Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite
2015-09-04
Aedes aegypti is a vector of international concern because it can transmit to humans three important arboviral diseases: yellow fever, dengue and chikungunya. Epidemics that are repeated year after year in a variety of urban centers indicate that there are control failures, allowing the vector to continue expanding. To identify the most effective vector control strategies and the factors that contributed to the success or failure of each strategy, we carried out a systematic review with meta-analysis of articles published in 12 databases, from 1974 to the month of December 2013. We evaluated the association between the use of whatever chemical substance, mechanical agent, biological or integrated actions against A. aegypti and the control of the vector, as measured by 10 indicators. We found 2,791 articles, but after careful selection, only 26 studies remained for analysis related to control interventions implemented in 15 countries, with 5 biological, 5 chemical, 3 mechanical and 13 integrated strategies. The comparison among all of them, indicated that the control of A. aegypti is significantly associated with the type of strategy used, and that integrated interventions consist of the most effective method for controlling A. aegypti. The most effective control method was the integrated approach, considering the influence of eco-bio-social determinants in the virus-vector-man epidemiological chain, and community involvement, starting with community empowerment as active agents of vector control.
Faulde, M; Freise, J
2014-05-01
Globally, infectious diseases pose the most important cause of death. Among known human pathogenic diseases, approximately 50 % are zoonoses. When considering emerging infectious diseases separately 73 % currently belong to the group of zoonoses. In Central Europe, hard ticks show by far the biggest potential as vectors of agents of human disease. Lyme borreliosis, showing an estimated annual incidence between 60,000 and 214,000 cases is by far the most frequent tick-borne disease in Germany. Continually, formerly unknown disease agents could be discovered in endemic vector species. Additionally, introduction of new arthropod vectors and/or agents of disease occur constantly. Recently, five mosquito species of the genus Aedes have been newly introduced to Europe where they are currently spreading in different regions. Uncommon autochthonous transmission of dengue and chikungunya fever viruses in Southern Europe could be directly linked to these vector species and of these Ae. albopictus and Ae. japonicus are currently reported to occur in Germany. The German Protection against Infection Act only covers the control of public health pests which are either active hematophagous vectors or mechanical transmitters of agents of diseases. Use of officially recommended biocidal products aiming to interrupt transmission cycles of vector-borne diseases, is confined to infested buildings only, including sewage systems in the case of Norway rat control. Outdoor vectors, such as hard ticks and mosquitoes, are currently not taken into consideration. Additionally, adjustments of national public health regulations, detailed arthropod vector and rodent reservoir mapping, including surveillance of vector-borne disease agents, are necessary in order to mitigate future disease risks.
Gonçalves, Daniela da Silva; Moreira, Luciano Andrade
2013-01-01
There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility), as well as vector competence (susceptibility) for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen interference when artificially-transfected to the novel mosquito hosts that are the vectors of human pathogens. PMID:23555728
Malaria vector control: from past to future.
Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P
2011-04-01
Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.
Killeen, Gerry F; Masalu, John P; Chinula, Dingani; Fotakis, Emmanouil A; Kavishe, Deogratius R; Malone, David; Okumu, Fredros
2017-05-01
We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.
An agent-vector-host-environment model for controlling small arms and light weapons.
Pinto, Andrew D; Sharma, Malika; Muggah, Robert
2011-05-01
Armed violence is a significant public health problem. It results in fatal and non-fatal injuries and disrupts social and economic processes that are essential to the health of individuals and communities. We argue that an agent-vector-host-environment model can be helpful in understanding and describing the availability and misuse of small arms and light weapons. Moreover, such a model can assist in identifying potential control points and in developing mitigation strategies. These concepts have been developed from analogous vector control programs and are applied to controlling arms to reduce their misuse. So-called 'denormalization' and 'de-legitimization' campaigns that focus on the vector - including the industry producing these commodities - can be based on the experience of public health in controlling tobacco use and exposure. This model can assist health professionals, civil society and governments in developing comprehensive strategies to limit the production, distribution and misuse of small arms and light weapons.
Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents
Aw, Kimberly Moon San; Hue, Seow Mun
2017-01-01
Chemical insecticides have been commonly used to control agricultural pests, termites, and biological vectors such as mosquitoes and ticks. However, the harmful impacts of toxic chemical insecticides on the environment, the development of resistance in pests and vectors towards chemical insecticides, and public concern have driven extensive research for alternatives, especially biological control agents such as fungus and bacteria. In this review, the mode of infection of Metarhizium fungus on both terrestrial and aquatic insect larvae and how these interactions have been widely employed will be outlined. The potential uses of Metarhizium anisopliae and Metarhizium acridum biological control agents and molecular approaches to increase their virulence will be discussed. PMID:29371548
Agent-based method for distributed clustering of textual information
Potok, Thomas E [Oak Ridge, TN; Reed, Joel W [Knoxville, TN; Elmore, Mark T [Oak Ridge, TN; Treadwell, Jim N [Louisville, TN
2010-09-28
A computer method and system for storing, retrieving and displaying information has a multiplexing agent (20) that calculates a new document vector (25) for a new document (21) to be added to the system and transmits the new document vector (25) to master cluster agents (22) and cluster agents (23) for evaluation. These agents (22, 23) perform the evaluation and return values upstream to the multiplexing agent (20) based on the similarity of the document to documents stored under their control. The multiplexing agent (20) then sends the document (21) and the document vector (25) to the master cluster agent (22), which then forwards it to a cluster agent (23) or creates a new cluster agent (23) to manage the document (21). The system also searches for stored documents according to a search query having at least one term and identifying the documents found in the search, and displays the documents in a clustering display (80) of similarity so as to indicate similarity of the documents to each other.
Abad-Franch, Fernando; Valença-Barbosa, Carolina; Sarquis, Otília; Lima, Marli M.
2014-01-01
Background Vector-borne diseases are major public health concerns worldwide. For many of them, vector control is still key to primary prevention, with control actions planned and evaluated using vector occurrence records. Yet vectors can be difficult to detect, and vector occurrence indices will be biased whenever spurious detection/non-detection records arise during surveys. Here, we investigate the process of Chagas disease vector detection, assessing the performance of the surveillance method used in most control programs – active triatomine-bug searches by trained health agents. Methodology/Principal Findings Control agents conducted triplicate vector searches in 414 man-made ecotopes of two rural localities. Ecotope-specific ‘detection histories’ (vectors or their traces detected or not in each individual search) were analyzed using ordinary methods that disregard detection failures and multiple detection-state site-occupancy models that accommodate false-negative and false-positive detections. Mean (±SE) vector-search sensitivity was ∼0.283±0.057. Vector-detection odds increased as bug colonies grew denser, and were lower in houses than in most peridomestic structures, particularly woodpiles. False-positive detections (non-vector fecal streaks misidentified as signs of vector presence) occurred with probability ∼0.011±0.008. The model-averaged estimate of infestation (44.5±6.4%) was ∼2.4–3.9 times higher than naïve indices computed assuming perfect detection after single vector searches (11.4–18.8%); about 106–137 infestation foci went undetected during such standard searches. Conclusions/Significance We illustrate a relatively straightforward approach to addressing vector detection uncertainty under realistic field survey conditions. Standard vector searches had low sensitivity except in certain singular circumstances. Our findings suggest that many infestation foci may go undetected during routine surveys, especially when vector density is low. Undetected foci can cause control failures and induce bias in entomological indices; this may confound disease risk assessment and mislead program managers into flawed decision making. By helping correct bias in naïve indices, the approach we illustrate has potential to critically strengthen vector-borne disease control-surveillance systems. PMID:25233352
The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents.
Valiente Moro, Claire; De Luna, Carlos J; Tod, Alexander; Guy, Jonathan H; Sparagano, Olivier A E; Zenner, Lionel
2009-06-01
The poultry red mite, D. gallinae has been involved in the transmission of many pathogenic agents, responsible for serious diseases both in animals and humans. Nowadays, few effective methods are available to control the ectoparasite in poultry farms. Consequently, this is an emerging problem which must be taken into account to maintain good health in commercial egg production. This paper addresses the vector capacity of the ectoparasite with special emphasis on salmonellae, pathogenic agents responsible for many of the most important outbreaks of food-borne diseases worlwide. It has been experimentally shown that D. gallinae could act as a biological vector of S. enteritidis and natural carriage of these bacteria by the mite on poultry premises has also been reported. It was also found that D. gallinae carried other pathogens such as E. coli, Shigella sp., and Staphylococcus, thus increasing the list of pathogenic agents potentially transmitted by the mite.
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.
Stabilization of business cycles of finance agents using nonlinear optimal control
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.
2017-11-01
Stabilization of the business cycles of interconnected finance agents is performed with the use of a new nonlinear optimal control method. First, the dynamics of the interacting finance agents and of the associated business cycles is described by a modeled of coupled nonlinear oscillators. Next, this dynamic model undergoes approximate linearization round a temporary operating point which is defined by the present value of the system's state vector and the last value of the control inputs vector that was exerted on it. The linearization procedure is based on Taylor series expansion of the dynamic model and on the computation of Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms in the Taylor series expansion is considered as a disturbance which is compensated by the robustness of the control loop. Next, for the linearized model of the interacting finance agents, an H-infinity feedback controller is designed. The computation of the feedback control gain requires the solution of an algebraic Riccati equation at each iteration of the control algorithm. Through Lyapunov stability analysis it is proven that the control scheme satisfies an H-infinity tracking performance criterion, which signifies elevated robustness against modelling uncertainty and external perturbations. Moreover, under moderate conditions the global asymptotic stability features of the control loop are proven.
Rydzanicz, Katarzyna; Lonc, Elzbieta; Becker, Norbert
2009-01-01
Current strategy of Integrated Vector Management (IVM) comprises the general approach of environmentally friendly control measures. With regard to mosquitoes it includes first of all application of microbial insecticides based on Bacillus thuringiensis israelensis (Bti) and B. sphaericus (Bs) delta-endotoxins as well as the reduction of breeding habitats and natural enemy augmentation. It can be achieved thorough implementation of the interdisciplinary program, i. e., understanding of mosquito vector ecology, the appropriate vector-diseases (e. g., malariometric) measurements and training of local personnel responsible for mosquito abatement activities, as well as community involvement. Biocontrol methods as an alternative to chemical insecticides result from the sustainability development concept, growing awareness of environmental pollution and the development of insecticide-resistant strains of vector-mosquito populations in many parts of the world. Although sustainable trends are usually considered in terms of the monetary and training resources within countries, environmental concerns are actually more limiting factors for the duration of an otherwise successful vector control effort. In order to meet these new needs, increasing efforts have been made in search of and application of natural enemies, such as parasites, bacterial pathogens and predators which may control populations of insect vectors. The biological control agent based on the bacterial toxins Bti and Bs has been used in the Wrocław's University and Municipal Mosquito Control Programs since 1998. In West-Africa biocontrol appears to be an effective and safe tool to combat malaria in addition to bed-nets, residual indoor spraying and appropriate diagnosis and treatment of malaria parasites which are the major tools in the WHO Roll Back Malaria Program. IVM studies carried out 2005-2008 in Cotonou (Benin) as well those in Wrocław Irrigated Fields during the last years include the following major steps: 1. Mapping of all breeding sites in the project area and recording data in a geographical information system (GIS/relational database). All districts, streets and houses are numbered for quick reference during the operation; 2. Studying mosquito vector bionomics, migration and vectorial capacity in the project area, before, during and after the routine Bti treatments; 3. Assessment of the optimum for effective larvicide insecticide dosages at major breeding sites against the different target mosquito species; 4. Implementation of the microbial control agents in the integrated routine program. Adaptation of the application equipment to the local situation, training of the field staff, and routine treatments; 5. Conducting surveillance of vector-disease (e. g., malariometric) parameters in the control and experimental area before, during, and after the application of biocontrol agents.
NASA Astrophysics Data System (ADS)
Patkin, M. L.; Rogachev, G. N.
2018-02-01
A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.
Recent advances in phlebotomine sand fly research related to leishmaniasis control.
Bates, Paul A; Depaquit, Jerôme; Galati, Eunice A B; Kamhawi, Shaden; Maroli, Michele; McDowell, Mary Ann; Picado, Albert; Ready, Paul D; Salomón, O Daniel; Shaw, Jeffrey J; Traub-Csekö, Yara M; Warburg, Alon
2015-02-27
Phlebotomine sand flies are the subject of much research because of the role of their females as the only proven natural vectors of Leishmania species, the parasitic protozoans that are the causative agents of the neglected tropical disease leishmaniasis. Activity in this field was highlighted by the eighth International Symposium on Phlebotomine Sand flies (ISOPS) held in September 2014, which prompted this review focusing on vector control. Topics reviewed include: Taxonomy and phylogenetics, Vector competence, Genetics, genomics and transcriptomics, Eco-epidemiology, and Vector control. Research on sand flies as leishmaniasis vectors has revealed a diverse array of zoonotic and anthroponotic transmission cycles, mostly in subtropical and tropical regions of Africa, Asia and Latin America, but also in Mediterranean Europe. The challenge is to progress beyond descriptive eco-epidemiology, in order to separate vectors of biomedical importance from the sand fly species that are competent vectors but lack the vectorial capacity to cause much human disease. Transmission modelling is required to identify the vectors that are a public health priority, the ones that must be controlled as part of the integrated control of leishmaniasis. Effective modelling of transmission will require the use of entomological indices more precise than those usually reported in the leishmaniasis literature.
Role-based access control permissions
Staggs, Kevin P.; Markham, Thomas R.; Hull Roskos, Julie J.; Chernoguzov, Alexander
2017-04-25
Devices, systems, and methods for role-based access control permissions are disclosed. One method includes a policy decision point that receives up-to-date security context information from one or more outside sources to determine whether to grant access for a data client to a portion of the system and creates an access vector including the determination; receiving, via a policy agent, a request by the data client for access to the portion of the computing system by the data client, wherein the policy agent checks to ensure there is a session established with communications and user/application enforcement points; receiving, via communications policy enforcement point, the request from the policy agent, wherein the communications policy enforcement point determines whether the data client is an authorized node, based upon the access vector received from the policy decision point; and receiving, via the user/application policy enforcement point, the request from the communications policy enforcement point.
Method and apparatus for enhanced detection of toxic agents
Greenbaum, Elias; Rodriguez, Jr., Miguel; Wu, Jie Jayne; Qi, Hairong
2013-10-01
A biosensor based detection of toxins includes enhancing a fluorescence signal by concentrating a plurality of photosynthetic organisms in a fluid into a concentrated region using biased AC electro-osmosis. A measured photosynthetic activity of the photosynthetic organisms is obtained in the concentrated region, where chemical, biological or radiological agents reduce a nominal photosynthetic activity of the photosynthetic organisms. A presence of the chemical, biological and/or radiological agents or precursors thereof, is determined in the fluid based on the measured photosynthetic activity of the concentrated plurality of photosynthetic organisms. A lab-on-a-chip system is used for the concentrating step. The presence of agents is determined from feature vectors, obtained from processing a time dependent signal using amplitude statistics and/or time-frequency analysis, relative to a control signal. A linear discriminant method including support vector machine classification (SVM) is used to identify the agents.
VectorBase: a home for invertebrate vectors of human pathogens
Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A.; Kennedy, Ryan C.; Lobo, Neil F.; MacCallum, M. Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Zdobnov, Evgeny M.; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.
2007-01-01
VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever. PMID:17145709
42 CFR 71.54 - Etiological agents, hosts, and vectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Etiological agents, hosts, and vectors. 71.54 Section 71.54 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.54 Etiological agents, hosts, and vectors. (a) A...
42 CFR 71.54 - Etiological agents, hosts, and vectors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Etiological agents, hosts, and vectors. 71.54 Section 71.54 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.54 Etiological agents, hosts, and vectors. (a) A...
42 CFR 71.54 - Etiological agents, hosts, and vectors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Etiological agents, hosts, and vectors. 71.54 Section 71.54 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.54 Etiological agents, hosts, and vectors. (a) A...
An emergence of coordinated communication in populations of agents.
Kvasnicka, V; Pospichal, J
1999-01-01
The purpose of this article is to demonstrate that coordinated communication spontaneously emerges in a population composed of agents that are capable of specific cognitive activities. Internal states of agents are characterized by meaning vectors. Simple neural networks composed of one layer of hidden neurons perform cognitive activities of agents. An elementary communication act consists of the following: (a) two agents are selected, where one of them is declared the speaker and the other the listener; (b) the speaker codes a selected meaning vector onto a sequence of symbols and sends it to the listener as a message; and finally, (c) the listener decodes this message into a meaning vector and adapts his or her neural network such that the differences between speaker and listener meaning vectors are decreased. A Darwinian evolution enlarged by ideas from the Baldwin effect and Dawkins' memes is simulated by a simple version of an evolutionary algorithm without crossover. The agent fitness is determined by success of the mutual pairwise communications. It is demonstrated that agents in the course of evolution gradually do a better job of decoding received messages (they are closer to meaning vectors of speakers) and all agents gradually start to use the same vocabulary for the common communication. Moreover, if agent meaning vectors contain regularities, then these regularities are manifested also in messages created by agent speakers, that is, similar parts of meaning vectors are coded by similar symbol substrings. This observation is considered a manifestation of the emergence of a grammar system in the common coordinated communication.
Adaptive planning for applications with dynamic objectives
NASA Technical Reports Server (NTRS)
Hadavi, Khosrow; Hsu, Wen-Ling; Pinedo, Michael
1992-01-01
We devise a qualitative control layer to be integrated into a real-time multi-agent reactive planner. The reactive planning system consists of distributed planning agents attending to various perspectives of the task environment. Each perspective corresponds to an objective. The set of objectives considered are sometimes in conflict with each other. Each agent receives information about events as they occur, and a set of actions based on heuristics can be taken by the agents. Within the qualitative control scheme, we use a set of qualitative feature vectors to describe the effects of applying actions. A qualitative transition vector is used to denote the qualitative distance between the current state and the target state. We will then apply on-line learning at the qualitative control level to achieve adaptive planning. Our goal is to design a mechanism to refine the heuristics used by the reactive planner every time an action is taken toward achieving the objectives, using feedback from the results of the actions. When the outcome is compared with expectations, our prior objectives may be modified and a new set of objectives (or a new assessment of the relative importance of the different objectives) can be introduced. Because we are able to obtain better estimates of the time-varying objectives, the reactive strategies can be improved and better prediction can be achieved.
Biosensor method and system based on feature vector extraction
Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling
2013-07-02
A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.
USDA-ARS?s Scientific Manuscript database
Rhipicephalus microplus is an important biological vector of Anaplasma marginale, the etiological agent of bovine anaplasmosis. The knowledge of tick immune responses to control bacterial infections remains limited. In this study, we demonstrate that transcription factor Relish from the Imd signalin...
Humanlike agents with posture planning ability
NASA Astrophysics Data System (ADS)
Jung, Moon R.; Badler, Norman I.
1992-11-01
Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend versus squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of `lumped' control parameters, that is, control points and vectors.
Human-like agents with posture planning ability
NASA Technical Reports Server (NTRS)
Jung, Moon R.; Badler, Norman
1992-01-01
Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend vs. squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of 'lumped' control parameters, that is, control points and vectors.
Biosensor method and system based on feature vector extraction
Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA
2012-04-17
A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.
Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos
2018-02-03
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.
Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos
2018-01-01
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670
Insects as vectors: systematics and biology.
Rodhain, F
2015-04-01
Among the many complex relationships between insects and microorganisms such as viruses, bacteria and parasites, some have resulted in the establishment of biological systems within which the insects act as a biological vector for infectious agents. It is therefore advisable to understand the identity and biology of these vectors in depth, in order to define procedures for epidemiological surveillance and anti-vector control. The following are successively reviewed in this article: Anoplura (lice), Siphonaptera (fleas), Heteroptera (bugs: Cimicidae, Triatoma, Belostomatidae), Psychodidae (sandflies), Simuliidae (black flies), Ceratopogonidae (biting midges), Culicidae (mosquitoes), Tabanidae (horseflies) and Muscidae (tsetse flies, stable flies and pupipara). The authors provide a rapid overview of the morphology, systematics, development cycle and bio-ecology of each of these groups of vectors. Finally, their medical and veterinary importance is briefly reviewed.
Boyce, R; Lenhart, A; Kroeger, A; Velayudhan, R; Roberts, B; Horstick, O
2013-05-01
To systematically review the literature on the effectiveness of Bacillus thuringiensis israelensis (Bti), when used as a single agent in the field, for the control of dengue vectors. Systematic literature search of the published and grey literature was carried out using the following databases: MEDLINE, EMBASE, Global Health, Web of Science, the Cochrane Library, WHOLIS, ELDIS, the New York Academy of Medicine Gray Literature Report, Africa-Wide and Google. All results were screened for duplicates and assessed for eligibility. Relevant data were extracted, and a quality assessment was conducted using the CONSORT 2010 checklist. Fourteen studies satisfied the eligibility criteria, incorporating a wide range of interventions and outcome measures. Six studies were classified as effectiveness studies, and the remaining eight examined the efficacy of Bti in more controlled settings. Twelve (all eight efficacy studies and 4 of 6 effectiveness studies) reported reductions in entomological indices with an average duration of control of 2-4 weeks. The two effectiveness studies that did not report significant entomological reductions were both cluster-randomised study designs that utilised basic interventions such as environmental management or general education on environment control practices in their respective control groups. Only one study described a reduction in entomological indices together with epidemiological data, reporting one dengue case in the treated area compared to 15 dengue cases in the untreated area during the observed study period. While Bti can be effective in reducing the number of immature Aedes in treated containers in the short term, there is very limited evidence that dengue morbidity can be reduced through the use of Bti alone. There is currently insufficient evidence to recommend the use of Bti as a single agent for the long-term control of dengue vectors and prevention of dengue fever. Further studies examining the role of Bti in combination with other strategies to control dengue vectors are warranted. © 2013 Blackwell Publishing Ltd.
The Effects of City Streets on an Urban Disease Vector
Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.
2013-01-01
With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756
The Biological Control of the Malaria Vector
Kamareddine, Layla
2012-01-01
The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979
NASA Astrophysics Data System (ADS)
Zamulaeva, I. A.; Matchuk, O. N.; Churyukina, K. A.; Kudryavtzev, V. A.; Yabbarov, N. G.; Nikolskaya, E. D.; Zhunina, O. A.; Kondrasheva, I. G.; Severin, E. S.
2017-09-01
The dendritic polymers (dendrimers) are perspective nanocontainers for targeted transport of anticancer drugs to tumor cells. We used polyamidoamine dendrimers of the second generation (G2) covalently conjugated with doxorubicin (Dox) and vector protein - recombinant third domain (3D) of alpha-fetoprotein. The objects of the study were MCF-7/MDR1 breast cancer cells, which demonstrated resistance to traditional anticancer agents due to high expression of P-glycoprotein. Effects of free Dox, G2 dendrimers loaded with Dox (G2-Dox), or conjugates of dendrimers with the vector protein and Dox (3D-G2-Dox) were assessed by the criteria of surviving cell number and clonogenic activity 24 hours and 11 days after treatment with the agents at Dox concentration of 2.5 μM, correspondingly. Flow cytometry was used to evaluate accumulation of Dox immediately after the treatment with the agents and removal of Dox during 24 hours of incubation in agent-free medium following by the treatment. Intracellular localization of Dox was studied using laser scanning microscopy. 3D-G2-Dox demonstrated the highest accumulation and the weakest removal from the cells in comparison with all other agents. The use of free Dox, G2-Dox, or 3D-G2-Dox resulted in a significant decrease in number of surviving cells by approximately 25-30% compared to the control (p ≤ 0.01). However, the most pronounced decrease in the clonogenic ability of cells was observed in the 3D-G2-Dox group (to 19% compared to the control, p < 0.01). Taking into account the previously obtained data on the extremely low 3D-G2-Dox accumulation in normal cells, it can be concluded that further development of 3D-G2-Dox as a possible anticancer drug is a promising way to overcome multiple drug resistance with minimal impact on normal cells.
Targeted Screening Strategies to Detect Trypanosoma cruzi Infection in Children
Levy, Michael Z.; Kawai, Vivian; Bowman, Natalie M.; Waller, Lance A.; Cabrera, Lilia; Pinedo-Cancino, Viviana V.; Seitz, Amy E.; Steurer, Frank J.; Cornejo del Carpio, Juan G.; Cordova-Benzaquen, Eleazar; Maguire, James H.; Gilman, Robert H.; Bern, Caryn
2007-01-01
Background Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy. Methods and Findings We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children. Conclusions We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings. PMID:18160979
Rural housing for control of Chagas disease in Venezuela.
Briceno-Leon, R
1987-12-01
The home is an important protective element for the health of its inhabitants - but these inhabitants often include not only the householders but also domestic pests and vectors of disease. This is particularly so in Latin America where domestic triatomine bugs thrive in many of the poorer quality rural houses, emerging from their crevices at night to feed and transmit Trypanosoma cruzi in their faeces. At the public health level, there is neither drug nor vaccine suitable for controlling T. cruzi - causative agent of Chagas disease - but transmission can be interrupted by control of the domestic vectors. Traditionally, vector control has involved spraying houses with residual insecticides, but a more long-term solution, with many colateral benefits, is to improve rural housing in such a way that colonization by triatomine bugs is inhibited. Such an approach involves development of low-cost techniques for house construction, and mobilization of rural communities to make use of them. In this, Venezuela has played a leading role, as Roberto Briceno-Leon reports.
Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors
NASA Astrophysics Data System (ADS)
Zhu, Yu
Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo-SS-BEN) capable of intracellular release of BENSpm using thiolytically sensitive dithiobenzyl carbamate linker. Similar activity on SSAT enzyme induction by Lipo-SS-BEN compared with BENSpm free drug verified the success of this prodrug design. Biodegradability of Lipo-SS-BEN contributed to decreased toxicity compared with nondegradable control LipoBEN. However, decreased enhancement of TRAIL activity was observed for Lipo-SS-BEN when compared with BENSpm, indicating that the lipid-related toxicity diminished the synergism. In addition, compared with LipoBEN and DOTAP, decreased transfection efficiency of Lipo-SS-BEN demonstrated instability of Lipo-SS-BEN in extracellular environment. In order to design a dual delivery vector with reduced vector toxicity and improved linker stability, we employed dendritic polyglycerol (PG) as a safe carrier backbone, onto which BENSpm was conjugated through carbamate linkage (PG-BEN). Polymers with norspermine (PG-Nor) shell and amine-terminated PG (PG-NH2) were synthesized as controls. The BENSpm dual vector PG-BEN demonstrated superior gene delivery function, and showed decreased toxicity compared with the control polymers. However, compared with BENSpm, which depleted all natural polyamines, PG-BEN only down-regulated intracellular putrescine levels. In addition, no free BENSpm was detected in PG-BEN treated cells. These results suggested that in order to take full advantage of BENSpm anticancer activity, alternative linker chemistry needs to be further explored. We then incorporated bis(2-hydroxyethyl) disulfide as a self-immolative linker to synthesize polymer prodrugs of BENSpm (DSS-BEN). The proposed mechanism of BENSpm release from DSS-BEN contains two steps: disulfide bond is first cleaved in the reducing intracellular space, then the intermediate further undergoes slow intramolecular cyclization to release free BENSpm. Cell line-dependent BENSpm release after DSS-BEN treatment was observed using HPLC analysis, demonstrating the success of our linker strategy. DSS-BEN showed comparable transfection efficiency as polyethylenimine and showed decreased toxicity in several cell lines compared with the nondegradable control DCC-BEN. We further demonstrated that DSS-BEN could act synergistically with several therapeutic agents, making it a promising delivery platform for combination therapy in cancer. In all, we have successfully developed a dual delivery vector based on BENSpm, which fulfills its function as a gene delivery vector as well as a prodrug of BENSpm, and possesses synergistic potential to augment the effect of the co-delivered agents.
Host-agent-vector-environment measures for electronic cigarette research used in NIH grants.
Garcia-Cazarin, Mary L; Mandal, Rachel J; Grana, Rachel; Wanke, Kay L; Meissner, Helen I
2018-01-13
The purpose of this study is to describe the focus and comprehensiveness of domains measured in e-cigarette research. A portfolio analysis of National Institutes of Health grants focusing on e-cigarette research and funded between the fiscal years 2007 and 2015 was conducted. Grant proposals were retrieved using a government database and coded using the Host-Agent-Vector-Environment (HAVE) model as a framework to characterise the measures proposed. Eighty-one projects met the criteria for inclusion in the analysis. The primary HAVE focus most commonly found was Host (73%), followed by Agent (21%), Vector (6%) and Environment (0%). Intrapersonal measures and use trajectories were the most common measures in studies that include Host measures (n=59 and n=51, respectively). Product composition was the most common area of measurement in Agent studies (n=24), whereas Marketing (n=21) was the most common (n=21) area of Vector measurement. When Environment measures were examined as secondary measures in studies, they primarily focused on measuring Peer, Occupation and Social Networks (n=18). Although all studies mentioned research on e-cigarettes, most (n=52; 64%) did not specify the type of e-cigarette device or liquid solution under study. This analysis revealed a heavy focus on Host measures (73%) and a lack of focus on Environment measures. The predominant focus on Host measures may have the unintended effect of limiting the evidence base for tobacco control and regulatory science. Further, a lack of specificity about the e-cigarette product under study will make comparing results across studies and using the outcomes to inform tobacco policy difficult. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Vector ecology and integrated control procedures
Laird, Marshall
1963-01-01
The elucidation of population regulatory mechanisms calls for exhaustive biological and ecological studies of whole ecosystems. Until lately, little effort was made to relate insect control activities to such a background, and the use of non-selective pesticides has often resulted in biotic equilibria being disrupted to the ultimate advantage of the organism under attack or of some other undesirable species. However, there is a growing realization in the field of economic entomology at large that biotic control agents usually constitute the major portion of the environmental resistance to increases in pest numbers and that insecticides should be fitted into the ecosystem, and not imposed upon it—in fact, that integrated control procedures are called for. The author considers such integrated procedures from the standpoint of vector control. His paper points out their potentialities in helping to solve resistance problems and in increasing the selectivity of control operations. It further suggests that they offer the means of achieving economical and lasting reductions of vector populations to levels at which human disease transmission is interrupted and pest problems lose much of their importance. PMID:20604165
Bombus terrestris as pollinator-and-vector to suppress Botrytis cinerea in greenhouse strawberry.
Mommaerts, Veerle; Put, Kurt; Smagghe, Guy
2011-09-01
Bombus terrestris L. bumblebees are widely used as commercial pollinators, but they might also be of help in the battle against economically important crop diseases. This alternative control strategy is referred to as pollinator-and-vector technology. The present study was designed to investigate the capacity of B. terrestris to fulfil this role in greenhouse strawberry flowers, which were manually inoculated with a major plant pathogen, the grey mould Botrytis cinerea Pers.: Fr. A model microbiological control agent (MCA) product Prestop-Mix was loaded in a newly developed two-way bumblebee dispenser, and, in addition, the use of the diluent Maizena-Plus (corn starch) was tested. Importantly, loading of the MCA caused no adverse effects on bumblebee workers, with no loss of survival or impairment of flight activity of the workers during the 4 week flowering period. Secondly, vectoring of Prestop-Mix by bumblebees resulted in a higher crop production, as 71% of the flowers developed into healthy red strawberries at picking (preharvest yield) as compared with 54% in the controls. In addition, these strawberries were better protected, as 79% of the picked berries remained free of B. cinerea after a 2 day incubation (post-harvest yield), while this percentage was only 43% in the control. Overall, the total yield (preharvest × post-harvest) was 2-2.5 times higher than the total yield in the controls (24%) in plants exposed to bumblebees vectoring Prestop-Mix. Thirdly, the addition of the diluent Maizena-Plus to Prestop-Mix at 1:1 (w/w) resulted in a similar yield to that of Prestop-Mix used alone, and in no negative effects on the bumblebees, flowers and berries. This greenhouse study provides strong evidence that B. terrestris bumblebees can vector a MCA to reduce B. cinerea incidence in greenhouse strawberries, resulting in higher yields. Similar yields obtained in the treatments with Prestop-Mix and Prestop-Mix + Maizena-Plus suggest an equally efficient dissemination of the biocontrol agent into the flowers with only half the initial concentration of Prestop-Mix, which illustrates the importance of the diluent. Copyright © 2011 Society of Chemical Industry.
Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions.
Wikel, Stephen K
2018-06-20
Ticks transmit the most diverse array of infectious agents of any arthropod vector. Both ticks and the microbes they transmit are recognized as significant threats to human and veterinary public health. This article examines the potential impacts of climate change on the distribution of ticks and the infections they transmit; the emergence of novel tick-borne pathogens, increasing geographic range and incidence of tick-borne infections; and advances in the characterization of tick saliva mediated modulation of host defenses and the implications of those interactions for transmission, establishment, and control of tick infestation and tick-borne infectious agents.
Dengue 3 Epidemic, Havana, 2001
Peláez, Otto; Kourí, Gustavo; Pérez, Raúl; San Martín, José L.; Vázquez, Susana; Rosario, Delfina; Mora, Regla; Quintana, Ibrahim; Bisset, Juan; Cancio, Reynel; Masa, Ana M; Castro, Osvaldo; González, Daniel; Avila, Luis C.; Rodríguez, Rosmari; Alvarez, Mayling; Pelegrino, Jose L.; Bernardo, Lídice; Prado, Irina
2004-01-01
In June 2001, dengue transmission was detected in Havana, Cuba; 12,889 cases were reported. Dengue 3, the etiologic agent of the epidemic, caused the dengue hemorrhagic fever only in adults, with 78 cases and 3 deaths. After intensive vector control efforts, no new cases have been detected. PMID:15200868
MacMillan, Katherine; Monaghan, Andrew J.; Apangu, Titus; Griffith, Kevin S.; Mead, Paul S.; Acayo, Sarah; Acidri, Rogers; Moore, Sean M.; Mpanga, Joseph Tendo; Enscore, Russel E.; Gage, Kenneth L.; Eisen, Rebecca J.
2012-01-01
East Africa has been identified as a region where vector-borne and zoonotic diseases are most likely to emerge or re-emerge and where morbidity and mortality from these diseases is significant. Understanding when and where humans are most likely to be exposed to vector-borne and zoonotic disease agents in this region can aid in targeting limited prevention and control resources. Often, spatial and temporal distributions of vectors and vector-borne disease agents are predictable based on climatic variables. However, because of coarse meteorological observation networks, appropriately scaled and accurate climate data are often lacking for Africa. Here, we use a recently developed 10-year gridded meteorological dataset from the Advanced Weather Research and Forecasting Model to identify climatic variables predictive of the spatial distribution of human plague cases in the West Nile region of Uganda. Our logistic regression model revealed that within high elevation sites (above 1,300 m), plague risk was positively associated with rainfall during the months of February, October, and November and negatively associated with rainfall during the month of June. These findings suggest that areas that receive increased but not continuous rainfall provide ecologically conducive conditions for Yersinia pestis transmission in this region. This study serves as a foundation for similar modeling efforts of other vector-borne and zoonotic disease in regions with sparse observational meteorologic networks. PMID:22403328
Vector-Borne Infections in Tornado-Displaced and Owner-Relinquished Dogs in Oklahoma, USA.
Barrett, Anne W; Little, Susan E
2016-06-01
To determine the prevalence of infection with vector-borne agents in a cross-section of dogs from Oklahoma, where canine vector-borne diseases are common, blood samples were evaluated through serology and molecular analysis. Antibodies reactive to Ehrlichia spp., Rickettsia rickettsii, R. montanensis, and "R. amblyommii" were detected in 10.5% (11/105), 74.3% (78/105), 58.1% (61/105), and 55.2% (58/105) of dogs, respectively. Presence of spotted fever group Rickettsia spp. DNA was identified in 13.1% (8/61) of shelter dogs but not in any pet dogs (0/44). DNA of "R. amblyommii" was confirmed by sequencing, constituting the first report of this agent in a naturally infected dog. Antigen of Dirofilaria immitis was detected in 10.5% (11/105) and 16.2% (17/105) of samples before and after heat treatment, respectively. In total, 87.6% (92/105) of the dogs had evidence of infection with at least one vector-borne disease agent, confirming high risk of exposure to multiple vector-borne disease agents, several of which are zoonotic.
Arthropods: Vectors of Disease Agents
1994-07-01
vector or glands in the tick legs. Filarid in some tick species, individuals of be passively regurgitated during worms (eg, dog heartworm) devel- which...Australia and an arthropod serves as the vector passively regurgitated during blood- Antarctica. An estimated 50 million transferring the etiologic agent...opossums, Biological ɝ More common in racoons, armadillos dogs than people Garbage, sewage, etc Mechanical NA I akwoator% %ledionc %.j. 2i, \\.I
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872
2013-01-01
Background Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the ‘Mosquito Landing Box’ (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Methods Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. Results There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P≤0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P≤0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). Conclusion While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance. PMID:23642306
Biological Control Strategies for Mosquito Vectors of Arboviruses.
Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L
2017-02-10
Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.
Biological Control Strategies for Mosquito Vectors of Arboviruses
Huang, Yan-Jang S.; Higgs, Stephen; Vanlandingham, Dana L.
2017-01-01
Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses. PMID:28208639
Padilla-Torres, Samael D.; Ferraz, Gonçalo; Luz, Sergio L. B.; Zamora-Perea, Elvira; Abad-Franch, Fernando
2013-01-01
Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim. PMID:23472194
Vector-based navigation using grid-like representations in artificial agents.
Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan
2018-05-01
Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.
Levy, Michael Z.; Tustin, Aaron; Castillo-Neyra, Ricardo; Mabud, Tarub S.; Levy, Katelyn; Barbu, Corentin M.; Quispe-Machaca, Victor R.; Ancca-Juarez, Jenny; Borrini-Mayori, Katty; Naquira-Velarde, Cesar; Ostfeld, Richard S.
2015-01-01
Faeces-mediated transmission of Trypanosoma cruzi (the aetiological agent of Chagas disease) by triatomine insects is extremely inefficient. Still, the parasite emerges frequently, and has infected millions of people and domestic animals. We synthesize here the results of field and laboratory studies of T. cruzi transmission conducted in and around Arequipa, Peru. We document the repeated occurrence of large colonies of triatomine bugs (more than 1000) with very high infection prevalence (more than 85%). By inoculating guinea pigs, an important reservoir of T. cruzi in Peru, and feeding triatomine bugs on them weekly, we demonstrate that, while most animals quickly control parasitaemia, a subset of animals remains highly infectious to vectors for many months. However, we argue that the presence of these persistently infectious hosts is insufficient to explain the observed prevalence of T. cruzi in vector colonies. We posit that seasonal rains, leading to a fluctuation in the price of guinea pig food (alfalfa), leading to annual guinea pig roasts, leading to a concentration of vectors on a small subpopulation of animals maintained for reproduction, can propel T. cruzi through vector colonies and create a considerable force of infection for a pathogen whose transmission might otherwise fizzle out. PMID:26085582
Levy, Michael Z; Tustin, Aaron; Castillo-Neyra, Ricardo; Mabud, Tarub S; Levy, Katelyn; Barbu, Corentin M; Quispe-Machaca, Victor R; Ancca-Juarez, Jenny; Borrini-Mayori, Katty; Naquira-Velarde, Cesar; Ostfeld, Richard S
2015-07-07
Faeces-mediated transmission of Trypanosoma cruzi (the aetiological agent of Chagas disease) by triatomine insects is extremely inefficient. Still, the parasite emerges frequently, and has infected millions of people and domestic animals. We synthesize here the results of field and laboratory studies of T. cruzi transmission conducted in and around Arequipa, Peru. We document the repeated occurrence of large colonies of triatomine bugs (more than 1000) with very high infection prevalence (more than 85%). By inoculating guinea pigs, an important reservoir of T. cruzi in Peru, and feeding triatomine bugs on them weekly, we demonstrate that, while most animals quickly control parasitaemia, a subset of animals remains highly infectious to vectors for many months. However, we argue that the presence of these persistently infectious hosts is insufficient to explain the observed prevalence of T. cruzi in vector colonies. We posit that seasonal rains, leading to a fluctuation in the price of guinea pig food (alfalfa), leading to annual guinea pig roasts, leading to a concentration of vectors on a small subpopulation of animals maintained for reproduction, can propel T. cruzi through vector colonies and create a considerable force of infection for a pathogen whose transmission might otherwise fizzle out. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hodson, C N; Yu, Y; Plettner, E; Roitberg, B D
2016-12-01
Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is a vector for Plasmodium, the causative agent of malaria. Current control strategies to reduce the impact of malaria focus on reducing the frequency of mosquito attacks on humans, thereby decreasing Plasmodium transmission. A need for new repellents effective against Anopheles mosquitoes has arisen because of changes in vector behaviour as a result of control strategies and concern over the health impacts of current repellents. The response of A. gambiae to potential repellents was investigated through an electroantennogram screen and the most promising of these candidates (1-allyloxy-4-propoxybenzene, 3c{3,6}) chosen for behavioural testing. An assay to evaluate the blood-host seeking behaviour of A. gambiae towards a simulated host protected with this repellent was then performed. The compound 3c{3,6} was shown to be an effective repellent, causing mosquitoes to reduce their contact with a simulated blood-host and probe less at the host odour. Thus, 3c{3,6} may be an effective repellent for the control of A. gambiae. © 2016 The Royal Entomological Society.
Agent Collaborative Target Localization and Classification in Wireless Sensor Networks
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.
Maia, Carla; Almeida, Bruno; Coimbra, Mónica; Fernandes, Maria Catarina; Cristóvão, José Manuel; Ramos, Cláudia; Martins, Ângela; Martinho, Filipe; Silva, Pedro; Neves, Nuno; Nunes, Mónica; Vieira, Maria Luísa; Cardoso, Luís; Campino, Lenea
2015-03-23
The so-called canine vector-borne diseases (CVBD) are caused by a wide range of pathogens transmitted by arthropods. In addition to their veterinary importance, many of these canine vector-borne pathogens can also affect the human population due to their zoonotic potential, a situation that requires a One Health approach. As the prevalence of vector-borne pathogens in cats from southern Portugal has been recently evaluated, the aim of the present study was to assess if the same agents were present in dogs living in the same area, and to assess positivity-associated risk factors. One thousand and ten dogs (521 domestic and 489 stray) from veterinary medical centres and animal shelters in southern Portugal were enrolled. Anaplasma spp./Ehrlichia spp., Bartonella spp., Borrelia burgdorferi sensu lato, Babesia spp., Hepatozoon spp. and Leishmania infantum infections were evaluated by polymerase chain reaction (PCR) assays in blood samples. Sixty-eight (6.7%) dogs were PCR-positive to at least one of the tested CVBD agent species, genera or complex, including one dog found positive to two different genera. Nineteen (1.9%) dogs were positive to Anaplasma spp./Ehrlichia spp., eight (0.8%) to B. burgdorferi s.l., 31 (3.1%) to Hepatozoon spp. and 11 (1.1%) to L. infantum. Anaplasma platys, Ehrlichia canis, B. burgdorferis.l. and Hepatozoon canis were identified by DNA sequencing, including one animal confirmed with both A. platys and H. canis. Furthermore, Wolbachia spp. was amplified in blood from four dogs. None of the tested dogs was positive by PCR for Bartonella spp. or Babesia spp. The molecular identification of CVBD agents in southern Portugal, some of them with zoonotic concern, reinforces the importance to alert the veterinary community, owners and public health authorities to prevent the risk of transmission of vector-borne pathogens among dogs and to other vertebrate hosts including humans. The prevalence of the selected pathogens was lower than that previously found in cats from the same region, probably because veterinarians and owners are more aware of them in the canine population and control measures are used more often.
Vector independent transmission of the vector-borne bluetongue virus.
van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M
2016-01-01
Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.
Santangeloyz, K.S.; Bertoneyz, A.L.
2011-01-01
summary Objective To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Methods Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RTPCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2−ΔΔCT) method. Results Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P= 0.0045) or >90% (P= 0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Conclusions Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. PMID:21945742
Bray, D. P.; Bandi, K. K.; Brazil, R. P.; Oliveira, A. G.; Hamilton, J.G.C.
2011-01-01
Improving vector control remains a key goal in reducing the world’s burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly as vaccines are unavailable and treatment is prohibitively expensive. The causative agent of AVL, Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae) is transmitted between animal and human hosts by blood-feeding female sand flies, attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results demonstrate the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world’s most important neglected diseases, American visceral leishmaniasis (AVL). We showed that a synthetic pheromone, (±)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. Then by formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, demonstrating the general applicability of this novel approach for developing new tools for use in vector control. PMID:19496409
Bray, D P; Bandi, K K; Brazil, R P; Oliveira, A G; Hamilton, J G C
2009-05-01
Improving vector control remains a key goal in reducing the world's burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly because vaccines are unavailable and treatment is prohibitively expensive. The causative agent of American visceral leishmaniasis (AVL), Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae), is transmitted between animal and human hosts by blood-feeding female sand flies attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results show the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world's most important neglected diseases, AVL. We showed that a synthetic pheromone, (+/-)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. By formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, showing the general applicability of this novel approach for developing new tools for use in vector control.
Modelling control of epidemics spreading by long-range interactions.
Dybiec, Bartłomiej; Kleczkowski, Adam; Gilligan, Christopher A
2009-10-06
We have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an alpha-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the alpha-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.
Simulating the elimination of sleeping sickness with an agent-based model.
Grébaut, Pascal; Girardin, Killian; Fédérico, Valentine; Bousquet, François
2016-01-01
Although Human African Trypanosomiasis is largely considered to be in the process of extinction today, the persistence of human and animal reservoirs, as well as the vector, necessitates a laborious elimination process. In this context, modeling could be an effective tool to evaluate the ability of different public health interventions to control the disease. Using the Cormas ® system, we developed HATSim, an agent-based model capable of simulating the possible endemic evolutions of sleeping sickness and the ability of National Control Programs to eliminate the disease. This model takes into account the analysis of epidemiological, entomological, and ecological data from field studies conducted during the last decade, making it possible to predict the evolution of the disease within this area over a 5-year span. In this article, we first present HATSim according to the Overview, Design concepts, and Details (ODD) protocol that is classically used to describe agent-based models, then, in a second part, we present predictive results concerning the evolution of Human African Trypanosomiasis in the village of Lambi (Cameroon), in order to illustrate the interest of such a tool. Our results are consistent with what was observed in the field by the Cameroonian National Control Program (CNCP). Our simulations also revealed that regular screening can be sufficient, although vector control applied to all areas with human activities could be significantly more efficient. Our results indicate that the current model can already help decision-makers in planning the elimination of the disease in foci. © P. Grébaut et al., published by EDP Sciences, 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peng; Ji, Wei; Wei, Bing-Yan
Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promisingmore » optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices.« less
Sterculia guttata seeds extractives--an effective mosquito larvicide.
Katade, Sushama R; Pawar, Pushpa V; Wakharkar, Radhika D; Deshpande, Nirmala R
2006-08-01
The larvicidal activity of ethanol, chloroform and hexane soxhlet extracts obtained from S. guttata seeds was investigated against the IVth instar larvae of Dengue fever vector, Aedes aegypti and filarial vector, Culex quinquefasciatus. All extracts including fractions of ethanol extract exhibited 100% larval kill within 24 hr exposure period at 500 ppm concentration. Fraction A1 of ethanol was found to be most promising; its LC50 was 21.552 and 35.520 ppm against C. quinquefasciatus and A. aegypti respectively. Naturally occurring S. guttata seed derived fractions merit further study as potential mosquito larval control agents or lead compounds.
Plant extracts as potential mosquito larvicides
Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam
2012-01-01
Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed. PMID:22771587
Plant extracts as potential mosquito larvicides.
Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam
2012-05-01
Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.
Incentive Control Strategies for Decision Problems with Parametric Uncertainties
NASA Astrophysics Data System (ADS)
Cansever, Derya H.
The central theme of this thesis is the design of incentive control policies in large scale systems with hierarchical decision structures, under the stipulation that the objective functionals of the agents at the lower level of the hierarchy are uncertain to the top-level controller (the leader). These uncertainties are modeled as a finite -dimensional parameter vector whose exact value constitutes private information to the relevant agent at the lower level. The approach we have adopted is to design incentive policies for the leader such that the dependence of the decision of the agents on the uncertain parameter is minimized. We have identified several classes of problems for which this approach is feasible. In particular, we have constructed policies whose performance is arbitrarily close to the solution of a version of the same problem that does not involve uncertainties. We have also shown that for a certain class of problem wherein the leader observes a linear combination of the agents' decisions, the leader can achieve the performance he would obtain if he had observed each decision separately.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... potential to pose a risk to public health and safety. Since 2009, we have refined the HHS/CDC import permit... DEPARTMENT OF HEALTH AND HUMAN SERVICES [Docket No. CDC-2011-0007] 42 CFR Part 71 RIN 0920-AA37... Vectors AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services...
USDA-ARS?s Scientific Manuscript database
The cattle tick, Boophilus microplus, and the sand fly, Phlebotomus papatasi (Pp), are vectors of infectious agents affecting cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from R. microplus(BmAChE1) and Pp (PpAchE) for c...
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies, including Phlebotomus papatasi, are important blood feeders and vectors that transmit the disease agents (Leishmania) that cause Leishmaniasis. Deployed U.S. Military Personnel in Iraq and Afghanistan suffered from sand fly bites and the disease they transmit. A USDA-DoD joi...
Scalp eschar and neck lymphadenopathy after tick bite: an emerging syndrome with multiple causes.
Dubourg, G; Socolovschi, C; Del Giudice, P; Fournier, P E; Raoult, D
2014-08-01
The clinical and epidemiological features of 56 patients with scalp eschar associated with neck lymphadenopathy after a tick bite (SENLAT) syndrome were evaluated at the National French Rickettsial Center. Eschar swabs, crusts, and biopsies as well as ticks and blood samples were acquired for molecular and serological assays. SENLAT predominantly affects children (p < 0.05), followed by 40- to 70-year-olds, and it is found mostly in women (p < 0.05). The seasonal distribution has two peaks: one in the spring (55%) and one in the autumn (30%). The etiological agent was identified in 18 cases, which include Rickettsia slovaca in 13 cases with incidences of two co-infections with Rickettsia raoultii and one case caused by Rickettsia sibirica mongolitimonae. Other possible agents that were found in attached ticks were Candidatus R. rioja, Coxiella burnetii, and Borrelia burgdorferi. The tick vector was Dermacentor marginatus in almost all cases, with the exception of one case, in which Ixodes ricinus was identified as the vector. Our findings show that SENLAT is a clinical entity characterized as a local infection controlled by the immune system and is neither pathogen- nor vector-specific.
Rishikesh, N.; Quélennec, G.
1983-01-01
Vector resistance and other constraints have necessitated consideration of the use of alternative materials and methods in an integrated approach to vector control. Bacillus thuringiensis serotype H-14 is a promising biological control agent which acts as a conventional larvicide through its delta-endotoxin (active ingredient) and which now has to be suitably formulated for application in vector breeding habitats. The active ingredient in the formulations has so far not been chemically characterized or quantified and therefore recourse has to be taken to a bioassay method. Drawing on past experience and through the assistance mainly of various collaborating centres, the World Health Organization has standardized a bioassay method (described in the Annex), which gives consistent and reproducible results. The method permits the determination of the potency of a B.t. H-14 preparation through comparison with a standard powder. The universal adoption of the standardized bioassay method will ensure comparability of the results of different investigators. PMID:6601545
House fly (Musca domestica): a review of control strategies for a challenging pest.
Malik, Anushree; Singh, Neena; Satya, Santosh
2007-05-01
Musca domestica L. (Diptera: Muscidae), commonly called the house fly, is a major domestic, medical and veterinary pest that causes irritation, spoils food and acts as a vector for many pathogenic organisms. In this paper, the social and health problems related to housefly are introduced with the associated need to control its population. Physical and chemical methods of house fly control are briefly discussed. The main focus of this review is on the biological control methods for house fly control, that comprise botanical, fungal, bacterial and parasitoid agents. Although several biocontrol agents are still in the nascent stage, some of them (especially fungal and parasitoid agents) have shown reliable field performance and seem to be suitable candidates for commercialization. However, the majority of these laboratory and field studies have been conducted in the temperate region. It remains to be seen whether the application of biocontrol agents would be feasible in tropical environments. The integrated pest management practices, which can provide more reliable field performance, have also been discussed. A multi-dimensional approach that exerts control on all the life stages of house fly, but simultaneously preserves the fly's natural enemies could be an ecologically sustainable way of maintaining the fly populations below maximally acceptable limits.
Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Kumar, Palanisamy Mahesh; Dinesh, Devakumar; Chandramohan, Balamurugan; Suresh, Udaiyan; Nicoletti, Marcello; Higuchi, Akon; Hwang, Jiang-Shiou; Kumar, Suresh; Alarfaj, Abdullah A; Munusamy, Murugan A; Messing, Russell H; Benelli, Giovanni
2015-12-01
Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.
Thanigaivel, Annamalai; Vasantha-Srinivasan, Prabhakaran; Edwin, Edward-Sam; Ponsankar, Athirstam; Selin-Rani, Selvaraj; Chellappandian, Muthiah; Kalaivani, Kandaswamy; Senthil-Nathan, Sengottayan; Benelli, Giovanni
2018-04-01
Plant extracts with their enriched chemical constituents have established potential alternative mosquito control agents. In this research, we developed an eco-friendly mosquitocidal agent from Alangium salvifolium leaves against the dengue and Zika virus vector Aedes aegypti and we investigated its biosafety on the mosquito aquatic predator Toxorhynchites splendens. Results showed that the methanolic extract of A. salvifolium leaves was composed by eight main compounds, with major peak area for hexadecenoic acid (21.74%). LC 50 and LC 90 values calculated on Ae. aegypti fourth instar larvae were 104.80 and 269.15 ppm respectively. The methanolic extract tested at 100 ppm decreased the α-β carboxylesterase and SOD ratio significantly and upregulated the GST and CYP450 level. The A. salvifolium methanolic extract displayed significant repellent and adulticidal activity at 100 and 400 ppm respectively. The treatment with 100 ppm of the methanolic extract led to 210 min of protection from Ae. aegypti bites. Four hundred parts per million of the extract showed 98% adult mortality within 30 min from the treatment. Lastly, biosafety assays on the mosquito aquatic predator Tx. splendens showed that the toxicity of the A. salvifolium extract was significantly lower if compared to the cypermethrin-based treatments. The methanolic extract of A. salvifolium showed a maximum of 47.3% mortality rate at the concentration of 1000 ppm, while 0.7 ppm of cypermethrin achieved 91.3% mortality rate on Tx. splendens. Overall, our study enhances basic knowledge on how to improve natural larvicidal agents against dengue and Zika virus mosquito vector with harmless responses on non-target aquatic predators.
Laboratory evaluation of predation on mosquito larvae by Australian mangrove fish.
Griffin, Lachlan
2014-06-01
A series of laboratory experiments compared predation rates of three native eastern Australian mangrove fish species (Psuedomugil signifer, Hyseleotris galii, Pseudogobius sp.) and the exotic Gambusia holbrooki on 2nd and 4th instar Aedes vigilax larvae, in order to determine their potential as mosquito control agents in mangrove forests. All four species preyed on significant numbers of both 2nd and 4th instar larvae. All showed a similar pattern of larval consumption, gorging on larvae in the first hour of each experiment, before reducing to a relatively constant background feeding rate. Gambusia holbrooki showed the highest larval consumption rates, but is unsuitable as a mosquito control agent due to it being an exotic pest species in Australia. Of the three native species, P. signifer showed the greatest potential as a mosquito control agent, having consumption rates comparable to G. holbrooki, and was the only species that did not show a significant reduction in larval consumption in the night experiments. © 2014 The Society for Vector Ecology.
An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.
Linares, Daniel M; Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, María; Alvarez, Miguel A
2014-12-04
Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium's regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.
Santangelo, K S; Bertone, A L
2011-12-01
To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2(-ΔΔCT)) method. Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P=0.0045) or >90% (P=0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
The feasibility of using magnetic nanoparticles modified as gene vector.
Chen, D; Tang, Q; Xue, W; Wang, X
2010-06-01
To evaluate the feasibility of using magnetic nanoparticles (MNPs) as gene vector and the effect of magnetic field on efficiency of transfection. Magnetic nanoparticles were prepared by controlling some chemical reaction parameters through a partially reduction precipitation method with ferric chloride aqueous solution as precursor material. The surface of particles was modified by polyethyleneimine (PEI) agents. The appearance, the size distribution, structure and phase constitute of MNPs were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD); the potential of absorbing DNA of MNPs was analysed by electrophoresis. Transfection was determined by delivering reporter gene, PGL2-control encoding luciferase, to different cell lines using MNPs-PLL as vector. The effect of magnetic field on the efficiency of transfection was determined using Nd-Fe-B permanent magnet. Foreign gene could be delivered to various cell lines by MNPs-PLL and expressed with high efficiency but the transfection efficiency and time course varied in the different cell lines studied. Magnetic field could enhance the efficiency of transfection by 5-10 fold. MNPs- PLL can be used as a novel non-viral gene vector in vitro, which offers a basis for gene delivery in vivo.
Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A
2006-11-01
The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.
Whitcomb, R. F.; Davis, R. E.
1970-01-01
Chlortetracycline or chloramphenicol (but not kanamycin, penicillin, or erythromycin), when administered in hydroponic solution to diseased aster, reduced the availability of the aster yellows (AY) agent to nymphs of Macrosteles fascifrons (Stål). Insects exposed to healthy plants whose roots were immersed in chlortetracycline were able to acquire AY agent from diseased plants the day after removal from the antibiotic-treated plants, but the latent period of the ensuing disease in the insects was prolonged. Chlortetracycline or tylosin tartrate blocked AY infection in nymphs injected with a mixture of antibiotic and the AY agent, but polymyxin, neomycin, vancomycin, penicillin, carbomycin, or chloramphenicol did not. All tetracyclines tested, methacycline, oxytetracycline, and chlortetracycline, produced a dramatic reduction in the ability of infected vectors to transmit AY agent. Tylosin tartrate also reduced transmission when injected into AY-transmitting vectors, but carbomycin, spectinomycin, cycloserine, penicillin, erythromycin, or kanamycin had no such effect. During the first 10 days after injection of tylosin tartrate or oxytetracycline into transmitting vectors, ability of the insects to transmit AY decayed rapidly. Transmission by insects injected with buffer alone, after decreasing the first day after injection, gradually returned to its normal level in less than 1 week. By 2 to 3 weeks after injection with tylosin or oxytetracycline, ability to transmit AY was regained by vectors. The results suggest that tetracycline antibiotics and tylosin tartrate inhibit multiplication of AY agent in the insect. The spectrum of antibiotic activity in the insect is consistent with the hypothesis that AY and other plant yellows diseases are caused by mycoplasma-like organisms. PMID:16557821
Yong, Kamuela E; Mubayi, Anuj; Kribs, Christopher M
2015-11-01
The parasite Trypanosoma cruzi, spread by triatomine vectors, affects over 100 mammalian species throughout the Americas, including humans, in whom it causes Chagas' disease. In the U.S., only a few autochthonous cases have been documented in humans, but prevalence is high in sylvatic hosts (primarily raccoons in the southeast and woodrats in Texas). The sylvatic transmission of T. cruzi is spread by the vector species Triatoma sanguisuga and Triatoma gerstaeckeri biting their preferred hosts and thus creating multiple interacting vector-host cycles. The goal of this study is to quantify the rate of contacts between different host and vector species native to Texas using an agent-based model framework. The contact rates, which represent bites, are required to estimate transmission coefficients, which can be applied to models of infection dynamics. In addition to quantitative estimates, results confirm host irritability (in conjunction with host density) and vector starvation thresholds and dispersal as determining factors for vector density as well as host-vector contact rates. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of an adenoviral vector with robust expression driven by p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajgelman, Marcio C.; Biotechnology Program, Biomedical Sciences Institute, University of Sao Paulo; Millennium Institute-Gene Therapy Network, Ministry of Science and Technology
2008-02-05
Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG servedmore » as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.« less
TriatoKey: a web and mobile tool for biodiversity identification of Brazilian triatomine species
Márcia de Oliveira, Luciana; Nogueira de Brito, Raissa; Anderson Souza Guimarães, Paul; Vitor Mastrângelo Amaro dos Santos, Rômulo; Gonçalves Diotaiuti, Liléia; de Cássia Moreira de Souza, Rita
2017-01-01
Abstract Triatomines are blood-sucking insects that transmit the causative agent of Chagas disease, Trypanosoma cruzi. Despite being recognized as a difficult task, the correct taxonomic identification of triatomine species is crucial for vector control in Latin America, where the disease is endemic. In this context, we have developed a web and mobile tool based on PostgreSQL database to help healthcare technicians to overcome the difficulties to identify triatomine vectors when the technical expertise is missing. The web and mobile version makes use of real triatomine species pictures and dichotomous key method to support the identification of potential vectors that occur in Brazil. It provides a user example-driven interface with simple language. TriatoKey can also be useful for educational purposes. Database URL: http://triatokey.cpqrr.fiocruz.br PMID:28605769
The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance.
Maleki-Ravasan, Naseh; Solhjouy-Fard, Samaneh; Beaucournu, Jean-Claude; Laudisoit, Anne; Mostafavi, Ehsan
2017-01-01
Flea-borne diseases have a wide distribution in the world. Studies on the identity, abundance, distribution and seasonality of the potential vectors of pathogenic agents (e.g. Yersinia pestis, Francisella tularensis, and Rickettsia felis) are necessary tools for controlling and preventing such diseases outbreaks. The improvements of diagnostic tools are partly responsible for an easier detection of otherwise unnoticed agents in the ectoparasitic fauna and as such a good taxonomical knowledge of the potential vectors is crucial. The aims of this study were to make an exhaustive inventory of the literature on the fleas (Siphonaptera) and range of associated hosts in Iran, present their known distribution, and discuss their medical importance. The data were obtained by an extensive literature review related to medically significant fleas in Iran published before 31st August 2016. The flea-host specificity was then determined using a family and subfamily-oriented criteria to further realize and quantify the shared and exclusive vertebrate hosts of fleas among Iran fleas. The locations sampled and reported in the literature were primarily from human habitation, livestock farms, poultry, and rodents' burrows of the 31 provinces of the country. The flea fauna were dominated by seven families, namely the Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae, Coptopsyllidae, Ischnopsyllidae and Vermipsyllidae. The hosts associated with Iran fleas ranged from the small and large mammals to the birds. Pulicidae were associated with 73% (56/77) of identified host species. Flea-host association analysis indicates that rodents are the common hosts of 5 flea families but some sampling bias results in the reduced number of bird host sampled. Analyses of flea-host relationships at the subfamily level showed that most vertebrates hosted fleas belgonging to 3 subfamilies namely Xenopsyllinae (n = 43), Ctenophthalminae (n = 20) and Amphipsyllinae (n = 17). Meriones persicus was infested by 11 flea subfamilies in the arid, rocky, mountainous regions and Xenopsyllinae were hosted by at least 43 mammal species. These findings place the Persian jird (M. persicus) and the Xenopsyllinae as the major vertebrate and vector hosts of flea-borne diseases in Iran including Yersinia pestis, the etiological agent of plague. We found records of at least seven vector-borne pathogenic agents that can potentially be transmitted by the 117 flea species (or subspecies) of Iran. Herein, we performed a thorough inventary of the flea species and their associated hosts, their medical importance and geographic distribution throughout Iran. This exercise allowed assessing the diversity of flea species with the potential flea-borne agents transmission risk in the country by arranging published data on flea-host associations. This information is a first step for issuing public health policies and rodent-flea control campaigns in Iran as well as those interested in the ecology/epidemiology of flea-borne disease.
Durden, Lance A; Polur, Ram N; Nims, Todd; Banks, Craig W; Oliver, James H
2004-12-01
Ectoparasite and epifaunistic arthropod biodiversity and infestation parameters were compared between 2 sympatric small rodent species, the cotton mouse (Peromyscus gossypinus (Le Conte)) and golden mouse (Ochrotomys nuttalli (Harlan)), in southern Georgia from 1992 to 2003. Because the cotton mouse is known to be a reservoir of more vector-borne zoonotic pathogens than the golden mouse, we hypothesized that it would be parasitized by more ectoparasites that are known to be vectors of these pathogens. Cotton mice (n = 202) were parasitized by 19 species of arthropods, whereas golden mice (n = 46) were parasitized by 12 species. Eleven species of arthropods were recovered from both host species, whereas 7 were recorded only from cotton mice, and 1 species only from golden mice. Infestation prevalences (percent of mice parasitized) were significantly higher for 1 species of arthropod (the tropical rat mite Ornithonyssus bacoti (Hirst)) infesting cotton mice and for 4 species (the flea Peromyscopsylla scotti Fox and the mites Glycyphagus hypudaei Koch, Androlaelaps casalis (Berlese), and Androlaelaps fahrenholzi (Berlese)) infesting golden mice. Mean intensities (mean per infested mouse) were significantly higher for 2 species (the flea Orchopeas leucopus (Baker) and the blacklegged tick Ixodes scapularis Say) infesting cotton mice and for 2 species (G. hypudaei and A. fahrenholzi) infesting golden mice. Ectoparasites that are known to be vectors of zoonotic pathogens were significantly more common on cotton mice than on golden mice. These ectoparasites included the rhopalopsyllid flea Polygenis gwyni (Fox), a vector of the agent of murine typhus; I. scapularis, the principal vector of the agents of Lyme borreliosis, human granulocytic ehrlichiosis, and human babesiosis; and O. bacoti, a laboratory vector of several zoonotic pathogens. However, 2 species of ixodid ticks that can transmit zoonotic pathogens were recovered from both host species. These were the American dog tick Dermacentor variabilis (Say), the principal vector of the agent of Rocky Mountain spotted fever in eastern North America, and Ixodes minor Neumann, an enzootic vector of the agent of Lyme borreliosis. Overall, the cotton mouse was parasitized by significantly more ectoparasites that are known to be vectors of zoonotic pathogens than was the golden mouse. These data support the hypothesis that the cotton mouse has greater epidemiological importance for zoonotic vector-borne pathogen transmission than does the golden mouse.
Yasmin, Nusrat; Saleem, Mahjabeen; Naz, Mamoona; Gul, Roquyya; Rehman, Hafiz Muzzammel
2017-01-01
A thaumatin-like protein gene from Basrai banana was cloned and expressed in Escherichia coli . Amplified gene product was cloned into pTZ57R/T vector and subcloned into expression vector pET22b(+) and resulting pET22b-basrai TLP construct was introduced into E. coli BL21. Maximum protein expression was obtained at 0.7 mM IPTG concentration after 6 hours at 37°C. Western blot analysis showed the presence of approximately 20 kDa protein in induced cells. Basrai antifungal TLP was tried as pharmacological agent against fungal disease. Independently Basrai antifungal protein and amphotericin B exhibited their antifungal activity against A. fumigatus ; however combined effect of both agents maximized activity against the pathogen. Docking studies were performed to evaluate the antimicrobial potential of TLP against A. fumigatus by probing binding pattern of antifungal protein with plasma membrane ergosterol of targeted fungal strain. Ice crystallization primarily damages frozen food items; however addition of antifreeze proteins limits the growth of ice crystal in frozen foods. The potential of Basrai TLP protein, as an antifreezing agent, in controlling the ice crystal formation in frozen yogurt was also studied. The scope of this study ranges from cost effective production of pharmaceutics to antifreezing and food preserving agent as well as other real life applications.
Yasmin, Nusrat; Naz, Mamoona; Gul, Roquyya; Rehman, Hafiz Muzzammel
2017-01-01
A thaumatin-like protein gene from Basrai banana was cloned and expressed in Escherichia coli. Amplified gene product was cloned into pTZ57R/T vector and subcloned into expression vector pET22b(+) and resulting pET22b-basrai TLP construct was introduced into E. coli BL21. Maximum protein expression was obtained at 0.7 mM IPTG concentration after 6 hours at 37°C. Western blot analysis showed the presence of approximately 20 kDa protein in induced cells. Basrai antifungal TLP was tried as pharmacological agent against fungal disease. Independently Basrai antifungal protein and amphotericin B exhibited their antifungal activity against A. fumigatus; however combined effect of both agents maximized activity against the pathogen. Docking studies were performed to evaluate the antimicrobial potential of TLP against A. fumigatus by probing binding pattern of antifungal protein with plasma membrane ergosterol of targeted fungal strain. Ice crystallization primarily damages frozen food items; however addition of antifreeze proteins limits the growth of ice crystal in frozen foods. The potential of Basrai TLP protein, as an antifreezing agent, in controlling the ice crystal formation in frozen yogurt was also studied. The scope of this study ranges from cost effective production of pharmaceutics to antifreezing and food preserving agent as well as other real life applications. PMID:28875151
Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice
Nakai, Hiroyuki; Fuess, Sally; Storm, Theresa A.; Muramatsu, Shin-ichi; Nara, Yuko; Kay, Mark A.
2005-01-01
Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression. PMID:15596817
Rodents as potential couriers for bioterrorism agents.
Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J
2013-09-01
Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control.
Pelosse, Perrine; Kribs-Zaleta, Christopher M; Ginoux, Marine; Rabinovich, Jorge E; Gourbière, Sébastien; Menu, Frédéric
2013-01-01
Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control.
Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors.
Sitharaman, Balaji; Zakharian, Tatiana Y; Saraf, Anita; Misra, Preeti; Ashcroft, Jared; Pan, Su; Pham, Quynh P; Mikos, Antonios G; Wilson, Lon J; Engler, David A
2008-01-01
A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents.
Walker, K; Lynch, M
2007-03-01
Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.
Dieng, Hamady; Tan Yusop, Nur Syafiqah Bt; Kamal, Nurafidah Natasyah Bt; Ahmad, Abu Hassan; Ghani, Idris Abd; Abang, Fatimah; Satho, Tomomitsu; Ahmad, Hamdan; Zuharah, Wan Fatma; Majid, Abdul Hafiz Ab; Morales, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Noweg, Gabriel Tonga
2016-05-11
Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
Biological nanopesticides: a greener approach towards the mosquito vector control.
Mishra, Prabhakar; Tyagi, Brij Kishore; Chandrasekaran, Natarajan; Mukherjee, Amitava
2018-04-01
Mosquitoes, being a vector for some potentially dreadful diseases, pose a considerable threat to people all around the world. The control over the growth and propagation of mosquitoes comprises conventional pesticides, insect growth regulators and other microbial control agents. However, the usage of these common chemicals and conventional pesticides eventually has a negative impact on human health as well as the environment, which therefore becomes a major concern. The lacuna allows nanotechnology to come into action and exploit nanopesticides. Nanopesticides are majorly divided into two categories-synthetic and biological. Several nanoformulations serve as a promising nanopesticide viz. nanoparticles, e.g. biologically synthesised nanoparticles through plant extracts, nanoemulsions prepared using the essential oils like neem oil and citronella oil and nanoemulsion of conventional pesticides like pyrethroids. These green approaches of synthesising nanopesticides make use of non-toxic and biologically derived compounds and hence are eco-friendly with a better target specificity. Even though there are numerous evidences to show the effectiveness of these nanopesticides, very few efforts have been made to study the possible non-target effects on other organisms prevalent in the aquatic ecosystem. This study focuses on the role of these nanopesticides towards the vector control and its eco-safe property against the other non-target species.
Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology
Koum, Guillaume; Yekel, Augustin; Ndifon, Bengyella; Etang, Josiane; Simard, Frédéric
2007-01-01
Background The understanding of heterogeneities in disease transmission dynamics as far as malaria vectors are concerned is a big challenge. Many studies while tackling this problem don't find exact models to explain the malaria vectors propagation. Methods To solve the problem we define an Adaptive Multi-Agent System (AMAS) which has the property to be elastic and is a two-level system as well. This AMAS is a dynamic system where the two levels are linked by an Ontology which allows it to function as a reduced system and as an extended system. In a primary level, the AMAS comprises organization agents and in a secondary level, it is constituted of analysis agents. Its entry point, a User Interface Agent, can reproduce itself because it is given a minimum of background knowledge and it learns appropriate "behavior" from the user in the presence of ambiguous queries and from other agents of the AMAS in other situations. Results Some of the outputs of our system present a series of tables, diagrams showing some factors like Entomological parameters of malaria transmission, Percentages of malaria transmission per malaria vectors, Entomological inoculation rate. Many others parameters can be produced by the system depending on the inputted data. Conclusion Our approach is an intelligent one which differs from statistical approaches that are sometimes used in the field. This intelligent approach aligns itself with the distributed artificial intelligence. In terms of fight against malaria disease our system offers opportunities of reducing efforts of human resources who are not obliged to cover the entire territory while conducting surveys. Secondly the AMAS can determine the presence or the absence of malaria vectors even when specific data have not been collected in the geographical area. In the difference of a statistical technique, in our case the projection of the results in the field can sometimes appeared to be more general. PMID:17605778
Viral Paratransgenesis in the Malaria Vector Anopheles gambiae
Ren, Xiaoxia; Hoiczyk, Egbert; Rasgon, Jason L.
2008-01-01
Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae. PMID:18725926
Ortega-Iturriaga, Adrián; del-Val, Ek
2017-01-01
The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird (Harmonia axyridis) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing “Harmonia axyridis” to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata, native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services. PMID:28533958
Camacho-Cervantes, Morelia; Ortega-Iturriaga, Adrián; Del-Val, Ek
2017-01-01
The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird ( Harmonia axyridis ) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing " Harmonia axyridis " to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata , native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services.
Jia, Qingmei; Bowen, Richard; Dillon, Barbara Jane; Masleša-Galić, Saša; Chang, Brennan T; Kaidi, Austin C; Horwitz, Marcus A
2018-05-03
Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.
Pelosse, Perrine; Kribs-Zaleta, Christopher M.; Ginoux, Marine; Rabinovich, Jorge E.; Gourbière, Sébastien; Menu, Frédéric
2013-01-01
Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control. PMID:23951018
Delivery of gene silencing agents for breast cancer therapy
2013-01-01
The discovery of RNA interference has opened the door for the development of a new class of cancer therapeutics. Small inhibitory RNA oligos are being designed to specifically suppress expression of proteins that are traditionally considered nondruggable, and microRNAs are being evaluated to exert broad control of gene expression for inhibition of tumor growth. Since most naked molecules are not optimized for in vivo applications, the gene silencing agents need to be packaged into delivery vehicles in order to reach the target tissues as their destinations. Thus, the selection of the right delivery vehicles serves as a crucial step in the development of cancer therapeutics. The current review summarizes the status of gene silencing agents in breast cancer and recent development of candidate cancer drugs in clinical trials. Nanotechnology-based delivery vectors for the formulation and packaging of gene silencing agents are also described. PMID:23659575
Zoonotic risks from small ruminants.
Ganter, M
2015-12-14
Zoonoses are infections that spread naturally between species (sometimes by a vector) from animals to other animal species or to humans or from humans to animals. Most of the zoonoses diagnosed in sheep and goats are transmitted by close contact of man with these animals and are, more often, occupational diseases that principally affect breeders, veterinarians and/or slaughterhouse workers. Some other diseases have an airborne transmission and affect the population in the vicinity of sheep/goat farms. Due to the fact that small ruminants are almost the only remaining animals which are migrating in industrialised countries, there is a severe risk for transmitting the diseases. Some other zoonotic diseases are foodborne diseases, which are mainly transmitted from animals to humans and to other animal species by contaminated food and water. Within the last decade central Europe was threatened by some new infections, e.g., bluetongue disease and schmallenberg disease, which although not of zoonotic interest, are caused by pathogens transmitted by vectors. Causal agents of both diseases have found highly effective indigenous vectors. In the future, climate change may possibly modify conditions for the vectors and influence their distribution and competence. By this, other vector-borne zoonotic infections may propagate into former disease free countries. Changes in human behaviour in consummation and processing of food, in animal housing and management may also influence future risks for zoonosis. Monitoring, prevention and control measures are proposed to limit further epidemics and to enable the containment of outbreaks. Measures depend mainly on the damage evoked or anticipated by the disease, the local situation, and the epidemiology of the zoonoses, the presence of the infective agent in wild and other animals, as well as the resistance of the causal microorganisms in the environment and the possibility to breed sheep and goats which are resistant to specific infections. In this review, the clinical signs in animals and humans of the main sheep and goat zoonoses, as well as the transmission route and the control measures are reported. Brucellosis, chlamydophilosis, Q fever, Orf, Rift valley fever and Bovine Spongiform Encephalopathy are described in greater detail, in order to determine factors that contribute to the choice of the control strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
The dynamics of perception and action.
Warren, William H
2006-04-01
How might one account for the organization in behavior without attributing it to an internal control structure? The present article develops a theoretical framework called behavioral dynamics that integrates an information-based approach to perception with a dynamical systems approach to action. For a given task, the agent and its environment are treated as a pair of dynamical systems that are coupled mechanically and informationally. Their interactions give rise to the behavioral dynamics, a vector field with attractors that correspond to stable task solutions, repellers that correspond to avoided states, and bifurcations that correspond to behavioral transitions. The framework is used to develop theories of several tasks in which a human agent interacts with the physical environment, including bouncing a ball on a racquet, balancing an object, braking a vehicle, and guiding locomotion. Stable, adaptive behavior emerges from the dynamics of the interaction between a structured environment and an agent with simple control laws, under physical and informational constraints. ((c) 2006 APA, all rights reserved).
Bernal, Giovanna M; LaRiviere, Michael J; Mansour, Nassir; Pytel, Peter; Cahill, Kirk E; Voce, David J; Kang, Shijun; Spretz, Ruben; Welp, Ulrich; Noriega, Sandra E; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R; Yamini, Bakhtiar
2014-01-01
A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells was demonstrated. Convection-enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ-bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma. GBM remains one of the most notoriously treatment-unresponsive cancer types. In this study, a multifunctional nanoparticle-based temozolomide delivery system was demonstrated to possess enhanced treatment efficacy in a rodent xenograft GBM model, with the added benefit of MRI-based tracking via the incorporation of iron oxide as a T2* contrast material in the nanoparticles. © 2014.
Single dose of an adenovirus vectored mouse interferon-α protects mice from lethal EV71 challenge.
Sun, Jialei; Ennis, Jane; Turner, Jeffrey D; Chu, Justin Jang Hann
2016-10-01
Enterovirus 71 (EV71) causes hand-foot-and-mouth diseases as well as neurological complications in young children. Interferon (IFN) can inhibit the replication of many viruses with low cytotoxic effects. Previously, an adenovirus vectored mouse interferon-α (DEF201), subtype 5, was generated by Wu et al, 2007. In this study, the antiviral effects of DEF201 against EV71 were evaluated in a murine model. 6-day-old BALB/c mice were administered a single dose of DEF201 before or after infection with lethal dose of EV71. The survival rate, clinical symptoms, tissue viral loads and histology pathogenesis were evaluated. IFN gene expression following a single dose of DEF201 maintained high concentrations of 100-9000 pg/mL for more than 7 days in mice serum. Pre-infection administration of a single dose of 10 6 PFU of DEF201 offered full protection of the mice against EV71 infection compared with the empty Ad5 vector control. In addition, virus load in DEF201-treated mice muscle tissue was significantly decreased as compared with empty vector control. Histopathology analysis revealed that DEF201 significantly prevented the development of severe tissue damage with reduction of viral antigen in the murine muscle tissue. Post-infection treatment at 6 h offered full protection and partial protection at 12 h, indicating that DEF201 could be used as an anti-EV71 therapeutic agent in early stage of EV71 infection. In addition, our study showed that DEF201 enhanced the neutralization ability of serum in EV71-vaccinated mice, implying that DEF201 could promote the production of specific anti-EV71 antibodies. In conclusion, single dose of DEF201 is highly efficacious as a prophylactic agent against EV71 infection in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Paratransgenic Control of Vector Borne Diseases
Hurwitz, Ivy; Fieck, Annabeth; Read, Amber; Hillesland, Heidi; Klein, Nichole; Kang, Angray; Durvasula, Ravi
2011-01-01
Conventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host's ability to transmit the pathogen. We have successfully utilized this strategy to reduce carriage rates of Trypanosoma cruzi, the causative agent of Chagas disease, in the triatomine bug, Rhodnius prolixus, and are currently developing this methodology to control the transmission of Leishmania donovani by the sand fly Phlebotomus argentipes. Several effector molecules, including antimicrobial peptides and highly specific single chain antibodies, are currently being explored for their anti-parasite activities in these two systems. In preparation for eventual field use, we are actively engaged in risk assessment studies addressing the issue of horizontal gene transfer from the modified bacteria to environmental microbes. PMID:22110385
2014-01-01
Background Feline vector-borne diseases (FVBD) have emerged in recent years, showing a wider geographic distribution and increased global prevalence. In addition to their veterinary importance, domestic cats play a central role in the transmission cycles of some FVBD agents by acting as reservoirs and sentinels, a circumstance that requires a One Health approach. The aim of the present work was to molecularly detect feline vector-borne bacteria and protozoa with veterinary and zoonotic importance, and to assess associated risk factors in cats from southern Portugal. Methods Six hundred and forty-nine cats (320 domestic and 329 stray), from veterinary medical centres and animal shelters in southern Portugal, were studied. Anaplasma spp./Ehrlichia spp., Babesia spp., Bartonella spp., Borrelia burgdorferi sensu lato, Hepatozoon spp. and Leishmania spp. infections were evaluated by polymerase chain reaction (PCR) in blood samples. Results One hundred and ninety-four (29.9%) cats were PCR-positive to at least one of the tested genera or complex of FVBD agents. Sixty-four (9.9%) cats were positive to Leishmania spp., 56 (8.6%) to Hepatozoon spp., 43 (6.6%) to Babesia spp., 35 (5.4%) to Anaplasma spp./Ehrlichia spp., 19 (2.9%) to Bartonella spp. and 14 (2.2%) to B. burgdorferi s.l. Thirty-three (5.1%) cats were positive to two (n = 29) or three (n = 4) genera/complex. Babesia vogeli, Bartonella clarridgeiae, Bartonella henselae, Ehrlichia canis, Hepatozoon felis and Leishmania infantum were identified by DNA sequencing. Conclusions The occurrence of FVBD agents in southern Portugal, some of them with zoonotic character, emphasizes the need to alert the veterinary community, owners and public health authorities for the risk of infection. Control measures should be implemented to prevent the infection of cats, other vertebrate hosts and people. PMID:24655431
Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George
2014-10-01
Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.
Readman, John Benedict; Dickson, George; Coldham, Nick G
2017-06-01
The bacterial cell wall presents a barrier to the uptake of unmodified synthetic antisense oligonucleotides, such as peptide nucleic acids, and so is one of the greatest obstacles to the development of their use as therapeutic anti-bacterial agents. Cell-penetrating peptides have been covalently attached to antisense agents, to facilitate penetration of the bacterial cell wall and deliver their cargo into the cytoplasm. Although they are an effective vector for antisense oligonucleotides, they are not specific for bacterial cells and can exhibit growth inhibitory properties at higher doses. Using a bacterial cell growth assay in the presence of cefotaxime (CTX 16 mg/L), we have developed and evaluated a self-assembling non-toxic DNA tetrahedron nanoparticle vector incorporating a targeted anti-bla CTX-M-group 1 antisense peptide nucleic acid (PNA4) in its structure for penetration of the bacterial cell wall. A dose-dependent CTX potentiating effect was observed when PNA4 (0-40 μM) was incorporated into the structure of a DNA tetrahedron vector. The minimum inhibitory concentration (to CTX) of an Escherichia coli field isolate harboring a plasmid carrying bla CTX-M-3 was reduced from 35 to 16 mg/L in the presence of PNA4 carried by the DNA tetrahedron vector (40 μM), contrasting with no reduction in MIC in the presence of PNA4 alone. No growth inhibitory effects of the DNA tetrahedron vector alone were observed.
Adenovirus-based genetic vaccines for biodefense.
Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G
2005-02-01
The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.
The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance
Maleki-Ravasan, Naseh; Solhjouy-Fard, Samaneh; Beaucournu, Jean-Claude; Laudisoit, Anne
2017-01-01
Background Flea-borne diseases have a wide distribution in the world. Studies on the identity, abundance, distribution and seasonality of the potential vectors of pathogenic agents (e.g. Yersinia pestis, Francisella tularensis, and Rickettsia felis) are necessary tools for controlling and preventing such diseases outbreaks. The improvements of diagnostic tools are partly responsible for an easier detection of otherwise unnoticed agents in the ectoparasitic fauna and as such a good taxonomical knowledge of the potential vectors is crucial. The aims of this study were to make an exhaustive inventory of the literature on the fleas (Siphonaptera) and range of associated hosts in Iran, present their known distribution, and discuss their medical importance. Methodology/Principal Findings The data were obtained by an extensive literature review related to medically significant fleas in Iran published before 31st August 2016. The flea-host specificity was then determined using a family and subfamily-oriented criteria to further realize and quantify the shared and exclusive vertebrate hosts of fleas among Iran fleas. The locations sampled and reported in the literature were primarily from human habitation, livestock farms, poultry, and rodents’ burrows of the 31 provinces of the country. The flea fauna were dominated by seven families, namely the Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae, Coptopsyllidae, Ischnopsyllidae and Vermipsyllidae. The hosts associated with Iran fleas ranged from the small and large mammals to the birds. Pulicidae were associated with 73% (56/77) of identified host species. Flea-host association analysis indicates that rodents are the common hosts of 5 flea families but some sampling bias results in the reduced number of bird host sampled. Analyses of flea-host relationships at the subfamily level showed that most vertebrates hosted fleas belgonging to 3 subfamilies namely Xenopsyllinae (n = 43), Ctenophthalminae (n = 20) and Amphipsyllinae (n = 17). Meriones persicus was infested by 11 flea subfamilies in the arid, rocky, mountainous regions and Xenopsyllinae were hosted by at least 43 mammal species. These findings place the Persian jird (M. persicus) and the Xenopsyllinae as the major vertebrate and vector hosts of flea-borne diseases in Iran including Yersinia pestis, the etiological agent of plague. We found records of at least seven vector-borne pathogenic agents that can potentially be transmitted by the 117 flea species (or subspecies) of Iran. Conclusions/Significance Herein, we performed a thorough inventary of the flea species and their associated hosts, their medical importance and geographic distribution throughout Iran. This exercise allowed assessing the diversity of flea species with the potential flea-borne agents transmission risk in the country by arranging published data on flea-host associations. This information is a first step for issuing public health policies and rodent-flea control campaigns in Iran as well as those interested in the ecology/epidemiology of flea-borne disease. PMID:28068343
Virus diseases of peppers (Capsicum spp.) and their control.
Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A
2014-01-01
The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.
Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents
Al-Abd, Nazeh M.; Nor, Zurainee Mohamed; Al-Adhroey, Abdulelah H.; Suhaimi, Anwar; Sivanandam, S.
2013-01-01
Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented. PMID:24298292
Dusting off the epidemiological triad: could it work with obesity?
Egger, G; Swinburn, B; Rossner, S
2003-05-01
The search for effective ways of dealing with obesity has centred on biological research and clinical management. However, obesity needs to be conceptualized more broadly if the modern pandemic is to be arrested. The epidemiological triad (hosts, agent/vectors and environments) has served us well in dealing with epidemics in the past, and may be worth re-evaluating to this end. Education, behaviour change and clinical practices deal predominantly with the host, although multidisciplinary practices such as shared-care might also be expected to impact on other corners of the triad. Technology deals best with the agent of obesity (energy imbalance) and it's vectors (excessive energy intake and/or inadequate energy expenditure), and policy and social change are needed to cope with the environment. The value of a broad model like this, rather than specific isolated approaches, is that the key players such as legislators, health professionals, governments and industry can see their roles in attenuating and eventually reversing the epidemic. It also highlights the need to intervene at all levels in obesity control and reduces the relevance of arguments about nature vs. nurture.
Code Samples Used for Complexity and Control
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents
[Ecology of vector systems: a tangle of complexity].
Rodhain, F
2008-06-01
The long co-evolutionary process between arthropods and microorganisms has resulted in a wide variety of relationships. One such relationship involves a wide range of infectious agents (virus, bacteria, protozoa, helminthes) that use blood-feeding arthropods (insects and mites) as vectors for transmission from one vertebrate to another. Transmission involves three components, i.e., microorganism, vector(s), and vertebrate host(s). Study under natural conditions has shown that the underlying mechanisms are extremely complex with circulation of the infectious agents depending on numerous conditions linked not only to bioecology but also to genetic factors in all three component populations. The role of arthropods sometimes goes beyond that of a transmitter of disease. In some cases they also serve as reservoirs or disseminators. In addition changes in the environment whether due to natural causes or human activities (e.g. pollution, agropastoralism, urbanization, transportation network development, and climate change) can have profound and rapid effects on the mechanisms underlying these vector systems. In short the ecology of vector systems closely reflects the extreme complexity of epidemiological studies on diseases caused by infectious agents depending on this type of transmission. As a result prediction of infectious risks and planning of preventive action are difficult. It appears obvious that a good understanding of vector systems in their natural context will require a truly ecological approach to the diseases that must be the focus of extremely close epidemiologic surveillance. Achieving this goal will necessitate more than the skills of physicians and veterinarians. It will require the contribution of specialists from a variety of fields such as microbiology, entomology, systematics, climatology, ecology, urbanism, social sciences, economic development, and many others.
2015-01-01
Kendrick 1999, Maroli et al . 2012), presumably from the presence of hairs on their wings, which in combination with their small size, may explain...Phlebotomus species in the Old World and 56 Lutzomyia species in the New World (Maroli et al . 2012). In addition to serving as vectors of the agents that...Chandipura (genus Vesiculovirus, family Rhabdoviridae) and Changuinola (genus Orbivirus, family Reoviridae) (Depaquit et al ., 2010, Plyusnin et al . 2012
Eisen, Rebecca J.; Eisen, Lars; Beard, Charles B.
2016-01-01
The blacklegged tick, Ixodes scapularis Say, is the primary vector to humans in the eastern United States of the Lyme disease spirochete Borrelia burgdorferi, as well as causative agents of anaplasmosis and babesiosis. Its close relative in the far western United States, the western blacklegged tick Ixodes pacificus Cooley and Kohls, is the primary vector to humans in that region of the Lyme disease and anaplasmosis agents. Since 1991, when standardized surveillance and reporting began, Lyme disease case counts have increased steadily in number and in geographical distribution in the eastern United States. Similar trends have been observed for anaplasmosis and babesiosis. To better understand the changing landscape of risk of human exposure to disease agents transmitted by I. scapularis and I. pacificus, and to document changes in their recorded distribution over the past two decades, we updated the distribution of these species from a map published in 1998. The presence of I. scapularis has now been documented from 1,420 (45.7%) of the 3,110 continental United States counties, as compared with 111 (3.6%) counties for I. pacificus. Combined, these vectors of B. burgdorferi and other disease agents now have been identified in a total of 1,531 (49.2%) counties spread across 43 states. This marks a 44.7% increase in the number of counties that have recorded the presence of these ticks since the previous map was presented in 1998, when 1,058 counties in 41 states reported the ticks to be present. Notably, the number of counties in which I. scapularis is considered established (six or more individuals or one or more life stages identified in a single year) has more than doubled since the previous national distribution map was published nearly two decades ago. The majority of county status changes occurred in the North-Central and Northeastern states, whereas the distribution in the South remained fairly stable. Two previously distinct foci for I. scapularis in the Northeast and North-Central states appear to be merging in the Ohio River Valley to form a single contiguous focus. Here we document a shifting landscape of risk for human exposure to medically important ticks and point to areas of re-emergence where enhanced vector surveillance and control may be warranted. PMID:26783367
Oliveira, Vanessa S; Pimenteira, Cecília; da Silva-Alves, Diana C B; Leal, Laylla L L; Neves-Filho, Ricardo A W; Navarro, Daniela M A F; Santos, Geanne K N; Dutra, Kamilla A; dos Anjos, Janaína V; Soares, Thereza A
2013-11-15
The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
Broader prevalence of Wolbachia in insects including potential human disease vectors.
de Oliveira, C D; Gonçalves, D S; Baton, L A; Shimabukuro, P H F; Carvalho, F D; Moreira, L A
2015-06-01
Wolbachia are intracellular, maternally transmitted bacteria considered the most abundant endosymbionts found in arthropods. They reproductively manipulate their host in order to increase their chances of being transmitted to the offspring, and currently are being used as a tool to control vector-borne diseases. Studies on distribution of Wolbachia among its arthropod hosts are important both for better understanding why this bacterium is so common, as well as for its potential use as a biological control agent. Here, we studied the incidence of Wolbachia in a broad range of insect species, collected from different regions of Brazil, using three genetic markers (16S rRNA, wsp and ftsZ), which varied in terms of their sensitivity to detect this bacterium. The overall incidence of Wolbachia among species belonging to 58 families and 14 orders was 61.9%. The most common positive insect orders were Coleoptera, Diptera, Hemiptera and Hymenoptera, with Diptera and Hemiptera having the highest numbers of Wolbachia-positive families. They included potential human disease vectors whose infection status has never been reported before. Our study further shows the importance of using quantitative polymerase chain reaction for high-throughput and sensitive Wolbachia screening.
Murugan, Kadarkarai; Samidoss, Christina Mary; Panneerselvam, Chellasamy; Higuchi, Akon; Roni, Mathath; Suresh, Udaiyan; Chandramohan, Balamurugan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Dinesh, Devakumar; Rajaganesh, Rajapandian; Alarfaj, Abdullah A; Nicoletti, Marcello; Kumar, Suresh; Wei, Hui; Canale, Angelo; Mehlhorn, Heinz; Benelli, Giovanni
2015-11-01
Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.
Duguma, Dagne; Hall, Michael W; Smartt, Chelsea T; Neufeld, Josh D
2017-01-01
Pollution from nutrients in aquatic habitats has been linked to increases in disease vectors, including mosquitoes and other pestiferous insects. One possibility is that changes in mosquito microbiomes are impacted by nutrient enrichments and that these changes affect various traits, including larval development, susceptibility to larval control agents, and susceptibility of the adult mosquitoes to pathogens. We tested this hypothesis using field mesocosms supplemented with low- and high-organic-nutrient regimens and then sampled microbial communities associated with the naturally colonizing Culex nigripalpus mosquito vector. By high-throughput sequencing of 16S rRNA gene sequences, we found no significant differences in overall microbial communities associated with sampled mosquitoes, despite detecting discernible differences in environmental variables, including pH, dissolved oxygen, and nutrient amendments. Nevertheless, indicator species analysis revealed that members of the Clostridiales were significantly associated with mosquitoes that originated from high-nutrient enrichments. In contrast, members of the Burkholderiales were associated with mosquitoes from the low-nutrient enrichment. High bacterial variability associated with the life stages of the C. nigripalpus was largely unaffected by levels of nutrient enrichments that impacted larval microbial resources, including bacteria, ciliates, and flagellates in the larval environments. IMPORTANCE Mosquito microbiota provide important physiological and ecological attributes to mosquitoes, including an impact on their susceptibility to pathogens, fitness, and sensitivity to mosquito control agents. Culex nigripalpus mosquito populations transmit various pathogens, including the Saint Louis and West Nile viruses, and proliferate in nutrient-rich environments, such as in wastewater treatment wetlands. Our study examined whether increases in nutrients within larval mosquito developmental habitats impact microbial communities associated with C. nigripalpus mosquitoes. We characterized the effects of organic enrichments on microbiomes associated with C. nigripalpus mosquitoes and identified potential bacterial microbiota that will be further investigated for whether they alter mosquito life history traits and for their potential role in the development of microbial-based control strategies.
Virucidal effects of rodent cage-cleaning practices on the viability of adenovirus vectors.
Porter, Jacqueline D; Lyons, Russette M
2002-09-01
Human adenoviruses and adenoviral vectors are classified as Risk Group 2 agents and require BSL2 containment and practices. An additional consideration in using adenoviruses and viral vectors in laboratory animal studies is the possible transmission of these agents to other animals and/or personnel as a result of viral shedding in animal urine and feces. When handling BSL2 agents, cage-wash staff are required to wear appropriate personnel protective equipment, including scrubs, Tyvek suit, hair covering, dust mask, shoes covers, and gloves. Current decontamination procedures are to bag and autoclave soiled rodent cages containing bedding prior to washing in the cage washer to prevent possible adenoviral transmission. However, the practice of autoclaving softens the polycarbonate-based rodent cages, allowing damaging agents or conditions to affect the integrity of the plastic and degrade the cages. The objective of this study was to determine whether current rodent cage-cleaning practices produced virucidal effects for use in lieu of or prior to autoclaving the cages. We found that heating an Av3GFP vector in a test tube to a temperature of 74 degrees C (165 degrees F) for 6 min conditions equivalent to those of the cage washer resulted in greater than an 11-log reduction in infectivity of the vector as evaluated by its cytopathic effect on cells. The combination of heating and a liquid, phosphate-free alkaline detergent produced the same reduction in vector infectivity. However, common cage-cleaning solutions alone possessed no virucidal activity. The high temperatures used in cage-washing procedures alone or in combination with a cleaning solution reduced or eliminated the risk of transmission from viral shedding through urine and feces even at vector concentrations far greater than would ever be expected to be present. Autoclaving cages diminishes the stability and integrity of the polycarbonate cages without providing a further reduction in the risk of virus or vector transmission. On the basis of results from this study, new cage-wash recommendations include dumping the contaminated bedding into a HEPA-filtered waste disposal system and autoclaving the bags of bedding before disposal, then cleaning the cages in the rack washer at wash temperatures of 74 degrees C (165 F) and rinse temperatures of 82 degrees C (180 F).
Agent-based modeling of malaria vectors: the importance of spatial simulation.
Bomblies, Arne
2014-07-03
The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as "agents" in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important.
Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C
2013-01-01
The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.
Nouri, Shahideh; Salem, Nidá; Nigg, Jared C.
2015-01-01
ABSTRACT The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. IMPORTANCE Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri. PMID:26676774
Nouri, Shahideh; Salem, Nidá; Nigg, Jared C; Falk, Bryce W
2015-12-16
The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2010 CFR
2010-01-01
... genetically modified. (d) VS select agents or toxins that meet any of the following criteria are excluded from... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... recombinant organisms: (1) Nucleic acids that can produce infectious forms of any of the select agent viruses...
Computer-Aided Structure Based Drug Design Approaches for the Discovery of New Anti-CHIKV Agents.
Jadav, Surender Singh; Sinha, Barij Nayan; Hilgenfeld, Rolf; Jayaprakash, Venkatesan
2017-11-10
Chikungunya is a viral infection caused by Chikungunya virus (CHIKV), an arbovirus transmitted through mosquito (Aedes aegypti and Aedes albopictus) bite. The virus from sylvatic cycle in Africa mutated to new vector adaptation and became one of the major emerging and re-emerging viral infections in the past decade, affecting more than 40 countries. Efforts are being made by many researches to develop means to prevent and control the infection through vaccines and vector control strategy. On the other hand, search for novel chemotherapeutic agents for the treatment of infected patients is on. Approach of repurposed drug is one way of identifying an existing drug for the treatment of CHIKV infection. Review the history of CHIKV nsp2 protease inhibitors derived through structure-based computer-aided drug design along with phytochemicals identified as anti-CHIKV agents. A survey on CHIKV inhibitors reported till date has been carriedout. The data obtained were organized and discussed under natural substances and synthetic derivatives obtained as result of rational design. The review provides a well organized content in chronological order that has highly significant information for medicinal chemist who wish to explore the area of Anti-CHIKV drug design and development. Natural compounds with different scaffolds provides an opportunity to explore Ligand based drug design (LBDD), while rational drug design approaches provides opportunity to explore the Structure based drug design. From the presented mini-review, readers can understand that this area is less explored and has lots of potential in anti-CHIKVviral drug design & development. of reported literature inferred that, unlike other viral proteases, the nsP2 protease can be targeted for CHIKV viral inhibition. The HTVS process for the identification of anti-CHIK agents provided a few successive validated lead compounds against CHIKV infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Prevention of tick-borne diseases.
Piesman, Joseph; Eisen, Lars
2008-01-01
Tick-borne diseases are on the rise. Lyme borreliosis is prevalent throughout the Northern Hemisphere, and the same Ixodes tick species transmitting the etiologic agents of this disease also serve as vectors of pathogens causing human babesiosis, human granulocytic anaplasmosis, and tick-borne encephalitis. Recently, several novel agents of rickettsial diseases have been described. Despite an explosion of knowledge in the fields of tick biology, genetics, molecular biology, and immunology, transitional research leading to widely applied public health measures to combat tick-borne diseases has not been successful. Except for the vaccine against tick-borne encephalitis virus, and a brief campaign to reduce this disease in the former Soviet Union through widespread application of DDT, success stories in the fight against tick-borne diseases are lacking. Both new approaches to tick and pathogen control and novel ways of translating research findings into practical control measures are needed to prevent tick-borne diseases in the twenty-first century.
Wang, Yitong; Wang, Ling; Yan, Miaomiao; Dong, Shuli; Hao, Jingcheng
2017-08-30
Functional DNA molecules have been introduced into polymer-based nanocarrier systems to incorporate chemotherapy drugs for cancer therapy. Here is the first report of dual-responsive microgels composed of a core of Au nanorods and a shell of magnetic ionic liquid and DNA moieties in the cross-linking network simultaneously, as effective drug delivery vectors. TEM images indicated a magnetic polymer shell has an analogous "doughnut" shape which loosely surround the AuNRs core. When irradiated with a near-infrared-light (near-IR) laser, Au nanorods are the motors which convert the light to heat, leading to the release of the encapsulated payloads with high controllability. DNA acts not only as a cross-linker agent, but also as a gatekeeper to regulate the release of drugs. The internalization study and MTT assay confirm that these core-shell DNA microgels are excellent candidates which can enhance the cytotoxicity of cancer cells controlled by near-IR laser and shield the high toxicity of chemotherapeutic agents to improve the killing efficacy of chemotherapeutic agents efficiently in due course.
Use of a current varicella vaccine as a live polyvalent vaccine vector.
Murakami, Kouki; Mori, Yasuko
2016-01-04
Varicella-zoster virus (VZV) is the causative agent of varicella and zoster. The varicella vaccine was developed to control VZV infection in children. The currently available Oka vaccine strain is the only live varicella vaccine approved by the World Health Organization. We previously cloned the complete genome of the Oka vaccine strain into a bacterial artificial chromosome vector and then successfully reconstituted the virus. We then used this system to generate a recombinant Oka vaccine virus expressing mumps virus gene(s). The new recombinant vaccine may be an effective polyvalent live vaccine that provides protection against both varicella and mumps viruses. In this review, we discussed about possibility of polyvalent live vaccine(s) using varicella vaccine based on our recent studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Novel Clustering Method Curbing the Number of States in Reinforcement Learning
NASA Astrophysics Data System (ADS)
Kotani, Naoki; Nunobiki, Masayuki; Taniguchi, Kenji
We propose an efficient state-space construction method for a reinforcement learning. Our method controls the number of categories with improving the clustering method of Fuzzy ART which is an autonomous state-space construction method. The proposed method represents weight vector as the mean value of input vectors in order to curb the number of new categories and eliminates categories whose state values are low to curb the total number of categories. As the state value is updated, the size of category becomes small to learn policy strictly. We verified the effectiveness of the proposed method with simulations of a reaching problem for a two-link robot arm. We confirmed that the number of categories was reduced and the agent achieved the complex task quickly.
Identification of Human Semiochemicals Attractive to the Major Vectors of Onchocerciasis
Young, Ryan M.; Burkett-Cadena, Nathan D.; McGaha, Tommy W.; Rodriguez-Perez, Mario A.; Toé, Laurent D.; Adeleke, Monsuru A.; Sanfo, Moussa; Soungalo, Traore; Katholi, Charles R.; Noblet, Raymond; Fadamiro, Henry; Torres-Estrada, Jose L.; Salinas-Carmona, Mario C.; Baker, Bill; Unnasch, Thomas R.; Cupp, Eddie W.
2015-01-01
Background Entomological indicators are considered key metrics to document the interruption of transmission of Onchocerca volvulus, the etiological agent of human onchocerciasis. Human landing collection is the standard employed for collection of the vectors for this parasite. Recent studies reported the development of traps that have the potential for replacing humans for surveillance of O. volvulus in the vector population. However, the key chemical components of human odor that are attractive to vector black flies have not been identified. Methodology/Principal Findings Human sweat compounds were analyzed using GC-MS analysis and compounds common to three individuals identified. These common compounds, with others previously identified as attractive to other hematophagous arthropods were evaluated for their ability to stimulate and attract the major onchocerciasis vectors in Africa (Simulium damnosum sensu lato) and Latin America (Simulium ochraceum s. l.) using electroantennography and a Y tube binary choice assay. Medium chain length carboxylic acids and aldehydes were neurostimulatory for S. damnosum s.l. while S. ochraceum s.l. was stimulated by short chain aliphatic alcohols and aldehydes. Both species were attracted to ammonium bicarbonate and acetophenone. The compounds were shown to be attractive to the relevant vector species in field studies, when incorporated into a formulation that permitted a continuous release of the compound over time and used in concert with previously developed trap platforms. Conclusions/Significance The identification of compounds attractive to the major vectors of O. volvulus will permit the development of optimized traps. Such traps may replace the use of human vector collectors for monitoring the effectiveness of onchocerciasis elimination programs and could find use as a contributing component in an integrated vector control/drug program aimed at eliminating river blindness in Africa. PMID:25569240
Identification of human semiochemicals attractive to the major vectors of onchocerciasis.
Young, Ryan M; Burkett-Cadena, Nathan D; McGaha, Tommy W; Rodriguez-Perez, Mario A; Toé, Laurent D; Adeleke, Monsuru A; Sanfo, Moussa; Soungalo, Traore; Katholi, Charles R; Noblet, Raymond; Fadamiro, Henry; Torres-Estrada, Jose L; Salinas-Carmona, Mario C; Baker, Bill; Unnasch, Thomas R; Cupp, Eddie W
2015-01-01
Entomological indicators are considered key metrics to document the interruption of transmission of Onchocerca volvulus, the etiological agent of human onchocerciasis. Human landing collection is the standard employed for collection of the vectors for this parasite. Recent studies reported the development of traps that have the potential for replacing humans for surveillance of O. volvulus in the vector population. However, the key chemical components of human odor that are attractive to vector black flies have not been identified. Human sweat compounds were analyzed using GC-MS analysis and compounds common to three individuals identified. These common compounds, with others previously identified as attractive to other hematophagous arthropods were evaluated for their ability to stimulate and attract the major onchocerciasis vectors in Africa (Simulium damnosum sensu lato) and Latin America (Simulium ochraceum s. l.) using electroantennography and a Y tube binary choice assay. Medium chain length carboxylic acids and aldehydes were neurostimulatory for S. damnosum s.l. while S. ochraceum s.l. was stimulated by short chain aliphatic alcohols and aldehydes. Both species were attracted to ammonium bicarbonate and acetophenone. The compounds were shown to be attractive to the relevant vector species in field studies, when incorporated into a formulation that permitted a continuous release of the compound over time and used in concert with previously developed trap platforms. The identification of compounds attractive to the major vectors of O. volvulus will permit the development of optimized traps. Such traps may replace the use of human vector collectors for monitoring the effectiveness of onchocerciasis elimination programs and could find use as a contributing component in an integrated vector control/drug program aimed at eliminating river blindness in Africa.
Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal
Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.
2015-01-01
The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763
Efficacy of Aquatain, a Monomolecular Film, for the Control of Malaria Vectors in Rice Paddies
Bukhari, Tullu; Takken, Willem; Githeko, Andrew K.; Koenraadt, Constantianus J. M.
2011-01-01
Background Rice paddies harbour a large variety of organisms including larvae of malaria mosquitoes. These paddies are challenging for mosquito control because their large size, slurry and vegetation make it difficult to effectively apply a control agent. Aquatain, a monomolecular surface film, can be considered a suitable mosquito control agent for such breeding habitats due to its physical properties. The properties allow Aquatain to self-spread over a water surface and affect multiple stages of the mosquito life cycle. Methodology/Principal Findings A trial based on a pre-test/post-test control group design evaluated the potential of Aquatain as a mosquito control agent at Ahero rice irrigation scheme in Kenya. After Aquatain application at a dose of 2 ml/m2 on rice paddies, early stage anopheline larvae were reduced by 36%, and late stage anopheline larvae by 16%. However, even at a lower dose of 1 ml/m2 there was a 93.2% reduction in emergence of anopheline adults and 69.5% reduction in emergence of culicine adults. No pupation was observed in treated buckets that were part of a field bio-assay carried out parallel to the trial. Aquatain application saved nearly 1.7 L of water in six days from a water surface of 0.2 m2 under field conditions. Aquatain had no negative effect on rice plants as well as on a variety of non-target organisms, except backswimmers. Conclusions/Significance We demonstrated that Aquatain is an effective agent for the control of anopheline and culicine mosquitoes in irrigated rice paddies. The agent reduced densities of aquatic larval stages and, more importantly, strongly impacted the emergence of adult mosquitoes. Aquatain also reduced water loss due to evaporation. No negative impacts were found on either abundance of non-target organisms, or growth and development of rice plants. Aquatain, therefore, appears a suitable mosquito control tool for use in rice agro-ecosystems. PMID:21738774
Aquatic insect predators and mosquito control.
Shaalan, Essam Abdel-Salam; Canyon, Deon V
2009-12-01
Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.
Efficient systemic DNA delivery to the tumor by self-assembled nanoparticle
NASA Astrophysics Data System (ADS)
Tang, Hailin; Xie, Xinhua; Guo, Jiaoli; Wei, Weidong; Wu, Minqing; Liu, Peng; Kong, Yanan; Yang, Lu; Hung, Mien-Chie; Xie, Xiaoming
2014-01-01
There are few delivery agents that could deliver gene with high efficiency and low toxicity, especially for animal experiments. Therefore, creating vectors with good delivery efficiency and safety profile is a meaningful work. We have developed a self-assembled gene delivery system (XM001), which can more efficiently deliver DNA to multiple cell lines and breast tumor, as compared to commercial delivery agents. In addition, systemically administrated XM001-BikDD (BikDD is a mutant form of proapoptotic gene Bik) significantly inhibited the growth of human breast cancer cells and prolonged the life span in implanted nude mice. This study demonstrates that XM001 is an efficient and widespread transfection agent, which could be a promising tumor delivery vector for cancer targeted therapy.
Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles
Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor
2007-01-01
During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422
Tabanids: neglected subjects of research, but important vectors of disease agents!
Baldacchino, Frédéric; Desquesnes, Marc; Mihok, Steve; Foil, Lane D; Duvallet, Gérard; Jittapalapong, Sathaporn
2014-12-01
Tabanids are nuisance pests for people and livestock because of their painful and irritating bite, persistent biting behavior, and blood ingestion. About 4400 tabanid species have been described; they are seasonally present in all kinds of landscapes, latitudes, and altitudes. High populations have a significant economic impact on outdoor activities, tourism, and livestock production. Tabanids are also vectors of animal disease agents, including viruses, bacteria and parasites. However, tabanids have received little attention in comparison with other hematophagous Diptera. Here, we highlight the many direct and indirect impacts of tabanids and provide a brief summary of tabanid morphology, biology, and life cycle. Impacts include pathogen transmission, parasite transportation (Dermatobia hominis), biological transmission (Loa loa), and mechanical transmission of viruses, such as equine infectious anemia virus, protozoa, such as Trypanosoma evansi and Besnotia besnoiti, and bacteria, such as Bacillus anthracis and Anaplasma marginale. We discuss parameters of mechanical transmission and its mathematical modeling. Control methods for tabanid populations are also summarized; these include trapping, the use of insecticides, repellents, and livestock protection. Lastly recommendations are provided for the direction of future research. Copyright © 2014 Elsevier B.V. All rights reserved.
2012-01-01
Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun
2004-04-01
This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.
Borlase, Anna; Rudge, James W.
2017-01-01
Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/or transmission mode in response to changing selective pressures, such as those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted community of definitive and intermediate/secondary hosts or vectors, often together with infectious stages in the environment, all of which may represent potential targets, as well as specific challenges, particularly where disease elimination is proposed. Here, we explore, focusing on examples from both human and animal pathogen systems, why and how we should aim to disentangle and quantify the relative importance of multi-host multi-mode infectious agent transmission dynamics under contrasting conditions, and ultimately, how this can be used to help achieve efficient and effective disease control. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289259
Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents
2016-04-12
economy. Vaccine development is an important strategy to thwart the threat of these viral biothreat agents. There is an urgent need to improve...Alberta, Tl A 8K6. Canada E-mail: josh. wu@drdc-rddc.gc.ca .• 78 JoshQ.H. Wu existing vaccines against these agents and to develop new ones. Gene...of vaccines against viral biothreat agents. Genes encoding protective antigens of viral biothreat agents can be carried by these viral vectors and
Micropathogen Community Analysis in Hyalomma rufipes via High-Throughput Sequencing of Small RNAs
Luo, Jin; Liu, Min-Xuan; Ren, Qiao-Yun; Chen, Ze; Tian, Zhan-Cheng; Hao, Jia-Wei; Wu, Feng; Liu, Xiao-Cui; Luo, Jian-Xun; Yin, Hong; Wang, Hui; Liu, Guang-Yuan
2017-01-01
Ticks are important vectors in the transmission of a broad range of micropathogens to vertebrates, including humans. Because of the role of ticks in disease transmission, identifying and characterizing the micropathogen profiles of tick populations have become increasingly important. The objective of this study was to survey the micropathogens of Hyalomma rufipes ticks. Illumina HiSeq2000 technology was utilized to perform deep sequencing of small RNAs (sRNAs) extracted from field-collected H. rufipes ticks in Gansu Province, China. The resultant sRNA library data revealed that the surveyed tick populations produced reads that were homologous to St. Croix River Virus (SCRV) sequences. We also observed many reads that were homologous to microbial and/or pathogenic isolates, including bacteria, protozoa, and fungi. As part of this analysis, a phylogenetic tree was constructed to display the relationships among the homologous sequences that were identified. The study offered a unique opportunity to gain insight into the micropathogens of H. rufipes ticks. The effective control of arthropod vectors in the future will require knowledge of the micropathogen composition of vectors harboring infectious agents. Understanding the ecological factors that regulate vector propagation in association with the prevalence and persistence of micropathogen lineages is also imperative. These interactions may affect the evolution of micropathogen lineages, especially if the micropathogens rely on the vector or host for dispersal. The sRNA deep-sequencing approach used in this analysis provides an intuitive method to survey micropathogen prevalence in ticks and other vector species. PMID:28861401
Evidence that explains absence of a latent period for Xylella fastidiosa in its sharpshooter vectors
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar), and other sharpshooter (Cicadelline) leafhoppers transmit Xylella fastidiosa (Xf), the causative agent of Pierce’s disease of grapevine and other scorch diseases. Past research has supported that vectors have virtually no late...
Biological Warfare Agents, Toxins, Vectors and Pests as Biological Terrorism Agents
2003-07-01
number of positive answers. According to criterion, no effective prophylaxis or therapy, positive answer signifies the absence of effective ...likelihood that the agent will be used. There are not effective prophylaxis and therapy against for the bulk of enlisted agents and toxins if used as...difficult to imagine how it would be looked like mass- vaccination often maybe simultaneously against more than one disease. Toxins are effective and
Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R.; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J. Ignacio; Esteban, Mariano
2012-01-01
With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8+ T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria. PMID:22529915
Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato
2017-01-01
This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people. PMID:28141857
Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano
2012-01-01
With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.
Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato
2017-01-01
This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people.
Chorny, Michael; Fishbein, Ilia; Tengood, Jillian E.; Adamo, Richard F.; Alferiev, Ivan S.; Levy, Robert J.
2013-01-01
Gene therapeutic strategies have shown promise in treating vascular disease. However, their translation into clinical use requires pharmaceutical carriers enabling effective, site-specific delivery as well as providing sustained transgene expression in blood vessels. While replication-deficient adenovirus (Ad) offers several important advantages as a vector for vascular gene therapy, its clinical applicability is limited by rapid inactivation, suboptimal transduction efficiency in vascular cells, and serious systemic adverse effects. We hypothesized that novel zinc oleate-based magnetic nanoparticles (MNPs) loaded with Ad would enable effective arterial cell transduction by shifting vector processing to an alternative pathway, protect Ad from inactivation by neutralizing factors, and allow site-specific gene transfer to arteries treated with stent angioplasty using a 2-source magnetic guidance strategy. Ad-loaded MNPs effectively transduced cultured endothelial and smooth muscle cells under magnetic conditions compared to controls and retained capacity for gene transfer after exposure to neutralizing antibodies and lithium iodide, a lytic agent causing disruption of free Ad. Localized arterial gene expression significantly stronger than in control animal groups was demonstrated after magnetically guided MNP delivery in a rat stenting model 2 and 9 d post-treatment, confirming feasibility of using Ad-loaded MNPs to achieve site-specific transduction in stented blood vessels. In conclusion, Ad-loaded MNPs formed by controlled precipitation of zinc oleate represent a novel delivery system, well-suited for efficient, magnetically targeted vascular gene transfer.—Chorny, M., Fishbein, I., Tengood, J. E., Adamo, R. F., Alferiev, I. S., Levy, R. J. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. PMID:23407712
Paratransgenesis to control malaria vectors: a semi-field pilot study.
Mancini, Maria Vittoria; Spaccapelo, Roberta; Damiani, Claudia; Accoti, Anastasia; Tallarita, Mario; Petraglia, Elisabetta; Rossi, Paolo; Cappelli, Alessia; Capone, Aida; Peruzzi, Giulia; Valzano, Matteo; Picciolini, Matteo; Diabaté, Abdoulaye; Facchinelli, Luca; Ricci, Irene; Favia, Guido
2016-03-10
Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.
[Aedes aegypti control strategies: a review].
Zara, Ana Laura de Sene Amâncio; Santos, Sandra Maria Dos; Fernandes-Oliveira, Ellen Synthia; Carvalho, Roberta Gomes; Coelho, Giovanini Evelim
2016-01-01
to describe the main strategies to control Aedes aegypti, with emphasis on promising technological innovations for use in Brazil. this study is a non-systematic review of the literature. several technologies have been developed as alternatives in the control of Ae. aegypti, using different mechanisms of action, such as selective monitoring of the infestation, social interventions, dispersing insecticides, new biological control agents and molecular techniques for population control of mosquitoes, also considering the combination between them. Evolving technologies require evaluation of the effectiveness, feasibility and costs of implementation strategies as complementary to the actions already recommended by the National Program for Dengue Control. the integration of different compatible and effective vector control strategies, considering the available technologies and regional characteristics, appears to be a viable method to try to reduce the infestation of mosquitoes and the incidence of arbovirus transmitted by them.
9 CFR 121.4 - Overlap select agents and toxins.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in paragraph (b) of this section that have been genetically modified. (d) Overlap select agents or... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE... elements, recombinant nucleic acids, and recombinant organisms: (1) Nucleic acids that can produce...
Santangelo, K. S.; Nuovo, G. J.; Bertone, A. L.
2012-01-01
Summary Objective Diminish interleukin-1β (IL-1β) signaling in a model of primary osteoarthritis by RNA interference-based transcript reduction or receptor blockade, and quantify changes incurred on transcript expression of additional mediators. Methods Knees of Hartley guinea pigs were collected at 120 and 180 days of age following injection with viral vectors (N=4/treatment group/date) at 60 days. Two groups received either adeno-associated viral serotype 5 vector containing a knockdown sequence (TV), or adenoviral vector encoding for IL-1 receptor antagonist protein (Ad-IRAP); treatments were contrasted with opposite knees administered corresponding vector controls. A third group evaluated TV relative to saline-only injected knees. Chondropathy and immunohistochemistry findings were compared to untreated guinea pigs. Transcript expression levels in cartilage were calculated using the comparative CT (2−ΔΔCT) method and analyzed by one-way ANOVA with pairwise comparisons using Tukey 95% confidence intervals. Results Vector transduction was confirmed at both harvest dates. TV and Ad-IRAP, relative to vector controls, significantly decreased IL-1β. Inflammatory mediators [tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), interferon-γ (IFN-γ)], and catabolic matrix metalloproteinase 13 (MMP13) were also decreased, while anabolic transforming growth factor-β1 (TGF-β1) was increased. IL-1β was also decreased by TV versus saline, with a decrease in MMP13 and increase TGF-β1; TNF-α, IL-8, and IFN-γ were transiently increased. Conclusions This work confirmed that a reduction in IL-1β signaling was accomplished by either method, resulting in decreased expression of three inflammatory mediators and one catabolic agent, and increased expression of an anabolic molecule. Thus, evidence is provided that IL-1β serves a role in vivo in spontaneous osteoarthritis and that these translational tools may provide beneficial disease modification. PMID:22935786
Insect-specific viruses and their potential impact on arbovirus transmission
Vasilakis, Nikos; Tesh, Robert B.
2015-01-01
Arthropod-borne viruses (arboviruses) are the causative agents of significant morbidity and mortality among humans and animals globally. In the last few years, the widespread adoption of next generation sequencing and metagenomics has led to a new era of virus discovery, where many novel viruses have been documented, exhibiting a restricted host-range in mosquitoes. They represent a wide-range of insect-specific viruses within the families of Bunyaviridae, Flaviviridae, Mesoniviridae, Reoviridae, Rhabdoviridae, Togaviridae, and the newly recognized taxon of Negeviruses. Collectively, their discovery has opened new vistas about the extent of viral diversity and evolution, their influence on vector competence and ability of their insect hosts to transmit human pathogens (e.g. arboviruses), and their potential development as biological control agents or novel vaccine platforms. PMID:26322695
Modelling the impact of vector control interventions on Anopheles gambiae population dynamics
2011-01-01
Background Intensive anti-malaria campaigns targeting the Anopheles population have demonstrated substantial reductions in adult mosquito density. Understanding the population dynamics of Anopheles mosquitoes throughout their whole lifecycle is important to assess the likely impact of vector control interventions alone and in combination as well as to aid the design of novel interventions. Methods An ecological model of Anopheles gambiae sensu lato populations incorporating a rainfall-dependent carrying capacity and density-dependent regulation of mosquito larvae in breeding sites is developed. The model is fitted to adult mosquito catch and rainfall data from 8 villages in the Garki District of Nigeria (the 'Garki Project') using Bayesian Markov Chain Monte Carlo methods and prior estimates of parameters derived from the literature. The model is used to compare the impact of vector control interventions directed against adult mosquito stages - long-lasting insecticide treated nets (LLIN), indoor residual spraying (IRS) - and directed against aquatic mosquito stages, alone and in combination on adult mosquito density. Results A model in which density-dependent regulation occurs in the larval stages via a linear association between larval density and larval death rates provided a good fit to seasonal adult mosquito catches. The effective mosquito reproduction number in the presence of density-dependent regulation is dependent on seasonal rainfall patterns and peaks at the start of the rainy season. In addition to killing adult mosquitoes during the extrinsic incubation period, LLINs and IRS also result in less eggs being oviposited in breeding sites leading to further reductions in adult mosquito density. Combining interventions such as the application of larvicidal or pupacidal agents that target the aquatic stages of the mosquito lifecycle with LLINs or IRS can lead to substantial reductions in adult mosquito density. Conclusions Density-dependent regulation of anopheline larvae in breeding sites ensures robust, stable mosquito populations that can persist in the face of intensive vector control interventions. Selecting combinations of interventions that target different stages in the vector's lifecycle will result in maximum reductions in mosquito density. PMID:21798055
[Biological factors influencing infectious diseases transmitted by invasive species of mosquitoes].
Boštíková, Vanda; Pasdiorová, Markéta; Marek, Jan; Prášil, Petr; Salavec, Miloslav; Sleha, Radek; Střtítecká, Hana; Blažek, Pavel; Hanovcová, Irena; Šošovičková, Renáta; Špliňo, Milan; Smetana, Jan; Chlíbek, Roman; Hytych, Václav; Kuča, Kamil; Boštík, Pavel
2016-06-01
Studies focused on arbovirus diseases transmitted by invasive species of mosquitoes have become increasingly significant in recent years, due to the fact that these vectors have successfully migrated to Europe and become established in the region. Mosquitoes, represented by more than 3 200 species, occur naturally worldwide, except in Antarctica. They feed on the blood of warm-blooded animals and by this route, they are capable of transmitting dangerous diseases. Some species can travel a distance of 10 km per night and can fly continuously for up to 4 hours at a speed of 1-2 km/h. Most species are active at night, in the evening or morning. It usually takes a mosquito female about 50 seconds to penetrate the skin of mammals and the subsequent blood meal usually takes about 2.5 minutes. Mosquitoes live for several weeks or months, depending on the environmental conditions. The VectorNet project is a European network of information exchange and sharing of data relating to the geographical distribution of arthropod vectors and transmission of infectious agents between human populations and animals. It aims at the development of strategic plans and vaccination policies which are the main tasks of this time, as well as the development and application of new disinfectants to control vector populations.
Morgan, Eric René; Booth, Mark; Norman, Rachel; Mideo, Nicole; McCallum, Hamish; Fenton, Andy
2017-01-01
Many important and rapidly emerging pathogens of humans, livestock and wildlife are ‘vector-borne’. However, the term ‘vector’ has been applied to diverse agents in a broad range of epidemiological systems. In this perspective, we briefly review some common definitions, identify the strengths and weaknesses of each and consider the functional differences between vectors and other hosts from a range of ecological, evolutionary and public health perspectives. We then consider how the use of designations can afford insights into our understanding of epidemiological and evolutionary processes that are not otherwise apparent. We conclude that from a medical and veterinary perspective, a combination of the ‘haematophagous arthropod’ and ‘mobility’ definitions is most useful because it offers important insights into contact structure and control and emphasizes the opportunities for pathogen shifts among taxonomically similar species with similar feeding modes and internal environments. From a population dynamics and evolutionary perspective, we suggest that a combination of the ‘micropredator’ and ‘sequential’ definition is most appropriate because it captures the key aspects of transmission biology and fitness consequences for the pathogen and vector itself. However, we explicitly recognize that the value of a definition always depends on the research question under study. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289253
Resilient Distributed Estimation Through Adversary Detection
NASA Astrophysics Data System (ADS)
Chen, Yuan; Kar, Soummya; Moura, Jose M. F.
2018-05-01
This paper studies resilient multi-agent distributed estimation of an unknown vector parameter when a subset of the agents is adversarial. We present and analyze a Flag Raising Distributed Estimator ($\\mathcal{FRDE}$) that allows the agents under attack to perform accurate parameter estimation and detect the adversarial agents. The $\\mathcal{FRDE}$ algorithm is a consensus+innovations estimator in which agents combine estimates of neighboring agents (consensus) with local sensing information (innovations). We establish that, under $\\mathcal{FRDE}$, either the uncompromised agents' estimates are almost surely consistent or the uncompromised agents detect compromised agents if and only if the network of uncompromised agents is connected and globally observable. Numerical examples illustrate the performance of $\\mathcal{FRDE}$.
9 CFR 121.4 - Overlap select agents and toxins.
Code of Federal Regulations, 2014 CFR
2014-01-01
... this section that have been genetically modified. (d) Overlap select agents or toxins that meet any of... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE...) Genetic elements, recombinant and/or synthetic nucleic acids, and recombinant and/or synthetic organisms...
9 CFR 121.4 - Overlap select agents and toxins.
Code of Federal Regulations, 2013 CFR
2013-01-01
... this section that have been genetically modified. (d) Overlap select agents or toxins that meet any of... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE...) Genetic elements, recombinant and/or synthetic nucleic acids, and recombinant and/or synthetic organisms...
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) vectors the bacterial pathogen presumed to be the etiological agent of citrus greening disease, Huanglongbing (HLB), a major threat to citrus industry worldwide. We studied antennal and behavioral responses of Diaphorina citri...
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid (Diaphorina citri Kuwayama) is the insect vector of the bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent for the citrus greening or Huanglongbing disease which threatens citrus industry worldwide. This vector is the primary target of approaches to stop th...
Tissue Distribution of the Ehrlichia muris-Like Agent in a Tick Vector
Lynn, Geoffrey E.; Oliver, Jonathan D.; Nelson, Curtis M.; Felsheim, Roderick F.; Kurtti, Timothy J.; Munderloh, Ulrike G.
2015-01-01
Human pathogens transmitted by ticks undergo complex life cycles alternating between the arthropod vector and a mammalian host. While the latter has been investigated to a greater extent, examination of the biological interactions between microbes and the ticks that carry them presents an equally important opportunity for disruption of the disease cycle. In this study, we used in situ hybridization to demonstrate infection by the Ehrlichia muris-like organism, a newly recognized human pathogen, of Ixodes scapularis ticks, a primary vector for several important human disease agents. This allowed us to assess whole sectioned ticks for the patterns of tissue invasion, and demonstrate generalized dissemination of ehrlichiae in a variety of cell types and organs within ticks infected naturally via blood feeding. Electron microscopy was used to confirm these results. Here we describe a strong ehrlichial affinity for epithelial cells, neuronal cells of the synganglion, salivary glands, and male accessory glands. PMID:25781930
Elliot, Simon L.; Rodrigues, Juliana de O.; Lorenzo, Marcelo G.; Martins-Filho, Olindo A.; Guarneri, Alessandra A.
2015-01-01
It is often assumed that parasites are not virulent to their vectors. Nevertheless, parasites commonly exploit their vectors (nutritionally for example) so these can be considered a form of host. Trypanosoma cruzi, a protozoan found in mammals and triatomine bugs in the Americas, is the etiological agent of Chagas disease that affects man and domestic animals. While it has long been considered avirulent to its vectors, a few reports have indicated that it can affect triatomine fecundity. We tested whether infection imposed a temperature-dependent cost on triatomine fitness. We held infected insects at four temperatures between 21 and 30°C and measured T. cruzi growth in vitro at the same temperatures in parallel. Trypanosoma cruzi infection caused a considerable delay in the time the insects took to moult (against a background effect of temperature accelerating moult irrespective of infection status). Trypanosoma cruzi also reduced the insects’ survival, but only at the intermediate temperatures of 24 and 27°C (against a background of increased mortality with increasing temperatures). Meanwhile, in vitro growth of T. cruzi increased with temperature. Our results demonstrate virulence of a protozoan agent of human disease to its insect vector under these conditions. It is of particular note that parasite-induced mortality was greatest over the range of temperatures normally preferred by these insects, probably implying adaptation of the parasite to perform well at these temperatures. Therefore we propose that triggering this delay in moulting is adaptive for the parasites, as it will delay the next bloodmeal taken by the bug, thus allowing the parasites time to develop and reach the insect rectum in order to make transmission to a new vertebrate host possible. PMID:25793495
Rahpaya, Sayed Samim; Tsuchiaka, Shinobu; Kishimoto, Mai; Oba, Mami; Katayama, Yukie; Nunomura, Yuka; Kokawa, Saki; Kimura, Takashi; Kobayashi, Atsushi; Kirino, Yumi; Okabayashi, Tamaki; Nonaka, Nariaki; Mekata, Hirohisa; Aoki, Hiroshi; Shiokawa, Mai; Umetsu, Moeko; Morita, Tatsushi; Hasebe, Ayako; Otsu, Keiko; Asai, Tetsuo; Yamaguchi, Tomohiro; Makino, Shinji; Murata, Yoshiteru; Abi, Ahmad Jan; Omatsu, Tsutomu; Mizutani, Tetsuya
2018-05-31
Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum ; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.
Ramilo, David W; Nunes, Telmo; Madeira, Sara; Boinas, Fernando; da Fonseca, Isabel Pereira
2017-01-01
Vector-borne diseases are not only accounted responsible for their burden on human health-care systems, but also known to cause economic constraints to livestock and animal production. Animals are affected directly by the transmitted pathogens and indirectly when animal movement is restricted. Distribution of such diseases depends on climatic and social factors, namely, environmental changes, globalization, trade and unplanned urbanization. Culicoides biting midges are responsible for the transmission of several pathogenic agents with relevant economic impact. Due to a fragmentary knowledge of their ecology, occurrence is difficult to predict consequently, limiting the control of these arthropod vectors. In order to understand the distribution of Culicoides species, in mainland Portugal, data collected during the National Entomologic Surveillance Program for Bluetongue disease (2005-2013), were used for statistical evaluation. Logistic regression analysis was preformed and prediction maps (per season) were obtained for vector and potentially vector species. The variables used at the present study were selected from WorldClim (two climatic variables) and CORINE databases (twenty-two land cover variables). This work points to an opposite distribution of C. imicola and species from the Obsoletus group within mainland Portugal. Such findings are evidenced in autumn, with the former appearing in Central and Southern regions. Although appearing northwards, on summer and autumn, C. newsteadi reveals a similar distribution to C. imicola. The species C. punctatus appears in all Portuguese territory throughout the year. Contrary, C. pulicaris is poorly caught in all areas of mainland Portugal, being paradoxical present near coastal areas and higher altitude regions.
Madeira, Sara; Boinas, Fernando; da Fonseca, Isabel Pereira
2017-01-01
Vector-borne diseases are not only accounted responsible for their burden on human health-care systems, but also known to cause economic constraints to livestock and animal production. Animals are affected directly by the transmitted pathogens and indirectly when animal movement is restricted. Distribution of such diseases depends on climatic and social factors, namely, environmental changes, globalization, trade and unplanned urbanization. Culicoides biting midges are responsible for the transmission of several pathogenic agents with relevant economic impact. Due to a fragmentary knowledge of their ecology, occurrence is difficult to predict consequently, limiting the control of these arthropod vectors. In order to understand the distribution of Culicoides species, in mainland Portugal, data collected during the National Entomologic Surveillance Program for Bluetongue disease (2005–2013), were used for statistical evaluation. Logistic regression analysis was preformed and prediction maps (per season) were obtained for vector and potentially vector species. The variables used at the present study were selected from WorldClim (two climatic variables) and CORINE databases (twenty-two land cover variables). This work points to an opposite distribution of C. imicola and species from the Obsoletus group within mainland Portugal. Such findings are evidenced in autumn, with the former appearing in Central and Southern regions. Although appearing northwards, on summer and autumn, C. newsteadi reveals a similar distribution to C. imicola. The species C. punctatus appears in all Portuguese territory throughout the year. Contrary, C. pulicaris is poorly caught in all areas of mainland Portugal, being paradoxical present near coastal areas and higher altitude regions. PMID:28683145
Liquid-phase study of ozone inactivation of Venezuelan equine encephalomyelitis virus.
Akey, D H; Walton, T E
1985-01-01
Ozone, in a liquid-phase application, was evaluated as a residue-free viral inactivant that may be suitable for use in an arboviral research laboratory. Commonly used sterilizing agents may leave trace residues, be flammable or explosive, and require lengthy periods for gases or residues to dissipate after decontamination of equipment such as biological safety cabinets. Complete liquid-phase inactivation of Venezuelan equine encephalomyelitis virus was attained at 0.025 mg of ozone per liter within 45 min of exposure. The inactivation of 10(6.5) median cell culture infective doses (CCID50 of Venezuelan equine encephalomyelitis virus per milliliter represented a reduction of 99.99997% of the viral particles from the control levels of 10(7.25-7.5) CCID50/ml. A dose-response relationship was demonstrated. Analysis by polynomial regression of the logarithmic values for both ozone concentrations and percent reduction of viral titers had a highly significant r2 of 0.8 (F = 63.6; df = 1, 16). These results, together with those of Akey (J. Econ. Entomol. 75:387-392, 1982) on the use of ozone to kill a winged arboviral vector, indicate that ozone is a promising candidate as a sterilizing agent in some applications for biological safety cabinets and other equipment used in vector studies with arboviruses. PMID:4083884
Liquid-phase study of ozone inactivation of Venezuelan equine encephalomyelitis virus.
Akey, D H; Walton, T E
1985-10-01
Ozone, in a liquid-phase application, was evaluated as a residue-free viral inactivant that may be suitable for use in an arboviral research laboratory. Commonly used sterilizing agents may leave trace residues, be flammable or explosive, and require lengthy periods for gases or residues to dissipate after decontamination of equipment such as biological safety cabinets. Complete liquid-phase inactivation of Venezuelan equine encephalomyelitis virus was attained at 0.025 mg of ozone per liter within 45 min of exposure. The inactivation of 10(6.5) median cell culture infective doses (CCID50 of Venezuelan equine encephalomyelitis virus per milliliter represented a reduction of 99.99997% of the viral particles from the control levels of 10(7.25-7.5) CCID50/ml. A dose-response relationship was demonstrated. Analysis by polynomial regression of the logarithmic values for both ozone concentrations and percent reduction of viral titers had a highly significant r2 of 0.8 (F = 63.6; df = 1, 16). These results, together with those of Akey (J. Econ. Entomol. 75:387-392, 1982) on the use of ozone to kill a winged arboviral vector, indicate that ozone is a promising candidate as a sterilizing agent in some applications for biological safety cabinets and other equipment used in vector studies with arboviruses.
Oliveira, Alessandra Gutierrez; Galati, Eunice Aparecida Bianchi; Fernandes, Carlos Eurico; Dorval, Maria Elizabeth Cavalheiros; Brazil, Reginaldo Peçanha
2012-01-01
Aspects of phlebotomine behavior were investigated in the city of Campo Grande, Mato Grosso do Sul state. The insects were captured weekly during December 2003 to November 2005, with Centers for Disease Control light traps at seven different sites including forests and residential areas. In total, 11,024 specimens (7,805 males and 3,219 females) were collected, from which 9,963 (90.38%) were identified as Lutzomyia longipalpis, the proven vector of American visceral leishmaniasis agent. The remaining 9.62% comprised 21 species. L. longipalpis was the most frequent species in all sampled sites, and the first in the ranking of standardized species abundance index. In residential areas this species clearly predominated in the peridomicile (90.96%), in contrast to the intradomicile (9.04%); in animal shelters, it was more numerous in hen houses and prevailed at ground level, inside, and at forest edge around the residences; this aspect is worrying because this insect may remain sheltered in forested environments during the use of insecticides in homes. In the forest environment, other probable or proven vector of cutaneous leishmaniasis agents were also captured such as Lutzomyia whitmani (=Nyssomyia whitmani, sensu Galati), Lutzomyia antunesi (=Nyssomyia antunesi, sensu Galati), and Lutzomyia flaviscutellata (=Bichromomyia flaviscutellata, sensu Galati).
[The pigeon tick, Argas reflexus, and hazard for human health].
Khoury, Cristina; Maroli, Michele
2004-01-01
The massive presence of the pigeon (Columba livia f. domestica) in urban areas not only is cause of serious aesthetic damages as decline of squares, of churches, of statues and buildings, but often creates many hygienic and medical problems. The pigeon, in fact, can transmit a great number of pathogenic agents and also be infested by several ectoparasites. Among these, Argas reflexus (Acari: Argasidae), the well known pigeon tick, is the most important ectoparasite that can involve also human health. Buildings infested by A. reflexus and attacks by this tick species to man are frequently reported, with an increasing interest for human health. In fact the pigeon tick bites can induce anaphylactic reactions for the presence of allergens, and as vector, the tick can also transmit some pathogens. This review deals with actual knowledge on the distribution, eco-biology, vector competence, prevention and control of A. reflexus in Italy.
Osting, Sue; Bennett, Antonette; Power, Shelby; Wackett, Jordan; Hurley, Samuel A; Alexander, Andrew L; Agbandje-Mckena, Mavis; Burger, Corinna
2014-01-01
Intraoperative magnetic resonance imaging (MRI) has been proposed as a method to optimize intracerebral targeting and for tracking infusate distribution in gene therapy trials for nervous system disorders. We thus investigated possible effects of two MRI contrast agents, gadoteridol (Gd) and galbumin (Gab), on the distribution and levels of transgene expression in the rat striatum and their effect on integrity and stability of recombinant adeno-associated virus (rAAV) particles. MRI studies showed that contrast agent distribution did not predict rAAV distribution. However, green fluorescent protein (GFP) immunoreactivity revealed an increase in distribution of rAAV5-GFP, but not rAAV2-GFP, in the presence of Gd when compared with viral vector injected alone. In contrast, Gab increased the distribution of rAAV2-GFP not rAAV5-GFP. These observations pointed to a direct effect of infused contrast agent on the rAAV particles. Negative-stain electron microscopy (EM), DNAase treatment, and differential scanning calorimetry (DSC) were used to monitor rAAV2 and rAAV5 particle integrity and stability following contrast agent incubation. EMs of rAAV2-GFP and rAAV5-GFP particles pretreated with Gd appear morphologically similar to the untreated sample; however, Gab treatment resulted in surface morphology changes and aggregation. A compromise of particle integrity was suggested by sensitivity of the packaged genome to DNAase treatment following Gab incubation but not Gd for both vectors. However, neither agent significantly affected particle stability when analyzed by DSC. An increase in Tm was observed for AAV2 in lactated Ringer’s buffer. These results thus highlight potential interactions between MRI contrast agents and AAV that might affect vector distribution and stability, as well as the stabilizing effect of lactated Ringer’s solution on AAV2. PMID:26015943
Evaluation of the House Fly Musca domestica as a Mechanical Vector for an Anthrax
Fasanella, Antonio; Scasciamacchia, Silvia; Garofolo, Giuliano; Giangaspero, Annunziata; Tarsitano, Elvira; Adone, Rosanna
2010-01-01
Anthrax is a disease of human beings and animals caused by the encapsulated, spore-forming, Bacillus anthracis. The potential role of insects in the spread of B. anthracis to humans and domestic animals during an anthrax outbreak has been confirmed by many studies. Among insect vectors, the house fly Musca domestica is considered a potential agent for disease transmission. In this study, laboratory-bred specimens of Musca domestica were infected by feeding on anthrax-infected rabbit carcass or anthrax contaminated blood, and the presence of anthrax spores in their spots (faeces and vomitus) was microbiologically monitored. It was also evaluated if the anthrax spores were able to germinate and replicate in the gut content of insects. These results confirmed the role of insects in spreading anthrax infection. This role, although not major, given the huge size of fly populations often associated with anthrax epidemics in domestic animals, cannot be neglected from an epidemiological point of view and suggest that fly control should be considered as part of anthrax control programs. PMID:20808920
Distributed Coordinated Control of Large-Scale Nonlinear Networks
Kundu, Soumya; Anghel, Marian
2015-11-08
We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less
Increasing the Efficacy of Oncolytic Adenovirus Vectors
Toth, Karoly; Wold, William S. M.
2010-01-01
Oncolytic adenovirus (Ad) vectors present a new modality to treat cancer. These vectors attack tumors via replicating in and killing cancer cells. Upon completion of the vector replication cycle, the infected tumor cell lyses and releases progeny virions that are capable of infecting neighboring tumor cells. Repeated cycles of vector replication and cell lysis can destroy the tumor. Numerous Ad vectors have been generated and tested, some of them reaching human clinical trials. In 2005, the first oncolytic Ad was approved for the treatment of head-and-neck cancer by the Chinese FDA. Oncolytic Ads have been proven to be safe, with no serious adverse effects reported even when high doses of the vector were injected intravenously. The vectors demonstrated modest anti-tumor effect when applied as a single agent; their efficacy improved when they were combined with another modality. The efficacy of oncolytic Ads can be improved using various approaches, including vector design, delivery techniques, and ancillary treatment, which will be discussed in this review. PMID:21994711
Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni
2016-02-01
Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.
Kumar, Deepak; Chawla, Rakesh; Dhamodaram, P; Balakrishnan, N
2014-01-01
Background & Objectives. The plan of this work was to study the larvicidal activity of Cassia occidentalis (Linn.) against the larvae of Culex quinquefasciatus. These larvae are the most significant vectors. They transmit the parasites and pathogens which cause a deadly disease like filariasis, dengue, yellow fever, malaria, Japanese encephalitis, chikungunya, and so forth, which are considered harmful towards the population in tropic and subtropical regions. Methods. The preliminary laboratory trail was undertaken to determine the efficacy of petroleum ether and N-butanol extract of dried whole plant of Cassia occidentalis (Linn.) belonging to the family Caesalpiniaceae at various concentrations against the late third instar larvae of Culex quinquefasciatus by following the WHO guidelines. Results. The results suggest that 100% mortality effect of petroleum ether and N-butanol extract of Cassia occidentalis (Linn.) was observed at 200 and 300 ppm (parts per million). The results obviously showed use of plants in insect control as an alternative method for minimizing the noxious effect of some pesticide compounds on the environment. Thus the extract of Cassia occidentalis (Linn.) is claimed as more selective and biodegradable agent. Conclusion. This study justified that plant Cassia occidentalis (Linn.) has a realistic mortality result for larvae of filarial vector. This is safe to individual and communities against mosquitoes. It is a natural weapon for mosquito control.
Vector Potential, Electromagnetic Induction and "Physical Meaning"
ERIC Educational Resources Information Center
Giuliani, G.
2010-01-01
A forgotten experiment by Andre Blondel (1914) proves, as held on the basis of theoretical arguments in a previous paper, that the time variation of the magnetic flux is not the cause of the induced emf; the physical agent is instead the vector potential through the term [equation omitted] (when the induced circuit is at rest). The "good…
Code of Federal Regulations, 2014 CFR
2014-10-01
... segmented configuration and may be positive sense (same polarity as mRNA), negative sense, or ambisense... material. Deoxyribonucleic acid (DNA) or Ribonucleic acid (RNA) comprising the genome or organism's... threat to public health and safety as listed in 42 CFR 73.3 and 73.4. Vector. Any animals (vertebrate or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... segmented configuration and may be positive sense (same polarity as mRNA), negative sense, or ambisense... material. Deoxyribonucleic acid (DNA) or Ribonucleic acid (RNA) comprising the genome or organism's... threat to public health and safety as listed in 42 CFR 73.3 and 73.4. Vector. Any animals (vertebrate or...
Lichtenstein, DL; Spencer, JF; Doronin, K; Patra, D; Meyer, JM; Shashkova, EV; Kuppuswamy, M; Dhar, D; Thomas, MA; Tollefson, AE; Zumstein, LA; Wold, WSM; Toth, K
2012-01-01
Oncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls. A parallel study investigating the biodistribution of these viruses is described elsewhere in this issue. The toxicology experiments were conducted in two species, the Syrian hamster, which is permissive for INGN 007 and Ad5 replication and the poorly permissive mouse. The studies demonstrated that the safety profile of INGN 007 is similar to Ad5. Both viruses caused transient liver damage upon intravenous injection that resolved by 28 days post-infection. The No-Observable-Adverse-Effect-Level (NOAEL) for INGN 007 in hamsters was 3 × 1010 viral particles per kg. In hamsters, the replication-defective vector caused less toxicity, indicating that replication of Ad vectors in the host is an important factor in pathogenesis. With mice, INGN 007 and Ad5 caused toxicity comparable to the replication-defective adenovirus vector. Partially based on these results, the FDA granted permission to enter into a Phase I clinical trial with INGN 007. PMID:19197324
Lichtenstein, D L; Spencer, J F; Doronin, K; Patra, D; Meyer, J M; Shashkova, E V; Kuppuswamy, M; Dhar, D; Thomas, M A; Tollefson, A E; Zumstein, L A; Wold, W S M; Toth, K
2009-08-01
Oncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls. A parallel study investigating the biodistribution of these viruses is described elsewhere in this issue. The toxicology experiments were conducted in two species, the Syrian hamster, which is permissive for INGN 007 and Ad5 replication and the poorly permissive mouse. The studies demonstrated that the safety profile of INGN 007 is similar to Ad5. Both viruses caused transient liver damage upon intravenous injection that resolved by 28 days post-infection. The No-Observable-Adverse-Effect-Level (NOAEL) for INGN 007 in hamsters was 3 x 10(10) viral particles per kg. In hamsters, the replication-defective vector caused less toxicity, indicating that replication of Ad vectors in the host is an important factor in pathogenesis. With mice, INGN 007 and Ad5 caused toxicity comparable to the replication-defective adenovirus vector. Partially based on these results, the FDA granted permission to enter into a Phase I clinical trial with INGN 007.
Oettl, Sabine; Schlink, Katja
2015-10-01
The psyllid species Cacopsylla melanoneura (Förster) and Cacopsylla picta (Förster) are vectors of 'Candidatus Phytoplasma mali', the causal agent of apple proliferation, one of the economically most important apple diseases in Europe. Both vectors are present in apple orchards of South Tyrol and Trentino provinces in Northern Italy. As no direct treatment of the disease is possible, monitoring of the psyllids provides information about the vector presence in the orchards and enables targeted control. Thus, fast and reliable identification of the various psyllids occurring in the apple orchards is required. Morphological differentiation is problematic due to extensive resemblance of some psyllid species especially among females and is error-prone for nymphs. Here we present a rapid and cost-effective polymerase chain reaction-restriction fragment length polymorphism method based on the cytochrome c oxidase subunit I region for the molecular identification of the vector species as well as eight further Cacopsylla species present in the orchards. This method was verified through 98.9% consensus with morphologically identified males, through sequencing and subsequent phylogenetic analysis. In case of doubtful morphological identification of females, the method was able to provide a refined species assignment and could also remarkably facilitate the identification of nymphs. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed Virus...
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed Virus...
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed Virus...
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Master Seed Virus. 113.55 Section 113.55 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.55 Detection of extraneous agents in Master Seed Virus...
Krawczak, Felipe S; Agostinho, Washington C; Polo, Gina; Moraes-Filho, Jonas; Labruna, Marcelo B
2016-04-01
In 2010, a novel spotted fever group rickettsiosis was reported in the Atlantic rainforest coast of Brazil. The etiological agent was identified as Rickettsia sp. strain Atlantic rainforest, and the tick Amblyomma ovale was incriminated as the presumed vector. The present study evaluated under laboratory conditions four colonies of A. ovale: two started from engorged females that were naturally infected by Rickettsia sp. strain Atlantic rainforest (designated as infected groups); the two others started from noninfected females (designated as control groups). All colonies were reared in parallel from F0 engorged female to F2 unfed nymphs. Tick-naïve vesper mice (Calomys callosus) or domestic rabbits were used for feeding of each tick stage. Rickettsia sp. strain Atlantic rainforest was preserved by transstadial maintenance and transovarial transmission in A. ovale ticks for at least 2 generations (from F0 females to F2 nymphs), because nearly 100% of the tested larvae, nymphs, and adults from the infected groups were shown by PCR to contain rickettsial DNA. All vesper mice and rabbits infested by larvae and nymphs, and 50% of the rabbits infested by adults from the infected groups seroconverted, indicating that these tick stages were vector competent for Rickettsia sp. strain Atlantic rainforest. Expressive differences in mortality rates and reproductive performance were observed between engorged females from the infected and control groups, as indicated by 75.0% and 97.1% oviposition success, respectively, and significantly lower egg mass weight, conversion efficiency index, and percentage of egg hatching for the infected groups. Our results indicate that A. ovale can act as a natural reservoir for Rickettsia sp. strain Atlantic rainforest. However, due to deleterious effect caused by this rickettsial agent on engorged females, amplifier vertebrate hosts might be necessary for persistent perpetuation of Rickettsia sp. strain Atlantic rainforest in A. ovale under natural conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.
Borrelia miyamotoi, Other Vector-Borne Agents in Cat Blood and Ticks in Eastern Maryland.
Shannon, Avery B; Rucinsky, Renee; Gaff, Holly D; Brinkerhoff, R Jory
2017-12-01
We collected blood and tick samples in eastern Maryland to quantify vector-borne pathogen exposure and infection in healthy cats and to assess occupational disease risk to veterinary professionals and others who regularly interact with household pets. Thirty-six percent of healthy cats parasitized by ticks at time of examination (9/25) were exposed to, and 14% of bloods (7/49) tested PCR-positive for, at least one vector-borne pathogen including several bloods and ticks with Borrelia miyamotoi, a recently recognized tick-borne zoonotic bacterium. There was no indication that high tick burdens were associated with exposure to vector-borne pathogens. Our results underscore the potential importance of cats to human vector-borne disease risk.
The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors
NASA Astrophysics Data System (ADS)
Roizman, Bernard
1996-10-01
Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.
Insect-specific viruses and their potential impact on arbovirus transmission.
Vasilakis, Nikos; Tesh, Robert B
2015-12-01
Arthropod-borne viruses (arboviruses) are the causative agents of significant morbidity and mortality among humans and animals globally. In the past few years, the widespread adoption of next generation sequencing and metagenomics has led to a new era of virus discovery, where many novel viruses have been documented, exhibiting a restricted host-range in mosquitoes. They represent a wide-range of insect-specific viruses within the families of Bunyaviridae, Flaviviridae, Mesoniviridae, Reoviridae, Rhabdoviridae, Togaviridae, and the newly recognized taxon of Negeviruses. Collectively, their discovery has opened new vistas about the extent of viral diversity and evolution, their influence on vector competence and ability of their insect hosts to transmit human pathogens (e.g. arboviruses), and their potential development as biological control agents or novel vaccine platforms. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kotani, Naoki; Taniguchi, Kenji
An efficient learning method using Fuzzy ART with Genetic Algorithm is proposed. The proposed method reduces the number of trials by using a policy acquired in other tasks because a reinforcement learning needs a lot of the number of trials until an agent acquires appropriate actions. Fuzzy ART is an incremental unsupervised learning algorithm in responce to arbitrary sequences of analog or binary input vectors. Our proposed method gives a policy by crossover or mutation when an agent observes unknown states. Selection controls the category proliferation problem of Fuzzy ART. The effectiveness of the proposed method was verified with the simulation of the reaching problem for the two-link robot arm. The proposed method achieves a reduction of both the number of trials and the number of states.
Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications
NASA Astrophysics Data System (ADS)
Regulacio, Michelle D.; Win, Khin Yin; Lo, Seong Loong; Zhang, Shuang-Yuan; Zhang, Xinhai; Wang, Shu; Han, Ming-Yong; Zheng, Yuangang
2013-02-01
Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated.Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated. Electronic supplementary information (ESI) available: Quantum yields, EDX spectrum and photoluminescence decay curves. See DOI: 10.1039/c3nr34159c
Almeida, Aliny P; Souza, Tayse D; Marcili, Arlei; Labruna, Marcelo B
2013-05-01
This study evaluated infection by vector-borne agents in 58 crab-eating fox (Cerdocyon thous L.) that were road-killed in an Atlantic rainforest reserve in the state of Espírito Santo, southeastern Brazil. Spleen, lung, or blood samples collected from the foxes were tested in the laboratory by a battery of polymerase chain reaction (PCR) assays targeting bacteria of the genera Rickettsia, Borrelia, Coxiella, Anaplasma, and Ehrlichia; and protozoa of the genera Babesia, Hepatozoon, and Leishmania. Of the targeted organisms, evidence of infection in the foxes was detected for Ehrlichia and Hepatozoon organisms only. Overall, six (10.3%) foxes were infected by an ehrlichial agent closely related to an ehrlichial agent recently detected in free-ranging Jaguars [(Panthera onca (L.)] in central-western Brazil, and to Ehrlichia ruminantium. For Hepatozoon, 28 (48.3%) foxes were infected by an agent closely related to Hepatozoon sp. Curupira 2 and H. americanum; and one (1.7%) fox was infected by an organism closely related to reptile-associated Hepatozoon agents. Finally, 11 (19.0%) foxes were found infested by Amblyomma cajennense (F.) nymphs, which were all PCR negative for the range of vector-borne agents cited above. Because the haplotypes found in free-ranging foxes are genetically closely related to pathogens of great veterinary importance, namely E. ruminantium and H. americanum, it is highly desirable to know if these novel organisms have any important role as agents of diseases in domestic animals and wildlife in Brazil.
Pushpanathan, Thambusamy; Jebanesan, Arulsamy; Govindarajan, Marimuthu
2008-05-01
Essential oils extracted by steam distillation from Zingiber officinalis was evaluated for larvicidal and repellent activity against the filarial mosquito Culex quinquefasciatus. The larval mortality was observed after 24 h treated for late third instar. The LC50 value was 50.78 ppm. Skin repellent test at 1.0, 2.0, 3.0, and 4.0 mg/cm2 concentration of Z. officinalis gave 100% protection up to 15, 30, 60, and 120 min. These results clearly reveal that the essential oil of Z. officinalis served as a potential larvicidal and repellent agent against filarial vector C. quinquefasciatus.
Entomopathogenic fungi for mosquito control: A review
Scholte, Ernst-Jan; Knols, Bart G.J.; Samson, Robert A.; Takken, Willem
2004-01-01
Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis. PMID:15861235
ERIC Educational Resources Information Center
Cunha, Leonardo Rodrigues; de Oliveria Cudischevitch, Cecília; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; da Silva-Neto, Mário Alberto Cardoso
2014-01-01
We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of "Trypanosoma cruzi," the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by…
USDA-ARS?s Scientific Manuscript database
Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...
Biological Gene Delivery Vehicles: Beyond Viral Vectors
Seow, Yiqi; Wood, Matthew J
2009-01-01
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications. PMID:19277019
Biological gene delivery vehicles: beyond viral vectors.
Seow, Yiqi; Wood, Matthew J
2009-05-01
Gene therapy covers a broad spectrum of applications, from gene replacement and knockdown for genetic or acquired diseases such as cancer, to vaccination, each with different requirements for gene delivery. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications today, but both have limitations and risks, including complexity of production, limited packaging capacity, and unfavorable immunological features, which restrict gene therapy applications and hold back the potential for preventive gene therapy. While continuing to improve these vectors, it is important to investigate other options, particularly nonviral biological agents which include bacteria, bacteriophage, virus-like particles (VLPs), erythrocyte ghosts, and exosomes. Exploiting the natural properties of these biological entities for specific gene delivery applications will expand the repertoire of gene therapy vectors available for clinical use. Here, we review the prospects for nonviral biological delivery vehicles as gene therapy agents with focus on their unique evolved biological properties and respective limitations and potential applications. The potential of these nonviral biological entities to act as clinical gene therapy delivery vehicles has already been shown in clinical trials using bacteria-mediated gene transfer and with sufficient development, these entities will complement the established delivery techniques for gene therapy applications.
Galardo, Allan Kardec Ribeiro; Galardo, Clícia Denis; Silveira, Guilherme Abbad; Ribeiro, Kaio Augusto Nabas; Hijjar, Andréa Valadão; Oliveira, Liliane Leite; Dos Santos, Thiago Vasconcelos
2015-01-01
An entomological study was conducted as part of a vector-monitoring program in the area associated with the Santo Antônio hydroelectric system in State of Rondônia, Western Amazonian Brazil. Fourteen sampling sites were surveyed to obtain data on the potential vectors of Leishmania spp. in the area. Sand flies were collected from 2011 to 2014 during the months of January/February (rainy season), May/June (dry season), and September/October (intermediary season) using light traps arranged in three vertical strata (0.5, 1, and 20m). A total of 7,575 individuals belonging to 62 species/subspecies were collected. The five most frequently collected sand flies were Psychodopygus davisi (Root) (36.67%), Trichophoromyia ubiquitalis (Mangabeira) (8.51%), Nyssomyia umbratilis (Ward & Fraiha) (6.14%), Bichromomyia flaviscutellata (Mangabeira) (5.74%), and Psychodopygus complexus (Mangabeira) (5.25%). These species have been implicated in the transmission of American cutaneous leishmaniasis agents in the Brazilian Amazon region and described as potential vectors of this disease in the study area. Additional surveillance is needed, especially in areas where these five species of sand fly are found.
Leishmania, microbiota and sand fly immunity.
Telleria, Erich Loza; Martins-da-Silva, Andrea; Tempone, Antonio Jorge; Traub-Csekö, Yara Maria
2018-06-20
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.
2006-07-15
Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months inmore » plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates.« less
Becker, P S; Taylor, J A; Trobridge, G D; Zhao, X; Beard, B C; Chien, S; Adair, J; Kohn, D B; Wagner, J E; Shimamura, A; Kiem, H-P
2010-10-01
One of the major hurdles for the development of gene therapy for Fanconi anemia (FA) is the increased sensitivity of FA stem cells to free radical-induced DNA damage during ex vivo culture and manipulation. To minimize this damage, we have developed a brief transduction procedure for lentivirus vector-mediated transduction of hematopoietic progenitor cells from patients with Fanconi anemia complementation group A (FANCA). The lentiviral vector FancA-sW contains the phosphoglycerate kinase promoter, the FANCA cDNA, and a synthetic, safety-modified woodchuck post transcriptional regulatory element (sW). Bone marrow mononuclear cells or purified CD34(+) cells from patients with FANCA were transduced in an overnight culture on recombinant fibronectin peptide CH-296, in low (5%) oxygen, with the reducing agent, N-acetyl-L-cysteine (NAC), and a combination of growth factors, granulocyte colony-stimulating factor (G-CSF), Flt3 ligand, stem cell factor, and thrombopoietin. Transduced cells plated in methylcellulose in hypoxia with NAC showed increased colony formation compared with 21% oxygen without NAC (P<0.03), showed increased resistance to mitomycin C compared with green fluorescent protein (GFP) vector-transduced controls (P<0.007), and increased survival. Thus, combining short transduction and reducing oxidative stress may enhance the viability and engraftment of gene-corrected cells in patients with FANCA.
Mahamdallie, Shazia S; Ready, Paul D
2012-04-01
Vaccine development is informed by a knowledge of genetic variation among antigen alleles, especially the distribution of positive and balancing selection in populations and species. A combined approach using population genetic and phylogenetic methods to detect selective signatures can therefore be informative for identifying vaccine candidates. Parasitic Leishmania species cause the disease leishmaniasis in humans and mammalian reservoir hosts after inoculation by female phlebotomine sandflies. Like other arthropod vectors of disease agents, sandflies use salivary peptides to counteract host haemostatic and immunomodulatory responses during bloodfeeding, and these peptides are vaccine candidates because they can protect against Leishmania infection. We detected no contemporary adaptive selection on one salivary peptide, apyrase, in 20 populations of Phlebotomus ariasi, a European vector of Leishmania infantum. Maximum likelihood branch models on a gene phylogeny showed apyrase to be a single copy in P. ariasi but an ancient duplication event associated with temporary positive selection was observed in its sister group, which contains most Mediterranean vectors of L. infantum. The absence of contemporary adaptive selection on the apyrase of P. ariasi may result from this sandfly's opportunistic feeding behaviour. Our study illustrates how the molecular population genetics of arthropods can help investigate the potential of salivary peptides for disease control and for understanding geographical variation in vector competence.
Zhao, Huifen; Pestina, Tamara I; Nasimuzzaman, Md; Mehta, Perdeep; Hargrove, Phillip W; Persons, Derek A
2009-06-04
Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However, transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT), driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs, which can be administered to kill residual untransduced, diseased HSCs, whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells, transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin, leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.
Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan
2017-07-01
Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (P<0.001). Moreover, HSV-GFP showed higher infection potency (98%) in comparison with HSV-GR (82%). Our oHSVs provide a simple and an efficient platform for construction and rapid isolation of 2nd and 3rd generation oHSVs by replacing the inserted dyes with transgenes and also for rapid identification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.
da Mota, Fabio Faria; Marinho, Lourena Pinheiro; Moreira, Carlos José de Carvalho; Lima, Marli Maria; Mello, Cícero Brasileiro; Garcia, Eloi Souza; Carels, Nicolas; Azambuja, Patricia
2012-01-01
Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera. Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster. The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low complexity whose structure differs according to the vector genus.
Nouvellet, Pierre; Dumonteil, Eric; Gourbière, Sébastien
2013-11-01
Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8 × 10(-4) (95%CI: [2.6 ; 11.0] × 10(-4)). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another.
Nouvellet, Pierre; Dumonteil, Eric; Gourbière, Sébastien
2013-01-01
Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8×10−4 (95%CI: [2.6 ; 11.0]×10−4). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900–4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another. PMID:24244766
Borrelia burgdorferi has minimal impact on the Lyme disease reservoir host Peromyscus leucopus.
Schwanz, Lisa E; Voordouw, Maarten J; Brisson, Dustin; Ostfeld, Richard S
2011-02-01
The epidemiology of vector-borne zoonotic diseases is determined by encounter rates between vectors and hosts. Alterations to the behavior of reservoir hosts caused by the infectious agent have the potential to dramatically alter disease transmission and human risk. We examined the effect of Borrelia burgdorferi, the etiological agent of Lyme disease, on one of its most important reservoir hosts, the white-footed mouse, Peromyscus leucopus. We mimic natural infections in mice using the vector (Black-legged ticks, Ixodes scapularis) and examine the immunological and behavioral responses of mouse hosts. Despite producing antibodies against B. burgdorferi, infected mice did not have elevated white blood cells compared with uninfected mice. In addition, infected and uninfected mice did not differ in their wheel-running activity. Our results suggest that infection with the spirochete B. burgdorferi has little impact on the field activity of white-footed mice. Lyme disease transmission appears to be uncomplicated by pathogen-altered behavior of this reservoir host.
Viral vectors for gene modification of plants as chem/bio sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manginell, Monica; Harper, Jason C.; Arango, Dulce C.
2006-11-01
Chemical or biological sensors that are specific, sensitive, and robust allowing intelligence gathering for verification of nuclear non-proliferation treaty compliance and detouring production of weapons of mass destruction are sorely needed. Although much progress has been made in the area of biosensors, improvements in sensor lifetime, robustness, and device packaging are required before these devices become widely used. Current chemical and biological detection and identification techniques require less-than-covert sample collection followed by transport to a laboratory for analysis. In addition to being expensive and time consuming, results can often be inconclusive due to compromised sample integrity during collection and transport.more » We report here a demonstration of a plant based sensor technology which utilizes mature and seedling plants as chemical sensors. One can envision genetically modifying native plants at a site of interest that can report the presence of specific toxins or chemicals. In this one year project we used a developed inducible expression system to show the feasibility of plant sensors. The vector was designed as a safe, non-infectious vector which could be used to invade, replicate, and introduce foreign genes into mature host plants that then allow the plant to sense chem/bio agents. The genes introduced through the vector included a reporter gene that encodes for green fluorescent protein (GFP) and a gene that encodes for a mammalian receptor that recognizes a chemical agent. Specifically, GFP was induced by the presence of 17-{beta}-Estradiol (estrogen). Detection of fluorescence indicated the presence of the target chemical agent. Since the sensor is a plant, costly device packaging development or manufacturing of the sensor were not required. Additionally, the biological recognition and reporting elements are maintained in a living, natural environment and therefore do not suffer from lifetime disadvantages typical of most biosensing platforms. Detection of the chem/bio agent reporter (GFP) can be detected only at a specific wavelength.« less
The geographical vector in distribution of genetic diversity for Clonorchis sinensis.
Solodovnik, Daria A; Tatonova, Yulia V; Burkovskaya, Polina V
2018-01-01
Clonorchis sinensis, the causative agent of clonorchiasis, is one of the most important parasites that inhabit countries of East and Southeast Asia. In this study, we validated the existence of a geographical vector for C. sinensis using the partial cox1 mtDNA gene, which includes a conserved region. The samples of parasite were divided into groups corresponding to three river basins, and the size of the conserved region had a strong tendency to increase from the northernmost to the southernmost samples. This indicates the availability of the geographical vector in distribution of genetic diversity. A vector is a quantity that is characterized by magnitude and direction. Geographical vector obtained in cox1 gene of C. sinensis has both these features. The reasons for the occurrence of this feature, including the influence of intermediate and definitive hosts on vector formation, and the possibility of its use for clonorchiasis monitoring are discussed. Graphical abstract ᅟ.
Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea
2015-01-01
Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.
Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea
2015-01-01
Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (K m = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (K m = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484
Chagas disease vector blood meal sources identified by protein mass spectrometry
Keller, Judith I.; Ballif, Bryan A.; St. Clair, Riley M.; Vincent, James J.; Monroy, M. Carlota
2017-01-01
Chagas disease is a complex vector borne parasitic disease involving blood feeding Triatominae (Hemiptera: Reduviidae) insects, also known as kissing bugs, and the vertebrates they feed on. This disease has tremendous impacts on millions of people and is a global health problem. The etiological agent of Chagas disease, Trypanosoma cruzi (Kinetoplastea: Trypanosomatida: Trypanosomatidae), is deposited on the mammalian host in the insect’s feces during a blood meal, and enters the host’s blood stream through mucous membranes or a break in the skin. Identifying the blood meal sources of triatomine vectors is critical in understanding Chagas disease transmission dynamics, can lead to identification of other vertebrates important in the transmission cycle, and aids management decisions. The latter is particularly important as there is little in the way of effective therapeutics for Chagas disease. Several techniques, mostly DNA-based, are available for blood meal identification. However, further methods are needed, particularly when sample conditions lead to low-quality DNA or to assess the risk of human cross-contamination. We demonstrate a proteomics-based approach, using liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify host-specific hemoglobin peptides for blood meal identification in mouse blood control samples and apply LC-MS/MS for the first time to Triatoma dimidiata insect vectors, tracing blood sources to species. In contrast to most proteins, hemoglobin, stabilized by iron, is incredibly stable even being preserved through geologic time. We compared blood stored with and without an anticoagulant and examined field-collected insect specimens stored in suboptimal conditions such as at room temperature for long periods of time. To our knowledge, this is the first study using LC-MS/MS on field-collected arthropod disease vectors to identify blood meal composition, and where blood meal identification was confirmed with more traditional DNA-based methods. We also demonstrate the potential of synthetic peptide standards to estimate relative amounts of hemoglobin acquired when insects feed on multiple blood sources. These LC-MS/MS methods can contribute to developing Ecohealth control strategies for Chagas disease transmission and can be applied to other arthropod disease vectors. PMID:29232402
Rašić, Gordana; Schama, Renata; Powell, Rosanna; Maciel-de Freitas, Rafael; Endersby-Harshman, Nancy M; Filipović, Igor; Sylvestre, Gabriel; Máspero, Renato C; Hoffmann, Ary A
2015-01-01
Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio. PMID:26495042
SHAHI, Mehran; KAMRANI, Ehsan; SALEHI, Mehrdad; HABIBI, Reza; HANAFI-BOJD, Ahmad Ali
2015-01-01
Background: The widespread use of chemical insecticides, resistance in vectors and environmental problems, all have led to an increased interest in the use of biological agents in malaria control programs. The most important functional elements are the native fish. The aim of this study was to identify the native species of lavivorous fish in Rudan County, southern Iran, to introduce an effective species and to propose its’ implementation in the national malaria control program. Methods: This ecologically descriptive study was conducted during 2011–2012 using random sampling from different fish habitats of Rudan County. The shoals of fish were caught using fishing net. Fish samples were then identified in the Ichthyology lab, Department of Fisheries and the Environment, Hormozgan University. Results: Three species of larvivorous fish were identified as follows: Gambusia holbrooki, Aphaniusdispar dispar and Aphanius sp. The latter species has the most distribution in the study area and needs more morphological and molecular studies for identification at the species level. Conclusion: Two species of native fish, i.e., A. dispar and A. sp. with larvivorous potential live in the area. Further studies on their predatory property are recommended in order to apply this local potential against malaria vectors in the area. PMID:26744713
Integrating vector control across diseases.
Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W
2015-10-01
Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.
Determinants of Infectivity of Pathogens in Vector Ticks
1990-11-15
nature. Y’e compared the development of the Lyme disease spirochete, Borrelia burgdorferi, in subadult rabbit-feeding Ixodes dentatus with that in mouse...the abundance of these vector ticks may effectively be reduced. The spirochetal agent of Lyme disease, Borrelia buradorferi, disseminated from the...11 III. Fine structural evidence for the penetration of the Lyme disease spirochete Borrelia burQdorferi through the gut and salivary tissues
Modeling the impact of global warming on vector-borne infections
NASA Astrophysics Data System (ADS)
Massad, Eduardo; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; da Silva, Daniel Rodrigues
2011-06-01
Global warming will certainly affect the abundance and distribution of disease vectors. The effect of global warming, however, depends on the complex interaction between the human host population and the causative infectious agent. In this work we review some mathematical models that were proposed to study the impact of the increase in ambient temperature on the spread and gravity of some insect-transmitted diseases.
USDA-ARS?s Scientific Manuscript database
Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspe...
USDA-ARS?s Scientific Manuscript database
Following a blood meal, Rhodnius prolixus undergoes a rapid diuresis in order to eliminate excess water and salts. During the voiding of this primary urine, R. prolixus acts as a vector of Chagas’ disease, with the causative agent, Trypanosoma cruzi, infecting the human host via the urine. Diuresi...
Entomological profile of yellow fever epidemics in the Central African Republic, 2006-2010.
Ngoagouni, Carine; Kamgang, Basile; Manirakiza, Alexandre; Nangouma, Auguste; Paupy, Christophe; Nakoune, Emmanuel; Kazanji, Mirdad
2012-08-16
The causative agent of yellow fever is an arbovirus of the Flaviviridae family transmitted by infected Aedes mosquitoes, particularly in Africa. In the Central African Republic since 2006, cases have been notified in the provinces of Ombella-Mpoko, Ouham-Pende, Basse-Kotto, Haute-Kotto and in Bangui the capital. As the presence of a vector of yellow fever virus (YFV) represents a risk for spread of the disease, we undertook entomological investigations at these sites to identify potential vectors of YFV and their abundance. Between 2006 and 2010, 5066 mosquitoes belonging to six genera and 43 species were identified. The 20 species of the Aedes genus identified included Ae. aegypti, the main vector of YFV in urban settings, and species found in tropical forests, such as Ae. africanus, Ae. simpsoni, Ae. luteocephalus, Ae. vittatus and Ae. opok. These species were not distributed uniformly in the various sites studied. Thus, the predominant Aedes species was Ae. aegypti in Bangui (90.7 %) and Basse-Kotto (42.2 %), Ae. africanus in Ombella-Mpoko (67.4 %) and Haute-Kotto (77.8 %) and Ae. vittatus in Ouham-Pende (62.2 %). Ae. albopictus was also found in Bangui. The distribution of these dominant species differed significantly according to study site (P < 0.0001). None of the pooled homogenates of Aedes mosquitoes analysed by polymerase chain reaction contained the YFV genome. The results indicate a wide diversity of vector species for YFV in the Central African Republic. The establishment of surveillance and vector control programs should take into account the ecological specificity of each species.
7 CFR 331.3 - PPQ select agents and toxins.
Code of Federal Regulations, 2011 CFR
2011-01-01
... listed in paragraph (b) of this section if the nucleic acids: (i) Can be expressed in vivo or in vitro; or (ii) Are in a vector or recombinant host genome and can be expressed in vivo or in vitro. (3... select agents and toxins. (a) Except as provided in paragraphs (d) and (e) of this section, the...
Global climate change and infectious diseases.
Shope, R
1991-01-01
The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholerae is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help us to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. PMID:1820262
Global climate change and infectious diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shope, R.
1991-12-01
The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in Northmore » America. Vibrio cholera is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help as to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. 12 refs., 1 tab.« less
Environmental management: a re-emerging vector control strategy.
Ault, S K
1994-01-01
Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.
Stich, R. W.; Schaefer, John J.; Bremer, William G.; Needham, Glen R.; Jittapalapong, Sathaporn
2008-01-01
The ehrlichioses have been subject to increasing interest from veterinary and public health perspectives, but experimental studies of these diseases and their etiologic agents can be challenging. Ehrlichia canis, the primary etiologic agent of canine monocytic ehrlichiosis, is relatively well characterized and offers unique advantages and opportunities to study interactions between a monocytotropic pathogen and both its vertebrate and invertebrate hosts. Historically, advances in tick-borne disease control strategies have typically followed explication of tick-pathogen-vertebrate interactions, thus it is reasonable to expect novel, more sustainable approaches to control of these diseases as the transmission of their associated infections are investigated at the molecular through ecological levels. Better understanding of the interactions between E. canis and its canine and tick hosts would also elucidate similar interactions for other Ehrlichia species as well as the potential roles of canine sentinels, reservoirs and models of tick-borne zoonoses. This article summarizes natural exposure studies and experimental investigations of E. canis in the context of what is understood about biological vectors of tick-borne Anaplasmataceae. PMID:18963493
Laboratory evaluation of Vectobac as against Aedes aegypti in Monterrey, Nuevo León, Mexico.
Ponce G, Gustavo; Flores, Adriana E; Badii, Mohammad H; Rodríguez-Tovar, M Luisa; Fernández-Salas, Ildefonso
2002-12-01
Intensive use of the organophosphate insecticide malathion against adults and temephos against larvae of Aedes aegypti in Mexico over the past 30 years has led to problems requiring the use of new larvicides. Toward this objective, Bacillus thuringiensis var. israelensis (Bti), a target-specific and environmentally safer control agent, was evaluated. Laboratory bioassays were done to determine the susceptibility of 2nd- and 3rd-stage larvae of Ae. aegypti to Vectobac 12 AS (aqueous suspension, 600 ITU/mg). A median lethal concentration of 0.0104 ppm and a 95% lethal concentration of 0.18 ppm were determined after 24 h of exposure to the agent. The values obtained were adjusted for field application and were further tested in the field by the State of Nuevo León, Mexico Vector Control Program. Suspensions of Bti were poured into pipe-water trucks and transferred to domestic 200-gal metal water drums. Larval populations were reduced during a 2-week study period. However, residents complained about a fine dusty film on the water surface. Nevertheless, these results are promising for future Bti field applications.
Current vector control challenges in the fight against malaria.
Benelli, Giovanni; Beier, John C
2017-10-01
The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Galdeano, Diogo Manzano; Breton, Michèle Claire; Lopes, João Roberto Spotti; Falk, Bryce W; Machado, Marcos Antonio
2017-01-01
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most important citrus pests. ACP is the vector of the phloem-limited bacteria Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, the causal agents of the devastating citrus disease huanglongbing (HLB). The management of HLB is based on the use of healthy young plants, eradication of infected plants and chemical control of the vector. RNA interference (RNAi) has proven to be a promising tool to control pests and explore gene functions. Recently, studies have reported that target mRNA knockdown in many insects can be induced through feeding with double-stranded RNA (dsRNA). In the current study, we targeted the cathepsin D, chitin synthase and inhibitor of apoptosis genes of adult and nymph ACP by feeding artificial diets mixed with dsRNAs and Murraya paniculata leaves placed in dsRNAs solutions, respectively. Adult ACP mortality was positively correlated with the amount of dsRNA used. Both nymphs and adult ACP fed dsRNAs exhibited significantly increased mortality over time compared with that of the controls. Moreover, qRT-PCR analysis confirmed the dsRNA-mediated RNAi effects on target mRNAs. These results showed that RNAi can be a powerful tool for gene function studies in ACP and perhaps for HLB control.
Kumar, Palanisamy Mahesh; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Amerasan, Duraisamy; Chandramohan, Balamurugan; Dinesh, Devakumar; Suresh, Udaiyan; Nicoletti, Marcello; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Wei, Hui; Kalimuthu, Kandasamy; Hwang, Jiang-Shiou; Lo Iacono, Annalisa; Benelli, Giovanni
2016-02-01
Aedes albopictus is an important arbovirus vector, including dengue. Currently, there is no specific treatment for dengue. Its prevention solely depends on effective vector control measures. In this study, silver nanoparticles (AgNPs) were biosynthesized using a cheap leaf extract of Berberis tinctoria as reducing and stabilizing agent and tested against Ae. albopictus and two mosquito natural enemies. AgNPs were characterized by using UV–vis spectrophotometry, X-ray diffraction, and scanning electron microscopy. In laboratory conditions, the toxicity of AgNPs was evaluated on larvae and pupae of Ae. albopictus. Suitability Index/Predator Safety Factor was assessed on Toxorhynchites splendens and Mesocyclops thermocyclopoides. The leaf extract of B. tinctoria was toxic against larval instars (I–IV) and pupae of Ae. albopictus; LC50 was 182.72 ppm (I instar), 230.99 ppm (II), 269.65 ppm (III), 321.75 ppm (IV), and 359.71 ppm (pupa). B. tinctoria-synthesized AgNPs were highly effective, with LC50 of 4.97 ppm (I instar), 5.97 ppm (II), 7.60 ppm (III), 9.65 ppm (IV), and 14.87 ppm (pupa). Both the leaf extract and AgNPs showed reduced toxicity against the mosquito natural enemies M. thermocyclopoides and T. splendens. Overall, this study firstly shed light on effectiveness of B. tinctoria-synthesized AgNPs as an eco-friendly nanopesticide, highlighting the concrete possibility to employ this newer and safer tool in arbovirus vector control programs.
Sengupta, Subhadipa; Chakraborti, Dipankar; Mondal, Hossain A; Das, Sampa
2010-03-01
Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.
Wang, Wei; Tong, Shaocheng
2018-02-01
This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.
Avery, Pasco B; Bojorque, Verónica; Gámez, Cecilia; Duncan, Rita E; Carrillo, Daniel; Cave, Ronald D
2018-04-25
Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF) are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus , and potential alternative vectors, Xylosandrus crassiusculus , Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae). Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus , X. volvulus and X. bispinatus. The specific objectives were to determine: (1) the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF ( Isaria fumosorosea , Metarhizium brunneum and Beauveria bassiana ); and (2) the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 10⁶ viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana , compared to the other fungal treatments. For X. volvulus , the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana . After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests) indicated an impact for each entomopathogenic fungus per beetle species after exposure to a filter paper disk treated at the same fungal suspension concentration. Kaplan⁻Meier analysis (censored at day 7) revealed that each beetle species survived significantly shorter in bioassays containing disks treated with EPF compared to water only. This study demonstrated that ambrosia beetles associated with the laurel wilt pathogen in avocados are susceptible to infection by EPF under laboratory conditions. However, the EPF needs to be tested under field conditions to confirm their efficacy against the beetles.
Rajkumar, S; Jebanesan, A
2007-12-01
In recent years, use of environment friendly and biodegradable natural insecticides of plant origin have received renewed attention as agents for vector control. In this study, essential oils extracted by steam distillation from leaves of five plant species Centella asiatica L., Ipomoea cairica L., Momordica charantia L., Psidium guajava L. and Tridax procumbens L. were evaluated for their topical repellency effects against malarial vector Anopheles stephensi in mosquito cages. All essential oils were tested at three different concentrations (2, 4 and 6%). Of these, the essential oils of I. cairica, M. charantia and T. procumbens exhibited relatively high repellency effect (>300 minutes at 6% concentration), followed by C. asiatica and P. guajava which showed less effective (< 150 minutes at 6 % concentration). However, the ethanol applied arm served as control provided maximum 8.0 minutes repellency in this study. In general, clear dose-response relationships were established in all essential oils, with the highest concentration of 6% provided high repellency effect. The results obtained from this study suggest that essential oils of I. cairica, M. charantia and T. procumbens are promising as repellents at 6% concentration against An. stephensi and could be useful in the search for new natural repellent compounds.
Trypanosoma cruzi: adaptation to its vectors and its hosts
Noireau, François; Diosque, Patricio; Jansen, Ana Maria
2009-01-01
American trypanosomiasis is a parasitic zoonosis that occurs throughout Latin America. The etiological agent, Trypanosoma cruzi, is able to infect almost all tissues of its mammalian hosts and spreads in the environment in multifarious transmission cycles that may or not be connected. This biological plasticity, which is probably the result of the considerable heterogeneity of the taxon, exemplifies a successful adaptation of a parasite resulting in distinct outcomes of infection and a complex epidemiological pattern. In the 1990s, most endemic countries strengthened national control programs to interrupt the transmission of this parasite to humans. However, many obstacles remain to the effective control of the disease. Current knowledge of the different components involved in elaborate system that is American trypanosomiasis (the protozoan parasite T. cruzi, vectors Triatominae and the many reservoirs of infection), as well as the interactions existing within the system, is still incomplete. The Triatominae probably evolve from predatory reduvids in response to the availability of vertebrate food source. However, the basic mechanisms of adaptation of some of them to artificial ecotopes remain poorly understood. Nevertheless, these adaptations seem to be associated with a behavioral plasticity, a reduction in the genetic repertoire and increasing developmental instability. PMID:19250627
Govindarajan, Marimuthu; Benelli, Giovanni
2016-11-01
Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic organisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan; Hoti, S L; Khater, Hanem F; Benelli, Giovanni
2016-08-01
Mosquitoes (Diptera: Culicidae) are vectors of important pathogens and parasites, including malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. The application of synthetic insecticides causes development of resistance, biological magnification of toxic substances through the food chain, and adverse effects on the environment and human health. In this scenario, eco-friendly control tools of mosquito vectors are a priority. Here single-step fabrication of silver nanoparticles (AgNP) using a cheap aqueous leaf extract of Zornia diphylla as reducing and capping agent pf Ag(+) ions has been carried out. Biosynthesized AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of Z. diphylla leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the Z. diphylla leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 12.53, 13.42 and 14.61μg/ml, respectively. Biosynthesized Ag NP were found safer to non-target organisms Chironomus circumdatus, Anisops bouvieri and Gambusia affinis, with the respective LC50 values ranging from 613.11 to 6903.93μg/ml, if compared to target mosquitoes. Overall, our results highlight that Z. diphylla-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target organisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Successes and failures of sixty years of vector control in French Guiana: what is the next step?
Epelboin, Yanouk; Chaney, Sarah C; Guidez, Amandine; Habchi-Hanriot, Nausicaa; Talaga, Stanislas; Wang, Lanjiao; Dusfour, Isabelle
2018-03-12
Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.
Bacteroides Fragilis OmpA: Utility as a Live Vaccine Vector for Biodefense Agents
2008-01-01
of handling diseases in large populations. Studies of the immune system and vaccine effectiveness have shown that the ideal way to induce a...the past 15 years, experimental bacterial vaccine vectors have been produced that elicit immune responses against bacterial, viral, protozoan and...given orally, and they can be treated with antibiotics if desired and they effectively induce both humoral and cellular responses. If the organism
Plasmid DNA Delivery: Nanotopography Matters.
Song, Hao; Yu, Meihua; Lu, Yao; Gu, Zhengying; Yang, Yannan; Zhang, Min; Fu, Jianye; Yu, Chengzhong
2017-12-20
Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.
Cito, F; Narcisi, V; Danzetta, M L; Iannetti, S; Sabatino, D D; Bruno, R; Carvelli, A; Atzeni, M; Sauro, F; Calistri, P
2013-11-01
West Nile virus (WNV) and Rift Valley fever virus (RVFV) represent an important group of viral agents responsible for vector-borne zoonotic diseases constituting an emerging sanitary threat for the Mediterranean Basin and the neighbouring countries. WNV infection is present in several Mediterranean countries, whereas RVF has never been introduced into Europe, but it is considered a major threat for North African countries. Being vector-borne diseases, they cannot be prevented only through an animal trade control policy. Several approaches are used for the surveillance of WNV and RVFV. With the aim of assessing the surveillance systems in place in Mediterranean countries, two disease-specific questionnaires (WNV, RVFV) have been prepared and submitted to Public Health and Veterinary Authorities of six EU countries. This study presents the information gathered through the questionnaires and describes some critical points in the prevention and surveillance of these diseases as emerged by the answers received. © 2013 Blackwell Verlag GmbH.
The prospect of gene therapy for prostate cancer: update on theory and status.
Koeneman, K S; Hsieh, J T
2001-09-01
Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.
Attractive toxic sugar baits for controlling mosquitoes: a qualitative study in Bagamoyo, Tanzania.
Maia, Marta Ferreira; Tenywa, Frank Chelestino; Nelson, Hannah; Kambagha, Athumani; Ashura, Abigail; Bakari, Ibrahim; Mruah, Deogratis; Simba, Aziza; Bedford, Ally
2018-01-10
Malaria elimination is unlikely to be achieved without the implementation of new vector control interventions capable of complementing insecticide-treated nets and indoor residual spraying. Attractive-toxic sugar baits (ATSBs) are considered a new vector control paradigm. They are technologically appropriate as they are simple and affordable to produce. ATSBs kill both female and male mosquitoes attracted to sugar feed on a sugary solution containing a mosquitocidal agent and may be used indoors or outdoors. This study explored the views and perceptions on ATSBs of community members from three Coastal Tanzanian communities. Three communities were chosen to represent coastal urban, peri-urban and rural areas. Sensitization meetings were held with a total of sixty community members where ATSBs were presented and explained their mode of action. At the end of the meeting, one ATSB was given to each participant for a period of 2 weeks, after which they were invited to participate in focus group discussions (FGDs) to provide feedback on their experience. Over 50% of the participants preferred to use the bait indoors although they had been instructed to place it outdoors. Participants who used the ATSBs indoors reported fewer mosquitoes inside their homes, but were disappointed not to find the dead mosquitoes in the baits, although they had been informed that this was unlikely to happen. Most participants disliked the appearance of the bait and some thought it to be reminiscent of witchcraft. Neighbours that did not participate in the FGDs or sensitizations were sceptical of the baits. This study delivers insight on how communities in Coastal Tanzania are likely to perceive ATSBs and provides important information for future trials investigating the efficacy of ATSBs against malaria. This new vector control tool will require sensitization at community level regarding its mode of action in order to increase the acceptance and confidence in ATSBs for mosquito control given that most people are not familiar with the new paradigm. A few recommendations for product development and delivery are discussed.
Soares, João F; Costa, Francisco B; Girotto-Soares, Aline; Da Silva, Aleksandro S; França, Raqueli T; Taniwaki, Sueli A; Dall'Agnol, Bruno; Reck, José; Hagiwara, Mitika K; Labruna, Marcelo B
2018-05-04
Rangelia vitalii is the etiologic agent of canine rangeliosis, a severe piroplasmosis that affects domestic dogs in Brazil, Uruguay and Argentina. While R. vitalii is one of the most pathogenic tick-borne pathogens for dogs in the world, its tick vector has remained unknown. The present study evaluated the vector competence of Rhipicephalus sanguineus sensu lato (both tropical and temperate species), Amblyomma aureolatum, Amblyomma ovale, Amblyomma tigrinum, and Amblyomma sculptum for R. vitalii. These six tick species were selected for the study because they comprise the main tick species infesting dogs within the distribution area of canine rangeliosis in South America. Acquisition feeding of the above six tick species was performed on domestic dogs showing clinical signs of canine rangeliosis, after being experimentally infected through intravenous inoculation or infestation with R. vitalii-infected ticks. Thereafter, engorged ticks were evaluated for transstadial and transovarial passages of R. vitalii through molecular analysis after molting or oviposition and egg hatching. The resultant ticks were evaluated for their competence to transmit R. vitalii to susceptible dogs. Among the six tick species, only A. aureolatum was able to acquire and perpetuate R. vitalii by transstadial and transovarial passages, as demonstrated by >5% infection rates of ticks after hatching or molting. When exposed to transmission feeding, only A. aureolatum ticks were competent to transmit R. vitalii to dogs, which became severely ill, and the results confirmed by molecular methods and blood smear examination to have acquired rangeliosis. Results of the present study, coupled with epidemiological data, indicate that A. aureolatum is a natural vector of R. vitalii. Our results also indicate that R. vitalii is the first Piroplasmorida agent to be transovarially transmitted in Amblyomma ticks. Copyright © 2018 Elsevier GmbH. All rights reserved.
Tsetse Fly (G.f. fuscipes) Distribution in the Lake Victoria Basin of Uganda
Albert, Mugenyi; Wardrop, Nicola A; Atkinson, Peter M; Torr, Steve J; Welburn, Susan C
2015-01-01
Tsetse flies transmit trypanosomes, the causative agent of human and animal African trypanosomiasis. The tsetse vector is extensively distributed across sub-Saharan Africa. Trypanosomiasis maintenance is determined by the interrelationship of three elements: vertebrate host, parasite and the vector responsible for transmission. Mapping the distribution and abundance of tsetse flies assists in predicting trypanosomiasis distributions and developing rational strategies for disease and vector control. Given scarce resources to carry out regular full scale field tsetse surveys to up-date existing tsetse maps, there is a need to devise inexpensive means for regularly obtaining dependable area-wide tsetse data to guide control activities. In this study we used spatial epidemiological modelling techniques (logistic regression) involving 5000 field-based tsetse-data (G. f. fuscipes) points over an area of 40,000 km2, with satellite-derived environmental surrogates composed of precipitation, temperature, land cover, normalised difference vegetation index (NDVI) and elevation at the sub-national level. We used these extensive tsetse data to analyse the relationships between presence of tsetse (G. f. fuscipes) and environmental variables. The strength of the results was enhanced through the application of a spatial autologistic regression model (SARM). Using the SARM we showed that the probability of tsetse presence increased with proportion of forest cover and riverine vegetation. The key outputs are a predictive tsetse distribution map for the Lake Victoria basin of Uganda and an improved understanding of the association between tsetse presence and environmental variables. The predicted spatial distribution of tsetse in the Lake Victoria basin of Uganda will provide significant new information to assist with the spatial targeting of tsetse and trypanosomiasis control. PMID:25875201
Mathematical modeling of Chikungunya fever control
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan
2015-05-01
Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.
Kant, Rajni; Haq, S; Srivastava, H C; Sharma, V P
2013-03-01
Mosquito control with the use of insecticides is faced with the challenges of insecticide resistance in disease vectors, community refusal, their high cost, operational difficulties, and environmental concern. In view of this, integrated vector control strategies with the use of larvivorous fishes such as Guppy (Poecilia reticulata) and Gambusia (G. affinis) as biological control agents were used in controlling mosquito breeding in different types of breeding places such as intradomestic containers, various types of wells, rice-fields, pools, ponds and elsewhere in malaria prone rural areas of central Gujarat. Attempts were also made to demonstrate composite fish culture in unused abandoned village ponds by culturing Guppy along with the food fishes such as Rohu (Labeo rohita), Catla (Catla catla) and Mrigal (Cirrhinus mrigala). Income generated from these ponds through sale of fishes was utilized for mosquito control and village development. The technology was later adopted by the villagers themselves and food fish culture was practised in 23 ponds which generated an income of Rs 1,02,50,992 between 1985 and 2008. The number of villages increased from 13 to 23 in 2008 and there was also gradual increase of income from Rs 3,66,245 in 1985-90 to Rs 55,06,127 in 2002-08 block. It is concluded that larvivorous fishes can be useful tool in controlling mosquito breeding in certain situations and their use along with composite fish culture may also generate income to make the programme self-sustainable.
Deciphering Babesia-Vector Interactions.
Antunes, Sandra; Rosa, Catarina; Couto, Joana; Ferrolho, Joana; Domingos, Ana
2017-01-01
Understanding host-pathogen-tick interactions remains a vitally important issue that might be better understood by basic research focused on each of the dyad interplays. Pathogens gain access to either the vector or host during tick feeding when ticks are confronted with strong hemostatic, inflammatory and immune responses. A prominent example of this is the Babesia spp.-tick-vertebrate host relationship. Babesia spp. are intraerythrocytic apicomplexan organisms spread worldwide, with a complex life cycle. The presence of transovarial transmission in almost all the Babesia species is the main difference between their life cycle and that of other piroplasmida. With more than 100 species described so far, Babesia are the second most commonly found blood parasite of mammals after trypanosomes. The prevalence of Babesia spp. infection is increasing worldwide and is currently classified as an emerging zoonosis. Babesia microti and Babesia divergens are the most frequent etiological agents associated with human babesiosis in North America and Europe, respectively. Although the Babesia -tick system has been extensively researched, the currently available prophylactic and control methods are not efficient, and chemotherapeutic treatment is limited. Studying the molecular changes induced by the presence of Babesia in the vector will not only elucidate the strategies used by the protozoa to overcome mechanical and immune barriers, but will also contribute toward the discovery of important tick molecules that have a role in vector capacity. This review provides an overview of the identified molecules involved in Babesia -tick interactions, with an emphasis on the fundamentally important ones for pathogen acquisition and transmission.
Deciphering Babesia-Vector Interactions
Antunes, Sandra; Rosa, Catarina; Couto, Joana; Ferrolho, Joana; Domingos, Ana
2017-01-01
Understanding host-pathogen-tick interactions remains a vitally important issue that might be better understood by basic research focused on each of the dyad interplays. Pathogens gain access to either the vector or host during tick feeding when ticks are confronted with strong hemostatic, inflammatory and immune responses. A prominent example of this is the Babesia spp.—tick—vertebrate host relationship. Babesia spp. are intraerythrocytic apicomplexan organisms spread worldwide, with a complex life cycle. The presence of transovarial transmission in almost all the Babesia species is the main difference between their life cycle and that of other piroplasmida. With more than 100 species described so far, Babesia are the second most commonly found blood parasite of mammals after trypanosomes. The prevalence of Babesia spp. infection is increasing worldwide and is currently classified as an emerging zoonosis. Babesia microti and Babesia divergens are the most frequent etiological agents associated with human babesiosis in North America and Europe, respectively. Although the Babesia-tick system has been extensively researched, the currently available prophylactic and control methods are not efficient, and chemotherapeutic treatment is limited. Studying the molecular changes induced by the presence of Babesia in the vector will not only elucidate the strategies used by the protozoa to overcome mechanical and immune barriers, but will also contribute toward the discovery of important tick molecules that have a role in vector capacity. This review provides an overview of the identified molecules involved in Babesia-tick interactions, with an emphasis on the fundamentally important ones for pathogen acquisition and transmission. PMID:29034218
Ochirkhuu, Nyamsuren; Konnai, Satoru; Mingala, Claro N; Okagawa, Tomohiro; Villanueva, Marvin; Pilapil, Flor Marie Immanuelle R; Murata, Shiro; Ohashi, Kazuhiko
2015-09-15
In the Philippines, vector-borne disease is one of the important problems in the livestock industry. To elucidate the epidemiology of vector-borne diseases in cattle on Luzon Island, the Philippines, the prevalence of five protozoan agents was assessed by polymerase chain reaction. Out of the 339 samples, 324 (95.5%), 154 (45.4%), 209 (61.6%), 140 (41.3%), and 2 (0.6%) were positive for Anaplasma marginale, Babesia bigemina, Babesia bovis, Theileria spp., and Trypanosoma evansi infections, respectively. Mixed infections were detected in 290 (85.5%) samples, of which 115 (33.9%) had two pathogens, 144 (42.5%) had three pathogens, and 31 (9.1%) had four kinds of pathogens. 16S rRNA gene was 100% identical in A. marginale compared with the same lineage across the world. B. bovis RAP-1 and B. bigemina AMA-1 genes were identical with 92.27%-100% and 97.07%-100% sequences, respectively, in the database (Asian isolates). MPSP genes of Theileria spp. were 83.51%-100% identical with the one another. Phylogenetic analysis showed that they belong to the groups of T. sergenti and T. buffeli. Positive rates of the tick-borne pathogens were extremely high in this area. These findings provide vital information that can be used for the planning and execution of effective control measures for vector-borne diseases in the Philippine cattle industry. Copyright © 2015 Elsevier B.V. All rights reserved.
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND...-mouth disease virus; Goat pox virus; Japanese encephalitis virus; Lumpy skin disease virus; Malignant...
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND...-mouth disease virus; Goat pox virus; Japanese encephalitis virus; Lumpy skin disease virus; Malignant...
Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel
2014-06-03
Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.
NASA Astrophysics Data System (ADS)
Gelfusa, M.; Murari, A.; Lungaroni, M.; Malizia, A.; Parracino, S.; Peluso, E.; Cenciarelli, O.; Carestia, M.; Pizzoferrato, R.; Vega, J.; Gaudio, P.
2016-10-01
Two of the major new concerns of modern societies are biosecurity and biosafety. Several biological agents (BAs) such as toxins, bacteria, viruses, fungi and parasites are able to cause damage to living systems either humans, animals or plants. Optical techniques, in particular LIght Detection And Ranging (LIDAR), based on the transmission of laser pulses and analysis of the return signals, can be successfully applied to monitoring the release of biological agents into the atmosphere. It is well known that most of biological agents tend to emit specific fluorescence spectra, which in principle allow their detection and identification, if excited by light of the appropriate wavelength. For these reasons, the detection of the UVLight Induced Fluorescence (UV-LIF) emitted by BAs is particularly promising. On the other hand, the stand-off detection of BAs poses a series of challenging issues; one of the most severe is the automatic discrimination between various agents which emit very similar fluorescence spectra. In this paper, a new data analysis method, based on a combination of advanced filtering techniques and Support Vector Machines, is described. The proposed approach covers all the aspects of the data analysis process, from filtering and denoising to automatic recognition of the agents. A systematic series of numerical tests has been performed to assess the potential and limits of the proposed methodology. The first investigations of experimental data have already given very encouraging results.
Integrated pest management and allocation of control efforts for vector-borne diseases
Ginsberg, H.S.
2001-01-01
Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.
Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.
2005-01-01
Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.
Modeling the impact of global warming on vector-borne infections.
Massad, Eduardo; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; da Silva, Daniel Rodrigues
2011-06-01
Global warming will certainly affect the abundance and distribution of disease vectors. The effect of global warming, however, depends on the complex interaction between the human host population and the causative infectious agent. In this work we review some mathematical models that were proposed to study the impact of the increase in ambient temperature on the spread and gravity of some insect-transmitted diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Interaction of the Lyme disease spirochete with its tick vector.
Caimano, Melissa J; Drecktrah, Dan; Kung, Faith; Samuels, D Scott
2016-07-01
Borrelia burgdorferi, the causative agent of Lyme disease (along with closely related genospecies), is in the deeply branching spirochete phylum. The bacterium is maintained in nature in an enzootic cycle that involves transmission from a tick vector to a vertebrate host and acquisition from a vertebrate host to a tick vector. During its arthropod sojourn, B. burgdorferi faces a variety of stresses, including nutrient deprivation. Here, we review some of the spirochetal factors that promote persistence, maintenance and dissemination of B. burgdorferi in the tick, and then focus on the utilization of available carbohydrates as well as the exquisite regulatory systems invoked to adapt to the austere environment between blood meals and to signal species transitions as the bacteria traverse their enzootic cycle. The spirochetes shift their source of carbon and energy from glucose in the vertebrate to glycerol in the tick. Regulation of survival under limiting nutrients requires the classic stringent response in which RelBbu controls the levels of the alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively termed (p)ppGpp), while regulation at the tick-vertebrate interface as well as regulation of protective responses to the blood meal require the two-component system Hk1/Rrp1 to activate production of the second messenger cyclic-dimeric-GMP (c-di-GMP). © 2016 John Wiley & Sons Ltd.
Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors
NASA Astrophysics Data System (ADS)
Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le
2017-11-01
The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.
Samy, Abdallah M; Annajar, Badereddin B; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A Townsend
2016-02-01
Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country.
Samy, Abdallah M.; Annajar, Badereddin B.; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A. Townsend
2016-01-01
Abstract Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country. PMID:26863317
Yersinia pestis Biofilm in the Flea Vector and Its Role in the Transmission of Plague
Erickson, D. L.
2013-01-01
Transmission by fleabite is a relatively recent evolutionary adaptation of Yersinia pestis, the bacterial agent of bubonic plague. To produce a transmissible infection, Y. pestis grows as an attached biofilm in the foregut of the flea vector. Biofilm formation both in the flea foregut and in vitro is dependent on an extracellular matrix (ECM) synthesized by the Yersinia hms gene products. The hms genes are similar to the pga and ica genes of Escherichia coli and Staphylococcus epidermidis, respectively, that act to synthesize a poly-β-1,6-N-acetyl-d-glucosamine ECM required for biofilm formation. As with extracellular polysaccharide production in many other bacteria, synthesis of the Hms-dependent ECM is controlled by intracellular levels of cyclic-di-GMP. Yersinia pseudotuberculosis, the food- and water-borne enteric pathogen from which Y. pestis evolved recently, possesses identical hms genes and can form biofilm in vitro but not in the flea. The genetic changes in Y. pestis that resulted in adapting biofilm-forming capability to the flea gut environment, a critical step in the evolution of vector-borne transmission, have yet to be identified. During a flea bite, Y. pestis is regurgitated into the dermis in a unique biofilm phenotype, and this has implications for the initial interaction with the mammalian innate immune response. PMID:18453279
Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors.
Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le
2017-11-17
The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.
Zuharah, Wan Fatma; Fadzly, Nik; Yusof, Nur Aishah; Dieng, Hamady
2015-01-01
Viable biocontrol agents for mosquito control are quite rare, therefore improving the efficacy of existing biological agents is an important study. We need to have a better understanding of the predation-risk behavioral responses toward prey. This research examined prey choices by Toxorhynchites splendens by monitoring the behavioral responses of Aedes aegypti, Aedes albopictus, and Anopheles sinensis larvae when exposed to the predator. The results show that Tx. splendens prefers to consume Ae. aegypti larvae. The larvae exhibited different behavioral responses when Tx. splendens was present which suggest vulnerability in the presence of predators. "Thrashing" and "browsing" activities were greater in Ae. aegypti larvae. Such active and risky movements could cause vulnerability for the Ae. aegypti larvae due to increasing of water disturbance. In contrast, Ae. albopictus and An. sinensis larvae exhibited passive, low-risk behaviors, spending most of the time on the "wall" position near the edges of the container. We postulated that Ae. aegypti has less ability to perceive cues from predation and could not successfully alter its behavior to reduce risk of predation risk compared with Ae. albopictus and An. sinensis. Our results suggest that Tx. splendens is a suitable biocontrol agent in controlling dengue hemorrhagic vector, Ae. aegypti. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... fever virus; *Foot-and-mouth disease virus; Goat pox virus; Lumpy skin disease virus; Mycoplasma...
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... fever virus; *Foot-and-mouth disease virus; Goat pox virus; Lumpy skin disease virus; Mycoplasma...
Fanfone, Deborah; Despretz, Nadège; Stanicki, Dimitri; Rubio-Magnieto, Jenifer; Fossépré, Mathieu; Surin, Mathieu; Rorive, Sandrine; Salmon, Isabelle; Vander Elst, Luce; Laurent, Sophie; Muller, Robert N; Saussez, Sven; Burtea, Carmen
2017-10-06
The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.
Exploiting the potential of vector control for disease prevention.
Townson, H; Nathan, M B; Zaim, M; Guillet, P; Manga, L; Bos, R; Kindhauser, M
2005-12-01
Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities.
Exploiting the potential of vector control for disease prevention.
Townson, H.; Nathan, M. B.; Zaim, M.; Guillet, P.; Manga, L.; Bos, R.; Kindhauser, M.
2005-01-01
Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities. PMID:16462987
Inglis, Peter W.; Queiroz, Paulo R.; Valadares-Inglis, M. Cléria
1999-04-01
A plasmid vector for fungal expression of an enhanced, red-shifted variant of the Aequoria victoriae green fluorescent protein was constructed by fusion of the EGFP gene to the highly expressed Aspergillus nidulans gpd promoter and the A. nidulans trpC terminator. This construction was introduced by cotransformation, using benomyl selection, into Trichoderma harzianum strain 1051, a strain being evaluated for the biological control of witches'-broom disease of cocoa caused by Crinipellis perniciosa. Epifluorescence microscopy was used to monitor germination and attachment of stable transformant conidia on the surface of C. perniciosa hyphae.
Tsetse-Wolbachia symbiosis: Comes of age and has great potential for pest and disease control
Doudoumis, Vangelis; Alam, Uzma; Aksoy, Emre; Abd-Alla, Adly M.M.; Tsiamis, George; Brelsfoard, Corey; Aksoy, Serap; Bourtzis, Kostas
2013-01-01
Tsetse flies (Diptera: Glossinidae) are the sole vectors of African trypanosomes, the causative agent of sleeping sickness in human and nagana in animals. Like most eukaryotic organisms, Glossina species have established symbiotic associations with bacteria. Three main symbiotic bacteria have been found in tsetse flies: Wigglesworthia glossinidia, an obligate symbiotic bacterium, the secondary endosymbiont Sodalis glossinidius and the reproductive symbiont Wolbachia pipientis. In the present review, we discuss recent studies on the detection and characterization of Wolbachia infections in Glossina species, the horizontal transfer of Wolbachia genes to tsetse chromosomes, the ability of this symbiont to induce cytoplasmic incompatibility in Glossina morsitans morsitans and also how new environment-friendly tools for disease control could be developed by harnessing Wolbachia symbiosis. PMID:22835476
NASA Astrophysics Data System (ADS)
Dommar, Carlos J.; Robinson, Marguerite; Lowe, Rachel; Conan, Anne; Buchy, Philippe; Tarantola, Arnaud; Rodó, Xavier
2014-05-01
The emergence and persistence of human pathogens in the environment represents a constant threat to society, with global implications for human health, economies and ecosystems. Of particular concern are vector-borne diseases, such as dengue, malaria and chikungunya, which are increasing across their traditional ranges and continuing to infiltrate new regions. This unprecedented situation has been partly attributed to the increase in global temperatures in recent decades which has allowed non-native mosquito species to invade and successfully colonise previously inhospitable environments. The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. In turn, vector populations are thought to be driven by external environmental variables, such as precipitation and temperature. Furthermore, the ability of asymptomatic individuals to successfully transmit the infection and evade control measures can undermine public health interventions. We employed a stochastic model, which explicitly included asymptomatic and undocumented laboratory confirmed cases, and applied it to a documented outbreak in Cambodia in 2012 (Trapeang Roka village, Kampong Speu Province). The resulting estimate of the reproduction number was considerably higher than values obtained for previous outbreaks and highlights the importance of asymptomatic transmission. Subsequently, we develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals alone is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure versus precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Our results highlight the urgent need to establish adequate monitoring and mosquito control programs in vulnerable countries. These models can help to inform public health officials on both the impact and potential spatial expansion of vector-borne diseases through both urban and rural regions under the influence of dynamic climatic conditions. Given the climate sensitivity of vector-borne diseases, such as chikungunya, it is important to link the monitoring of meteorological conditions to public health surveillance and control.
NASA Astrophysics Data System (ADS)
Dommar, C. J.; Lowe, R.; Robinson, M.; Rodó, X.
2013-12-01
The emergence and persistence of human pathogens in the environment represents a constant threat to society, with global implications for human health, economies and ecosystems. Of particular concern are vector-borne diseases, such as dengue, malaria and chikungunya, which are increasing across their traditional ranges and continuing to infiltrate new regions. This unprecedented situation has been partly attributed to the increase in global temperatures in recent decades which has allowed non-native mosquito species to invade and successfully colonise previously inhospitable environments The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. In turn, vector populations are thought to be driven by external environmental variables, such as precipitation and temperature. Furthermore, the ability of asymptomatic individuals to successfully transmit the infection and evade control measures can undermine public health interventions. We employed a stochastic model, which explicitly included asymptomatic and undocumented laboratory confirmed cases, and applied it to a documented outbreak in Cambodia in 2012 (Trapeang Roka village, Kampong Speu Province). The resulting estimate of the reproduction number was considerably higher than values obtained for previous outbreaks and highlights the importance of asymptomatic transmission. Subsequently, we develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals alone is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure versus precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Our results highlight the urgent need to establish adequate monitoring and mosquito control programs in vulnerable countries. These models can help to inform public health officials on both the impact and potential spatial expansion of vector-borne diseases through both urban and rural regions under the influence of dynamic climatic conditions. Given the climate sensitivity of vector-borne diseases, such as chikungunya, it is important to link the monitoring of meteorological conditions to public health surveillance and control.
2013-01-01
Background Chagas disease is most often transmitted to humans by Trypanosoma cruzi infected triatomine bugs, and remains a significant cause of morbidity and mortality in Central and South America. Control of Chagas disease has relied mainly on vector eradication. However, development of insect resistance has prompted us to develop a paratransgenic strategy to control vectorial transmission of T. cruzi. Here, the potential role of recombinant endoglucanases as anti-trypanosomal agents for paratransgenic application is examined. The surface of T. cruzi is covered by a thick coat of mucin-like glycoproteins that have been proposed to play a role in the binding of T. cruzi to the membrane surface of the vector gut. We hypothesize that disruption of these glycoconjugates could arrest parasite development in the vector and abort the transmission cycle. In this work, we examine the effects of recombinant Arthrobacter luteus β-1, 3-glucanase expressed via Rhodococcus rhodnii on T. cruzi Sylvio II strain. Methods and results The coding sequence for β-1, 3-glucanase was cloned in-frame to a heterologous promoter/signal sequence from the Mycobacterium kansasii alpha antigen gene resident in an E. coli/R. rhodnii shuttle vector. The resulting construct was confirmed by sequencing, and electroporated into R. rhodnii. Expression products from positive clones were purified from log phase cultures followed by dialysis into physiological buffers. Lysates and media were quantitated by ELISA against rabbit antibody specific to β-1,3-glucanase. Glucanase-positive samples were applied to live T. cruzi parasites in culture and viability accessed by spectrophotometric and fluorescent microscopic measurements. R. rhodnii-expressed β-1,3-glucanase exhibited toxicity against T. cruzi compared to controls when applied at 5 and 10% of the total culture volume. The decrease in cell viability ranged from a maximum of 50% for the media treatments to 80% for the filtered lysates. Conclusions These results suggest that recombinant β-glucanase could be a powerful addition to the arsenal of effector molecules for paratransgenic control of Chagas disease. In future studies, the ability of β-glucanase to function in combination with other effector molecules will be explored. Dual targeting of T. cruzi should not only slow resistance but also permit synergistic or additive lethal effects on T. cruzi. PMID:23497594
Jose, Christo; Klein, Nicole; Wyss, Sarah; Fieck, Annabeth; Hurwitz, Ivy; Durvasula, Ravi
2013-03-14
Chagas disease is most often transmitted to humans by Trypanosoma cruzi infected triatomine bugs, and remains a significant cause of morbidity and mortality in Central and South America. Control of Chagas disease has relied mainly on vector eradication. However, development of insect resistance has prompted us to develop a paratransgenic strategy to control vectorial transmission of T. cruzi. Here, the potential role of recombinant endoglucanases as anti-trypanosomal agents for paratransgenic application is examined. The surface of T. cruzi is covered by a thick coat of mucin-like glycoproteins that have been proposed to play a role in the binding of T. cruzi to the membrane surface of the vector gut. We hypothesize that disruption of these glycoconjugates could arrest parasite development in the vector and abort the transmission cycle. In this work, we examine the effects of recombinant Arthrobacter luteus β-1, 3-glucanase expressed via Rhodococcus rhodnii on T. cruzi Sylvio II strain. The coding sequence for β-1, 3-glucanase was cloned in-frame to a heterologous promoter/signal sequence from the Mycobacterium kansasii alpha antigen gene resident in an E. coli/R. rhodnii shuttle vector. The resulting construct was confirmed by sequencing, and electroporated into R. rhodnii. Expression products from positive clones were purified from log phase cultures followed by dialysis into physiological buffers. Lysates and media were quantitated by ELISA against rabbit antibody specific to β-1,3-glucanase. Glucanase-positive samples were applied to live T. cruzi parasites in culture and viability accessed by spectrophotometric and fluorescent microscopic measurements. R. rhodnii-expressed β-1,3-glucanase exhibited toxicity against T. cruzi compared to controls when applied at 5 and 10% of the total culture volume. The decrease in cell viability ranged from a maximum of 50% for the media treatments to 80% for the filtered lysates. These results suggest that recombinant β-glucanase could be a powerful addition to the arsenal of effector molecules for paratransgenic control of Chagas disease. In future studies, the ability of β-glucanase to function in combination with other effector molecules will be explored. Dual targeting of T. cruzi should not only slow resistance but also permit synergistic or additive lethal effects on T. cruzi.
Okia, Michael; Okui, Peter; Lugemwa, Myers; Govere, John M; Katamba, Vincent; Rwakimari, John B; Mpeka, Betty; Chanda, Emmanuel
2016-04-14
Integrated vector management (IVM) is the recommended approach for controlling some vector-borne diseases (VBD). In the face of current challenges to disease vector control, IVM is vital to achieve national targets set for VBD control. Though global efforts, especially for combating malaria, now focus on elimination and eradication, IVM remains useful for Uganda which is principally still in the control phase of the malaria continuum. This paper outlines the processes undertaken to consolidate tactical planning and implementation frameworks for IVM in Uganda. The Uganda National Malaria Control Programme with its efforts to implement an IVM approach to vector control was the 'case' for this study. Integrated management of malaria vectors in Uganda remained an underdeveloped component of malaria control policy. In 2012, knowledge and perceptions of malaria vector control policy and IVM were assessed, and recommendations for a specific IVM policy were made. In 2014, a thorough vector control needs assessment (VCNA) was conducted according to WHO recommendations. The findings of the VCNA informed the development of the national IVM strategic guidelines. Information sources for this study included all available data and accessible archived documentary records on VBD control in Uganda. The literature was reviewed and adapted to the local context and translated into the consolidated tactical framework. WHO recommends implementation of IVM as the main strategy to vector control and has encouraged member states to adopt the approach. However, many VBD-endemic countries lack IVM policy frameworks to guide implementation of the approach. In Uganda most VBD coexists and could be managed more effectively if done in tandem. In order to successfully control malaria and other VBD and move towards their elimination, the country needs to scale up proven and effective vector control interventions and also learn from the experience of other countries. The IVM strategy is important in consolidating inter-sectoral collaboration and coordination and providing the tactical direction for effective deployment of vector control interventions along the five key elements of the approach and to align them with contemporary epidemiology of VBD in the country. Uganda has successfully established an evidence-based IVM approach and consolidated strategic planning and operational frameworks for VBD control. However, operating implementation arrangements as outlined in the national strategic guidelines for IVM and managing insecticide resistance, as well as improving vector surveillance, are imperative. In addition, strengthened information, education and communication/behaviour change and communication, collaboration and coordination will be crucial in scaling up and using vector control interventions.
Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat
2012-01-01
Background Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Methodology Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Results Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. Conclusion An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities. PMID:23318236
Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat
2012-12-01
Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities.
INTERIM ANALYSIS OF THE CONTRIBUTION OF HIGH-LEVEL EVIDENCE FOR DENGUE VECTOR CONTROL.
Horstick, Olaf; Ranzinger, Silvia Runge
2015-01-01
This interim analysis reviews the available systematic literature for dengue vector control on three levels: 1) single and combined vector control methods, with existing work on peridomestic space spraying and on Bacillus thuringiensis israelensis; further work is available soon on the use of Temephos, Copepods and larvivorous fish; 2) or for a specific purpose, like outbreak control, and 3) on a strategic level, as for example decentralization vs centralization, with a systematic review on vector control organization. Clear best practice guidelines for methodology of entomological studies are needed. There is a need to include measuring dengue transmission data. The following recommendations emerge: Although vector control can be effective, implementation remains an issue; Single interventions are probably not useful; Combinations of interventions have mixed results; Careful implementation of vector control measures may be most important; Outbreak interventions are often applied with questionable effectiveness.
Urbanization, land tenure security and vector-borne Chagas disease.
Levy, Michael Z; Barbu, Corentin M; Castillo-Neyra, Ricardo; Quispe-Machaca, Victor R; Ancca-Juarez, Jenny; Escalante-Mejia, Patricia; Borrini-Mayori, Katty; Niemierko, Malwina; Mabud, Tarub S; Behrman, Jere R; Naquira-Velarde, Cesar
2014-08-22
Modern cities represent one of the fastest growing ecosystems on the planet. Urbanization occurs in stages; each stage characterized by a distinct habitat that may be more or less susceptible to the establishment of disease vector populations and the transmission of vector-borne pathogens. We performed longitudinal entomological and epidemiological surveys in households along a 1900 × 125 m transect of Arequipa, Peru, a major city of nearly one million inhabitants, in which the transmission of Trypanosoma cruzi, the aetiological agent of Chagas disease, by the insect vector Triatoma infestans, is an ongoing problem. The transect spans a cline of urban development from established communities to land invasions. We find that the vector is tracking the development of the city, and the parasite, in turn, is tracking the dispersal of the vector. New urbanizations are free of vector infestation for decades. T. cruzi transmission is very recent and concentrated in more established communities. The increase in land tenure security during the course of urbanization, if not accompanied by reasonable and enforceable zoning codes, initiates an influx of construction materials, people and animals that creates fertile conditions for epidemics of some vector-borne diseases. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
van den Berg, Henk; Hii, Jeffrey; Soares, Agnes; Mnzava, Abraham; Ameneshewa, Birkinesh; Dash, Aditya P; Ejov, Mikhail; Tan, Soo Hian; Matthews, Graham; Yadav, Rajpal S; Zaim, Morteza
2011-05-14
It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach.
2011-01-01
Background It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. Methods A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Results Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Conclusions Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach. PMID:21569601
Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini
2015-12-02
Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance monitoring techniques; initiating the global plan for insecticide resistance management; conducting needs' assessments and developing standard operating procedure for insectaries; developing a guidance document on malaria vector control based on eco-epidemiological strata, a vector surveillance plan and harmonized mapping, data collection and reporting tools. Eritrea has successfully consolidated strategic frameworks for vector control. Rational decision-making remains critical to ensure that the interventions are effective and their choice is evidence-based, and to optimize the use of resources for vector control. Implementation of effective IVM requires proper collaboration and coordination, consistent technical and financial capacity and support to offer greater benefits.
Mesquita, Rafael D.; Vionette-Amaral, Raquel J.; Lowenberger, Carl; Rivera-Pomar, Rolando; Monteiro, Fernando A.; Minx, Patrick; Spieth, John; Carvalho, A. Bernardo; Panzera, Francisco; Lawson, Daniel; Torres, André Q.; Ribeiro, Jose M. C.; Sorgine, Marcos H. F.; Waterhouse, Robert M.; Abad-Franch, Fernando; Alves-Bezerra, Michele; Amaral, Laurence R.; Araujo, Helena M.; Aravind, L.; Atella, Georgia C.; Azambuja, Patricia; Berni, Mateus; Bittencourt-Cunha, Paula R.; Braz, Gloria R. C.; Calderón-Fernández, Gustavo; Carareto, Claudia M. A.; Christensen, Mikkel B.; Costa, Igor R.; Costa, Samara G.; Dansa, Marilvia; Daumas-Filho, Carlos R. O.; De-Paula, Iron F.; Dias, Felipe A.; Dimopoulos, George; Emrich, Scott J.; Esponda-Behrens, Natalia; Fampa, Patricia; Fernandez-Medina, Rita D.; da Fonseca, Rodrigo N.; Fontenele, Marcio; Fronick, Catrina; Fulton, Lucinda A.; Gandara, Ana Caroline; Garcia, Eloi S.; Genta, Fernando A.; Giraldo-Calderón, Gloria I.; Gomes, Bruno; Gondim, Katia C.; Granzotto, Adriana; Guarneri, Alessandra A.; Guigó, Roderic; Harry, Myriam; Hughes, Daniel S. T.; Jablonka, Willy; Jacquin-Joly, Emmanuelle; Juárez, M. Patricia; Koerich, Leonardo B.; Lange, Angela B.; Latorre-Estivalis, José Manuel; Lavore, Andrés; Lawrence, Gena G.; Lazoski, Cristiano; Lazzari, Claudio R.; Lopes, Raphael R.; Lorenzo, Marcelo G.; Lugon, Magda D.; Marcet, Paula L.; Mariotti, Marco; Masuda, Hatisaburo; Megy, Karine; Missirlis, Fanis; Mota, Theo; Noriega, Fernando G.; Nouzova, Marcela; Nunes, Rodrigo D.; Oliveira, Raquel L. L.; Oliveira-Silveira, Gilbert; Ons, Sheila; Orchard, Ian; Pagola, Lucia; Paiva-Silva, Gabriela O.; Pascual, Agustina; Pavan, Marcio G.; Pedrini, Nicolás; Peixoto, Alexandre A.; Pereira, Marcos H.; Pike, Andrew; Polycarpo, Carla; Prosdocimi, Francisco; Ribeiro-Rodrigues, Rodrigo; Robertson, Hugh M.; Salerno, Ana Paula; Salmon, Didier; Santesmasses, Didac; Schama, Renata; Seabra-Junior, Eloy S.; Silva-Cardoso, Livia; Silva-Neto, Mario A. C.; Souza-Gomes, Matheus; Sterkel, Marcos; Taracena, Mabel L.; Tojo, Marta; Tu, Zhijian Jake; Tubio, Jose M. C.; Ursic-Bedoya, Raul; Venancio, Thiago M.; Walter-Nuno, Ana Beatriz; Wilson, Derek; Warren, Wesley C.; Wilson, Richard K.; Huebner, Erwin; Dotson, Ellen M.; Oliveira, Pedro L.
2015-01-01
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods. PMID:26627243
Stevens, Lori; Monroy, M. Carlota; Rodas, Antonieta Guadalupe; Hicks, Robin M.; Lucero, David E.; Lyons, Leslie A.; Dorn, Patricia L.
2015-01-01
Triatoma dimidiata (Latreille, 1811) is the most abundant and significant insect vector of the parasite Trypanosoma cruzi in Central America, and particularly in Guatemala. Tr. cruzi is the causative agent of Chagas disease, and successful disease control requires understanding the geographic distribution and degree of migration of vectors such as T. dimidiata that frequently re-infest houses within months following insecticide application. The population genetic structure of T. dimidiata collected from six villages in southern Guatemala was studied to gain insight into the migration patterns of the insects in this region where populations are largely domestic. This study provided insight into the likelihood of eliminating T. dimidiata by pesticide application as has been observed in some areas for other domestic triatomines such as Triatoma infestans. Genotypes of microsatellite loci for 178 insects from six villages were found to represent five genetic clusters using a Bayesian Markov Chain Monte Carlo method. Individual clusters were found in multiple villages, with multiple clusters in the same house. Although migration occurred, there was statistically significant genetic differentiation among villages (FRT = 0.05) and high genetic differentiation among houses within villages (FSR = 0.11). Relatedness of insects within houses varied from 0 to 0.25, i.e., from unrelated to half-sibs. The results suggest that T. dimidiata in southern Guatemala moves between houses and villages often enough that recolonization is likely, implying the use of insecticides alone is not sufficient for effective control of Chagas disease in this region and more sustainable solutions are required. PMID:26334816
NASA Astrophysics Data System (ADS)
Sena, G.; Almeida, A. P.; Braz, D.; Nogueira, L. P.; Soares, J.; Azambuja, P.; Gonzalez, M. S.; Tromba, G.; Barroso, R. C.
2015-10-01
The recent years advancements in microtomography have increased the achievable resolution and contrast, making this relatively inexpensive and a widely available technology, potentially useful for studies of insect's internal morphology. Phase Contrast X-Ray Synchrotron Microtomography (SR-PhC-μCT) is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi, the etiologic agent of Chagas' disease. In Latin America, vector control is the most useful method to prevent Chagas' disease, and a detailed knowledge of R. prolixus' interior structures is crucial for a better understanding of their function and evolution. Traditionally, in both biological morphology and anatomy, the internal structures of whole organisms or parts of them are accessed by dissecting or histological serial sectioning; so studying the internal structures of R. prolixus' head using SR-PhC-μCT is of great importance in researches on vector control. In this work, volume-rendered SR-PhC-μCT images of the heads of selected R. prolixus were obtained using the new set-up available at the SYRMEP beamline of ELETTRA (Trieste, Italy). In this new set-up, the outcoming beam from the ring is restrained before the monochromator and in a devoted end-station, absorption and phase contrast radiography and tomography set-up are available. The images obtained with polychromatic X-ray beam in phase contrast regimen and 2 μm resolution, showed details and organs of R. prolixus never seen before with SR-PhC-μCT.
Mesquita, Rafael D; Vionette-Amaral, Raquel J; Lowenberger, Carl; Rivera-Pomar, Rolando; Monteiro, Fernando A; Minx, Patrick; Spieth, John; Carvalho, A Bernardo; Panzera, Francisco; Lawson, Daniel; Torres, André Q; Ribeiro, Jose M C; Sorgine, Marcos H F; Waterhouse, Robert M; Montague, Michael J; Abad-Franch, Fernando; Alves-Bezerra, Michele; Amaral, Laurence R; Araujo, Helena M; Araujo, Ricardo N; Aravind, L; Atella, Georgia C; Azambuja, Patricia; Berni, Mateus; Bittencourt-Cunha, Paula R; Braz, Gloria R C; Calderón-Fernández, Gustavo; Carareto, Claudia M A; Christensen, Mikkel B; Costa, Igor R; Costa, Samara G; Dansa, Marilvia; Daumas-Filho, Carlos R O; De-Paula, Iron F; Dias, Felipe A; Dimopoulos, George; Emrich, Scott J; Esponda-Behrens, Natalia; Fampa, Patricia; Fernandez-Medina, Rita D; da Fonseca, Rodrigo N; Fontenele, Marcio; Fronick, Catrina; Fulton, Lucinda A; Gandara, Ana Caroline; Garcia, Eloi S; Genta, Fernando A; Giraldo-Calderón, Gloria I; Gomes, Bruno; Gondim, Katia C; Granzotto, Adriana; Guarneri, Alessandra A; Guigó, Roderic; Harry, Myriam; Hughes, Daniel S T; Jablonka, Willy; Jacquin-Joly, Emmanuelle; Juárez, M Patricia; Koerich, Leonardo B; Lange, Angela B; Latorre-Estivalis, José Manuel; Lavore, Andrés; Lawrence, Gena G; Lazoski, Cristiano; Lazzari, Claudio R; Lopes, Raphael R; Lorenzo, Marcelo G; Lugon, Magda D; Majerowicz, David; Marcet, Paula L; Mariotti, Marco; Masuda, Hatisaburo; Megy, Karine; Melo, Ana C A; Missirlis, Fanis; Mota, Theo; Noriega, Fernando G; Nouzova, Marcela; Nunes, Rodrigo D; Oliveira, Raquel L L; Oliveira-Silveira, Gilbert; Ons, Sheila; Orchard, Ian; Pagola, Lucia; Paiva-Silva, Gabriela O; Pascual, Agustina; Pavan, Marcio G; Pedrini, Nicolás; Peixoto, Alexandre A; Pereira, Marcos H; Pike, Andrew; Polycarpo, Carla; Prosdocimi, Francisco; Ribeiro-Rodrigues, Rodrigo; Robertson, Hugh M; Salerno, Ana Paula; Salmon, Didier; Santesmasses, Didac; Schama, Renata; Seabra-Junior, Eloy S; Silva-Cardoso, Livia; Silva-Neto, Mario A C; Souza-Gomes, Matheus; Sterkel, Marcos; Taracena, Mabel L; Tojo, Marta; Tu, Zhijian Jake; Tubio, Jose M C; Ursic-Bedoya, Raul; Venancio, Thiago M; Walter-Nuno, Ana Beatriz; Wilson, Derek; Warren, Wesley C; Wilson, Richard K; Huebner, Erwin; Dotson, Ellen M; Oliveira, Pedro L
2015-12-01
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control.
Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; Stauffer, Christian; Savakis, Charalambos; Bourtzis, Kostas
2004-10-19
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.
Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control
Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; Stauffer, Christian; Savakis, Charalambos; Bourtzis, Kostas
2004-01-01
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71–102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations. PMID:15469918
Felgner, Sebastian; Kocijancic, Dino; Frahm, Michael; Heise, Ulrike; Rohde, Manfred; Zimmermann, Kurt; Falk, Christine; Weiss, Siegfried
2018-01-01
ABSTRACT Cancer is one of the leading causes of death in the industrialized world and represents a tremendous social and economic burden. As conventional therapies fail to provide a sustainable cure for most cancer patients, the emerging unique immune therapeutic approach of bacteria-mediated tumor therapy (BMTT) is marching towards a feasible solution. Although promising results have been obtained with BMTT using various preclinical tumor models, for advancement a major concern is immunity against the bacterial vector itself. Pre-exposure to the therapeutic agent under field conditions is a reasonable expectation and may limit the therapeutic efficacy of BMTT. In the present study, we investigated the therapeutic potential of Salmonella and E. coli vector strains in naïve and immunized tumor bearing mice. Pre-exposure to the therapeutic agent caused a significant aberrant phenotype of the microenvironment of colonized tumors and limited the in vivo efficacy of established BMTT vector strains Salmonella SL7207 and E. coli Symbioflor-2. Using targeted genetic engineering, we generated the optimized auxotrophic Salmonella vector strain SF200 (ΔlpxR9 ΔpagL7 ΔpagP8 ΔaroA ΔydiV ΔfliF) harboring modifications in Lipid A and flagella synthesis. This combination of mutations resulted in an increased immune-stimulatory capacity and as such the strain was able to overcome the efficacy-limiting effects of pre-exposure. Thus, we conclude that any limitations of BMTT concerning anti-bacterial immunity may be countered by strategies that optimize the immune-stimulatory capacity of the attenuated vector strains. PMID:29308303
Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts
2010-01-01
Background Landscape attributes influence spatial variations in disease risk or incidence. We present a review of the key findings from eight case studies that we conducted in Europe and West Africa on the impact of land changes on emerging or re-emerging vector-borne diseases and/or zoonoses. The case studies concern West Nile virus transmission in Senegal, tick-borne encephalitis incidence in Latvia, sandfly abundance in the French Pyrenees, Rift Valley Fever in the Ferlo (Senegal), West Nile Fever and the risk of malaria re-emergence in the Camargue, and rodent-borne Puumala hantavirus and Lyme borreliosis in Belgium. Results We identified general principles governing landscape epidemiology in these diverse disease systems and geographic regions. We formulated ten propositions that are related to landscape attributes, spatial patterns and habitat connectivity, pathways of pathogen transmission between vectors and hosts, scale issues, land use and ownership, and human behaviour associated with transmission cycles. Conclusions A static view of the "pathogenecity" of landscapes overlays maps of the spatial distribution of vectors and their habitats, animal hosts carrying specific pathogens and their habitat, and susceptible human hosts and their land use. A more dynamic view emphasizing the spatial and temporal interactions between these agents at multiple scales is more appropriate. We also highlight the complementarity of the modelling approaches used in our case studies. Integrated analyses at the landscape scale allows a better understanding of interactions between changes in ecosystems and climate, land use and human behaviour, and the ecology of vectors and animal hosts of infectious agents. PMID:20979609
Wheel speed management control system for spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.
Impact of vectorborne parasitic neglected tropical diseases on child health.
Barry, Meagan A; Murray, Kristy O; Hotez, Peter J; Jones, Kathryn M
2016-07-01
Chagas disease, leishmaniasis, onchocerciasis and lymphatic filariasis are all vectorborne neglected tropical diseases (NTDs) that are responsible for significant disease burden in impoverished children and adults worldwide. As vectorborne parasitic diseases, they can all be targeted for elimination through vector control strategies. Examples of successful vector control programmes for these diseases over the past two decades have included the Southern Cone Initiative against Chagas disease, the Kala-azar Control Scheme against leishmaniasis, the Onchocerciasis Control Programme and the lymphatic filariasis control programme in The Gambia. A common vector control component in all of these programmes is the use of adulticides including dichlorodiphenyltrichloroethane and newer synthetic pyrethroid insecticides against the insect vectors of disease. Household spraying has been used against Chagas disease and leishmaniasis, and insecticide-treated bed nets have helped prevent leishmaniasis and lymphatic filariasis. Recent trends in vector control focus on collaborations between programmes and sectors to achieve integrated vector management that addresses the holistic vector control needs of a community rather than approaching it on a disease-by-disease basis, with the goals of increased efficacy, sustainability and cost-effectiveness. As evidence of vector resistance to currently used insecticide regimens emerges, research to develop new and improved insecticides and novel control strategies will be critical in reducing disease burden. In the quest to eliminate these vectorborne NTDs, efforts need to be made to continue existing control programmes, further implement integrated vector control strategies and stimulate research into new insecticides and control methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
2014-01-01
West Nile virus infection is a growing concern in Europe. Vector management is often the primary option to prevent and control outbreaks of the disease. Its implementation is, however, complex and needs to be supported by integrated multidisciplinary surveillance systems and to be organized within the framework of predefined response plans. The impact of the vector control measures depends on multiple factors and the identification of the best combination of vector control methods is therefore not always straightforward. Therefore, this contribution aims at critically reviewing the existing vector control methods to prevent and control outbreaks of West Nile virus infection and to present the challenges for Europe. Most West Nile virus vector control experiences have been recently developed in the US, where ecological conditions are different from the EU and vector control is organized under a different regulatory frame. The extrapolation of information produced in North America to Europe might be limited because of the seemingly different epidemiology in the European region. Therefore, there is an urgent need to analyse the European experiences of the prevention and control of outbreaks of West Nile virus infection and to perform robust cost-benefit analysis that can guide the implementation of the appropriate control measures. Furthermore, to be effective, vector control programs require a strong organisational backbone relying on a previously defined plan, skilled technicians and operators, appropriate equipment, and sufficient financial resources. A decision making guide scheme is proposed which may assist in the process of implementation of vector control measures tailored on specific areas and considering the available information and possible scenarios. PMID:25015004
Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Deere, Karen A.
2003-01-01
Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.
Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group.
1995-01-01
Since the Ministerial Conference on Malaria in 1992, which acknowledged the urgent need for worldwide commitment to malaria control, efforts have been directed to implementation of a Global Malaria Control Strategy. Vector control, an essential component of malaria control, has become less effective in recent years, partly as a result of poor use of alternative control tools, inappropriate use of insecticides, lack of an epidemiological basis for interventions, inadequate resources and infrastructure, and weak management. Changing environmental conditions, the behavioural characteristics of certain vectors, and resistance to insecticides have added to the difficulties. This report of a WHO Study Group provides guidelines for the planning, implementation and evaluation of cost-effective and sustainable vector control in the context of the Global Malaria Control Strategy. It reviews the available methods - indoor residual spraying, personal protection, larval control and environmental management - stressing the need for selective and flexible use of interventions according to local conditions. Requirements for data collection and the appropriate use of entomological parameters and techniques are discussed and priorities identified for the development of local capacity for vector control and for operational research. Emphasis is placed both on the monitoring and evaluation of vector control to ensure cost-effectiveness and on the development of strong managerial structures, which can support community participation and intersectoral collaboration and accommodate the control of other vector-borne diseases. The report concludes with recommendations aimed at promoting the targeted and efficient use of vector control in preventing and controlling malaria, thereby reducing the threat to health and socioeconomic development in many tropical countries.
Alho, Ana Margarida; Pita, Joana; Amaro, Ana; Amaro, Fátima; Schnyder, Manuela; Grimm, Felix; Custódio, Ana Cristina; Cardoso, Luís; Deplazes, Peter; de Carvalho, Luís Madeira
2016-05-10
Canine vector-borne diseases (CVBDs) are increasingly being reported worldwide and represent a serious threat to both animal and public health. Military dogs may constitute a risk group for the agents causing these diseases, as they frequently work outdoors in different areas and are thus exposed to vector arthropods. In order to assess the risk of exposure of this type of dogs, a serological and molecular survey was conducted in military working dogs in Portugal. One hundred apparently healthy dogs were surveyed. Serum samples were tested for antigens of Angiostrongylus vasorum and Dirofilaria immitis; and for antibodies to A. vasorum, Anaplasma spp., Babesia spp., Ehrlichia canis, Leishmania infantum, Rickettsia spp. and Toscana virus. Serum was tested by polymerase chain reaction for Borrelia burgdorferi (sensu lato), with sequencing of the DNA products. Forty-nine per cent of the dogs were seropositive for antibodies against Rickettsia spp., 16 % for Anaplasma spp., 13 % for L. infantum, 7 % for E. canis, 5 % for A. vasorum (including 1 % positive for both antibodies and circulating antigens), 3 % for Babesia spp. and 1 % positive for Toscana virus. B. burgdorferi (s.l.) was detected in eight out of 94 dogs tested (8.5 %) and in three cases (3.2 %) nucleotide sequence analysis showed identity with the genospecies Borrelia afzelii. No positive cases were recorded for D. immitis. Overall, 66 % of the dogs were positive for at least one out of the eight tested CVBD agents, six of which are zoonotic (i.e. Anaplasma spp., Borrelia spp., E. canis, L. infantum, Rickettsia spp. and Toscana virus). Serological specific antibody detection against more than one CVBD agent (including molecular detection of Borrelia spp.) was recorded in 25 % of the dogs, comprising 19 % with positive reaction to two agents, 5 % to three agents and 1 % to four agents. These results reveal a high occurrence of CVBD agents in military working dogs in Portugal and highlight the need to maintain a comprehensive and regular prophylaxis to reduce the contact between working dogs and those pathogens. For the first time in Portugal, B. afzelii DNA was identified in dogs and a dog was found seropositive for antibodies against Toscana virus.
Pusterla, N; Johnson, E M; Chae, J S; Madigan, J E
2003-12-01
Neorickettsia (formerly Ehrlichia) risticii, the agent of Potomac horse fever (PHF), has been recently detected in trematode stages found in the secretions of freshwater snails and in aquatic insects. Insectivores, such as bats and birds, may serve as the definitive host of the trematode vector. To determine the definitive helminth vector, five bats (Myotis yumanensis) and three swallows (Hirundo rustica, Tachycineta bicolor) were collected from a PHF endemic location in northern California. Bats and swallows were dissected and their major organs examined for trematodes and for N. risticii DNA using a nested polymerase chain reaction (PCR) assay. Adult digenetic trematodes, Acanthatrium sp. and/or Lecithodendrium sp., were recovered from the gastrointestinal tract of all bats and from one swallow. The intestine of three bats, the spleen of two bats and one swallow as well as the liver of one swallow tested PCR positive for N. risticii. From a total of seven pools of identical digenetic trematodes collected from single hosts, two pools of Acanthatrium sp. and one pool of Lecithodendrium sp. tested PCR positive. The results of this investigation provide preliminary evidence that at least two trematodes in the family Lecithodendriidae are vectors of N. risticii. The data also suggest that bats and swallows not only act as a host for trematodes but also as a possible natural reservoir for N. risticii.
Jara, Rocio F; Wydeven, Adrian P; Samuel, Michael D
2016-01-01
World-wide concern over emerging vector-borne diseases has increased in recent years for both animal and human health. In the United Sates, concern about vector-borne diseases in canines has focused on Lyme disease, anaplasmosis, ehrlichiosis, and heartworm which infect domestic and wild canids. Of these diseases, Lyme and anaplasmosis are also frequently diagnosed in humans. Gray wolves (Canis lupus) recolonized Wisconsin in the 1970s, and we evaluated their temporal and geographic patterns of exposure to these four vector-borne diseases in Wisconsin as the population expanded between 1985 and 2011. A high proportion of the Wisconsin wolves were exposed to the agents that cause Lyme (65.6%) and anaplasma (47.7%), and a smaller proportion to ehrlichiosis (5.7%) and infected with heartworm (9.2%). Wolf exposure to tick borne diseases was consistently higher in older animals. Wolf exposure was markedly higher than domestic dog (Canis familiaris) exposure for all 4 disease agents during 2001-2013. We found a cluster of wolf exposure to Borrelia burgdorferi in northwestern Wisconsin, which overlaps human and domestic dog clusters for the same pathogen. In addition, wolf exposure to Lyme disease in Wisconsin has increased, corresponding with the increasing human incidence of Lyme disease in a similar time period. Despite generally high prevalence of exposure none of these diseases appear to have slowed the growth of the Wisconsin wolf population.
Jara, Rocio F.; Wydeven, Adrian P.; Samuel, Michael D.
2016-01-01
World-wide concern over emerging vector-borne diseases has increased in recent years for both animal and human health. In the United Sates, concern about vector-borne diseases in canines has focused on Lyme disease, anaplasmosis, ehrlichiosis, and heartworm which infect domestic and wild canids. Of these diseases, Lyme and anaplasmosis are also frequently diagnosed in humans. Gray wolves (Canis lupus) recolonized Wisconsin in the 1970s, and we evaluated their temporal and geographic patterns of exposure to these four vector-borne diseases in Wisconsin as the population expanded between 1985 and 2011. A high proportion of the Wisconsin wolves were exposed to the agents that cause Lyme (65.6%) and anaplasma (47.7%), and a smaller proportion to ehrlichiosis (5.7%) and infected with heartworm (9.2%). Wolf exposure to tick borne diseases was consistently higher in older animals. Wolf exposure was markedly higher than domestic dog (Canis familiaris) exposure for all 4 disease agents during 2001–2013. We found a cluster of wolf exposure to Borrelia burgdorferi in northwestern Wisconsin, which overlaps human and domestic dog clusters for the same pathogen. In addition, wolf exposure to Lyme disease in Wisconsin has increased, corresponding with the increasing human incidence of Lyme disease in a similar time period. Despite generally high prevalence of exposure none of these diseases appear to have slowed the growth of the Wisconsin wolf population.
An economic evaluation of vector control in the age of a dengue vaccine.
Fitzpatrick, Christopher; Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman
2017-08-01
Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.
An economic evaluation of vector control in the age of a dengue vaccine
Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman
2017-01-01
Introduction Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. Methods We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Results Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70–90%, the cost per disability-adjusted life year averted is 2013 US$ 679–1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50–70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Discussion Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control. PMID:28806786
Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira
2016-01-01
The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.
Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira
2016-01-01
Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362
Improving mycoinsecticides for insect biological control.
Ortiz-Urquiza, Almudena; Luo, Zhibing; Keyhani, Nemat O
2015-02-01
The desire for decreased reliance on chemical pesticides continues to fuel interest in alternative means for pest control including the use of naturally occurring microbial insect pathogens. Insects, as vectors of disease causing agents or as agricultural pests, are responsible for millions of deaths and significant economic losses worldwide, placing stresses on productivity (GDP) and human health and welfare. In addition, alterations in climate change are likely to affect insect ranges, expanding their access to previously constrained geographic areas, a potentially worrisome outcome. Metarhizium anisopliae and Beauveria bassiana, two cosmopolitan fungal pathogens of insects found in almost all ecosystems, are the most commonly applied mycoinsecticides for a variety of insect control purposes. The availability of the complete genomes for both organisms coupled to robust technologies for their transformation has led to several advances in engineering these fungi for greater efficacy and/or utility in pest control applications. Here, we will provide an overview of the fungal-insect and fungal-plant interactions that occur and highlight recent advances in the genetic engineering of these fungi. The latter work has resulted in the development of strains displaying (1) increased resistance to abiotic stress, (2) increased cuticular targeting and degradation, (3) increased virulence via expression of insecticidal protein/peptide toxins, (4) the ability to block transmission of disease causing agents, and (5) the ability to target specific insect hosts, decrease host fecundity, and/or alter insect behaviors.
Integrated vector management for malaria control
Beier, John C; Keating, Joseph; Githure, John I; Macdonald, Michael B; Impoinvil, Daniel E; Novak, Robert J
2008-01-01
Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa. PMID:19091038
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Capone, Francis J.
1995-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.
Ferral, Jhibran; Chavez-Nuñez, Leysi; Euan-Garcia, Maria; Ramirez-Sierra, Maria Jesus; Najera-Vazquez, M Rosario; Dumonteil, Eric
2010-01-01
Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.
Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V
2017-02-01
Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease. The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas' disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms.
Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G.; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V.
2017-01-01
Background Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas’ disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas’ disease. Methods and findings The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas’ disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Conclusions and significance Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas’ disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms. PMID:28199333
Prevalence of selected zoonotic and vector-borne agents in dogs and cats in Costa Rica.
Scorza, Andrea V; Duncan, Colleen; Miles, Laura; Lappin, Michael R
2011-12-29
To estimate the prevalence of enteric parasites and selected vector-borne agents of dogs and cats in San Isidro de El General, Costa Rica, fecal and serum samples were collected from animals voluntarily undergoing sterilization. Each fecal sample was examined for parasites by microscopic examination after fecal flotation and for Giardia and Cryptosporidium using an immunofluorescence assay (IFA). Giardia and Cryptosporidium IFA positive samples were genotyped after PCR amplification of specific DNA if possible. The seroprevalence rates for the vector-borne agents (Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum) were estimated based on results from a commercially available ELISA. Enteric parasites were detected in samples from 75% of the dogs; Ancylostoma caninum, Trichuris vulpis, Giardia, and Toxocara canis were detected. Of the cats, 67.5% harbored Giardia spp., Cryptosporidium spp., Ancylostoma tubaeforme, or Toxocara cati. Both Cryptosporidium spp. isolates that could be sequenced were Cryptosporidium parvum (one dog isolate and one cat isolate). Of the Giardia spp. isolates that were successfully sequenced, the 2 cat isolates were assemblage A and the 2 dog isolates were assemblage D. D. immitis antigen and E. canis antibodies were identified in 2.3% and 3.5% of the serum samples, respectively. The prevalence of enteric zoonotic parasites in San Isidro de El General in Costa Rica is high in companion animals and this information should be used to mitigate public health risks. Copyright © 2011. Published by Elsevier B.V.
Jiao, Yongjun; Qi, Xian; Liu, Dapeng; Zeng, Xiaoyan; Han, Yewu; Guo, Xiling; Shi, Zhiyang; Wang, Hua; Zhou, Minghao
2015-01-01
Severe fever with thrombocytopenia syndrome virus (SFTSV), the causative agent for the fatal life-threatening infectious disease, severe fever with thrombocytopenia syndrome (SFTS), was first identified in the central and eastern regions of China. Although the viral RNA was detected in free-living and parasitic ticks, the vector for SFTSV remains unsettled. Firstly, an experimental infection study in goats was conducted in a bio-safety level-2 (BSL-2) facility to investigate virus transmission between animals. The results showed that infected animals did not shed virus to the outside through respiratory or digestive tract route, and the control animals did not get infected. Then, a natural infection study was carried out in the SFTSV endemic region. A cohort of naïve goats was used as sentinel animals in the study site. A variety of daily samples including goat sera, ticks and mosquitoes were collected for viral RNA and antibody (from serum only) detection, and virus isolation. We detected viral RNA from free-living and parasitic ticks rather than mosquitoes, and from goats after ticks' infestation. We also observed sero-conversion in all members of the animal cohort subsequently. The S segment sequences of the two recovered viral isolates from one infected goat and its parasitic ticks showed a 100% homology at the nucleic acid level. In our natural infection study, close contact between goats does not appear to transmit SFTSV, however, the naïve animals were infected after ticks' infestation and two viral isolates derived from an infected goat and its parasitic ticks shared 100% of sequence identity. These data demonstrate that the etiologic agent for goat cohort's natural infection comes from environmental factors. Of these, ticks, especially the predominant species Haemaphysalis longicornis, probably act as vector for this pathogen. The findings in this study may help local health authorities formulate and focus preventive measures to contain this infection.
The Anopheles gambiae transcriptome - a turning point for malaria control.
Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J
2017-04-01
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.
Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health
Eisen, Rebecca J.; Kugeler, Kiersten J.; Eisen, Lars; Beard, Charles B.; Paddock, Christopher D.
2017-01-01
In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents. PMID:28369515
Murugan, Kadarkarai; Benelli, Giovanni; Ayyappan, Suganya; Dinesh, Devakumar; Panneerselvam, Chellasamy; Nicoletti, Marcello; Hwang, Jiang-Shiou; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Suresh, Udaiyan
2015-06-01
Nearly 1.4 billion people in 73 countries worldwide are threatened by lymphatic filariasis, a parasitic infection that leads to a disease commonly known as elephantiasis. Filariasis is vectored by mosquitoes, with special reference to the genus Culex. The main control tool against mosquito larvae is represented by treatments with organophosphates and insect growth regulators, with negative effects on human health and the environment. Recently, green-synthesized nanoparticles have been proposed as highly effective larvicidals against mosquito vectors. In this research, we attempted a reply to the following question: do green-synthesized nanoparticles affect predation rates of copepods against mosquito larvae? We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles using the frond extract of Caulerpa scalpelliformis. The toxicity of the seaweed extract and silver nanoparticles was assessed against the filarial vector Culex quinquefasciatus. Then, we evaluated the predatory efficiency of the cyclopoid crustacean Mesocyclops longisetus against larval instars of C. quinquefasciatus in a nanoparticle-contaminated water environment. Green-synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In mosquitocidal assays, the LC₅₀ values of the C. scalpelliformis extract against C. quinquefasciatus were 31.38 ppm (I), 46.49 ppm (II), 75.79 ppm (III), 102.26 ppm (IV), and 138.89 ppm (pupa), while LC₅₀ of silver nanoparticles were 3.08 ppm, (I), 3.49 ppm (II), 4.64 ppm (III), 5.86 ppm (IV), and 7.33 ppm (pupa). The predatory efficiency of the copepod M. longisetus in the control treatment was 78 and 59% against I and II instar larvae of C. quinquefasciatus. In a nanoparticle-contaminated environment, predation efficiency was 84 and 63%, respectively. Predation was higher against first instar larvae over other instars. Overall, our study showed that seaweed-synthesized silver nanoparticles can be proposed in synergy with biological control agents against Culex larvae, since their use leads to little detrimental effects against aquatic predators, such as copepods.
Marceló, Catalina; Cabrera, Olga Lucía; Santamaría, Erika
2014-01-01
In Colombia, periurban populations of Lutzomyia longipalpis , vector of the causative agent of visceral leishmaniasis in the upper and middle valley of the Magdalena River, may be exposed to insecticide applications with different purposes. Thus, it is important to begin a susceptibility surveillance of this species to insecticides. To determine indicators of susceptibility to three insecticides habitually used in public health, such as malathion, deltamethrin and lambda-cyhalothrin in an experimental strain of L. longipalpis . We used the method proposed by the Centers for Disease Control and Prevention. Groups of 10 to 15 unfed females were exposed to different concentrations of the insecticides using 250 ml glass bottles as test chambers. Mortality was registered every five minutes for an hour. Diagnostic concentrations and lethal times for each insecticide were calculated. In the evaluated L. longipalpis strain, the diagnostic concentrations and times were 75 µg/ml and 25 minutes for malathion, 10 µg/ml and 35 minutes for deltamethrin, and 15 µg/ml during 30 minutes for lambda-cyhalothrin. Baseline data over mortality response to three insecticides were established in a susceptibility strain of L. longipalpis vector. These indicators will allow establishing comparisons with populations of L. longipalpis exposed regularly or sporadically to chemical control measures to detect changes in their resistance to these insecticides.
Guidolin, Aline S.; Fresia, Pablo; Cônsoli, Fernando L.
2014-01-01
The Asian citrus psyllid Diaphorina citri is currently the major threat to the citrus industry as it is the vector of Candidatus Liberibacter, the causal agent of huanglongbing disease (HLB). D. citri is native to Asia and now colonizes the Americas. Although it has been known in some countries for a long time, invasion routes remain undetermined. There are no efficient control methods for the HLB despite the intensive management tools currently in use. We investigated the genetic variability and structure of populations of D. citri to aid in the decision making processes toward sustainable management of this species/disease. We employed different methods to quantify and compare the genetic diversity and structure of D. citri populations among 36 localities in Brazil, using an almost complete sequence of the cytochrome oxidase I (COI) gene. Our analyses led to the identification of two geographically and genetically structured groups. The indices of molecular diversity pointed to a recent population expansion, and we discuss the role of multiple invasion events in this scenario. We also argue that such genetic diversity and population structure may have implications for the best management strategies to be adopted for controlling this psyllid and/or the disease it vectors in Brazil. PMID:25545788
Guidolin, Aline S; Fresia, Pablo; Cônsoli, Fernando L
2014-01-01
The Asian citrus psyllid Diaphorina citri is currently the major threat to the citrus industry as it is the vector of Candidatus Liberibacter, the causal agent of huanglongbing disease (HLB). D. citri is native to Asia and now colonizes the Americas. Although it has been known in some countries for a long time, invasion routes remain undetermined. There are no efficient control methods for the HLB despite the intensive management tools currently in use. We investigated the genetic variability and structure of populations of D. citri to aid in the decision making processes toward sustainable management of this species/disease. We employed different methods to quantify and compare the genetic diversity and structure of D. citri populations among 36 localities in Brazil, using an almost complete sequence of the cytochrome oxidase I (COI) gene. Our analyses led to the identification of two geographically and genetically structured groups. The indices of molecular diversity pointed to a recent population expansion, and we discuss the role of multiple invasion events in this scenario. We also argue that such genetic diversity and population structure may have implications for the best management strategies to be adopted for controlling this psyllid and/or the disease it vectors in Brazil.
Johansson, Olle; Ward, Martin
2017-01-01
It has been hypothesised that mosquitoes [Diptera: Culicidae] may play more of a role in certain cancers than is currently appreciated. Research links 33 infectious agents to cancer, 27 of which have a presence in mosquitoes, and that, in addition, mosquito saliva downregulates the immune system. The objective of this paper is to review the literature on the immune system and cancer-causing infectious agents, particularly those present in mosquitoes, with a view to establishing whether such infectious agents can, in the long run, defeat the immune system or be defeated by it. Many of the viruses, bacteria and parasites recognised by the International Agency for Research on Cancer (IARC) as carcinogenic and suspected by others as being involved in cancer have evolved numerous complex ways of avoiding, suppressing or altering the immune system's responses. These features, coupled with the multiplicity and variety of serious infectious agents carried by some species of mosquitoes and the adverse effects on the immune system of mosquito saliva, suggest that post-mosquito bite the immune system is likely to be overwhelmed. In such a situation, immunisation strategies offer little chance of cancer prevention, unless a single or limited number of critical infectious agents can be isolated from the 'mosquito' cocktail. If that proves to be impossible cancer prevention will, therefore, if the hypothesis proves to be correct, rest on the twin strategies of environmentally controlling the mosquito population and humans avoiding being bitten. The latter strategy will involve determining the factors that demark those being bitten from those that are not.
Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?
Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A
2015-06-01
Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2012-01-01
Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707
Ticks circulate Anaplasma, Ehrlichia, Babesia and Theileria parasites in North of Iran.
Bekloo, Ahmad Jafar; Bakhshi, Hasan; Soufizadeh, Ayoub; Sedaghat, Mohammad Mehdi; Bekloo, Romina Jafar; Ramzgouyan, Maryam Roya; Chegeni, Asadollah Hosseini; Faghihi, Faezeh; Telmadarraiy, Zakkyeh
2017-12-15
Ticks serve as important vectors of some pathogens of medical importance all over the world and identification of their rate of infection plays an important role for further control of diseases. In the current study, we investigated on ticks collected from north of Iran where raising and caring livestock are the main task of the people in order to find evidences of infection of Babesia, Theileria, Anaplasma and Ehrlichia microbial agents. Totally, 609 hard tick species from two genera Hyalomma and Rhipicephalus including; Hy. scupense, Hy. dromedarii, Hy. rufipes, Hy. marginatum, Hy. asiaticum, Hy. anatolicum, R. bursa, R. sanguineus and R. turanicus were identified. Molecular analysis revealed the presence of Anaplasma, Ehrlichia, Babesia and Theileria microorganism agents in all collected tick species except Hy. asiaticum and R. turanicus. To the best of our knowledge, this is the first report on identification of B. occultans in Hyalomma anatolicum and B. ovis in Hyalomma sp in Iran. Copyright © 2017 Elsevier B.V. All rights reserved.
Optical trapping of core-shell magnetic microparticles by cylindrical vector beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Min-Cheng; Gong, Lei; Li, Di
2014-11-03
Optical trapping of core-shell magnetic microparticles is experimentally demonstrated by using cylindrical vector beams. Second, we investigate the optical trapping efficiencies. The results show that radially and azimuthally polarized beams exhibit higher axial trapping efficiencies than the Gaussian beam. Finally, a trapped particle is manipulated to kill a cancer cell. The results make possible utilizing magnetic particles for optical manipulation, which is an important advantage for magnetic particles as labeling agent in targeted medicine and biological analysis.
Optimal control of malaria: combining vector interventions and drug therapies.
Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B
2018-04-24
The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Current strategies and successes in engaging women in vector control: a systematic review
Gunn, Jayleen K L; Ernst, Kacey C; Center, Katherine E; Bischoff, Kristi; Nuñez, Annabelle V; Huynh, Megan; Okello, Amanda; Hayden, Mary H
2018-01-01
Introduction Vector-borne diseases (VBDs) cause significant mortality and morbidity in low-income and middle-income countries and present a risk to high-income countries. Vector control programmes may confront social and cultural norms that impede their execution. Anecdotal evidence suggests that incorporating women in the design, delivery and adoption of health interventions increases acceptance and compliance. A better understanding of programmes that have attempted to increase women’s involvement in vector control could help shape best practices. The objective of this systematic review was to assess and critically summarise evidence regarding the effectiveness of women participating in vector control. Methods Seven databases were searched from inception to 21 December 2015. Two investigators independently reviewed all titles and abstracts for relevant articles. Grey literature was searched by assessing websites that focus on international development and vector control. Results In total, 23 articles representing 17 unique studies were included in this review. Studies discussed the involvement of women in the control of vectors for malaria (n=10), dengue (n=8), human African trypanosomiasis (n=3), schistosomiasis (n=1) and a combination (malaria and schistosomiasis, n=1). Seven programmes were found in the grey literature or through personal communications. Available literature indicates that women can be successfully engaged in vector control programmes and, when given the opportunity, they can create and sustain businesses that aim to decrease the burden of VBDs in their communities. Conclusion This systematic review demonstrated that women can be successfully engaged in vector control programmes at the community level. However, rigorous comparative effectiveness studies need to be conducted. PMID:29515913
Dommar, Carlos J; Lowe, Rachel; Robinson, Marguerite; Rodó, Xavier
2014-01-01
Vector-borne diseases, such as dengue, malaria and chikungunya, are increasing across their traditional ranges and continuing to infiltrate new, previously unaffected, regions. The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. We develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure vs. precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Copyright © 2013 Elsevier B.V. All rights reserved.
Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P
2015-10-22
Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures are in place, synanthropic animals may be beneficial.
Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases?
Benelli, Giovanni; Pavela, Roman; Canale, Angelo; Mehlhorn, Heinz
2016-07-01
Arthropods are dangerous vectors of agents of deadly diseases, which may hit as epidemics or pandemics in the increasing world population of humans and animals. Among them, ticks transmit more pathogen species than any other group of blood-feeding arthropods worldwide. Thus, the effective and eco-friendly control of tick vectors in a constantly changing environment is a crucial challenge. A number of novel routes have been attempted to prevent and control tick-borne diseases, including the development of (i) vaccines against viruses vectored by ticks; (ii) pheromone-based control tools, with special reference to the "lure and kill" techniques; (iii) biological control programmes relying on ticks' natural enemies and pathogens; and (iv) the integrated pest management practices aimed at reducing tick interactions with livestock. However, the extensive employment of acaricides and tick repellents still remains the two most effective and ready-to-use strategies. Unfortunately, the first one is limited by the rapid development of resistance in ticks, as well as by serious environmental concerns. On the other hand, the exploitation of plants as sources of effective tick repellents is often promising. Here, we reviewed current knowledge concerning the effectiveness of plant extracts as acaricides or repellents against tick vectors of public health importance, with special reference to Ixodes ricinus, Ixodes persulcatus, Amblyomma cajennense, Haemaphysalis bispinosa, Haemaphysalis longicornis, Hyalomma anatolicum, Hyalomma marginatum rufipes, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) microplus, Rhipicephalus pulchellus, Rhipicephalus sanguineus and Rhipicephalus turanicus. Eighty-three plant species from 35 botanical families were selected. The most frequent botanical families exploited as sources of acaricides and repellents against ticks were Asteraceae (15 % of the selected studies), Fabaceae (9 %), Lamiaceae (10 %), Meliaceae (5 %), Solanaceae (6 %) and Verbenaceae (5 %). Regression equation analyses showed that the literature grew by approximately 20 % per year (period: 2005-2015). Lastly, in the final section, insights for future research are discussed. We focused on some caveats for future data collection and analysis. Current critical points mainly deal with (a) not uniform methods used, which prevent proper comparison of the results; (b) inaccurate tested concentrations, frequently 100 % concentration corresponded to the gross extract, where the exact amounts of extracted substances are unknown; and (c) not homogeneous size of tested tick instars and species. Overall, the knowledge summarized in this review may be helpful for comparative screening among extensive numbers of plant-borne preparations, in order to develop newer and safer tick control tools.
Waleckx, Etienne; Woods, Adrienne S.; Monroy, Maria Carlota; Stevens, Lori
2017-01-01
Little is known about the strains of Trypanosoma cruzi circulating in Central America and specifically in the most important vector in this region, Triatoma dimidiata. Approximately six million people are infected with T. cruzi, the causative agent of Chagas disease, which has the greatest negative economic impact and is responsible for ~12,000 deaths annually in Latin America. By international consensus, strains of T. cruzi are divided into six monophyletic clades called discrete typing units (DTUs TcI-VI) and a seventh DTU first identified in bats called TcBat. TcI shows the greatest geographic range and diversity. Identifying strains present and diversity within these strains is important as different strains and their genotypes may cause different pathologies and may circulate in different localities and transmission cycles, thus impacting control efforts, treatment and vaccine development. To determine parasite strains present in T. dimidiata across its geographic range from Mexico to Colombia, we isolated abdominal DNA from T. dimidiata and determined which specimens were infected with T. cruzi by PCR. Strains from infected insects were determined by comparing the sequence of the 18S rDNA and the spliced-leader intergenic region to typed strains in GenBank. Two DTUs were found: 94% of infected T. dimidiata contained TcI and 6% contained TcIV. TcI exhibited high genetic diversity. Geographic structure of TcI haplotypes was evident by Principal Component and Median-Joining Network analyses as well as a significant result in the Mantel test, indicating isolation by distance. There was little evidence of association with TcI haplotypes and host/vector or ecotope. This study provides new information about the strains circulating in the most important Chagas vector in Central America and reveals considerable variability within TcI as well as geographic structuring at this large geographic scale. The lack of association with particular vectors/hosts or ecotopes suggests the parasites are moving among vectors/hosts and ecotopes therefore a comprehensive approach, such as the Ecohealth approach that makes houses refractory to the vectors will be needed to successfully halt transmission of Chagas disease. PMID:28957315
Kuo, Chi-Chien; Huang, Jing-Lun; Shu, Pei-Yun; Lee, Pei-Lung; Kelt, Douglas A; Wang, Hsi-Chieh
2012-09-01
The increase in global travel and trade has facilitated the dissemination of disease vectors. Globalization can also indirectly affect vector-borne diseases through the liberalization of cross-border trade, which has far-reaching, worldwide effects on agricultural practices and may in turn influence vectors through the modification of the ecological landscape. While the cascading effect of economic globalization on vector-borne diseases, sometimes acting synergistically with regional agricultural policy, could be substantial and have significant economic, agricultural, and public health implications, research into this remains very limited. We evaluated how abandonment of rice paddies in Taiwan after joining the World Trade Organization, along with periodic plowing, an agricultural policy to reduce farm pests in abandoned fields can unexpectedly influence risks to diseases transmitted by ticks and chiggers (larval trombiculid mites), which we collected from their small-mammal hosts. Sampling was limited to abandoned (fallow) and plowed fields due to the challenge of trapping small mammals in flooded rice paddies. Striped field mice (Apodemus agrarius) are the main hosts for both vectors. They harbored six times more ticks and three times more chiggers in fallow than in plowed plots. The proportion of ticks infected with Rickettsia spp. (etiologic agent of spotted fever) was three times higher in fallow plots, while that of Orientia tsutsugamushi (scrub typhus) in chiggers was similar in both treatments. Fallow plots had more ground cover and higher vegetation than plowed ones. Moreover, ticks and chiggers in both field types were dominated by species known to infest humans. Because ticks and chiggers should exhibit very low survival in flooded rice paddies, we propose that farm abandonment in Taiwan, driven by globalization, may have inadvertently led to increased risks of spotted fever and scrub typhus. However, periodic plowing can unintentionally mitigate vector burdens. Economic globalization can have unexpected consequences on disease risk through modification of the agricultural landscape, but the outcome may also be influenced by agricultural policies, calling for further research on vector-borne diseases and their control from broader perspectives.
Thrust Vector Control of an Overexpanded Supersonic Nozzle Using Pin Insertion and Rotating Airfoils
1991-12-01
12 THRUST VECTOR CONTROL OP AN OVEREXPANDED 3UPfRSONIC NOZZLE USING PIN INSERTION AND ROTATINO AIRFOILS THESIS Presented to the Faculty of the School...gather data that would aid in the evaluation of thrust vector control mechanisms for nozzle applications. I would like to thank my thesis advisor, Dr... Control Nozzle. MS Thesis . Air Force Institute of Technology (AU), Wright- Patterson AFB OH, December 1988. 4. Herup, Eric J. Confined Jet Thrust Vector
Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens.
Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C
2018-01-01
Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bedbugs and Infectious Diseases
Blanc, Véronique; Del Giudice, Pascal; Levy-Bencheton, Anna; Chosidow, Olivier; Marty, Pierre; Brouqui, Philippe
2011-01-01
Bedbugs are brown and flat hematophagous insects. The 2 cosmopolite species, Cimex lectularius and Cimex hemipterus, feed on humans and/or domestic animals, and recent outbreaks have been reported in occidental countries. Site assessment for bedbug eradication is complex but can be assured, despite emerging insecticide resistance, by hiring a pest-control manager. The common dermatological presentation of bites is an itchy maculopapular wheal. Urticarial reactions and anaphylaxis can also occur. Bedbugs are suspected of transmitting infectious agents, but no report has yet demonstrated that they are infectious disease vectors. We describe 45 candidate pathogens potentially transmitted by bedbugs, according to their vectorial capacity, in the wild, and vectorial competence, in the laboratory. Because of increasing demands for information about effective control tactics and public health risks of bedbugs, continued research is needed to identify new pathogens in wild Cimex species (spp) and insecticide resistance. PMID:21288844
Tsetse-Wolbachia symbiosis: comes of age and has great potential for pest and disease control.
Doudoumis, Vangelis; Alam, Uzma; Aksoy, Emre; Abd-Alla, Adly M M; Tsiamis, George; Brelsfoard, Corey; Aksoy, Serap; Bourtzis, Kostas
2013-03-01
Tsetse flies (Diptera: Glossinidae) are the sole vectors of African trypanosomes, the causative agent of sleeping sickness in human and nagana in animals. Like most eukaryotic organisms, Glossina species have established symbiotic associations with bacteria. Three main symbiotic bacteria have been found in tsetse flies: Wigglesworthia glossinidia, an obligate symbiotic bacterium, the secondary endosymbiont Sodalis glossinidius and the reproductive symbiont Wolbachia pipientis. In the present review, we discuss recent studies on the detection and characterization of Wolbachia infections in Glossina species, the horizontal transfer of Wolbachia genes to tsetse chromosomes, the ability of this symbiont to induce cytoplasmic incompatibility in Glossina morsitans morsitans and also how new environment-friendly tools for disease control could be developed by harnessing Wolbachia symbiosis. Copyright © 2012 International Atomic Energy Agency. Published by Elsevier Inc. All rights reserved.
Advances in the understanding, management, and prevention of dengue.
Hermann, Laura L; Gupta, Swati B; Manoff, Susan B; Kalayanarooj, Siripen; Gibbons, Robert V; Coller, Beth-Ann G
2015-03-01
Dengue causes more human morbidity globally than any other vector-borne viral disease. Recent research has led to improved epidemiological methods that predict disease burden and factors involved in transmission, a better understanding of immune responses in infection, and enhanced animal models. In addition, a number of control measures, including preventative vaccines, are in clinical trials. However, significant gaps remain, including the need for better surveillance in large parts of the world, methods to predict which individuals will develop severe disease, and immunologic correlates of protection against dengue illness. During the next decade, dengue will likely expand its geographic reach and become an increasing burden on health resources in affected areas. Licensed vaccines and antiviral agents are needed in order to effectively control dengue and limit disease. Copyright © 2014 Elsevier B.V. All rights reserved.
The Use of Adenovirus Dodecahedron in the Delivery of an Enzymatic Activity in the Cell
Sumarheni; Gallet, Benoit; Fender, Pascal
2016-01-01
Penton-dodecahedron (Pt-Dd) derived from adenovirus type 3 is a symmetric complex of pentameric penton base plus fiber which can be produced in the baculovirus system at a high concentration. The size of Pt-Dd is smaller than the virus, but this virus-like particle (VLP) has the major proteins recognized by specific receptors on the surface of almost all types of cell. In this study, by direct observation with fluorescence microscopy on a fixed and living cell, the intracellular trafficking and localization of Pt-Dd labeled with fluorescence dyes in the cytoplasm of HeLa Tub-GFP showed a rapid internalization characteristic. Subsequently, the linkage of horseradish peroxidase (HRP) with Pt-Dd as the vector demonstrated an efficient system to deliver this enzyme into the cell without interfering its enzymatic activity as shown by biochemical and cellular experiments. These results were supported by additional studies using Bs-Dd or free form of the HRP used as the control. Overall, this study strengthens the potential role of Pt-Dd as an alternative vector for delivering therapeutic agents. PMID:27242929
Molecular context of Schistosoma mansoni transmission in the molluscan environments: A mini-review.
Famakinde, Damilare Olatunji
2017-12-01
Schistosoma mansoni, being transmitted by some freshwater Biomphalaria snails, is a major causative agent of human schistosomiasis. In the absence of effective vaccine and alternative drug designs to fight against the disease, and with the limitations of molluscicide application, developing more efficient strategies to interrupt the snail-mediated parasite transmission is being emphasized as potentially instrumental in the efforts toward schistosomiasis elimination, hence, necessitating thorough and comprehensive understanding of the fundamental mechanisms involved in the transmission process. Based on the current advances, this paper presents a concise exposition of the cellular, biochemical, genetic and immunological dynamics of the complex and statge-by-stage interactions between the parasite and its vector in their aquatic environment. It also highlights the possible crosstalk between the parasite's intracellular cyclic adenosine monophosphate (cAMP) and p38 mitogen-activated protein kinase (p38 MAPK) during the intramolluscan stage. Undoubtedly, decades of intensive investigation have untangled many S. mansoni-B. glabrata complexities, yet many aspects of the parasite-vector cycle which can help define potential control clues await further elucidation. Copyright © 2017 Elsevier B.V. All rights reserved.
The poultry red mite Dermanyssus gallinae as a potential carrier of vector-borne diseases.
De Luna, Carlos J; Arkle, Samuel; Harrington, David; George, David R; Guy, Jonathan H; Sparagano, Olivier A E
2008-12-01
The poultry red mite Dermanyssus gallinae is an obligatory blood-sucking parasite that is considered to be one of the most important ectoparasites in the poultry industry, mainly because it is responsible for important economic losses, leads to a reduction of welfare of laying hens, and may pose a disease risk to humans. As a result of these problems, much of the current research on this parasite targets new methods of control. Less attention has been paid to the importance of D. gallinae as a carrier of vector-borne diseases. Some authors have mentioned the possible involvement of D. gallinae in the transmission (both in vitro and directly isolated from the mites) of viral and bacterial agents. Our research group has demonstrated the presence of Mycobacterium spp. within D. gallinae. DNA coding for Mycobacterium spp. was successfully amplified from unfed adult D. gallinae, larvae, and eggs by using reverse transcription-polymerase chain reaction targeting the 16S rRNA gene. The results have suggested the possible transovarial and transstadial transmission of pathogens by D. gallinae.
Ribot, E; Bouzier-Sore, A-K; Bouchaud, V; Miraux, S; Delville, M-H; Franconi, J-M; Voisin, P
2007-08-01
Microglia are phagocytic cells that are chemoattracted by brain tumors and can represent up to 70% of the tumor cell population. To get insight into gene therapy against glioma, we decided to take advantage of those microglia properties and to use those cells as vehicles to transport simultaneously a suicide gene (under the control of a heat-sensitive promoter) and contrast agents to localize them by magnetic resonance imaging before applying any therapeutic treatment. Thymidine kinase (TK) expression and its functionality after gancyclovir administration were investigated. After the heat shock (44 degrees C and 20 min), TK was expressed in 50% of the cells. However, after gancyclovir treatment, 90% of the cells died by apoptosis, showing an important bystander effect. Then, the cells were incubated with new lanthanide contrast agents to check both their potential toxicity and their MR properties. Results indicate that the nanoparticles did not induce any cell toxicity and yield a hypersignal on MR images at 4.7 T. These in vitro experiments indicate that microglia are good candidates as vectors in gene therapy against brain tumors. Finally, microglia containing gadolinium-grafted nanoparticles were injected in the close vicinity of C6 tumor, in a mouse. The hyperintensive signal obtained on in vivo images as well as its retention time show the potential of the novel contrast agents for cellular imaging.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2011-01-01
Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862
Epidemiology and Pathogenesis of Bolivian Hemorrhagic Fever
Patterson, Michael; Grant, Ashley; Paessler, Slobodan
2014-01-01
The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25 to 35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970’s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks. PMID:24636947
Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications
Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A
2016-01-01
Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. PMID:26730187
Pathogen-mediated manipulation of arthropod microbiota to promote infection
Abraham, Nabil M.; Liu, Lei; Jutras, Brandon Lyon; Yadav, Akhilesh K.; Narasimhan, Sukanya; Gopalakrishnan, Vissagan; Ansari, Juliana M.; Jefferson, Kimberly K.; Cava, Felipe; Jacobs-Wagner, Christine; Fikrig, Erol
2017-01-01
Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier—critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector. PMID:28096373
Powell, Sharon K.; Artlip, Moria; Kaloss, Michele; Brazinski, Scott; Lyons, Russette; McGarrity, Gerard J.; Otto, Edward
1999-01-01
Retroviral vectors for gene therapy are designed to minimize the occurrence of replication-competent retrovirus (RCR); nonetheless, it is possible that a vector-derived RCR could establish an infection in a patient. Since the efficacy of antiretroviral agents can be impacted by interactions between virus, host cell, and drug, five commonly used antiretroviral drugs were evaluated for their abilities to inhibit the replication of a murine leukemia virus (MLV)-derived RCR in human cells. The results obtained indicate that the combination of nucleoside analogs zidovudine and dideoxyinosine with the protease inhibitor indinavir effectively inhibits MLV-derived RCR replication in three human cell lines. In addition, MLV-derived RCR was found to be inherently resistant to the nucleoside analogs lamivudine and stavudine, suggesting that mutations conferring resistance to nucleoside analogs in human immunodeficiency virus type 1 have the same effect even in an alternative viral backbone. PMID:10482636
Gonzalez, Marcelo S; Souza, Marcela S; Garcia, Eloi S; Nogueira, Nadir F S; Mello, Cícero B; Cánepa, Gaspar E; Bertotti, Santiago; Durante, Ignacio M; Azambuja, Patrícia; Buscaglia, Carlos A
2013-11-01
TcSMUG L products were recently identified as novel mucin-type glycoconjugates restricted to the surface of insect-dwelling epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. The remarkable conservation of their predicted mature N-terminal region, which is exposed to the extracellular milieu, suggests that TcSMUG L products may be involved in structural and/or functional aspects of the interaction with the insect vector. Here, we investigated the putative roles of TcSMUG L mucins in both in vivo development and ex vivo attachment of epimastigotes to the luminal surface of the digestive tract of Rhodnius prolixus. Our results indicate that the exogenous addition of TcSMUG L N-terminal peptide, but not control T. cruzi mucin peptides, to the infected bloodmeal inhibited the development of parasites in R. prolixus in a dose-dependent manner. Pre-incubation of insect midguts with the TcSMUG L peptide impaired the ex vivo attachment of epimastigotes to the luminal surface epithelium, likely by competing out TcSMUG L binding sites on the luminal surface of the posterior midgut, as revealed by fluorescence microscopy. Together, these observations indicate that TcSMUG L mucins are a determinant of both adhesion of T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine, and the infection of the insect vector, R. prolixus.
Sharma, Aarti; Kumar, Sarita; Tripathi, Pushplata
2016-01-01
Background and Objectives. Aedes aegypti, dengue fever mosquito, is primarily associated with the transmission of dengue and chikungunya in tropical and subtropical regions of the world. The present investigations were carried out to assess the larvicidal efficiency of five indigenous weeds against Ae. aegypti. Methods. The 1,000 ppm hexane and ethanol extracts prepared from the leaves and stem of five plants (Achyranthes aspera, Cassia occidentalis, Catharanthus roseus, Lantana camara, and Xanthium strumarium) were screened for their larvicidal activity against early fourth instars of dengue vector. The extracts which could cause 80–100% mortality were further investigated for their efficacy. Results. The preliminary screening established the efficacy of hexane extracts as compared to the ethanol extracts. Further investigations revealed the highest larvicidal potential of A. aspera extracts exhibiting LC50 value of 82.555 ppm and 68.133 ppm, respectively. Further, their leaf extracts showed 5–85.9% higher larvicidal activity and stem extracts exhibited 0.23- to 0.85-fold more efficiency than the other four extracts. Conclusion. The present investigations suggest the possible use of A. aspera as an ideal ecofriendly, larvicidal agent for the control of dengue vector, Ae. aegypti. Future studies are, however, required to explore and identify the bioactive component involved and its mode of action. PMID:26941996
Palmarini, Massimo; Mertens, Peter
2017-01-01
Spatio-temporal patterns of the spread of infectious diseases are commonly driven by environmental and ecological factors. This is particularly true for vector-borne diseases because vector populations can be strongly affected by host distribution as well as by climatic and landscape variables. Here, we aim to identify environmental drivers for bluetongue virus (BTV), the causative agent of a major vector-borne disease of ruminants that has emerged multiple times in Europe in recent decades. In order to determine the importance of climatic, landscape and host-related factors affecting BTV diffusion across Europe, we fitted different phylogeographic models to a dataset of 113 time-stamped and geo-referenced BTV genomes, representing multiple strains and serotypes. Diffusion models using continuous space revealed that terrestrial habitat below 300 m altitude, wind direction and higher livestock densities were associated with faster BTV movement. Results of discrete phylogeographic analysis involving generalized linear models broadly supported these findings, but varied considerably with the level of spatial partitioning. Contrary to common perception, we found no evidence for average temperature having a positive effect on BTV diffusion, though both methodological and biological reasons could be responsible for this result. Our study provides important insights into the drivers of BTV transmission at the landscape scale that could inform predictive models of viral spread and have implications for designing control strategies. PMID:29021180
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Bare, E. Ann
1987-01-01
The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.
[Going into the 21st century: should one dream or act?].
Coosemans, M
1991-01-01
A historical review of vector control is made. Despite the available tools, vector borne diseases are still a priority in Public Health. Magic tools, like DDT, were often misused. Adapted strategies and structures for vector control are now required. Progress will mainly result from research and evaluation done in the framework of vector control programmes. Discovery of new tools will find in these operational programmes a point of fall for their application.
Rosecrans, Kathryn; Cruz-Martin, Gabriela; King, Ashley; Dumonteil, Eric
2014-01-01
Background Chagas disease is a vector-borne parasitic disease of major public health importance. Current prevention efforts are based on triatomine vector control to reduce transmission to humans. Success of vector control interventions depends on their acceptability and value to affected communities. We aimed to identify opportunities for and barriers to improved vector control strategies in the Yucatan peninsula, Mexico. Methodology/principal findings We employed a sequence of qualitative and quantitative research methods to investigate knowledge, attitudes and practices surrounding Chagas disease, triatomines and vector control in three rural communities. Our combined data show that community members are well aware of triatomines and are knowledgeable about their habits. However, most have a limited understanding of the transmission dynamics and clinical manifestations of Chagas disease. While triatomine control is not a priority for community members, they frequently use domestic insecticide products including insecticide spray, mosquito coils and plug-in repellents. Families spend about $32 US per year on these products. Alternative methods such as yard cleaning and window screens are perceived as desirable and potentially more effective. Screens are nonetheless described as unaffordable, in spite of a cost comparable to the average annual spending on insecticide products. Conclusion/Significance Further education campaigns and possibly financing schemes may lead families to redirect their current vector control spending from insecticide products to window screens. Also, synergism with mosquito control efforts should be further explored to motivate community involvement and ensure sustainability of Chagas disease vector control. PMID:24676038
Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.
Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter
2016-10-01
Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.
Jara, Rocio F.; Wydeven, Adrian P.; Samuel, Michael D.
2016-01-01
World-wide concern over emerging vector-borne diseases has increased in recent years for both animal and human health. In the United Sates, concern about vector-borne diseases in canines has focused on Lyme disease, anaplasmosis, ehrlichiosis, and heartworm which infect domestic and wild canids. Of these diseases, Lyme and anaplasmosis are also frequently diagnosed in humans. Gray wolves (Canis lupus) recolonized Wisconsin in the 1970s, and we evaluated their temporal and geographic patterns of exposure to these four vector-borne diseases in Wisconsin as the population expanded between 1985 and 2011. A high proportion of the Wisconsin wolves were exposed to the agents that cause Lyme (65.6%) and anaplasma (47.7%), and a smaller proportion to ehrlichiosis (5.7%) and infected with heartworm (9.2%). Wolf exposure to tick borne diseases was consistently higher in older animals. Wolf exposure was markedly higher than domestic dog (Canis familiaris) exposure for all 4 disease agents during 2001–2013. We found a cluster of wolf exposure to Borrelia burgdorferi in northwestern Wisconsin, which overlaps human and domestic dog clusters for the same pathogen. In addition, wolf exposure to Lyme disease in Wisconsin has increased, corresponding with the increasing human incidence of Lyme disease in a similar time period. Despite generally high prevalence of exposure none of these diseases appear to have slowed the growth of the Wisconsin wolf population. PMID:27898670
β4-integrin-mediated cytotoxic activity of AexU in human prostate cancer PC3 cells
KUMANO, MASAFUMI; MIYAKE, HIDEAKI; ABOLGHAIT, SAID K.; BEHNSAWY, HOSNY M.; FUJISAWA, MASATO
2013-01-01
The present study aimed to characterize the cytotoxic activity of AexU, an effector-mediating type three secretion system (TTSS) of gram-negative bacteria, in human prostate cancer cells, focusing on the association with β4-integrin expression. The cytotoxic effects of AexU either alone or in combination with chemotherapeutic agents were evaluated using several human prostate cancer cell lines. Human prostate cancer PC3 cells, in which an expression vector containing siRNA targeting β4-integrin had been introduced, were established (PC3/sh-In), and the cytotoxic effects of AexU on the PC3/sh-In cells were compared with the PC3 cells that were transfected with a control vector (PC3/C). The expression levels of β4-integrin in the PC3 cells were markedly higher compared with those in the LNCaP or DU145 cells, and the cytotoxic effects of AexU in the PC3 cells were more pronounced compared with those in the LNCaP or DU145 cells. The sensitivity of the PC3 cells to docetaxel and cisplatin was significantly enhanced following treatment with AexU, resulting in a decrease in the IC50 of the two agents by ~90%. The cytotoxic effect of AexU in the PC3/C cells was more marked compared with that in the PC3/sh-In cells, and the phosphorylation of Akt in the PC3/C cells appeared to be significantly more inhibited by the treatment with AexU compared with the PC3/sh-In cells. In conclusion, treatment with AexU may be a useful therapeutic option for prostate cancer when β4-integrin is overexpressed. The treatment appears to exert its effects through growth inhibition and by enhancing the sensitivity of the cancer cells to chemotherapeutic agents. PMID:24179545
Cardiac Gene Therapy: Optimization of Gene Delivery Techniques In Vivo
Katz, Michael G.; Swain, JaBaris D.; White, Jennifer D.; Low, David; Stedman, Hansell
2010-01-01
Abstract Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods—including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques—with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity. PMID:19947886
Bed Bugs (Cimex lectularius) as Vectors of Trypanosoma cruzi
Salazar, Renzo; Castillo-Neyra, Ricardo; Tustin, Aaron W.; Borrini-Mayorí, Katty; Náquira, César; Levy, Michael Z.
2015-01-01
Populations of the common bed bug, Cimex lectularius, have recently undergone explosive growth. Bed bugs share many important traits with triatomine insects, but it remains unclear whether these similarities include the ability to transmit Trypanosoma cruzi, the etiologic agent of Chagas disease. Here, we show efficient and bidirectional transmission of T. cruzi between hosts and bed bugs in a laboratory environment. Most bed bugs that fed on experimentally infected mice acquired the parasite. A majority of previously uninfected mice became infected after a period of cohabitation with exposed bed bugs. T. cruzi was also transmitted to mice after the feces of infected bed bugs were applied directly to broken host skin. Quantitative bed bug defecation measures were similar to those of important triatomine vectors. Our findings suggest that the common bed bug may be a competent vector of T. cruzi and could pose a risk for vector-borne transmission of Chagas disease. PMID:25404068
Brand, Samuel P C; Rock, Kat S; Keeling, Matt J
2016-04-01
Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models.
Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita
2012-02-01
To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7-11 times more irritable as compared with the control paper. The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control.
Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita
2012-01-01
Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887
Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul
2014-12-01
The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.
Thrust vector control of upper stage with a gimbaled thruster during orbit transfer
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia
2016-10-01
In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.
Yadav, Ruchi; Tyagi, Varun; Tikar, Sachin N; Sharma, Ajay K; Mendki, Murlidhar J; Jain, Ashok K; Sukumaran, Devanathan
2014-12-01
Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory. Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20-400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior) against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50), while OAI (Oviposition activity index) was calculated for oviposition altering activity of the plant extracts. Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466) at 100ppm. Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito.
Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae)
Lawyer, Phillip; Killick-Kendrick, Mireille; Rowland, Tobin; Rowton, Edgar; Volf, Petr
2017-01-01
Laboratory colonies of phlebotomine sand flies are necessary for experimental study of their biology, behaviour and mutual relations with disease agents and for testing new methods of vector control. They are indispensable in genetic studies and controlled observations on the physiology and behaviour of sand flies, neglected subjects of high priority. Colonies are of particular value for screening insecticides. Colonized sand flies are used as live vector models in a diverse array of research projects, including xenodiagnosis, that are directed toward control of leishmaniasis and other sand fly-associated diseases. Historically, labour-intensive maintenance and low productivity have limited their usefulness for research, especially for species that do not adapt well to laboratory conditions. However, with growing interest in leishmaniasis research, rearing techniques have been developed and refined, and sand fly colonies have become more common, enabling many significant breakthroughs. Today, there are at least 90 colonies representing 21 distinct phlebotomine sand fly species in 35 laboratories in 18 countries worldwide. The materials and methods used by various sand fly workers differ, dictated by the availability of resources, cost or manpower constraints rather than choice. This paper is not intended as a comprehensive review but rather a discussion of methods and techniques most commonly used by researchers to initiate, establish and maintain sand fly colonies, with emphasis on the methods proven to be most effective for the species the authors have colonized. Topics discussed include collecting sand flies for colony stock, colony initiation, maintenance and mass-rearing procedures, and control of sand fly pathogens in colonies. PMID:29139377
Yoshioka, Kota; Tercero, Doribel; Pérez, Byron; Nakamura, Jiro; Pérez, Lenin
2017-03-06
Chagas disease is one of the neglected tropical diseases (NTDs). International goals for its control involve elimination of vector-borne transmission. Central American countries face challenges in establishing sustainable vector control programmes, since the main vector, Triatoma dimidiata, cannot be eliminated. In 2012, the Ministry of Health in Nicaragua started a field test of a vector surveillance-response system to control domestic vector infestation. This paper reports the main findings from this pilot study. This study was carried out from 2012 to 2015 in the Municipality of Totogalpa. The Japan International Cooperation Agency provided technical cooperation in designing and monitoring the surveillance-response system until 2014. This system involved 1) vector reports by householders to health facilities, 2) data analysis and planning of responses at the municipal health centre and 3) house visits or insecticide spraying by health personnel as a response. We registered all vector reports and responses in a digital database. The collected data were used to describe and analyse the system performance in terms of amount of vector reports as well as rates and timeliness of responses. During the study period, T. dimidiata was reported 396 times. Spatiotemporal analysis identified some high-risk clusters. All houses reported to be infested were visited by health personnel in 2013 and this response rate dropped to 39% in 2015. Rates of insecticide spraying rose above 80% in 2013 but no spraying was carried out in the following 2 years. The timeliness of house visits improved significantly after the responsibility was transferred from a vector control technician to primary health care staff. We argue that the proposed vector surveillance-response system is workable within the resource-constrained health system in Nicaragua. Integration to the primary health care services was a key to improve the system performance. Continual efforts are necessary to keep adapting the surveillance-response system to the dynamic health systems. We also discuss that the goal of eliminating vector-borne transmission remains unachievable. This paper provides lessons not only for Chagas disease control in Central America, but also for control efforts for other NTDs that need a sustainable surveillance-response system to support elimination.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako
The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.
Electromagnetic Monitoring and Control of a Plurality of Nanosatellites
NASA Technical Reports Server (NTRS)
Soloway, Donald I. (Inventor)
2017-01-01
A method for monitoring position of and controlling a second nanosatellite (NS) relative to a position of a first NS. Each of the first and second NSs has a rectangular or cubical configuration of independently activatable, current-carrying solenoids, each solenoid having an independent magnetic dipole moment vector, .mu.1 and .mu.2. A vector force F and a vector torque are expressed as linear or bilinear combinations of the first set and second set of magnetic moments, and a distance vector extending between the first and second NSs is estimated. Control equations are applied to estimate vectors, .mu.1 and .mu.2, required to move the NSs toward a desired NS configuration. This extends to control of N nanosatellites.
Microsporidians as evolution-proof agents of malaria control?
Koella, Jacob C; Lorenz, Lena; Bargielowski, Irka
2009-01-01
Despite our efforts at malaria control, malaria remains one of our most serious and deadly diseases. The failure of control stems in part from the parasite's intense transmission in many areas and from the emergence and spread of resistance of the malaria parasites and their mosquito vectors against most of the chemicals used to attack them. New methods for control are desperately needed. However, new methods will be useful only if they are effective (i.e., decrease transmission substantially) and evolutionarily sustainable (i.e., evolution-proof, in that they prevent evolution from eroding efficacy). We suggest microsporidian parasites that infect mosquitoes could be potentially effective and sustainable agents for malaria control. They may be effective because they target several epidemiologically important traits: survival of larvae (and thus number of adult mosquitoes), adult longevity, biting rate and the development of malaria within the mosquitoes. Even if each trait is affected only moderately, the intensity of transmission can be reduced considerably. They may be evolution-proof, for the evolutionarily most important trait is juvenile survival, whereas the two epidemiologically most important factors are traits of the adult mosquito: biting rate and longevity. Under the intense microsporidian pressure of a control programme, it is likely (if not inevitable) that the larvae evolve to survive microsporidian infection. However, if this larval tolerance to microsporidians is genetically correlated with the adult traits, tolerant mosquitoes may not live as long and bite less frequently than microsporidian-sensitive ones. While such a trade-off has not been measured, combining several studies suggests indirectly a negative genetic correlation between larval tolerance and adult longevity. Therefore, evolution might not undermine control; rather it might increase its effectiveness. While the evolution of resistance may be inevitable, the failure of control need not be.
Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Nicoletti, Marcello; Madhiyazhagan, Pari; Dinesh, Devakumar; Suresh, Udaiyan; Khater, Hanem F; Wei, Hui; Canale, Angelo; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Benelli, Giovanni
2015-11-01
Two of the most important challenges facing humanity in the 21st century comprise food production and disease control. Eco-friendly control tools against mosquito vectors and agricultural pests are urgently needed. Insecticidal products of marine origin have a huge potential to control these pests. In this research, we reported a single-step method to synthesize silver nanoparticles (AgNP) using the aqueous leaf extract of the seaweed Hypnea musciformis, a cheap, nontoxic and eco-friendly material, that worked as reducing and stabilizing agent during the biosynthesis. The formation of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometer. AgNP were characterized by FTIR, SEM, EDX and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 40-65nm. Low doses of H. musciformis aqueous extract and seaweed-synthesized AgNP showed larvicidal and pupicidal toxicity against the dengue vector Aedes aegypti and the cabbage pest Plutella xylostella. The LC50 value of AgNP ranged from 18.14 to 38.23ppm for 1st instar larvae (L1) and pupae of A. aegypti, and from 24.5 to 38.23ppm for L1 and pupae of P. xylostella. Both H. musciformis extract and AgNP strongly reduced longevity and fecundity of A. aegypti and P. xylostella adults. This study adds knowledge on the toxicity of seaweed borne insecticides and green-synthesized AgNP against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and cheap pest control tools. Copyright © 2015 Elsevier Inc. All rights reserved.
Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Karandeev, D.
2015-10-01
The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.
Chagas disease vector control and Taylor's law
Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.
2017-01-01
Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728
Fox, Candace R; Parks, Griffith D
2018-04-01
A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked to alterations to DNA damage signaling pathways that balance cell survival versus death. Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish persistent infection, the repurposing of drugs that target cellular IAPs as antivirals, and the combined use of DNA-damaging chemotherapy agents in conjunction with oncolytic RNA virus vectors. Copyright © 2018 American Society for Microbiology.
Material quality assessment of silk nanofibers based on swarm intelligence
NASA Astrophysics Data System (ADS)
Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir
2013-02-01
In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.
Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C
2008-01-01
Background Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight disease, is a serious pathogen of rice. Here we describe a fluorescent marker system to study virulence and pathogenicity of X. oryzae pv. oryzae. Results A fluorescent X. oryzae pv. oryzae Philippine race 6 strain expressing green fluorescent protein (GFP) (PXO99GFP) was generated using the gfp gene under the control of the neomycin promoter in the vector, pPneo-gfp. The PXO99GFPstrain displayed identical virulence and avirulence properties as the wild type control strain, PXO99. Using fluorescent microscopy, bacterial multiplication and colonization were directly observed in rice xylem vessels. Accurate and rapid determination of bacterial growth was assessed using fluoremetry and an Enzyme-Linked ImmunoSorbant Assay (ELISA). Conclusion Our results indicate that the fluorescent marker system is useful for assessing bacterial infection and monitoring bacterial multiplication in planta. PMID:18826644
Eliminating the Neglected Tropical Diseases: Translational Science and New Technologies.
Hotez, Peter J; Pecoul, Bernard; Rijal, Suman; Boehme, Catharina; Aksoy, Serap; Malecela, Mwelecele; Tapia-Conyer, Roberto; Reeder, John C
2016-03-01
Today, the World Health Organization recognizes 17 major parasitic and related infections as the neglected tropical diseases (NTDs). Despite recent gains in the understanding of the nature and prevalence of NTDs, as well as successes in recent scaled-up preventive chemotherapy strategies and other health interventions, the NTDs continue to rank among the world's greatest global health problems. For virtually all of the NTDs (including those slated for elimination under the auspices of a 2012 London Declaration for NTDs and a 2013 World Health Assembly resolution [WHA 66.12]), additional control mechanisms and tools are needed, including new NTD drugs, vaccines, diagnostics, and vector control agents and strategies. Elimination will not be possible without these new tools. Here we summarize some of the key challenges in translational science to develop and introduce these new technologies in order to ensure success in global NTD elimination efforts.
Abad-Franch, Fernando; Ferraz, Gonçalo; Campos, Ciro; Palomeque, Francisco S.; Grijalva, Mario J.; Aguilar, H. Marcelo; Miles, Michael A.
2010-01-01
Background Failure to detect a disease agent or vector where it actually occurs constitutes a serious drawback in epidemiology. In the pervasive situation where no sampling technique is perfect, the explicit analytical treatment of detection failure becomes a key step in the estimation of epidemiological parameters. We illustrate this approach with a study of Attalea palm tree infestation by Rhodnius spp. (Triatominae), the most important vectors of Chagas disease (CD) in northern South America. Methodology/Principal Findings The probability of detecting triatomines in infested palms is estimated by repeatedly sampling each palm. This knowledge is used to derive an unbiased estimate of the biologically relevant probability of palm infestation. We combine maximum-likelihood analysis and information-theoretic model selection to test the relationships between environmental covariates and infestation of 298 Amazonian palm trees over three spatial scales: region within Amazonia, landscape, and individual palm. Palm infestation estimates are high (40–60%) across regions, and well above the observed infestation rate (24%). Detection probability is higher (∼0.55 on average) in the richest-soil region than elsewhere (∼0.08). Infestation estimates are similar in forest and rural areas, but lower in urban landscapes. Finally, individual palm covariates (accumulated organic matter and stem height) explain most of infestation rate variation. Conclusions/Significance Individual palm attributes appear as key drivers of infestation, suggesting that CD surveillance must incorporate local-scale knowledge and that peridomestic palm tree management might help lower transmission risk. Vector populations are probably denser in rich-soil sub-regions, where CD prevalence tends to be higher; this suggests a target for research on broad-scale risk mapping. Landscape-scale effects indicate that palm triatomine populations can endure deforestation in rural areas, but become rarer in heavily disturbed urban settings. Our methodological approach has wide application in infectious disease research; by improving eco-epidemiological parameter estimation, it can also significantly strengthen vector surveillance-control strategies. PMID:20209149
Runge, Solveig; Olbert, Marita; Herden, Christiane; Malberg, Sara; Römer-Oberdörfer, Angela; Staeheli, Peter; Rubbenstroth, Dennis
2017-01-23
Avian bornaviruses are causative agents of proventricular dilatation disease (PDD), a chronic neurologic and often fatal disorder of psittacines including endangered species. To date no causative therapy or immunoprophylaxis is available. Our previous work has shown that viral vector vaccines can delay the course of homologous bornavirus challenge infections but failed to protect against PDD when persistent infection was not prevented. The goal of this study was to refine our avian bornavirus vaccination and infection model to better represent natural bornavirus infections in order to achieve full protection against a heterologous challenge infection. We observed that parrot bornavirus 2 (PaBV-2) readily infected cockatiels (Nymphicus hollandicus) by combined intramuscular and subcutaneous injection with as little as 10 2.7 foci-forming units (ffu) per bird, whereas a 500-fold higher dose of the same virus administered via peroral and oculonasal route did not result in persistent infection. These results indicated that experimental bornavirus challenge infections with this virus should be performed via the parenteral route. Prime-boost vaccination of cockatiels with Newcastle disease virus (NDV) and modified vaccinia virus Ankara (MVA) vectors expressing the nucleoprotein and phosphoprotein genes of PaBV-4 substantially blocked bornavirus replication following parenteral challenge infection with 10 3.5 ffu of heterologous PaBV-2. Only two out of six vaccinated birds had very low viral levels detectable in a few organs. As a consequence, only one vaccinated bird developed mild PDD-associated microscopic lesions, while mock-vaccinated controls were not protected against PaBV-2 infection and inflammation. Our results demonstrate that NDV and MVA vector vaccines can protect against invasive heterologous bornavirus challenge infections and subsequent PDD. These vector vaccines represent a promising tool to combat avian bornaviruses in psittacine populations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alphey, Nina; Alphey, Luke; Bonsall, Michael B.
2011-01-01
Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654
de la Rúa, Nicholas M.; Bustamante, Dulce M.; Menes, Marianela; Stevens, Lori; Monroy, Carlota; Kilpatrick, William; Rizzo, Donna; Klotz, Stephen A.; Schmidt, Justin; Axen, Heather J.; Dorn, Patricia L.
2014-01-01
Phylogenetic relationships of insect vectors of parasitic diseases are important for understanding the evolution of epidemiologically relevant traits, and may be useful in vector control. The subfamily Triatominae (Hemiptera:Reduviidae) includes ~140 extant species arranged in five tribes comprised of 15 genera. The genus Triatoma is the most species-rich and contains important vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Triatoma species were grouped into complexes originally by morphology and more recently with the addition of information from molecular phylogenetics (the four-complex hypothesis); however, without a strict adherence to monophyly. To date, the validity of proposed species complexes has not been tested by statistical tests of topology. The goal of this study was to clarify the systematics of 19 Triatoma species from North and Central America. We inferred their evolutionary relatedness using two independent data sets: the complete nuclear Internal Transcribed Spacer-2 ribosomal DNA (ITS-2 rDNA) and head morphometrics. In addition, we used the Shimodaira-Hasegawa statistical test of topology to assess the fit of the data to a set of competing systematic hypotheses (topologies). An unconstrained topology inferred from the ITS-2 data was compared to topologies constrained based on the four-complex hypothesis or one inferred from our morphometry results. The unconstrained topology represents a statistically significant better fit of the molecular data than either the four-complex or the morphometric topology. We propose an update to the composition of species complexes in the North and Central American Triatoma, based on a phylogeny inferred from ITS-2 as a first step towards updating the phylogeny of the complexes based on monophyly and statistical tests of topologies. PMID:24681261
NASA Astrophysics Data System (ADS)
Ferhat, Ipar
With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.
Kiware, Samson S; Chitnis, Nakul; Tatarsky, Allison; Wu, Sean; Castellanos, Héctor Manuel Sánchez; Gosling, Roly; Smith, David; Marshall, John M
2017-01-01
Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions. We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination. The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact of combined vector control interventions at the mosquito population level in a range of eco-epidemiological settings. The model predicts specific combinations of vector control tools to achieve local malaria elimination in a range of eco-epidemiological settings and can assist researchers and program decision-makers on the design of experimental or operational research to test vector control interventions. A corresponding graphical user interface is available for national malaria control programs and other end users.
The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft
NASA Technical Reports Server (NTRS)
1983-01-01
A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.
Rao, Yue-feng; Chen, Wei; Liang, Xing-guang; Huang, Yong-zhuo; Miao, Jing; Liu, Lin; Lou, Yan; Zhang, Xing-guo; Wang, Ben; Tang, Rui-kang; Chen, Zhong; Lu, Xiao-yang
2015-01-14
The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron-oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI-SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI-SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g(-1) . They feature specific pH-sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose-dependent. In vitro transdermal studies demonstrate that the EPI-SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic-field-assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION-based vector for feasible transdermal therapy of skin cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fonteles, Raquel S; Pereira Filho, Adalberto A; Moraes, Jorge L P; Kuppinger, Oliver; Rebêlo, José M M
2016-01-01
Leishmania (L.) amazonensis (Lainson & Shaw, 1972) and Leishmania (Viannia) braziliensis (Vianna, 1911) are the principal causative agents of American tegumentary leishmaniasis (ATL) in Brazil. L. amazonensis also causes diffuse cutaneous leishmaniasis (DCL) vectored principally by Lutzomyia flaviscutellata and secondarily by Lutzomyia whitmani (Antunes & Coutinho, 1939). The latter is the most common phlebotomine in the state of Maranhão, and it is the focal species for potential ATL transmission. For this reason, we tested the ability of L. whitmani to become infected with Lutzomyia parasites. Phlebotomines were derived from a colony maintained in the laboratorial conditions. The first generation, uninfected females were offered a bloodmeal with mice infected with the strains of both parasites. We found that L. whitmani can become infected with both parasite species, with infection rates of 65.2% (L. braziliensis) and 47.4% (L. amazonensis). We conclude that in Maranhão, L. whitmani is likely an important vector in the transmission of ATL and may function as a vector of DCL. This possibility should be further investigated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Control of Scaphoideus titanus with Natural Products in Organic Vineyards
Tacoli, Federico; Mori, Nicola; Cargnus, Elena; Da Vià, Sarah; Zandigiacomo, Pietro; Duso, Carlo; Pavan, Francesco
2017-01-01
The leafhopper Scaphoideus titanus is the vector of ‘Candidatus Phytoplasma vitis’, the causal agent of Flavescence dorée (FD) a key disease for European viticulture. In organic vineyards, the control of S. titanus relies mostly on the use of pyrethrins that have suboptimal efficacy. During 2016, three field trials were conducted to evaluate the efficacy of kaolin, orange oil, insecticidal soap and spinosad against S. titanus nymphs, in comparison with pyrethrins. The activity of kaolin was evaluated also in the laboratory. In all field trials, kaolin had an efficacy against nymphs comparable to pyrethrins, while the other products were not effective. Laboratory results confirmed that kaolin increased nymph mortality. In organic vineyards, kaolin and pyrethrins are valuable tools in the management of FD. Nevertheless, their efficacy is lower compared to that of the synthetic insecticides used in conventional viticulture. Therefore, further research should be conducted in order to identify alternatives to synthetic insecticides for S. titanus control in the context of organic viticulture. PMID:29258165
Bulgari, Daniela; Bozkurt, Adem I; Casati, Paola; Cağlayan, Kadriye; Quaglino, Fabio; Bianco, Piero A
2012-11-01
'Candidatus Phytoplasma mali', the causal agent of apple proliferation (AP) disease, is a quarantine pathogen controlled by chemical treatments against insect vectors and eradication of diseased plants. In accordance with the European Community guidelines, novel strategies should be developed for sustainable management of plant diseases by using resistance inducers (e.g. endophytes). A basic point for the success of this approach is the study of endophytic bacteria associated with plants. In the present work, endophytic bacteria living in healthy and 'Ca. Phytoplasma mali'-infected apple trees were described by cultivation-dependent and independent methods. 16S rDNA sequence analysis showed the presence of the groups Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, and Firmicutes. In detail, library analyses underscored 24 and 17 operational taxonomic units (OTUs) in healthy and infected roots, respectively, with a dominance of Betaproteobacteria. Moreover, differences in OTUs number and in CFU/g suggested that phytoplasmas could modify the composition of endophytic bacterial communities associated with infected plants. Intriguingly, the combination of culturing methods and cloning analysis allowed the identification of endophytic bacteria (e.g. Bacillus, Pseudomonas, and Burkholderia) that have been reported as biocontrol agents. Future research will investigate the capability of these bacteria to control 'Ca. Phytoplasma mali' in order to develop sustainable approaches for managing AP.
Lang, Andrew S; Taylor, Terumi A; Beatty, J Thomas
2002-11-01
The gene transfer agent (GTA) of the a-proteobacterium Rhodobacter capsulatus is a cell-controlled genetic exchange vector. Genes that encode the GTA structure are clustered in a 15-kb region of the R. capsulatus chromosome, and some of these genes show sequence similarity to known bacteriophage head and tail genes. However, the production of GTA is controlled at the level of transcription by a cellular two-component signal transduction system. This paper describes homologues of both the GTA structural gene cluster and the GTA regulatory genes in the a-proteobacteria Rhodopseudomonas palustris, Rhodobacter sphaeroides, Caulobacter crescentus, Agrobacterium tumefaciens and Brucella melitensis. These sequences were used in a phylogenetic tree approach to examine the evolutionary relationships of selected GTA proteins to these homologues and (pro)phage proteins, which was compared to a 16S rRNA tree. The data indicate that a GTA-like element was present in a single progenitor of the extant species that contain both GTA structural cluster and regulatory gene homologues. The evolutionary relationships of GTA structural proteins to (pro)phage proteins indicated by the phylogenetic tree patterns suggest a predominantly vertical descent of GTA-like sequences in the a-proteobacteria and little past gene exchange with (pro)phages.
NASA Astrophysics Data System (ADS)
Shinnaka, Shinji
This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.
Advances in the epidemiology of injuries as a basis for public policy.
Haddon, W
1980-01-01
Successful injury control measures (stoplights, sprinkler systems, electrical insulation, evacuation) have long been commonplace. However, progress in injury control has been hampered by the failure to recognize that injuries cannot occur without the action of specific agents analogous to those of the infectious diseases and likewise transmitted by vehicles and vectors. These agents are the several forms of injury. Varying and interacting with the characteristics of the host and the environment, they constitute the classic epidemiologic triads that determine injury distributions, none of which are random. The injury-disease dichotomy, a universal in most of the world's major languages, may have resulted from the fact that at least some of the causes of injuries (for example, wild animals or falling trees) are more identifiable and proximate than the causes of diseases. The etiology of injuries suggests that for epidemiologic and public health purposes, the term injury should probably be defined so as to encompass those kinds of damage to the body that are produced by energy exchanges and that are manifested within 48 hours, or usually within considerably shorter periods. Strategies for injury control can be extended to the control of other pathological conditions. The active-passive distinction (the dimension expressing the extent to which control measures require people to do something) has a direct bearing on the success of public health programs, because passive approaches have historically had a far better record of success than active ones. Ten basic strategies have been identified that provide options for reducing the damage to people (and property) caused by all kinds of environmental hazards. PMID:7422807
2008-02-01
tu- mor cells. In this regard, herpesvirus samiri (HVS) was de- monstrated to be naturally selectively oncolytic for the pancreatic cancer line PANC-1...the hexon virus. Therefore, Ad can provide a versatile platform for selective binding of AuNPs, resulting in a multifunctional agent capable of...utility remained unaffected. Therefore, Ad can provide a versatile platform for selective binding of nanoparticles, resulting in a multifunctional agent
2007-08-01
selective or are genetically modified to be selective for replication competence in tu- mor cells. In this regard, herpesvirus samiri (HVS) was de...logy 76, 4559-4566 Ring CJ (2002) Cytolytic viruses as potential anti -cancer agents . The Journal of General Virology 83, 491-502 Riviere C, Danos O...precursors for tumor stroma and targeted-delivery vehicles for anti - cancer agents . Journal of the National Cancer Institute 96, 1593-1603 Takanami
[Microbiological and clinical aspects of tularaemia].
Pavliš, Oto; Pohanka, Miroslav
2011-10-01
Francisella tularensis belongs to the most important biological agents potentially applicable in biological warfare and bioterrorism. High virulence, easy and rapid spread among individual vectors, stability of the cells in aerosol and good penetration into the lungs make F. tularensis one of the most important biological warfare agents in both human and veterinary medicine. The text provides comprehensive data about tularaemia and outlines the fate of the pathogen in the host. Special attention is paid to immunological aspects of the disease, therapy, and diagnostic methods.
Zika virus infection: Past and present of another emerging vector-borne disease.
Sakkas, Hercules; Economou, Vangelis; Papadopoulou, Chrissanthy
2016-01-01
Zika virus infection is an emerging mosquito-borne disease, first identified in Uganda in 1947. It is caused by the Zika arbovirus, and transmitted by the bites of infected mosquitoes of the genus Aedes. For almost half a century, the Zika virus was reported as the causative agent of sporadic human infections. In 2007, the Zika virus emerged outside Asia and Africa causing an epidemic on the Island of Yap in Micronesia. The manifestation of the newly acquired human infection varies from asymptomatic to self-limiting acute febrile illness with symptoms and clinical features similar to those caused by the Dengue virus ('Dengue-like syndrome'). The real-time PCR and serological methods have been successfully applied for the diagnosis of the disease. The treatment is symptomatic, since there is no specific antiviral treatment or a vaccine. During the recent outbreaks in French Polynesia and Brazil, incidents of Guillain-Barrι syndrome and microcephaly were associated with Zika virus infection, giving rise to fears of further global spread of the virus. Prevention and vector control strategies have to be urgently implemented by national health authorities in order to contain future outbreaks in vulnerable populations. This review summarizes the existing information on Zika virus characteristics, pathogenesis and epidemiology, the available methods for the diagnosis of Zika virus infection and recent approaches for prevention and control.
Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.
Gooding, R H
1996-01-01
An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462
Current status of genome editing in vector mosquitoes: A review.
Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah
2017-01-16
Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities.
Mendenhall, Ian H; Manuel, Menchie; Moorthy, Mahesh; Lee, Theodore T M; Low, Dolyce H W; Missé, Dorothée; Gubler, Duane J; Ellis, Brett R; Ooi, Eng Eong; Pompon, Julien
2017-06-01
Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.
Epidemiology and pathogenesis of Bolivian hemorrhagic fever.
Patterson, Michael; Grant, Ashley; Paessler, Slobodan
2014-04-01
The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25-35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks. Copyright © 2014 Elsevier B.V. All rights reserved.
Sarikaya, Rabia; Selvi, Mahmut; Erkoç, Figen
2004-08-01
Fenitrothion, as an organophosphothionate insecticide, is a contact insecticide and selective acaricide, also used as a vector control agent for malaria in public health programs. A 96 h LC50 value of fenitrothion, a potential toxic pollutant contaminating aquatic ecosystems, was determined on the adult peppered corydoras (Corydoras paleatus). The experiments were repeated three times. The static test method of acute toxicity test was used. Water temperature was regulated at 23 +/- 1 degrees C. In addition, behavioral changes at each fenitrothion concentration were observed for the individual fish. Data obtained from acute toxicity tests were evaluated using the Probit Analysis Statistical Method. The 96 h LC50 value for peppered corydoras was estimated as 3.51 mg/l.
Abes, Saïd; Moulton, Hong M; Clair, Philippe; Prevot, Paul; Youngblood, Derek S; Wu, Rebecca P; Iversen, Patrick L; Lebleu, Bernard
2006-12-01
The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.
Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?
Rivero, Ana; Vézilier, Julien; Weill, Mylène; Read, Andrew F.; Gandon, Sylvain
2010-01-01
Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way—and there may be no simple generality—the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention. PMID:20700451
NASA Astrophysics Data System (ADS)
Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong
2018-05-01
This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.
Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L
2014-04-01
Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.
Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A
2005-12-01
In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.
Circulation of Tc Ia discrete type unit Trypanosoma cruzi in Yucatan Mexico.
Monteón, Victor; Triana-Chávez, Omar; Mejía-Jaramillo, Ana; Pennignton, Pamela; Ramos-Ligonio, Ángel; Acosta, Karla; Lopez, Ruth
2016-06-01
The etiologic agent Trypanosoma cruzi (Tc) has been grouped into six discrete type units (DTU I-VI); within DTU-I exists four subgroups defined Ia-Id. In Colombia, the genotype Ia is associated with human infection and domiciliated Rhodnius vector. In the Yucatan Peninsula of Mexico, the main vector involved in T. cruzi transmission is Triatoma dimidiata predominantly via sylvatic and peridomiciliated cycles. In this study, multiple sequence analysis of mini-exon intergenic regions of T. cruzi isolates obtained from T. dimidiata in the Yucatan Peninsula of Mexico revealed they belonged to Tc Ia DTU along with two additional Mexican strains located 1,570 km away from Yucatan. In conclusion Tc Ia circulates in the Yucatan peninsula in T. dimidiata vector and likewise in the northwest region of Mexico.
Polymers in Small-Interfering RNA Delivery
Singha, Kaushik; Namgung, Ran
2011-01-01
This review will cover the current strategies that are being adopted to efficiently deliver small interfering RNA using nonviral vectors, including the use of polymers such as polyethylenimine, poly(lactic-co-glycolic acid), polypeptides, chitosan, cyclodextrin, dendrimers, and polymers-containing different nanoparticles. The article will provide a brief and concise account of underlying principle of these polymeric vectors and their structural and functional modifications which were intended to serve different purposes to affect efficient therapeutic outcome of small-interfering RNA delivery. The modifications of these polymeric vectors will be discussed with reference to stimuli-responsiveness, target specific delivery, and incorporation of nanoconstructs such as carbon nanotubes, gold nanoparticles, and silica nanoparticles. The emergence of small-interfering RNA as the potential therapeutic agent and its mode of action will also be mentioned in a nutshell. PMID:21749290
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014.
Shortus, Matthew; Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia
2016-01-01
The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations' effectiveness.
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014
Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia
2016-01-01
Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
Rathor, H R; Mnzava, A; Bile, K M; Hafeez, A; Zaman, S
2010-01-01
The Health Services Academy has launched a 12-month postgraduate diploma course in medical entomology and disease vector control. The objective is to create a core of experts trained to prevent and control vector-borne diseases. The course is a response to the serious health and socioeconomic burden caused by a number of vector-borne diseases in Pakistan. The persistence, emergence and re-emergence of these diseases is mainly attributed to the scarcity of trained vector-control experts. The training course attempts to fill the gap in trained manpower and thus reduce the morbidity and mortality due to these diseases, resulting in incremental gains to public health. This paper aims to outline the steps taken to establish the course and the perceived challenges to be addressed in order to sustain its future implementation.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2009-01-01
Background Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. Methodology/Principal Findings A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m2 were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. Conclusion/Significance Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases. PMID:19365542
Targeting active cancer cells with smart bullets.
Martel, Sylvain
2017-03-01
Paul Ehrlich's 'magic bullet' concept has stimulated research for therapeutic agents with the capability to go straight to their intended targets. The 'magic bullet' concept is still considered the ultimate approach to maximize the therapeutic effects of a given therapeutic agent without affecting nontargeted tissues. But so far, there has never been a therapeutic agent or a delivery system that goes straight to the target in the body, and no approach has provided anything better than just a few percents of the total administered dose reaching the intended target sites. But engineering principles can transform systematically circulating vectors that so far were based primarily on physical characteristics and biochemical principles alone, as smart therapeutic agents with the required propulsion-navigation-homing capabilities to enable them to go straight to their intended targets.
Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham
2005-12-15
In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements.
Curtis-Robles, Rachel; Zecca, Italo B; Roman-Cruz, Valery; Carbajal, Ester S; Auckland, Lisa D; Flores, Isidore; Millard, Ann V; Hamer, Sarah A
2017-04-01
AbstractThe zoonotic, vector-borne parasite Trypanosoma cruzi causes Chagas disease throughout the Americas, but human and veterinary health burdens in the United States are unknown. We conducted a cross-sectional prevalence study in indigent, medically underserved human and cohabiting canine populations of seven south Texas border communities, known as colonias. Defining positivity as those samples that were positive on two or more independent tests, we found 1.3% seroprevalence in 233 humans, including one child born in the United States with only short-duration travel to Mexico. Additionally, a single child with no travel outside south Texas was positive on only a single test. Among 209 dogs, seroprevalence was 19.6%, but adjusted to 31.6% when including those dogs positive on only one test and extrapolating potential false negatives. Parasite DNA was detected in five dogs, indicating potential parasitemia. Seropositive dogs lived in all sampled colonias with no difference in odds of positivity across age, sex, or breed. Colonia residents collected two adult Triatoma gerstaeckeri and one nymph triatomine from around their homes; one of three bugs was infected with T. cruzi , and blood meal hosts were molecularly determined to include dog, human, and raccoon. Dogs and the infected vector all harbored T. cruzi discrete typing unit I, which has previously been implicated in human disease in the United States. Colonias harbor active T. cruzi transmission cycles and should be a priority in outreach and vector control initiatives.
Gonzalez, Marcelo S.; Souza, Marcela S.; Garcia, Eloi S.; Nogueira, Nadir F. S.; Mello, Cícero B.; Cánepa, Gaspar E.; Bertotti, Santiago; Durante, Ignacio M.; Azambuja, Patrícia; Buscaglia, Carlos A.
2013-01-01
Background TcSMUG L products were recently identified as novel mucin-type glycoconjugates restricted to the surface of insect-dwelling epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. The remarkable conservation of their predicted mature N-terminal region, which is exposed to the extracellular milieu, suggests that TcSMUG L products may be involved in structural and/or functional aspects of the interaction with the insect vector. Methodology and Principal Findings Here, we investigated the putative roles of TcSMUG L mucins in both in vivo development and ex vivo attachment of epimastigotes to the luminal surface of the digestive tract of Rhodnius prolixus. Our results indicate that the exogenous addition of TcSMUG L N-terminal peptide, but not control T. cruzi mucin peptides, to the infected bloodmeal inhibited the development of parasites in R. prolixus in a dose-dependent manner. Pre-incubation of insect midguts with the TcSMUG L peptide impaired the ex vivo attachment of epimastigotes to the luminal surface epithelium, likely by competing out TcSMUG L binding sites on the luminal surface of the posterior midgut, as revealed by fluorescence microscopy. Conclusion and Significance Together, these observations indicate that TcSMUG L mucins are a determinant of both adhesion of T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine, and the infection of the insect vector, R. prolixus. PMID:24244781
Beloti, Vitor Hugo; Alves, Gustavo; Coletta-Filho, Helvécio; Yamamoto, Pedro
2018-04-12
The Asian citrus psyllid (ACP) Diaphorina citri, vector of 'Candidatus Liberibacter asiaticus' (CLas), the putative causal agent of citrus Huanglongbing (HLB), is controlled by application of insecticides, which, although effective, has resulted in serious biological imbalances. New management tools are needed, and the technique known as 'trap crop' has been attracting attention. A potential plant for use as a trap crop in the management of the ACP is Murraya koenigii (curry leaf). However, for this plant to be used in the field, it needs to be attractive for the vector and must not harbor CLas. To verify the potential of curry leaf as trap crop for the management of HLB, we investigated the ability of D. citri to transmit CLas to M. koenigii, and to other test plants, including M. paniculata (orange jasmine) and 'Valencia' sweet-orange seedlings. For the tests, the insects were reared on a symptomatic CLas-infected plant and allowed to feed on the three test plant species. The overall maximum transmission rate for the citrus seedlings was 83.3%, and for orange jasmine was 33.3%. Successful transmission of CLas by ACP to the curry-leaf seedlings was not observed, and it was treated as immune to CLas. Supported by the previous results that M. koenigii is attractive for ACP, these results indicate that curry leaf is an excellent candidate for use as a trap crop, to improve the management of the insect vector and consequently of HLB.
Gómez-Melendro, Edith Natalia; Hernández, Carolina; González-Uribe, Catalina; Brochero, Helena
2014-01-01
Introduction: Knowledge of vector insect species, their habitat, and geographical distribution is crucial for determining the risk of transmission of the etiological agents that cause disease in humans, which allows defining strategies for prevention, surveillance, and control in line with the characteristics of each area. Objective: To determine the presence and public health importance of vectors of Chagas disease in the indigenous settlements of Marbacella and El Horno of the Wayúu ethnic group in the municipality of Riohacha, La Guajira, Colombia. Materials and Methods: From active search, installation and inspection of biosensors, and occasional catches, Hemiptera: Reduviidae: Triatomini were collected intra and in the peridomicile housing of the indigenous settlements of El Horno and Marbacella of the Wayúu ethnic group. Indices of intra and peridomestic infestation, colonization, density, dispersion, and natural infection with Trypanosoma cruzi Chagas, 1909 were calculated. Results: 79.6% (n = 90) of the specimens were collected in the peridomicile and 20.3% (n = 23) in the intradomicile, all corresponding to Triatoma maculata (Erichson, 1848). The natural infection indices with T. cruzi accounted for 43.5% for Marbacella and 36% for El Horno. Conclusion: This is the first reported capture of individuals of T. maculata, considered a secondary vector of Chagas disease in Colombia, naturally infected with T. cruzi in the municipality of Riohacha expanding the geographical distribution of the species in the department of La Guajira. PMID:25426481
Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M
2015-08-05
Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.
This presentation looks at the pathogenic microorganisms present in municipal sludges and the public's concerns with the land application of sludges/biosolids. Methods for reducing pathogens in sludge; methods for reducing the vector attractiveness of sludge; and issues associate...
Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes
USDA-ARS?s Scientific Manuscript database
The sand fly, Phlebotomus papatasi (Scopoli) is a major vector of Leishamnia major, the principle causative agent of human cutaneous leishmaniasis in the Middle East, southern Europe, northern Africa, and Southern Asia. Sand fly bites and leishmaniasis significantly impacted U.S. military operations...
42 CFR 71.50 - Scope and definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... importations of various animal hosts or vectors or other etiological agents from foreign countries into the... the following meanings: Animal product or Product means the hide, hair, skull, teeth, bones, claws, blood, tissue, or other biological samples from an animal, including trophies, mounts, rugs, or other...
42 CFR 71.50 - Scope and definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... importations of various animal hosts or vectors or other etiological agents from foreign countries into the... the following meanings: Animal product or Product means the hide, hair, skull, teeth, bones, claws, blood, tissue, or other biological samples from an animal, including trophies, mounts, rugs, or other...
biocontrol agents of agricultural insect pests and medically important insect vectors. More specifically, mermithid nematodes appear to regulate natural...Mermithids comprise a family of nematodes which invariably kill/sterilize their insect host(s). These nematodes have considerable potential as
Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve
2016-02-01
New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and through engaging powerful policy champions to drive policy change and thereby accelerate access to new vector control tools. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Genomic insights into the Ixodes scapularis tick vector of Lyme disease
Gulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.; Sonenshine, Daniel E.; Roe, R. Michael; Waterhouse, Robert M.; Sattelle, David B.; de la Fuente, José; Ribeiro, Jose M.; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R.; Walenz, Brian P.; Koren, Sergey; Hostetler, Jessica B.; Thiagarajan, Mathangi; Joardar, Vinita S.; Hannick, Linda I.; Bidwell, Shelby; Hammond, Martin P.; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L.; Almeida, Francisca C.; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W.; Bonzon-Kulichenko, Elena; Buckingham, Steven D.; Caffrey, Daniel R.; Caimano, Melissa J.; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J.; Giraldo-Calderón, Gloria I.; Grabowski, Jeffrey M.; Jiang, David; Khalil, Sayed M. S.; Kim, Donghun; Kocan, Katherine M.; Koči, Juraj; Kuhn, Richard J.; Kurtti, Timothy J.; Lees, Kristin; Lang, Emma G.; Kennedy, Ryan C.; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D.; Sakamoto, Joyce M.; Sánchez-Gracia, Alejandro; Severo, Maiara S.; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P.; Vázquez, Jesús; Vieira, Filipe G.; Villar, Margarita; Wespiser, Adam R.; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V.; Barker, Stephen C.; Shao, Renfu; Zdobnov, Evgeny M.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H. F.; Nelson, David R.; Unger, Maria F.; Tubio, Jose M. C.; Tu, Zhijian; Robertson, Hugh M.; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R.; Lawson, Daniel; Wikel, Stephen K.; Nene, Vishvanath M.; Fraser, Claire M.; Collins, Frank H.; Birren, Bruce; Nelson, Karen E.; Caler, Elisabet; Hill, Catherine A.
2016-01-01
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent. PMID:26856261
Urbán, Patricia; Ranucci, Elisabetta; Fernàndez-Busquets, Xavier
2015-11-01
Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial compounds exclusively to Plasmodium-infected cells, thus increasing drug efficacy and minimizing the induction of resistance to newly developed therapeutic agents. Polyamidoamine-derived nanovectors combine into a single chemical structure drug encapsulating capacity, antimalarial activity, low unspecific toxicity, specific targeting to Plasmodium, optimal in vivo activity and affordable synthesis cost. After having shown their efficacy in targeting drugs to intraerythrocytic parasites, now polyamidoamines face the challenge of spearheading a new generation of nanocarriers aiming at the malaria parasite stages in the mosquito vector.
Genomic insights into the Ixodes scapularis tick vector of Lyme disease.
Gulia-Nuss, Monika; Nuss, Andrew B; Meyer, Jason M; Sonenshine, Daniel E; Roe, R Michael; Waterhouse, Robert M; Sattelle, David B; de la Fuente, José; Ribeiro, Jose M; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R; Walenz, Brian P; Koren, Sergey; Hostetler, Jessica B; Thiagarajan, Mathangi; Joardar, Vinita S; Hannick, Linda I; Bidwell, Shelby; Hammond, Martin P; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L; Almeida, Francisca C; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W; Bonzon-Kulichenko, Elena; Buckingham, Steven D; Caffrey, Daniel R; Caimano, Melissa J; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J; Giraldo-Calderón, Gloria I; Grabowski, Jeffrey M; Jiang, David; Khalil, Sayed M S; Kim, Donghun; Kocan, Katherine M; Koči, Juraj; Kuhn, Richard J; Kurtti, Timothy J; Lees, Kristin; Lang, Emma G; Kennedy, Ryan C; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D; Sakamoto, Joyce M; Sánchez-Gracia, Alejandro; Severo, Maiara S; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P; Vázquez, Jesús; Vieira, Filipe G; Villar, Margarita; Wespiser, Adam R; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V; Barker, Stephen C; Shao, Renfu; Zdobnov, Evgeny M; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H F; Nelson, David R; Unger, Maria F; Tubio, Jose M C; Tu, Zhijian; Robertson, Hugh M; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R; Lawson, Daniel; Wikel, Stephen K; Nene, Vishvanath M; Fraser, Claire M; Collins, Frank H; Birren, Bruce; Nelson, Karen E; Caler, Elisabet; Hill, Catherine A
2016-02-09
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
Schwarz, Alexandra; Helling, Stefan; Collin, Nicolas; Teixeira, Clarissa R.; Medrano-Mercado, Nora; Hume, Jen C. C.; Assumpção, Teresa C.; Marcus, Katrin; Stephan, Christian; Meyer, Helmut E.; Ribeiro, José M. C.; Billingsley, Peter F.; Valenzuela, Jesus G.; Sternberg, Jeremy M.; Schaub, Günter A.
2009-01-01
Background Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. Methodology/Principal Findings T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. Conclusions/Significance The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns. PMID:19841746
Parasite-Vector Interaction of Chagas Disease: A Mini-Review.
de Oliveira, Ana Beatriz Bortolozo; Alevi, Kaio Cesar Chaboli; Imperador, Carlos Henrique Lima; Madeira, Fernanda Fernandez; Azeredo-Oliveira, Maria Tercília Vilela de
2018-03-01
Trypanosoma cruzi is a protozoan of great importance to public health: it has infected millions of people in the world and is the etiologic agent of Chagas disease, which can cause cardiac and gastrointestinal disorders in patients and may even lead to death. The main vector of transmission of this parasite is triatomine bugs, which have a habit of defecating while feeding on blood and passing the parasite to their own hosts through their feces. Although it has been argued that T. cruzi is not pathogenic for this vector, other studies indicate that the success of the infection depends on several molecules and factors, including the insect's intestinal microbiota, which may experience changes as a result of infection that include decreased fitness. Moreover, the effects of infection depend on the insect species, the parasite strain, and environmental conditions involved. However, the parasite-vector interaction is still underexplored. A deeper understanding of this relationship is an important tool for discovering new approaches to T. cruzi transmission and Chagas disease.
NASA Astrophysics Data System (ADS)
Saraf, Anita
The development of novel strategies for tissue engineering entails the evolution of biopolymers into multifunctional constructs that can support the proliferation of cells and stimulate their differentiation into functional tissues. With that in mind, biocompatible polymers were fabricated into a novel gene delivery agent as well as three dimensional scaffolds that act as reservoirs and controlled release constructs. To fabricate a novel gene delivery agent a commercially available cationic polymer, poly(ethylenimine), PEI, was chemically conjugated to a ubiquitous glycosaminoglycan, hyaluronic acid (HA). The novel polymer, PEI-HA, had significantly reduced toxicity and improved transfection efficiency with multipotent human mesenchymal stem cells. This transfection efficiency could further be modulated by changing the concentration of sodium chloride and temperature used to assemble PEI-HA/DNA complexes. To facilitate the regulated delivery of these complexes in the context of tissue engineering, an emerging technology for scaffold fabrication, coaxial electrospinning was adapted to include PEI-HA and plasmid DNA within the scaffold fibers. Initially, a factorial design was employed to assess the influence of processing parameters in the absence of gene delivery vectors and plasmids. The study elucidated the role of sheath polymer concentration and core polymer concentration and molecular weight and the presence of sodium chloride on fiber diameters and morphologies. Subsequently, PEI-HA and plasmid DNA were entrapped within the sheath and core compartments of these fibers and the influence of processing parameters was assessed in the context of fiber diameter, release kinetics and transfection efficiency over a period of 60 days. The release of PEI-HA was found to be dependent upon the loading dose of the vector and plasmid. However, the transfection efficiency correlated to the core polymer properties, concentration and molecular weight. The processing parameters could modulate cell transfection for up to 21 days and continue to transfect cells for up to 60 days. Thus, scaffolds with tunable release kinetics and transfection efficiencies can be fabricated using coaxial electrospinning, which can further be used for tissue engineering and gene delivery applications.
Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad; Kroeger, Axel
2016-05-01
Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included 'sand fly bionomics', 'habitat', and 'visceral leishmaniasis/kala-azar vector control' using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC.
Small silencing RNAs: state-of-the-art.
Grimm, Dirk
2009-07-25
Over just a single decade, we have witnessed the rapid maturation of the field of RNA interference - the sequence-specific gene silencing mediated by small double-stranded RNAs - directly from its infancy into adulthood. With exciting data currently emerging from first clinical trials, it is now more likely than ever that RNAi drugs will soon provide another potent class of agents in our battle against infectious and genetic diseases. Accelerating this process and adding to RNAi's promise is our steadily expanding arsenal of innovative RNAi-based experimental tools and clinically applicable technologies. This article will critically review a selection of relevant recent advances in RNAi therapeutics, from novel asymmetric or bi-functional siRNA designs, deliberate use of small RNAs to regulate nuclear transcription, engineering of potent adeno-associated viral vectors for shRNA expression, exploitation of endogenous miRNAs to control transgene expression or vector tropism, to elegant attempts to inhibit cellular miRNAs involved in human disease. This review will also present cautionary notes on the potential risks inherent to in vivo RNAi applications, before discussing the latest surprising findings on circulating miRNAs in human body fluids, and concluding with an outlook into the possible future of RNAi as an increasingly powerful biomedical tool.
Canine babesiosis in northern Portugal and molecular characterization of vector-borne co-infections
2010-01-01
Background Protozoa and bacteria transmitted by arthropods, including ticks and phlebotomine sand flies, may cause a wide range of canine vector-borne diseases. Dogs can be simultaneously or sequentially infected with multiple pathogens. Canine babesiosis caused by Babesia canis canis and Babesia canis vogeli is known to occur in Portugal. This study assessed, by means of blood smear examination, PCR and DNA nucleotide sequencing, the presence of Babesia spp. and co-infecting agents Leishmania, Anaplasma/Ehrlichia and Hepatozoon in 45 dogs from northern Portugal clinically suspected of babesiosis. Results Forty-four dogs (98%) had infection with B. canis canis and one with B. canis vogeli. Co-infections were detected in nine animals (20%). Eight dogs were found infected with two vector-borne agents: six with B. canis canis and Leishmania infantum; one with B. canis canis and Ehrlichia canis; and one with B. canis canis and Hepatozoon canis. Another dog was infected with three vector-borne pathogens: B. canis vogeli, E. canis and L. infantum. Overall, L. infantum was found in seven (16%), E. canis in two (4%), and H. canis in one (2%) out of the 45 dogs with babesiosis. Almost 90% of the 45 cases of canine babesiosis were diagnosed in the colder months of October (18%), November (27%), December (20%), February (13%) and March (9%). Co-infections were detected in February, March, April, May, October and November. Twenty-two (50%) out of 44 dogs infected with B. canis were found infested by ticks including Dermacentor spp., Ixodes spp. and Rhipicephalus sanguineus. Mortality (9%) included two co-infected dogs that died spontaneously and two with single infections that were euthanized. Conclusions Babesia canis canis is the main etiological agent of canine babesiosis in northern Portugal. A higher sensitivity of Babesia spp. detection was obtained with PCR assays, compared to the observation of blood smears. Twenty percent of the dogs were co-infected with L. infantum, E. canis or H. canis. Furthermore, this is the first molecular identification of H. canis in dogs from northern Portugal. PMID:20377861
Management of arthropod pathogen vectors in North America: Minimizing adverse effects on pollinators
Ginsberg, Howard; Bargar, Timothy A.; Hladik, Michelle L.; Lubelczyk, Charles
2017-01-01
Tick and mosquito management is important to public health protection. At the same time, growing concerns about declines of pollinator species raise the question of whether vector control practices might affect pollinator populations. We report the results of a task force of the North American Pollinator Protection Campaign (NAPPC) that examined potential effects of vector management practices on pollinators, and how these programs could be adjusted to minimize negative effects on pollinating species. The main types of vector control practices that might affect pollinators are landscape manipulation, biocontrol, and pesticide applications. Some current practices already minimize effects of vector control on pollinators (e.g., short-lived pesticides and application-targeting technologies). Nontarget effects can be further diminished by taking pollinator protection into account in the planning stages of vector management programs. Effects of vector control on pollinator species often depend on specific local conditions (e.g., proximity of locations with abundant vectors to concentrations of floral resources), so planning is most effective when it includes collaborations of local vector management professionals with local experts on pollinators. Interventions can then be designed to avoid pollinators (e.g., targeting applications to avoid blooming times and pollinator nesting habitats), while still optimizing public health protection. Research on efficient targeting of interventions, and on effects on pollinators of emerging technologies, will help mitigate potential deleterious effects on pollinators in future management programs. In particular, models that can predict effects of integrated pest management on vector-borne pathogen transmission, along with effects on pollinator populations, would be useful for collaborative decision-making.
Chanda, Emmanuel; Govere, John M; Macdonald, Michael B; Lako, Richard L; Haque, Ubydul; Baba, Samson P; Mnzava, Abraham
2013-10-25
Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial.
Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan
2013-01-01
Background Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. Case description A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. Discussion South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. Conclusion The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial. PMID:24156749
Hybrid biosynthetic gene therapy vector development and dual engineering capacity.
Jones, Charles H; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P; Pfeifer, Blaine A
2014-08-26
Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.
Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan
2013-12-01
Mosquitoes act as a vector for most of the life-threatening diseases like malaria, yellow fever, dengue fever, chikungunya fever, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management, emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Sida acuta plant leaf extract against late third instar larvae of Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (10, 20, 30, 40, and 50 μg/mL) and aqueous leaf extract (50, 100, 150, 200, and 250 μg/mL) were tested against the larvae of C. quinquefasciatus, A. stephensi and A. aegypti. The synthesized AgNPs from S. acuta leaf were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of S. acuta for all three important vector mosquitoes. The LC50 and LC90 values of S. acuta aqueous leaf extract appeared to be most effective against A. stephensi (LC50, 109.94 μg/mL and LC90, 202.42 μg/mL) followed by A. aegypti LC50 (119.32 μg/mL and LC90, 213.84 μg/mL) and C. quinquefasciatus (LC50, 130.30 μg/mL and LC90, 228.20 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 21.92, and 41.07 μg/mL; A. aegypti had LC50 and LC90 values of 23.96, and 44.05 μg/mL; C. quinquefasciatus had LC50 and LC90 values of 26.13 and 47.52 μg/mL. These results suggest that the use of S. acuta synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target vector mosquitoes. This is the first report on the mosquito larvicidal activity of the plant aqueous extract and synthesized nanoparticles.
Ghosh, Srikant; Nagar, Gaurav
2014-12-01
Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.
Vector control of wind turbine on the basis of the fuzzy selective neural net*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.
NASA Astrophysics Data System (ADS)
Shinnaka, Shinji; Sano, Kousuke
This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.
The Cost of Dengue Vector Control Activities in Malaysia by Different Service Providers.
Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Venugopalan, B; Halasa, Yara A; Shepard, Donald S
2015-11-01
We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia. © 2015 APJPH.
Decentralized Patrolling Under Constraints in Dynamic Environments.
Shaofei Chen; Feng Wu; Lincheng Shen; Jing Chen; Ramchurn, Sarvapali D
2016-12-01
We investigate a decentralized patrolling problem for dynamic environments where information is distributed alongside threats. In this problem, agents obtain information at a location, but may suffer attacks from the threat at that location. In a decentralized fashion, each agent patrols in a designated area of the environment and interacts with a limited number of agents. Therefore, the goal of these agents is to coordinate to gather as much information as possible while limiting the damage incurred. Hence, we model this class of problem as a transition-decoupled partially observable Markov decision process with health constraints. Furthermore, we propose scalable decentralized online algorithms based on Monte Carlo tree search and a factored belief vector. We empirically evaluate our algorithms on decentralized patrolling problems and benchmark them against the state-of-the-art online planning solver. The results show that our approach outperforms the state-of-the-art by more than 56% for six agents patrolling problems and can scale up to 24 agents in reasonable time.
Candasamy, Sadanandane; Ayyanar, Elango; Paily, Kummankottil; Karthikeyan, Patricia Anitha; Sundararajan, Agatheswaran; Purushothaman, Jambulingam
2016-12-01
Human cases of scrub typhus are reported every year from Puducherry and adjoining areas in southern India. However, information on the presence of causative agent, Orientia tsutsugamushi, and its vectors is lacking. Hence, the objective of the study was to find out the vector as well as pathogen distribution in rodents and shrews present in the scrub typhus-reported areas in southern India. Trombiculid mites were collected by combing rats and shrews collected using Sherman traps and identified to species level following standard taxonomical keys. The serum samples of the animals were used for Weil-Felix test and the clots containing blood cells were used for DNA extraction and polymerase chain reaction (PCR). A total of 181 animals comprising four rodent species and one shrew species were collected from 12 villages. High proportion of chiggers was collected from the shrew, Suncus murinus (79.1%) and Rattus rattus (47.6%). A total of 10,491 trombiculid mites belonging to nine species were collected. Leptotrombidium deliense, the known vector of scrub typhus pathogen, was the predominant species (71.0%) and the chigger (L. deliense) index was 41.1 per animal. Of the 50 animals screened for the pathogen, 28 showed agglutination against OX-K in Weil-Felix test indicating the presence of antibodies against O. tsutsugamushi, the causative agent of scrub typhus. PCR carried out with the DNA extracted from blood samples of two of the animals were positive for GroEl gene of O. tsutsugamushi. L. deliense index was well above the critical limit of chigger load, indicating that all the villages were receptive for high risk of transmission of scrub typhus to human. Pathogen positivity was higher among animals collected from villages recorded for higher chigger indices due to active transmission between the chigger mites and reservoir host animals. The results are suggestive of routine vector/pathogen surveillance at hot spots to initiate timely preventive measures.
Gürtler, Ricardo E
2011-01-01
Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying) and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical. PMID:19753458
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Wang, Kon-Sheng Charles
1997-01-01
The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.
An optimal control strategies using vaccination and fogging in dengue fever transmission model
NASA Astrophysics Data System (ADS)
Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan
2017-08-01
This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.
Wu, Y; Ling, F; Hou, J; Guo, S; Wang, J; Gong, Z
2016-07-01
Vector-borne diseases are one of the world's major public health threats and annually responsible for 30-50% of deaths reported to the national notifiable disease system in China. To control vector-borne diseases, a unified, effective and economic surveillance system is urgently needed; all of the current surveillance systems in China waste resources and/or information. Here, we review some current surveillance systems and present a concept for an integrated surveillance system combining existing vector and vector-borne disease monitoring systems. The integrated surveillance system has been tested in pilot programmes in China and led to a 21·6% cost saving in rodent-borne disease surveillance. We share some experiences gained from these programmes.
Yadav, Ruchi; Tyagi, Varun; Tikar, Sachin N; Sharma, Ajay K; Mendki, Murlidhar J; Jain, Ashok K; Sukumaran, Devanathan
2014-01-01
Background: Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory. Methods: Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20–400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior) against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50), while OAI (Oviposition activity index) was calculated for oviposition altering activity of the plant extracts. Results: Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466) at 100ppm. Conclusion: Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito. PMID:26114131
Health research ethics in malaria vector trials in Africa
2010-01-01
Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks. PMID:21144083
Beloti, V H; Alves, G R; Moral, R A; Demétrio, C G B; Yamamoto, P T
2018-06-01
One method for controlling the Asian citrus psyllid (ACP) Diaphorina citri Kuwayama, the vector of the putative causal agent of Huanglongbing, uses the parasitoid Tamarixia radiata (Waterston). However, the general intensive use of insecticides has reduced the numbers of this parasitoid. This study evaluated the effect of the residual action of 24 insecticides on T. radiata and also determined the differential toxicity of insecticides to D. citri and T. radiata, using three bioassays. In the first, when adults of the parasitoid were exposed to residues of the 24 insecticides, ten were considered short-life (class 1), six slightly persistent (class 2), five moderately persistent (class 3), and three insecticides were considered persistent (class 4), under the IOBC/WPRS classification system. The second bioassay evaluated the sublethal concentrations of the persistent insecticides (formetanate, dimethoate, spinosad). Increasing the concentrations of the insecticides increased the number that were classified as persistent. In the third bioassay, evaluation of the differential toxicity of eight insecticides to the ACP and the parasitoid showed that chlorpyrifos and bifenthrin were more harmful to T. radiata. Therefore, these two insecticides are not recommended for application at the time of parasitoid release. Cypermethrin, imidacloprid, and dimethoate caused higher mortality of D. citri and are most often recommended in IPM programs. The choice of an insecticide for the control of citrus pests must be made with care, aiming to preserve the natural enemies in the ecosystem, and thereby contribute to the success of biological control.
Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni
2015-12-01
Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.
Implementation of a new fuzzy vector control of induction motor.
Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz
2014-05-01
The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Return of epidemic dengue in the United States: implications for the public health practitioner.
Bouri, Nidhi; Sell, Tara Kirk; Franco, Crystal; Adalja, Amesh A; Henderson, D A; Hynes, Noreen A
2012-01-01
Conditions that facilitate sustained dengue transmission exist in the United States, and outbreaks have occurred during the past decade in Texas, Hawaii, and Florida. More outbreaks can also be expected in years to come. To combat dengue, medical and public health practitioners in areas with mosquito vectors that are competent to transmit the virus must be aware of the threat of reemergent dengue, and the need for early reporting and control to reduce the impact of dengue outbreaks. Comprehensive dengue control includes human and vector surveillance, vector management programs, and community engagement efforts. Public health, medical, and vector-control communities must collaborate to prevent and control disease spread. Policy makers should understand the role of mosquito abatement and community engagement in the prevention and control of the disease.
Study on Japanese Cornmint in Mississippi
USDA-ARS?s Scientific Manuscript database
Japanese cornmint (Mentha canadensis L.) is a subtropical essential oil crop grown in Asia and South America. The essential oil of Japanese cornmint is the source for production of crystal (-)-menthol, which is a major aromatic agent used as a flavor, fragrance, and cooling sensation vector in the ...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of the bacterium Xylella fastidiosa, the causal agent of Pierce’s disease of grapevine. Area-wide applications of neonicotinoid insecticides have suppressed GWSS populati...
USDA-ARS?s Scientific Manuscript database
Candidatus Liberibacter asiaticus (Las) is the primary causal agent of huanglongbing (HLB), the most devastating disease of citrus worldwide. Currently the known insect vectors of the HLB-associated bacteria are three species of psyllids, Diaphorina citri (Hemiptera: Sternorrhyncha: Psyllidae), Trio...
Propagation of Homalodisca Coagulata Virus-01 via Homalodisca Vitripennis cell culture
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa, a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevin...
21 CFR 1240.3 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... similar establishments, or (2) any other food waste containing pork. (g) Incubation period. The period... intermediate plant or animal host, vector, or the inanimate environment. (c) Communicable period. The period or periods during which the etiologic agent may be transferred directly or indirectly from the body of the...
21 CFR 1240.3 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... similar establishments, or (2) any other food waste containing pork. (g) Incubation period. The period... intermediate plant or animal host, vector, or the inanimate environment. (c) Communicable period. The period or periods during which the etiologic agent may be transferred directly or indirectly from the body of the...
21 CFR 1240.3 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... similar establishments, or (2) any other food waste containing pork. (g) Incubation period. The period... intermediate plant or animal host, vector, or the inanimate environment. (c) Communicable period. The period or periods during which the etiologic agent may be transferred directly or indirectly from the body of the...
Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.
2010-01-01
The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859
Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael
2016-01-01
Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.
Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto
2015-01-01
Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951
Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham
2005-01-01
Background In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. Objectives To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Methods Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. Results IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. Conclusion People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements. PMID:16356177
Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo
2009-01-01
Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346
Controlling Malaria Using Livestock-Based Interventions: A One Health Approach
Franco, Ana O.; Gomes, M. Gabriela M.; Rowland, Mark; Coleman, Paul G.
2014-01-01
Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases. PMID:25050703
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities
Manuel, Menchie; Low, Dolyce H. W.; Missé, Dorothée; Gubler, Duane J.; Ellis, Brett R.; Ooi, Eng Eong; Pompon, Julien
2017-01-01
Background Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. Methods We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. Results We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Conclusions Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management. PMID:28650959
Herz, Stefan; Füssl, Monika; Steiger, Sandra; Koop, Hans-Ulrich
2005-12-01
Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named "operon-extension" vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5'-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5'-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named "split" plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.
Méndez-López, María R; Attoui, Houssam; Florin, David; Calisher, Charles H; Florian-Carrillo, J Christian; Montero, Stephanie
2015-12-01
Since 1983, cases of diseased donkeys and horses with symptoms similar to those produced by alphaviruses were identified in two departments in northern Peru; however serological testing ruled out the presence of those viruses and attempts to isolate an agent were also unproductive. In 1997, also in northern Peru, two new orbiviruses were discovered, each recognized as a causative agent of neurological diseases in livestock and domestic animals and, at the same time, mosquitoes were found to be infected with these viruses. Peruvian horse sickness virus (PHSV) was isolated from pools of culicid mosquitoes, Aedes serratus and Psorophora ferox, and Yunnan virus (YUOV) was isolated from Aedes scapularis in the subtropical jungle (upper jungle) located on the slope between the east side of the Andes and the Amazonian basin in the Department of San Martín. Both viruses later were recovered from mosquitoes collected above the slope between the west side of the Andes and the coast (Department of Piura) in humid subtropical areas associated with the Piura River basin. In this region, PHSV was isolated from Anopheles albimanus and YUOV was isolated from Ae. scapularis. We discuss the ecology of vector mosquitoes during the outbreaks in the areas where these mosquitoes were found. © 2015 The Society for Vector Ecology.
Community Participation in Chagas Disease Vector Surveillance: Systematic Review
Abad-Franch, Fernando; Vega, M. Celeste; Rolón, Miriam S.; Santos, Walter S.; Rojas de Arias, Antonieta
2011-01-01
Background Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. Methodology/Principal Findings We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. Conclusions/Significance CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies. PMID:21713022
Mosquito vector biology and control in latin america-a 24th symposium.
Clark, Gary G; Fernández-Salas, Ildefonso
2014-09-01
The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA, in February 2014. The principal objective, for the previous 23 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 26 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical control, studies of dengue viruses, and insecticide resistance associated with Aedes aegypti; Anopheles vectors of malaria; essential oils; and ethnic groups and vector-borne diseases.
Caprara, Andrea; De Oliveira Lima, José Wellington; Rocha Peixoto, Ana Carolina; Vasconcelos Motta, Cyntia Monteiro; Soares Nobre, Joana Mary; Sommerfeld, Johannes; Kroeger, Axel
2015-01-01
Background This study intended to implement a novel intervention strategy, in Brazil, using an ecohealth approach and analyse its effectiveness and costs in reducing Aedes aegypti vector density as well as its acceptance, feasibility and sustainability. The intervention was conducted from 2012 to 2013 in the municipality of Fortaleza, northeast Brazil. Methodology A cluster randomized controlled trial was designed by comparing ten intervention clusters with ten control clusters where routine vector control activities were conducted. The intervention included: community workshops; community involvement in clean-up campaigns; covering the elevated containers and in-house rubbish disposal without larviciding; mobilization of schoolchildren and senior inhabitants; and distribution of information, education and communication (IEC) materials in the community. Results Differences in terms of social participation, commitment and leadership were present in the clusters. The results showed the effectiveness of the intervention package in comparison with the routine control programme. Differences regarding the costs of the intervention were reasonable and could be adopted by public health services. Conclusions Embedding social participation and environmental management for improved dengue vector control was feasible and significantly reduced vector densities. Such a participatory ecohealth approach offers a promising alternative to routine vector control measures. PMID:25604760
Knapp, Jennifer; Macdonald, Michael; Malone, David; Hamon, Nicholas; Richardson, Jason H
2015-09-26
Malaria vector control technology has remained largely static for decades and there is a pressing need for innovative control tools and methodology to radically improve the quality and efficiency of current vector control practices. This report summarizes a workshop jointly organized by the Innovative Vector Control Consortium (IVCC) and the Armed Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main topics were discussed: the limitations with current tools and techniques used for indoor residual spraying (IRS), technology innovation to improve efficacy of IRS programmes, and truly disruptive application technology beyond IRS. The group identified several opportunities to improve application technology to include: insuring all IRS programmes are using constant flow valves and erosion resistant tips; introducing compression sprayer improvements that help minimize pesticide waste and human error; and moving beyond IRS by embracing the potential for new larval source management techniques and next generation technology such as unmanned "smart" spray systems. The meeting served to lay the foundation for broader collaboration between the IVCC and AFPMB and partners in industry, the World Health Organization, the Bill and Melinda Gates Foundation and others.
Malaria Vector Control Still Matters despite Insecticide Resistance.
Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna
2017-08-01
Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wolbachia: A biological control strategy against arboviral diseases.
Mohanty, Ipsita; Rath, Animesha; Mahapatra, Namita; Hazra, Rupenangshu K
2016-01-01
Vector-borne diseases particularly those transmitted by mosquitoes like Dengue are among the leading causes of mortality and morbidity in human population. There are no effective vaccines or treatment against dengue fever till date and the control methods are limited. So, new approaches are urgently in need to reverse these trends. Vector control is currently the primary intervention tool. Strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. Wolbachia an endosymbiont of arthropod vectors is being explored as a novel ecofriendly control strategy. Studies in Drosophila have shown that Wolbachia can confer resistance to diverse RNA viruses and protect flies from virus-induced mortality. This review was focused on biology of the Wolbachia and its implication as a control measure for arboviral diseases mainly Dengue and Chikungunya.
2014-01-01
Background The geographic distribution of canine infection with vector-borne disease agents in the United States appears to be expanding. Methods To provide an updated assessment of geographic trends in canine infection with Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia spp., and Anaplasma spp., we evaluated results from an average of 3,588,477 dogs tested annually by veterinarians throughout the United States from 2010 – 2012. Results As in an earlier summary report, the percent positive test results varied by agent and region, with antigen of D. immitis and antibody to Ehrlichia spp. most commonly identified in the Southeast (2.9% and 3.2%, respectively) and antibody to both B. burgdorferi and Anaplasma spp. most commonly identified in the Northeast (13.3% and 7.1%, respectively) and upper Midwest (4.4% and 3.9%, respectively). Percent positive test results for D. immitis antigen were lower in every region considered, including in the Southeast, than previously reported. Percent positive test results for antibodies to B. burgdorferi and Ehrlichia spp. were higher nationally than previously reported, and, for antibodies to Anaplasma spp., were higher in the Northeast but lower in the Midwest and West, than in the initial report. Annual reports of human cases of Lyme disease, ehrlichiosis, and anaplasmosis were associated with percent positive canine test results by state for each respective tick-borne disease agent (R2 = 0.701, 0.457, and 0.314, respectively). Within endemic areas, percent positive test results for all three tick-borne agents demonstrated evidence of geographic expansion. Conclusions Continued national monitoring of canine test results for vector-borne zoonotic agents is an important tool for accurately mapping the geographic distribution of these agents, and greatly aids our understanding of the veterinary and public health threats they pose. PMID:24886589
1991-07-01
nose bodyj Top view of velocity probe PropllerRotating shaft ’V Generator Aerodynamic shape like a small elevator RPV’s attitude Irrespctiveduring...28 Part It: Maximizing Thrust-Vectoring Control Power and Agility Metrics ............ 29 Laboratory & Flight...8217Ideal Standards’ - Ba- ror maximizing PST-TV-aglilty/rIlght-control power , iI - Extracting new TV-potentials to further reduce any righter’s optical
Partial proteome of the corynetoxin-producing Gram-positive bacterium, Rathayibacter toxicus
USDA-ARS?s Scientific Manuscript database
Rathayibacter toxicus is a Gram-positive bacterium that is the causative agent of annual ryegrass toxicity (ARGT), a disease that causes devastating losses in the Australian livestock industry. R. toxicus exhibits a complex life cycle, using the nematode Anguina funesta as a physical vector to carry...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND TRANSFER OF SELECT... ensure viability for future use, such as in a freezer or lyophilized materials), including: (i) The name... by whom and when returned to storage and by whom; (v) The select agent used and purpose of use; (vi...
76 FR 63891 - Foreign Quarantine; Etiological Agents, Hosts, and Vectors
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... DEPARTMENT OF HEALTH AND HUMAN SERVICES 42 CFR Part 71 [Docket No. CDC-2011-0007] RIN 0920-AA37... Prevention (CDC), Department of Health and Human Services (HHS). ACTION: Notice of proposed rulemaking... Human Services (HHS) is issuing this Notice of Proposed Rulemaking (NPRM) to revise the regulations that...
Conservation of avian species: Chapter 23
Olsen, Glenn H.; Crosta, Lorenzo; Gartrell, Brett D.; Marsh, Philip M.; Stringfield, Cynthia E.
2016-01-01
Health of humans, animals, plants, and ecosystems are intertwined. Disturbance tips the balance in favor of weedy species, vectors, and disease agents. Biodiversity is important to prevent imbalance in nature. However, more scholarship is needed, and there is still much more to study, understand, and manage than we currently know.
Natural infection of Sorghum bicolor germplasm by Sugarcane yellow leaf virus in Florida
USDA-ARS?s Scientific Manuscript database
Sugarcane yellow leaf virus (SCYLV), the causal agent of sugarcane yellow leaf, is vectored by the aphid Melanaphis sacchari. Although sugarcane is the primary host of SCYLV, two new natural hosts were recently identified in Florida: the weed Columbus grass (Sorghum almum) and grain sorghum (Sorghum...
Effect of sulfuryl fluoride on the pinewood nematode in pine wood
L. David Dwinell; E. Thoms; S. Prabhakaran
2003-01-01
The pinewood nematode (PUTN) (Bursaphelenchus xylophilus), the causal agent of pine wilt disease, has been intercepted in pine chips, unseasoned pine lumber, and wood packing material (WPM). Likewise, the PWN's insect vectors, Monochamus spp. (pine sawyers), have been found in pallets, crates and dunnage. The PWN, which is...
Geosmithia morbida, the causal agent of thousand cankers disease, found in Indiana
Matthew Ginzel; Jennifer Juzwik
2014-01-01
Thousand Cankers Disease (TCD) is caused by a fungus (Geosmithia morbida) that is vectored by a bark beetle, the walnut twig beetle (WTB), Pityophthorus juglandis (Coleoptera: Curculionidae: Scolytinae). The disease was first recognized in 2008 and has caused the widespread death of walnut trees (Juglans sp.)...
Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.
Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I
2015-02-01
Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.
Improvement in vehicle agility and stability by G-Vectoring control
NASA Astrophysics Data System (ADS)
Yamakado, Makoto; Takahashi, Jyunya; Saito, Shinjiro; Yokoyama, Atsushi; Abe, Masato
2010-12-01
We extracted a trade-off strategy between longitudinal traction/braking force and cornering force by using jerk information through observing an expert driver's voluntary braking and turning action. Using the expert driver's strategy, we developed a new control concept, called 'G-Vectoring control', which is an automatic longitudinal acceleration control (No DYC) in accordance with the vehicle's lateral jerk caused by the driver's steering manoeuvres. With the control, the direction of synthetic acceleration (G) changes seamlessly (i.e. vectoring). The improvements in vehicle agility and stability were evaluated by theoretical analysis and through computer simulation. We then introduced a 'G-Vectoring' equipped test vehicle realised by brake-by-wire technology and executed a detailed examination on a test track. We have confirmed that the vehicle motion in view of both handling and ride quality has improved dramatically.
Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.
Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian
2015-06-03
Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.
NASA Technical Reports Server (NTRS)
Bates, Lisa B.; Young, David T.
2012-01-01
This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.