms observed. Here we address this problem by analysing the development of Arabidopsis petals and comparing the results to models of leaf development. We show that petal development involves a divergent polarity field with growth rates perpendicular to local polarity increasing towards the distal end of the petal. The hypothesis is supported by the observed pattern of clones induced at various stages of development and by analysis of polarity markers, which show a divergent pattern. We also show that JAGGED (JAG) has a key role in promoting distal enhancement of growth rates and influences the extent of the divergent polarity field. Furthermore, we reveal links between the polarity field and auxin function: auxin-responsive markers such as DR5 have a broader distribution along the distal petal margin, consistent with the broad distal organiser of polarity, and PETAL LOSS (PTL), which has been implicated in the control of auxin dynamics during petal initiation, is directly repressed by JAG. By comparing these results with those from studies on leaf development, we show how simple modifications of an underlying developmental system may generate distinct forms, providing flexibility for the evolution of different organ functions. PMID:23653565

  1. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  2. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  3. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding. PMID:25872059

  4. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  5. Resonant optical control of the electrically induced spin polarization by periodic excitation

    NASA Astrophysics Data System (ADS)

    Hernandez, F. G. G.; Gusev, G. M.; Bakarov, A. K.

    2014-07-01

    We show that the electron spin polarization generated by an electrical current may have its direction controlled and magnitude amplified by periodic optical excitation. The electrical and optical spin control methods were combined and implemented in a two-dimensional electron gas. By Kerr rotation in an external transverse magnetic field, we demonstrate unexpected long-lived coherent spin oscillations of the current-induced signal in a system with large spin-orbit interaction. Using a single linearly polarized pulse for spin manipulation and detection, we found a strong dependence on the pulse optical power and sample temperature indicating the relevance of the hole spin in the electron spin initialization. The signal was mapped in a Hall bar as function of the position relative to the injection contact. Finally, the presence of an in-plane spin polarization was directly verified by rotating the experimental geometry.

  6. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control.

    PubMed

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5-10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  7. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-08-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices.

  8. Interferometric control of plasmonic resonator based on polarization-sensitive excitation of surface plasmon polaritons.

    PubMed

    Lee, Kyookeun; Kim, Joonsoo; Yun, Hansik; Lee, Gun-Yeal; Lee, Byoungho

    2016-09-19

    A plasmonic resonator is proposed whose electromagnetic energy density can be tuned by the polarization state of the incident light. Counter-propagating surface plasmon polaritons, which are excited by polarization-sensitive subwavelength apertures, give tunability. Stored energy density in the resonator varies from the minimum to the maximum when the orientation angle of the incoming electric field rotates by 90 degrees. After optimizing a rectangular cavity and periodic gratings, the on/off ratio is calculated as 430 and measured as 1.55. Based on our scheme, interferometric control is executed simply by rotation of a polarizer. The proposed plasmonic resonator can be utilized in all-optically controlled active plasmonic devices, coherent network elements, particle trapping systems, and polarimeters. PMID:27661921

  9. Analysis of broadcasting satellite service feeder link power control and polarization

    NASA Technical Reports Server (NTRS)

    Sullivan, T. M.

    1982-01-01

    Statistical analyses of carrier to interference power ratios (C/Is) were performed in assessing 17.5 GHz feeder links using (1) fixed power and power control, and (2) orthogonal linear and orthogonal circular polarizations. The analysis methods and attenuation/depolarization data base were based on CCIR findings to the greatest possible extent. Feeder links using adaptive power control were found to neither cause or suffer significant C/I degradation relative to that for fixed power feeder links having similar or less stringent availability objectives. The C/Is for sharing between orthogonal linearly polarized feeder links were found to be significantly higher than those for circular polarization only in links to nominally colocated satellites from nominally colocated Earth stations in high attenuation environments.

  10. Interferometric control of plasmonic resonator based on polarization-sensitive excitation of surface plasmon polaritons.

    PubMed

    Lee, Kyookeun; Kim, Joonsoo; Yun, Hansik; Lee, Gun-Yeal; Lee, Byoungho

    2016-09-19

    A plasmonic resonator is proposed whose electromagnetic energy density can be tuned by the polarization state of the incident light. Counter-propagating surface plasmon polaritons, which are excited by polarization-sensitive subwavelength apertures, give tunability. Stored energy density in the resonator varies from the minimum to the maximum when the orientation angle of the incoming electric field rotates by 90 degrees. After optimizing a rectangular cavity and periodic gratings, the on/off ratio is calculated as 430 and measured as 1.55. Based on our scheme, interferometric control is executed simply by rotation of a polarizer. The proposed plasmonic resonator can be utilized in all-optically controlled active plasmonic devices, coherent network elements, particle trapping systems, and polarimeters.

  11. Dual-channel near-field control by polarizations using isotropic and inhomogeneous metasurface

    PubMed Central

    Wan, Xiang; Cai, Ben Geng; Li, Yun Bo; Cui, Tie Jun

    2015-01-01

    We propose a method for dual-channel near-field manipulations by designing isotropic but inhomogeneous metasurfaces. As example, we present a dual-channel near-field focusing metasurface device. When the device is driven by surface waves from different channels on the metasurface, the near fields will be focused at the same spatial point with different polarizations. Conversely, if a linearly polarized source is radiated at the spatial focal point, different channels will be evoked on the metasurface controlled by polarization. We fabricated and measured the metasurface device in the microwave frequency. Well agreements between the simulation and measurement results are observed. The proposed method exhibits great flexibility in controlling the surface waves and spatial waves simultaneously. It is expected that the proposed method and dual-channel device will facilitate the manipulation of near electromagnetic or optical waves in different frequency regimes. PMID:26527420

  12. Electrically controllable sudden reversals in spin and valley polarization in silicene.

    PubMed

    Zhang, Qingtian; Chan, K S; Li, Jingbo

    2016-01-01

    We study the spin and valley dependent transport in a silicene superlattice under the influence of a magnetic exchange field, a perpendicular electric field and a voltage potential. It is found that a gate-voltage-controllable fully spin and valley polarized current can be obtained in the proposed device, and the spin and valley polarizations are sensitive oscillatory functions of the voltage potential. In properly designed superlattice structure, the spin and valley polarizations can be reversed from -100% to 100% by a slight change in the external voltage potential. The energy dispersion relations of the superlattice structure are also investigated, which helps us to understand the effects of the superlattice structure. The switching of the spin direction and the valley of the tunneling electrons by a gate voltage enables new possibilities for spin or valley control in silicene-based spintronics and valleytronics. PMID:27647320

  13. Electrically controllable sudden reversals in spin and valley polarization in silicene

    PubMed Central

    Zhang, Qingtian; Chan, K. S.; Li, Jingbo

    2016-01-01

    We study the spin and valley dependent transport in a silicene superlattice under the influence of a magnetic exchange field, a perpendicular electric field and a voltage potential. It is found that a gate-voltage-controllable fully spin and valley polarized current can be obtained in the proposed device, and the spin and valley polarizations are sensitive oscillatory functions of the voltage potential. In properly designed superlattice structure, the spin and valley polarizations can be reversed from −100% to 100% by a slight change in the external voltage potential. The energy dispersion relations of the superlattice structure are also investigated, which helps us to understand the effects of the superlattice structure. The switching of the spin direction and the valley of the tunneling electrons by a gate voltage enables new possibilities for spin or valley control in silicene-based spintronics and valleytronics. PMID:27647320

  14. Electrically controllable sudden reversals in spin and valley polarization in silicene

    NASA Astrophysics Data System (ADS)

    Zhang, Qingtian; Chan, K. S.; Li, Jingbo

    2016-09-01

    We study the spin and valley dependent transport in a silicene superlattice under the influence of a magnetic exchange field, a perpendicular electric field and a voltage potential. It is found that a gate-voltage-controllable fully spin and valley polarized current can be obtained in the proposed device, and the spin and valley polarizations are sensitive oscillatory functions of the voltage potential. In properly designed superlattice structure, the spin and valley polarizations can be reversed from ‑100% to 100% by a slight change in the external voltage potential. The energy dispersion relations of the superlattice structure are also investigated, which helps us to understand the effects of the superlattice structure. The switching of the spin direction and the valley of the tunneling electrons by a gate voltage enables new possibilities for spin or valley control in silicene-based spintronics and valleytronics.

  15. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    PubMed Central

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  16. Circular polarized electronically-controlled antenna array based on CRLH-TL

    NASA Astrophysics Data System (ADS)

    Fu, Jiahui; Chen, Wan; Zhou, Changfei; Zhu, Lei; Wu, Qun

    2014-07-01

    In this paper, a circular polarized electronically-controlled scanning microstrip antenna array is designed, which is based on composite right left-handed transmission line (CRLH TL) and is realized by varactor diodes. Proposed electronically-controlled antenna arrays till now are always linear-polarized as the axial ratio (AR) may be spoiled by the DC feed line, especially in the CRLH TL based case. A more separated CRLH TL integrated with active lumped elements is utilized to solve the problem. The antenna array is composed of the CRLH microstrip transmission line structure and circular polarized microstrip antenna. The direction of the main lobe varies from -1° to -20 ° by continuously modifying the varactor diodes bias voltages from 0 to 20 V with 5 V as a step. The AR remains below 3 dB in the scanning range. The simulation and experimental results show a good consistence.

  17. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    PubMed

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages.

  18. Far-field emission characteristics and linewidth measurements of surface micro-machined MEMS tunable VCSELs

    NASA Astrophysics Data System (ADS)

    Paul, Sujoy; Gierl, Christian; Gründl, Tobias; Zogal, Karolina; Meissner, Peter; Amann, Markus-Christian; Küppers, Franko

    2013-03-01

    In this paper, we demonstrate for the first time the far-field experimental results and the linewidth characteris- tics for widely tunable surface-micromachined micro-electro-mechanical system (MEMS) vertical-cavity surface- emitting lasers (VCSELs) operating at 1550 nm. The fundamental Gaussian mode emission is confirmed by optimizing the radius of curvature of top distributed Bragg reflector (DBR) membrane and by choosing an ap- propriate diameter of circular buried tunnel junctions (BTJs) so that only the fundamental Gaussian mode can sustain. For these VCSELs, a mode-hop free continuous tuning over 100 nm has already been demonstrated, which is achieved by electro-thermal tuning of the MEMS mirror. The fiber-coupled optical power of 2mW over the entire tuning range has been reported. The singlemode laser emission has more than 40 dB of side-mode suppression ratio (SMSR). The smallest linewidth achieved with these of MEMS tunable VCSELs is 98MHz which is one order of magnitude higher than that of fixed-wavelength VCSELs.

  19. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks.

    PubMed

    Gruet, F; Al-Samaneh, A; Kroemer, E; Bimboes, L; Miletic, D; Affolderbach, C; Wahl, D; Boudot, R; Mileti, G; Michalzik, R

    2013-03-11

    We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10(-11) Hz(-1) at 10 Hz Fourier frequency, for a laser power of 700 μW. The VCSEL frequency noise is 10(13) · f(-1) Hz(2)/Hz in the 10 Hz < f < 10(5) Hz range, which is in good agreement with the VCSEL’s measured fractional frequency instability (Allan deviation) of ≈ 1 × 10(-8) at 1 s, and also is consistent with the VCSEL’s typical optical linewidth of 20-25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of -6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2-3 × 10(-11) at τ = 1 s and few 10(-12) at τ = 10(4) s integration time..

  20. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks.

    PubMed

    Gruet, F; Al-Samaneh, A; Kroemer, E; Bimboes, L; Miletic, D; Affolderbach, C; Wahl, D; Boudot, R; Mileti, G; Michalzik, R

    2013-03-11

    We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10(-11) Hz(-1) at 10 Hz Fourier frequency, for a laser power of 700 μW. The VCSEL frequency noise is 10(13) · f(-1) Hz(2)/Hz in the 10 Hz < f < 10(5) Hz range, which is in good agreement with the VCSEL’s measured fractional frequency instability (Allan deviation) of ≈ 1 × 10(-8) at 1 s, and also is consistent with the VCSEL’s typical optical linewidth of 20-25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of -6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2-3 × 10(-11) at τ = 1 s and few 10(-12) at τ = 10(4) s integration time.. PMID:23482148

  1. Component development and integration issues for bio/chemometric appliations of VCSEL and MOEMS arrays

    NASA Astrophysics Data System (ADS)

    Castracane, James; Baks, Christian; Oktyabrsky, Serge; Xu, Bai; Yao, Yahong

    2001-05-01

    The rapid advancement of electro-optical components and micro-mechanical devices has led to increased functionality in decreasing package sizes. In particular, the development of massively parallel arrays of optical sources such as Vertical Cavity Surface Emitting Lasers (VCSEL) and innovative micro-opto-electro-mechanical systems (MOEMS) has opened the door for new possibilities. Recently, there has been a drive toward integration of the sensing, processing and actuation functions in a single package for fully integrated performance. One area which can benefit from this research is real time, spectroscopic analysis of biological and chemical samples. Numerous situations require a compact, self-contained bio/chemometric system for rapid, low cost spectral analysis or monitoring. To fully realize this potential, further component development and integration issues must be addressed. This paper will present the status of the VCSEL and MOEMS programs at the Institute and initial integration activities. The VCSELs are based on multiple quantum well Ga/As/InGaAs and GaAs/AlGaAs architectures with monolithic, epitaxially grown distributed Bragg reflectors. The VCSEL arrays have 6-15 micron apertures, 100 micron pitch and a mA threshold current. In parallel, the MOEMS program is focused on the development of active, reconfigurable diffractive and reflective arrays whose surface topology can be changed in real time. These MOEMS arrays can be sued to redirect light for flexible interrogation of samples. The combination of these two technologies offers a unique opportunity for fully functional systems on a chip.

  2. Reliability study of 1060nm 25Gbps VCSEL in terms of high speed modulation

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshihito; Imai, Suguru; Kamiya, Shinichi; Hiraiwa, Koji; Funabashi, Masaki; Kawakita, Yasumasa; Shimizu, Hitoshi; Ishikawa, Takuya; Kasukawa, Akihiko

    2012-03-01

    Furukawa's 1060nm VCSELs with double-intra-cavity structure and Al-free InGaAs/GaAs QWs enable us to realize low power consumption, high speed operation and high reliability simultaneously. The power dissipation was as low as 140fJ/bit. Clear eye opening up to 20Gbps was achieved. Random failure rate and wear-out lifetime were evaluated as 30FIT/channel and 300 years. For higher speed operation, thickness of oxidation layer was increased for lower parasitic capacitance of device. Preliminary reliability test was performed on those devices. In high speed operation faster than 10Gbps, conventional lifetime definition as 2dB down of output power is not sufficient due to smaller margin of modulation characteristics. We suggest threshold current as a barometer for degradation of modulation characteristics. The threshold currents of our VCSELs degrade small enough during accelerated aging test. We also observed no remarkable change in 25Gbps eye diagram after aging test. The definition of life time for high speed VCSEL is discussed from the change in threshold current and so on in addition to the conventional power degradation during aging. It is experimentally verified that our VCSELs are promising candidate for highly reliable light source including long term stable high speed operation.

  3. Alternative 3' UTR selection controls PAR-5 homeostasis and cell polarity in C. elegans embryos.

    PubMed

    Mikl, Martin; Cowan, Carrie R

    2014-09-11

    Cell polarity in one-cell C. elegans embryos guides asymmetric cell division and cell-fate specification. Shortly after fertilization, embryos establish two antagonistic cortical domains of PAR proteins. Here, we find that the conserved polarity factor PAR-5 regulates PAR domain size in a dose-dependent manner. Using quantitative imaging and controlled genetic manipulation, we find that PAR-5 protein levels reflect the cumulative output of three mRNA isoforms with different translational efficiencies mediated by their 3' UTRs. 3' UTR selection is regulated, influencing PAR-5 protein abundance. Alternative splicing underlies the selection of par-5 3' UTR isoforms. 3' UTR splicing is enhanced by the SR protein kinase SPK-1, and accordingly, SPK-1 is required for wild-type PAR-5 levels and PAR domain size. Precise regulation of par-5 isoform selection is essential for polarization when the posterior PAR network is compromised. Together, strict control of PAR-5 protein levels and feedback from polarity to par-5 3' UTR selection confer robustness to embryo polarization. PMID:25199833

  4. Temperature-dependent remote control of polarization and coherence intensity with sender's pure initial state

    NASA Astrophysics Data System (ADS)

    Fel'dman, E. B.; Kuznetsova, E. I.; Zenchuk, A. I.

    2016-06-01

    We study the remote creation of the polarization and intensity of the first-order coherence (or coherence intensity) in long spin-1/2 chains with one-qubit sender and receiver. Therewith we use a physically motivated initial condition with the pure state of the sender and the thermodynamical equilibrium state of the other nodes. The main part of the creatable region is a one-to-one map of the initial state (control) parameters, except the small subregion twice covered by the control parameters, which appears owing to the chosen initial state. The polarization and coherence intensity behave differently in the state creation process. In particular, the coherence intensity cannot reach any significant value unless the polarization is large in long chains (unlike the short ones), but the opposite is not true. The coherence intensity vanishes with an increase in the chain length, while the polarization (by absolute value) is not sensitive to this parameter. We represent several characteristics of the creatable polarization and coherence intensity and describe their relation to the parameters of the initial state. The link to the eigenvalue-eigenvector parametrization of the receiver's state space is given.

  5. Wide continuously tunable 1.55μm vertical air-cavity wavelength selective elements for filters and VCSELs using micromachined actuation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Hillmer, H.; Tarraf, A.; Riemenschneider, F.; Irmer, S.; Halbritter, H.; Daleiden, J.; Romer, F.; Prott, C.; Ataro, E.; Hasse, A.; Strassner, M.; Hansmann, S.; Meissner, P.

    2005-06-01

    Tailored scaling allows the effectiveness of physical effects and mechanical stability to be enhanced. This is shown for micromachined 1.55μm vertical-resonator-based filters and VCSELs, capable of wide, continuous, and kink-free tuning by a single control parameter. Tuning is achieved by mechanically actuating one or several membranes in a vertical air-gap resonator including two highly reflective DBR mirrors. Electrostatically actuatable single-chip filters including InP/air-gap DBR's (3.5 periods) reveal a continuous tuning up to 14% of the absolute wavelength. Varying a reverse voltage (U=0 .. -3.2V) between the membranes (almost flat in the unactuated condition) a tuning range up to 142nm was obtained. Varying a reverse voltage (U=0 .. -28V) between the membranes (strained and curved in the unactuated condition) a tuning range up to 221nm was obtained. Optically pumped and continuously tunable 1.55μm VCSELs show 26nm spectral tuning range, 400μW maximum output power, and 57dBm SMSR. This two-chip VCSEL has a movable top mirror membrane, which is precisely designed to obtain a specific air-gap length and a tailored radius of curvature in order to efficiently support the fundamental optical mode of the plane-concave resonator. The curved top mirror DBR membrane consists of periodically alternating differently stressed silicon nitride and silicon dioxide multilayers. The lower InP-based part consists of the InP/GaInAsP bottom DBR and the GaInAsP active region.

  6. Developing an array of site-controlled pyramidal quantum dots emitting polarization-entangled photons

    SciTech Connect

    Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Gocalinska, A.; Pelucchi, E.

    2013-12-04

    We present a site-controlled, highly symmetric quantum dot system with a density of at least 15 % of polarization-entangled photon emitters. Fidelity values of the entangled state as high as 0.721±0.043 were found.

  7. Color controllable polarization entanglement generation in optical fiber at telecommunication wavelengths.

    PubMed

    Karmakar, Sanjit; Meyers, Ronald E

    2015-08-10

    This article proposes a polarized entangled photon source in optical fiber with low Raman noise that features the controllable generation of specific signal and idler wavelengths (colors) by varying the pump power. The novel two color source can provide needed telecom entangled photon wavelengths for applications in quantum communications, quantum computing, and quantum imaging.

  8. One way synchronization of polarization chaos from a solitary Vertical-Cavity Surface-Emitting Laser

    NASA Astrophysics Data System (ADS)

    Virte, Martin; Sciamanna, Marc; Thienpont, Hugo; Panajotov, Krassimir

    2016-04-01

    We investigate theoretically the synchronization properties of the polarization chaos dynamics generated by a free-running vertical-cavity surface-emitting laser (VCSEL). Here, we focus on a one-way master-slave configuration - or unidirectional coupling - with two chaotic VCSELs. The spin-flip model is used to model the two devices and derived to account for the coupling between them. We demonstrate that the chaotic dynamics generated by the two lasers can indeed synchronize in the proposed configuration. The synchronization appears to be of high quality as we obtain a high-level of similarity between the emission characteristics of the master and slave laser dynamics.

  9. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    SciTech Connect

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  10. Control of antiferromagnetic domain distribution via polarization-dependent optical annealing

    PubMed Central

    Higuchi, Takuya; Kuwata-Gonokami, Makoto

    2016-01-01

    The absence of net magnetization inside antiferromagnetic domains has made the control of their spatial distribution quite challenging. Here we experimentally demonstrate an optical method for controlling antiferromagnetic domain distributions in MnF2. Reduced crystalline symmetry can couple an order parameter with non-conjugate external stimuli. In the case of MnF2, time-reversal symmetry is macroscopically broken reflecting the different orientations of the two magnetic sublattices. Thus, it exhibits different absorption coefficients between two orthogonal linear polarizations below its antiferromagnetic transition temperature under an external magnetic field. Illumination with linearly polarized laser light under this condition selectively destructs the formation of a particular antiferromagnetic order via heating. As a result, the other antiferromagnetic order is favoured inside the laser spot, achieving spatially localized selection of an antiferromagnetic order. Applications to control of interface states at antiferromagnetic domain boundaries, exchange bias and control of spin currents are expected. PMID:26911337

  11. Polarization-based control of spin-orbit vector modes of light in biphoton interference.

    PubMed

    Leary, C C; Lankford, Maggie; Sundarraman, Deepika

    2016-06-27

    We report the experimental generation of a class of spin-orbit vector modes of light via an asymmetric Mach-Zehnder interferometer, obtained from an input beam prepared in a product state of its spin and orbital degrees of freedom. These modes contain a spatially varying polarization structure which may be controllably propagated about the beam axis by varying the retardance between the vertical and horizontal polarization components of the light. Additionally, their transverse spatial intensity distributions may be continuously manipulated by tuning the input polarization parameters. In the case of an analogous biphoton input, we predict that this device will exhibit biphoton (Hong-Ou-Mandel) interference in conjunction with the aforementioned tunable mode transformations. PMID:27410580

  12. Electrostatic control of polarity of α-MoTe2 transistors with dual top gates

    NASA Astrophysics Data System (ADS)

    Nakaharai, Shu; Yamamoto, Mahito; Ueno, Keiji; Lin, Yen-Fu; Li, Song-Lin; Tsukagoshi, Kazuhito

    2015-03-01

    Transition metal dichalcogenides have been expected for future applications in nanoelectronics due to their unique features of the atomically-thin structure. Using semiconducting α-molybdenum ditelluride (α-MoTe2) , we realized field effect transistors (FETs) in which the polarity (n- or p-type) can be electrostatically controlled without impurity doping. The fabricated device had a pair of top gates (aluminum electrode on silicon dioxide) attached in series with a gap length of 100 nm in between. We experimentally performed transistor operations in both n-FET and p-FET modes in a single device by changing the voltage applied to one of the two top gates, which determined the transistor polarity, and sweeping the bias of the other gate. The demonstrated reversibility of the transistor polarity will contribute to the renovated architecture of logic circuits with lower numbers of transistors and hence the lower power consumption than the conventional technology.

  13. Phase control of six-wave mixing from circularly polarized light

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzhe; Liu, Zhe; Wang, Hang; Li, Shuoke; Zhang, Weitao; Yi, Wenhui; Zhang, Yanpeng

    2016-08-01

    We investigate the phase control of six-wave mixing (SWM) in atomic system with multi-Zeeman levels theoretically and experimentally. With the relative phase varying, the switch between bright and dark state can appear in probe transmission signal. Then we demonstrate the evolution of six-wave mixing generated in bright and dark states by scanning the frequency detuning of the dressing field at different polarized probe field. Meanwhile, by utilizing the strong dressing effect of circular polarized light, we observe pure dark state switched to pure bright state in terms of energy level splitting, and compare different phases under different detuning of circularly polarized light. Theoretical calculations are in well agreement with the experimental observations.

  14. Ionospheric control of polarization of low-latitude geomagnetic micropulsations at sunrise

    NASA Astrophysics Data System (ADS)

    Saka, O.; Itonaga, M.; Kitamura, T.

    1982-08-01

    The ionospheric control of low latitude pulsation polarization characteristics suggested by Saka et al. (1980) has been confirmed through continuous low latitude Pc3 and Pc4 geomagnetic micropulsation observations. The D-component amplitude increases as much as that of the H-component after sunrise, effecting the tilting of the major polarization ellipse axis from north to northwest. This coincides with the appearance of the E-layer in the ionosphere within an hour, and the time of the coincidence shifts from season to season in parallel with changes of sunrise. The ellipticity of the horizontal plane polarization is not appreciably affected by sunrise. It is suggested that the Hall conductivity increment associated with the E-layer sunrise enhancement affects the characteristics of the D-component on the ground.

  15. High-speed tunable and fixed-wavelength VCSELs for short-reach optical links and interconnects

    NASA Astrophysics Data System (ADS)

    Larsson, A.; Gustavsson, J. S.; Haglund, Å.; Kögel, B.; Bengtsson, J.; Westbergh, P.; Haglund, E.; Baveja, P. P.

    2012-03-01

    This paper presents a review of recent work on high speed tunable and fixed wavelength vertical cavity surface emitting lasers (VCSELs) at Chalmers University of Technology. All VCSELs are GaAs-based, employ an oxide aperture for current and/or optical confinement, and emit around 850 nm. With proper active region and cavity designs, and techniques for reducing capacitance and thermal impedance, our fixed wavelength VCSELs have reached a modulation bandwidth of 23 GHz, which has enabled error-free 40 Gbps back-to-back transmission and 35 Gbps transmission over 100 m of multimode fiber. A MEMS-technology for wafer scale integration of tunable high speed VCSELs has also been developed. A tuning range of 24 nm and a modulation bandwidth of 6 GHz have been achieved, enabling error-free back-to-back transmission at 5 Gbps.

  16. Ultrathin planar chiral metasurface for controlling gradient phase discontinuities of circularly polarized waves

    NASA Astrophysics Data System (ADS)

    Liu, Yahong; Zhou, Xin; Song, Kun; Wang, Mei; Zhao, Xiaopeng

    2015-09-01

    We develop a gradient phase discontinuities ultrathin planar metasurface based on chiral branched gammadion structure (CBGS) that provides extreme control of electromagnetic wavefronts across single-sheet design. The introduction of the branch can provide antiparallel magnetic moment, which tunes the chirality of the CBGS. In the CBGS metasurface, the transmission phase of a circularly polarized wave can be varied from  -180° to +180°. We experimentally demonstrate a beam-refracting CBGS metasurface with refracting a normally incident plane wave to an angle of 17°. The performances of the proposed metasurface at oblique incidence are also presented. The CBGS metasurface can find a wide range of applications over the entire electromagnetic spectrum including single-surface lenses, fully controlling light in direction, and polarization controlling devices.

  17. Ultrawide continuously tunable 1.55-μm vertical-air-cavity filters and VCSELs based on micromachined electrostatic actuation

    NASA Astrophysics Data System (ADS)

    Hillmer, Hartmut; Daleiden, Juergen; Prott, Cornelia; Roemer, Friedhard; Tarraf, Amer; Irmer, Soeren; Rangelov, Ventzeslav; Schueler, S.; Strassner, Martin

    2002-06-01

    We study 1.55micrometers filter and VCSEL devices capable of wide and continuous tuning based on a single control parameter. Ultra-high reflective DBR mirrors are realized with a low number of DBR periods using high refractive index contrast: (I) (Delta) n=2.17 for InP/airgap DBR's (3.5 periods) and (II) (Delta) n=0.5 for Si3N4/SiO2 DBR's (12 periods) with a polymer sacrificial layer to implement the air-cavity. Corresponding fabrication technologies are presented in detail. In both cases spectral tuning (>100nm, theoretically) is obtained by micomachined actuation of the included air-cavity. Large stopband widths and very large tuning efficiencies are obtained by model calculations. For VCSEL's a trade-off between lasing efficiency and tuning efficiency is obtained. Experimental results show very good optical properties: high mirror reflectance and clear single-line filter transmission. The first tunable dielectric filter based on polymer sacrificial layers is presented: (Delta) (lambda) /(Delta) U= -7nm/V at 1mA. The potential of the airgap concept: the filter transmission or the laser emission wavelength can be continuously tuned over more than 100nm, thus, the whole spectral gain profile can be addressed by a single control parameter.

  18. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels

    NASA Astrophysics Data System (ADS)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-06-01

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays.

  19. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels

    PubMed Central

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-01-01

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays. PMID:27312072

  20. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels.

    PubMed

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-01-01

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays. PMID:27312072

  1. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels.

    PubMed

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-06-17

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays.

  2. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  3. Improved PHIP polarization using a precision, low noise, voltage controlled current source

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  4. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files. PMID:23988431

  5. Twisted optical-fiber-based acousto-optic tunable filter controlled by the flexural acoustic polarization

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chul; Lee, Kwang Jo

    2015-08-01

    The spectral characteristics of twisted fiber-based acousto-optic filters are theoretically investigated. The influences of three types of flexural acoustic polarization states — linear, circular, and elliptical polarizations — on filter spectra are studied under realistic experimental conditions: a fiber length of 5 - 20 cm and a circumferential fiber twist angle of < 12 π. We will analytically show that either a single- or a dual-resonance filter spectrum is achievable depending on the input polarization state of applied acoustic waves and that the spectral position of each resonance peak can be scanned continuously and linearly in the wavelength domain by using the fiber twist. The feasible spectral tuning range of the resonances is calculated to > 80 nm for a twist angle of 12 π. We will describe how the transmission of each resonance peak can also be selectively tuned by adjusting the ellipticity of the input acoustic polarization from linear to circular. The results illustrate that our approach exploiting a combination of the fiber twist and acoustic polarization management offers an excellent route to the spectral shaping of all-fiber acousto-optic devices in that the transmission of multiple resonances, as well as their spectral positions, are readily and individually controllable in a single device configuration. In addition, we also propose a novel cosine apodization method to suppress the undesirable sidelobe spectra occurring between the dual resonance peaks. The technique is based on a cosine modulation of the AO coupling strength along the fiber, which is achieved by using a combination of the fiber's circumferential twist and the linear acoustic polarization. The proposed scheme is useful to minimize the crosstalk occurring between adjacent resonance peaks. We highlight that our approach is directly applicable to matched filtering as robust, adaptable, stable, and versatile optical filters.

  6. Tuning polarity of polyphenylene dendrimers by patched surface amphiphilicity--precise control over size, shape, and polarity.

    PubMed

    Stangenberg, René; Saeed, Irfan; Kuan, Seah Ling; Baumgarten, Martin; Weil, Tanja; Klapper, Markus; Müllen, Klaus

    2014-01-01

    In the ideal case, a precise synthesis yields molecules with a constitutional as well as a conformational perfectness. Such a case of precision is demonstrated by the synthesis of semi-rigid amphiphilic polyphenylene dendrimers (PPDs). Polar sulfonate groups are precisely placed on their periphery in such a manner that patches of polar and non-polar regions are created. Key structural features are the semi-rigid framework and shape-persistent nature of PPDs since the limited flexibility introduces a nano-phase-separated amphiphilic rim of the dendrimer. This results in both attractive and repulsive interactions with a given solvent. Frustrated solvent structures then lead to a remarkable solubility in solvents of different polarity such as toluene, methanol, and water or their mixtures. Water solubility combined with defined surface structuring and variable hydrophobicity of PPDs that resemble the delicate surface textures of proteins are important prerequisites for their biological and medical applications based upon cellular internalization. PMID:24272967

  7. Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Xie, Yu-Bo; Liu, Zheng-Yang; Wang, Qian-Jin; Sun, Guang-Hou; Zhang, Xue-Jin; Zhu, Yong-Yuan

    2016-03-01

    Optical nanoantennas, usually referring to metal structures with localized surface plasmon resonance, could efficiently convert confined optical energy to free-space light, and vice versa. But it is difficult to manipulate the confined visible light energy for its nanoscale spatial extent. Here, a simple method is proposed to solve this problem by controlling surface plasmon polaritons to indirectly manipulate the localized plasmons. As a proof of principle, we demonstrate an optical rotation device which is a grating with central circular polarization optical nanoantenna. It realized the arbitrary optical rotation of linear polarized light by controlling the retard of dual surface plasmon polaritons sources from both side grating structures. Furthermore, we use a two-parameter theoretical model to explain the experimental results.

  8. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    SciTech Connect

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu; Satoh, Takuya; Stupakiewicz, Andrzej; Maziewski, Andrzej

    2014-07-28

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed for excitation fluences higher than 100 mJ/cm{sup 2}.

  9. MicroRNA targeting of CoREST controls polarization of migrating cortical neurons.

    PubMed

    Volvert, Marie-Laure; Prévot, Pierre-Paul; Close, Pierre; Laguesse, Sophie; Pirotte, Sophie; Hemphill, James; Rogister, Florence; Kruzy, Nathalie; Sacheli, Rosalie; Moonen, Gustave; Deiters, Alexander; Merkenschlager, Matthias; Chariot, Alain; Malgrange, Brigitte; Godin, Juliette D; Nguyen, Laurent

    2014-05-22

    The migration of cortical projection neurons is a multistep process characterized by dynamic cell shape remodeling. The molecular basis of these changes remains elusive, and the present work describes how microRNAs (miRNAs) control neuronal polarization during radial migration. We show that miR-22 and miR-124 are expressed in the cortical wall where they target components of the CoREST/REST transcriptional repressor complex, thereby regulating doublecortin transcription in migrating neurons. This molecular pathway underlies radial migration by promoting dynamic multipolar-bipolar cell conversion at early phases of migration, and later stabilization of cell polarity to support locomotion on radial glia fibers. Thus, our work emphasizes key roles of some miRNAs that control radial migration during cerebral corticogenesis.

  10. Non-photochemical light-induced nucleation and control of polymorphism through polarization-switching

    NASA Astrophysics Data System (ADS)

    Matic, Jelena

    This dissertation examines the effect of polarization, intensity and wavelength on crystallization from supersaturated solutions using non-photochemical light-induced nucleation (NPLIN). Using NPLIN crystal structure can be controlled. Intense pulses of linearly-polarized laser light induce the nucleation of the gamma-glycine polymorph, which otherwise does not form under the same conditions. Moreover, intense pulses of circularly-polarized light induce the alpha-glycine polymorph to crystallize from solutions prepared using the same procedure. The observation that polymorphism could be controlled by changing between linear and circular polarization was named polarization-switching. It represents the strongest evidence to date that the mechanism involved in NPLIN is indeed non-photochemical. The interaction of light and matter responsible for the phenomenon is discussed, as well as the implication of the results of NPLIN experiments on the current understanding of the structure of supersaturated solutions and nucleation. The success rate of NPLIN shows a non-linear dependence on intensity, with a threshold value of 0.02--0.03 GW/cm2. Nucleation could successfully be induced at two different wavelengths, lending further support to the non-photochemical mechanism hypothesis. Green light was shown to be more effective than near-IR light at inducing nucleation. The difference was attributed to the lower absorption of water at the visible wavelength. The potential for use of NPLIN in fundamental studies of nucleation through pump-probe experiments is explored. In addition, evidence is presented that NPLIN has the potential to create unknown polymorphs. The powder x-ray diffraction pattern of a new polymorph of L-alanine is presented and discussed.

  11. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions.

    PubMed

    Jin, Y; Allegre, O J; Perrie, W; Abrams, K; Ouyang, J; Fearon, E; Edwardson, S P; Dearden, G

    2013-10-21

    The polarization state of an ultrafast laser is dynamically controlled using two Spatial Light Modulators and additional waveplates. Consequently, four states of polarization, linear horizontal and vertical, radial and azimuthal, all with a ring intensity distribution, were dynamically switched at a frequency ν = 12.5 Hz while synchronized with a motion control system. This technique, demonstrated here for the first time, enables a remarkable level of real-time control of the properties of light waves and applied to real-time surface patterning, shows that highly controlled nanostructuring is possible. Laser ablation of Induced Periodic Surface Structures is used to directly verify the state of polarization at the focal plane.

  12. Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front.

    PubMed

    Kazansky, Peter G; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Beresna, Martynas; Gecevičius, Mindaugas; Svirko, Yuri; Akturk, Selcuk; Qiu, Jianrong; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-10

    We present the first experimental evidence of anisotropic photosensitivity of an isotropic homogeneous medium under uniform illumination. Our experiments reveal fundamentally new type of light induced anisotropy originated from the hidden asymmetry of pulsed light beam with a finite tilt of intensity front. We anticipate that the observed phenomenon, which enables employing mutual orientation of a light polarization plane and pulse front tilt to control interaction of matter with ultrashort light pulses, will open new opportunities in material processing. PMID:21997076

  13. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  14. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  15. Electrostatic control over polarized currents through the spin-orbital Kondo effect

    NASA Astrophysics Data System (ADS)

    Büsser, C. A.; Feiguin, A. E.; Martins, G. B.

    2012-06-01

    Numerical calculations indicate that by suitably controlling the individual gate voltages of a capacitively coupled parallel double quantum dot, with each quantum dot coupled to one of two independent nonmagnetic channels, this system can be set into a spin-orbital Kondo state by applying a magnetic field. This Kondo regime, closely related to the SU(4) Kondo, flips spin from 1 to 0 through cotunneling processes that generate almost totally spin-polarized currents with opposite spin orientation along the two channels. Moreover, by appropriately changing the gate voltages of both quantum dots, one can simultaneously flip the spin polarization of the currents in each channel. As a similar zero magnetic field Kondo effect has been recently observed by Okazaki [Phys. Rev. BPLRBAQ1098-012110.1103/PhysRevB.84.161305 84, 161305(R) (2011)], we analyze a range of magnetic field values where this polarization effect seems robust, suggesting that the setup may be used as an efficient bipolar spin filter, which can generate electrostatically reversible spatially separated spin currents with opposite polarizations.

  16. Dynamic control of polarization-inverted modes in three-dimensionally trapped multiple nanogaps

    SciTech Connect

    Tamura, Mamoru; Iida, Takuya

    2015-12-28

    We propose a guiding principle for the dynamic control of polarization-inverted modes in multiple nanogaps for unconventional optical transitions of molecules at arbitrary three-dimensional spatial positions. Based on our developed self-consistent theory for the optical assembly of nanoparticles (NPs), we clarified that spherical silver NPs can be optically trapped and aligned in the light-propagating direction via longitudinally polarized light; they form a rod-like nano-composite with multiple nanogaps. During trapping, there is a possibility that an additional irradiation of linearly polarized far-field light may excite the bonding and anti-bonding dark plasmon modes with low radiative decay rate of several meV via cancellation of inverted polarization. Our finding reveals that not only the steep change in the enhanced intensity of light field but also the phase inversion of light field between the dynamically formed nanogaps will pave the way to the highly sensitive sensors for molecules, the unconventional chemical reactions, and so on.

  17. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    NASA Astrophysics Data System (ADS)

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories.

  18. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask.

    PubMed

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  19. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    PubMed Central

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  20. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask.

    PubMed

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-02

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories.

  1. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes.

    PubMed

    Homolya, László; Fu, Dong; Sengupta, Prabuddha; Jarnik, Michal; Gillet, Jean-Pierre; Vitale-Cross, Lynn; Gutkind, J Silvio; Lippincott-Schwartz, Jennifer; Arias, Irwin M

    2014-01-01

    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation. PMID:24643070

  2. Interrogation of fiber-Bragg-grating temperature and strain sensors with a temperature-stabilized VCSEL

    NASA Astrophysics Data System (ADS)

    Mizunami, Toru; Yamada, Taichi; Tsuchiya, Satoshi

    2016-10-01

    The interrogation of fiber-Bragg-grating (FBG) sensors using a vertical-cavity surface-emitting laser (VCSEL) is discussed. A long-wavelength (1.54 μm) VCSEL was used as a wavelength-tunable source by variation in the current. Temperature stabilization was performed with a thermoelectric device. Characteristics of temperature and strain sensing were investigated. FBGs with different reflectivities were compared. For temperature sensing, the root-mean-square error in the measurement was reduced to 1/3 that without temperature stabilization. The dependence of the measurement error on the reflectivities of the FBGs was investigated. The measurement error was larger for FBGs with lower reflectivities in both temperature and strain sensing. Improvement on the sensing with low-reflectivity FBGs is discussed.

  3. Interrogation of fiber-Bragg-grating temperature and strain sensors with a temperature-stabilized VCSEL

    NASA Astrophysics Data System (ADS)

    Mizunami, Toru; Yamada, Taichi; Tsuchiya, Satoshi

    2016-07-01

    The interrogation of fiber-Bragg-grating (FBG) sensors using a vertical-cavity surface-emitting laser (VCSEL) is discussed. A long-wavelength (1.54 μm) VCSEL was used as a wavelength-tunable source by variation in the current. Temperature stabilization was performed with a thermoelectric device. Characteristics of temperature and strain sensing were investigated. FBGs with different reflectivities were compared. For temperature sensing, the root-mean-square error in the measurement was reduced to 1/3 that without temperature stabilization. The dependence of the measurement error on the reflectivities of the FBGs was investigated. The measurement error was larger for FBGs with lower reflectivities in both temperature and strain sensing. Improvement on the sensing with low-reflectivity FBGs is discussed.

  4. Optimization of mode numbers of VCSELs for small-cell backhaul applications

    NASA Astrophysics Data System (ADS)

    Lu, I.-Cheng; Wei, Chia-Chien; Shi, Jin-Wei; Chen, Hsing-Yu; Tsai, Sheng-Fan; Hsu, Dar-Zu; Wei, Zhi-Rui; Wun, Jhih-Min; Chen, Jyehong

    2015-07-01

    This paper reports optical orthogonal frequency-division multiplexing (OFDM) transmission using 850 nm Zn-diffusion Vertical-Cavity Surface-Emitting Lasers (VCSELs) and multimode fiber (MMF) for small-cell backhaul applications. We also investigated the influence of side mode suppression ratio (SMSR) on the performance of OFDM modulation. By further optimizing the Zn-diffusion conditions and oxide aperture size, a high-power (6.7 mW) SM (SMSR>30 dB) VCSEL is demonstrated. By using OFDM modulation and bit-loading algorithm, record-high BRDP (91 Gb/s km) at 26 Gb/s transmission under FEC threshold (bit error rate (BER)<3.8×10-3) across 3.5 km OM4 fiber has been successfully demonstrated.

  5. Simulation of Optical Resonators for Vertical-Cavity Surface-Emitting Lasers (vcsel)

    NASA Astrophysics Data System (ADS)

    Mansour, Mohy S.; Hassen, Mahmoud F. M.; El-Nozahey, Adel M.; Hafez, Alaa S.; Metry, Samer F.

    2010-04-01

    Simulation and modeling of the reflectivity and transmissivity of the multilayer DBR of VCSEL, as well as inside the active region quantum well are analyzed using the characteristic matrix method. The electric field intensity distributions inside such vertical-cavity structure are calculated. A software program under MATLAB environment is constructed for the simulation. This study was performed for two specific Bragg wavelengths 980 nm and 370 nm for achieving a resonant periodic gain (RPG)

  6. GaAs/AlOx high contrast gratings for 980nm VCSELs

    NASA Astrophysics Data System (ADS)

    Gebski, M.; Dems, M.; Chen, J.; Qijie, W.; Dao Hua, Z.; Czyszanowski, T.

    2014-02-01

    In this paper we present results of computer optical simulations of VCSEL with modified high refractive index contrast grating (HCG) as a top mirror. We consider the HCG of two different designs which determine the lateral aperture. Such HCG mirror provides selective guiding effect. We show that proper design of aperture of HCG results in almost sixfold increase in cavity Q-factor for zero order mode and a discrimination of higher order modes.

  7. VCSELs for high-speed data communication in TO packages: pushing the envelope

    NASA Astrophysics Data System (ADS)

    Aeby, Ian; Yang, Lei; Lavrova, Olga; Ling, Hai; Collins, Doug; Wang, Charlie X.; Liu, Chiyu; Whittington, Thomas

    2005-03-01

    In this paper we report the results from on-going performance enhancements of Emcore's comprehensive line of data communication VCSEL products in cost effective hermetic TO packages. Data are presented on the -20 to 100°C temperature range operational characteristics of our offerings at 1.25, 2.5, 4, and 10 Gb/s. The discussion covers high-speed parameters, fiber coupling efficiency, and other important features of the packaged devices.

  8. Proton Irradiation Effects in Oxide-Confined Vertical Cavity Surface Emitting Laser (VCSEL) Diodes

    SciTech Connect

    Armendariz, M.G.; Barnes, C.E.; Choquette, K.D.; Guertin, S.; Hash, G.L.; Schwank, J.R.; Swift, G.M.

    1999-03-11

    Recent space experience has shown that the use of commercial optocouplers can be problematic in spacecraft, such as TOPEX/Poseidon, that must operate in significant radiation environments. Radiation--induced failures of these devices have been observed in space and have been further documented at similar radiation doses in the laboratory. The ubiquitous use of optocouplers in spacecraft systems for a variety of applications, such as electrical isolation, switching and power transfer, is indicative of the need for optocouplers that can withstand the space radiation environment. In addition, the distributed nature of their use implies that it is not particularly desirable to shield optocouplers for use in radiation environments. Thus, it will be important for the space community to have access to radiation hardened/tolerant optocouplers. For many microelectronic and photonic devices, it is difficult to achieve radiation hardness without sacrificing performance. However, in the case of optocouplers, one should be able to achieve both superior radiation hardness and performance for such characteristics as switching speed, current transfer ratio (CTR), minimum power usage and array power transfer, if standard light emitting diodes (LEDs), such as those in the commercial optocouplers mentioned above, are avoided, and VCSELs are employed as the emitter portion of the optocoupler. The physical configuration of VCSELs allows one to achieve parallel use of an array of devices and construct a multichannel optocoupler in the standard fashion with the emitters and detectors looking at each other. In addition, detectors similar in structure to the VCSELs can be fabricated which allows bidirectional functionality of the optocoupler. Recent discussions suggest that VCSELs will enjoy widespread applications in the telecommunications and data transfer fields.

  9. Device characterization of the VCSEL-on-silicon as an on chip light source

    NASA Astrophysics Data System (ADS)

    Kwack, Myung-Joon; Jang, Ki-Seok; Joo, Jiho; Park, Hyundai; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi; Kim, Gyungock

    2016-03-01

    Advancement of silicon photonics technology can offer a new dimension in data communications with un-precedent bandwidth. Increasing the integration level in the silicon photonics is required to develop compact high-performance chip-level optical interconnects for future systems. Especially, monolithic integration of light source on a silicon wafer is important for future silicon photonic integrated circuits, since realizing a compact on-chip light source on a silicon wafer is a serious issue which impedes practical implementation of the silicon photonic interconnects. At present, due to the lack of a practical light source based on Group IV elements, flip chip-bonded or packaged lasers based on III-V semiconductor are usually being used as external light sources, to feed silicon modulators on SOI wafers to complete a photonic transmitter, except the reported silicon hybrid lasers monolithic-integrated on SOI wafers. To overcome above problem, we have proposed a compact on-chip light source, the directly monolithic-integrated VCSEL on a bulk silicon wafer (VCSEL-on-Si), based on the transplanted epitaxial film by substrate lift-off process and following device-fabrication on the bulk Si wafer. This can offer practical low-power-consumption light sources integrated on a silicon wafer, which can provide a complete chip-level I/O set when combined with monolithic-integrated vertical-illumination Ge-on-Si photodetectors on the same silicon wafer. In this work, we report the characterization of direct-modulation VCSELs-on-Si for λ ~850 nm with CW optical output power > ~2 mW and the threshold current < ~3 mA, over 10 Gb/s operations. We also discuss about the thermal characteristics of the VCSELs-on-Si.

  10. FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans

    PubMed Central

    Minor, Paul J.; He, Ting-Fang; Sohn, Chang Ho; Asthagiri, Anand R.; Sternberg, Paul W.

    2013-01-01

    The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/β-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans. PMID:23946444

  11. Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging

    PubMed Central

    John, Demis D.; Burgner, Christopher B.; Potsaid, Benjamin; Robertson, Martin E.; Lee, Byung Kun; Choi, Woo Jhon; Cable, Alex E.; Fujimoto, James G.; Jayaraman, Vijaysekhar

    2015-01-01

    In this paper, we present a 1050 nm electrically-pumped micro-electro-mechanically-tunable vertical-cavity-surface-emitting-laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost & complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide field imaging of the in vivo human retina over a 12 mm × 12 mm field and for OCT angiography of the macula over 6 mm × 6 mm & 3 mm × 3 mm fields to show retinal vasculature and capillary structure near the fovea. These results demonstrate the feasibility of electrically pumped MEMS-VCSELs in ophthalmic instrumentation, the largest clinical application of OCT. In addition, we estimate that the 3 dB coherence length in air is 225 meters ± 51 meters, far greater than required for ophthalmic SS-OCT and suggestive of other distance ranging applications. PMID:26594089

  12. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    SciTech Connect

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial; Sweatt, William; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randy

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  13. Low-frequency noise characterization of near-IR VCSELs for functional brain imaging

    NASA Astrophysics Data System (ADS)

    Lee, Thomas T.; Lim, Paul G.; Harris, James S., Jr.; Shenoy, Krishna V.; Smith, Stephen J.

    2008-02-01

    Recent years have seen rising interest in optical system-on-a-chip sensors for biological applications. Vertical cavity surface emitting lasers (VCSELs) are a natural choice for array-based sensors requiring high power and low noise. However, much of the noise characterization of VCSELs has been performed in frequency ranges on the order of 10 8 to 10 10 Hz, whereas many physiological phenomena occur in frequency bands in the hertz to kilohertz range where 1/f and 1/f2 noise is dominant. In this work we characterize the relative intensity noise (RIN) of commercial VCSEL devices and evaluate their feasibility for use in an integrated semiconductor optical sensor for functional brain imaging using Intrinsic Optical Signals (IOS). Our results show RIN on the order of -196 to -174 dB/Hz at an offset of 10 Hz. This is well below the signal-to-background and dynamic range requirements of 6 dB and 86 dB, respectively, for this application.

  14. Fabrication, Packaging, and Performance of VCSELs and Photodetectors for Space Applications

    SciTech Connect

    Armendariz, M.G.; Briggs, R.D.; Choquette, K.D.; Geib, K.M.; Serkland, D.K.

    1999-03-09

    Optocouplers are used for a variety of applications aboard spacecraft including electrical isolation, switching and power transfer. Commercially available light emitting diode (LED)-based optocouplers have experienced severe degradation of light output due to extensive displacement damage occurring in the semiconductor lattice caused by energetic proton bombardment. A new optocoupler has been designed and fabricated which utilizes vertical cavity surface emitting laser (VCSEL) and resonant cavity photodetector (RCPD) technologies for the optocoupler emitter and detector, respectively. Linear arrays of selectively oxidized GaAs/AlGaAs VCSELS and RCPDS, each designed to operate at a wavelength of 850nm, were fabricated using an airbridge contacting scheme. The airbridged contacts were designed to improve packaging yields and device reliability by eliminating the use of a polyimide planarizing layer which provided poor adhesion to the bond pad metallization. Details of the airbridged optocoupler fabrication process are reported. Discrete VCSEL and RCPD devices were characterized at temperatures between {minus}100 to 100 C. Devices were packaged in a face-to-face configuration to form a single channel optocoupler and its performance was evaluated under conditions of high-energy proton bombardment.

  15. Compact VCSEL-based laser array communications systems for improved data performance in satellites

    NASA Astrophysics Data System (ADS)

    Carson, Richard F.; Warren, Mial E.; Joseph, John R.; Wilcox, Thomas; Abell, David J.; Otis, Kirk J.

    2014-09-01

    Compact, radiation-hardened free-space optical data links are enabled by two-dimensional VCSEL arrays that can be modulated at high data rates while being scaled to produce high power levels. The combination of high modulation speed and scalability of power is enabled by the use of arrays which are flip-chip mounted onto sub-mounts that contain electrical strip line waveguides to provide an impedance match for the VCSELs. For laser wavelengths in the 910 nm to 1020 nm range, the lasers can be back-emitting through the GaAs substrate, which enables the use of etched microlenses to manipulate the beams from the individual elements. This approach of using VCSELs in arrays is inherently reliable and radiation-hard. The resulting free space optical data links are particularly advantageous for space-borne applications where size, weight, and power are important factors. Performance characterization of links constructed with these lasers demonstrates their suitability for short distance to medium distance data transfer at up to 10 Gb/s.

  16. High-speed red RCLEDs and VCSELs for plastic optical fiber application

    NASA Astrophysics Data System (ADS)

    Chiou, Shu-Woei; Lee, Yea-Chen; Chang, Chih-Sung; Chen, Tzer-Peng

    2005-03-01

    To investigate the high performance light source for high-speed plastic optical fiber (POF) communication application is important as high-speed short distance communication for the home networks becomes popular. It is straightforward to reduce the size of RCLEDs to increase the small-signal modulation bandwidth (f-3dB). But reduce the size of RCLEDs not only reduce the output power but also decrease lifetime because higher current density flowed through active region. In this paper, we improve. f-3dB of RCLEDs with the aperture of 84μm by reducing the number of quantum wells (QWs) in active region. We found the speed of RCLED inverse proportional to the number of QWs. By reducing the number of QWs to one, the device with standard aperture size exhibits high f-3dB as 235MHz at bias current of 20mA without sacrificing the other performance like maximum output power, high temperature performance, etc. These devices can transmit data rate as high as 500Mb/sec through graded-index POF over 50 meters. Beyond 1Gbits/sec, we have investigated red VCSELs as suitable high-speed light sources. The structure of red VCSELs is similar to RCLEDs except more pairs of DBR yield high reflectivity. Our red VCSEL can have output power as high as 1.5mW at 5mA and transmission data rate up to 2.5Gbits/sec.

  17. High-speed 850 and 980 nm VCSELs for high-performance computing applications

    NASA Astrophysics Data System (ADS)

    Mutig, Alex; Moser, Philip; Lott, James A.; Wolf, Philip; Hofmann, Werner; Ledentsov, Nikolay N.; Bimberg, Dieter

    2011-12-01

    The ever growing demand for more bandwidth in high-performance computing (HPC) applications leads to a continuous replacement of traditional copper-based links by optical interconnects at ever shorter transmission distances. However, this trend results in a more stringent performance requirements for laser light sources utilized in new generations of optical interconnects in respect to single channel speed, packaging density, power consumption and temperature stability, to make the technology competitive and commercially viable. Vertical cavity surface emitting lasers operating at different wavelengths, e. g. 850 or 980 nm, represent one possible solution for the short distance high density interconnects in HPC applications. Here we present ultra-high speed highly temperature stable 980 nm VCSELs operating error-free at the record high bit rate of 44 Gbit/s at room temperature and 38 Gbit/s at 85 °C for future interand intra-chip, and module-to-module optical links. Next we present high speed extremely energy efficient 850 nm VCSELs with record low energy consumptions of only 83 fJ/bit while operating at 17 Gbit/s and of only 117 fJ/bit at 25 Gbit/s. Our VCSELs enable ecologically sound and economically practical HPC designs.

  18. Slim-structured electro-floating display system based on the polarization-controlled optical path.

    PubMed

    Kim, Seung-Cheol; Park, Seong-Jin; Kim, Eun-Soo

    2016-04-18

    A new slim-type electro-floating display system based on the polarization-controlled optical path is proposed. In the proposed system, the optical path between the input plane and Fresnel lens can be made recursive by repetitive transmission and reflection of the input beam by employing a new polarization-based optical path controller (P-OPC), which is composed of two quaterwave plates, a half mirror and a reflective polarizer. Based on this P-OPC, the absolute optical path between the input plane and Fresnel lens, virtually representing the physical depth of the display system, can be reduced down to one third of its original path, which results in the same rate of decrease in the volume size of the display system. The operational principle of the proposed system is analyzed with the Jones matrix. In addition, to confirm the feasibility of the proposed system, experiments with test prototypes are carried out, and the results are comparatively discussed with those of the conventional system.

  19. Controlled polarization of two-dimensional quantum turbulence in atomic Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Cidrim, A.; dos Santos, F. E. A.; Galantucci, L.; Bagnato, V. S.; Barenghi, C. F.

    2016-03-01

    We propose a scheme for generating two-dimensional turbulence in harmonically trapped atomic condensates with the novelty of controlling the polarization (net rotation) of the turbulence. Our scheme is based on an initial giant (multicharged) vortex which induces a large-scale circular flow. Two thin obstacles, created by blue-detuned laser beams, speed up the decay of the giant vortex into many singly quantized vortices of the same circulation; at the same time, vortex-antivortex pairs are created by the decaying circular flow past the obstacles. Rotation of the obstacles against the circular flow controls the relative proportion of positive and negative vortices, from the limit of strongly anisotropic turbulence (almost all vortices having the same sign) to that of isotropic turbulence (equal number of vortices and antivortices). Using this scheme, we numerically study the decay of two-dimensional quantum turbulence as a function of the polarization. Finally, we present a model for the decay rate of the vortex number which fits our numerical experiment curves, with the novelty of taking into account polarization time dependence.

  20. Computerized histomorphometric study of the splenic collagen polymorphism: A control-tissue for polarization microscopy.

    PubMed

    Alves, Antoine; Gritsch, Kerstin; Sirieix, Camille; Drevon-Gaillot, Elodie; Bayon, Yves; Clermont, Gaëlle; Boutrand, Jean-Pierre; Grosgogeat, Brigitte

    2015-10-01

    Previous articles have pointed out the presence of type III collagen within the extracellular structure of the parenchymatous organs. This study aimed to quantitatively characterize the collagen polymorphism at the capsule and parenchymal trabeculae of the largest lymphoid organ of the body i.e., the spleen, in mouse, rat, and rabbit models. Following a Picrosirius Red-Polarization procedure and computer assisted image analysis of paraffin sections, the results showed (1) a predominant and significantly higher amount of type III collagen in the trabeculae area compared to the capsule area in the three species, (2) no statistical difference among the three species concerning the parenchymal collagen polymorphism or the type I/type III collagen ratio, (3) a heterogeneous type I/type III collagen ratio varying from 0.86 (mouse) to 6.62 (rabbit) in the fibromuscular capsule region. A qualitative analysis corroborated these histomorphometric results. In conclusion, the spleen may be used as (1) a control tissue to qualitatively visualize type I and III collagen under polarization microscopy and to validate the quality of PSR staining (2) an aid to accurately calibrate the angle of polarization before quantitative measurements of type I and type III collagen. Among the studied species, the rabbit spleen appeared to be the most appropriate control tissue as it showed the highest amount of type I collagen in the capsule and a similarly high amount of type III collagen in the parenchymal trabeculae.

  1. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space.

    PubMed

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies.

  2. Linearly polarized single photon antibunching from a site-controlled InGaN quantum dot

    SciTech Connect

    Jemsson, Tomas; Machhadani, Houssaine; Karlsson, K. Fredrik; Hsu, Chih-Wei; Holtz, Per-Olof

    2014-08-25

    We report on the observation of linearly polarized single photon antibunching in the excitonic emission from a site-controlled InGaN quantum dot. The measured second order coherence function exhibits a significant dip at zero time difference, corresponding to g{sub m}{sup 2}(0)=0.90 under continuous laser excitation. This relatively high value of g{sub m}{sup 2}(0) is well understood by a model as the combination of short exciton life time (320 ps), limited experimental timing resolution and the presence of an uncorrelated broadband background emission from the sample. Our result provides the first rigorous evidence of InGaN quantum dot formation on hexagonal GaN pyramids, and it highlights a great potential in these dots as fast polarized single photon emitters if the background emission can be eliminated.

  3. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    SciTech Connect

    Cho, Byungsu; Choi, Yonghyuk; Shin, Seokyoon; Jeon, Heeyoung; Seo, Hyungtak; Jeon, Hyeongtag

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  4. Highly accurate servo control of reference beam angle in holographic memory with polarized servo beam

    NASA Astrophysics Data System (ADS)

    Hosaka, Makoto; Ogata, Takeshi; Yamada, Kenichiro; Yamazaki, Kazuyoshi; Shimada, Kenichi

    2016-09-01

    We propose a new servo technique for controlling the reference beam angle in angular multiplexing holographic memory to attain higher capacity and higher speed data archiving. An orthogonally polarized beam with an incident angle slightly different from that of the reference beam is newly applied to the optics. The control signal for the servo is generated as the difference between the diffracted light intensities of these two beams from a hologram. The incident angle difference between the beams to the medium was optimized as sufficient properties of the control signal were obtained. The high accuracy of the control signal with an angle error lower than 1.5 mdeg was successfully confirmed in the simulations and experiments.

  5. Laser trapping in anisotropic fluids and polarization-controlled particle dynamics.

    PubMed

    Smalyukh, Ivan I; Kachynski, Aliaksandr V; Kuzmin, Andrey N; Prasad, Paras N

    2006-11-28

    Anisotropic fluids are widespread, ranging from liquid crystals used in displays to ordered states of a biological cell interior. Optical trapping is potentially a powerful technique in the fundamental studies and applications of anisotropic fluids. We demonstrate that laser beams in these fluids can generate anisotropic optical trapping forces, even for particles larger than the trapping beam wavelength. Immersed colloidal particles modify the fluid's ordered molecular structures and locally distort its optic axis. This distortion produces a refractive index "corona" around the particles that depends on their surface characteristics. The laser beam can trap such particles not only at their center but also at the high-index corona. Trapping forces in the beam's lateral plane mimic the corona and are polarization-controlled. This control allows the optical forces to be reversed and cause the particle to follow a prescribed trajectory. Anisotropic particle dynamics in the trap varies with laser power because of the anisotropy of both viscous drag and trapping forces. Using thermotropic liquid crystals and biological materials, we show that these phenomena are quite general for all anisotropic fluids and impinge broadly on their quantitative studies using laser tweezers. Potential applications include modeling thermodynamic systems with anisotropic polarization-controlled potential wells, producing optically tunable photonic crystals, and fabricating light-controlled nano- and micropumps.

  6. Noncanonical Wnt signaling pathways in C. elegans converge on POP-1/TCF and control cell polarity.

    PubMed

    Herman, Michael A; Wu, Mingfu

    2004-05-01

    In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway controls a cell migration whereas noncanonical Wnt pathways control the polarities of individual cells. Despite the differences in the identities and interactions among canonical and noncanonical Wnt pathway components, as well as the processes they regulate, almost all C. elegans Wnt pathways involve the sole Tcf homolog, POP-1. Intriguingly, POP-1 is asymmetrically distributed between the daughters of an asymmetric cell division, with the anterior sister cell usually having a higher level of nuclear POP-1 than its posterior sister. At some divisions, asymmetric distribution of POP-1 is controlled by noncanonical Wnt signaling, but at others the asymmetry is generated independently. Recent experiments suggest that despite this elaborate anterior-posterior POP-1 asymmetry, the quantity of POP-1 protein may have less to do with the subsequent determination of fate than does the quality of the POP-1 protein in the cell. In this review, we will embark on a quest to understand Quality (1), at least from the standpoint of the effect POP/Tcf quality has on the control of cell polarity in C. elegans. PMID:14977564

  7. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    NASA Astrophysics Data System (ADS)

    Xu, Shuwu; Huang, Yunxia; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong

    2015-07-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye.

  8. Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity.

    PubMed

    Bachmann, A; Schneider, M; Theilenberg, E; Grawe, F; Knust, E

    2001-12-01

    The polarized architecture of epithelial cells depends on the highly stereotypic distribution of cellular junctions and other membrane-associated protein complexes. In epithelial cells of the Drosophila embryo, three distinct domains subdivide the lateral plasma membrane. The most apical one comprises the subapical complex (SAC). It is followed by the zonula adherens (ZA) and, further basally, by the septate junction. A core component of the SAC is the transmembrane protein Crumbs, the cytoplasmic domain of which recruits the PDZ-protein Discs Lost into the complex. Cells lacking crumbs or the functionally related gene stardust fail to organize a continuous ZA and to maintain cell polarity. Here we show that stardust provides an essential component of the SAC. Stardust proteins colocalize with Crumbs and bind to the carboxy-terminal amino acids of its cytoplasmic tail. We introduce two different Stardust proteins here: one MAGUK protein, characterized by a PDZ domain, an SH3 domain and a guanylate kinase domain; and a second isoform comprising only the guanylate kinase domain. The Stardust proteins represent versatile candidates as structural and possibly regulatory constituents of the SAC, a crucial element in the control of epithelial cell polarity.

  9. Controllable spin polarization and spin filtering in a zigzag silicene nanoribbon

    SciTech Connect

    Farokhnezhad, Mohsen Esmaeilzadeh, Mahdi Pournaghavi, Nezhat; Ahmadi, Somaieh

    2015-05-07

    Using non-equilibrium Green's function, we study the spin-dependent electron transport properties in a zigzag silicene nanoribbon. To produce and control spin polarization, it is assumed that two ferromagnetic strips are deposited on the both edges of the silicene nanoribbon and an electric field is perpendicularly applied to the nanoribbon plane. The spin polarization is studied for both parallel and anti-parallel configurations of exchange magnetic fields induced by the ferromagnetic strips. We find that complete spin polarization can take place in the presence of perpendicular electric field for anti-parallel configuration and the nanoribbon can work as a perfect spin filter. The spin direction of transmitted electrons can be easily changed from up to down and vice versa by reversing the electric field direction. For parallel configuration, perfect spin filtering can occur even in the absence of electric field. In this case, the spin direction can be changed by changing the electron energy. Finally, we investigate the effects of nonmagnetic Anderson disorder on spin dependent conductance and find that the perfect spin filtering properties of nanoribbon are destroyed by strong disorder, but the nanoribbon retains these properties in the presence of weak disorder.

  10. Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength.

    PubMed

    Xiang, Jin; Li, Jinxiang; Li, Hui; Zhang, Chengyun; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2016-05-30

    A metasurface composed of regularly arranged silicon (Si) nanospheres (NSs) with coupling was investigated both theoretically and numerically based on the Mie theory, the simple Lorentz line shape model and the finite-difference time-domain technique. By deliberately controlling the coupling strength between Si NSs through the design of the lattice constants of a rectangular lattice, polarization beam splitters, converters and analyzers with good performance can be successfully constructed. A square lattice as well as a large incidence angle was employed to build the polarization beam splitters and converters. At an incidence angle of 80°, the polarization beam splitters can completely reflect the s-polarized light and transmit the p-polarized light in a wavelength region of 510-620 nm. For a circularly polarized light incident on the polarization converters, one can get s-polarized light in the reflection direction and p-polarized light in the transmission direction. For the polarization beam analyzers, a rectangular lattice with deliberately chosen lattice constants was employed and the transmissivity of a linearly polarized light can be continuously adjusted from 0 to ~0.90 by simply rotating the metasurface. We revealed that the broadening of either the electric dipole resonance or the magnetic dipole resonance or both of them, which is induced by the asymmetric coupling of Si NSs, is responsible for the modification in the transmissivity spectrum of the metasurface. Our findings provide a guideline for designing photonic devices based on the metasurfaces composed of Si NSs with controllable coupling strength. PMID:27410070

  11. Far-field, linewidth and thermal characteristics of a high-speed 1550-nm MEMS tunable VCSEL.

    PubMed

    Paul, Sujoy; Haidar, Mohammad Tanvir; Cesar, Julijan; Malekizandi, Mohammadreza; Kögel, Benjamin; Neumeyr, Christian; Ortsiefer, Markus; Küppers, Franko

    2016-06-13

    We report an electrically pumped 1550 nm MEMS tunable VCSEL with a continuous tuning of 101 nm at 22 °C. The top MEMS-DBR with built-in stress gradient within the dielectric layers is deposited in a low-temperature PECVD chamber on an InP-based half-VCSEL, structured by surface-micromachining and electrothermally actuated for continuous wavelength tuning. With 2.6 mA threshold current, the laser shows maximum CW output power of 3.2 mW at 1560 nm. The MEMS-VCSEL operates in single-mode with SMSR > 39 dB across the entire tuning range. At 36 °C, the tuning range reaches up to 107 nm. The divergence angle of the MEMS-VCSEL is approximately 5.6° for all tuning wavelengths. The intrinsic linewidth of an unpackaged device is 21 MHz. Quasi-error-free operation at 12.5 Gbps using a directly modulated MEMS-VCSEL is reported for a record 60 nm tuning, showing the potential of the so-called colorless source in WDM applications. PMID:27410332

  12. Far-field, linewidth and thermal characteristics of a high-speed 1550-nm MEMS tunable VCSEL.

    PubMed

    Paul, Sujoy; Haidar, Mohammad Tanvir; Cesar, Julijan; Malekizandi, Mohammadreza; Kögel, Benjamin; Neumeyr, Christian; Ortsiefer, Markus; Küppers, Franko

    2016-06-13

    We report an electrically pumped 1550 nm MEMS tunable VCSEL with a continuous tuning of 101 nm at 22 °C. The top MEMS-DBR with built-in stress gradient within the dielectric layers is deposited in a low-temperature PECVD chamber on an InP-based half-VCSEL, structured by surface-micromachining and electrothermally actuated for continuous wavelength tuning. With 2.6 mA threshold current, the laser shows maximum CW output power of 3.2 mW at 1560 nm. The MEMS-VCSEL operates in single-mode with SMSR > 39 dB across the entire tuning range. At 36 °C, the tuning range reaches up to 107 nm. The divergence angle of the MEMS-VCSEL is approximately 5.6° for all tuning wavelengths. The intrinsic linewidth of an unpackaged device is 21 MHz. Quasi-error-free operation at 12.5 Gbps using a directly modulated MEMS-VCSEL is reported for a record 60 nm tuning, showing the potential of the so-called colorless source in WDM applications.

  13. Controlling spin polarization in graphene by cloaking magnetic and spin-orbit scatterers

    NASA Astrophysics Data System (ADS)

    Oliver, Diego; Rappoport, Tatiana G.

    2016-07-01

    We consider spin-dependent scatterers with large scattering cross sections in graphene—a Zeeman-like and an intrinsic spin-orbit coupling impurity—and show that a gated ring around them can be engineered to produce an efficient control of the spin-dependent transport, like current spin polarization and spin Hall angle. Our analysis is based on a spin-dependent partial-waves expansion of the electronic wave functions in the continuum approximation, described by the Dirac equation.

  14. Controlled polar asymmetry of few-cycle and intense mid-infrared pulses

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Bühler, Johannes; Mayer, Bernhard; Pashkin, Alexej; Leitenstorfer, Alfred; Seletskiy, Denis V.

    2016-05-01

    We demonstrate synthesis of ultrabroadband and phase-locked two-color transients in the multi-terahertz frequency range with amplitudes exceeding 13 MV cm-1. Subcycle polar asymmetry of the electric field is adjusted by changing the relative phase between superposed fundamental and second harmonic components. The resultant broken symmetry of the field profile is directly resolved via electro-optic sampling. Access to such waveforms provides a direct route for control of low-energy degrees of freedom in condensed matter as well as non-perturbative light-matter interactions under highest non-resonant electric bias.

  15. Disabled homolog 2 controls macrophage phenotypic polarization and adipose tissue inflammation

    PubMed Central

    Adamson, Samantha E.; Moravec, Radim; Senthivinayagam, Subramanian; Montgomery, Garren; Chen, Wenshu; Han, Jenny; Sharma, Poonam R.; Mullins, Garrett R.; Gorski, Stacey A.; Cooper, Jonathan A.; Kadl, Alexandra; Enfield, Kyle; Braciale, Thomas J.; Harris, Thurl E.

    2016-01-01

    Acute and chronic tissue injury results in the generation of a myriad of environmental cues that macrophages respond to by changing their phenotype and function. This phenotypic regulation is critical for controlling tissue inflammation and resolution. Here, we have identified the adaptor protein disabled homolog 2 (DAB2) as a regulator of phenotypic switching in macrophages. Dab2 expression was upregulated in M2 macrophages and suppressed in M1 macrophages isolated from both mice and humans, and genetic deletion of Dab2 predisposed macrophages to adopt a proinflammatory M1 phenotype. In mice with myeloid cell–specific deletion of Dab2 (Dab2fl/fl Lysm-Cre), treatment with sublethal doses of LPS resulted in increased proinflammatory gene expression and macrophage activation. Moreover, chronic high-fat feeding exacerbated adipose tissue inflammation, M1 polarization of adipose tissue macrophages, and the development of insulin resistance in DAB2-deficient animals compared with controls. Mutational analyses revealed that DAB2 interacts with TNF receptor–associated factor 6 (TRAF6) and attenuates IκB kinase β–dependent (IKKβ-dependent) phosphorylation of Ser536 in the transactivation domain of NF-κB p65. Together, these findings reveal that DAB2 is critical for controlling inflammatory signaling during phenotypic polarization of macrophages and suggest that manipulation of DAB2 expression and function may hold therapeutic potential for the treatment of acute and chronic inflammatory disorders. PMID:26927671

  16. Disabled homolog 2 controls macrophage phenotypic polarization and adipose tissue inflammation.

    PubMed

    Adamson, Samantha E; Griffiths, Rachael; Moravec, Radim; Senthivinayagam, Subramanian; Montgomery, Garren; Chen, Wenshu; Han, Jenny; Sharma, Poonam R; Mullins, Garrett R; Gorski, Stacey A; Cooper, Jonathan A; Kadl, Alexandra; Enfield, Kyle; Braciale, Thomas J; Harris, Thurl E; Leitinger, Norbert

    2016-04-01

    Acute and chronic tissue injury results in the generation of a myriad of environmental cues that macrophages respond to by changing their phenotype and function. This phenotypic regulation is critical for controlling tissue inflammation and resolution. Here, we have identified the adaptor protein disabled homolog 2 (DAB2) as a regulator of phenotypic switching in macrophages. Dab2 expression was upregulated in M2 macrophages and suppressed in M1 macrophages isolated from both mice and humans, and genetic deletion of Dab2 predisposed macrophages to adopt a proinflammatory M1 phenotype. In mice with myeloid cell-specific deletion of Dab2 (Dab2fl/fl Lysm-Cre), treatment with sublethal doses of LPS resulted in increased proinflammatory gene expression and macrophage activation. Moreover, chronic high-fat feeding exacerbated adipose tissue inflammation, M1 polarization of adipose tissue macrophages, and the development of insulin resistance in DAB2-deficient animals compared with controls. Mutational analyses revealed that DAB2 interacts with TNF receptor-associated factor 6 (TRAF6) and attenuates IκB kinase β-dependent (IKKβ-dependent) phosphorylation of Ser536 in the transactivation domain of NF-κB p65. Together, these findings reveal that DAB2 is critical for controlling inflammatory signaling during phenotypic polarization of macrophages and suggest that manipulation of DAB2 expression and function may hold therapeutic potential for the treatment of acute and chronic inflammatory disorders.

  17. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    PubMed Central

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; Maclellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  18. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency.

    PubMed

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J; Wilson, Robbie; Dance, Rachel J; Powell, Haydn; Maclellan, David A; McCreadie, John; Butler, Nicholas M H; Hawkes, Steve; Green, James S; Murphy, Chris D; Stockhausen, Luca C; Carroll, David C; Booth, Nicola; Scott, Graeme G; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  19. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; MacLellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-09-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.

  20. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Harumoto, T.; Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y.; Sawada, H.; Tanaka, T.; Tanishiro, Y.; Takayanagi, K.

    2013-02-01

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  1. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Harumoto, T.; Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y.; Sawada, H.; Tanaka, T.; Tanishiro, Y.; Takayanagi, K.

    2013-02-28

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  2. Polarization and wavelength insensitive optical feedback control systems for stabilizing CO2 lasers

    NASA Astrophysics Data System (ADS)

    Jebali, M. A.

    2016-03-01

    Power scaling of multi-kilowatt fiber lasers has been driving the development of glass and fiber processing technology. Designed for processing of large diameter fibers, this technology is used for the fabrication of fiber-based components such as end-pump and side pump combiners, large diameter endcaps, ball lenses for collimators and focusers… The use of 10.6um CO2 lasers as a heating element provides incomparable flexibility, process control and repeatability when compared to conventional heating methods. This low maintenance technology provides an accurate, adjustable and uniform heating area by absorption of fused silica of the 10.6m laser radiation. However, commercially available CO2 lasers can experience power, polarization and mode instability, which becomes important at 20W levels and higher of output power. This paper presents a polarization and wavelength insensitive optical feedback control system for stabilizing commercially available CO2 lasers. Less than 1% power fluctuation was achieved at different laser power levels, ranging from as 5 to 40W.

  3. Topological control of the Caulobacter cell cycle circuitry by a polarized single-domain PAS protein

    PubMed Central

    Sanselicio, Stefano; Bergé, Matthieu; Théraulaz, Laurence; Radhakrishnan, Sunish Kumar; Viollier, Patrick H.

    2015-01-01

    Despite the myriad of different sensory domains encoded in bacteria, only a few types are known to control the cell cycle. Here we use a forward genetic screen for Caulobacter crescentus motility mutants to identify a conserved single-domain PAS (Per-Arnt-Sim) protein (MopJ) with pleiotropic regulatory functions. MopJ promotes re-accumulation of the master cell cycle regulator CtrA after its proteolytic destruction is triggered by the DivJ kinase at the G1-S transition. MopJ and CtrA syntheses are coordinately induced in S-phase, followed by the sequestration of MopJ to cell poles in Caulobacter. Polarization requires Caulobacter DivJ and the PopZ polar organizer. MopJ interacts with DivJ and influences the localization and activity of downstream cell cycle effectors. Because MopJ abundance is upregulated in stationary phase and by the alarmone (p)ppGpp, conserved systemic signals acting on the cell cycle and growth phase control are genetically integrated through this conserved single PAS-domain protein. PMID:25952018

  4. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    PubMed Central

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  5. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.

    PubMed

    Trevino, J; Walsh, G F; Pecora, E F; Boriskina, S V; Dal Negro, L

    2013-11-15

    We report on the design and experimental demonstration of array-enhanced nanoantennas for polarization-controlled multispectral nanofocusing in the near-IR spectral range. We design plasmonic double bow-tie nanoantennas-coupled to multiple-periodic nanoparticle arrays to harvest radiation of designed wavelengths from a large spatial area and to focus it into a targeted nanoscale region. Near-field calculations were performed on a gold nanoantenna array using three-dimensional finite difference time domain simulations. Cross-shaped optical nanoantennas were fabricated on glass substrates using electron beam lithography. The optical characterization of the fabricated nanoantennas was performed using second harmonic excitation spectroscopy that demonstrates multiwavelength photonic coupling in good agreement with the antenna modeling. The nanoantenna structures introduced in this Letter provide the ability to focus optical energy into deep subwavelength areas and to address multiple spectral regions with polarization control. Such attributes are highly desirable in optical biosensing, enhanced Raman scattering, and for nonlinear plasmonic applications. PMID:24322151

  6. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  7. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    NASA Astrophysics Data System (ADS)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  8. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator.

    PubMed

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron-betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators.

  9. Polar Effects Control the Gas-phase Reactivity of Charged para-Benzyne Analogs

    PubMed Central

    Wittrig, Ashley M.; Archibold, Enada F.; Sheng, Huaming; Nash, John J.; Kenttämaa, Hilkka I.

    2014-01-01

    The gas-phase reactivity of charged para-benzynes is entirely unexplored as they and/or their precursors tend to undergo ring-opening upon their generation. We report here a gas-phase reactivity study of two such benzynes, the 2,5-didehydropyridinium and 5,8-didehydroisoquinolinium cations, generated in a modified dual-linear quadrupole ion trap (DLQIT) mass spectrometer. Both biradicals were found to form diagnostic products with organic molecules, indicating the presence of two radical sites. As opposed to earlier predictions that the singlet-triplet (S-T) splitting controls the radical reactivity of such species, the 2,5-didehydropyridinium cation reacts much faster in spite of its larger S-T splitting. Calculated vertical electron affinities of the radical sites of the para-benzynes, a parameter related to the polarity of the transition states of their reactions, appears to be the most important reactivity controlling factor. PMID:25838787

  10. Polarity and cell fate specification in the control of C. elegans gastrulation

    PubMed Central

    Rohrschneider, Monica R.; Nance, Jeremy

    2010-01-01

    Gastrulation is a time during development when cells destined to produce internal tissues and organs move from the surface of the embryo into the interior. It is critical that the cell movements of gastrulation be precisely controlled, and coordinated with cell specification, in order for the embryo to develop normally. C. elegans gastrulation is relatively simple, can be observed easily in the transparent embryo, and can be manipulated genetically to uncover important regulatory mechanisms. Many of these cellular and molecular mechanisms – including cell shape, cytoskeletal, and cell cycle changes – appear to be conserved from flies to vertebrates. Here we review gastrulation in C. elegans, with an emphasis on recent data linking contact-induced cell polarity, PAR proteins, and cell fate specification to gastrulation control. PMID:19253398

  11. The Rac-GAP Bcr is a novel regulator of the Par complex that controls cell polarity

    PubMed Central

    Narayanan, Anjana S.; Reyes, Steve B.; Um, Kyongmi; McCarty, Joseph H.; Tolias, Kimberley F.

    2013-01-01

    Cell polarization is essential for many biological processes, including directed cell migration, and loss of polarity contributes to pathological conditions such as cancer. The Par complex (Par3, Par6, and PKCζ) controls cell polarity in part by recruiting the Rac-specific guanine nucleotide exchange factor T-lymphoma invasion and metastasis 1 (Tiam1) to specialized cellular sites, where Tiam1 promotes local Rac1 activation and cytoskeletal remodeling. However, the mechanisms that restrict Par-Tiam1 complex activity to the leading edge to maintain cell polarity during migration remain unclear. We identify the Rac-specific GTPase-activating protein (GAP) breakpoint cluster region protein (Bcr) as a novel regulator of the Par-Tiam1 complex. We show that Bcr interacts with members of the Par complex and inhibits both Rac1 and PKCζ signaling. Loss of Bcr results in faster, more random migration and striking polarity defects in astrocytes. These polarity defects are rescued by reducing PKCζ activity or by expressing full-length Bcr, but not an N-terminal deletion mutant or the homologous Rac-GAP, Abr, both of which fail to associate with the Par complex. These results demonstrate that Bcr is an integral member of the Par-Tiam1 complex that controls polarized cell migration by locally restricting both Rac1 and PKCζ function. PMID:24152735

  12. Effects of interface electronics on the performance of VCSEL-based optical interconnect systems

    NASA Astrophysics Data System (ADS)

    Kostuck, R. K.; Cangellaris, Andreas C.; Boye, Robert R.

    1997-04-01

    The performance of optical interconnects is directly related to the characteristics of the electronic interface between the optical interconnect components and the electronic processing elements. In this paper we examine this issue and determine limits on the power and bandwidth of optical interconnects with low threshold VCSEL sources. For a 0.8 micrometers CMOS process the effects of coupling parasitics and detector capacitance limit signal bandwidth below 500 MHz. The effects of device geometry, fanout, and line length are also studied and show that with existing optoelectronic devices optical interconnects are competitive with electrical connections at the board level, but not below this packaging level.

  13. In-plane integration of VCSEL with photo-detector by using laterally coupled cavities

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Koyama, Fumio

    2014-02-01

    A novel concept to form a photo-detector integrated VCSELs using transverse-coupled-cavity (TCC) scheme is demonstrated. In our configuration one cavity suppressed by the reverse bias voltage at 1volt, while the other cavity used as a laser. Proton-implantation was used in order to prevent the current leakage. The formation aperture diameter of each cavity gives us multimode and quasi-single mode condition. Our preliminary results on L-I indicate the possibility of continues tracking of photocurrent in the range of 0.7- 10 mA, which is limited by the threshold and saturation level of the laser side cavity.

  14. Calibration and Field Deployment of the NSF G-V VCSEL Hygrometer

    NASA Astrophysics Data System (ADS)

    DiGangi, J. P.; O'Brien, A.; Diao, M.; Hamm, C.; Zhang, Q.; Beaton, S. P.; Zondlo, M. A.

    2012-12-01

    Cloud formation and dynamics have a significant influence on the Earth's radiative forcing budget, which illustrates the importance of clouds with respect to global climate. Therefore, an accurate understanding of the microscale processes dictating cloud formation is crucial for accurate computer modeling of global climate change. A critical tool for understanding these processes from an airborne platform is an instrument capable of measuring water vapor with both high accuracy and time, thus spatial, resolution. Our work focuses on an open-path, compact, vertical-cavity surface-emitting laser (VCSEL) absorption-based hygrometer, capable of 25 Hz temporal resolution, deployed on the NSF/NCAR Gulfstream-V aircraft platform. The open path nature of our instrument also helps to minimize sampling artifacts. We will discuss our efforts toward achieving within 5% accuracy over 5 orders of magnitude of water vapor concentrations. This involves an intercomparison of five independent calibration methods: ice surface saturators using an oil temperature bath, solvent slush baths (e.g. chloroform/LN2, water/ice), a research-grade frost point hygrometer, static pressure experiments, and Pt catalyzed hydrogen gas. This wide variety of available tools allows us to accurately constrain the calibrant water vapor concentrations both before and after the VCSEL hygrometer sampling chamber. For example, the mixing ratio as measured by research-grade frost point hygrometer after the VCSEL hygrometer agreed within 2% of the mixing ration expected from the water/ice bubbler source before the VCSEL over the temperature range -50°C to 20°C. Finally, due to the compact nature of our instrument, we are able to perform these calibrations simultaneously at the same temperatures (-80°C to 30°C) and pressures (150 mbar to 760 mbar) as sampled ambient air during a flight. This higher accuracy can significantly influence the science utilizing this data, which we will illustrate using

  15. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 (13C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13C based endogenous contrast agents used in molecular imaging.

  16. Electrically controlled spin polarization and selection in a topological insulator sandwiched between ferromagnetic electrodes

    SciTech Connect

    Guo, Junji; Liao, Wenhu Zhao, Heping; Zhou, Guanghui

    2014-01-14

    We theoretically investigate the electrically controllable spin polarization and selective efficiency of the edge state Dirac electron in a two-dimensional topological insulator (TI) sandwiched between ferromagnetic (FM) electrodes by using the method of Keldysh nonequilibrium Green's function. A nearly full spin polarization of the topological edge state with giant inversion of ∼80% is observed, which is much higher than the value previously reported. Moreover, the selective efficiency for spin-up electrons under the modulation of the parallel configuration of FM electrodes has been demonstrated to be larger than 95% for the first time, while that for spin-down electrons in the antiparallel case is higher than 90% in a wide energy range, owing to the inter-edge spin tunneling induced backscattering and spin dephasing effect. The obtained results may provide a deeper understanding of the TI edge states and a valuable guidance to design spin switch and filter with high on-off speed and selective efficiency based on TIs.

  17. Development and characterization of controlled release polar lipid microparticles of candesartan cilexetil by solid dispersion

    PubMed Central

    Kamalakkannan, V; Puratchikody, A; Ramanathan, L

    2013-01-01

    Candesartan cilexetil (CC) is a newer class of angiotensin II receptor antagonist used for the treatment of hypertension. The solubility of the CC is very poor and its oral bioavailability is only 15%. The controlledrelease polar lipid microparticles of CC (formulations F1, F2, F3 and F4) were prepared using variable erodible lipophilic excipients like hydrogenated castor oil, stearic acid, cetostearyl alcohol and carnauba wax by fusion method. The particle sizes of polar lipid microparticles were less than 50 microns and they were irregular in shape. Drug content ranged between 98.96 ± 2.1 and 101.9 ± 1.6% were present in all the formulations. The formulation F3 showed better drug release throughout the study period in a controlled release manner. Moreover, the in vitro release showed that all the formulations were best fitted to Higuchi model. Accelerated stability studies indicated that there was no significant changes in the chemical and physical characteristics of the formulated drug product during initial and at the end of the study period. The FTIR and DSC studies showed that there was no interaction between the drug and lipophilic excipients and no polymorphic transitions in all formulations. The X-ray diffraction peak of solid dispersion indicated that the crystalline nature of CC disappeared and no new peaks could be observed, suggesting the absence of interaction between drug and excipients. PMID:24019822

  18. Control of vertebrate core planar cell polarity protein localization and dynamics by Prickle 2

    PubMed Central

    Butler, Mitchell T.; Wallingford, John B.

    2015-01-01

    Planar cell polarity (PCP) is a ubiquitous property of animal tissues and is essential for morphogenesis and homeostasis. In most cases, this fundamental property is governed by a deeply conserved set of ‘core PCP’ proteins, which includes the transmembrane proteins Van Gogh-like (Vangl) and Frizzled (Fzd), as well as the cytoplasmic effectors Prickle (Pk) and Dishevelled (Dvl). Asymmetric localization of these proteins is thought to be central to their function, and understanding the dynamics of these proteins is an important challenge in developmental biology. Among the processes that are organized by the core PCP proteins is the directional beating of cilia, such as those in the vertebrate node, airway and brain. Here, we exploit the live imaging capabilities of Xenopus to chart the progressive asymmetric localization of fluorescent reporters of Dvl1, Pk2 and Vangl1 in a planar polarized ciliated epithelium. Using this system, we also characterize the influence of Pk2 on the asymmetric dynamics of Vangl1 at the cell cortex, and we define regions of Pk2 that control its own localization and those impacting Vangl1. Finally, our data reveal a striking uncoupling of Vangl1 and Dvl1 asymmetry. This study advances our understanding of conserved PCP protein functions and also establishes a rapid, tractable platform to facilitate future in vivo studies of vertebrate PCP protein dynamics. PMID:26293301

  19. Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields

    NASA Astrophysics Data System (ADS)

    Hoki, Kunihito; González, Leticia; Fujimura, Yuichi

    2002-05-01

    A new laser control scenario is presented for obtaining substantial amounts of enantiomeric enrichment from a randomly oriented racemic mixture. This is carried out by using three polarization components of electric fields; one is used for orientation, the other two for controlling the chirality. The effectiveness is demonstrated by numerical simulations on the enantiomeric enrichment of the axial chiral H2POSH molecule.

  20. Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module.

    PubMed

    Humbert, P O; Grzeschik, N A; Brumby, A M; Galea, R; Elsum, I; Richardson, H E

    2008-11-24

    The neoplastic tumour suppressors, Scribble, Dlg and Lgl, originally discovered in the vinegar fly Drosophila melanogaster, are currently being actively studied for their potential role in mammalian tumourigenesis. In Drosophila, these tumour suppressors function in a common genetic pathway to regulate apicobasal cell polarity and also play important roles in the control of cell proliferation, survival, differentiation and in cell migration/invasion. The precise mechanism by which Scribble, Dlg and Lgl function is not clear; however, they have been implicated in the regulation of signalling pathways, vesicle trafficking and in the Myosin II-actin cytoskeleton. We review the evidence for the involvement of Scribble, Dlg, and Lgl in cancer, and how the various functions ascribed to these tumour suppressors in Drosophila and mammalian systems may impact on the process of tumourigenesis.

  1. Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Xian; Ma, Yanan; Luo, Jun; Zhong, Kangping; Qiu, Shaofeng; Feng, Zhiyong; Luo, Yazhi; Agustin, Mikel; Ledentsov, Nikolay; Kropp, Joerg; Shchukin, Vitaly; Ledentsov, Nikolay N.; Eddie, Iain; Chao, Lu

    2016-03-01

    Discrete Multitone Transmission (DMT) transmission over standard multimode fiber (MMF) using high-speed single (SM) and multimode (MM) Vertical-Cavity Surface-Emitting Lasers (VCSELs) is studied. Transmission speed in the range of 72Gbps to 82Gbps over 300m -100m distances of OM4 fiber is realized, respectively, at Bit-Error-Ratio (BER) <5e-3 and the received optical power of only -5dBm. Such BER condition requires only 7% overhead for the conversion to error-free operation using single Bose-Chaudhuri-Hocquenghem forward error correction (BCH-FEC) coding and decoding. SM VCSEL is demonstrated to provide a much higher data transmission capacity over MMF. For 100m MMF transmission SM VCSEL allows 82Gbps as compared to MM VCSEL resulting in only 34Gbps at the same power (-5dBm). Furthermore, MM VCSEL link at 0dBm is still restricted at 100m distance by 63Gbps while SM VCSEL can exceed 100Gbps at such power levels. We believe that with further improvement in SM VCSELs and fiber coupling >100Gbps data transmission over >300m MMF distances at the BER levels matching the industry standards will become possible.

  2. DKIST controls model for synchronization of instrument cameras, polarization modulators, and mechanisms

    NASA Astrophysics Data System (ADS)

    Ferayorni, Andrew; Beard, Andrew; Berst, Chris; Goodrich, Bret

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) will include facility instruments that perform polarimetric observations of the sun. In order for an instrument to successfully perform these observations its Instrument Controller (IC) software must be able to tightly synchronize the activities of its sub-systems including polarization modulators, cameras, and mechanisms. In this paper we discuss the DKIST control model for synchronizing these sub-systems without the use of hardware trigger lines by using the DKIST Time Reference And Distribution System (TRADS) as a common time base and through sub-system control interfaces that support configuring the timing and cadence of their behavior. The DKIST Polarization Modulator Controller System (PMCS) provides an interface that allows the IC to characterize the rotation of the modulator in terms of a reference time (t0), rate, and start state. The DKIST Virtual Camera (VC) provides a complimentary interface that allows data acquisitions and accumulation sequences to be specified using a reference time (t0), rate, and execution block time slices, which are cumulative offsets from t0. Re-configuration of other instrument mechanisms such as filter, slits, or steering mirrors during the observation is the responsibility of the IC and must be carefully scheduled at known and pre-determined gaps in the VC data acquisition sequence. The DKIST TRADS provides an IEEE-1588-2008 Precision Time Protocol (PTP) service that is used to synchronize the activities of instrument sub-systems. The modulator, camera, and mechanism sub-systems subscribe to this service and can therefore perform their tasks according to a common time base. In this paper we discuss the design of the PMCS, VC, and mechanism control interfaces, and how the IC can use them to configure the behavior of these sub-systems during an observation. We also discuss the interface to TRADS and how it is used as a common time base in each of these sub-systems. We present our

  3. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    NASA Astrophysics Data System (ADS)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  4. A compact, portable and low cost generic interrogation strain sensor system using an embedded VCSEL, detector and fibre Bragg grating

    NASA Astrophysics Data System (ADS)

    Lee, Graham C. B.; Van Hoe, Bram; Yan, Zhijun; Maskery, Oliver; Sugden, Kate; Webb, David; Van Steenberge, Geert

    2012-03-01

    We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 μm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components.

  5. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.

    2013-05-01

    A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.

  6. Ultrafast Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity, Surface-Emitting Lasers (VCSELS)

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor); Ning, Cun-Zheng (Inventor)

    2005-01-01

    Ultrafast directional beam switching is achieved using coupled VCSELs. This approach is demonstrated to achieve beam switching frequencies of 40 GHz and more and switching directions of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches.

  7. Coherent electronic wave packet motion in C(60) controlled by the waveform and polarization of few-cycle laser fields.

    PubMed

    Li, H; Mignolet, B; Wachter, G; Skruszewicz, S; Zherebtsov, S; Süssmann, F; Kessel, A; Trushin, S A; Kling, Nora G; Kübel, M; Ahn, B; Kim, D; Ben-Itzhak, I; Cocke, C L; Fennel, T; Tiggesbäumker, J; Meiwes-Broer, K-H; Lemell, C; Burgdörfer, J; Levine, R D; Remacle, F; Kling, M F

    2015-03-27

    Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization. PMID:25860740

  8. Solar wind control of the open magnetosphere: Comparison of GGS/polar images and theory

    NASA Astrophysics Data System (ADS)

    Urquhart, Andrew Lee

    This investigation explores the connection between the open polar cap magnetic flux ΦPCF and interplanetary conditions. Φ PCF is determined from GGS/Polar VIS Earth Camera far ultraviolet observations of the aurora borealis. Observations from the GGS/Wind SWE and MFI instruments are used to characterize the interplanetary conditions. Additional observations from the IMP-8 PLA and MAG instruments are used to evaluate solar wind propagation time delay estimation methods so that the GGS/Wind observations can be better associated with the GGS/Polar observations. This allows the GGS/Wind observations to be used to estimate the polar cap potential φPCP values associated with the GGS/Polar ΦPCF values. Statistical methods are applied to determine a proxy relationship between φPCP and ΦPCF. The Rice Field Model (RFM) is modified to accept Φ PCF as a configuration parameter, and RFM polar caps are produced using Φ PCF determined both directly from the GGS/Polar images and by the proxy relationship from the GGS/Wind data. The RFM is able to produce polar caps with the same areas and open magnetic fluxes as the GGS/Polar observations, but the agreement in the polar cap shapes and locations leaves opportunities for further improvements.

  9. Calibrations, noise, and long-term drift characteristics of the HIAPER VCSEL hygrometer

    NASA Astrophysics Data System (ADS)

    Brubaker, K. A.; Paige, M. E.; Silver, J. A.; Zondlo, M. A.

    2006-12-01

    Water vapor plays extremely important roles in the climate, chemistry, and dynamics of the atmosphere. Unfortunately, it is difficult to measure accurately, particularly in the upper troposphere and lower stratosphere. The NSF/NCAR Gulfstream-V HIAPER aircraft can sample in tropical moist air in the marine boundary layer to the very cold and dry air of the stratosphere. We are characterizing, testing, and calibrating a water vapor sensor to fly on HIAPER. The sensor uses a vertical cavity surface emitting laser (VCSEL) operating near 1854 nm, an open path cell with 1.9 cm diameter mirrors separated by 15 cm, and a fiber optic to deliver the infrared light. To accommodate the wide range of concentrations to be measured, the instrument can scan across two different water avpor absorption lines, a weak line at 1853.37 nm for moist air and a strong line at 1854.03 nm for dry air. Measurement specifications include 5 percent accuracy over the range from 1 ppmv at 60 mb to 4 percent mixing ratio at sea level. Initial calibrations of the instrument are being conducted by three methods: 1) comparing it with a chilled mirror hygrometer; 2) a standard dilution system of flows of nitrogen controlled by critical orifices; and 3) placing the instrument inside a vessel saturated with water vapor and immersing it in a constant, cold temperature bath. First results from the laboratory suggest that the HIAPER instrument shows excellent agreement over the chilled mirror hygrometer down to 55 C frost point. The standard dilution system of dry and saturated flows with the critical orifices also yields very good agreement with chilled mirror and HIAPER. A consistent moist offset of about 20 ppmv above the calculated frost points from the standard dilution of flows was observed until the system dried out. We have also conducted Allan variance tests to look at instrument noise and drift on 25 Hz to 2 hour timescales for constant, calibrated flows from 0.81 ppmv to 7640 ppmv. The Allan

  10. Optical Control of Spatial Patterning of Nuclear Polarization in GaAs

    NASA Astrophysics Data System (ADS)

    King, Jonathan; Li, Yunpu; Peng, Le; Tamargo, Maria; Meriles, Carlos; Reimer, Jeffrey

    2011-03-01

    We present new results on the optical polarization of nuclear spins in gallium arsenide. Previous work has identified the contact hyperfine interaction at shallow donors as the mechanism for helicity dependent nuclear polarization. We show a new regime, where donors are only partially occupied, where nuclear quadrupolar relaxation at shallow donors is the dominant mechanism. Since quadrupolar relaxation is helicity independent, the incident light polarization may be tuned such that the two relaxation mechanisms drive the nuclear spins to opposite signs of polarization. We show that incident light wavelength and power may be tuned to create spatial patterns of varying donor occupation in a single sample, which in turn creates a pattern of positive and negative nuclear polarization. We have developed an analytical mode which accurately describes the bulk NMR signal in terms of irradiation power and wavelength. We also present stray-field NMR imaging experiments showing direct observation of the patterned nuclear polarization.

  11. Self-aligned BCB planarization method for high-frequency signal injection in a VCSEL with an integrated modulator

    NASA Astrophysics Data System (ADS)

    Marigo-Lombart, Ludovic; Doucet, Jean-Baptiste; Lecestre, Aurélie; Reig, Benjamin; Rousset, Bernard; Thienpont, Hugo; Panajotov, Krassimir; Almuneau, Guilhem

    2016-04-01

    The huge increase of datacom capacities requires lasers sources with more and more bandwidth performances. Vertical-Cavity Surface-Emitting Lasers (VCSEL) in direct modulation is a good candidate, already widely used for short communication links such as in datacenters. Recently several different approaches have been proposed to further extend the direct modulation bandwidth of these devices, by improving the VCSEL structure, or by combining the VCSEL with another high speed element such as lateral slow light modulator or transistor/laser based structure (TVCSEL). We propose to increase the modulation bandwidth by vertically integrating a continuous-wave VCSEL with a high-speed electro-modulator. This vertical structure implies multiple electrodes with sufficiently good electrical separation between the different input electrical signals. This high frequency modulation requires both good electrical insulation between metal electrodes and an optimized design of the coplanar lines. BenzoCyclobutene (BCB) thanks to its low dielectric constant, low losses, low moisture absorption and good thermal stability, is often used as insulating layer. Also, BCB planarization offers the advantages of simpler and more reliable technological process flow in such integrated VCSEL/modulator structures with important reliefs. As described by Burdeaux et al. a degree of planarization (DOP) of about 95% can be achieved by simple spin coating whatever the device thickness. In most of the cases, the BCB planarization process requires an additional photolithography step in order to open an access to the mesa surface, thus involving a tight mask alignment and resulting in a degraded planarization. In this paper, we propose a self-aligned process with improved BCB planarization by combining a hot isostatic pressing derived from nanoimprint techniques with a dry plasma etching step.

  12. Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber.

    PubMed

    Lin, Kuei-Huei; Kang, Jung-Jui; Wu, Hsiao-Hua; Lee, Chao-Kuei; Lin, Gong-Ru

    2009-03-16

    We propose an operation switchable ring-cavity erbium-doped fiber laser (EDFL) via intra-cavity polarization control. By using a semiconductor saturable absorber mirror in the EDFL cavity, stable Q-switching, Q-switched mode-locking, continuous-wave mode-locking, pulse splitting, and harmonic mode-locking pulses can be manipulated simply by detuning a polarization controller while keeping the pump power at the same level. All EDFL operation states can be obtained under the polarization angles detuning within 180 degrees. Continuous-wave mode-locking of EDFL with 800-fs pulsewidth repeated at 4 MHz has been obtained, for which the output pulse energy is 0.5 nJ and the peak power is 625 W. Interaction between solitons and the accompanied non-soliton component will lead to either pulse splitting or 5th-order harmonic mode-locking at repetition rate of 20 MHz.

  13. Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission.

    PubMed

    Li, Zhipeng; Shegai, Timur; Haran, Gilad; Xu, Hongxing

    2009-03-24

    We investigate the light emission from dipolar emitters located within nanoparticle antennas. It is found that the enormous emission enhancement can reach nearly a million fold. For multinanoparticle antennas, the polarization of the emissions strongly depends on the geometry of the antennas, the emitted wavelengths, and the dielectric functions of surrounding media. It is shown that a polarization nanorotator, which modulates the emission polarization on the nanometer scale, can be readily realized by varying either the geometry or surrounding media of nanoparticle antennas.

  14. Polarization Control of Morphological Pattern Orientation During Light-Mediated Synthesis of Nanostructured Se-Te Films.

    PubMed

    Carim, Azhar I; Batara, Nicolas A; Premkumar, Anjali; Atwater, Harry A; Lewis, Nathan S

    2016-01-26

    The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se-Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at the solution-film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. These data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations. PMID:26592096

  15. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators

    NASA Astrophysics Data System (ADS)

    Akutagawa, Tomoyuki; Koshinaka, Hiroyuki; Sato, Daisuke; Takeda, Sadamu; Noro, Shin-Ichiro; Takahashi, Hiroyuki; Kumai, Reiji; Tokura, Yoshinori; Nakamura, Takayoshi

    2009-04-01

    Molecular rotation has attracted much attention with respect to the development of artificial molecular motors, in an attempt to mimic the intelligent and useful functions of biological molecular motors. Random motion of molecular rotators-for example the 180∘ flip-flop motion of a rotatory unit-causes a rotation of the local structure. Here, we show that such motion is controllable using an external electric field and demonstrate how such molecular rotators can be used as polarization rotation units in ferroelectric molecules. In particular, m-fluoroanilinium forms a hydrogen-bonding assembly with dibenzo[18]crown-6, which was introduced as the counter cation of [Ni(dmit)2]- anions (dmit2-=2-thioxo-1,3-dithiole-4,5-dithiolate). The supramolecular rotator of m-fluoroanilinium exhibited dipole rotation by the application of an electric field, and the crystal showed a ferroelectric transition at 348K. These findings will open up new strategies for ferroelectric molecules where a chemically designed dipole unit enables control of the nature of the ferroelectric transition temperature.

  16. Topographic cell instructive patterns to control cell adhesion, polarization and migration

    PubMed Central

    Ventre, Maurizio; Natale, Carlo Fortunato; Rianna, Carmela; Netti, Paolo Antonio

    2014-01-01

    Topographic patterns are known to affect cellular processes such as adhesion, migration and differentiation. However, the optimal way to deliver topographic signals to provide cells with precise instructions has not been defined yet. In this work, we hypothesize that topographic patterns may be able to control the sensing and adhesion machinery of cells when their interval features are tuned on the characteristic lengths of filopodial probing and focal adhesions (FAs). Features separated by distance beyond the length of filopodia cannot be readily perceived; therefore, the formation of new adhesions is discouraged. If, however, topographic features are separated by a distance within the reach of filopodia extension, cells can establish contact between adjacent topographic islands. In the latter case, cell adhesion and polarization rely upon the growth of FAs occurring on a specific length scale that depends on the chemical properties of the surface. Topographic patterns and chemical properties may interfere with the growth of FAs, thus making adhesions unstable. To test this hypothesis, we fabricated different micropatterned surfaces displaying feature dimensions and adhesive properties able to interfere with the filopodial sensing and the adhesion maturation, selectively. Our data demonstrate that it is possible to exert a potent control on cell adhesion, elongation and migration by tuning topographic features’ dimensions and surface chemistry. PMID:25253035

  17. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-01

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

  18. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    PubMed

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-01

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output. PMID:24216924

  19. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor

    2012-12-01

    Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. PMID:22972420

  20. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE PAGES

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; et al

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  1. Control of the Polarization of a Vacuum-Ultraviolet, High-Gain, Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-10-01

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90 % and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  2. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    SciTech Connect

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  3. Robust and tunable 16.375Gb/s dual-band optical OFDM transmissions over directly modulated VCSEL-based 200m OM2 MMFs.

    PubMed

    Deng, M L; Jiang, N; Duan, X; Giddings, R P; Yi, X W; Cao, B Y; Mansoor, S; Qiu, K; Tang, J M

    2015-01-12

    Utilizing low-cost, 2.2GHz modulation bandwidth, uncooled and standalone directly modulated VCSEL (DM-VCSEL)-based real-time dual-band optical OFDM (OOFDM) transmitters, aggregated 16.375Gb/s transmissions of OOFDM signals having bandwidths approximately 3.8 times higher than the VCSEL manufacturer-specified modulation bandwidths, are experimentally demonstrated, for the first time, over 200m OM2 MMF links based on intensity modulation and direct detection. The aggregated signal transmission capacities of the aforementioned links vary by just 8% for various OM2 MMFs ranging from 100m to 500m, and by just 10% over a 1GHz passband carrier frequency detuning range. Such dual-band OOFDM adaptability-induced excellent performance robustness and large passband frequency tunability can significantly relax the requirements on VCSEL modulation bandwidth for achieving specific transmission performances for cost-sensitive application scenarios such as data centers. PMID:25835683

  4. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  5. High-efficiency broadband meta-hologram with polarization-controlled dual images.

    PubMed

    Chen, Wei Ting; Yang, Kuang-Yu; Wang, Chih-Ming; Huang, Yao-Wei; Sun, Greg; Chiang, I-Da; Liao, Chun Yen; Hsu, Wei-Lun; Lin, Hao Tsun; Sun, Shulin; Zhou, Lei; Liu, Ai Qun; Tsai, Din Ping

    2014-01-01

    Holograms, the optical devices to reconstruct predesigned images, show many applications in our daily life. However, applications of hologram are still limited by the constituent materials and therefore their working range is trapped at a particular electromagnetic region. In recent years, the metasurfaces, an array of subwavelength antenna with varying sizes, show the abilities to manipulate the phase of incident electromagnetic wave from visible to microwave frequencies. Here, we present a reflective-type and high-efficiency meta-hologram fabricated by metasurface for visible wavelength. Using gold cross nanoantennas as building blocks to construct our meta-hologram devices with thickness ∼ λ/4, the reconstructed images of meta-hologram show polarization-controlled dual images with high contrast, functioning for both coherent and incoherent light sources within a broad spectral range and under a wide range of incidence angles. The flexibility demonstrated here for our meta-hologram paves the road to a wide range of applications related to holographic images at arbitrary electromagnetic wave region.

  6. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  7. Origin of the magnetic-field controlled polarization reversal in multiferroic TbMn2 O 5

    NASA Astrophysics Data System (ADS)

    Leo, N.; Meier, D.; Pisarev, R. V.; Park, S.; Cheong, S.-W.; Fiebig, M.

    2011-03-01

    The interplay of multi-dimensional complex magnetic order parameters leads to interesting effects like magnetically induced ferroelectricity. A particular interesting example is TbMn 2 O5 because of the associated magnetic-field controllable electric polarization. By optical second harmonic generation we show that the gigantic magnetoelectric effect originates in three independent ferroelectric contributions. Two of these are manganese-generated. The third contribution is related to the magnetism of the Tb 3+ sublattice and has not been identified so far. It mediates the remarkable magnetic-field induced polarization reversal. This model is verified by experiments on the isostructural YMn 2 O5 where Y3+ ions are nonmagnetic and only two polarization contributions are present and no magnetoelectric coupling is observed. These results underline the importance of the 3 d - 4 f -interaction for the intricate magnetoelectric coupling in the class of isostructural RMn 2 O5 compounds. This work was supported by the DFG through SFB 608.

  8. 1060-nm VCSEL-based parallel-optical modules for optical interconnects

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Nagashima, K.; Kise, T.; Rizky, A. F.; Uemura, T.; Nekado, Y.; Ishikawa, Y.; Nasu, H.

    2015-03-01

    The capability of mounting a parallel-optical module onto a PCB through solder-reflow process contributes to reduce the number of piece parts, simplify its assembly process, and minimize a foot print for both AOC and on-board applications. We introduce solder-reflow-capable parallel-optical modules employing 1060-nm InGaAs/GaAs VCSEL which leads to the advantages of realizing wider modulation bandwidth, longer transmission distance, and higher reliability. We demonstrate 4-channel parallel optical link performance operated at a bit stream of 28 Gb/s 231-1 PRBS for each channel and transmitted through a 50-μm-core MMF beyond 500 m. We also introduce a new mounting technology of paralleloptical module to realize maintaining good coupling and robust electrical connection during solder-reflow process between an optical module and a polymer-waveguide-embedded PCB.

  9. Kif26b controls endothelial cell polarity through the Dishevelled/Daam1-dependent planar cell polarity–signaling pathway

    PubMed Central

    Guillabert-Gourgues, Aude; Jaspard-Vinassa, Beatrice; Bats, Marie-Lise; Sewduth, Raj N.; Franzl, Nathalie; Peghaire, Claire; Jeanningros, Sylvie; Moreau, Catherine; Roux, Etienne; Larrieu-Lahargue, Frederic; Dufourcq, Pascale; Couffinhal, Thierry; Duplàa, Cecile

    2016-01-01

    Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b—a kinesin—and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front–rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway–dependent activation. PMID:26792835

  10. Fast deterministic switching in orthogonal spin torque devices via the control of the relative spin polarizations

    NASA Astrophysics Data System (ADS)

    Park, Junbo; Ralph, D. C.; Buhrman, R. A.

    2013-12-01

    We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer and an in-plane polarizer. Simulation results indicate that increasing the spin polarization ratio, CP = PIPP/POPP, results in deterministic switching of the free layer without over-rotation (360° rotation). By using spin torque asymmetry to realize an enhanced effective PIPP, we experimentally demonstrate this behavior in OST devices in parallel to anti-parallel switching. Modeling predicts that decreasing the effective demagnetization field can substantially reduce the minimum CP required to attain deterministic switching, while retaining low critical switching current, Ip ˜ 500 μA.

  11. Controlling Nonsequential Double Ionization in Two-Color Circularly Polarized Femtosecond Laser Fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Ellis, Jennifer L.; Dollar, Franklin J.; Knut, Ronny; Grychtol, Patrik; Zusin, Dmitriy; Gentry, Christian; Gopalakrishnan, Maithreyi; Kapteyn, Henry C.; Murnane, Margaret M.

    2016-09-01

    Atoms undergoing strong-field ionization in two-color circularly polarized femtosecond laser fields exhibit unique two-dimensional photoelectron trajectories and can emit bright circularly polarized extreme ultraviolet and soft-x-ray beams. In this Letter, we present the first experimental observation of nonsequential double ionization in these tailored laser fields. Moreover, we can enhance or suppress nonsequential double ionization by changing the intensity ratio and helicity of the two driving laser fields to maximize or minimize high-energy electron-ion rescattering. Our experimental results are explained through classical simulations, which also provide insight into how to optimize the generation of circularly polarized high harmonic beams.

  12. Polarity control of GaN grown on pulsed-laser-deposited AlN/GaN template by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Jinyeop; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    We report on the polarity control of GaN regrown on pulsed-laser-deposition-grown N-polar AlN on a metalorganic-vapor-phase-epitaxy-grown Ga-polar GaN template. The polarity of the regrown GaN, which was confirmed using aqueous KOH solutions, can be inverted from that of AlN by inserting a low-temperature GaN (LT-GaN) buffer layer. We hypothetically ascribe the Ga-polarity selection of GaN on the LT-GaN buffer layer to the mixed polarity of LT-GaN grains and higher growth rate of the Ga-polar grain, which covers up the N-polar grain during the initial stage of the high-temperature growth. The X-ray rocking curve analysis revealed that the edge-dislocation density in the N-polar regrown GaN is 5 to 8 times smaller than that in the Ga-polar regrown GaN. N-polar GaN grows directly on N-polar AlN at higher temperatures. Therefore, nucleus islands grow larger than those of LT-GaN and the area fraction of coalescence boundaries between islands, where edge dislocations emerge, becomes smaller.

  13. TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays.

    PubMed

    van Beuningen, Sam F B; Will, Lena; Harterink, Martin; Chazeau, Anaël; van Battum, Eljo Y; Frias, Cátia P; Franker, Mariella A M; Katrukha, Eugene A; Stucchi, Riccardo; Vocking, Karin; Antunes, Ana T; Slenders, Lotte; Doulkeridou, Sofia; Sillevis Smitt, Peter; Altelaar, A F Maarten; Post, Jan A; Akhmanova, Anna; Pasterkamp, R Jeroen; Kapitein, Lukas C; de Graaff, Esther; Hoogenraad, Casper C

    2015-12-16

    Axon formation, the initial step in establishing neuronal polarity, critically depends on local microtubule reorganization and is characterized by the formation of parallel microtubule bundles. How uniform microtubule polarity is achieved during axonal development remains an outstanding question. Here, we show that the tripartite motif containing (TRIM) protein TRIM46 plays an instructive role in the initial polarization of neuronal cells. TRIM46 is specifically localized to the newly specified axon and, at later stages, partly overlaps with the axon initial segment (AIS). TRIM46 specifically forms closely spaced parallel microtubule bundles oriented with their plus-end out. Without TRIM46, all neurites have a dendrite-like mixed microtubule organization resulting in Tau missorting and altered cargo trafficking. By forming uniform microtubule bundles in the axon, TRIM46 is required for neuronal polarity and axon specification in vitro and in vivo. Thus, TRIM46 defines a unique axonal cytoskeletal compartment for regulating microtubule organization during neuronal development.

  14. c21orf59/kurly Controls Both Cilia Motility and Polarization.

    PubMed

    Jaffe, Kimberly M; Grimes, Daniel T; Schottenfeld-Roames, Jodi; Werner, Michael E; Ku, Tse-Shuen J; Kim, Sun K; Pelliccia, Jose L; Morante, Nicholas F C; Mitchell, Brian J; Burdine, Rebecca D

    2016-03-01

    Cilia are microtubule-based projections that function in the movement of extracellular fluid. This requires cilia to be: (1) motile and driven by dynein complexes and (2) correctly polarized on the surface of cells, which requires planar cell polarity (PCP). Few factors that regulate both processes have been discovered. We reveal that C21orf59/Kurly (Kur), a cytoplasmic protein with some enrichment at the base of cilia, is needed for motility; zebrafish mutants exhibit characteristic developmental abnormalities and dynein arm defects. kur was also required for proper cilia polarization in the zebrafish kidney and the larval skin of Xenopus laevis. CRISPR/Cas9 coupled with homologous recombination to disrupt the endogenous kur locus in Xenopus resulted in the asymmetric localization of the PCP protein Prickle2 being lost in mutant multiciliated cells. Kur also makes interactions with other PCP components, including Disheveled. This supports a model wherein Kur plays a dual role in cilia motility and polarization.

  15. Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams.

    PubMed

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-01-01

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  16. Multiple wavelength vertical-cavity surface-emitting laser arrays using surface-controlled MOCVD growth rate enhancement and reduction

    SciTech Connect

    Ortiz, G.G.; Hains, C.P.; Luong, S.; Cheng, J.; Hou, H.Q.; Vawter, G.A.

    1997-04-01

    Multiple-wavelength VCSEL and photodetector arrays are useful for wavelength-multiplexed fiberoptic networks, and for optical crosstalk isolation in parallel, free-space interconnects. Multiple wavelength VCSEL arrays have been obtained by varying the growth rate using thermal gradients caused by a backside-patterned substrate, by growth enhancement on a patterned substrate, and by varying the cavity length through anodic oxidation and selective etching of the wafer. We show here for the first time both the enhancement and the reduction of the growth rate of the entire VCSEL structure on a topographically patterned substrate, and demonstrate the controlled variation of the lasing wavelengths of a VCSEL array over an extended spectral range.

  17. Polyfluorene Electrolytes Interfacial Layer for Efficient Polymer Solar Cells: Controllably Interfacial Dipoles by Regulation of Polar Groups.

    PubMed

    Liu, Huimin; Hu, Lin; Wu, Feiyan; Chen, Lie; Chen, Yiwang

    2016-04-20

    The polar groups in the conjugated polyelectrolytes (CPEs) can create the favorable dipoles at the electrode/active layer interface, which is critical for the CPEs to minimize the interfacial energy barrier in polymer solar cells (PSCs). Herein, a series of CPEs based on poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-co-2,7-(9,9-dioctylfluorene)] derivates (PFNs) (PFN30, PFN50, PFN70, and PFN100) with different mole ratio of polar groups (-N(C2H5)2) were designed and synthesized to investigate the effect of the numbers of polar groups on the interfacial dipoles. Controllably interfacial dipoles could be readily achieved by only tuning the numbers of -N(C2H5)2 in PFNs, as revealed by the work function of the PFNs modified ITO gradually reduced as the loadings of the -N(C2H5)2 increased. In addition, increasing the numbers of -N(C2H5)2 in PFNs were also favorable for developing the smooth and homogeneous morphology of the active layer. As a result, the content of the polar amine in the PFNs exerted great influence on the performance of polymer solar cells. Increasing the numbers of the pendent -N(C2H5)2 could effectively improve the power conversion efficiency (PCE) of the devices. Among these PFNs, PFN100 with the highest content of -N(C2H5)2 polar groups delivered the device with the best PCE of 3.27%. It indicates tailoring the content of the polar groups in the CPEs interlayer is a facial and promising approach for interfacial engineering to developing high performance PSCs.

  18. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines.

    PubMed

    Witzel, O; Klein, A; Meffert, C; Wagner, S; Kaiser, S; Schulz, C; Ebert, V

    2013-08-26

    We report the first application of a vertical-cavity surfaceemitting laser (VCSEL) for calibration- and sampling-free, high-speed, in situ H2O concentration measurements in IC engines using direct TDLAS (tunable diode laser absorption spectroscopy). Measurements were performed in a single-cylinder research engine operated under motored conditions with a time resolution down to 100 μs (i.e., 1.2 crank angle degrees at 2000 rpm). Signal-to-noise ratios (1σ) up to 29 were achieved, corresponding to a H2O precision of 0.046 vol.% H2O or 39 ppm · m. The modulation frequency dependence of the performance was investigated at different engine operating points in order to quantify the advantages of VCSEL against DFB lasers. PMID:24105541

  19. Energy-efficient vertical-cavity surface-emitting lasers (VCSELs) for "green" data and computer communication

    NASA Astrophysics Data System (ADS)

    Moser, Philip; Lott, James A.; Wolf, Philip; Larisch, Gunter; Payusov, Alexey; Fiol, Gerrit; Ledentsov, Nikolay N.; Hofmann, Werner; Bimberg, Dieter

    2012-03-01

    Record energy-efficient oxide-confined 850-nm single mode and quasi-single mode vertical-cavity surface-emitting lasers (VCSELs) for optical interconnects are presented. Error-free performance at 17 Gb/s is achieved with record-low dissipated power of only 69 fJ/bit. The total energy consumption is only 93 fJ/bit. Transmission lengths up to 1 km of multimode optical fiber were achieved. Our commercial quasi-single mode devices achieve error-free operation at 25 Gb/s across up to 303 m of multimode fiber. To date our VCSELs are the most energy-efficient directly modulated light-sources at any wavelength for data transmission across all distances up to 1 km of multimode optical fiber.

  20. Controlled quantum key distribution with three-photon polarization-entangled states via the collective noise channel

    SciTech Connect

    Dong Li; Xiu Xiaoming; Gao Yajun; Yi, X. X.

    2011-10-15

    Using three-photon polarization-entangled GHZ states or W states, we propose controlled quantum key distribution protocols for circumventing two main types of collective noise, collective dephasing noise, or collective rotation noise. Irrespective of the number of controllers, a three-photon state can generate a one-bit secret key. The storage technique of quantum states is dispensable for the controller and the receiver, and it therefore allows performing the process in a more convenient mode. If the photon cost in a security check is disregarded, then the efficiency theoretically approaches unity.

  1. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth.

    PubMed

    Molendijk, A J; Bischoff, F; Rajendrakumar, C S; Friml, J; Braun, M; Gilroy, S; Palme, K

    2001-06-01

    Plants contain a novel unique subfamily of Rho GTPases, vital components of cellular signalling networks. Here we report a general role for some members of this family in polarized plant growth processes. We show that Arabidopsis AtRop4 and AtRop6 encode functional GTPases with similar intrinsic GTP hydrolysis rates. We localized AtRop proteins in root meristem cells to the cross-wall and cell plate membranes. Polar localization of AtRops in trichoblasts specifies the growth sites for emerging root hairs. These sites were visible before budding and elongation of the Arabidopsis root hair when AtRops accumulated at their tips. Expression of constitutively active AtRop4 and AtRop6 mutant proteins in root hairs of transgenic Arabidopsis plants abolished polarized growth and delocalized the tip-focused Ca2+ gradient. Polar localization of AtRops was inhibited by brefeldin A, but not by other drugs such as latrunculin B, cytochalasin D or caffeine. Our results demonstrate a general function of AtRop GTPases in tip growth and in polar diffuse growth.

  2. Polarization control in X-ray FELs by reverse undulator tapering

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-05-01

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate.

  3. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Effect of a resonant medium on the polarization of a light pulse

    NASA Astrophysics Data System (ADS)

    Abesadze, T. Sh; Tsikoridze, Z. A.

    1993-07-01

    The propagation of a 2π pulse in an ensemble of paramagnetic ions in a magnetic field is analyzed. The paramagnetic part of the magnetooptic activity of the medium contributes to the rotation of the polarization of the light pulse. The Faraday-rotation angle for a 2π pulse which has passed through the medium can be controlled by varying the saturation of the magnetic resonance.

  4. Radiation hardness and lifetime studies of LEDs and VCSELs for the optical readout of the ATLAS SCT

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Borer, K.; Mommsen, R. K.; Nickerson, R. B.; Weidberg, A. R.; Monnier, E.; Hou, H. Q.; Lear, K. L.

    1999-10-01

    We study the radiation hardness and the lifetime of Light Emitting Diodes (LEDs) and Vertical Cavity Surface Emitting Laser diodes (VCSELs) in the context of the development of the optical readout for the ATLAS SemiConductor Tracker (SCT) at LHC. About 170 LEDs from two different manufacturers and about 130 VCSELs were irradiated with neutron and proton fluences equivalent to (and in some cases more than twice as high as) the combined neutral and charged particle fluence of about 5×10 14 n (1 MeV eq. in GaAs)/cm 2 expected in the ATLAS inner detector. We report on the radiation damage and the conditions required for its partial annealing under forward bias, we calculate radiation damage constants, and we present post-irradiation failure rates for LEDs and VCSELs. The lifetime after irradiation was investigated by operating the diodes at an elevated temperature of 50°C for several months, resulting in operating times corresponding to up to 70 years of operation in the ATLAS SCT. From our results we estimate the signal-to-noise ratio and the failure rate of optical links using LEDs developed specifically for application at LHC.

  5. Controlling optical polarization of {11-22} semipolar multiple quantum wells using relaxed underlying InGaN buffer layers

    NASA Astrophysics Data System (ADS)

    Okada, Narihito; Okamura, Yasuhiro; Uchida, Katsumi; Tadatomo, Kazuyuki

    2016-08-01

    We successfully fabricated {11-22} multiple quantum wells (MQWs) having different emission peak wavelengths on partially or completely relaxed thick InGaN buffer layers with different In contents formed on a semipolar {11-22} GaN layer, which was grown on a patterned r-plane sapphire substrate. The polarization properties changed significantly with changing in In content and thickness for InGaN buffer layer. For the same In content of the InGaN buffer layer, the optical polarization changed with an increase in the thickness of the underlying InGaN buffer layer, indicating a change in the relaxation ratio of the InGaN buffer layer. Similarly, for the same thickness of the InGaN buffer layer, the optical polarization changed by changing In content of the InGaN buffer layer. Thus, the degree of optical polarization could be controlled by varying the In content of the underlying InGaN buffer layer.

  6. Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 µm optical-fibre communication

    NASA Astrophysics Data System (ADS)

    Xu, Dawei; Tong, Cunzhu; Yoon, Soon Fatt; Fan, Weijun; Zhang, Dao Hua; Wasiak, Michał; Piskorski, Łukasz; Gutowski, Krzysztof; Sarzała, Robert P.; Nakwaski, Włodzimierz

    2009-05-01

    Efficient room-temperature (RT) continuous-wave (CW) lasing operation of the 1.3 µm MBE (molecular-beam epitaxy) In(Ga)As/GaAs quantum-dot (QD) top-emitting oxide-confined vertical-cavity surface-emitting diode lasers (VCSELs) for the second-generation optical-fibre communication has been achieved. In their design, a concept of a QD inside a quantum well (QW) has been utilized. The proposed In(Ga)As/GaAs QD active region is composed of five groups of three 8 nm In0.15Ga0.85As QWs, each containing one InAs QD sheet layer. In each group located close to successive anti-node positions of the optical standing wave within the 3λ cavity, QWs are separated by 32 nm GaAs barriers. Besides, at both active-region edges, additional single InGaAs QWs are located containing single QD layers. For the 10 µm diameter QD VCSELs, the RT CW threshold current of only 6.2 mA (7.9 kA cm-2), differential efficiency of 0.11 W A-1 and the maximal output power of 0.85 mW have been recorded. The experimental characteristics are in excellent agreement with theoretical ones obtained using the optical-electrical-thermal-recombination self-consistent computer model. According to this, for the 10 µm devices, the fundamental linearly polarized LP01 mode remains the dominating one up to the current of 9.1 mA. The lowest RT CW lasing threshold below 5 mA is expected for 6 µm devices.

  7. Electrostatic control of spin polarization in a quantum Hall ferromagnet: a new platform to realize non-Abelian excitations

    NASA Astrophysics Data System (ADS)

    Kazakov, Alexander; Kolkovsky, V.; Adamus, Z.; Karczewski, G.; Wojtowicz, T.; Rokhinson, Leonid

    2015-03-01

    Several experiments detected signatures of Majorana fermions in nanowires, and the focus of current research is shifting toward systems where non-Abelian statistics of excitations can be demonstrated. To achieve this goal we are developing a new platform where non-Abelian excitations can be created and manipulated in a two-dimensional plane, with support for Majorana and higher order non-Abelian excitations. The system is based on CdTe quantum wells non-uniformly doped with paramagnetic impurities, which result in a complicate field-dependence of Zeeman splitting. A unique property of the system is that at high fields we can form a quantum Hall ferromagnet with gate-controllable spin polarization. Helical 1D edge channels formed along the edges of electrostatic gates may support generalized non-Abelian excitations in the fractional qunatum Hall regime, and Majorana and parafermion excitations in the presence of induced superconductivity. We will present results on the gate control of s-d exchange in specially designed heterostructures, demonstrate gate control of spin polarization at filling factor ν = 2 , and show spatial separation of quantum Hall states with different spin polarization using lithographically defined gates.

  8. Generation and control of spin-polarized photocurrents in GaMnAs heterostructures

    SciTech Connect

    Bezerra, Anibal T. Farinas, Paulo F.; Studart, Nelson; Degani, Marcos H.; Maialle, Marcelo Z.

    2014-01-13

    Photocurrents are calculated for a specially designed GaMnAs semiconductor heterostructure. The results reveal regions in the infrared range of the energy spectrum, in which the proposed structure is remarkably spin-selective. For such photon energies, the generated photocurrents are strongly spin-polarized. Application of a relatively small static bias in the growth direction of the structure is predicted to efficiently reverse the spin-polarization for some photon energies. This behavior suggests the possibility of conveniently simple switching mechanisms. The physics underlying the results is studied and understood in terms of the spin-dependent properties emerging from the particular potential profile of the structure.

  9. 1550 nm VCSEL-based 0.48 Tb/s transmission scheme employing PAM-4 and WDM for active optical cables

    NASA Astrophysics Data System (ADS)

    Markou, S.; Dris, S.; Kalavrouziotis, D.; Avramopoulos, H.; Pleros, N.; Tsiokos, Dimitris M.

    2014-05-01

    With this paper we investigate the system-level performance of VCSELs, parameterized with true experimental LI-VI data and dynamic characteristics of state-of-the-art VCSELs with 3 dB modulation bandwidth at 15 GHz, and propose their deployment as high-speed multi-level optical sources in a mid-range active optical cable (AOC) model for performance prediction of a rack-to-rack interconnection. The AOC architecture combines a 6-element 1550 nm VCSEL array, each directly modulated with 40 Gbaud PAM-4 data, with a wavelength division multiplexer (WDM), in order to implement a parallel link with aggregate traffic of 0.48 Tb/s. Transmission reach exceeded 300 m by deploying a two-tap feed forward equalizer filter at the electrical VCSEL driver. Bit Error Rate (BER) measurements and analysis were carried out in MATLAB. In practice, the thermal behavior and basic operational characteristics of the VCSELs fabricated by the Technische Universität München (TUM) were used to study the thermal performance and operational range of the complete AOC model. The VCSELs were initially operated at 20°C and BER measurements showed power penalties of 1.7 dB and 3.5 dB at 300 m and 500 m of transmission distance respectively for all 6 data channels. System performance was also investigated for elevated operating temperatures of the VCSEL module and the additional system degradation and BER penalties introduced by operation at 50°C and 65°C were also investigated for transmission distances of 300 m and 500 m.

  10. Rictor Regulates Spermatogenesis by Controlling Sertoli Cell Cytoskeletal Organization and Cell Polarity in the Mouse Testis.

    PubMed

    Dong, Heling; Chen, Zhenguo; Wang, Caixia; Xiong, Zhi; Zhao, Wanlu; Jia, Chunhong; Lin, Jun; Lin, Yan; Yuan, Weiping; Zhao, Allan Z; Bai, Xiaochun

    2015-11-01

    Maintenance of cell polarity is essential for Sertoli cell and blood-testis barrier (BTB) function and spermatogenesis; however, the signaling mechanisms that regulate the integrity of the cytoskeleton and polarity of Sertoli cells are not fully understood. Here, we demonstrate that rapamycin-insensitive component of target of rapamycin (TOR) (Rictor), a core component of mechanistic TOR complex 2 (mTORC2), was expressed in the seminiferous epithelium during testicular development, and was down-regulated in a cadmium chloride-induced BTB damage model. We then conditionally deleted the Rictor gene in Sertoli cells and mutant mice exhibited azoospermia and were sterile as early as 3 months old. Further study revealed that Rictor may regulate actin organization via both mTORC2-dependent and mTORC2-independent mechanisms, in which the small GTPase, ras-related C3 botulinum toxin substrate 1, and phosphorylation of the actin filament regulatory protein, Paxillin, are involved, respectively. Loss of Rictor in Sertoli cells perturbed actin dynamics and caused microtubule disarrangement, both of which accumulatively disrupted Sertoli cell polarity and BTB integrity, accompanied by testicular developmental defects, spermiogenic arrest and excessive germ cell loss in mutant mice. Together, these findings establish the importance of Rictor/mTORC2 signaling in Sertoli cell function and spermatogenesis through the maintenance of Sertoli cell cytoskeletal dynamics, BTB integrity, and cell polarity. PMID:26360620

  11. Mitotic Control of Planar Cell Polarity by Polo-like Kinase 1

    PubMed Central

    Shrestha, Rezma; Little, Katherine A.; Tamayo, Joel V.; Li, Wenyang; Perlman, David H.; Devenport, Danelle

    2015-01-01

    SUMMARY During cell division, polarized epithelial cells employ mechanisms to preserve cell polarity and tissue integrity. In dividing cells of the mammalian skin, planar cell polarity (PCP) is maintained through the bulk internalization, equal segregation, and polarized recycling of cortical PCP proteins. The dramatic redistribution of PCP proteins coincides precisely with cell cycle progression, but the mechanisms coordinating PCP and mitosis are unknown. Here we identify Plk1 as a master regulator of PCP dynamics during mitosis. Plk1 interacts with core PCP component, Celsr1, via a conserved polo-box domain (PBD) binding motif, localizes to mitotic endosomes and directly phosphorylates Celsr1. Plk1-dependent phosphorylation activates the endocytic motif specifically during mitosis, allowing bulk recruitment of Celsr1 into endosomes. Inhibiting Plk1 activity blocks PCP internalization and perturbs PCP asymmetry. Mimicking dileucine motif phosphorylation is sufficient to drive Celsr1 internalization during interphase. Thus, Plk1-mediated phosphorylation of Celsr1 ensures PCP redistribution is precisely coordinated with mitotic entry. PMID:26004507

  12. The putative Poc complex controls two distinct Pseudomonas aeruginosa polar motility mechanisms

    PubMed Central

    Cowles, Kimberly N.; Moser, Theresa S.; Siryaporn, Albert; Nyakudarika, Natsai; Dixon, William; Turner, Jonathan J.; Gitai, Zemer

    2015-01-01

    Summary Each Pseudomonas aeruginosa cell localizes two types of motility structures, a single flagellum and one or two clusters of type IV pili, to the cell poles. Previous studies suggested that these motility structures arrive at the pole through distinct mechanisms. Here we performed a swimming motility screen to identify polar flagellum localization factors and discovered three genes homologous to the TonB/ExbB/ExbD complex that have defects in both flagella-mediated swimming and pilus-mediated twitching motility. We found that deletion of tonB3, PA2983 or PA2982 led to non-polar localization of the flagellum and FlhF, which was thought to sit at the top of the flagellar localization hierarchy. Surprisingly, these mutants also exhibited pronounced changes in pilus formation or localization, indicating that these proteins may co-ordinate both the pilus and flagellum motility systems. Thus, we have renamed PA2983 and PA2982, pocA and pocB, respectively, for polar organelle co-ordinator to reflect this function. Our results suggest that TonB3, PocA and PocB may form a membrane-associated complex, which we term the Poc complex. These proteins do not exhibit polar localization themselves, but are required for increased expression of pilus genes upon surface association, indicating that they regulate motility structures through either localization or transcriptional mechanisms. PMID:24102920

  13. Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs.

    PubMed

    Pocha, Shirin Meher; Wassmer, Thomas; Niehage, Christian; Hoflack, Bernard; Knust, Elisabeth

    2011-07-12

    The evolutionarily conserved apical determinant Crumbs (Crb) is essential for maintaining apicobasal polarity and integrity of many epithelial tissues [1]. Crb levels are crucial for cell polarity and homeostasis, yet strikingly little is known about its trafficking or the mechanism of its apical localization. Using a newly established, liposome-based system described here, we determined Crb to be an interaction partner and cargo of the retromer complex. Retromer is essential for the retrograde transport of numerous transmembrane proteins from endosomes to the trans-Golgi network (TGN) and is conserved between plants, fungi, and animals [2]. We show that loss of retromer function results in a substantial reduction of Crb in Drosophila larvae, wing discs, and the follicle epithelium. Moreover, loss of retromer phenocopies loss of crb by preventing apical localization of key polarity molecules, such as atypical protein kinase C (aPKC) and Par6 in the follicular epithelium, an effect that can be rescued by overexpression of Crb. Additionally, loss of retromer results in multilayering of the follicular epithelium, indicating that epithelial integrity is severely compromised. Our data reveal a mechanism for Crb trafficking by retromer that is vital for maintaining Crb levels and localization. We also show a novel function for retromer in maintaining epithelial cell polarity. PMID:21700461

  14. The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation.

    PubMed

    Chang, Hao; Smallwood, Philip M; Williams, John; Nathans, Jeremy

    2016-01-01

    In mammals, hair follicles cover most of the body surface and exhibit precise and stereotyped orientations relative to the body axes. Follicle orientation is controlled by the planar cell polarity (PCP; or, more generally, tissue polarity) system, as determined by the follicle mis-orientation phenotypes observed in mice with PCP gene mutations. The present study uses conditional knockout alleles of the PCP genes Frizzled6 (Fz6), Vangl1, and Vangl2, together with a series of Cre drivers to interrogate the spatio-temporal domains of PCP gene action in the developing mouse epidermis required for follicle orientation. Fz6 is required starting between embryonic day (E)11.5 and E12.5. Eliminating Fz6 in either the anterior or the posterior halves of the embryo or in either the feet or the torso leads to follicle mis-orientation phenotypes that are limited to the territories associated with Fz6 loss, implying either that PCP signaling is required for communicating polarity information on a local but not a global scale, or that there are multiple independent sources of global polarity information. Eliminating Fz6 in most hair follicle cells or in the inter-follicular epidermis at E15.5 suggests that PCP signaling in developing follicles is not required to maintain their orientation. The asymmetric arrangement of Merkel cells around the base of each guard hair follicle dependents on Fz6 expression in the epidermis but not in differentiating Merkel cells. These experiments constrain current models of PCP signaling and the flow of polarity information in mammalian skin.

  15. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration

    PubMed Central

    Moens, Cecilia B.

    2016-01-01

    The planar cell polarity (PCP) pathway is a cell-contact mediated mechanism for transmitting polarity information between neighboring cells. PCP “core components” (Vangl, Fz, Pk, Dsh, and Celsr) are essential for a number of cell migratory events including the posterior migration of facial branchiomotor neurons (FBMNs) in the plane of the hindbrain neuroepithelium in zebrafish and mice. While the mechanism by which PCP signaling polarizes static epithelial cells is well understood, how PCP signaling controls highly dynamic processes like neuronal migration remains an important outstanding question given that PCP components have been implicated in a range of directed cell movements, particularly during vertebrate development. Here, by systematically disrupting PCP signaling in a rhombomere-restricted manner we show that PCP signaling is required both within FBMNs and the hindbrain rhombomere 4 environment at the time when they initiate their migration. Correspondingly, we demonstrate planar polarized localization of PCP core components Vangl2 and Fzd3a in the hindbrain neuroepithelium, and transient localization of Vangl2 at the tips of retracting FBMN filopodia. Using high-resolution timelapse imaging of FBMNs in genetic chimeras we uncover opposing cell-autonomous and non-cell-autonomous functions for Fzd3a and Vangl2 in regulating FBMN protrusive activity. Within FBMNs, Fzd3a is required to stabilize filopodia while Vangl2 has an antagonistic, destabilizing role. However, in the migratory environment Fzd3a acts to destabilize FBMN filopodia while Vangl2 has a stabilizing role. Together, our findings suggest a model in which PCP signaling between the planar polarized neuroepithelial environment and FBMNs directs migration by the selective stabilization of FBMN filopodia. PMID:26990447

  16. Scattering Intensity and Directionality Probed Along Individual Zinc Oxide Nanorods with Precisely Controlled Light Polarization and Nanorod Orientation

    PubMed Central

    Choi, Daniel S.; Singh, Manpreet; Song, Sheng; Chang, Jae Young; Kang, Yongkoo; Hahm, Jong-in

    2015-01-01

    We elucidated the light-matter interaction of individual ZnO NRs with a monochromatic beam of linearly polarized light that scatters elastically from the ZnO NRs by performing forward scattering and back-aperture imaging in a dark-field setting. We precisely controlled the electric field vector of the incident light and the NR orientation within the plane of light interaction during both modes of measurement, and spatially resolved the scattering response from different interaction points along the NR long axis. We then discerned, for the first time, the effects of light polarization, analyzer angle, and NR orientation on the intensity and directionality of the optical responses both qualitatively and quantitatively along the length of the single ZnO NRs. We identified distinctive scattering profiles from individual ZnO NRs subject to incident light polarization with controlled NR orientation from the forward dark-field scattering and back-aperture imaging modes. The fundamental light interaction behavior of ZnO NRs is likely to govern their functional outcomes in photonics, optoelectronics, and sensor devices. Hence, our efforts provided much needed insight into unique optical responses from individual 1D ZnO nanomaterials, which could be highly beneficial in developing next-generation optoelectronic systems and optical biodetectors with improved device efficiency and sensitivity. PMID:26568952

  17. Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface

    SciTech Connect

    Kumar Kuntumalla, Mohan; Srikanth, Vadali V. S. S.; Rajamudili, Kuladeep; Rao Desai, Narayana

    2014-04-21

    Deep sub-wavelength (Λ/λ = ∼0.22) periodic features are induced uniformly on a nanodiamond (ND) thin film surface using femtosecond (fs) laser irradiation (pulse duration = ∼110 fs and central wavelength of ∼800 nm). The topography of the surface features is controlled by the laser polarization. Orientation of features is perpendicular to laser polarization. Periodicity (spatial periodicity of < λ/4) of the surface features is less than the laser wavelength. This work gives an experimental proof of polarization controlled surface plasmon-fs laser coupling mechanism prompting the interaction between fs laser and solid matter (here ND thin film) which in turn is resulting in the periodic surface features. Scanning electron microscopy in conjunction with micro Raman scattering, X-ray diffraction, and atomic force microscopy are carried out to extract surface morphology and phase information of the laser irradiated regions. This work demonstrates an easy and efficient surface fabrication technique.

  18. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development.

    PubMed

    Liu, Min; Li, Yajuan; Liu, Aiguo; Li, Ruifeng; Su, Ying; Du, Juan; Li, Cheng; Zhu, Alan Jian

    2016-01-01

    Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. PMID:27536874

  19. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission

    NASA Astrophysics Data System (ADS)

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-01

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  20. Control of Electronic Conduction at an Oxide Heterointerface using Surface Polar Adsorbates

    SciTech Connect

    Bell, Christopher

    2011-08-19

    We study the effect of the surface adsorption of a variety of common laboratory solvents on the conductivity at the interface between LaAlO{sub 3} and SrTiO{sub 3}. This interface possesses a range of intriguing physics, notably a proposed connection between the surface state of the LaAlO{sub 3} and the conductivity buried in the SrTiO{sub 3}. We show that the application of chemicals such as acetone, ethanol, and water can induce a large change (factor of three) in the conductivity. This phenomenon is observed only for polar solvents. These data provide experimental evidence for a general polarization-facilitated electronic transfer mechanism.

  1. Microbial Competition in Polar Soils: A Review of an Understudied but Potentially Important Control on Productivity

    PubMed Central

    Bell, Terrence H.; Callender, Katrina L.; Whyte, Lyle G.; Greer, Charles W.

    2013-01-01

    Intermicrobial competition is known to occur in many natural environments, and can result from direct conflict between organisms, or from differential rates of growth, colonization, and/or nutrient acquisition. It has been difficult to extensively examine intermicrobial competition in situ, but these interactions may play an important role in the regulation of the many biogeochemical processes that are tied to microbial communities in polar soils. A greater understanding of how competition influences productivity will improve projections of gas and nutrient flux as the poles warm, may provide biotechnological opportunities for increasing the degradation of contaminants in polar soil, and will help to predict changes in communities of higher organisms, such as plants. PMID:24832797

  2. Angle resolved photoelectron spectroscopy of two-color XUV–NIR ionization with polarization control

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Hartmann, G.; Babies, F.; Beckmann, A.; Brenner, G.; Buck, J.; Costello, J.; Dammann, L.; De Fanis, A.; Geßler, P.; Glaser, L.; Ilchen, M.; Johnsson, P.; Kazansky, A. K.; Kelly, T. J.; Mazza, T.; Meyer, M.; Nosik, V. L.; Sazhina, I. P.; Scholz, F.; Seltmann, J.; Sotoudi, H.; Viefhaus, J.; Kabachnik, N. M.

    2016-08-01

    Electron emission caused by extreme ultraviolet (XUV) radiation in the presence of a strong near infrared (NIR) field leads to multiphoton interactions that depend on several parameters. Here, a comprehensive study of the influence of the angle between the polarization directions of the NIR and XUV fields on the two-color angle-resolved photoelectron spectra of He and Ne is presented. The resulting photoelectron angular distribution strongly depends on the orientation of the NIR polarization plane with respect to that of the XUV field. The prevailing influence of the intense NIR field over the angular emission characteristics for He(1s) and Ne(2p) ionization lines is shown. The underlying processes are modeled in the frame of the strong field approximation (SFA) which shows very consistent agreement with the experiment reaffirming the power of the SFA for multicolor-multiphoton ionization in this regime.

  3. Invited article: Broadband highly-efficient dielectric metadevices for polarization control

    DOE PAGES

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; Miroshnichenko, Andrey; Neshev, Dragomir N.; Kivshar, Yuri S.

    2016-06-06

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less

  4. Polarity control in MoS2 and MoSe2 field effect transistors

    NASA Astrophysics Data System (ADS)

    Fragapane, A.; Bobek, S.; Barroso, D.; Nguyen, A.; Bonilla, E.; Naghibi, S.; von Son Palacio, G.; Klee, V.; Preciado, E.; Martinez, J.; Pleskot, D.; Mann, J.; Shidpoor, R.; Bartels, L.; Sorger, V.; Liu, A.; Paranjape, M.; Barbara, P.

    2014-03-01

    Ambipolar operation is essential for a variety of optoelectronic applications, where both electron and hole transport are required simultaneously. However, hole transport and p-type Schottky barriers have been difficult to achieve in all-solid state field effect transistors based on MoS2 charge channels. In prior work we demonstrated that Schottky barriers of either polarity (p-type or n-type) can be obtained with multilayer MoS2 flakes exfoliated from geological crystals. Here we study Schottky barrier polarity in thinner flakes of MoS2 and MoSe2 (down to single-layer thicknesses) that are grown by CVD, towards understanding how both variations in the bandgap and material work functions affect band alignment at the interface between the flakes and the metal contacts. Supported by the NSF, DMR-1008242, 1106210 and C-SPIN.

  5. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    PubMed

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-01-01

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis. PMID:24996848

  6. Angle resolved photoelectron spectroscopy of two-color XUV-NIR ionization with polarization control

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Hartmann, G.; Babies, F.; Beckmann, A.; Brenner, G.; Buck, J.; Costello, J.; Dammann, L.; De Fanis, A.; Geßler, P.; Glaser, L.; Ilchen, M.; Johnsson, P.; Kazansky, A. K.; Kelly, T. J.; Mazza, T.; Meyer, M.; Nosik, V. L.; Sazhina, I. P.; Scholz, F.; Seltmann, J.; Sotoudi, H.; Viefhaus, J.; Kabachnik, N. M.

    2016-08-01

    Electron emission caused by extreme ultraviolet (XUV) radiation in the presence of a strong near infrared (NIR) field leads to multiphoton interactions that depend on several parameters. Here, a comprehensive study of the influence of the angle between the polarization directions of the NIR and XUV fields on the two-color angle-resolved photoelectron spectra of He and Ne is presented. The resulting photoelectron angular distribution strongly depends on the orientation of the NIR polarization plane with respect to that of the XUV field. The prevailing influence of the intense NIR field over the angular emission characteristics for He(1s) and Ne(2p) ionization lines is shown. The underlying processes are modeled in the frame of the strong field approximation (SFA) which shows very consistent agreement with the experiment reaffirming the power of the SFA for multicolor-multiphoton ionization in this regime.

  7. Broadband femtosecond circular dichroism spectrometer with white-light polarization control.

    PubMed

    Trifonov, Anton; Buchvarov, Ivan; Lohr, Andreas; Würthner, Frank; Fiebig, Torsten

    2010-04-01

    A broadband, femtosecond transient circular dichroism (TRCD) spectrometer has been developed and tested in the wavelength range from 350 to 700 nm. The spectrometer uses a femtosecond probe white light with well-defined circular polarization. The latter is modulated by the polarization of a narrowband seed pulse. We have implemented a dual-beam probe geometry with phase-locked detection technique to increase the signal-to-noise ratio and to reduce optical artifacts. The spectrometer allows the acquisition of TRCD spectra with subpicosecond time resolution and typical noise levels of 10(-4) absorbance units. The performance of this instrument has been demonstrated on bis(merocyanine) nanorod aggregates in tetrahydrofurane/methylcyclohexane solution. The case study confirmed that this spectrometer is effective for the investigation of chiral properties in various molecular and nanostructural systems that have transient spectra in the UV-visible spectral range.

  8. Controlling the excitation process of free electrons by a femtosecond elliptically polarized laser

    NASA Astrophysics Data System (ADS)

    Gao, Lili; Wang, Feng; Jiang, Lan; Qu, Liangti; Lu, Yongfeng

    2015-11-01

    This paper is focused on the excitation rates of free electrons of an aluminum (Al) bulk irradiated by an elliptically polarized laser in simulation, using time-dependent density functional theory (TDDFT). The polarized 400 nm, 10 fs laser pulse consisted of two elementary sinusoidal beams, and is adjusted by changing the phase difference φ and the intersection angle θ of the polarization directions between the two beams. The simulation includes cases of φ = π/2 with θ = 30°, θ = 45°, θ = 60°, θ = 90°, θ = 120°, θ = 135°, θ = 150°, and cases of θ = 90° with φ = π/4, φ = π/3, φ = π/2, φ = 2π/3, φ = 3π/4. The absorbed energy, the excitation rates and the density distributions of free electrons after laser termination are investigated. At the given power intensity (1×1014Wcm-2), pulse width (10 fs) and wavelength (400 nm) of each elementary laser beam, computational results indicate that the excitation rate of free electrons is impacted by three major factors: the long axis direction of the laser projected profile, the amplitude difference of the first main oscillation (1st AD), and the total amplitude difference of main oscillations (TAD) of the external electric field. Among the aforementioned three factors for the excitation rate of free electrons, the direction of long axis plays the most significant role. The screen effect is crucial to compare the importance of the remaining two factors. The analysis approach to investigate the electron dynamics under an elliptically polarized laser is both pioneering and effective.

  9. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films.

    PubMed

    Gao, Peng; Liu, Heng-Jui; Huang, Yen-Lin; Chu, Ying-Hao; Ishikawa, Ryo; Feng, Bin; Jiang, Ying; Shibata, Naoya; Wang, En-Ge; Ikuhara, Yuichi

    2016-01-01

    At the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, we study surface structures of Pb(Zr0.2Ti0.8)O3 thin film by using the annular bright-field imaging. We find that six atomic layers with suppressed polarization and a charged 180° domain wall are at negatively poled surfaces, no reconstruction exists at positively poled surfaces, and seven atomic layers with suppressed polarization and a charged 90° domain wall exist at nominally neutral surfaces in ferroelastic domains. Our results provide critical insights into engineering ferroelectric thin films, fine grain ceramics and surface chemistry devices. The state-of-the-art methodology demonstrated here can greatly advance our understanding of surface science for oxides. PMID:27090766

  10. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations

    PubMed Central

    Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; Parshall, Daniel E.; Lynn, Jeffrey W.; Christianson, Andrew D.; Stonaha, Paul J.; Specht, Eliot D.; Budai, John D.

    2016-01-01

    Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 − x)[Pb(Mg1/3Nb2/3)O3] – xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening. PMID:27652338

  11. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films.

    PubMed

    Gao, Peng; Liu, Heng-Jui; Huang, Yen-Lin; Chu, Ying-Hao; Ishikawa, Ryo; Feng, Bin; Jiang, Ying; Shibata, Naoya; Wang, En-Ge; Ikuhara, Yuichi

    2016-01-01

    At the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, we study surface structures of Pb(Zr0.2Ti0.8)O3 thin film by using the annular bright-field imaging. We find that six atomic layers with suppressed polarization and a charged 180° domain wall are at negatively poled surfaces, no reconstruction exists at positively poled surfaces, and seven atomic layers with suppressed polarization and a charged 90° domain wall exist at nominally neutral surfaces in ferroelastic domains. Our results provide critical insights into engineering ferroelectric thin films, fine grain ceramics and surface chemistry devices. The state-of-the-art methodology demonstrated here can greatly advance our understanding of surface science for oxides.

  12. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations.

    PubMed

    Manley, Michael E; Abernathy, Douglas L; Sahul, Raffi; Parshall, Daniel E; Lynn, Jeffrey W; Christianson, Andrew D; Stonaha, Paul J; Specht, Eliot D; Budai, John D

    2016-09-01

    Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 - x)[Pb(Mg1/3Nb2/3)O3] - xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening. PMID:27652338

  13. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films

    PubMed Central

    Gao, Peng; Liu, Heng-Jui; Huang, Yen-Lin; Chu, Ying-Hao; Ishikawa, Ryo; Feng, Bin; Jiang, Ying; Shibata, Naoya; Wang, En-Ge; Ikuhara, Yuichi

    2016-01-01

    At the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, we study surface structures of Pb(Zr0.2Ti0.8)O3 thin film by using the annular bright-field imaging. We find that six atomic layers with suppressed polarization and a charged 180° domain wall are at negatively poled surfaces, no reconstruction exists at positively poled surfaces, and seven atomic layers with suppressed polarization and a charged 90° domain wall exist at nominally neutral surfaces in ferroelastic domains. Our results provide critical insights into engineering ferroelectric thin films, fine grain ceramics and surface chemistry devices. The state-of-the-art methodology demonstrated here can greatly advance our understanding of surface science for oxides. PMID:27090766

  14. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    NASA Astrophysics Data System (ADS)

    Jäger, Lars; Schmidt, Tobias D.; Brütting, Wolfgang

    2016-09-01

    Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl)-N-phenylamino]-biphenyl (NPB) with the polar electron transporting material tris-(8-hydroxyquinolate) aluminum (Alq3). Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  15. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations

    PubMed Central

    Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; Parshall, Daniel E.; Lynn, Jeffrey W.; Christianson, Andrew D.; Stonaha, Paul J.; Specht, Eliot D.; Budai, John D.

    2016-01-01

    Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 − x)[Pb(Mg1/3Nb2/3)O3] – xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.

  16. Swept source optical coherence microscopy using a 1310 nm VCSEL light source

    PubMed Central

    Ahsen, Osman O.; Tao, Yuankai K.; Potsaid, Benjamin M.; Sheikine, Yuri; Jiang, James; Grulkowski, Ireneusz; Tsai, Tsung-Han; Jayaraman, Vijaysekhar; Kraus, Martin F.; Connolly, James L.; Hornegger, Joachim; Cable, Alex; Fujimoto, James G.

    2013-01-01

    We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0.86 µm - 3.42 µm using interchangeable 40X, 20X and 10X objectives with ~600 µm x 600 µm, ~1 mm x 1 mm and ~2 mm x 2 mm field-of-view (FOV), respectively. Parasitic variations in path length with beam scanning were corrected numerically. These features enable swept source OCM to be integrated with a wide range of existing scanning microscopes. Large FOV mosaics were generated by serially acquiring adjacent overlapping microscopic fields and combining them in post-processing. Fresh human colon, thyroid and kidney specimens were imaged ex vivo and compared to matching histology sections, demonstrating the ability of OCM to image tissue specimens. PMID:23938673

  17. Critical parameters for parallel interconnects using VCSEL arrays and fiber image guides

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayan D.; Hadley, G. Ronald; Geib, Kent M.; Choquette, Kent D.; Carter, Tony R.; Fischer, Arthur J.; Robinson, Matthew; Sullivan, Charles T.

    2003-04-01

    Several thousand glass optical fibers fused together is routinely used as fiber image guides for medical and other image remoting applications. Fiber image guides also offer possibility for flexible optical interconnect links with potentially thousands of bi-directional parallel channels with data rates as high as 10 Gbps per channel, leading to more than Tera bits per second aggregate data transfer rates. A fair number of fiber image guide based link demonstrations using vertical cavity surface emitting lasers have been reported. However, little is known about designable parameters and optimization paradigms for applications to massively parallel optical interconnects. This paper discusses critical optical parameters that characterize a massively parallel link. Experimental characterizations were carried out to explore some of the fundamental interactions between single-mode 850 nm VCSELs and fiber image guides having different numerical apertures, 0.25, 0.55 and 1.00. Preliminary optical simulation results are given. Finally, potential directions for further experimental and analytical explorations, and for applicability into designable link systems are suggested.

  18. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    SciTech Connect

    Woo June Choi; Wang, R K

    2014-08-31

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  19. Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Juan; Li, Chong; Zhou, Hong-Yi; Wu, Hua; Luan, Xin-Xin; Shi, Lei; Guo, Xia

    2015-02-01

    The maximum power conversion efficiencies of the top-emitting, oxide-confined, two-dimensional integrated 2×2 and 4×4 vertical-cavity surface-emitting laser (VCSEL) arrays with the oxide-apertures of 6 μm, 16 μm, 19 μm, 26 μm, 29 μm, 36 μm, 39 μm, and 46 μm are fabricated and characterized, respectively. The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly. A maximum value of 27.91% at an oxide-aperture of 18.6 μm is achieved by simulation. The experimental data are well consistent with the simulation results, which are analyzed by utilizing an empirical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501 and 61335004) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019)

  20. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    PubMed Central

    Choi, Woo June; Wang, Ruikang K.

    2015-01-01

    Three-dimensional (3D) assessment of cutaneous microcirculation in human skin is essential in the identification of disease states in skin or other organs. Few 3D imaging techniques have revealed the skin micro-vasculatures non-invasively and with sufficient imaging depth. Here, we demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilizes a 1.3 µm high-speed swept-source optical coherence tomography (SS-OCT). The swept source is based on a MEMS tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth that enables the visualization of microstructures within a few mm from the skin surface. We show that skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. PMID:25635163

  1. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Ahsen, Osman O.; Lee, Hsiang-Chieh; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Kraus, Martin F.; Hornegger, Joachim; Figueiredo, Marisa; Huang, Qin; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2014-03-01

    We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in the longitudinal direction. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing standard upper and lower endoscopy at the Veterans Affairs Boston Healthcare System (VABHS). Patients with Barrett's esophagus, dysplasia, and inflammatory bowel disease were imaged. The use of distally actuated imaging catheters allowed OCT imaging with more flexibility such as volumetric imaging in the terminal ileum and the assessment of the hiatal hernia using retroflex imaging. The high rotational stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face and cross-sectional imaging. The ability to perform 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies to investigate the ability of OCT to detect pathology as well as assess treatment response.

  2. Effects of Lateral Plasma Density and Temperature Diffusion on VCSEL Performance

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The hydrodynamic model is further verified by applying to a gain-guided single mode VCSEL. DC effects of D(sub NN): (1) increase threshold current J(sub th) and decrease slope efficiency; (2) within the studied range (50% pumping within threshold and realistic diffusion coefficient for a single mode), the L-I relation scales with the relative Injection current (J/J(sub th) - 1). AC effects of D(sub NN): (1) decrease spectral bandwidth and responsivity of direct-current modulation; (2) within the studied range, the frequency response follows the same formal dependence as predicted without diffusion and under a linear gain model, while the resonant frequency position similarly scales with the relative injection current; (3) therefore, it is concluded that the AC effects of D(sub NN) is purely of static nature and reflected via its influence on ot and J(sub th). Within this study, the nonlinear effects of D(sub NN) are mostly reproducible with an equivalent constant diffusion coefficient.

  3. Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning.

    PubMed

    Nakaharai, Shu; Yamamoto, Mahito; Ueno, Keiji; Tsukagoshi, Kazuhito

    2016-06-15

    The polarity of the charge carriers injected through Schottky junctions of α-phase molybdenum ditelluride (α-MoTe2) and various metals was characterized. We found that the Fermi-level pinning in the metal/α-MoTe2 Schottky junction is so weak that the polarity of the carriers (electron or hole) injected from the junction can be controlled by the work function of the metals, in contrast to other transition metal dichalcogenides such as MoS2. From the estimation of the Schottky barrier heights, we obtained p-type carrier (hole) injection from a Pt/α-MoTe2 junction with a Schottky barrier height of 40 meV at the valence band edge. n-Type carrier (electron) injection from Ti/α-MoTe2 and Ni/α-MoTe2 junctions was also observed with Schottky barrier heights of 50 and 100 meV, respectively, at the conduction band edge. In addition, enhanced ambipolarity was demonstrated in a Pt-Ti hybrid contact with a unique structure specially designed for polarity-reversible transistors, in which Pt and Ti electrodes were placed in parallel for injecting both electrons and holes. PMID:27203118

  4. Dynamic control of the operation regimes of a mode-locked fiber laser based on intracavity polarizing fibers: experimental and theoretical validation.

    PubMed

    Villanueva, Guillermo E; Pérez-Millán, Pere

    2012-06-01

    An intracavity polarizing fiber is proposed to control the emission regime of a passively mode-locked fiber laser. Stable operation in self-starting high and low dispersion soliton mode-locking and 100 GHz multiwavelength regimes is demonstrated through numerical simulations and experimental validation. Mode-locking stability is ensured by a saturable absorber in the ring cavity. The effective selection of operation regime is dynamically carried out by controlling the intracavity polarization state.

  5. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels

    PubMed Central

    Chen, Lirong; Xu, Zhongxiao; Zeng, Weiqing; Wen, Yafei; Li, Shujing; Wang, Hai

    2016-01-01

    We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 μs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell’s inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique. PMID:27667262

  6. Gate-voltage-controlled spin and valley polarization transport in a normal/ferromagnetic/normal MoS₂ junction.

    PubMed

    Li, Hai; Shao, Jianmei; Yao, Daoxin; Yang, Guowei

    2014-02-12

    Two-dimensional (2D) materials are extensively explored due to the remarkable physical property and the great potential for post-silicon electronics since the landmark achievement of graphene. The monolayer (ML) MoS2 with a direct energy gap is a typical 2D material and promising candidate for a wide range of device applications. The extensive efforts so far have focused on the optical valley control applications of ML MoS2 rather than the electrical control of spin and valley transport. However, the electrical manipulation of spin injection and transport is essential to realize practical spintronics applications. Here, we theoretically demonstrated that the valley and spin transport can be electrically manipulated by a gate voltage in a normal/ferromagnetic/normal monolayer MoS2 junction device. It was found that the fully valley- and spin-polarized conductance can be achieved due to the spin-valley coupling of valence-band edges together with the exchange field, and both the amplitude and direction of the fully spin-polarized conductance can be modulated by the gate voltage. These findings not only provided deep understanding to the basic physics in the spin and valley transport of ML MoS2 but also opened an avenue for the electrical control of valley and spin transport in monolayer dichalcogenide-based devices. PMID:24417464

  7. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels

    NASA Astrophysics Data System (ADS)

    Chen, Lirong; Xu, Zhongxiao; Zeng, Weiqing; Wen, Yafei; Li, Shujing; Wang, Hai

    2016-09-01

    We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 μs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell’s inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique.

  8. Gate-voltage-controlled spin and valley polarization transport in a normal/ferromagnetic/normal MoS₂ junction.

    PubMed

    Li, Hai; Shao, Jianmei; Yao, Daoxin; Yang, Guowei

    2014-02-12

    Two-dimensional (2D) materials are extensively explored due to the remarkable physical property and the great potential for post-silicon electronics since the landmark achievement of graphene. The monolayer (ML) MoS2 with a direct energy gap is a typical 2D material and promising candidate for a wide range of device applications. The extensive efforts so far have focused on the optical valley control applications of ML MoS2 rather than the electrical control of spin and valley transport. However, the electrical manipulation of spin injection and transport is essential to realize practical spintronics applications. Here, we theoretically demonstrated that the valley and spin transport can be electrically manipulated by a gate voltage in a normal/ferromagnetic/normal monolayer MoS2 junction device. It was found that the fully valley- and spin-polarized conductance can be achieved due to the spin-valley coupling of valence-band edges together with the exchange field, and both the amplitude and direction of the fully spin-polarized conductance can be modulated by the gate voltage. These findings not only provided deep understanding to the basic physics in the spin and valley transport of ML MoS2 but also opened an avenue for the electrical control of valley and spin transport in monolayer dichalcogenide-based devices.

  9. Electrically controlled spatial-polarization switch based on patterned photoalignment of nematic liquid crystals.

    PubMed

    Melnikova, Elena A; Tolstik, Alexei L; Rushnova, Irina I; Kabanova, Olga S; Muravsky, Alexander A

    2016-08-10

    A switching scheme for two orthogonal modes of laser radiation that is based on the total internal reflection effect realized at the interface of two liquid crystal regions with orthogonal director orientations is proposed. To create the photorefractive interface within the bulk of a liquid crystal, an original technique based on self-alignment of azo dye photoalignment and absorbing electrode patterns has been developed. Spatial separation of the orthogonally polarized light beams and their switching (when the positions of reflected and transmitted light beams are switched) due to the voltage applied has been experimentally realized. PMID:27534500

  10. Position- and orientation-controlled polarized light interaction of individual indium tin oxide nanorods

    SciTech Connect

    Choi, Daniel S.; Joh, Daniel Y.; Lee, Thomas; Milchak, Marissa; Zhou, Hebing; Kang, Yongkoo; Hahm, Jong-in

    2014-02-24

    We have systematically investigated the position, orientation, and polarization angle dependence of scattered light from well-characterized, indium tin oxide nanorods (ITO NRs) upon illumination with monochromatic light. Scattering signals from individual ITO NRs of horizontal and vertical configurations are probed quantitatively by examining signal response with respect to the analyzer angle and position along the length of the NR. Our efforts can be highly beneficial in providing fundamental understanding for the light interaction behavior of ITO NRs. Our results can provide valuable bases for comprehending optical emission from individual NRs, with their ever-growing applications in optoelectronics, photonics, and biosensing.

  11. Controlling magnetic Feshbach resonances in polar open-shell molecules with nonresonant light.

    PubMed

    Tomza, Michał; González-Férez, Rosario; Koch, Christiane P; Moszynski, Robert

    2014-03-21

    Magnetically tunable Feshbach resonances for polar paramagnetic ground-state diatomics are too narrow to allow for magnetoassociation starting from trapped, ultracold atoms. We show that nonresonant light can be used to engineer the Feshbach resonances in their position and width. For nonresonant field intensities of the order of 10(9) W/cm(2), we find the width to be increased by 3 orders of magnitude, reaching a few Gauss. This opens the way for producing ultracold molecules with sizable electric and magnetic dipole moments and thus for many-body quantum simulations with such particles. PMID:24702365

  12. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  13. Control of vibrational states by spin-polarized transport in a carbon nanotube resonator

    NASA Astrophysics Data System (ADS)

    Stadler, P.; Belzig, W.; Rastelli, G.

    2015-02-01

    We study spin-dependent transport in a suspended carbon nanotube quantum dot in contact with two ferromagnetic leads and with the dot's spin coupled to the flexural mechanical modes. The spin-vibration interaction induces spin-flip processes between the two energy levels of the dot. This interaction arises from the spin-orbit coupling or a magnetic field gradient. The inelastic vibration-assisted spin flips give rise to a mechanical damping and, for an applied bias voltage, to a steady nonequilibrium occupation of the harmonic oscillator. We analyze these effects as function of the energy-level separation of the dot and the magnetic polarization of the leads. Depending on the magnetic configuration and the bias-voltage polarity, we can strongly cool a single mode or pump energy into it. In the latter case, we find that within our approximation, the system approaches eventually a regime of mechanical instability. Furthermore, owing to the sensitivity of the electron transport to the spin orientation, we find signatures of the nanomechanical motion in the current-voltage characteristic. Hence, the vibrational state can be read out in transport measurements.

  14. Controlled calcite nucleation on polarized calcite single crystal substrates in the presence of polyacrylic acid

    NASA Astrophysics Data System (ADS)

    Wada, Norio; Horiuchi, Naohiro; Nakamura, Miho; Nozaki, Kosuke; Hiyama, Tetsuo; Nagai, Akiko; Yamashita, Kimihiro

    2015-04-01

    We studied theoretically and experimentally the effects of the surface electric field generated by polarization and polyacrylic acid (PAA) additives on the heterogeneous nucleation of calcite on the calcite single crystal substrates with (10.4), (10.0) and (00.1) orientations. A set of "in-situ" experiments with optical microscopy was performed to determine the waiting time of CaCO3 nucleation, defined as the time interval between the onset of the diffusion of CO2 and the appearance of the first visible precipitation. Calcite was nucleated on the oriented calcite substrates through diffusion of NH3 and CO2 gas from a solid ammonium carbonate into calcium chloride solutions. A theoretical analysis showed that the surface electric field of the polarized calcite substrate decrease the activation energy for nucleation and consequently promotes nucleation. Experimentally, the surface electric field and PAA addition were found to decrease both contact angles and waiting times, and as a result, promote the heterogeneous nucleation. Combined effect of PAA and surface electric field further reduced contact angles and waiting times regardless of orientation differences of the calcite substrates. The cooperation acts remarkably on N-surface of the respective calcite substrates. The results were explained by the Cassie's equation, a classical heterogeneous nucleation theory under a surface electric field, and matching of the charged sites on the PAA chain with the ion arrangement on the calcite substrate.

  15. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations

    DOE PAGES

    Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; Parshall, Daniel E.; Lynn, Jeffrey W.; Christianson, Andrew D.; Stonaha, Paul J.; Specht, Eliot D.; Budai, John D.

    2016-09-01

    Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarizationmore » rotations in relaxor-based ferroelectric PMN-xPT {(1 x)[Pb(Mg1/3Nb2/3)O3] xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.« less

  16. A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew.

    PubMed

    Matsuda, Yoshinori; Ikeda, Hiroki; Moriura, Nobuyuki; Tanaka, Norio; Shimizu, Kunihiko; Oichi, Wataru; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Higashi, Katsuhide; Toyoda, Hideyoshi

    2006-09-01

    ABSTRACT In an attempt to physically protect greenhouse tomato plants from the powdery mildew fungus Oidium neolycopersici, we developed a new electrostatic spore precipitator in which a copper wire conductor is linked to an electrostatic generator and covered with a transparent acrylic cylinder (insulator). The conductor was negatively charged by the generator, and the electrostatic field created by the conductor was used to dielectrically polarize the insulator cylinder. The dielectrically polarized cylinder also produced an electrostatic force without a spark discharge. This force was directly proportional to the potential applied to the conductor and was used to attract conidia of the pathogen. The efficacy of this spore precipitator in protecting hydroponically cultured tomato plants from powdery mildew was evaluated in the greenhouse. The hydroponic culture troughs were covered with a cubic frame installed with the spore precipitator, and the disease progress on precipitator-guarded and unguarded seedlings was traced after the conidia were disseminated mechanically from inoculum on tomato plants. Seedlings in the guarded troughs remained uninfected during the entire experiment, in spite of rapid spread of the disease to all leaves of the unguarded seedlings.

  17. Controllable fully spin-polarized transport in a ferromagnetically doped topological insulator junction

    SciTech Connect

    Zhou, Benliang; Tang, Dongsheng; Zhou, Guanghui; Zhou, Benhu

    2014-04-21

    We investigate the energy band structure and the spin-dependent transport for a normal/ferromagnetic/normal two-dimension topological insulator (TI) junction. By diagonalizing Hamiltonian for the system, the band structure shows that the edge states on two sides are coupled resulting in a gap opening due to the transverse spatial confinement. Further, the exchange field induced by magnetic impurities can also modulate the band structure with two spin degenerate bands splitting. By using the nonequilibrium Green's function method, the dependence of spin-dependent conductance and spin-polarization on the Fermi energy, the exchange field strength and the ferromagnetic TI (FTI) length are also analyzed, respectively. Interestingly, the degenerate conductance plateaus for spin-up and -down channels are broken, and both the conductances are suppressed by magnetic impurities due to the time-reversal symmetry broken and inelastic scattering. The spin-dependent conductance shows different behaviors when the Fermi energy is tuned into different ranges. Moreover, the conductance can be fully spin polarized by tuning the Fermi energy and the exchange field strength, or by tuning the Fermi energy and the FTI length. Consequently, the junction can transform from a quantum spin Hall state to a quantum anomalous Hall state, which is very important to enable dissipationless charge current for designing perfect spin filter.

  18. Transverse and polarization effects in index-guided vertical-cavity surface-emitting lasers

    SciTech Connect

    Torre, M. S.; Masoller, C.; Mandel, Paul

    2006-10-15

    We study numerically the polarization dynamics of vertical-cavity surface-emitting lasers (VCSEL's) operating in the fundamental transverse mode. We use an extension of the spin-flip model that not only accounts for the vector nature of the laser field, but also considers spatial transverse effects. The model assumes two orthogonal, linearly polarized fields, which are coupled to two carrier populations, associated with different spin sublevels of the conduction and valence bands in the quantum-well active region. Spatial effects are taken into account by considering transverse profiles for the two polarizations, for the two carrier populations, and for the carrier diffusion. The optical profile is the LP{sub 01} mode, suitable for describing index-guided VCSEL's with cylindrical symmetry emitting on the fundamental transverse mode for both polarizations. We find that in small-active-region VCSEL's, fast carrier diffusion induces self-sustained oscillations of the total laser output, which are not present in larger-area devices or with slow carrier diffusion. These self-pulsations appear close to threshold, and, as the injection current increases, they grow in amplitude; however, there is saturation and the self-pulsations disappear at higher injection levels. The dependence of the oscillation amplitude on various laser parameters is investigated, and the results are found to be in good qualitative agreement with those reported by Van der Sande et al. [Opt. Lett. 29, 53 (2004)], based on a rate-equation model that takes into account transverse inhomogeneities through an intensity-dependent confinement factor.

  19. Multimedia OC12 parallel interface using VCSEL array to achieve high-performance cost-effective optical interconnections

    NASA Astrophysics Data System (ADS)

    Chang, Edward S.

    1996-09-01

    The multimedia communication needs high-performance, cost- effective communication techniques to transport data for the fast-growing multimedia traffic resulting from the recent deployment of World Wide Web (WWW), media-on-demand , and other multimedia applications. To transport a large volume, of multimedia data, high-performance servers are required to perform media processing and transfer. Typically, the high- performance multimedia server is a massively parallel processor with a high number of I/O ports, high storage capacity, fast signal processing, and excellent cost- performance. The parallel I/O ports of the server are connected to multiple clients through a network switch which uses parallel links in both switch-to-server and switch-to- client connections. In addition to media processing and storage, media communication is also a major function of the multimedia system. Without a high-performance communication network, a high-performance server can not deliver its full capacity of service to clients. Fortunately, there are many advanced communication technologies developed for networking, which can be adopted by the multimedia communication to economically deliver the full capacity of a high-performance multimedia service to clients. The VCSEL array technology has been developed for gigabit-rate parallel optical interconnections because of its high bandwidth, small-size, and easy-fabrication advantages. Several firms are developing multifiber, low-skew, low-cost ribbon cables to transfer signals form a VCSEL array. The OC12 SONET data-rate is widely used by high-performance multimedia communications for its high-data-rate and cost- effectiveness. Therefore, the OC12 VCSEL parallel optical interconnection is the ideal technology to meet the high- performance low-cost requirements for delivering affordable multimedia services to mass users. This paper describes a multimedia OC12 parallel optical interconnection using a VCSEL array transceiver, a multifiber

  20. Performance analysis of communication links based on VCSEL and silicon photonics technology for high-capacity data-intensive scenario.

    PubMed

    Boletti, A; Boffi, P; Martelli, P; Ferrario, M; Martinelli, M

    2015-01-26

    To face the increased demand for bandwidth, cost-effectiveness and simplicity of future Ethernet data communications, a comparison between two different solutions based on directly-modulated VCSEL sources and Silicon Photonics technologies is carried out. Also by exploiting 4-PAM modulation, the transmission of 50-Gb/s and beyond capacity per channel is analyzed by means of BER performance. Applications for optical backplane, very short reach and in case of client-optics networks and intra and inter massive data centers communications (up to 10 km) are taken into account. A comparative analysis based on the power consumption is also proposed.

  1. The heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5 controls Caenorhabditis elegans Q neuroblast polarization during migration.

    PubMed

    Wang, Xiangming; Liu, Jianhong; Zhu, Zhiwen; Ou, Guangshuo

    2015-03-15

    Directional cell migration is fundamental for neural development, and extracellular factors are pivotal for this process. Heparan sulfate proteoglycans (HSPGs) that carry long chains of differentially modified sugar residues contribute to extracellular matrix; however, the functions of HSPG in guiding cell migration remain elusive. Here, we used the Caenorhabditis elegans mutant pool from the Million Mutation Project and isolated a mutant allele of the heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5. Loss-of-function of this enzyme resulted in defective Q neuroblast migration. We showed that hse-5 controlled Q cell migration in a cell non-autonomous manner. By performing live cell imaging in hse-5 mutant animals, we found that hse-5 controlled initial polarization during Q neuroblast migration. Furthermore, our genetic epistasis analysis demonstrated that lon-2 might act downstream of hse-5. Finally, rescue of the hse-5 mutant phenotype by expression of human and mouse hse-5 homologs suggested a conserved function for this gene in neural development. Taken together, our results indicated that proper HSPG modification in the extracellular matrix by HSE-5 is essential for neuroblast polarity during migration.

  2. Ferroelectric-Antiferroelectric Phase Control: Interplay Between Octahedral Tilt, Polarization, and Chemistry at BFO-LSMO Interfaces

    NASA Astrophysics Data System (ADS)

    Kim, Young-Min; Yu, Pu; Chu, Ying-Hao; Pennycook, Stephen; Kalinin, Sergei; Borisevich, Albina

    2012-02-01

    Atomically-defined interfaces between complex oxides offer a paradigm of novel electronic and coupled functionalities. Here, we report the stabilization of the ferroelectric and antiferroelectric phases at the BFO-LSMO interface though termination control and reveal associated atomic-scale mechanisms with the help of aberration-corrected scanning transmission electron microscopy combined with Electron Energy Loss Spectroscopy. The BFO thin film grown on MnO2-terminated surface of LSMO exhibits stabilized ferroelectric phase at the interface. The interfacial and bulk polarization are antiparallel, giving rise to head to head ferroelectric domain wall mostly parallel to the interface. In comparison, the film grown on (Sr,La)O-terminated surface of LSMO exhibits antiferroelectric phase in the vicinity of the interface, with associated ferroelectric-antiferroelectric domain wall in the bulk. Details of tilt and polarization behavior, as well as electronic properties at the interfaces including charged domain walls and FE-AFE walls, will be presented. These results imply that the structural parameters such as octahedral tilt and ferroelectricity in BFO can be directly controlled by modifying the interface structure.

  3. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities

    NASA Astrophysics Data System (ADS)

    Ikeda, K.; Miyazaki, H. T.; Kasaya, T.; Yamamoto, K.; Inoue, Y.; Fujimura, K.; Kanakugi, T.; Okada, M.; Hatade, K.; Kitagawa, S.

    2008-01-01

    We have demonstrated thermal emission of linearly polarized and narrow-band midinfrared waves from subwavelength gratings of narrow and deep rectangular cavities engraved on a Au surface. 100-nm-wide and 1000-nm-deep, high-aspect trenches were accurately manufactured by inversion from master molds. Organ pipe resonance of surface plasmons in the cavities exhibits a Lorentzian emission peak centered at 2.5-5.5μm. The maximum emittance reaches 0.90 and the peak width Δλ /λ is as narrow as 0.13-0.23. This simple emitter is expected to play a key role in the infrared sensing technologies for analyzing our environment.

  4. Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds

    NASA Astrophysics Data System (ADS)

    Duhm, Steffen; Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Haase, Anja; Johnson, Robert L.; Rabe, Jürgen P.; Koch, Norbert

    2009-01-01

    The impact of intramolecular polar bonds (IPBs) on the energy level alignment in layered systems of rodlike conjugated molecules standing on the substrate was investigated for pentacene (PEN) and perfluoropentacene (PFP) on SiO2 using ultraviolet photoelectron spectroscopy. A remarkably large energy offset of 1.75 eV was found between the highest occupied molecular orbital (HOMO) levels of PEN and PFP caused by IPBs at the surface of standing PFP layers. This large HOMO-level offset results in a narrow intermolecular energy gap of approximately 0.4 eV at the interface between PEN and PFP layers. However, the absence of significant spatial overlap of PEN and PFP electron wave functions across the layers suppresses interlayer optical transitions.

  5. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    PubMed Central

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-01-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc. PMID:26635228

  6. The Hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary.

    PubMed

    Lin, Tzu-Huai; Yeh, Tsung-Han; Wang, Tsu-Wei; Yu, Jenn-Yah

    2014-11-01

    The Hippo pathway is a key signaling cascade in controlling organ size. The core components of this pathway are two kinases, Hippo (Hpo) and Warts (Wts), and a transcriptional coactivator, Yorkie (Yki). Yes-associated protein (YAP, a Yki homolog in mammals) promotes epithelial-mesenchymal transition and cell migration in vitro. Here, we use border cells in the Drosophila ovary as a model to study Hippo pathway functions in cell migration in vivo. During oogenesis, polar cells secrete Unpaired (Upd), which activates JAK/STAT signaling of neighboring cells and specifies them into outer border cells. The outer border cells form a cluster with polar cells and undergo migration. We find that hpo and wts are required for migration of the border cell cluster. In outer border cells, overexpression of hpo disrupts polarization of the actin cytoskeleton and attenuates migration. In polar cells, knockdown of hpo and wts or overexpression of yki impairs border cell induction and disrupts migration. These manipulations in polar cells reduce JAK/STAT activity in outer border cells. Expression of upd-lacZ is increased and decreased in yki and hpo mutant polar cells, respectively. Furthermore, forced expression of upd in polar cells rescues defects of border cell induction and migration caused by wts knockdown. These results suggest that Yki negatively regulates border cell induction by inhibiting JAK/STAT signaling. Together, our data elucidate two distinct mechanisms of the Hippo pathway in controlling border cell migration: (1) in outer border cells, it regulates polarized distribution of the actin cytoskeleton; (2) in polar cells, it regulates upd expression to control border cell induction and migration.

  7. Issues of choice and control in the behaviour of a pair of captive polar bears (Ursus maritimus).

    PubMed

    Ross, Stephen R

    2006-07-01

    Stereotyped behaviour occurs in a wide variety of captive animals including ursids. The provision of animal control over aspects of their environment by providing choices is a critical element for improving welfare. The behaviour of two sibling polar bears at a metropolitan zoo was examined to investigate the effect of providing access to their indoor, off-exhibit holding space. Both bears demonstrated behavioural changes when given the choice to access their indoor dens including decreased stereotyped behaviours and increased social play. These results, although based on just two bears, provide additional support for the assertion that choice and control are closely tied to issues of well-being for captive animals. PMID:16687218

  8. Electro-optically generating and controlling right- and left-handed circularly polarized multiring modes of light beams.

    PubMed

    Zhu, Wenguo; She, Weilong

    2012-07-15

    We propose a simple method for generating and controlling right- and left-handed circularly polarized (RHP and LHP) multiring modes of light beams by means of Pockels effect in a single strontium barium niobate (SBN) crystal. The numerical results show that an LHP Laguerre-Gaussian LG(0l) beam, propagating along the optical axis of the crystal, will partly turn into an RHP vortex light field of order l+2. Moreover, a pair of the LHP and RHP components of the output light field is LG-like modes sharing an identically radial index, which is electro-optically controllable. The power ratio between these two components depends on the applied electric field and the mode of input beam.

  9. A novel adaptive controller for two-degree of freedom polar robot with unknown perturbations

    NASA Astrophysics Data System (ADS)

    Faieghi, Mohammad Reza; Delavari, Hadi; Baleanu, Dumitru

    2012-02-01

    In industrial applications, the performance of robot manipulators is always affected due to the presence of uncertainties and disturbances. This paper proposes a novel adaptive control scheme for robust control of robotic manipulators perturbed by unknown uncertainties and disturbances. First, an active sliding mode controller is designed and a sufficient condition is obtained guarantying reachability of the states to hit the sliding surface in finite time. Then, based on a Lyapunov function candidate an adaptive switching gain is derived which make the controller capable to bring the tracking error to zero without any disturbance exerted upon the stability. By virtue of this controller it can be shown that the controller can track the desired trajectories even in the presence of unknown perturbations. For the problem of determining the control parameters Particle Swarm Optimization (PSO) algorithm has been employed. Our theoretic achievements are verified by numerical simulations.

  10. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  11. Sea ice dynamics as a control for halogen deposition in polar regions

    NASA Astrophysics Data System (ADS)

    Spolaor, Andrea; Plane, John M. C.; Vallelonga, Paul; Gabrieli, Jacopo; Cozzi, Giulio; Turetta, Clara; Kohler, Jack; Isaksson, Elisabeth; Barbante, Carlo

    2013-04-01

    Bromine and iodine chemistry is extremely active at the sea ice margins of both polar regions, with enhanced concentrations of BrO and IO in the air column compared to the open ocean surface or snow-covered land. So-called "Bromine explosions" occur principally over first-year sea ice close to the sea ice edge, and are the major source of reactive bromine in the polar atmosphere. This results in an increase of bromide (Br-) deposited to the snowpack, compared with the Br-Na sea water mass ratio. The main source of iodine is phytoplankton, which colonize the underside of sea ice, producing iodocarbons and probably I2. Though it has been discovered that atmospheric iodine around Antarctica is produced from algae growing on the underside of the relatively thin/seasonal sea ice, satellite measurements do not show exceptional iodine activity above Arctic sea ice. However, in opposition to Antarctica, boundary layer observations show relatively small atmospheric IO concentrations downwind of ice-free open ocean, including leads and polynias. Analysis of bromine and iodine has been carried out in the Talos Dome ice core (Antarctica) which covers the last 215 ky, and in a shallow/firn core drilled at the summit of the Holtedahlfonna glacier (Northern Spitsbergen, Svalbard), covering the last 10 years. Talos Dome Br- is positively correlated with temperature and negatively correlated with sodium (Na). Based on the Br-/Na seawater ratio, bromide is depleted in the ice during glacial periods and enriched during interglacial periods. Total iodine, consisting of iodide (I-) and iodate (IO3-), peaks during glacials with lower values during interglacial periods. Although iodate is believed to be the most stable iodine species in atmospheric aerosols, it was present only in the ice core only during glacial maxima. Glacial-interglacial changes in the multi-year sea ice extent will almost certainly alter the distance between the sea ice edge and Antarctic plateau, which will

  12. Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity.

    PubMed

    Kee, Nigel; Wilson, Nicole; De Vries, Melissa; Bradford, DanaKai; Key, Brian; Cooper, Helen M

    2008-11-26

    In humans, neural tube closure defects occur in 1:1000 pregnancies. The design of new strategies for the prevention of such common defects would benefit from an improved understanding of the molecular events underlying neurulation. Neural fold elevation is a key morphological process that acts during neurulation to drive neural tube closure. However, to date, the molecular pathways underpinning neural fold elevation have not been elucidated. Here, we use morpholino knock-down technology to demonstrate that Repulsive Guidance Molecule (RGMa)-Neogenin interactions are essential for effective neural fold elevation during Xenopus neurulation and that loss of these molecules results in disrupted neural tube closure. We demonstrate that Neogenin and RGMa are required for establishing the morphology of deep layer cells in the neural plate throughout neurulation. We also show that loss of Neogenin severely disrupts the microtubule network within the deep layer cells suggesting that Neogenin-dependent microtubule organization within the deep cells is essential for radial intercalation with the overlying superficial cell layer, thereby driving neural fold elevation. In addition, we show that sustained Neogenin activity is also necessary for the establishment of the apicobasally polarized pseudostratified neuroepithelium of the neural tube. Therefore, our study identifies a novel signaling pathway essential for radial intercalation and epithelialization during neural fold elevation and neural tube morphogenesis.

  13. Design of Control Instrumentation of a 4 meter Variable Polarization Undulator (EPU)

    SciTech Connect

    Kulesza, Joe; Deyhim, Alex; Fan Taiching; Chen, Jenny

    2007-01-19

    The design of a high end, very sophisticated controller, that consists of an Allen Bradley ControlLogix PLC with a Kinetix servo controller for a 4.16 m EPU is presented. Four servo motors control the gap - 2 on the upper girder and 2 on the lower girder, and another 4 servos controls the phase - 2 on the upper girder inner and outer and 2 on the lower girder, inner and outer. This system is designed for The Taiwan Light Source (TLS) a synchrotron radiation machine of the National Synchrotron Radiation Research Center (NSRRC) at the energy of 1.5 GeV with electron beam current of 200 {approx} 400 mA.

  14. Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Wenping

    2016-02-01

    In this paper, we propose a new controlled quantum secure direct communication (CQSDC) protocol with single photons in both polarization and spatial-mode degrees of freedom. Based on the defined local collective unitary operations, the sender’s secret messages can be transmitted directly to the receiver through encoding secret messages on the particles. Only with the help of the third side, the receiver can reconstruct the secret messages. Each single photon in two degrees of freedom can carry two bits of information, so the cost of our protocol is less than others using entangled qubits. Moreover, the security of our QSDC network protocol is discussed comprehensively. It is shown that our new CQSDC protocol cannot only defend the outsider eavesdroppers’ several sorts of attacks but also the inside attacks. Besides, our protocol is feasible since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques.

  15. Ssp1 CaMKK: A Sensor of Actin Polarization That Controls Mitotic Commitment through Srk1 in Schizosaccharomyces pombe

    PubMed Central

    Giménez-Zaragoza, David; López-Avilés, Sandra; Yance-Chávez, Tula; Montserrat, Marta; Pujol, M. Jesús; Bachs, Oriol; Aligue, Rosa

    2015-01-01

    Background Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is required for diverse cellular functions. Mammalian CaMKK activates CaMKs and also the evolutionarily-conserved AMP-activated protein kinase (AMPK). The fission yeast Schizosaccharomyces pombe CaMKK, Ssp1, is required for tolerance to limited glucose through the AMPK, Ssp2, and for the integration of cell growth and division through the SAD kinase Cdr2. Results Here we report that Ssp1 controls the G2/M transition by regulating the activity of the CaMK Srk1. We show that inhibition of Cdc25 by Srk1 is regulated by Ssp1; and also that restoring growth polarity and actin localization of ssp1-deleted cells by removing the actin-monomer-binding protein, twinfilin, is sufficient to suppress the ssp1 phenotype. Conclusions These findings demonstrate that entry into mitosis is mediated by a network of proteins, including the Ssp1 and Srk1 kinases. Ssp1 connects the network of components that ensures proper polarity and cell size with the network of proteins that regulates Cdk1-cyclin B activity, in which Srk1 plays an inhibitory role. PMID:26575035

  16. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development

    PubMed Central

    Liu, Min; Li, Yajuan; Liu, Aiguo; Li, Ruifeng; Su, Ying; Du, Juan; Li, Cheng; Zhu, Alan Jian

    2016-01-01

    Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. DOI: http://dx.doi.org/10.7554/eLife.17200.001 PMID:27536874

  17. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  18. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  19. Probing photoelectron angular distributions in molecules with polarization-controlled two-color above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Leitner, Torsten; Taïeb, Richard; Meyer, Michael; Wernet, Philippe

    2015-06-01

    We present polarization-controlled multiphoton two-color above-threshold ionization (TCATI) of molecules. The intensity modulations of valence photoelectron intensities of molecules arising from varying the relative orientation of the linear polarization vectors of femtosecond infrared (IR) and vacuum-ultraviolet (VUV) radiation in TCATI of the highest occupied molecular orbitals of H2O , O2, and N2 are reported. The results on the molecular systems are compared to the 3 p photoionization of atomic Ar, which serves as a reference system. Modeling the large differences of the modulation amplitudes within the soft-photon approximation enables us to extract the one-photon-ionization anisotropy parameter β2. Accounting only for the first sideband due to two-photon TCATI by one VUV and one IR photon we find satisfactory agreement between experiment and simulation for H2O and O2. However, the model fails for N2 and possible reasons are discussed. We discuss that the described approach may represent an alternative way of determining photoelectron angular distributions from valence shells of molecules and indicate future directions for modeling TCATI of molecules.

  20. Highly efficient active optical interconnect incorporating a partially chlorinated ribbon POF in conjunction with a visible VCSEL.

    PubMed

    Lee, Hak-Soon; Lee, Sang-Shin; Kim, Bong-Seok; Son, Yung-Sung

    2014-05-19

    A low-loss 4-ch active optical interconnect (AOI) enabling passive alignment was proposed and built resorting to a transmitter (Tx) incorporating a red 680-nm VCSEL, which is linked to a receiver (Rx) module via a partially chlorinated ribbon POF. The POF was observed to exhibit an extremely low loss of ~0.24 dB/m at λ = 680 nm, in comparison to ~1.29 dB/m at λ = 850 nm, and a large numerical aperture of ~0.42. Both the Tx and Rx, which taps into a beam router based on collimated beam optics involving a pair of spherical lenses, were meant to be substantially alignment tolerant and compact. The achieved tolerance for the constructed modules was beyond 40 μm in terms of the positioning of VCSEL and photodetector. The proposed AOI was completed by linking the Tx with the Rx via a 3-m long ribbon POF, incurring a transmission loss of as small as 3.2 dB. The AOI was practically assessed in terms of a high-speed data transmission over a wide range of temperatures and then exploited to convey full HD video signals.

  1. 0.52-11.86 Gbit/s OFDM modulation for power-sharing VLC transmission by using VCSEL laser.

    PubMed

    Yeh, Chien-Hung; Lu, I-Cheng

    2016-09-01

    In this paper, we propose employing a 682 nm vertical-cavity surface-emitting laser (VCSEL) with 1 GHz bandwidth for high-speed and power-sharing wireless visible light communication (VLC) in the different transmission distances of 2 to 5 m. In the measurement, the data rate of 0.52 to 11.86 Gbit/s (0.44 to 10.8 Gbit/s in a net data rate) can be achieved by using spectral-efficient orthogonal frequency division multiplexing (OFDM) modulation with bit-loading algorithm. Therefore, 4- to 256-quadrature amplitude modulations (QAMs) are employed simultaneously in the modulation bandwidth for VCSEL-based VLC. The proposed power-sharing VLC system can be divided to four end-users, when three beam splitters (BSs) are used simultaneously. Moreover, all of the measured bit error rates (BERs) are below the forward error correction (FEC) threshold (BER = 3.8 × 10-3). PMID:27607714

  2. Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems.

    PubMed

    Hugues-Salas, E; Giddings, R P; Jin, X Q; Wei, J L; Zheng, X; Hong, Y; Shu, C; Tang, J M

    2011-02-14

    The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.

  3. Interpreting shadows: Arms control and defense planning in a rapidly changing multi-polar world

    SciTech Connect

    King, D.R.

    1999-06-01

    The focus of arms control is changing. It now deals with issues affecting all nations and not just the super powers. A new framework for approaching non-proliferation of weapons of mass destruction and arms control could focus on a two-fold policy initiative. The first policy would be a new strategic `triad` built around conventional capability including rapidly deployable forces, regional ballistic missile defense, and long-range precision-strike capability. The second policy would employ an information strategy using the current diplomatic initiatives that appear to be the most productive, or unilateral and multilateral export controls, military assistance in the form of infrastructure, and confidence building measures. Continued success in arms control requires abandoning Cold War policies. Emerging policies will need to appreciate different world views. Good intelligence will be a key factor in the success of any policy orientation and its implementation. The focus needs to change from arms control involving the superpowers to arms control involving everyone.

  4. Polarization-controlled TIRFM with focal drift and spatial field intensity correction.

    PubMed

    Johnson, Daniel S; Toledo-Crow, Ricardo; Mattheyses, Alexa L; Simon, Sanford M

    2014-03-01

    Total internal reflection fluorescence microscopy (TIRFM) is becoming an increasingly common methodology to narrow the illumination excitation thickness to study cellular process such as exocytosis, endocytosis, and membrane dynamics. It is also frequently used as a method to improve signal/noise in other techniques such as in vitro single-molecule imaging, stochastic optical reconstruction microscopy/photoactivated localization microscopy imaging, and fluorescence resonance energy transfer imaging. The unique illumination geometry of TIRFM also enables a distinct method to create an excitation field for selectively exciting fluorophores that are aligned either parallel or perpendicular to the optical axis. This selectivity has been used to study orientation of cell membranes and cellular proteins. Unfortunately, the coherent nature of laser light, the typical excitation source in TIRFM, often creates spatial interference fringes across the illuminated area. These fringes are particularly problematic when imaging large cellular areas or when accurate quantification is necessary. Methods have been developed to minimize these fringes by modulating the TIRFM field during a frame capture period; however, these approaches eliminate the possibility to simultaneously excite with a specific polarization. A new, to our knowledge, technique is presented, which compensates for spatial fringes while simultaneously permitting rapid image acquisition of both parallel and perpendicular excitation directions in ~25 ms. In addition, a back reflection detection scheme was developed that enables quick and accurate alignment of the excitation laser. The detector also facilitates focus drift compensation, a common problem in TIRFM due to the narrow excitation depth, particularly when imaging over long time courses or when using a perfusion flow chamber. The capabilities of this instrument were demonstrated by imaging membrane orientation using DiO on live cells and on lipid bilayers

  5. Polarization-Controlled TIRFM with Focal Drift and Spatial Field Intensity Correction

    PubMed Central

    Johnson, Daniel S.; Toledo-Crow, Ricardo; Mattheyses, Alexa L.; Simon, Sanford M.

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) is becoming an increasingly common methodology to narrow the illumination excitation thickness to study cellular process such as exocytosis, endocytosis, and membrane dynamics. It is also frequently used as a method to improve signal/noise in other techniques such as in vitro single-molecule imaging, stochastic optical reconstruction microscopy/photoactivated localization microscopy imaging, and fluorescence resonance energy transfer imaging. The unique illumination geometry of TIRFM also enables a distinct method to create an excitation field for selectively exciting fluorophores that are aligned either parallel or perpendicular to the optical axis. This selectivity has been used to study orientation of cell membranes and cellular proteins. Unfortunately, the coherent nature of laser light, the typical excitation source in TIRFM, often creates spatial interference fringes across the illuminated area. These fringes are particularly problematic when imaging large cellular areas or when accurate quantification is necessary. Methods have been developed to minimize these fringes by modulating the TIRFM field during a frame capture period; however, these approaches eliminate the possibility to simultaneously excite with a specific polarization. A new, to our knowledge, technique is presented, which compensates for spatial fringes while simultaneously permitting rapid image acquisition of both parallel and perpendicular excitation directions in ∼25 ms. In addition, a back reflection detection scheme was developed that enables quick and accurate alignment of the excitation laser. The detector also facilitates focus drift compensation, a common problem in TIRFM due to the narrow excitation depth, particularly when imaging over long time courses or when using a perfusion flow chamber. The capabilities of this instrument were demonstrated by imaging membrane orientation using DiO on live cells and on lipid

  6. Electric- and exchange-field controlled transport through silicene barriers: Conductance gap and near-perfect spin polarization

    SciTech Connect

    Vargiamidis, V.; Vasilopoulos, P.

    2014-12-01

    We study ballistic electron transport through silicene barriers, of width d and height U, in the presence of an exchange field M and a normal electric field E{sub z}. Away from the Dirac point (DP), the spin- and valley-resolved conductances, as functions of U, exhibit resonances while close to it there is a pronounced dip that can be transformed into a transport gap by varying E{sub z}. The charge conductance g{sub c} changes from oscillatory to a monotonically decreasing function of d beyond a critical E{sub z} and this can be used to realize electric-field-controlled switching. Further, the field M splits each resonance of g{sub c} into two spin-resolved peaks. The spin polarization near the DP increases with E{sub z} or M and becomes nearly perfect above certain of their values. Similar results hold for double barriers.

  7. Anisotropic alignment of a nematic liquid crystal controlled by a polarization sensitive Langmuir-Blodgett command layer

    NASA Astrophysics Data System (ADS)

    Sekkat, Z.; Büchel, M.; Orendi, H.; Knobloch, H.; Seki, T.; Ito, S.; Koberstein, J.; Knoll, W.

    1994-10-01

    We investigate the homeotropic⇔planar switching in the alignment of a nematic liquid crystal (LC) controlled by Langmuir-Blodgett command layers of polymer containing photochromic azobenzene molecules in the side chain. Waveguide spectroscopy is used to probe the changes in the optical properties of the LC induced by the cis ⇹ trans photoisomerization of the azobenzene units. This optical method provides a high sensitivity for studying the orientation of the LC both within and perpendicular to the plane of waveguide cell. The study of the dynamics of the switching induced by polarized uv light shows that initially the LC molecules follow the movement of the azobenzene units but that eventually they align with the dipping direction. An explanation for this effect based on the movement of the azobenzene units themselves is proposed.

  8. High-contrast coherent population trapping based on crossed polarizers method.

    PubMed

    Yano, Yuichiro; Goka, Shigeyoshi

    2014-12-01

    A method based on crossed polarizers to observe high-contrast coherent population trapping (CPT) resonance has been developed. Because crossed polarizers have a simple optical system, our method is suitable for chip-scale atomic clocks (CSACs). In CPT, the Faraday rotation in a linearly polarized light field (lin||lin) was calculated using two pairs of Λ-system models; the spectrum of the Faraday rotation is also estimated. After measuring the contrast and linewidth with the crossed-polarizer method, a comparison of the theoretical model and experimental data showed they were in good agreement. Moreover, the experimental results showed that a high contrast (88.4%) and narrow linewidth (1.15 kHz) resonance could be observed using a Cs gas cell and D1-line verticalcavity surface-emitting laser (VCSEL). PMID:25474771

  9. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  10. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-09-02

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms.

  11. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  12. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos.

    PubMed

    Hirate, Yoshikazu; Hirahara, Shino; Inoue, Ken-Ichi; Kiyonari, Hiroshi; Niwa, Hiroshi; Sasaki, Hiroshi

    2015-10-01

    In preimplantation mouse embryos, the Hippo signaling pathway plays a central role in regulating the fates of the trophectoderm (TE) and the inner cell mass (ICM). In early blastocysts with more than 32 cells, the Par-aPKC system controls polarization of the outer cells along the apicobasal axis, and cell polarity suppresses Hippo signaling. Inactivation of Hippo signaling promotes nuclear accumulation of a coactivator protein, Yap, leading to induction of TE-specific genes. However, whether similar mechanisms operate at earlier stages is not known. Here, we show that slightly different mechanisms operate in 16-cell stage embryos. Similar to 32-cell stage embryos, disruption of the Par-aPKC system activated Hippo signaling and suppressed nuclear Yap and Cdx2 expression in the outer cells. However, unlike 32-cell stage embryos, 16-cell stage embryos with a disrupted Par-aPKC system maintained apical localization of phosphorylated Ezrin/Radixin/Moesin (p-ERM), and the effects on Yap and Cdx2 were weak. Furthermore, normal 16-cell stage embryos often contained apolar cells in the outer position. In these cells, the Hippo pathway was strongly activated and Yap was excluded from the nuclei, thus resembling inner cells. Dissociated blastomeres of 8-cell stage embryos form polar-apolar couplets, which exhibit different levels of nuclear Yap, and the polar cell engulfed the apolar cell. These results suggest that cell polarization at the 16-cell stage is regulated by both Par-aPKC-dependent and -independent mechanisms. Asymmetric cell division is involved in cell polarity control, and cell polarity regulates cell positioning and most likely controls Hippo signaling.

  13. A 14 × 14 μm(2) footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide.

    PubMed

    Wang, S M; Cheng, Q Q; Gong, Y X; Xu, P; Sun, C; Li, L; Li, T; Zhu, S N

    2016-01-01

    Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm(2). The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits. PMID:27142992

  14. A 14 × 14 μm(2) footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide.

    PubMed

    Wang, S M; Cheng, Q Q; Gong, Y X; Xu, P; Sun, C; Li, L; Li, T; Zhu, S N

    2016-01-01

    Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm(2). The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits.

  15. A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide

    PubMed Central

    Wang, S. M.; Cheng, Q. Q.; Gong, Y. X.; Xu, P.; Sun, C.; Li, L.; Li, T.; Zhu, S. N.

    2016-01-01

    Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm2. The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits. PMID:27142992

  16. A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Cheng, Q. Q.; Gong, Y. X.; Xu, P.; Sun, C.; Li, L.; Li, T.; Zhu, S. N.

    2016-05-01

    Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm2. The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits.

  17. Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: Evidence from intact polar membrane lipids

    NASA Astrophysics Data System (ADS)

    Rossel, Pamela E.; Elvert, Marcus; Ramette, Alban; Boetius, Antje; Hinrichs, Kai-Uwe

    2011-01-01

    Three distinct types of microbial consortia appear to mediate the anaerobic oxidation of methane with sulfate as electron acceptor in marine sediments and are distributed ubiquitously. These consortia consist of ANerobic MEthanotrophic (ANME) archaea of the ANME-1, ANME-2 and ANME-3 clades and their sulfate-reducing bacterial partners either of the Desulfosarcina- Desulfococcus (ANME-1/DSS and ANME-2/DSS) or Desulfobulbus spp. (ANME-3/DBB) branches. Frequently one consortium type dominates the community, but the selective factors are not well constrained. Here we analyzed patterns in the composition of intact polar lipids extracted from bacterial and archaeal communities of different marine seep environments. Further, we investigated if different environmental and geographical factors were responsible for the observed patterns, and hence could be important in the selection of seep communities. Intact polar lipids (IPLs) provide a more robust distinction of the composition of extant communities than their less polar derivatives. In ANME-1/DSS-dominated communities, glycosidic- and phospho-glyceroldialkylglyceroltetraethers were abundant, while ANME-2/DSS and ANME-3/DBB-dominated communities showed abundant archaeol-based IPLs, either with glycosidic and phospho-headgroups or only phospho-headgroups, respectively. The relative proportion of bacterial IPLs varied widely from 0% to 93% and was generally lower in samples of the ANME-1 type, suggesting lower bacterial biomasses in the respective communities. In addition to these lipid signatures, distinctive features were related to the habitat characteristics of these communities: lower amounts of phosphate-based IPLs were generally observed in communities from calcified microbial mats compared to sediments, which may reflect phosphate limitation. Based on statistical analyses of IPLs and environmental data this study constrained for the first time the occurrence of three environmental factors controlling the

  18. Rectilinear lattices of polarization vortices with various spatial polarization distributions.

    PubMed

    Fu, Shiyao; Zhang, Shikun; Wang, Tonglu; Gao, Chunqing

    2016-08-01

    In this paper, we propose a type of rectilinear lattices of polarization vortices, each spot in which has mutually independent, and controllable spatial polarization distributions. The lattices are generated by two holograms under special design. In the experiment, the holograms are encoded on two spatial light modulators, and the results fit very well with theory. Our scheme makes it possible to generate multiple polarization vortices with various polarization distributions simultaneously, for instance, radially and azimuthally polarized beams, and can be used in the domains as polarization-based data transmission system, optical manufacture, polarization detection and so on. PMID:27505812

  19. Controlling spin polarization of a quantum dot via a helical edge state

    NASA Astrophysics Data System (ADS)

    Probst, Benedikt; Virtanen, Pauli; Recher, Patrik

    2015-07-01

    We investigate a Zeeman-split quantum dot (QD) containing a single spin 1 /2 weakly coupled to a helical Luttinger liquid (HLL) within a generalized master equation approach. The HLL induces a tunable magnetization direction on the QD controlled by an applied bias voltage when the quantization axes of the QD and the HLL are noncollinear. The backscattering conductance (BSC) in the HLL is finite and shows a resonance feature when the bias voltage equals the Zeeman energy in magnitude. The observed BSC asymmetry in bias voltage directly reflects the quantization axis of the HLL spin.

  20. Preservation and control of the proton and deuteron polarizations in the proposed electron-ion collider at Jefferson Lab

    SciTech Connect

    Kondratenko, Anatoliy; Derbenev, Yaroslav S.; Filatov, Yury; Lin, Fanglei; Morozov, Vasiliy; Kondratenko, M. A.; Zhang, Yuhong

    2014-01-01

    We propose a scheme of preserving the proton and deuteron beam polarizations during acceleration and storage in the proposed electron-ion collider at Jefferson Lab. This scheme allows one to provide both the longitudinal and transverse polarization orientations of the proton and deuteron beams at the interaction points of the figure-8 ion collider ring. We discuss questions of matching the polarization direction at all stages of the beam transport including the pre-booster, large booster and ion collider ring.

  1. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  2. In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching

    SciTech Connect

    Liu, Weimin; Wang, Liang; Fang, Chong

    2014-03-17

    All-optical switching has myriad applications in optoelectronics, optical communications, and quantum information technology. To achieve ultrafast optical switching in a compact yet versatile setup, we demonstrate distinct sets of two-dimensional (2D) broadband up-converted multicolor arrays (BUMAs) in a thin type-I β-barium-borate crystal with two noncollinear near-IR femtosecond pulses at various phase-matching conditions. The unique interaction mechanism is revealed as quadratic spatial solitons (QSSs)-coupled cascaded four-wave mixing (CFWM), corroborated by numerical calculations of the governing phase-matching conditions. Broad and continuous spectral-spatial tunability of the 2D BUMAs are achieved by varying the time delay between the two incident pulses that undergo CFWM interaction, rooted in the chirped nature of the weak white light and the QSSs generation of the intense fundamental beam. The control of 2D BUMAs is accomplished via seeding a weak second-harmonic pulse in situ to suppress the 2D arrays with polarization dependence on the femtosecond timescale that matches the control pulse duration of ∼35 fs. A potential application is proposed on femtosecond all-optical switching in an integrated wavelength-time division multiplexing device.

  3. Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods.

    PubMed

    Bujak, Ł; Olejnik, M; Brotosudarmo, T H P; Schmidt, M K; Czechowski, N; Piatkowski, D; Aizpurua, J; Cogdell, R J; Heiss, W; Mackowski, S

    2014-05-21

    Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods.

  4. Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI

    NASA Technical Reports Server (NTRS)

    Marks, David A.; Wolff, David B.; Carey, Lawrence D.; Tokay, Ali

    2010-01-01

    Weather radars, recording information about precipitation around the globe, will soon be significantly upgraded. Most of today s weather radars transmit and receive microwave energy with horizontal orientation only, but upgraded systems have the capability to send and receive both horizontally and vertically oriented waves. These enhanced "dual-polarimetric" (DP) radars peer into precipitation and provide information on the size, shape, phase (liquid / frozen), and concentration of the falling particles (termed hydrometeors). This information is valuable for improved rain rate estimates, and for providing data on the release and absorption of heat in the atmosphere from condensation and evaporation (phase changes). The heating profiles in the atmosphere influence global circulation, and are a vital component in studies of Earth s changing climate. However, to provide the most accurate interpretation of radar data, the radar must be properly calibrated and data must be quality controlled (cleaned) to remove non-precipitation artifacts; both of which are challenging tasks for today s weather radar. The DP capability maximizes performance of these procedures using properties of the observed precipitation. In a notable paper published in 2005, scientists from the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at the University of Oklahoma developed a method to calibrate radars using statistically averaged DP measurements within light rain. An additional publication by one of the same scientists at the National Severe Storms Laboratory (NSSL) in Norman, Oklahoma introduced several techniques to perform quality control of radar data using DP measurements. Following their lead, the Topical Rainfall Measuring Mission (TRMM) Satellite Validation Office at NASA s Goddard Space Flight Center has fine-tuned these methods for specific application to the weather radar at Kwajalein Island in the Republic of the Marshall Islands, approximately 2100 miles

  5. The VCSEL-based array optical transmitter (ATx) development towards 120-Gbps link for collider detector: development update

    NASA Astrophysics Data System (ADS)

    Guo, D.; Liu, C.; Chen, J.; Chramowicz, J.; Gong, D.; Hou, S.; Huang, D.; Jin, G.; Li, X.; Liu, T.; Prosser, A.; Teng, P. K.; Ye, J.; Zhou, Y.; You, Y.; Xiang, A. C.; Liang, H.

    2015-01-01

    A compact radiation-tolerant array optical transmitter module (ATx) is developed to provide data transmission up to 10Gbps per channel with 12 parallel channels for collider detector applications. The ATx integrates a Vertical Cavity Surface-Emitting Laser (VCSEL) array and driver circuitry for electrical to optical conversion, an edge warp substrate for the electrical interface and a micro-lens array for the optical interface. This paper reports the continuing development of the ATx custom package. A simple, high-accuracy and reliable active-alignment method for the optical coupling is introduced. The radiation-resistance of the optoelectronic components is evaluated and the inclusion of a custom-designed array driver is discussed.

  6. Real-time, continuous, fluorescence sensing in a freely-moving subject with an implanted hybrid VCSEL/CMOS biosensor

    PubMed Central

    O’Sullivan, Thomas D.; Heitz, Roxana T.; Parashurama, Natesh; Barkin, David B.; Wooley, Bruce A.; Gambhir, Sanjiv S.; Harris, James S.; Levi, Ofer

    2013-01-01

    Performance improvements in instrumentation for optical imaging have contributed greatly to molecular imaging in living subjects. In order to advance molecular imaging in freely moving, untethered subjects, we designed a miniature vertical-cavity surface-emitting laser (VCSEL)-based biosensor measuring 1cm3 and weighing 0.7g that accurately detects both fluorophore and tumor-targeted molecular probes in small animals. We integrated a critical enabling component, a complementary metal-oxide semiconductor (CMOS) read-out integrated circuit, which digitized the fluorescence signal to achieve autofluorescence-limited sensitivity. After surgical implantation of the lightweight sensor for two weeks, we obtained continuous and dynamic fluorophore measurements while the subject was un-anesthetized and mobile. The technology demonstrated here represents a critical step in the path toward untethered optical sensing using an integrated optoelectronic implant. PMID:24009996

  7. Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors

    DOE PAGES

    Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; Susner, Michael A.; McGuire, Michael A.; Joy, David; Jesse, Stephen; Rondinone, Adam J.; Kalinin, Sergei V.; Ovchinnikova, Olga S.

    2016-02-23

    Rapid advanced in nanoscience rely on continuous improvements of matter manipulation at near atomic scales. Currently, well characterized, robust, resist-based lithography carries the brunt of the nanofabrication process. However, use of local electron, ion and physical probe methods is also expanding, driven largely by their ability to fabricate without the multi-step preparation processes that can result in contamination from resists and solvents. Furthermore, probe based methods extend beyond nanofabrication to nanomanipulation and imaging, vital ingredients to rapid transition to prototyping and testing of layered 2D heterostructured devices. In this work we demonstrate that helium ion interaction, in a Helium Ionmore » Microscope (HIM), with the surface of bulk copper indium thiophosphate CuMIIIP2X6 (M = Cr, In; X= S, Se), (CITP) results in the control of ferroelectric domains, and growth of cylindrical nanostructures with enhanced conductivity; with material volumes scaling with the dosage of the beam. The nanostructures are oxygen rich, sulfur poor, and with the copper concentration virtually unchanged as confirmed by Energy Dispersive X-ray (EDX). Scanning Electron Microscopy (SEM) imaging contrast as well as Scanning Microwave Microscopy (SMM) measurements suggest enhanced conductivity in the formed particle, whereas Atomic Force Microscopy (AFM) measurements indicate that the produced structures have lower dissipation and a lower Young s modulus.« less

  8. Profilin Regulates Apical Actin Polymerization to Control Polarized Pollen Tube Growth.

    PubMed

    Liu, Xiaonan; Qu, Xiaolu; Jiang, Yuxiang; Chang, Ming; Zhang, Ruihui; Wu, Youjun; Fu, Ying; Huang, Shanjin

    2015-12-01

    Pollen tube growth is an essential step during flowering plant reproduction, whose growth depends on a population of dynamic apical actin filaments. Apical actin filaments were thought to be involved in the regulation of vesicle fusion and targeting in the pollen tube. However, the molecular mechanisms that regulate the construction of apical actin structures in the pollen tube remain largely unclear. Here, we identify profilin as an important player in the regulation of actin polymerization at the apical membrane in the pollen tube. Downregulation of profilin decreased the amount of filamentous actin and induced disorganization of apical actin filaments, and reduced tip-directed vesicle transport and accumulation in the pollen tube. Direct visualization of actin dynamics revealed that the elongation of actin filaments originating at the apical membrane decreased in profilin mutant pollen tubes. Mutant profilin that is defective in binding poly-L-proline only partially rescues the actin polymerization defect in profilin mutant pollen tubes, although it fully rescues the actin turnover phenotype. We propose that profilin controls the construction of actin structures at the pollen tube tip, presumably by favoring formin-mediated actin polymerization at the apical membrane.

  9. Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors.

    PubMed

    Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; Susner, Michael A; McGuire, Michael A; Joy, David; Jesse, Stephen; Rondinone, Adam J; Kalinin, Sergei V; Ovchinnikova, Olga S

    2016-03-23

    Rapid advances in nanoscience rely on continuous improvements of material manipulation at near-atomic scales. Currently, the workhorse of nanofabrication is resist-based lithography and its various derivatives. However, the use of local electron, ion, and physical probe methods is expanding, driven largely by the need for fabrication without the multistep preparation processes that can result in contamination from resists and solvents. Furthermore, probe-based methods extend beyond nanofabrication to nanomanipulation and to imaging which are all vital for a rapid transition to the prototyping and testing of devices. In this work we study helium ion interactions with the surface of bulk copper indium thiophosphate CuM(III)P2X6 (M = Cr, In; X= S, Se), a novel layered 2D material, with a Helium Ion Microscope (HIM). Using this technique, we are able to control ferrielectric domains and grow conical nanostructures with enhanced conductivity whose material volumes scale with the beam dosage. Compared to the copper indium thiophosphate (CITP) from which they grow, the nanostructures are oxygen rich, sulfur poor, and with virtually unchanged copper concentration as confirmed by energy-dispersive X-ray spectroscopy (EDX). Scanning electron microscopy (SEM) imaging contrast as well as scanning microwave microscopy (SMM) measurements suggest enhanced conductivity in the formed particles, whereas atomic force microscopy (AFM) measurements indicate that the produced structures have lower dissipation and are softer as compared to the CITP.

  10. The ecological controls on the prevalence of candidate division TM7 in polar regions

    PubMed Central

    Winsley, Tristrom J.; Snape, Ian; McKinlay, John; Stark, Jonny; van Dorst, Josie M.; Ji, Mukan; Ferrari, Belinda C.; Siciliano, Steven D.

    2014-01-01

    The candidate division TM7 is ubiquitous and yet uncultured phylum of the Bacteria that encompasses a commonly environmental associated clade, TM7-1, and a “host-associated” clade, TM7-3. However, as members of the TM7 phylum have not been cultured, little is known about what differs between these two clades. We hypothesized that these clades would have different environmental niches. To test this, we used a large-scale global soil dataset, encompassing 223 soil samples, their environmental parameters and associated bacterial 16S rRNA gene sequence data. We correlated chemical, physical and biological parameters of each soil with the relative abundance of the two major classes of the phylum to deduce factors that influence the groups' seemingly ubiquitous nature. The two classes of the phylum (TM7-1 and TM7-3) were indeed distinct from each other in their habitat requirements. A key determinant of each class' prevalence appears to be the pH of the soil. The class TM7-1 displays a facultative anaerobic nature with correlations to more acidic soils with total iron, silicon, titanium and copper indicating a potential for siderophore production. However, the TM7-3 class shows a more classical oligotrophic, heterotroph nature with a preference for more alkaline soils, and a probable pathogenic role with correlations to extractable iron, sodium and phosphate. In addition, the TM7-3 was abundant in diesel contaminated soils highlighting a resilient nature along with a possible carbon source. In addition to this both classes had unique co-occurrence relationships with other bacterial phyla. In particular, both groups had opposing correlations to the Gemmatimonadetes phylum, with the TM7-3 class seemingly being outcompeted by this phylum to result in a negative correlation. These ecological controls allow the characteristics of a TM7 phylum preferred niche to be defined and give insight into possible avenues for cultivation of this previously uncultured group. PMID

  11. Solar wind density controlling penetration electric field at the equatorial ionosphere during a saturation of cross polar cap potential

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Wan, W.; Zhao, B.; Hong, M.; Ridley, A.; Ren, Z.; Fraenz, M.; Dubinin, E.; He, M.

    2012-09-01

    The most important source of electrodynamic disturbances in the equatorial ionosphere during the main phase of a storm is the prompt penetration electric field (PPEF) originating from the high-latitude region. It has been known that such an electric field is correlated with the magnetospheric convection or interplanetary electric field. Here we show a unique case, in which the electric field disturbance in the equatorial ionosphere cannot be interpreted by this concept. During the superstorm on Nov. 20-21, 2003, the cross polar cap potential (CPCP) saturated at least for 8.2 h. The CPCP reconstructed by Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure suggested that the PPEF at the equatorial ionosphere still correlated with the saturated CPCP, but the CPCP was controlled by the solar wind density instead of the interplanetary electric field. However, the predicted CPCPs by Hill-Siscoe-Ober (HSO) model and Boyle-Ridley (BR) model were not fully consistent with the AMIE result and PPEF. The PPEF also decoupled from the convection electric field in the magnetotail. Due to the decoupling, the electric field in the ring current was not able to comply with the variations of PPEF, and this resulted in a long-duration electric field penetration without shielding.

  12. Polarization properties and disorder effects in H{sub 3} photonic crystal cavities incorporating site-controlled, high-symmetry quantum dot arrays

    SciTech Connect

    Surrente, Alessandro; Felici, Marco; Gallo, Pascal; Dwir, Benjamin; Rudra, Alok; Kapon, Eli; Biasiol, Giorgio

    2015-07-20

    We report on the effects of optical disorder on breaking the symmetry of the cavity modes of H{sub 3} photonic crystal cavities incorporating site-controlled pyramidal quantum dots (QDs) as the internal light source. The high in-plane symmetry of the polarization states of the pyramidal QDs simplifies the analysis of the polarization states of the H{sub 3} cavities. It is shown that the optical disorder induced by fabrication imperfections lifts the degeneracy of the two quadrupole cavity modes and tilts the elongation axes of the cavity mode patterns with respect to the ideal, hexagonal symmetry case. These results are useful for designing QD-cavity structures for polarization-entangled photon sources and few-QD lasers.

  13. d-PET-controlled “off-on” Polarity-sensitive Probes for Reporting Local Hydrophilicity within Lysosomes

    PubMed Central

    Zhu, Hao; Fan, Jiangli; Mu, Huiying; Zhu, Tao; Zhang, Zhen; Du, Jianjun; Peng, Xiaojun

    2016-01-01

    Polarity-sensitive fluorescent probes are powerful chemical tools for studying biomolecular structures and activities both in vitro and in vivo. However, the lack of “off-on” polarity-sensing probes has limited the accurate monitoring of biological processes that involve an increase in local hydrophilicity. Here, we design and synthesize a series of “off-on” polarity-sensitive fluorescent probes BP series consisting of the difluoroboron dippyomethene (BODIPY) fluorophore connected to a quaternary ammonium moiety via different carbon linkers. All these probes showed low fluorescence quantum yields in nonpolar solution but became highly fluorescent in polar media. BP-2, which contains a two-carbon linker and a trimethyl quaternary ammonium, displayed a fluorescence intensity and quantum yield that were both linearly correlated with solvent polarity. In addition, BP-2 exhibited high sensitivity and selectivity for polarity over other environmental factors and a variety of biologically relevant species. BP-2 can be synthesized readily via an unusual Mannich reaction followed by methylation. Using electrochemistry combined with theoretical calculations, we demonstrated that the “off-on” sensing behavior of BP-2 is primarily due to the polarity-dependent donor-excited photoinduced electron transfer (d-PET) effect. Live-cell imaging established that BP-2 enables the detection of local hydrophilicity within lysosomes under conditions of lysosomal dysfunction. PMID:27767190

  14. Spin-glass behaviors in carrier polarity controlled Fe3-xTixO4 semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Yamahara, H.; Seki, M.; Adachi, M.; Takahashi, M.; Nasu, H.; Horiba, K.; Kumigashira, H.; Tabata, H.

    2015-08-01

    Carrier-type control of spin-glass (cluster spin-glass) is studied in order to engineer basic magnetic semiconductor elements using the memory functions of spin-glass. A key of carrier-polarity control in magnetite is the valence engineering between Fe(II) and Fe(III) that is achieved by Ti(IV) substitution. Single phases of (001)-oriented Fe3-xTixO4 thin films have been obtained on spinel MgAl2O4 substrates by pulsed laser deposition. Thermoelectric power measurements reveal that Ti-rich films (x = 0.8) show p-type conduction, while Ti-poor films (x = 0.6-0.75) show n-type conduction. The systematic Fe(III) reduction to Fe(II) followed by Ti(IV) substitution in the octahedral sublattice is confirmed by the X-ray absorption spectra. All of the Fe3-xTixO4 films (x = 0.6-0.8) exhibit ferrimagnetism above room temperature. Next, the spin-glass behaviors of Ti-rich Fe2.2Ti0.8O4 film are studied, since this magnetically diluted system is expected to exhibit the spin-glass behaviors. The DC magnetization and AC susceptibility measurements for the Ti-rich Fe2.2Ti0.8O4 film reveal the presence of the spin glass phase. Thermal- and magnetic-field-history memory effects are observed and are attributed to the long time-decay nature of remanent magnetization. The detailed analysis of the time-dependent thermoremanent magnetization reveals the presence of the cluster spin glass state.

  15. Controlling the polarity of metalorganic vapor phase epitaxy-grown GaP on Si(111) for subsequent III-V nanowire growth

    SciTech Connect

    Paszuk, A.; Steidl, M.; Zhao, W.; Dobrich, A.; Kleinschmidt, P.; Brückner, S.; Supplie, O.; Hannappel, T.; Prost, W.

    2015-06-08

    Nanowire growth on heteroepitaxial GaP/Si(111) by metalorganic vapor phase epitaxy requires the [-1-1-1] face, i.e., GaP(111) material with B-type polarity. Low-energy electron diffraction (LEED) allows us to identify the polarity of GaP grown on Si(111), since (2×2) and (1×1) surface reconstructions are associated with GaP(111)A and GaP(111)B, respectively. In dependence on the pre-growth treatment of the Si(111) substrates, we were able to control the polarity of the GaP buffers. GaP films grown on the H-terminated Si(111) surface exhibited A-type polarity, while GaP grown on Si surfaces terminated with arsenic exhibited a (1×1) LEED pattern, indicating B-type polarity. We obtained vertical GaAs nanowire growth on heteroepitaxial GaP with (1×1) surface reconstruction only, in agreement with growth experiments on homoepitaxially grown GaP(111)

  16. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses

    SciTech Connect

    Yu Xiaoming; Zeng Bin; Liao Yang; He Fei; Cheng Ya; Xu Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2011-03-01

    We report on experimental study on chemical etch selectivity of fused silica irradiated by femtosecond laser with either linear or circular polarization in a wide range of pulse energies. The relationships between the etch rates and pulse energies are obtained for different polarization states, which can be divided into three different regions. A drop of the etch rate for high pulse energy region is observed and the underlying mechanism is discussed. The advantage of using circularly polarized laser is justified owing to its unique capability of providing a 3D isotropic etch rate.

  17. Fast Deterministic Bipolar Switching in Orthogonal Spin Torque Devices via the Control of the Relative Spin Polarizations

    NASA Astrophysics Data System (ADS)

    Park, Junbo; Ralph, Daniel C.; Buhrman, Robert A.

    2014-03-01

    We model 100 ps pulse switching dynamics of orthogonal spin transfer (OST) devices that employ an out-of-plane polarizer (OPP) and an in-plane polarizer (IPP). Simulation results indicate that increasing the spin polarization ratio, CP =PIPP /POPP , results in deterministic switching of the free layer without over-rotation (360 degree rotation). By using spin torque asymmetry to realize an enhanced effective PIPP, we experimentally demonstrate this behavior in OST devices. Modeling predicts that decreasing the effective demagnetization field can substantially reduce the minimum CP required to attain deterministic bipolar switching, while retaining low critical switching current, Ip = 500 μA.

  18. High-temperature operating 894.6nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks.

    PubMed

    Zhang, Jianwei; Zhang, Xing; Zhu, Hongbo; Zhang, Jian; Ning, Yongqiang; Qin, Li; Wang, Lijun

    2015-06-01

    We report on the design and fabrication of 894.6nm vertical-cavity surface-emitting lasers (VCSELs) with extremely low threshold at high temperatures, for use in chip-scale Cs atomic clocks. A new design method based on the analysis of the threshold gain and the desired carrier density for different active region structures was proposed to gain the low transparent current density. The increase of the threshold current at higher temperatures was successfully suppressed by introducing the large gain-cavity detuning of VCSEL. By detuning the gain-cavity mode to be -11nm, the minimum threshold current of only 0.23mA at 70 °C was achieved. The operating temperature for emitting the wavelength of 894.6nm was 110 °C, with the single mode suppression ratio (SMSR) of more than 25dB and the threshold current of only 0.32mA.

  19. Parallel Polarization State Generation

    PubMed Central

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  20. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.