van den Berg, Henk; Hii, Jeffrey; Soares, Agnes; Mnzava, Abraham; Ameneshewa, Birkinesh; Dash, Aditya P; Ejov, Mikhail; Tan, Soo Hian; Matthews, Graham; Yadav, Rajpal S; Zaim, Morteza
2011-05-14
It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach.
2011-01-01
Background It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. Methods A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Results Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Conclusions Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach. PMID:21569601
Management of arthropod pathogen vectors in North America: Minimizing adverse effects on pollinators
Ginsberg, Howard; Bargar, Timothy A.; Hladik, Michelle L.; Lubelczyk, Charles
2017-01-01
Tick and mosquito management is important to public health protection. At the same time, growing concerns about declines of pollinator species raise the question of whether vector control practices might affect pollinator populations. We report the results of a task force of the North American Pollinator Protection Campaign (NAPPC) that examined potential effects of vector management practices on pollinators, and how these programs could be adjusted to minimize negative effects on pollinating species. The main types of vector control practices that might affect pollinators are landscape manipulation, biocontrol, and pesticide applications. Some current practices already minimize effects of vector control on pollinators (e.g., short-lived pesticides and application-targeting technologies). Nontarget effects can be further diminished by taking pollinator protection into account in the planning stages of vector management programs. Effects of vector control on pollinator species often depend on specific local conditions (e.g., proximity of locations with abundant vectors to concentrations of floral resources), so planning is most effective when it includes collaborations of local vector management professionals with local experts on pollinators. Interventions can then be designed to avoid pollinators (e.g., targeting applications to avoid blooming times and pollinator nesting habitats), while still optimizing public health protection. Research on efficient targeting of interventions, and on effects on pollinators of emerging technologies, will help mitigate potential deleterious effects on pollinators in future management programs. In particular, models that can predict effects of integrated pest management on vector-borne pathogen transmission, along with effects on pollinator populations, would be useful for collaborative decision-making.
Rosecrans, Kathryn; Cruz-Martin, Gabriela; King, Ashley; Dumonteil, Eric
2014-01-01
Background Chagas disease is a vector-borne parasitic disease of major public health importance. Current prevention efforts are based on triatomine vector control to reduce transmission to humans. Success of vector control interventions depends on their acceptability and value to affected communities. We aimed to identify opportunities for and barriers to improved vector control strategies in the Yucatan peninsula, Mexico. Methodology/principal findings We employed a sequence of qualitative and quantitative research methods to investigate knowledge, attitudes and practices surrounding Chagas disease, triatomines and vector control in three rural communities. Our combined data show that community members are well aware of triatomines and are knowledgeable about their habits. However, most have a limited understanding of the transmission dynamics and clinical manifestations of Chagas disease. While triatomine control is not a priority for community members, they frequently use domestic insecticide products including insecticide spray, mosquito coils and plug-in repellents. Families spend about $32 US per year on these products. Alternative methods such as yard cleaning and window screens are perceived as desirable and potentially more effective. Screens are nonetheless described as unaffordable, in spite of a cost comparable to the average annual spending on insecticide products. Conclusion/Significance Further education campaigns and possibly financing schemes may lead families to redirect their current vector control spending from insecticide products to window screens. Also, synergism with mosquito control efforts should be further explored to motivate community involvement and ensure sustainability of Chagas disease vector control. PMID:24676038
INTERIM ANALYSIS OF THE CONTRIBUTION OF HIGH-LEVEL EVIDENCE FOR DENGUE VECTOR CONTROL.
Horstick, Olaf; Ranzinger, Silvia Runge
2015-01-01
This interim analysis reviews the available systematic literature for dengue vector control on three levels: 1) single and combined vector control methods, with existing work on peridomestic space spraying and on Bacillus thuringiensis israelensis; further work is available soon on the use of Temephos, Copepods and larvivorous fish; 2) or for a specific purpose, like outbreak control, and 3) on a strategic level, as for example decentralization vs centralization, with a systematic review on vector control organization. Clear best practice guidelines for methodology of entomological studies are needed. There is a need to include measuring dengue transmission data. The following recommendations emerge: Although vector control can be effective, implementation remains an issue; Single interventions are probably not useful; Combinations of interventions have mixed results; Careful implementation of vector control measures may be most important; Outbreak interventions are often applied with questionable effectiveness.
Clark, J F M
2008-12-01
The golden age of medical entomology, 1870-1920, is often celebrated for the elucidation of the aetiology of vector-borne diseases within the rubric of the emergent discipline of tropical medicine. Within these triumphal accounts, the origins of vector control science and technology remain curiously underexplored; yet vector control and eradication constituted the basis of the entomologists' expertise within the emergent specialism of medical entomology. New imperial historians have been sensitive to the ideological implications of vector control policies in the colonies and protectorates, but the reciprocal transfer of vector-control knowledge, practices and policies between periphery and core have received little attention. This paper argues that medical entomology arose in Britain as an amalgam of tropical medicine and agricultural entomology under the umbrella of "economic entomology". An examination of early twentieth-century anti-housefly campaigns sheds light on the relative importance of medical entomology as an imperial science for the careers, practices, and policies of economic entomologists working in Britain. Moreover, their sensitivity to vector ecology provides insight into late nineteenth- and early twentieth-century urban environments and environmental conditions of front-line war.
Thailand Momentum on Policy and Practice in Local Legislation on Dengue Vector Control
Bhumiratana, Adisak; Intarapuk, Apiradee; Chujun, Suriyo; Kaewwaen, Wuthichai; Sorosjinda-Nunthawarasilp, Prapa; Koyadun, Surachart
2014-01-01
Over a past decade, an administrative decentralization model, adopted for local administration development in Thailand, is replacing the prior centralized (top-down) command system. The change offers challenges to local governmental agencies and other public health agencies at all the ministerial, regional, and provincial levels. A public health regulatory and legislative framework for dengue vector control by local governmental agencies is a national topic of interest because dengue control program has been integrated into healthcare services at the provincial level and also has been given priority in health plans of local governmental agencies. The enabling environments of local administrations are unique, so this critical review focuses on the authority of local governmental agencies responsible for disease prevention and control and on the functioning of local legislation with respect to dengue vector control and practices. PMID:24799896
Environmental management: a re-emerging vector control strategy.
Ault, S K
1994-01-01
Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.
Wu, Y; Ling, F; Hou, J; Guo, S; Wang, J; Gong, Z
2016-07-01
Vector-borne diseases are one of the world's major public health threats and annually responsible for 30-50% of deaths reported to the national notifiable disease system in China. To control vector-borne diseases, a unified, effective and economic surveillance system is urgently needed; all of the current surveillance systems in China waste resources and/or information. Here, we review some current surveillance systems and present a concept for an integrated surveillance system combining existing vector and vector-borne disease monitoring systems. The integrated surveillance system has been tested in pilot programmes in China and led to a 21·6% cost saving in rodent-borne disease surveillance. We share some experiences gained from these programmes.
Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.
Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho
2018-04-16
We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.
Current strategies and successes in engaging women in vector control: a systematic review
Gunn, Jayleen K L; Ernst, Kacey C; Center, Katherine E; Bischoff, Kristi; Nuñez, Annabelle V; Huynh, Megan; Okello, Amanda; Hayden, Mary H
2018-01-01
Introduction Vector-borne diseases (VBDs) cause significant mortality and morbidity in low-income and middle-income countries and present a risk to high-income countries. Vector control programmes may confront social and cultural norms that impede their execution. Anecdotal evidence suggests that incorporating women in the design, delivery and adoption of health interventions increases acceptance and compliance. A better understanding of programmes that have attempted to increase women’s involvement in vector control could help shape best practices. The objective of this systematic review was to assess and critically summarise evidence regarding the effectiveness of women participating in vector control. Methods Seven databases were searched from inception to 21 December 2015. Two investigators independently reviewed all titles and abstracts for relevant articles. Grey literature was searched by assessing websites that focus on international development and vector control. Results In total, 23 articles representing 17 unique studies were included in this review. Studies discussed the involvement of women in the control of vectors for malaria (n=10), dengue (n=8), human African trypanosomiasis (n=3), schistosomiasis (n=1) and a combination (malaria and schistosomiasis, n=1). Seven programmes were found in the grey literature or through personal communications. Available literature indicates that women can be successfully engaged in vector control programmes and, when given the opportunity, they can create and sustain businesses that aim to decrease the burden of VBDs in their communities. Conclusion This systematic review demonstrated that women can be successfully engaged in vector control programmes at the community level. However, rigorous comparative effectiveness studies need to be conducted. PMID:29515913
Knowledge, Attitude, and Practices Regarding Vector-borne Diseases in Western Jamaica.
Alobuia, Wilson M; Missikpode, Celestin; Aung, Maung; Jolly, Pauline E
2015-01-01
Outbreaks of vector-borne diseases (VBDs) such as dengue and malaria can overwhelm health systems in resource-poor countries. Environmental management strategies that reduce or eliminate vector breeding sites combined with improved personal prevention strategies can help to significantly reduce transmission of these infections. The aim of this study was to assess the knowledge, attitudes, and practices (KAPs) of residents in western Jamaica regarding control of mosquito vectors and protection from mosquito bites. A cross-sectional study was conducted between May and August 2010 among patients or family members of patients waiting to be seen at hospitals in western Jamaica. Participants completed an interviewer-administered questionnaire on sociodemographic factors and KAPs regarding VBDs. KAP scores were calculated and categorized as high or low based on the number of correct or positive responses. Logistic regression analyses were conducted to identify predictors of KAP and linear regression analysis conducted to determine if knowledge and attitude scores predicted practice scores. In all, 361 (85 men and 276 women) people participated in the study. Most participants (87%) scored low on knowledge and practice items (78%). Conversely, 78% scored high on attitude items. By multivariate logistic regression, housewives were 82% less likely than laborers to have high attitude scores; homeowners were 65% less likely than renters to have high attitude scores. Participants from households with 1 to 2 children were 3.4 times more likely to have high attitude scores compared with those from households with no children. Participants from households with at least 5 people were 65% less likely than those from households with fewer than 5 people to have high practice scores. By multivariable linear regression knowledge and attitude scores were significant predictors of practice score. The study revealed poor knowledge of VBDs and poor prevention practices among participants. It identified specific groups that can be targeted with vector control and personal protection interventions to decrease transmission of the infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat
2012-01-01
Background Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Methodology Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Results Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. Conclusion An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities. PMID:23318236
Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat
2012-12-01
Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities.
Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans.
Dantas-Torres, Filipe; Otranto, Domenico
2016-01-01
Vector-borne diseases constitute a diversified group of illnesses, which are caused by a multitude of pathogens transmitted by arthropod vectors, such as mosquitoes, fleas, ticks, and sand flies. Proper management of these diseases is important from both human and veterinary medicine standpoints, given that many of these pathogens are transmissible to humans and dogs, which often live in close contact. In this review, we summarize the most important vector-borne diseases of dogs and humans and the best practices for their prevention. The control of these diseases would ultimately improve animal and human health and wellbeing, particularly in developing countries in the tropics, where the risk of these diseases is high and access to health care is poor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Knapp, Jennifer; Macdonald, Michael; Malone, David; Hamon, Nicholas; Richardson, Jason H
2015-09-26
Malaria vector control technology has remained largely static for decades and there is a pressing need for innovative control tools and methodology to radically improve the quality and efficiency of current vector control practices. This report summarizes a workshop jointly organized by the Innovative Vector Control Consortium (IVCC) and the Armed Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main topics were discussed: the limitations with current tools and techniques used for indoor residual spraying (IRS), technology innovation to improve efficacy of IRS programmes, and truly disruptive application technology beyond IRS. The group identified several opportunities to improve application technology to include: insuring all IRS programmes are using constant flow valves and erosion resistant tips; introducing compression sprayer improvements that help minimize pesticide waste and human error; and moving beyond IRS by embracing the potential for new larval source management techniques and next generation technology such as unmanned "smart" spray systems. The meeting served to lay the foundation for broader collaboration between the IVCC and AFPMB and partners in industry, the World Health Organization, the Bill and Melinda Gates Foundation and others.
Gouveia, Cheryl; de Oliveira, Rosely Magalhães; Zwetsch, Adriana; Motta-Silva, Daniel; Carvalho, Bruno Moreira; de Santana, Antônio Ferreira; Rangel, Elizabeth Ferreira
2012-01-01
American cutaneous leishmaniasis (ACL) is a focal disease whose surveillance and control require complex actions. The present study aimed to apply integrated tools related to entomological surveillance, environmental management, and health education practices in an ACL-endemic area in Rio de Janeiro city, RJ, Brazil. The distribution of the disease, the particular characteristics of the localities, and entomological data were used as additional information about ACL determinants. Environmental management actions were evaluated after health education practices. The frequency of ACL vectors Lutzomyia (N.) intermedia and L. migonei inside and outside houses varied according to environment characteristics, probably influenced by the way of life of the popular groups. In this kind of situation environmental management and community mobilization become essential, as they help both specialists and residents create strategies that can interfere in the dynamics of vector's population and the contact between man and vectors. PMID:22988458
Panda, Pradeep; Chakraborty, Arpita; Dror, David M
2015-08-01
Despite remarkable progress in airborne, vector-borne and waterborne diseases in India, the morbidity associated with these diseases is still high. Many of these diseases are controllable through awareness and preventive practice. This study was an attempt to evaluate the effectiveness of a preventive care awareness campaign in enhancing knowledge related with airborne, vector-borne and waterborne diseases, carried out in 2011 in three rural communities in India (Pratapgarh and Kanpur-Dehat in Uttar Pradesh and Vaishali in Bihar). Data for this analysis were collected from two surveys, one done before the campaign and the other after it, each of 300 randomly selected households drawn from a larger sample of Self-Help Groups (SHGs) members invited to join community-based health insurance (CBHI) schemes. The results showed a significant increase both in awareness (34%, p<0.001) and in preventive practices (48%, P=0.001), suggesting that the awareness campaign was effective. However, average practice scores (0.31) were substantially lower than average awareness scores (0.47), even in post-campaign. Awareness and preventive practices were less prevalent in vector-borne diseases than in airborne and waterborne diseases. Education was positively associated with both awareness and practice scores. The awareness scores were positive and significant determinants of the practice scores, both in the pre- and in the post-campaign results. Affiliation to CBHI had significant positive influence on awareness and on practice scores in the post-campaign period. The results suggest that well-crafted health educational campaigns can be effective in raising awareness and promoting health-enhancing practices in resource-poor settings. It also confirms that CBHI can serve as a platform to enhance awareness to risks of exposure to airborne, vector-borne and waterborne diseases, and encourage preventive practices.
Implementation of a new fuzzy vector control of induction motor.
Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz
2014-05-01
The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Waleckx, Etienne; Gourbière, Sébastien; Dumonteil, Eric
2015-01-01
Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions. PMID:25993504
Alves, Adorama Candido; Fabbro, Amaury Lelis Dal; Passos, Afonso Dinis Costa; Carneiro, Ariadne Fernanda Tesarin Mendes; Jorge, Tatiane Martins; Martinez, Edson Zangiacomi
2016-04-01
This study investigated the knowledge of users of primary healthcare services living in Ribeirão Preto, Brazil, about dengue and its vector. A cross-sectional survey of 605 people was conducted following a major dengue outbreak in 2013. Participants with higher levels of education were more likely to identify correctly the vector of the disease. The results emphasize the relevance of health education programs, the continuous promotion of educational campaigns in the media, the role of the television as a source of information, and the importance of motivating the population to control the vector.
Muniaraj, Mayilsamy
2014-01-01
The Kala-azar/visceral leishmaniasis (VL) turns epidemic form once in every 15 years in the endemic regions of Indian subcontinent. The goal of elimination of Kala-azar from India by 2010 was lost despite paramount efforts taken by the Government of India and World Health Organization and Regional Office for South East Asia. The main objective of this review was to elucidate the possible reason for the failure of Kala-azar elimination program and to suggest possible remedial measures to achieve the goal in future. The annual numbers of VL cases and deaths recorded in India since 1977 were plotted on a graph, to see if the temporal trends could be associated with changes in the vector control practices or co-infection with human immunodeficiency virus (HIV) or therapeutic modalities used against VL. The VL cases flares up whenever the effect of dichlorodiphenyltrichloroethane (DDT) diminished after the withdrawal of spray. The fading effectiveness was clearly correlated with an increasing number of VL cases. Therapeutic modalities were found to be highly correlating with VL mortality not with VL morbidity. The diminishing efficacy of first and second line drugs and the introduction of new drugs and drugs combination were responsible for ups and downs in the VL mortality. The VL mortality is constantly declining since 1993, but cases started increasing from 2003 to 2007 and then recently again from 2010 to 2011. This shows a serious lacuna in the vector control practices applied. The extent of HIV co-infection did not show any correlation with number/trend of VL cases or death over the study period. It is concluded that, by strict vector control practices, the VL cases can be reduced and by applying proper therapeutic strategies, the VL mortality can be reduced. HIV-VL co-infection does not seem to be in a worried stage.
Kusumawathie, Pad; Palihawadana, Paba; Janaki, Sakoo; Wijemuni, Ruwan; Wilder-Smith, Annelies; Tissera, Hasitha A.
2016-01-01
Introduction Dengue has emerged as a major public health problem in Sri Lanka. Vector control at community level is a frequent and widespread strategy for dengue control. The aim of the study was to assess Aedes mosquito breeding sites and the prevention practices of community members in a heavily urbanized part of Colombo. Methods A cross-sectional entomological survey was conducted from April to June 2013 in 1469 premises located in a subdistrict of the City of Colombo. Types of breeding sites and, where found, their infestation with larvae or pupae were recorded. Furthermore, a questionnaire was administered to the occupants of these premises to record current practices of dengue vector control. Results The surveyed premises consisted of 1341 residential premises and 110 non-residential premises (11 schools, 99 work or public sites), 5 open lands, and 13 non-specified. In these 1469 premises, 15447 potential breeding sites suitable to host larvae of pupae were found; of these sites18.0% contained water. Among the 2775 potential breeding sites that contained water, 452 (16.3%) were positive for larvae and/or pupae. Schools were associated with the proportionally highest number of breeding sites; 85 out of 133 (63.9%) breeding sites were positive for larvae and/or pupae in schools compared with 338 out of 2288 (14.8%) in residential premises. The odds ratio (OR) for schools and work or public sites for being infested with larvae and/or pupae was 2.77 (95% CI 1.58, 4.86), when compared to residential premises. Occupants of 80.8% of the residential premises, 54.5% of the schools and 67.7% of the work or public sites reported using preventive measures. The main prevention practices were coverage of containers and elimination of mosquito breeding places. Occupants of residential premises were much more likely to practice preventive measures than were those of non-residential premises (OR 2.23; 1.49, 3.36). Conclusion Schools and working sites were associated with the highest numbers of breeding sites and lacked preventive measures for vector control. In addition to pursuing vector control measures at residential level, public health strategies should be expanded in schools and work places. PMID:27241954
Preventing malaria in the Peruvian Amazon: a qualitative study in Iquitos, Peru.
Newell, Ian; Wiskin, Connie; Anthoney, James; Meza, Graciela; de Wildt, Gilles
2018-01-16
In Peru, despite decades of concerted control efforts, malaria remains a significant public health burden. Peru has recently exhibited a dramatic rise in malaria incidence, impeding South America's progress towards malaria elimination. The Amazon basin, in particular the Loreto region of Peru, has been identified as a target for the implementation of intensified control strategies, aiming for elimination. No research has addressed why vector control strategies in Loreto have had limited impact in the past, despite vector control elsewhere being highly effective in reducing malaria transmission. This study employed qualitative methods to explore factors limiting the success of vector control strategies in the region. Twenty semi-structured interviews were conducted among adults attending a primary care centre in Iquitos, Peru, together with 3 interviews with key informants (health care professionals). The interviews focussed on how local knowledge, together with social and cultural attitudes, determined the use of vector control methods. Five themes emerged. (a) Participants believed malaria to be embedded within their culture, and commonly blamed this for a lack of regard for prevention. (b) They perceived a shift in mosquito biting times to early evening, rendering night-time use of bed nets less effective. (c) Poor preventive practices were compounded by a consensus that malaria prevention was the government's responsibility, and that this reduced motivation for personal prevention. (d) Participants confused the purpose of space-spraying. (e) Participants' responses also exposed persisting misconceptions, mainly concerning the cause of malaria and best practices for its prevention. To eliminate malaria from the Americas, region-specific strategies need to be developed that take into account the local social and cultural contexts. In Loreto, further research is needed to explore the potential shift in biting behaviour of Anopheles darlingi, and how this interacts with the population's social behaviours and current use of preventive measures. Attitudes concerning personal responsibility for malaria prevention and long-standing misconceptions as to the cause of malaria and best preventive practices also need to be addressed.
A New Approach to Attitude Stability and Control for Low Airspeed Vehicles
NASA Technical Reports Server (NTRS)
Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.
2004-01-01
This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.
USA’S PRACTICES FOR CONTROLLING PATHOGENS IN BIOSOLIDS
The U.S.A. initially established regulations for the management of sewage sludge in 1979 and updated them in 1993. They are briefly discussed with emphasis on the rationale for the procedures chosen to disinfect sludge and control its vector attractiveness. By controlling pathoge...
USDA-ARS?s Scientific Manuscript database
New techniques that we developed to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques illustrated included (1) novel military personal protection methods, (2) barrier treatments...
Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael
2016-01-01
Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.
Vector control in developed countries
Peters, Richard F.
1963-01-01
The recent rapid growth of California's population, leading to competition for space between residential, industrial and agricultural interests, the development of its water resources and increasing water pollution provide the basic ingredients of its present vector problems. Within the past half-century, the original mosquito habitats provided by nature have gradually given place to even more numerous and productive habitats of man-made character. At the same time, emphasis in mosquito control has shifted from physical to chemical, with the more recent extension to biological approaches as well. The growing domestic fly problem, continuing despite the virtual disappearance of the horse, is attributable to an increasing amount of organic by-products, stemming from growing communities, expanding industries and changing agriculture. The programme for the control of disease vectors and pest insects and animals directs its major effort to the following broad areas: (1) water management (including land preparation), (2) solid organic wastes management (emphasizing utilization), (3) community management (including design, layout, and storage practices of buildings and grounds), and (4) recreational area management (related to wildlife management). It is apparent that vector control can often employ economics as an ally in securing its objectives. Effective organization of the environment to produce maximum economic benefits to industry, agriculture, and the community results generally in conditions unfavourable to the survival of vector and noxious animal species. Hence, vector prevention or suppression is preferable to control as a programme objective. PMID:20604166
Panda, Pradeep; Chakraborty, Arpita; Dror, David M.
2015-01-01
Background & objectives: Despite remarkable progress in airborne, vector-borne and waterborne diseases in India, the morbidity associated with these diseases is still high. Many of these diseases are controllable through awareness and preventive practice. This study was an attempt to evaluate the effectiveness of a preventive care awareness campaign in enhancing knowledge related with airborne, vector-borne and waterborne diseases, carried out in 2011 in three rural communities in India (Pratapgarh and Kanpur-Dehat in Uttar Pradesh and Vaishali in Bihar). Methods: Data for this analysis were collected from two surveys, one done before the campaign and the other after it, each of 300 randomly selected households drawn from a larger sample of Self-Help Groups (SHGs) members invited to join community-based health insurance (CBHI) schemes. Results: The results showed a significant increase both in awareness (34%, p<0.001) and in preventive practices (48%, P=0.001), suggesting that the awareness campaign was effective. However, average practice scores (0.31) were substantially lower than average awareness scores (0.47), even in post-campaign. Awareness and preventive practices were less prevalent in vector-borne diseases than in airborne and waterborne diseases. Education was positively associated with both awareness and practice scores. The awareness scores were positive and significant determinants of the practice scores, both in the pre- and in the post-campaign results. Affiliation to CBHI had significant positive influence on awareness and on practice scores in the post-campaign period. Interpretation & conclusions: The results suggest that well-crafted health educational campaigns can be effective in raising awareness and promoting health-enhancing practices in resource-poor settings. It also confirms that CBHI can serve as a platform to enhance awareness to risks of exposure to airborne, vector-borne and waterborne diseases, and encourage preventive practices. PMID:26354212
Doum, Dyna; Keo, Vanney; Sokha, Ly; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Liverani, Marco; Prasetyo, Didot Budi; Rachmat, Agus; Lopes, Sergio; Hii, Jeffrey; Rithea, Leang; Shafique, Muhammad; Hustedt, John
2018-01-01
Background Globally there are an estimated 390 million dengue infections per year, of which 96 million are clinically apparent. In Cambodia, estimates suggest as many as 185,850 cases annually. The World Health Organization global strategy for dengue prevention aims to reduce mortality rates by 50% and morbidity by 25% by 2020. The adoption of integrated vector management approach using community-based methods tailored to the local context is one of the recommended strategies to achieve these objectives. Understanding local knowledge, attitudes and practices is therefore essential to designing suitable strategies to fit each local context. Methods and findings A Knowledge, Attitudes and Practices survey in 600 randomly chosen households was administered in 30 villages in Kampong Cham which is one of the most populated provinces of Cambodia. KAP surveys were administered to a sub-sample of households where an entomology survey was conducted (1200 households), during which Aedes larval/pupae and adult female Aedes mosquito densities were recorded. Participants had high levels of knowledge regarding the transmission of dengue, Aedes breeding, and biting prevention methods; the majority of participants believed they were at risk and that dengue transmission is preventable. However, self-reported vector control practices did not match observed practices recorded in our surveys. No correlation was found between knowledge and observed practices either. Conclusion An education campaign regarding dengue prevention in this setting with high knowledge levels is unlikely to have any significant effect on practices unless it is incorporated in a more comprehensive strategy for behavioural change, such a COMBI method, which includes behavioural models as well as communication and marketing theory and practice. Trial registration ISRCTN85307778. PMID:29451879
Kumaran, Emmanuelle; Doum, Dyna; Keo, Vanney; Sokha, Ly; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Liverani, Marco; Prasetyo, Didot Budi; Rachmat, Agus; Lopes, Sergio; Hii, Jeffrey; Rithea, Leang; Shafique, Muhammad; Hustedt, John
2018-02-01
Globally there are an estimated 390 million dengue infections per year, of which 96 million are clinically apparent. In Cambodia, estimates suggest as many as 185,850 cases annually. The World Health Organization global strategy for dengue prevention aims to reduce mortality rates by 50% and morbidity by 25% by 2020. The adoption of integrated vector management approach using community-based methods tailored to the local context is one of the recommended strategies to achieve these objectives. Understanding local knowledge, attitudes and practices is therefore essential to designing suitable strategies to fit each local context. A Knowledge, Attitudes and Practices survey in 600 randomly chosen households was administered in 30 villages in Kampong Cham which is one of the most populated provinces of Cambodia. KAP surveys were administered to a sub-sample of households where an entomology survey was conducted (1200 households), during which Aedes larval/pupae and adult female Aedes mosquito densities were recorded. Participants had high levels of knowledge regarding the transmission of dengue, Aedes breeding, and biting prevention methods; the majority of participants believed they were at risk and that dengue transmission is preventable. However, self-reported vector control practices did not match observed practices recorded in our surveys. No correlation was found between knowledge and observed practices either. An education campaign regarding dengue prevention in this setting with high knowledge levels is unlikely to have any significant effect on practices unless it is incorporated in a more comprehensive strategy for behavioural change, such a COMBI method, which includes behavioural models as well as communication and marketing theory and practice. ISRCTN85307778.
Developing an expanded vector control toolbox for malaria elimination
Tatarsky, Allison; Diabate, Abdoulaye; Chaccour, Carlos J; Marshall, John M; Okumu, Fredros O; Brunner, Shannon; Newby, Gretchen; Williams, Yasmin A; Malone, David; Tusting, Lucy S; Gosling, Roland D
2017-01-01
Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions. PMID:28589022
Community effectiveness of copepods for dengue vector control: systematic review.
Lazaro, A; Han, W W; Manrique-Saide, P; George, L; Velayudhan, R; Toledo, J; Runge Ranzinger, S; Horstick, O
2015-06-01
Vector control remains the only available method for primary prevention of dengue. Several interventions exist for dengue vector control, with limited evidence of their efficacy and community effectiveness. This systematic review compiles and analyses the existing global evidence for community effectiveness of copepods for dengue vector control. The systematic review follows the PRISMA statement, searching six relevant databases. Applying all inclusion and exclusion criteria, 11 articles were included. There is evidence that cyclopoid copepods (Mesocyclops spp.) could potentially be an effective vector control option, as shown in five community effectiveness studies in Vietnam. This includes long-term effectiveness for larval and adult control of Ae. aegypti, as well as dengue incidence. However, this success has so far not been replicated elsewhere (six studies, three community effectiveness studies--Costa Rica, Mexico and USA, and three studies analysing both efficacy and community effectiveness--Honduras, Laos and USA), probably due to community participation, environmental and/or biological factors. Judging by the quality of existing studies, there is a lack of good study design, data quality and appropriate statistics. There is limited evidence for the use of cyclopoid copepods as a single intervention. There are very few studies, and more are needed in other communities and environments. Clear best practice guidelines for the methodology of entomological studies should be developed. © 2015 John Wiley & Sons Ltd.
Conn, Jan E.; Norris, Douglas E.; Donnelly, Martin J.; Beebe, Nigel W.; Burkot, Thomas R.; Coulibaly, Mamadou B.; Chery, Laura; Eapen, Alex; Keven, John B.; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W.; Moreno, Marta; Quinones, Martha; Reimer, Lisa J.; Russell, Tanya L.; Smith, David L.; Thomas, Matthew B.; Walker, Edward D.; Wilson, Mark L.; Yan, Guiyun
2015-01-01
The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and “sub patent” vector transmission. PMID:26259942
Conn, Jan E; Norris, Douglas E; Donnelly, Martin J; Beebe, Nigel W; Burkot, Thomas R; Coulibaly, Mamadou B; Chery, Laura; Eapen, Alex; Keven, John B; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W; Moreno, Marta; Quinones, Martha; Reimer, Lisa J; Russell, Tanya L; Smith, David L; Thomas, Matthew B; Walker, Edward D; Wilson, Mark L; Yan, Guiyun
2015-09-01
The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and "sub patent" vector transmission. © The American Society of Tropical Medicine and Hygiene.
Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad; Kroeger, Axel
2016-05-01
Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included 'sand fly bionomics', 'habitat', and 'visceral leishmaniasis/kala-azar vector control' using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC.
Interruption of vector transmission by native vectors and “the art of the possible”
Salvatella, Roberto; Irabedra, Pilar; Castellanos, Luis G
2013-01-01
In a recent article in the Reader’s Opinion, advantages and disadvantages of the certification processes of interrupted Chagas disease transmission (American trypanosomiasis) by native vector were discussed. Such concept, accepted by those authors for the case of endemic situations with introduced vectors, has been built on a long and laborious process by endemic countries and Subregional Initiatives for Prevention, Control and Treatment of Chagas, with Technical Secretariat of the Pan American Health Organization/World Health Organization, to create a horizon target and goal to concentrate priorities and resource allocation and actions. With varying degrees of sucess, which are not replaceable for a certificate of good practice, has allowed during 23 years to safeguard the effective control of transmission of Trypanosoma cruzi not to hundreds of thousands, but millions of people at risk conditions, truly “the art of the possible.” PMID:24626310
D'Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard
2016-01-01
Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new "Free-ITR" qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.
Gonçalves, Daniela da Silva; Moreira, Luciano Andrade
2013-01-01
There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility), as well as vector competence (susceptibility) for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen interference when artificially-transfected to the novel mosquito hosts that are the vectors of human pathogens. PMID:23555728
Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad
2016-01-01
Background Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. Methods In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included ‘sand fly bionomics’, ‘habitat’, and ‘visceral leishmaniasis/kala-azar vector control’ using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Results Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Conclusion Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC. PMID:27376500
Lecoq, Hervé; Katis, Nikolaos
2014-01-01
More than 70 well-characterized virus species transmitted by a diversity of vectors may infect cucurbit crops worldwide. Twenty of those cause severe epidemics in major production areas, occasionally leading to complete crop failures. Cucurbit viruses' control is based on three major axes: (i) planting healthy seeds or seedlings in a clean environment, (ii) interfering with vectors activity, and (iii) using resistant cultivars. Seed disinfection and seed or seedling quality controls guarantee growers on the sanitary status of their planting material. Removal of virus or vector sources in the crop environment can significantly delay the onset of viral epidemics. Insecticide or oil application may reduce virus spread in some situations. Diverse cultural practices interfere with or prevent vector reaching the crop. Resistance can be obtained by grafting for soil-borne viruses, by cross-protection, or generally by conventional breeding or genetic engineering. The diversity of the actions that may be taken to limit virus spread in cucurbit crops and their limits will be discussed. The ultimate goal is to provide farmers with technical packages that combine these methods within an integrated disease management program and are adapted to different countries and cropping systems.
Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.
Carvalho, B M; Rangel, E F; Vale, M M
2017-08-01
Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.
NASA Astrophysics Data System (ADS)
Mikula, Brendon D.; Heckler, Andrew F.
2017-06-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.
Brochero, Helena; Quiñones, Martha L
2008-03-01
The relevance of the medical entomology was considered with respect to current framework of malaria control programs in Colombia. A responsibility is indicated for balancing control efforts along with providing information on the malaria vectors. This knowledge must be acquired in order to focus the related activities that are required. The malaria control program must be based on results of local entomological surveillance, and the data must be in a form to give practical answers to questions regarding the control program. Difficulties in undertaking the required studies are described, particularly regarding the taxonomic identification of Colombian Anopheles in Colombia and which of these can be incriminated as malaria vectors.
Triatomine Infestation in Guatemala: Spatial Assessment after Two Rounds of Vector Control
Manne, Jennifer; Nakagawa, Jun; Yamagata, Yoichi; Goehler, Alexander; Brownstein, John S.; Castro, Marcia C.
2012-01-01
In 2000, the Guatemalan Ministry of Health initiated a Chagas disease program to control Rhodnius prolixus and Triatoma dimidiata by periodic house spraying with pyrethroid insecticides to characterize infestation patterns and analyze the contribution of programmatic practices to these patterns. Spatial infestation patterns at three time points were identified using the Getis-Ord Gi*(d) test. Logistic regression was used to assess predictors of reinfestation after pyrethroid insecticide administration. Spatial analysis showed high and low clusters of infestation at three time points. After two rounds of spray, 178 communities persistently fell in high infestation clusters. A time lapse between rounds of vector control greater than 6 months was associated with 1.54 (95% confidence interval = 1.07–2.23) times increased odds of reinfestation after first spray, whereas a time lapse of greater than 1 year was associated with 2.66 (95% confidence interval = 1.85–3.83) times increased odds of reinfestation after first spray compared with localities where the time lapse was less than 180 days. The time lapse between rounds of vector control should remain under 1 year. Spatial analysis can guide targeted vector control efforts by enabling tracking of reinfestation hotspots and improved targeting of resources. PMID:22403315
Udayanga, Lahiru; Gunathilaka, Nayana; Iqbal, M C M; Pahalagedara, Kusumawathie; Amarasinghe, Upali S; Abeyewickreme, Wimaladharma
2018-02-21
Socio-economic, demographic factors and Knowledge Attitude Practices (KAPs) have been recognized as critical factors that influence the incidence and transmission of dengue epidemics. However, studies that characterize above features of a risk free or low risk population are rare. Therefore, the present study was conducted to characterize the household related, demographic, socio-economic factors and KAPs status of five selected dengue free communities. An analytical cross-sectional survey was conducted on selected demographic, socio-economic, household related and KAPs in five selected dengue free communities living in dengue risk areas within Kandy District, Central Province, Sri Lanka. Household heads of 1000 randomly selected houses were interviewed in this study. Chi-square test for independence, cluster analysis and Principal Coordinates (PCO) analysis were used for data analysis. Knowledge and awareness regarding dengue, (prevention of the vector breeding, bites of mosquitoes, disease symptoms and waste management) and attitudes of the community (towards home gardening, composting, waste management and maintenance of a clean and dengue free environment) are associated with the dengue free status of the study populations. The vector controlling authorities should focus on socio-economic, demographic and KAPs in stimulating the community to cooperate in the integrated vector management strategies to improve vector control and reduce transmission of dengue within Kandy District.
Watson, Swellengrebel and species sanitation: environmental and ecological aspects.
Bradley, D J
1994-08-01
Following the discovery of mosquito transmission of malaria, the theory and practice of malaria control by general and selective removal of specific vector populations resulted particularly from Malcolm Watson's empirical work in peninsular Malaysia, first in the urban and peri-urban areas of Klang and Port Swettenham and subsequently in the rural rubber plantations, and from the work of N.H. Swellengrebel in nearby Indonesia on the taxonomy, ecology and control of anophelines. They developed the concept of species sanitation: the selective modification of the environment to render a particular anopheline of no importance as a vector in a particular situation. The lack of progress along these lines in India at that time is contrasted with that in south-east Asia. The extension of species sanitation and related concepts to other geographical areas and to other vector-borne disease situations is outlined.
Verver, Suzanne; Walker, Martin; Kim, Young Eun; Fobi, Grace; Tekle, Afework H; Zouré, Honorat G M; Wanji, Samuel; Boakye, Daniel A; Kuesel, Annette C; de Vlas, Sake J; Boussinesq, Michel; Basáñez, Maria-Gloria; Stolk, Wilma A
2018-06-01
Great strides have been made toward onchocerciasis elimination by mass drug administration (MDA) of ivermectin. Focusing on MDA-eligible areas, we investigated where the elimination goal can be achieved by 2025 by continuation of current practice (annual MDA with ivermectin) and where intensification or additional vector control is required. We did not consider areas hypoendemic for onchocerciasis with loiasis coendemicity where MDA is contraindicated. We used 2 previously published mathematical models, ONCHOSIM and EPIONCHO, to simulate future trends in microfilarial prevalence for 80 different settings (defined by precontrol endemicity and past MDA frequency and coverage) under different future treatment scenarios (annual, biannual, or quarterly MDA with different treatment coverage through 2025, with or without vector control strategies), assessing for each strategy whether it eventually leads to elimination. Areas with 40%-50% precontrol microfilarial prevalence and ≥10 years of annual MDA may achieve elimination with a further 7 years of annual MDA, if not achieved already, according to both models. For most areas with 70%-80% precontrol prevalence, ONCHOSIM predicts that either annual or biannual MDA is sufficient to achieve elimination by 2025, whereas EPIONCHO predicts that elimination will not be achieved even with complementary vector control. Whether elimination will be reached by 2025 depends on precontrol endemicity, control history, and strategies chosen from now until 2025. Biannual or quarterly MDA will accelerate progress toward elimination but cannot guarantee it by 2025 in high-endemicity areas. Long-term concomitant MDA and vector control for high-endemicity areas might be useful.
Burger, Corinna; Snyder, Richard O.
2009-01-01
Because Parkinson’s disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson’s disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration. PMID:17916354
Dengue Knowledge and Preventive Practices in Iquitos, Peru.
Paz-Soldán, Valerie A; Morrison, Amy C; Cordova Lopez, Jhonny J; Lenhart, Audrey; Scott, Thomas W; Elder, John P; Sihuincha, Moises; Kochel, Tadeusz J; Halsey, Eric S; Astete, Helvio; McCall, Philip J
2015-12-01
As part of a cluster-randomized trial to evaluate insecticide-treated curtains for dengue prevention in Iquitos, Peru, we surveyed 1,333 study participants to examine knowledge and reported practices associated with dengue and its prevention. Entomological data from 1,133 of these households were linked to the survey. Most participants knew that dengue was transmitted by mosquito bite (85.6%), but only few (18.6%) knew that dengue vectors bite during daytime. Most commonly recognized dengue symptoms were fever (86.6%), headache (76.4%), and muscle/joint pain (67.9%). Most commonly reported correct practices for mosquito control were cleaning homes (61.6%), using insecticide sprays (23%), and avoiding having standing water at home (12.3%). Higher education was associated with higher knowledge about dengue, including transmission and vector control. Higher socioeconomic status was associated with increased reported use of preventive practices requiring money expenditure. We were less likely to find Aedes aegypti eggs, larvae, or pupae in households that had < 5-year-old children at home. Although dengue has been transmitted in Iquitos since the 1990s and the Regional Health Authority routinely fumigates households, treats domestic water containers with larvicide, and issues health education messages through mass media, knowledge of dengue transmission and household practices for prevention could be improved. © The American Society of Tropical Medicine and Hygiene.
Dengue Knowledge and Preventive Practices in Iquitos, Peru
Paz-Soldán, Valerie A.; Morrison, Amy C.; Cordova Lopez, Jhonny J.; Lenhart, Audrey; Scott, Thomas W.; Elder, John P.; Sihuincha, Moises; Kochel, Tadeusz J.; Halsey, Eric S.; Astete, Helvio; McCall, Philip J.
2015-01-01
As part of a cluster-randomized trial to evaluate insecticide-treated curtains for dengue prevention in Iquitos, Peru, we surveyed 1,333 study participants to examine knowledge and reported practices associated with dengue and its prevention. Entomological data from 1,133 of these households were linked to the survey. Most participants knew that dengue was transmitted by mosquito bite (85.6%), but only few (18.6%) knew that dengue vectors bite during daytime. Most commonly recognized dengue symptoms were fever (86.6%), headache (76.4%), and muscle/joint pain (67.9%). Most commonly reported correct practices for mosquito control were cleaning homes (61.6%), using insecticide sprays (23%), and avoiding having standing water at home (12.3%). Higher education was associated with higher knowledge about dengue, including transmission and vector control. Higher socioeconomic status was associated with increased reported use of preventive practices requiring money expenditure. We were less likely to find Aedes aegypti eggs, larvae, or pupae in households that had < 5-year-old children at home. Although dengue has been transmitted in Iquitos since the 1990s and the Regional Health Authority routinely fumigates households, treats domestic water containers with larvicide, and issues health education messages through mass media, knowledge of dengue transmission and household practices for prevention could be improved. PMID:26503276
Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud
2013-10-01
Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina Faso between 2008 and 2010 under the Corus 6015 research program. This review aims to show: (i) the insecticide resistance in B. tabaci as well as in An. gambiae; and (ii) due to this, the impact of selection of resistant populations on malaria vector control strategies. Some measures that could be beneficial for crop protection and vector control strategies in West Africa are proposed. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamics and Synchronization of Nonlinear Oscillators with Time Delays: A Study with Fiber Lasers
2007-07-19
or coupling lines PC Polarization Controller PD Photodetector VA Variable Attenuator WDM Wavelength Division Multiplexer x Chapter 1 Introduction 1.1...lasers and detectors. Injection locking of lasers is a common practice that can be used to lock the frequency and phase of a laser to an injected signal...finding a basis vector that maximizes the mean squared projection of the data. Succeeding basis vectors are found that max- imize the projection with the
Corre, Guillaume; Dessainte, Michel; Marteau, Jean-Brice; Dalle, Bruno; Fenard, David; Galy, Anne
2016-02-01
Nonreplicative recombinant HIV-1-derived lentiviral vectors (LV) are increasingly used in gene therapy of various genetic diseases, infectious diseases, and cancer. Before they are used in humans, preparations of LV must undergo extensive quality control testing. In particular, testing of LV must demonstrate the absence of replication-competent lentiviruses (RCL) with suitable methods, on representative fractions of vector batches. Current methods based on cell culture are challenging because high titers of vector batches translate into high volumes of cell culture to be tested in RCL assays. As vector batch size and titers are continuously increasing because of the improvement of production and purification methods, it became necessary for us to modify the current RCL assay based on the detection of p24 in cultures of indicator cells. Here, we propose a practical optimization of this method using a pairwise pooling strategy enabling easier testing of higher vector inoculum volumes. These modifications significantly decrease material handling and operator time, leading to a cost-effective method, while maintaining optimal sensibility of the RCL testing. This optimized "RCL-pooling assay" ameliorates the feasibility of the quality control of large-scale batches of clinical-grade LV while maintaining the same sensitivity.
Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)
2002-01-01
The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.
Makungu, Christina; Stephen, Stephania; Kumburu, Salome; Govella, Nicodem J; Dongus, Stefan; Hildon, Zoe Jane-Lara; Killeen, Gerry F; Jones, Caroline
2017-10-11
The effectiveness of malaria prevention with long-lasting insecticidal nets and indoor residual spraying is limited by emerging insecticide resistance, evasive mosquito behaviours that include outdoor biting, sub-optimal implementation and inappropriate use. New vector control interventions are required and their potential effectiveness will be enhanced if existing household perceptions and practices are integrated into intervention design. This qualitative descriptive study used focus groups discussions, in-depth interviews and photovoice methods to explore mosquito control perceptions and practices among residents in four study sites in Dar es Salaam, Tanzania. Mosquitoes were perceived as a growing problem, directly attributed to widespread environmental deterioration and lack of effective mosquito control interventions. Malaria and nuisance biting were perceived as the main problem caused by mosquitoes. Breeding sites were clearly distinguished from resting sites but residents did not differentiate between habitats producing malaria vector mosquitoes and others producing mostly nuisance mosquitoes. The most frequently mentioned protection methods in the wealthiest locations were bed nets, aerosol insecticide sprays, window screens, and fumigation, while bed nets were most frequently mentioned and described as 'part of the culture' in the least wealthy locations. Mosquito-proofed housing was consistently viewed as desirable, but considered unaffordable outside wealthiest locations. Slapping and covering up with clothing were most commonly used to prevent biting outdoors. Despite their utility outdoors, topical repellents applied to the skin were considered expensive, and viewed with suspicion due to perceived side effects. Improving the local environment was the preferred method for preventing outdoor biting. Affordability, effectiveness, availability, practicality, as well as social influences, such as government recommendations, socialization and internalization (familiarization and habit) were described as key factors influencing uptake. Outdoor transmission is widely accepted as an obstacle to malaria elimination. Larval source management, targeting both malaria vectors and nuisance-biting mosquitoes, is the preferred method for mosquito control among the residents of Dar es Salaam and should be prioritized for development alongside new methods for outdoor personal protection. Even if made available, effective and affordable, these additional interventions may require time and user experience to achieve positive reputations and trustworthiness.
Ontology for Vector Surveillance and Management
LOZANO-FUENTES, SAUL; BANDYOPADHYAY, ARITRA; COWELL, LINDSAY G.; GOLDFAIN, ALBERT; EISEN, LARS
2013-01-01
Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an “umbrella” for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a “term tree” to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage, through the has_vector relation, of arthropod species to the pathogenic microorganisms for which they serve as biological vectors. We also recognized and addressed a potential roadblock for use of the VSMO by the vector-borne disease community: the difficulty in extracting information from OBO-Edit ontology files (*.obo files) and exporting the information to other file formats. A novel ontology explorer tool was developed to facilitate extraction and export of information from the VSMO *.obo file into lists of terms and their associated unique IDs in *.txt or *.csv file formats. These lists can then be imported into a database or data management system for use as select lists with predefined terms. This is an important step to ensure that the knowledge contained in our ontology can be put into practical use. PMID:23427646
Ontology for vector surveillance and management.
Lozano-Fuentes, Saul; Bandyopadhyay, Aritra; Cowell, Lindsay G; Goldfain, Albert; Eisen, Lars
2013-01-01
Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an "umbrella" for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a "term tree" to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage, through the has vector relation, of arthropod species to the pathogenic microorganisms for which they serve as biological vectors. We also recognized and addressed a potential roadblock for use of the VSMO by the vector-borne disease community: the difficulty in extracting information from OBO-Edit ontology files (*.obo files) and exporting the information to other file formats. A novel ontology explorer tool was developed to facilitate extraction and export of information from the VSMO*.obo file into lists of terms and their associated unique IDs in *.txt or *.csv file formats. These lists can then be imported into a database or data management system for use as select lists with predefined terms. This is an important step to ensure that the knowledge contained in our ontology can be put into practical use.
Progress in malaria vector control.
Pant, C P; Rishikesh, N; Bang, Y H; Smith, A
1981-01-01
Malaria control, except in tropical Africa, will probably continue to be based to a large extent on the use of insecticides for many years. However, the development of resistance to insecticides in the vectors has caused serious difficulties and it is necessary to change the strategy of insecticide use to maximize their efficacy. A thorough knowledge of the ecology and behaviour of each vector species is required before the control strategy can be adapted to different epidemiological situations. The behavioural differences between sibling species have been recognized for several years, but study of this problem has recently been simplified by improved means of identification that involve chromosomal banding patterns and electrophoretic analysis. Behavioural differences have also been associated with certain chromosomal rearrangements.New records of insecticide resistance among anophelines continue to appear and the impact of this on antimalaria operations has been seriously felt in Central America (multi-resistance in Anopheles albimanus), Turkey (A. sacharovi), India and several Asian countries (A. culicifacies and A. stephensi), and some other countries. Work continues on the screening and testing of newer insecticides that can be used as alternatives, but DDT, malathion, temephos, fenitrothion, and propoxur continue to be used as the main insecticides in many malaria control projects. The search for simpler and innovative approaches to insecticide application also continues.Biological control of vectors is receiving increased attention, as it could become an important component of integrated vector control strategies, and most progress has been made with the spore-forming bacterium, serotype H-14 of Bacillus thuringiensis. Larvivorous fish such as Gambusia spp. and Poecilia spp. continue to be used in some programmes.Application of environmental management measures, such as source reduction, source elimination, flushing of drainage and irrigation channels, and intermittent irrigation have been re-examined and currently a great deal of interest is being shown in these approaches.There has been limited interest in the genetic control of mosquitos and the phenomenon of refractoriness in some strains of the disease vectors, with the idea of replacing the vector species with the refractory strain. More research is needed before this approach can become a practical tool.It is apparent that in future a more integrated approach will have to be used for vector control within the context of antimalaria programmes. Training of staff, research, and cooperation at all levels will be an essential requirement for this approach.
Intelligent control for PMSM based on online PSO considering parameters change
NASA Astrophysics Data System (ADS)
Song, Zhengqiang; Yang, Huiling
2018-03-01
A novel online particle swarm optimization method is proposed to design speed and current controllers of vector controlled interior permanent magnet synchronous motor drives considering stator resistance variation. In the proposed drive system, the space vector modulation technique is employed to generate the switching signals for a two-level voltage-source inverter. The nonlinearity of the inverter is also taken into account due to the dead-time, threshold and voltage drop of the switching devices in order to simulate the system in the practical condition. Speed and PI current controller gains are optimized with PSO online, and the fitness function is changed according to the system dynamic and steady states. The proposed optimization algorithm is compared with conventional PI control method in the condition of step speed change and stator resistance variation, showing that the proposed online optimization method has better robustness and dynamic characteristics compared with conventional PI controller design.
NASA Astrophysics Data System (ADS)
Li, Tao
2018-06-01
The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.
Mencke, Norbert
2013-08-01
The medical as well as the veterinary importance of parasitic arthropods or ectoparasites in general terms, is characterized by the primary or secondary impact on the health of humans and companion animals alike. The parasitic arthropods addressed here are those ectoparasites belong to the class of insects, such as fleas and sand flies, or the subclass of acarids, such as ticks. These parasitic arthropods interact intensively with their hosts by blood feeding. Fleas, sand flies and ticks hold the vector capacity to transmit pathogens such as virus, bacteria or protozoa to cats, dogs and humans. The diseases caused by these pathogens are summarized under the terms canine vector-borne diseases (CVBD), feline vector-borne diseases (FVBD) or metazoonoses. In small animal practice, it is important to understand that the transmitted pathogen may either lead to a disease with clinical signs, or more often to asymptomatic, clinically healthy, or silent infections. Blocking of the vector-host interactions, the blood feeding and subsequently the transmission of pathogens during blood feeding is a key element of CVBD control. The focus of this review is on the current knowledge of the epidemiology of parasitic vectors and three important CVBDs they transmit; rickettsiosis, tick borreliosis and canine leishmaniosis from a European perspective, and how veterinary medicine may contribute to the challenges of CVBDs and their control. Prevention of CVBDs is fundamentally based on ectoparasite control. Ectoparasite management in cats and dogs is important not only for the health and well-being of the individual companion animal but for public health in general and is therefore a perfect example of the 'One health' approach. Copyright © 2013. Published by Elsevier B.V.
Analysis of a Linear System for Variable-Thrust Control in the Terminal Phase of Rendezvous
NASA Technical Reports Server (NTRS)
Hord, Richard A.; Durling, Barbara J.
1961-01-01
A linear system for applying thrust to a ferry vehicle in the 3 terminal phase of rendezvous with a satellite is analyzed. This system requires that the ferry thrust vector per unit mass be variable and equal to a suitable linear combination of the measured position and velocity vectors of the ferry relative to the satellite. The variations of the ferry position, speed, acceleration, and mass ratio are examined for several combinations of the initial conditions and two basic control parameters analogous to the undamped natural frequency and the fraction of critical damping. Upon making a desirable selection of one control parameter and requiring minimum fuel expenditure for given terminal-phase initial conditions, a simplified analysis in one dimension practically fixes the choice of the remaining control parameter. The system can be implemented by an automatic controller or by a pilot.
Dengue Contingency Planning: From Research to Policy and Practice.
Runge-Ranzinger, Silvia; Kroeger, Axel; Olliaro, Piero; McCall, Philip J; Sánchez Tejeda, Gustavo; Lloyd, Linda S; Hakim, Lokman; Bowman, Leigh R; Horstick, Olaf; Coelho, Giovanini
2016-09-01
Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks. Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed. Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan.
Narladkar, B. W.
2018-01-01
Broadly, species of arthropods infesting livestock are grouped into flies (biting and non-biting), fleas, lice (biting and sucking), ticks (soft and hard), and mites (burrowing, non-burrowing, and follicular). Among which, biting and non-biting flies and ticks are the potent vectors for many bacterial, viral, rickettsial, and protozoan diseases. Vectors of livestock are having economic significance on three points (1) direct losses from their bite and annoyance, worries, and psychological disturbances produced during the act of biting and feeding, (2) diseases they transmit, and (3) expenditure incurred for their control. Flies such as Culicoides spp. and Musca spp. and various species of hard ticks play important role in disease transmission in addition to their direct effects. For control of vectors, recent concept of integrated pest management (IPM) provides the best solution and also addresses the problems related to acaricide resistance and environmental protection from hazardous chemicals. However, to successfully implement the concept of IPM, for each vector species, estimation of two monitory benchmarks, i.e., economic injury level (EIL) and economic threshold level (ETL) is essential prerequisite. For many vector species and under several circumstances, estimation of EIL and ETL appears to be difficult. Under such scenario, although may not be exact, an approximate estimate can be accrued by taking into account several criteria such as percent prevalence of vectors in a geographical area, percent losses produced, total livestock population, and current prices of livestock products such as milk, meat, and wool. Method for approximate estimation is first time described and elaborated in the present review article. PMID:29657396
Gene transfer to the cerebellum.
Louboutin, Jean-Pierre; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S
2010-12-01
There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo. Using a rSV40 vector carrying human immunodeficiency virus (HIV)-Nef with a C-terminal FLAG epitope, we characterized the distribution, duration, and cell types transduced. Rats received test and control vectors by stereotaxic injection into the cerebellum. Transgene expression was assessed 1, 2, and 4 weeks later by immunostaining of serial brain sections. FLAG epitope-expressing cells were seen, at all times after vector administration, principally detected in the Purkinje cells of the cerebellum, identified as immunopositive for calbindin. Occasional microglial cells were tranduced; transgene expression was not detected in astrocytes or oligodendrocytes. No inflammatory or other reaction was detected at any time. Thus, SV40-derived vectors can deliver effective, safe, and durable transgene expression to the cerebellum.
Haenchen, Steven D.; Hayden, Mary H.; Dickinson, Katherine L.; Walker, Kathleen; Jacobs, Elizabeth E.; Brown, Heidi E.; Gunn, Jayleen K. L.; Kohler, Lindsay N.; Ernst, Kacey C.
2016-01-01
As the range of dengue virus (DENV) transmission expands, an understanding of community uptake of prevention and control strategies is needed both in geographic areas where the virus has recently been circulating and in areas with the potential for DENV introduction. Personal protective behaviors such as the use of mosquito repellent to limit human–vector contact and the reduction of vector density through elimination of oviposition sites are the primary control methods for Aedes aegypti, the main vector of DENV. Here, we examined personal mosquito control measures taken by individuals in Key West, FL, in 2012, which had experienced a recent outbreak of DENV, and Tucson, AZ, which has a high potential for introduction but has not yet experienced autochthonous transmission. In both cities, there was a positive association between the numbers of mosquitoes noticed outdoors and the overall number of avoidance behaviors, use of repellent, and removal of standing water. Increased awareness and perceived risk of DENV were associated with increases in one of the most effective household prevention behaviors, removal of standing water, but only in Key West. PMID:27527634
Prevention and Control Strategies to Counter Dengue Virus Infection
Rather, Irfan A.; Parray, Hilal A.; Lone, Jameel B.; Paek, Woon K.; Lim, Jeongheui; Bajpai, Vivek K.; Park, Yong-Ha
2017-01-01
Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus. PMID:28791258
Prevention and Control Strategies to Counter Dengue Virus Infection.
Rather, Irfan A; Parray, Hilal A; Lone, Jameel B; Paek, Woon K; Lim, Jeongheui; Bajpai, Vivek K; Park, Yong-Ha
2017-01-01
Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.
2014-01-01
Background Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Methods Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Results Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. Conclusions The low resistance observed in Mayotte’s main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control services. Together with the relative isolation of the island (thus limited immigration of mosquitoes), it provides us with a unique place to implement an integrated vector management plan, including all the good practices learned from previous experiences. PMID:24984704
Pocquet, Nicolas; Darriet, Frédéric; Zumbo, Betty; Milesi, Pascal; Thiria, Julien; Bernard, Vincent; Toty, Céline; Labbé, Pierrick; Chandre, Fabrice
2014-07-01
Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. The low resistance observed in Mayotte's main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control services. Together with the relative isolation of the island (thus limited immigration of mosquitoes), it provides us with a unique place to implement an integrated vector management plan, including all the good practices learned from previous experiences.
Social Representations and Practices Towards Triatomines and Chagas Disease in Calakmul, México.
Valdez-Tah, Alba; Huicochea-Gómez, Laura; Ortega-Canto, Judith; Nazar-Beutelspacher, Austreberta; Ramsey, Janine M
2015-01-01
Vector-borne transmission of Trypanosoma cruzi (VBTTc) is dependent on the concomitant interaction between biological and environmental hazard over the entire landscape, and human vulnerability. Representations and practices of health-disease-care-seeking and territorial appropriation and use were analyzed for VBTTc in a qualitative ethnographic study in the Zoh-Laguna landscape, Campeche, Mexico. In-depth interviews and participatory observation explored representations and practices regarding ethno-ecological knowledge related to vector-transmission, health-disease-care-seeking, and land use processes. The population has a broad knowledge of biting insects, which they believe are all most abundant in the rainy season; the community´s proximity to natural areas is perceived as a barrier to control their abundance. Triatomines are mostly recognized by men, who have detailed knowledge regarding their occurrence and association with mammals in non-domestic fragments, where they report being bitten. Women emphasize the dermal consequences of triatomine bites, but have little knowledge about the disease. Triatomine bites and the chinchoma are "normalized" events which are treated using home remedies, if at all. The neglected condition of Chagas disease in Mexican public health policies, livelihoods which are dependent on primary production, and gender-related knowledge (or lack thereof) are structural circumstances which influence the environment and inhabitants´ living conditions; in turn, these trigger triatomine-human contact. The most important landscape practices producing vulnerability are the activities and mobility within and between landscape fragments causing greater exposure of inhabitants primarily in the dry season. A landscape approach to understanding vulnerability components of VBTTc from health-disease-care-seeking perspectives and based on territorial appropriation and use, is essential where there is continuous movement of vectors between and within all habitats. An understanding of the structural factors which motivate the population´s perceptions, beliefs, and practices and which create and maintain vulnerability is essential to develop culturally relevant and sustainable community-based VBTTc prevention and control.
Social Representations and Practices Towards Triatomines and Chagas Disease in Calakmul, México
Valdez-Tah, Alba; Huicochea-Gómez, Laura; Ortega-Canto, Judith; Nazar-Beutelspacher, Austreberta; Ramsey, Janine M.
2015-01-01
Vector-borne transmission of Trypanosoma cruzi (VBTTc) is dependent on the concomitant interaction between biological and environmental hazard over the entire landscape, and human vulnerability. Representations and practices of health-disease-care-seeking and territorial appropriation and use were analyzed for VBTTc in a qualitative ethnographic study in the Zoh-Laguna landscape, Campeche, Mexico. In-depth interviews and participatory observation explored representations and practices regarding ethno-ecological knowledge related to vector-transmission, health-disease-care-seeking, and land use processes. The population has a broad knowledge of biting insects, which they believe are all most abundant in the rainy season; the community´s proximity to natural areas is perceived as a barrier to control their abundance. Triatomines are mostly recognized by men, who have detailed knowledge regarding their occurrence and association with mammals in non-domestic fragments, where they report being bitten. Women emphasize the dermal consequences of triatomine bites, but have little knowledge about the disease. Triatomine bites and the chinchoma are “normalized” events which are treated using home remedies, if at all. The neglected condition of Chagas disease in Mexican public health policies, livelihoods which are dependent on primary production, and gender-related knowledge (or lack thereof) are structural circumstances which influence the environment and inhabitants´ living conditions; in turn, these trigger triatomine-human contact. The most important landscape practices producing vulnerability are the activities and mobility within and between landscape fragments causing greater exposure of inhabitants primarily in the dry season. A landscape approach to understanding vulnerability components of VBTTc from health-disease-care-seeking perspectives and based on territorial appropriation and use, is essential where there is continuous movement of vectors between and within all habitats. An understanding of the structural factors which motivate the population´s perceptions, beliefs, and practices and which create and maintain vulnerability is essential to develop culturally relevant and sustainable community-based VBTTc prevention and control. PMID:26204555
Workshop focuses on study of climate's effects on health
NASA Astrophysics Data System (ADS)
Diaz, Henry F.; Epstein, Paul R.; Aron, Joan L.; Confalonieri, Ulisses E. C.
Changes in temperature, precipitation, humidity, and storm patterns influence upsurges of waterborne diseases such as hepatitis, shigella dysentery, typhoid, and cholera as well as vector-borne pathogens such as malaria, dengue, yellow fever, encephalitis, schistosomiasis, plague, and hantavirus. Cycles of flooding and drought directly affect factors such as the multiplication rates of disease vectors, the biting rate of vectors, and the amount of host-vector interaction. Indirectly, climate influences parameters important to vector spread or survival such as agricultural practices, the disruption of ecosystems, or changes in social systems and practices, which in turn change the relationship between the parasite, the vector, its predators, and the host.
The invasive mosquito species Aedes albopictus: current knowledge and future perspectives
Bonizzoni, Mariangela; Gasperi, Giuliano; Chen, Xioaguang; James, Anthony A.
2013-01-01
One of the most dynamic events in public health is being mediated by the global spread of the invasive mosquito Aedes albopictus. Its rapid expansion and vectorial capacity for various arboviruses affect an increasingly larger proportion of the world population. Responses to the challenges of controlling this vector are expected to be enhanced by an increased knowledge of its biology, ecology, and vector competence. Details of population genetics and structure will allow following, and possibly predicting, the geographical and temporal dynamics of its expansion, and will inform the practical operations of control programs. Experts are coming together now to describe the history, characterize the present circumstances, and collaborate on future efforts to understand and mitigate this emerging public health threat. PMID:23916878
Nmor, Jephtha C; Sunahara, Toshihiko; Goto, Kensuke; Futami, Kyoko; Sonye, George; Akweywa, Peter; Dida, Gabriel; Minakawa, Noboru
2013-01-16
Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The predictability of habitat types varied. Drains, foot-prints, puddles and swamp habitat types were most predictable. Both SRTM and ASTER models had similar predictive potentials, which were sufficiently accurate to predict vector habitats. The free availability of these DEMs suggests that topographic predictive models could be widely used by vector control managers in Africa to complement malaria control strategies.
USDA-ARS?s Scientific Manuscript database
Alternative control technologies envisioned for the dengue vector Aedes aegypti L. (Diptera: Culicidae) include botanical insecticides, which are believed to pose little threat to the environment or to human health and may provide a practical substitute for synthetic insecticides. In this study, we...
Energy-exchange collisions of dark-bright-bright vector solitons.
Radhakrishnan, R; Manikandan, N; Aravinthan, K
2015-12-01
We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.
On the existence of touch points for first-order state inequality constraints
NASA Technical Reports Server (NTRS)
Seywald, Hans; Cliff, Eugene M.
1993-01-01
The appearance of touch points in state constrained optimal control problems with general vector-valued control is studied. Under the assumption that the Hamiltonian is regular, touch points for first-order state inequalities are shown to exist only under very special conditions. In many cases of practical importance these conditions can be used to exclude touch points a priori without solving an optimal control problem. The results are demonstrated on a simple example.
De Urioste-Stone, Sandra M.; Pennington, Pamela M.; Pellecer, Elizabeth; Aguilar, Teresa M.; Samayoa, Gabriela; Perdomo, Hugo D.; Enríquez, Hugo; Juárez, José G.
2015-01-01
Background Integrated vector management strategies depend on local eco-bio-social conditions, community participation, political will and inter-sectorial partnership. Previously identified risk factors for persistent Triatoma dimidiata infestation include the presence of rodents and chickens, tiled roofs, dirt floors, partial wall plastering and dog density. Methods A community-based intervention was developed and implemented based on cyclical stakeholder and situational analyses. Intervention implementation and evaluation combined participatory action research and cluster randomized pre-test post-test experimental designs. The intervention included modified insecticide application, education regarding Chagas disease and risk factors, and participatory rodent control. Results At final evaluation there was no significant difference in post-test triatomine infestation between intervention and control, keeping pre-test rodent and triatomine infestations constant. Knowledge levels regarding Chagas disease and prevention practices including rodent control, chicken management and health service access increased significantly only in intervention communities. The odds of nymph infection and rat infestation were 8.3 and 1.9-fold higher in control compared to intervention communities, respectively. Conclusion Vector control measures without reservoir control are insufficient to reduce transmission risk in areas with persistent triatomine infestation. This integrated vector management program can complement house improvement initiatives by prioritizing households with risk factors such as tiled roofs. Requirement for active participation and multi-sectorial coordination poses implementation challenges. PMID:25604767
Bello Corassa, Rafael; Aceijas, Carmen; Alves, Paula Aryane Brito; Garelick, Hemda
2017-09-01
This article aimed to provide a critical review of the evolution of Chagas' disease (ChD) in Brazil, its magnitude, historical development and management, and challenges for the future. A literature search was performed using PubMed, SciELO and Google Scholar and throughout collected articles' references. Narrative analysis was structured around five main themes identified: vector transmission, control programme, transfusion, oral and congenital transmission. In Brazil, the Chagas' Disease Control Programme was fully implemented in the 1980s, when it reached practically all the endemic areas, and in 1991, the Southern Cone Initiative was created, aiming to control the disease transmission through eliminating the Triatoma infestans and controlling blood banks. As a result, the prevalence of chagasic donors in blood banks reduced from 4.4% in the 1980s to 0.2% in 2005. In 2006, Pan American Health Organization (PAHO) certified the interruption of transmission of ChD through this vector in Brazil. However, there are still challenges, such as the domiciliation of new vector species, the need for medical care of the infected individuals, the prevention of alternative mechanisms of transmission, the loss of political concern regarding the disease and the weakening of the control programme. Despite the progress towards control, there are still many challenges ahead to maintain and expand such control and minimise the risk of re-emergence.
Revisiting the Procedures for the Vector Data Quality Assurance in Practice
NASA Astrophysics Data System (ADS)
Erdoğan, M.; Torun, A.; Boyacı, D.
2012-07-01
Immense use of topographical data in spatial data visualization, business GIS (Geographic Information Systems) solutions and applications, mobile and location-based services forced the topo-data providers to create standard, up-to-date and complete data sets in a sustainable frame. Data quality has been studied and researched for more than two decades. There have been un-countable numbers of references on its semantics, its conceptual logical and representations and many applications on spatial databases and GIS. However, there is a gap between research and practice in the sense of spatial data quality which increases the costs and decreases the efficiency of data production. Spatial data quality is well-known by academia and industry but usually in different context. The research on spatial data quality stated several issues having practical use such as descriptive information, metadata, fulfillment of spatial relationships among data, integrity measures, geometric constraints etc. The industry and data producers realize them in three stages; pre-, co- and post data capturing. The pre-data capturing stage covers semantic modelling, data definition, cataloguing, modelling, data dictionary and schema creation processes. The co-data capturing stage covers general rules of spatial relationships, data and model specific rules such as topologic and model building relationships, geometric threshold, data extraction guidelines, object-object, object-belonging class, object-non-belonging class, class-class relationships to be taken into account during data capturing. And post-data capturing stage covers specified QC (quality check) benchmarks and checking compliance to general and specific rules. The vector data quality criteria are different from the views of producers and users. But these criteria are generally driven by the needs, expectations and feedbacks of the users. This paper presents a practical method which closes the gap between theory and practice. Development of spatial data quality concepts into developments and application requires existence of conceptual, logical and most importantly physical existence of data model, rules and knowledge of realization in a form of geo-spatial data. The applicable metrics and thresholds are determined on this concrete base. This study discusses application of geo-spatial data quality issues and QA (quality assurance) and QC procedures in the topographic data production. Firstly we introduce MGCP (Multinational Geospatial Co-production Program) data profile of NATO (North Atlantic Treaty Organization) DFDD (DGIWG Feature Data Dictionary), the requirements of data owner, the view of data producers for both data capturing and QC and finally QA to fulfil user needs. Then, our practical and new approach which divides the quality into three phases is introduced. Finally, implementation of our approach to accomplish metrics, measures and thresholds of quality definitions is discussed. In this paper, especially geometry and semantics quality and quality control procedures that can be performed by the producers are discussed. Some applicable best-practices that we experienced on techniques of quality control, defining regulations that define the objectives and data production procedures are given in the final remarks. These quality control procedures should include the visual checks over the source data, captured vector data and printouts, some automatic checks that can be performed by software and some semi-automatic checks by the interaction with quality control personnel. Finally, these quality control procedures should ensure the geometric, semantic, attribution and metadata quality of vector data.
Prospects for the control of onchocerciasis in Africa
Waddy, B. B.
1969-01-01
Onchocerciasis is found in association with all the main river systems of northern tropical Africa, and there are endemic foci south of the Equator. Heavy and prolonged infection may cause blindness and intense pruritis. The vectors, Simulium damnosum and S. neavei, are also intolerable pests when they swarm. The disease and its vector together cause serious economic loss and are a main cause of the depopulation of river valleys in the savanna lands. The basin of the River Volta, in which the worst endemic area in the world is situated, is considered to be the most favourable area for a study of the problems involved in the large-scale control of onchocerciasis carried by S. damnosum. Mass treatment or prophylaxis are not practicable at present. The clinical condition progresses for many years in the absence of fresh infection, and drugs capable of mass application are needed. However, the first aim is to attack the larval stages of the vector with insecticides. DDT is ideal for this purpose in large, steadily flowing rivers, but a more suitable insecticide and formulation are needed for small, irregularly flowing streams. Research is needed into many aspects of the adult life of S. damnosum, including feeding and resting habits, dry season survival and flight range. One of the main practical problems is prevention of reinfestation of a treated river system. PMID:5307598
Justice foundations for the Comprehensive Law Movement.
Dewhurst, Dale
2010-01-01
Authors examining the developing dispute resolution alternatives to the adversarial system have identified nine converging "vectors" or alternatives in what has been termed the Comprehensive Law Movement. These authors have sought to understand how the developing vectors can remain separate and vibrant movements while sharing common ground. Some analyze these developments as being within law and legal practice, others see them as alternative approaches to law, and still others take a combined approach. It will be impossible to understand how these vectors have meaningful differences from law and legal practice if the search is limited to looking within law and legal practice. It will be impossible to understand how these vectors have meaningful commonalities with law and legal practice if the search is limited to looking external to law and legal practice. Instead of comparing the vectors with the adversarial system, higher order criteria are required. What is needed is a comprehensive and internally consistent super-system of norms; one that can be used to evaluate the adversarial system and the evolving vectors on an equal footing. An Aristotelian natural law virtue theory of justice can: (a) provide a functional guiding definition of justice; (b) serve as a comprehensive and internally consistent super-system of norms; and (c) provide the theoretical and evaluative foundation required to clarify the relationships among the adversarial system and the developing vectors. Finally, it will become clear why the Comprehensive Law Movement might be more appropriately conceptualized as the Comprehensive Justice Movement. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dieng, Hamady; Tan Yusop, Nur Syafiqah Bt; Kamal, Nurafidah Natasyah Bt; Ahmad, Abu Hassan; Ghani, Idris Abd; Abang, Fatimah; Satho, Tomomitsu; Ahmad, Hamdan; Zuharah, Wan Fatma; Majid, Abdul Hafiz Ab; Morales, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Noweg, Gabriel Tonga
2016-05-11
Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
Sommerfeld, Johannes; Kroeger, Axel
2012-12-01
This article provides an overview of methods and cross-site insights of a 5-year research and capacity building initiative conducted between 2006 and 2011 in six countries of South Asia (India, Sri Lanka) and South-East Asia (Indonesia, Myanmar, Philippines, Thailand).The initiative managed an interdisciplinary investigation of ecological, biological, and social (i.e., eco-bio-social) dimensions of dengue in urban and peri-urban areas, and developed community-based interventions aimed at reducing dengue vector breeding and viral transmission. The multicountry study comprised interdisciplinary research groups from six leading Asian research institutions. The groups conducted a detailed situation analysis to identify and characterize local eco-bio-social conditions, and formed a community-of-practice for EcoHealth research where group partners disseminated results and collaboratively developed site-specific intervention tools for vector-borne diseases. In sites where water containers produced more than 70% of Aedes pupae, interventions ranged from mechanical lid covers for containers to biological control. Where small discarded containers presented the main problem, groups experimented with solid waste management, composting and recycling schemes. Many intervention tools were locally produced and all tools were implemented through community partnership strategies. All sites developed socially and culturally appropriate health education materials. The study also mobilised and empowered women's, students' and community groups and at several sites organized new volunteer groups for environmental health. The initiative's programmes showed significant impact on vector densities in some sites. Other sites showed varying effect - partially attributable to the 'contamination' of control groups - yet led to significant outcomes at the community level where local groups united around broad interests in environmental hygiene and sanitation. The programme's findings are relevant for defining efficient, effective and ecologically sound vector control interventions based on local evidence and in accordance with WHO's strategy for integrated vector management.
Sommerfeld, Johannes; Kroeger, Axel
2012-01-01
This article provides an overview of methods and cross-site insights of a 5-year research and capacity building initiative conducted between 2006 and 2011 in six countries of South Asia (India, Sri Lanka) and South-East Asia (Indonesia, Myanmar, Philippines, Thailand).The initiative managed an interdisciplinary investigation of ecological, biological, and social (i.e., eco-bio-social) dimensions of dengue in urban and peri-urban areas, and developed community-based interventions aimed at reducing dengue vector breeding and viral transmission. The multicountry study comprised interdisciplinary research groups from six leading Asian research institutions. The groups conducted a detailed situation analysis to identify and characterize local eco-bio-social conditions, and formed a community-of-practice for EcoHealth research where group partners disseminated results and collaboratively developed site-specific intervention tools for vector-borne diseases. In sites where water containers produced more than 70% of Aedes pupae, interventions ranged from mechanical lid covers for containers to biological control. Where small discarded containers presented the main problem, groups experimented with solid waste management, composting and recycling schemes. Many intervention tools were locally produced and all tools were implemented through community partnership strategies. All sites developed socially and culturally appropriate health education materials. The study also mobilised and empowered women’s, students’ and community groups and at several sites organized new volunteer groups for environmental health. The initiative’s programmes showed significant impact on vector densities in some sites. Other sites showed varying effect — partially attributable to the ‘contamination’ of control groups — yet led to significant outcomes at the community level where local groups united around broad interests in environmental hygiene and sanitation. The programme’s findings are relevant for defining efficient, effective and ecologically sound vector control interventions based on local evidence and in accordance with WHO’s strategy for integrated vector management. PMID:23318234
Zoonotic aspects of vector-borne infections.
Failloux, A-B; Moutailler, S
2015-04-01
Vector-borne diseases are principally zoonotic diseases transmitted to humans by animals. Pathogens such as bacteria, parasites and viruses are primarily maintained within an enzootic cycle between populations of non-human primates or other mammals and largely non-anthropophilic vectors. This 'wild' cycle sometimes spills over in the form of occasional infections of humans and domestic animals. Lifestyle changes, incursions by humans into natural habitats and changes in agropastoral practices create opportunities that make the borders between wildlife and humans more permeable. Some vector-borne diseases have dispensed with the need for amplification in wild or domestic animals and they can now be directly transmitted to humans. This applies to some viruses (dengue and chikungunya) that have caused major epidemics. Bacteria of the genus Bartonella have reduced their transmission cycle to the minimum, with humans acting as reservoir, amplifier and disseminator. The design of control strategies for vector-borne diseases should be guided by research into emergence mechanisms in order to understand how a wild cycle can produce a pathogen that goes on to cause devastating urban epidemics.
Cost effective malaria risk control using remote sensing and environmental data
NASA Astrophysics Data System (ADS)
Rahman, Md. Z.; Roytman, Leonid; Kadik, Abdel Hamid
2012-06-01
Malaria transmission in many part of the world specifically in Bangladesh and southern African countries is unstable and epidemic. An estimate of over a million cases is reported annually. Malaria is heterogeneous, potentially due to variations in ecological settings, socio-economic status, land cover, and agricultural practices. Malaria control only relies on treatment and supply of bed networks. Drug resistance to these diseases is widespread. Vector control is minimal. Malaria control in those countries faces many formidable challenges such as inadequate accessibility to effective treatment, lack of trained manpower, inaccessibility of endemic areas, poverty, lack of education, poor health infrastructure and low health budgets. Health facilities for malaria management are limited, surveillance is inadequate, and vector control is insufficient. Control can only be successful if the right methods are used at the right time in the right place. This paper aims to improve malaria control by developing malaria risk maps and risk models using satellite remote sensing data by identifying, assessing, and mapping determinants of malaria associated with environmental, socio-economic, malaria control, and agricultural factors.
Dusfour, Isabelle; Thalmensy, Véronique; Gaborit, Pascal; Issaly, Jean; Carinci, Romuald; Girod, Romain
2011-05-01
In French Guiana, pyrethroids and organophosphates have been used for many years against Aedes aegypti. We aimed to establish both the resistance level of Ae. aegypti and the ultra low volume spray efficacy to provide mosquito control services with practical information to implement vector control and resistance management. Resistance to deltamethrin and fenitrothion was observed. In addition, the profound loss of efficacy of AquaK'othrine® and the moderate loss of efficacy of Paluthion® 500 were recorded. Fenitrothion remained the most effective candidate for spatial application in French Guiana until its removal in December 2010. Further investigation of the mechanism of resistance to deltamethrin demonstrated the involvement of mixed-function oxidases and, to a lesser extent, of carboxylesterases. However, these observations alone cannot explain the level of insecticide resistance we observed during tube and cage tests.
Linn, Kristin A; Gaonkar, Bilwaj; Satterthwaite, Theodore D; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T
2016-05-15
Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We study our proposed approach in the context of group classification using structural MRI data. We show that control-based normalization leads to better reproducibility of estimated multivariate disease patterns and improves the classifier performance in many cases. Copyright © 2016 Elsevier Inc. All rights reserved.
Prediction and prevention of parasitic diseases using a landscape genomics framework
Schwabl, Philipp; Llewellyn, Martin; Landguth, Erin L.; Andersson, Björn; Kitron, Uriel; Costales, Jaime A.; Ocaña, Sofía; Grijalva, Mario J.
2016-01-01
Summary Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data (‘landscape genetics’) is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so. PMID:27863902
Prediction and Prevention of Parasitic Diseases Using a Landscape Genomics Framework.
Schwabl, Philipp; Llewellyn, Martin S; Landguth, Erin L; Andersson, Björn; Kitron, Uriel; Costales, Jaime A; Ocaña, Sofía; Grijalva, Mario J
2017-04-01
Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data ('landscape genetics') is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dengue Contingency Planning: From Research to Policy and Practice
Runge-Ranzinger, Silvia; Kroeger, Axel; Olliaro, Piero; McCall, Philip J.; Sánchez Tejeda, Gustavo; Lloyd, Linda S.; Hakim, Lokman; Bowman, Leigh R.; Horstick, Olaf; Coelho, Giovanini
2016-01-01
Background Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks. Methodology/Principal findings Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed. Conclusions/Significance Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan. PMID:27653786
Results of solar electric thrust vector control system design, development and tests
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1973-01-01
Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.
Virus diseases of peppers (Capsicum spp.) and their control.
Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A
2014-01-01
The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.
Hashimoto, Ken; Zúniga, Concepción; Nakamura, Jiro; Hanada, Kyo
2015-03-24
Integration of disease-specific programmes into the primary health care (PHC) service has been attempted mostly in clinically oriented disease control such as HIV/AIDS and tuberculosis but rarely in vector control. Chagas disease is controlled principally by interventions against the triatomine vector. In Honduras, after successful reduction of household infestation by vertical approach, the Ministry of Health implemented community-based vector surveillance at the PHC services (health centres) to prevent the resurgence of infection. This paper retrospectively analyses the effects and process of integrating a Chagas disease vector surveillance system into health centres. We evaluated the effects of integration at six pilot sites in western Honduras during 2008-2011 on; surveillance performance; knowledge, attitude and practice in schoolchildren; reports of triatomine bug infestation and institutional response; and seroprevalence among children under 15 years of age. The process of integration of the surveillance system was analysed using the PRECEDE-PROCEED model for health programme planning. The model was employed to systematically determine influential and interactive factors which facilitated the integration process at different levels of the Ministry of Health and the community. Overall surveillance performance improved from 46 to 84 on a 100 point-scale. Schoolchildren's attitude (risk awareness) score significantly increased from 77 to 83 points. Seroprevalence declined from 3.4% to 0.4%. Health centres responded to the community bug reports by insecticide spraying. As key factors, the health centres had potential management capacity and influence over the inhabitants' behaviours and living environment directly and through community health volunteers. The National Chagas Programme played an essential role in facilitating changes with adequate distribution of responsibilities, participatory modelling, training and, evaluation and advocacy. We found that Chagas disease vector surveillance can be integrated into the PHC service. Health centres demonstrated capacity to manage vector surveillance and improve performance, children's awareness, vector report-response and seroprevalence, once tasks were simplified to be performed by trained non-specialists and distributed among the stakeholders. Health systems integration requires health workers to perform beyond their usual responsibilities and acquire management skills. Integration of vector control is feasible and can contribute to strengthening the preventive capacity of the PHC service.
Insights from agriculture for the management of insecticide resistance in disease vectors.
Sternberg, Eleanore D; Thomas, Matthew B
2018-04-01
Key to contemporary management of diseases such as malaria, dengue, and filariasis is control of the insect vectors responsible for transmission. Insecticide-based interventions have contributed to declines in disease burdens in many areas, but this progress could be threatened by the emergence of insecticide resistance in vector populations. Insecticide resistance is likewise a major concern in agriculture, where insect pests can cause substantial yield losses. Here, we explore overlaps between understanding and managing insecticide resistance in agriculture and in public health. We have used the Global Plan for Insecticide Resistance Management in malaria vectors, developed under the auspices of the World Health Organization Global Malaria Program, as a framework for this exploration because it serves as one of the few cohesive documents for managing a global insecticide resistance crisis. Generally, this comparison highlights some fundamental differences between insect control in agriculture and in public health. Moreover, we emphasize that the success of insecticide resistance management strategies is strongly dependent on the biological specifics of each system. We suggest that the biological, operational, and regulatory differences between agriculture and public health limit the wholesale transfer of knowledge and practices from one system to the other. Nonetheless, there are some valuable insights from agriculture that could assist in advancing the existing Global Plan for Insecticide Resistance Management framework.
Pollitzer, R.
1953-01-01
In examining the control and prevention of plague, the author pays particular attention to the control of commensal rodents and their fleas. The various rat poisons in current use, their efficacy and practical application, and the dangers involved in their manipulation are described in great detail. The author also discusses other anti-rodent measures such as fumigation, rat-proofing, sanitation, protection of food, etc. The second part of the study deals with: vector control—the outstanding value of DDT application in rodent-flea control is emphasized—, the direct control of bubonic and pneumonic plague, and the control of the spread of plague at a distance. PMID:20603968
Fillinger, Ulrike; Kannady, Khadija; William, George; Vanek, Michael J; Dongus, Stefan; Nyika, Dickson; Geissbühler, Yvonne; Chaki, Prosper P; Govella, Nico J; Mathenge, Evan M; Singer, Burton H; Mshinda, Hassan; Lindsay, Steven W; Tanner, Marcel; Mtasiwa, Deo; de Castro, Marcia C; Killeen, Gerry F
2008-01-01
Background As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed. Methods A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards. Results The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6–37.6%; p = 0.04). Conclusion This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience. PMID:18218148
Boyce, R; Lenhart, A; Kroeger, A; Velayudhan, R; Roberts, B; Horstick, O
2013-05-01
To systematically review the literature on the effectiveness of Bacillus thuringiensis israelensis (Bti), when used as a single agent in the field, for the control of dengue vectors. Systematic literature search of the published and grey literature was carried out using the following databases: MEDLINE, EMBASE, Global Health, Web of Science, the Cochrane Library, WHOLIS, ELDIS, the New York Academy of Medicine Gray Literature Report, Africa-Wide and Google. All results were screened for duplicates and assessed for eligibility. Relevant data were extracted, and a quality assessment was conducted using the CONSORT 2010 checklist. Fourteen studies satisfied the eligibility criteria, incorporating a wide range of interventions and outcome measures. Six studies were classified as effectiveness studies, and the remaining eight examined the efficacy of Bti in more controlled settings. Twelve (all eight efficacy studies and 4 of 6 effectiveness studies) reported reductions in entomological indices with an average duration of control of 2-4 weeks. The two effectiveness studies that did not report significant entomological reductions were both cluster-randomised study designs that utilised basic interventions such as environmental management or general education on environment control practices in their respective control groups. Only one study described a reduction in entomological indices together with epidemiological data, reporting one dengue case in the treated area compared to 15 dengue cases in the untreated area during the observed study period. While Bti can be effective in reducing the number of immature Aedes in treated containers in the short term, there is very limited evidence that dengue morbidity can be reduced through the use of Bti alone. There is currently insufficient evidence to recommend the use of Bti as a single agent for the long-term control of dengue vectors and prevention of dengue fever. Further studies examining the role of Bti in combination with other strategies to control dengue vectors are warranted. © 2013 Blackwell Publishing Ltd.
Valença-Barbosa, Carolina; Lima, Marli M.; Sarquis, Otília; Bezerra, Claudia M.; Abad-Franch, Fernando
2014-01-01
Background Understanding the drivers of habitat selection by insect disease vectors is instrumental to the design and operation of rational control-surveillance systems. One pervasive yet often overlooked drawback of vector studies is that detection failures result in some sites being misclassified as uninfested; naïve infestation indices are therefore biased, and this can confound our view of vector habitat preferences. Here, we present an initial attempt at applying methods that explicitly account for imperfect detection to investigate the ecology of Chagas disease vectors in man-made environments. Methodology We combined triplicate-sampling of individual ecotopes (n = 203) and site-occupancy models (SOMs) to test a suite of pre-specified hypotheses about habitat selection by Triatoma brasiliensis. SOM results were compared with those of standard generalized linear models (GLMs) that assume perfect detection even with single bug-searches. Principal Findings Triatoma brasiliensis was strongly associated with key hosts (native rodents, goats/sheep and, to a lesser extent, fowl) in peridomestic environments; ecotope structure had, in comparison, small to negligible effects, although wooden ecotopes were slightly preferred. We found evidence of dwelling-level aggregation of infestation foci; when there was one such focus, same-dwelling ecotopes, whether houses or peridomestic structures, were more likely to become infested too. GLMs yielded negatively-biased covariate effect estimates and standard errors; both were, on average, about four times smaller than those derived from SOMs. Conclusions/Significance Our results confirm substantial population-level ecological heterogeneity in T. brasiliensis. They also suggest that, at least in some sites, control of this species may benefit from peridomestic rodent control and changes in goat/sheep husbandry practices. Finally, our comparative analyses highlight the importance of accounting for the various sources of uncertainty inherent to vector studies, including imperfect detection. We anticipate that future research on infectious disease ecology will increasingly rely on approaches akin to those described here. PMID:24811125
Climate-based models for West Nile Culex mosquito vectors in the Northeastern US
NASA Astrophysics Data System (ADS)
Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.
2011-05-01
Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.
Integrating vector control across diseases.
Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W
2015-10-01
Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.
USDA-ARS?s Scientific Manuscript database
Tillage management practices have direct impact on water holding capacity, evaporation, carbon sequestration, and water quality. This study examines the feasibility of two statistical learning algorithms, such as Least Square Support Vector Machine (LSSVM) and Relevance Vector Machine (RVM), for cla...
Merten, Otto-Wilhelm; Charrier, Sabine; Laroudie, Nicolas; Fauchille, Sylvain; Dugué, Céline; Jenny, Christine; Audit, Muriel; Zanta-Boussif, Maria-Antonietta; Chautard, Hélène; Radrizzani, Marina; Vallanti, Giuliana; Naldini, Luigi; Noguiez-Hellin, Patricia; Galy, Anne
2011-03-01
From the perspective of a pilot clinical gene therapy trial for Wiskott-Aldrich syndrome (WAS), we implemented a process to produce a lentiviral vector under good manufacturing practices (GMP). The process is based on the transient transfection of 293T cells in Cell Factory stacks, scaled up to harvest 50 liters of viral stock per batch, followed by purification of the vesicular stomatitis virus glycoprotein-pseudotyped particles through several membrane-based and chromatographic steps. The process leads to a 200-fold volume concentration and an approximately 3-log reduction in protein and DNA contaminants. An average yield of 13% of infectious particles was obtained in six full-scale preparations. The final product contained low levels of contaminants such as simian virus 40 large T antigen or E1A sequences originating from producer cells. Titers as high as 2 × 10(9) infectious particles per milliliter were obtained, generating up to 6 × 10(11) infectious particles per batch. The purified WAS vector was biologically active, efficiently expressing the genetic insert in WAS protein-deficient B cell lines and transducing CD34(+) cells. The vector introduced 0.3-1 vector copy per cell on average in CD34(+) cells when used at the concentration of 10(8) infectious particles per milliliter, which is comparable to preclinical preparations. There was no evidence of cellular toxicity. These results show the implementation of large-scale GMP production, purification, and control of advanced HIV-1-derived lentiviral technology. Results obtained with the WAS vector provide the initial manufacturing and quality control benchmarking that should be helpful to further development and clinical applications.
Troyo, Adriana; Calderón-Arguedas, Olger; Fuller, Douglas O.; Solano, Mayra E.; Avendaño, Adrian; Arheart, Kristopher L.; Chadee, Dave D.; Beier, John C.
2008-01-01
Dengue is the most important arboviral disease worldwide and the principal vector-borne disease in Costa Rica. Control of Aedes aegypti populations through source reduction is still considered the most effective way of prevention and control, although it has proven ineffective or unsustainable in many areas with a history of mosquito control. In this study, seasonal profiles and productivity of Aedes aegypti were analyzed in the city of Puntarenas, Costa Rica, where vector control has been practiced for more than ten years. Households contained more than 80% of larval habitats identified, although presence of habitats was more likely in other locations like lots and streets. In the wet season, habitats in the “other” category, like appliances, small manholes, and miscellaneous containers, were the most frequent habitats observed as well as the most common and productive habitats for Ae. aegypti. In the dry season, domestic animal drinking containers were very common, although concrete washtubs contained 79% of Ae. aegypti pupae collected. Individually, non-disposable habitats were as likely or more likely to contain mosquito larvae, and large containers were more likely to harbor mosquito larvae than the small ones only in the dry season. Considering various variables in the logistic regressions, predictors for Ae. aegypti in a habitat were habitat type (p<0.001), setting (p=0.043), and disposability (p=0.022) in the wet season and habitat capacity in the dry season (p=0.025). Overall, traditional Ae. aegypti larval indices and pupal indices in Puntarenas were high enough to allow viral transmission during the wet season. In spite of continued vector control, it has not been possible to reduce vector densities below threshold levels in Puntarenas, and the habitat profiles show that non-household locations, as well as non-disposable containers, should be targeted in addition to the standard control activities. PMID:18697310
Chouaïbou, Mouhamadou S; Fodjo, Behi K; Fokou, Gilbert; Allassane, Ouattara F; Koudou, Benjamin G; David, Jean-Philippe; Antonio-Nkondjio, Christophe; Ranson, Hilary; Bonfoh, Bassirou
2016-08-24
Vector control can contribute to the development of resistance to insecticides in malaria vectors. As the swamps and wetlands used for some agricultural activities constitute productive breeding sites for many mosquito species, agricultural pest control may increase the selection pressure for insecticide resistance in mosquitoes. Understanding the use of agrochemicals by farmers is important to plan and initiate effective integrated pest and vector management interventions. A knowledge-attitude-practice study, using questionnaires, was undertaken with 102 rice farmers in Tiassalé and 106 vegetable farmers in Dabou (South Côte d'Ivoire) in order to generate information on pesticide usage. In addition, insecticide susceptibility bioassays were conducted using adult mosquitoes obtained from larvae collected within farms, and the persistence of agricultural pesticides in the farming environment, including sediment and mosquito breeding site water, was investigated by HPLC. Herbicides and insecticides appeared to be the most frequently used pesticides for both crops. Amino phosphonates (mostly glyphosate) represented the most used herbicides (45 % for rice up to 89 % for vegetables). Pyrethroids appeared to be the most used insecticides (accounting for 90 % of all the insecticide use reported). Approximately 75 % of respondents had not been to school and do not understand product labels. Only about 45 % of farmers respect the recommended pesticide dosage and about 10-15 % of pesticides used for rice and vegetable, respectively, are not recommended for these crops. As per WHO criteria, the mosquito local populations from the two localities were resistant to three of the four insecticides tested, as mortalities were less than 35 % for deltamethrin, DDT and bendiocarb. Higher susceptibility was observed for malathion, although the population was considered resistant in Dabou (80 % mortality) and susceptible in Tiassalé (98 % mortality). With the exception of glyphosate, residues from each of six chemicals tested for were detected in each of the sites visited in the two localities. The study describes the use of insecticides and herbicides on crops and highlights the importance of considering agriculture practices when attempting to manage resistance in malaria vectors. Inter-sectoral collaboration between agriculture and public health is required to develop efficient integrated pest and vector management interventions.
Current vector control challenges in the fight against malaria.
Benelli, Giovanni; Beier, John C
2017-10-01
The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
40 CFR 258.22 - Disease vector control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...
Molecular Genetics Reveal That Silvatic Rhodnius prolixus Do Colonise Rural Houses
Fitzpatrick, Sinead; Feliciangeli, Maria Dora; Sanchez-Martin, Maria J.; Monteiro, Fernando A.; Miles, Michael A.
2008-01-01
Background Rhodnius prolixus is the main vector of Chagas disease in Venezuela. Here, domestic infestations of poor quality rural housing have persisted despite four decades of vector control. This is in contrast to the Southern Cone region of South America, where the main vector, Triatoma infestans, has been eliminated over large areas. The repeated colonisation of houses by silvatic populations of R. prolixus potentially explains the control difficulties. However, controversy surrounds the existence of silvatic R. prolixus: it has been suggested that all silvatic populations are in fact Rhodnius robustus, a related species of minor epidemiological importance. Here we investigate, by direct sequencing (mtcytb, D2) and by microsatellite analysis, 1) the identity of silvatic Rhodnius and 2) whether silvatic populations of Rhodnius are isolated from domestic populations. Methods and Findings Direct sequencing confirmed the presence of R. prolixus in palms and that silvatic bugs can colonise houses, with house and palm specimens sharing seven cytb haplotypes. Additionally, mitochondrial introgression was detected between R. robustus and R. prolixus, indicating a previous hybridisation event. The use of ten polymorphic microsatellite loci revealed a lack of genetic structure between silvatic and domestic ecotopes (non-significant FST values), which is indicative of unrestricted gene flow. Conclusions Our analyses demonstrate that silvatic R. prolixus presents an unquestionable threat to the control of Chagas disease in Venezuela. The design of improved control strategies is essential for successful long term control and could include modified spraying and surveillance practices, together with housing improvements. PMID:18382605
Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses.
Fitzpatrick, Sinead; Feliciangeli, Maria Dora; Sanchez-Martin, Maria J; Monteiro, Fernando A; Miles, Michael A
2008-04-02
Rhodnius prolixus is the main vector of Chagas disease in Venezuela. Here, domestic infestations of poor quality rural housing have persisted despite four decades of vector control. This is in contrast to the Southern Cone region of South America, where the main vector, Triatoma infestans, has been eliminated over large areas. The repeated colonisation of houses by silvatic populations of R. prolixus potentially explains the control difficulties. However, controversy surrounds the existence of silvatic R. prolixus: it has been suggested that all silvatic populations are in fact Rhodnius robustus, a related species of minor epidemiological importance. Here we investigate, by direct sequencing (mtcytb, D2) and by microsatellite analysis, 1) the identity of silvatic Rhodnius and 2) whether silvatic populations of Rhodnius are isolated from domestic populations. Direct sequencing confirmed the presence of R. prolixus in palms and that silvatic bugs can colonise houses, with house and palm specimens sharing seven cytb haplotypes. Additionally, mitochondrial introgression was detected between R. robustus and R. prolixus, indicating a previous hybridisation event. The use of ten polymorphic microsatellite loci revealed a lack of genetic structure between silvatic and domestic ecotopes (non-significant F(ST) values), which is indicative of unrestricted gene flow. Our analyses demonstrate that silvatic R. prolixus presents an unquestionable threat to the control of Chagas disease in Venezuela. The design of improved control strategies is essential for successful long term control and could include modified spraying and surveillance practices, together with housing improvements.
Successes and failures of sixty years of vector control in French Guiana: what is the next step?
Epelboin, Yanouk; Chaney, Sarah C; Guidez, Amandine; Habchi-Hanriot, Nausicaa; Talaga, Stanislas; Wang, Lanjiao; Dusfour, Isabelle
2018-03-12
Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.
2013-01-01
Background Contradictory arguments regarding the benefits and harm of insecticides, especially DDT, have caused concerns in different societal circles, threatening to undermine the achievements of the indoor residual spraying (IRS) programme in South Africa. These concerns were exacerbated by the screening of a documentary on South African Broadcasting Corporation (SABC) Television with anti-DDT sentiments. Consequently, Limpopo Malaria Control Programme (LMCP) Management advocated for an investigation to determine the potential effect of such campaigns on vector-control personnel’s knowledge and perceived effects of insecticides on human health, with a view to improving the educational materials designed for use in training vector-control personnel. Methods The study was a cross-sectional descriptive survey using a structured field-piloted questionnaire, administered to 233 randomly selected vector-control personnel. Ethical clearance was granted by the University of KwaZulu-Natal. Approval for the study was granted by the Department of Health, Limpopo. Participation in the study was voluntary and all respondents signed informed consent. Descriptive statistics were used to analyse the collected data. Results Most respondents (96.6%) had a positive perception of IRS as a method to control malaria. Despite their positive perception, 93.6% viewed IRS insecticides to be potentially harmful to the users. DDT was perceived to cause long-term reproductive and respiratory effects, whereas alpha-cypermethrin and deltamethrin were largely associated with skin irritation/itchiness and skin burn. Study participants were more worried about DDT’s potential effects on their reproductive system, including poor sexual performance, decline in libido, miscarriage and bearing children with genetic defects. However, none reported personal experience of bearing a child with genetic defects or miscarriage. Most anti-insecticide messages, especially relating to DDT, emanated from sources external to the LMCP, mainly through radio (62%) and television (33.9%) and about 70% believed such messages. While most respondents preferred to work with a moderately itchy deltamethrin, DDT was admittedly the most effective insecticide. Conclusion Vector-control personnel faced health and ethical dilemmas, in that, while they perceived insecticides used for IRS in Limpopo to be potentially harmful to the health of users, as purported through media, they also viewed IRS using insecticides to be effective in controlling malaria. PMID:23618516
Abate distribution and dengue control in rural Cambodia.
Khun, Sokrin; Manderson, Lenore H
2007-02-01
Sustainable public health and community collaboration and partnerships are essential for the effective elimination of vector breeding sites to prevent dengue fever. A prerequisite is that community members appreciate the importance of the infection, understand its transmission and preventive activities, and are able to translate such knowledge to action. In this paper, we draw on an ethnographic study of two villages in the eastern province of Kampong Cham, using data collected from qualitative research methods and entomological surveys to describe community knowledge of the vector, practices related to the reduction of breeding sources, and the effectiveness of temephos to control larvae. During the study period, temephos (distributed as Abate) was applied in water containers only in the rainy season, although these containers were also positive with larvae in the dry season. Discarded containers, ignored in terms of control activities, had twice the number of larvae as water storage containers. The continued reliance on Abate creates financial and technical problems, while its inappropriate distribution raises the possibility of larvicide resistance. Based on research findings, we argue that control strategies emphasizing the use of Abate should be reconsidered.
Torres, José Luis; Ordóñez, José Genaro; Vázquez-Martínez, M Guadalupe
2014-03-01
To identify dengue-related knowledge, attitudes, and practices among primary school students in Tapachula, Chiapas, Mexico, before and after an educational intervention. The study was carried out at 19 randomly selected public primary schools. Surveys of knowledge, attitudes, and practices were conducted before and after educational sessions with fifthand sixth-grade elementary school students. The educational strategy "Escuelas sin mosquitos" ("Schools without Mosquitoes") emphasized the importance of students' participation in taking care of their schools and homes in order to prevent dengue through vector control. Before and after the educational sessions, a total of 3 124 surveys were conducted on the knowledge, attitudes, and practices of 1 562 fifth and sixth-grade students (772 and 790 students, respectively) between 10 and 12 years of age. The students' level of knowledge was significantly higher after the implementation of the educational strategy. In comparison with the fifth-graders, the sixth-grade students both already had and also acquired significantly more knowledge of several aspects of the disease and the vector. In all the schools, there were containers with water identified as potential breeding sites, and in 68% of the schools, these containers tested positive for Aedes aegypti larvae. It was demonstrated that by implementing an educational strategy, children's knowledge, attitudes, and practices were improved in terms of taking care of their schools and promoting a change of attitude to this disease at home.
Marcombe, Sébastien; Mathieu, Romain Blanc; Pocquet, Nicolas; Riaz, Muhammad-Asam; Poupardin, Rodolphe; Sélior, Serge; Darriet, Frédéric; Reynaud, Stéphane; Yébakima, André; Corbel, Vincent; David, Jean-Philippe; Chandre, Fabrice
2012-01-01
Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the "knock-down resistance" V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.
Marcombe, Sébastien; Mathieu, Romain Blanc; Pocquet, Nicolas; Riaz, Muhammad-Asam; Poupardin, Rodolphe; Sélior, Serge; Darriet, Frédéric; Reynaud, Stéphane; Yébakima, André; Corbel, Vincent; David, Jean-Philippe; Chandre, Fabrice
2012-01-01
Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the “knock-down resistance” V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed. PMID:22363529
Malaria vector control: from past to future.
Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P
2011-04-01
Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disease. 257.3-6 Section 257.3-6... and Practices § 257.3-6 Disease. (a) Disease Vectors. The facility or practice shall not exist or occur unless the on-site population of disease vectors is minimized through the periodic application of...
Mathematical modeling of Chikungunya fever control
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan
2015-05-01
Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.
Surveillance of Trypanosoma cruzi transmission by serological screening of schoolchildren.
de Andrade, A. L.; Zicker, F.; Luquetti, A. O.; Oliveira, R. M.; Silva, S. A.; Souza, J. M.; Martelli, C. M.
1992-01-01
The seroprevalence of Trypanosoma cruzi infection among children is a sensitive indicator for assessing the effectiveness of programmes for control of Chagas disease. In this study we report the result of a cross-sectional serological survey carried out among schoolchildren living in a poor rural area in central Brazil. Eluates of blood collected on filter-paper were tested for anti-T. cruzi antibodies using immunofluorescence, haemagglutination, and enzyme-linked immunosorbent assays. The overall seroprevalence of T. cruzi infection was 7.9%, which compared with the findings of the national survey carried out in 1975-80 indicates that a twofold-to-threefold reduction in prevalence has occurred over the last 10 years. This is consistent with a reduction of transmission in the area, probably related to vector control efforts. Based on our results, the incidence of new cases was estimated to be 44 per annum in the study region. In rural areas with a scattered population, surveillance of T. cruzi transmission by serological screening of children at school entry is more practical and economical than entomological evaluation for assessing both the risk of transmission in the community and the efficacy of vector control measures. A sample size of around 1000 schoolchildren is sufficient to detect prevalences as low as 2%, and such an approach would be practical and applicable to most areas where Chagas disease is endemic. PMID:1464149
Novel Areas for Prevention and Control of Canine Leishmaniosis.
Miró, Guadalupe; Petersen, Christine; Cardoso, Luís; Bourdeau, Patrick; Baneth, Gad; Solano-Gallego, Laia; Pennisi, Maria Grazia; Ferrer, Lluís; Oliva, Gaetano
2017-09-01
There have been multiple recent advances regarding tools for the control and prevention of canine leishmaniosis (CanL), including new preventative vaccines. In this review, these advances are evaluated based on control targets, including vector and parasite. Leishvet recommendations are provided for control practices based on the dog's risk of infection. New topical insecticide formulations have proven to be effective in preventing sand fly bites, and subsequently infection. Parasite control occurs through chemotherapeutic or immunologic means, which decrease or prevent transmission to other animals, including humans. Leishmaniosis control programs that include a combination of coordinated measures, either in individuals or for prevention across reservoir populations, are required. Copyright © 2017 Elsevier Ltd. All rights reserved.
Practical auxiliary basis implementation of Rung 3.5 functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesko, Benjamin G., E-mail: b.janesko@tcu.edu; Scalmani, Giovanni; Frisch, Michael J.
2014-07-21
Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expandingmore » the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.« less
Johnston, Emily; Weinstein, Phillip; Slaney, David; Flies, Andrew S; Fricker, Stephen; Williams, Craig
2014-06-01
Understanding the factors influencing mosquito distribution is important for effective surveillance and control of nuisance and disease vector mosquitoes. The goal of this study was to determine how trap height and distance to the city center influenced the abundance and species of mosquitoes collected in Adelaide, South Australia. Mosquito communities were sampled at two heights (<2 m and ~10 m) along an urban-rural gradient. A total of 5,133 mosquitoes was identified over 176 trap nights. Aedes notoscriptus, Ae. vigilax, and Culex molestus were all more abundant in lower traps while Cx. quinquefasciatus (an ornithophilic species) was found to be more abundant in high traps. Distance to city center correlated strongly with the abundance of Ae. vigilax, Ae. camptorhynchus, Cx. globocoxitus, and Cx. molestus, all of which were most common at the sites farthest from the city and closest to the saltmarsh. Overall, the important disease vectors in South Australia (Ae. vigilax, Ae. camptorhynchus, Ae. notoscriptus, and Cx. annulirostris) were more abundant in low traps farthest from the city and closest to the saltmarsh. The current mosquito surveillance practice of setting traps within two meters of the ground is effective for sampling populations of the important disease vector species in South Australia. © 2014 The Society for Vector Ecology.
Beales, Emily R.; de Wildt, Gilles; Meza Sanchez, Graciela; Jones, Laura L.
2017-01-01
Background Dengue Fever presents a significant and growing burden of disease to endemic countries, where children are at particular risk. Worldwide, no effective anti-viral treatment has been identified, thus vector control is key for disease prevention, particularly in Peru where no vaccine is currently available. This qualitative study aimed to explore the perceptions of dengue control in caregivers’ of children under 5 years in Peru, to help direct future mosquito control programmes and strategy. Methods Eighteen semi-structured interviews were conducted in one health centre in Iquitos, Peru. Interviews were audio-recorded, transcribed and translated by an independent translator. Data were analysed using an inductive thematic approach. Findings Three core analytic themes were interpreted: (1) awareness of dengue and its control, (2) perceived susceptibility of children, rural riverside communities and city inhabitants, and (3) perceived responsibility of vector control. Participants were aware of dengue symptoms, transmission and larvae eradication strategies. Misconceptions about the day-time biting behaviour of the Aedes aegypti mosquito and confusion with other mosquito-borne diseases influenced preventative practice. Community-wide lack of cooperation was recognised as a key barrier. This was strengthened by attitudes that the government or health centre were responsible for dengue control and a belief that the disease cannot be prevented through individual actions. Participants felt powerless to prevent dengue due to assumed inevitability of infection and lack of faith in preventative practices. However, children and rural communities were believed to be most vulnerable. Conclusions Perceptions of dengue control amongst caregivers to under 5’s were important in shaping their likelihood to participate in preventative practices. There is a need to address the perceived lack of community cooperation through strategies creating a sense of ownership of community control and enhancing social responsibility. The belief that dengue cannot be prevented by individual actions in a community also warrants attention. Specific misconceptions about dengue should be addressed through the community health worker system and further research directed to identify the needs of certain vulnerable groups. PMID:28873408
Frank, Amy L; Beales, Emily R; de Wildt, Gilles; Meza Sanchez, Graciela; Jones, Laura L
2017-09-01
Dengue Fever presents a significant and growing burden of disease to endemic countries, where children are at particular risk. Worldwide, no effective anti-viral treatment has been identified, thus vector control is key for disease prevention, particularly in Peru where no vaccine is currently available. This qualitative study aimed to explore the perceptions of dengue control in caregivers' of children under 5 years in Peru, to help direct future mosquito control programmes and strategy. Eighteen semi-structured interviews were conducted in one health centre in Iquitos, Peru. Interviews were audio-recorded, transcribed and translated by an independent translator. Data were analysed using an inductive thematic approach. Three core analytic themes were interpreted: (1) awareness of dengue and its control, (2) perceived susceptibility of children, rural riverside communities and city inhabitants, and (3) perceived responsibility of vector control. Participants were aware of dengue symptoms, transmission and larvae eradication strategies. Misconceptions about the day-time biting behaviour of the Aedes aegypti mosquito and confusion with other mosquito-borne diseases influenced preventative practice. Community-wide lack of cooperation was recognised as a key barrier. This was strengthened by attitudes that the government or health centre were responsible for dengue control and a belief that the disease cannot be prevented through individual actions. Participants felt powerless to prevent dengue due to assumed inevitability of infection and lack of faith in preventative practices. However, children and rural communities were believed to be most vulnerable. Perceptions of dengue control amongst caregivers to under 5's were important in shaping their likelihood to participate in preventative practices. There is a need to address the perceived lack of community cooperation through strategies creating a sense of ownership of community control and enhancing social responsibility. The belief that dengue cannot be prevented by individual actions in a community also warrants attention. Specific misconceptions about dengue should be addressed through the community health worker system and further research directed to identify the needs of certain vulnerable groups.
Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel
2014-06-03
Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.
Integrated pest management and allocation of control efforts for vector-borne diseases
Ginsberg, H.S.
2001-01-01
Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.
Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.
2005-01-01
Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.
Exploiting the potential of vector control for disease prevention.
Townson, H; Nathan, M B; Zaim, M; Guillet, P; Manga, L; Bos, R; Kindhauser, M
2005-12-01
Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities.
Exploiting the potential of vector control for disease prevention.
Townson, H.; Nathan, M. B.; Zaim, M.; Guillet, P.; Manga, L.; Bos, R.; Kindhauser, M.
2005-01-01
Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities. PMID:16462987
Pardo, Raúl H; Carvajal, Alexander; Ferro, Cristina; Davies, Clive R
2006-10-01
Householder vector control measures can be encouraged by health promotion campaigns which take into account peoples' attitudes and focus on key gaps in knowledge. To describe household sandfly control practices in an endemic area of cutaneous leishmaniasis in the department of Huila, Colombia, and determine how these are influenced by attitudes, knowledge and socioeconomic status. A household questionnaire was applied to collect information on: demography, socioeconomic status, knowledge of cutaneous leishmaniasis and of sandflies and their role in transmission, and the control activities practiced. Indoor sandfly abundance was estimated by light trap collections. Amongst 249 interviewees, 86% knew about cutaneous leishmaniasis and 98% sand flies. 35% of interviewees who knew about cutaneous leishmaniasis practiced measures with the purpose of its control. This practice was higher amongst the 32% who knew that sand flies transmit cutaneous leishmaniasis. However, 82% of interviewees practiced sand fly control measures, and these were significantly associated with high sand fly abundance. Measures included smoke, bednets, and house spraying with insecticide or non-insecticidal substances. Householders using the high cost measures (bednets and insecticide) had the highest economic status. Health education programmes should note that sand fly nuisance can initiate control measures, but that knowledge of the role of sand flies in transmission could enhance activities. The socioeconomic findings indicate that targeted bednet subsidies could reduce inequities in health status amongst cutaneous leishmaniasis endemic communities.
Application of high-performance computing to numerical simulation of human movement
NASA Technical Reports Server (NTRS)
Anderson, F. C.; Ziegler, J. M.; Pandy, M. G.; Whalen, R. T.
1995-01-01
We have examined the feasibility of using massively-parallel and vector-processing supercomputers to solve large-scale optimization problems for human movement. Specifically, we compared the computational expense of determining the optimal controls for the single support phase of gait using a conventional serial machine (SGI Iris 4D25), a MIMD parallel machine (Intel iPSC/860), and a parallel-vector-processing machine (Cray Y-MP 8/864). With the human body modeled as a 14 degree-of-freedom linkage actuated by 46 musculotendinous units, computation of the optimal controls for gait could take up to 3 months of CPU time on the Iris. Both the Cray and the Intel are able to reduce this time to practical levels. The optimal solution for gait can be found with about 77 hours of CPU on the Cray and with about 88 hours of CPU on the Intel. Although the overall speeds of the Cray and the Intel were found to be similar, the unique capabilities of each machine are better suited to different portions of the computational algorithm used. The Intel was best suited to computing the derivatives of the performance criterion and the constraints whereas the Cray was best suited to parameter optimization of the controls. These results suggest that the ideal computer architecture for solving very large-scale optimal control problems is a hybrid system in which a vector-processing machine is integrated into the communication network of a MIMD parallel machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebis, Joseph; Oliker, Leonid; Shalf, John
The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changesmore » to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.« less
Okia, Michael; Okui, Peter; Lugemwa, Myers; Govere, John M; Katamba, Vincent; Rwakimari, John B; Mpeka, Betty; Chanda, Emmanuel
2016-04-14
Integrated vector management (IVM) is the recommended approach for controlling some vector-borne diseases (VBD). In the face of current challenges to disease vector control, IVM is vital to achieve national targets set for VBD control. Though global efforts, especially for combating malaria, now focus on elimination and eradication, IVM remains useful for Uganda which is principally still in the control phase of the malaria continuum. This paper outlines the processes undertaken to consolidate tactical planning and implementation frameworks for IVM in Uganda. The Uganda National Malaria Control Programme with its efforts to implement an IVM approach to vector control was the 'case' for this study. Integrated management of malaria vectors in Uganda remained an underdeveloped component of malaria control policy. In 2012, knowledge and perceptions of malaria vector control policy and IVM were assessed, and recommendations for a specific IVM policy were made. In 2014, a thorough vector control needs assessment (VCNA) was conducted according to WHO recommendations. The findings of the VCNA informed the development of the national IVM strategic guidelines. Information sources for this study included all available data and accessible archived documentary records on VBD control in Uganda. The literature was reviewed and adapted to the local context and translated into the consolidated tactical framework. WHO recommends implementation of IVM as the main strategy to vector control and has encouraged member states to adopt the approach. However, many VBD-endemic countries lack IVM policy frameworks to guide implementation of the approach. In Uganda most VBD coexists and could be managed more effectively if done in tandem. In order to successfully control malaria and other VBD and move towards their elimination, the country needs to scale up proven and effective vector control interventions and also learn from the experience of other countries. The IVM strategy is important in consolidating inter-sectoral collaboration and coordination and providing the tactical direction for effective deployment of vector control interventions along the five key elements of the approach and to align them with contemporary epidemiology of VBD in the country. Uganda has successfully established an evidence-based IVM approach and consolidated strategic planning and operational frameworks for VBD control. However, operating implementation arrangements as outlined in the national strategic guidelines for IVM and managing insecticide resistance, as well as improving vector surveillance, are imperative. In addition, strengthened information, education and communication/behaviour change and communication, collaboration and coordination will be crucial in scaling up and using vector control interventions.
Roslan, Muhammad Aidil; Ngui, Romano; Vythilingam, Indra; Sulaiman, Wan Yusoff Wan
2017-12-01
The present study compared the performance of sticky traps in order to identify the most effective and practical trap for capturing Aedes aegypti and Aedes albopictus mosquitoes. Three phases were conducted in the study, with Phase 1 evaluating the five prototypes (Models A, B, C, D, and E) of sticky trap release-and-recapture using two groups of mosquito release numbers (five and 50) that were released in each replicate. Similarly, Phase 2 compared the performance between Model E and the classical ovitrap that had been modified (sticky ovitrap), using five and 50 mosquito release numbers. Further assessment of both traps was carried out in Phase 3, in which both traps were installed in nine sampling grids. Results from Phase 1 showed that Model E was the trap that recaptured higher numbers of mosquitoes when compared to Models A, B, C, and D. Further assessment between Model E and the modified sticky ovitrap (known as Model F) found that Model F outperformed Model E in both Phases 2 and 3. Thus, Model F was selected as the most effective and practical sticky trap, which could serve as an alternative tool for monitoring and controlling dengue vectors in Malaysia. © 2017 The Society for Vector Ecology.
Kay, Brian H; Nam, Vu Sinh; Tien, Tran Van; Yen, Nguyen Thi; Phong, Tran Vu; Diep, Vu Thi Bich; Ninh, Truong Uyen; Bektas, Ahmet; Aaskov, John G
2002-01-01
We describe remarkable success in controlling dengue vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), in 6 communes with 11,675 households and 49,647 people in the northern provinces of Haiphong, Hung Yen, and Nam Dinh in Vietnam. The communes were selected for high-frequency use of large outdoor concrete tanks and wells. These were found to be the source of 49.6-98.4% of Ae. aegypti larvae, which were amenable to treatment with local Mesocyclops, mainly M. woutersi Van der Velde, M. aspericornis (Daday) and M. thermocyclopoides Harada. Knowledge, attitude, and practice surveys were performed to determine whether the communities viewed dengue and dengue hemorrhagic fever as a serious health threat; to determine their knowledge of the etiology, attitudes, and practices regarding control methods including Mesocyclops; and to determine their receptivity to various information methods. On the basis of the knowledge, attitude, and practice data, the community-based dengue control program comprised a system of local leaders, health volunteer teachers, and schoolchildren, supported by health professionals. Recycling of discards for economic gain was enhanced, where appropriate, and this, plus 37 clean-up campaigns, removed small containers unsuitable for Mesocyclops treatment. A previously successful eradication at Phan Boi village (Hung Yen province) was extended to 7 other villages forming Di Su commune (1,750 households) in the current study. Complete control was also achieved in Nghia Hiep (Hung Yen province) and in Xuan Phong (Nam Dinh province); control efficacy was > or = 99.7% in the other 3 communes (Lac Vien in Haiphong, Nghia Dong, and Xuan Kien in Nam Dinh). Although tanks and wells were the key container types of Ae. aegypti productivity, discarded materials were the source of 51% of the standing crop of Ae. albopictus. Aedes albopictus larvae were eliminated from the 3 Nam Dinh communes, and 86-98% control was achieved in the other 3 communes. Variable dengue attack rates made the clinical and serological comparison of control and untreated communes problematic, but these data indicate that clinical surveillance by itself is inadequate to monitor dengue transmission.
Precise on-machine extraction of the surface normal vector using an eddy current sensor array
NASA Astrophysics Data System (ADS)
Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun
2016-11-01
To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.
Simplified Models of Vector Control Impact upon Malaria Transmission by Zoophagic Mosquitoes
Kiware, Samson S.; Chitnis, Nakul; Moore, Sarah J.; Devine, Gregor J.; Majambere, Silas; Merrill, Stephen; Killeen, Gerry F.
2012-01-01
Background High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as “very zoophagic,” meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival. Methods and Findings We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user’s direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. Conclusions Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact interventions using three field-measurable parameters; the proportion of human exposure to mosquitoes occurring when an intervention can be practically used, its protective efficacy when used, and the proportion of people using it. PMID:22701527
Hernández-Ávila, Juan Eugenio; Rodríguez, Mario-Henry; Santos-Luna, René; Sánchez-Castañeda, Veronica; Román-Pérez, Susana; Ríos-Salgado, Víctor Hugo; Salas-Sarmiento, Jesús Alberto
2013-01-01
Dengue fever incidence and its geographical distribution are increasing throughout the world. Quality and timely information is essential for its prevention and control. A web based, geographically enabled, dengue integral surveillance system (Dengue-GIS) was developed for the nation-wide collection, integration, analysis and reporting of geo-referenced epidemiologic, entomologic, and control interventions data. Consensus in the design and practical operation of the system was a key factor for its acceptance. Working with information systems already implemented as a starting point facilitated its acceptance by officials and operative personnel. Dengue-GIS provides the geographical detail needed to plan, asses and evaluate the impact of control activities. The system is beginning to be adopted as a knowledge base by vector control programs. It is used to generate evidence on impact and cost-effectiveness of control activities, promoting the use of information for decision making at all levels of the vector control program. Dengue-GIS has also been used as a hypothesis generator for the academic community. This GIS-based model system for dengue surveillance and the experience gathered during its development and implementation could be useful in other dengue endemic countries and extended to other infectious or chronic diseases. PMID:23936394
Abad-Franch, Fernando; Valença-Barbosa, Carolina; Sarquis, Otília; Lima, Marli M.
2014-01-01
Background Vector-borne diseases are major public health concerns worldwide. For many of them, vector control is still key to primary prevention, with control actions planned and evaluated using vector occurrence records. Yet vectors can be difficult to detect, and vector occurrence indices will be biased whenever spurious detection/non-detection records arise during surveys. Here, we investigate the process of Chagas disease vector detection, assessing the performance of the surveillance method used in most control programs – active triatomine-bug searches by trained health agents. Methodology/Principal Findings Control agents conducted triplicate vector searches in 414 man-made ecotopes of two rural localities. Ecotope-specific ‘detection histories’ (vectors or their traces detected or not in each individual search) were analyzed using ordinary methods that disregard detection failures and multiple detection-state site-occupancy models that accommodate false-negative and false-positive detections. Mean (±SE) vector-search sensitivity was ∼0.283±0.057. Vector-detection odds increased as bug colonies grew denser, and were lower in houses than in most peridomestic structures, particularly woodpiles. False-positive detections (non-vector fecal streaks misidentified as signs of vector presence) occurred with probability ∼0.011±0.008. The model-averaged estimate of infestation (44.5±6.4%) was ∼2.4–3.9 times higher than naïve indices computed assuming perfect detection after single vector searches (11.4–18.8%); about 106–137 infestation foci went undetected during such standard searches. Conclusions/Significance We illustrate a relatively straightforward approach to addressing vector detection uncertainty under realistic field survey conditions. Standard vector searches had low sensitivity except in certain singular circumstances. Our findings suggest that many infestation foci may go undetected during routine surveys, especially when vector density is low. Undetected foci can cause control failures and induce bias in entomological indices; this may confound disease risk assessment and mislead program managers into flawed decision making. By helping correct bias in naïve indices, the approach we illustrate has potential to critically strengthen vector-borne disease control-surveillance systems. PMID:25233352
Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini
2015-12-02
Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance monitoring techniques; initiating the global plan for insecticide resistance management; conducting needs' assessments and developing standard operating procedure for insectaries; developing a guidance document on malaria vector control based on eco-epidemiological strata, a vector surveillance plan and harmonized mapping, data collection and reporting tools. Eritrea has successfully consolidated strategic frameworks for vector control. Rational decision-making remains critical to ensure that the interventions are effective and their choice is evidence-based, and to optimize the use of resources for vector control. Implementation of effective IVM requires proper collaboration and coordination, consistent technical and financial capacity and support to offer greater benefits.
Hashimoto, Ken; Zúniga, Concepción; Romero, Eduardo; Morales, Zoraida; Maguire, James H
2015-01-01
Central American countries face a major challenge in the control of Triatoma dimidiata, a widespread vector of Chagas disease that cannot be eliminated. The key to maintaining the risk of transmission of Trypanosoma cruzi at lowest levels is to sustain surveillance throughout endemic areas. Guatemala, El Salvador, and Honduras integrated community-based vector surveillance into local health systems. Community participation was effective in detection of the vector, but some health services had difficulty sustaining their response to reports of vectors from the population. To date, no research has investigated how best to maintain and reinforce health service responsiveness, especially in resource-limited settings. We reviewed surveillance and response records of 12 health centers in Guatemala, El Salvador, and Honduras from 2008 to 2012 and analyzed the data in relation to the volume of reports of vector infestation, local geography, demography, human resources, managerial approach, and results of interviews with health workers. Health service responsiveness was defined as the percentage of households that reported vector infestation for which the local health service provided indoor residual spraying of insecticide or educational advice. Eight potential determinants of responsiveness were evaluated by linear and mixed-effects multi-linear regression. Health service responsiveness (overall 77.4%) was significantly associated with quarterly monitoring by departmental health offices. Other potential determinants of responsiveness were not found to be significant, partly because of short- and long-term strategies, such as temporary adjustments in manpower and redistribution of tasks among local participants in the effort. Consistent monitoring within the local health system contributes to sustainability of health service responsiveness in community-based vector surveillance of Chagas disease. Even with limited resources, countries can improve health service responsiveness with thoughtful strategies and management practices in the local health systems.
Wheel speed management control system for spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.
Impact of vectorborne parasitic neglected tropical diseases on child health.
Barry, Meagan A; Murray, Kristy O; Hotez, Peter J; Jones, Kathryn M
2016-07-01
Chagas disease, leishmaniasis, onchocerciasis and lymphatic filariasis are all vectorborne neglected tropical diseases (NTDs) that are responsible for significant disease burden in impoverished children and adults worldwide. As vectorborne parasitic diseases, they can all be targeted for elimination through vector control strategies. Examples of successful vector control programmes for these diseases over the past two decades have included the Southern Cone Initiative against Chagas disease, the Kala-azar Control Scheme against leishmaniasis, the Onchocerciasis Control Programme and the lymphatic filariasis control programme in The Gambia. A common vector control component in all of these programmes is the use of adulticides including dichlorodiphenyltrichloroethane and newer synthetic pyrethroid insecticides against the insect vectors of disease. Household spraying has been used against Chagas disease and leishmaniasis, and insecticide-treated bed nets have helped prevent leishmaniasis and lymphatic filariasis. Recent trends in vector control focus on collaborations between programmes and sectors to achieve integrated vector management that addresses the holistic vector control needs of a community rather than approaching it on a disease-by-disease basis, with the goals of increased efficacy, sustainability and cost-effectiveness. As evidence of vector resistance to currently used insecticide regimens emerges, research to develop new and improved insecticides and novel control strategies will be critical in reducing disease burden. In the quest to eliminate these vectorborne NTDs, efforts need to be made to continue existing control programmes, further implement integrated vector control strategies and stimulate research into new insecticides and control methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
2014-01-01
West Nile virus infection is a growing concern in Europe. Vector management is often the primary option to prevent and control outbreaks of the disease. Its implementation is, however, complex and needs to be supported by integrated multidisciplinary surveillance systems and to be organized within the framework of predefined response plans. The impact of the vector control measures depends on multiple factors and the identification of the best combination of vector control methods is therefore not always straightforward. Therefore, this contribution aims at critically reviewing the existing vector control methods to prevent and control outbreaks of West Nile virus infection and to present the challenges for Europe. Most West Nile virus vector control experiences have been recently developed in the US, where ecological conditions are different from the EU and vector control is organized under a different regulatory frame. The extrapolation of information produced in North America to Europe might be limited because of the seemingly different epidemiology in the European region. Therefore, there is an urgent need to analyse the European experiences of the prevention and control of outbreaks of West Nile virus infection and to perform robust cost-benefit analysis that can guide the implementation of the appropriate control measures. Furthermore, to be effective, vector control programs require a strong organisational backbone relying on a previously defined plan, skilled technicians and operators, appropriate equipment, and sufficient financial resources. A decision making guide scheme is proposed which may assist in the process of implementation of vector control measures tailored on specific areas and considering the available information and possible scenarios. PMID:25015004
ERIC Educational Resources Information Center
Galilee-Belfer, Mika
2012-01-01
Though many programs for undecided students focus on the "developing purpose" vector, the author argues that putting purpose before competency is putting the cart before the horse. In this article, she shares practical strategies she has used to help her students at the University of Arizona reach competence in understanding the academic world.…
ERIC Educational Resources Information Center
Araya, Roberto; Plana, Francisco; Dartnell, Pablo; Soto-Andrade, Jorge; Luci, Gina; Salinas, Elena; Araya, Marylen
2012-01-01
Teacher practice is normally assessed by observers who watch classes or videos of classes. Here, we analyse an alternative strategy that uses text transcripts and a support vector machine classifier. For each one of the 710 videos of mathematics classes from the 2005 Chilean National Teacher Assessment Programme, a single 4-minute slice was…
Laboratory containment practices for arthropod vectors of human and animal pathogens.
Tabachnick, Walter J
2006-03-01
Arthropod-borne pathogens have an impact on the health and well-being of humans and animals throughout the world. Research involving arthropod vectors of disease is often dependent on the ability to maintain the specific arthropod species in laboratory colonies. The author reviews current arthropod containment practices and discusses their importance from public health and ecological perspectives.
Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Deere, Karen A.
2003-01-01
Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.
Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group.
1995-01-01
Since the Ministerial Conference on Malaria in 1992, which acknowledged the urgent need for worldwide commitment to malaria control, efforts have been directed to implementation of a Global Malaria Control Strategy. Vector control, an essential component of malaria control, has become less effective in recent years, partly as a result of poor use of alternative control tools, inappropriate use of insecticides, lack of an epidemiological basis for interventions, inadequate resources and infrastructure, and weak management. Changing environmental conditions, the behavioural characteristics of certain vectors, and resistance to insecticides have added to the difficulties. This report of a WHO Study Group provides guidelines for the planning, implementation and evaluation of cost-effective and sustainable vector control in the context of the Global Malaria Control Strategy. It reviews the available methods - indoor residual spraying, personal protection, larval control and environmental management - stressing the need for selective and flexible use of interventions according to local conditions. Requirements for data collection and the appropriate use of entomological parameters and techniques are discussed and priorities identified for the development of local capacity for vector control and for operational research. Emphasis is placed both on the monitoring and evaluation of vector control to ensure cost-effectiveness and on the development of strong managerial structures, which can support community participation and intersectoral collaboration and accommodate the control of other vector-borne diseases. The report concludes with recommendations aimed at promoting the targeted and efficient use of vector control in preventing and controlling malaria, thereby reducing the threat to health and socioeconomic development in many tropical countries.
Stewart Ibarra, Anna M.; Ryan, Sadie J.; Beltrán, Efrain; Mejía, Raúl; Silva, Mercy; Muñoz, Ángel
2013-01-01
Background Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. Methods/Principal findings We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. Conclusions These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish. PMID:24324542
An economic evaluation of vector control in the age of a dengue vaccine.
Fitzpatrick, Christopher; Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman
2017-08-01
Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.
An economic evaluation of vector control in the age of a dengue vaccine
Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman
2017-01-01
Introduction Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. Methods We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Results Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70–90%, the cost per disability-adjusted life year averted is 2013 US$ 679–1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50–70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Discussion Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control. PMID:28806786
Quantitative change of EEG and respiration signals during mindfulness meditation.
Ahani, Asieh; Wahbeh, Helane; Nezamfar, Hooman; Miller, Meghan; Erdogmus, Deniz; Oken, Barry
2014-05-14
This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies.
Quantitative change of EEG and respiration signals during mindfulness meditation
2014-01-01
Background This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. Methods EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Results Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Conclusion Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies. PMID:24939519
Integrated vector management for malaria control
Beier, John C; Keating, Joseph; Githure, John I; Macdonald, Michael B; Impoinvil, Daniel E; Novak, Robert J
2008-01-01
Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa. PMID:19091038
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Capone, Francis J.
1995-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.
Ferral, Jhibran; Chavez-Nuñez, Leysi; Euan-Garcia, Maria; Ramirez-Sierra, Maria Jesus; Najera-Vazquez, M Rosario; Dumonteil, Eric
2010-01-01
Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.
Viennet, Elvina; Ritchie, Scott A.; Williams, Craig R.; Faddy, Helen M.; Harley, David
2016-01-01
Dengue has a negative impact in low- and lower middle-income countries, but also affects upper middle- and high-income countries. Despite the efforts at controlling this disease, it is unclear why dengue remains an issue in affluent countries. A better understanding of dengue epidemiology and its burden, and those of chikungunya virus and Zika virus which share vectors with dengue, is required to prevent the emergence of these diseases in high-income countries in the future. The purpose of this review was to assess the relative burden of dengue in four high-income countries and to appraise the similarities and differences in dengue transmission. We searched PubMed, ISI Web of Science, and Google Scholar using specific keywords for articles published up to 05 May 2016. We found that outbreaks rarely occur where only Aedes albopictus is present. The main similarities between countries uncovered by our review are the proximity to dengue-endemic countries, the presence of a competent mosquito vector, a largely nonimmune population, and a lack of citizens’ engagement in control of mosquito breeding. We identified important epidemiological and environmental issues including the increase of local transmission despite control efforts, population growth, difficulty locating larval sites, and increased human mobility from neighboring endemic countries. Budget cuts in health and lack of practical vaccines contribute to an increased risk. To be successful, dengue-control programs for high-income countries must consider the epidemiology of dengue in other countries and use this information to minimize virus importation, improve the control of the cryptic larval habitat, and engage the community in reducing vector breeding. Finally, the presence of a communicable disease center is critical for managing and reducing future disease risks. PMID:27643596
The Anopheles gambiae transcriptome - a turning point for malaria control.
Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J
2017-04-01
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.
Adamson-Small, Laura; Potter, Mark; Falk, Darin J; Cleaver, Brian; Byrne, Barry J; Clément, Nathalie
2016-01-01
Recombinant adeno-associated vectors based on serotype 9 (rAAV9) have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV)-based production and purification process capable of generating greater than 1 × 1014 rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 105 vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP) and good manufacturing practice (GMP) production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production. PMID:27222839
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
The fundamentals of control integration for propulsion are reviewed giving practical illustrations of its use to demonstrate the advantages of integration. Attention is given to the first integration propulsion-control systems (IPCSs) which was developed for the F-111E, and the integrated controller design is described that NASA developed for the YF-12C aircraft. The integrated control systems incorporate a range of aircraft components including the engine, inlet controls, autopilot, autothrottle, airdata, navigation, and/or stability-augmentation systems. Also described are emergency-control systems, onboard engine optimization, and thrust-vectoring control technologies developed for the F-18A and the F-15. Integrated flight-propulsion control systems are shown to enhance the thrust, range, and survivability of the aircraft while reducing fuel consumption and maintenance.
Wai, Khin Thet; Arunachalam, Natarajan; Tana, Susilowati; Espino, Fe; Kittayapong, Pattamaporn; Abeyewickreme, W; Hapangama, Dilini; Tyagi, Brij Kishore; Htun, Pe Than; Koyadun, Surachart; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max
2012-01-01
Background Research has shown that the classical Stegomyia indices (or “larval indices”) of the dengue vector Aedes aegypti reflect the absence or presence of the vector but do not provide accurate measures of adult mosquito density. In contrast, pupal indices as collected in pupal productivity surveys are a much better proxy indicator for adult vector abundance. However, it is unknown when it is most optimal to conduct pupal productivity surveys, in the wet or in the dry season or in both, to inform control services about the most productive water container types and if this pattern varies among different ecological settings. Methods A multi-country study in randomly selected twelve to twenty urban and peri-urban neighborhoods (“clusters”) of six Asian countries, in which all water holding containers were examined for larvae and pupae of Aedes aegypti during the dry season and the wet season and their productivity was characterized by water container types. In addition, meteorological data and information on reported dengue cases were collected. Findings The study reconfirmed the association between rainfall and dengue cases (“dengue season”) and underlined the importance of determining through pupal productivity surveys the “most productive containers types”, responsible for the majority (>70%) of adult dengue vectors. The variety of productive container types was greater during the wet than during the dry season, but included practically all container types productive in the dry season. Container types producing pupae were usually different from those infested by larvae indicating that containers with larval infestations do not necessarily foster pupal development and thus the production of adult Aedes mosquitoes. Conclusion Pupal productivity surveys conducted during the wet season will identify almost all of the most productive container types for both the dry and wet seasons and will therefore facilitate cost-effective targeted interventions. PMID:23318235
Tedesco, Carmen; Ruiz, Marilyn; McLafferty, Sara
2010-11-01
Differences in mosquito control practices at the local level involve the interplay of place, scale and politics. During the Chicago West Nile Virus (WNV) outbreak of 2002, mosquito abatement districts represent distinct suburban clusters of human WNV cases, independent of characteristics of the local population, housing and physical environment. We examine how the contrasting actions of four districts reveal a distinct local politics of mosquito control that may have contributed to local-scale geographic differences in WNV incidence. This politics is rooted in political, economic and philosophical differences within and between administrative boundaries. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tradeoff methods in multiobjective insensitive design of airplane control systems
NASA Technical Reports Server (NTRS)
Schy, A. A.; Giesy, D. P.
1984-01-01
The latest results of an ongoing study of computer-aided design of airplane control systems are given. Constrained minimization algorithms are used, with the design objectives in the constraint vector. The concept of Pareto optimiality is briefly reviewed. It is shown how an experienced designer can use it to find designs which are well-balanced in all objectives. Then the problem of finding designs which are insensitive to uncertainty in system parameters are discussed, introducing a probabilistic vector definition of sensitivity which is consistent with the deterministic Pareto optimal problem. Insensitivity is important in any practical design, but it is particularly important in the design of feedback control systems, since it is considered to be the most important distinctive property of feedback control. Methods of tradeoff between deterministic and stochastic-insensitive (SI) design are described, and tradeoff design results are presented for the example of the a Shuttle lateral stability augmentation system. This example is used because careful studies have been made of the uncertainty in Shuttle aerodynamics. Finally, since accurate statistics of uncertain parameters are usually not available, the effects of crude statistical models on SI designs are examined.
Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?
Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A
2015-06-01
Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2012-01-01
Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707
Werner, Stefan; Breus, Oksana; Symonenko, Yuri; Marillonnet, Sylvestre; Gleba, Yuri
2011-01-01
We describe here a unique ethanol-inducible process for expression of recombinant proteins in transgenic plants. The process is based on inducible release of viral RNA replicons from stably integrated DNA proreplicons. A simple treatment with ethanol releases the replicon leading to RNA amplification and high-level protein production. To achieve tight control of replicon activation and spread in the uninduced state, the viral vector has been deconstructed, and its two components, the replicon and the cell-to-cell movement protein, have each been placed separately under the control of an inducible promoter. Transgenic Nicotiana benthamiana plants incorporating this double-inducible system demonstrate negligible background expression, high (over 0.5 × 104-fold) induction multiples, and high absolute levels of protein expression upon induction (up to 4.3 mg/g fresh biomass). The process can be easily scaled up, supports expression of practically important recombinant proteins, and thus can be directly used for industrial manufacturing. PMID:21825158
The balance and harmony of control power for a combat aircraft in tactical maneuvering
NASA Technical Reports Server (NTRS)
Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.
1992-01-01
An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.
Dusting off the epidemiological triad: could it work with obesity?
Egger, G; Swinburn, B; Rossner, S
2003-05-01
The search for effective ways of dealing with obesity has centred on biological research and clinical management. However, obesity needs to be conceptualized more broadly if the modern pandemic is to be arrested. The epidemiological triad (hosts, agent/vectors and environments) has served us well in dealing with epidemics in the past, and may be worth re-evaluating to this end. Education, behaviour change and clinical practices deal predominantly with the host, although multidisciplinary practices such as shared-care might also be expected to impact on other corners of the triad. Technology deals best with the agent of obesity (energy imbalance) and it's vectors (excessive energy intake and/or inadequate energy expenditure), and policy and social change are needed to cope with the environment. The value of a broad model like this, rather than specific isolated approaches, is that the key players such as legislators, health professionals, governments and industry can see their roles in attenuating and eventually reversing the epidemic. It also highlights the need to intervene at all levels in obesity control and reduces the relevance of arguments about nature vs. nurture.
Optimal control of malaria: combining vector interventions and drug therapies.
Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B
2018-04-24
The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P
2015-10-22
Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures are in place, synanthropic animals may be beneficial.
Thrust Vector Control of an Overexpanded Supersonic Nozzle Using Pin Insertion and Rotating Airfoils
1991-12-01
12 THRUST VECTOR CONTROL OP AN OVEREXPANDED 3UPfRSONIC NOZZLE USING PIN INSERTION AND ROTATINO AIRFOILS THESIS Presented to the Faculty of the School...gather data that would aid in the evaluation of thrust vector control mechanisms for nozzle applications. I would like to thank my thesis advisor, Dr... Control Nozzle. MS Thesis . Air Force Institute of Technology (AU), Wright- Patterson AFB OH, December 1988. 4. Herup, Eric J. Confined Jet Thrust Vector
Chagas Disease, Migration and Community Settlement Patterns in Arequipa, Peru
Gilman, Robert H.; Cornejo del Carpio, Juan G.; Naquira, Cesar; Bern, Caryn; Levy, Michael Z.
2009-01-01
Background Chagas disease is one of the most important neglected tropical diseases in the Americas. Vectorborne transmission of Chagas disease has been historically rare in urban settings. However, in marginal communities near the city of Arequipa, Peru, urban transmission cycles have become established. We examined the history of migration and settlement patterns in these communities, and their connections to Chagas disease transmission. Methodology/Principal Findings This was a qualitative study that employed focus group discussions and in-depth interviews. Five focus groups and 50 in-depth interviews were carried out with 94 community members from three shantytowns and two traditional towns near Arequipa, Peru. Focus groups utilized participatory methodologies to explore the community's mobility patterns and the historical and current presence of triatomine vectors. In-depth interviews based on event history calendars explored participants' migration patterns and experience with Chagas disease and vectors. Focus group data were analyzed using participatory analysis methodologies, and interview data were coded and analyzed using a grounded theory approach. Entomologic data were provided by an ongoing vector control campaign. We found that migrants to shantytowns in Arequipa were unlikely to have brought triatomines to the city upon arrival. Frequent seasonal moves, however, took shantytown residents to valleys surrounding Arequipa where vectors are prevalent. In addition, the pattern of settlement of shantytowns and the practice of raising domestic animals by residents creates a favorable environment for vector proliferation and dispersal. Finally, we uncovered a phenomenon of population loss and replacement by low-income migrants in one traditional town, which created the human settlement pattern of a new shantytown within this traditional community. Conclusions/Significance The pattern of human migration is therefore an important underlying determinant of Chagas disease risk in and around Arequipa. Frequent seasonal migration by residents of peri-urban shantytowns provides a path of entry of vectors into these communities. Changing demographic dynamics of traditional towns are also leading to favorable conditions for Chagas disease transmission. Control programs must include surveillance for infestation in communities assumed to be free of vectors. PMID:20016830
Pocquet, Nicolas; Milesi, Pascal; Makoundou, Patrick; Unal, Sandra; Zumbo, Betty; Atyame, Célestine; Darriet, Frédéric; Dehecq, Jean-Sébastien; Thiria, Julien; Bheecarry, Ambicadutt; Iyaloo, Diana P.; Weill, Mylène; Chandre, Fabrice; Labbé, Pierrick
2013-01-01
Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations of Cx. p. quinquefasciatus in the Indian Ocean. PMID:24204997
Lalithambika, B; Vani, C
2016-01-01
Dengue fever is one of the serious health disease transmitted by Aedes spp mosquitoes. The incidence of dengue has increased dramatically around the world in recent decades. Vector control is one of the important strategies practiced for the control of dengue fever. The emergence of resistance among vectors against the existing insecticides has raised new challenges. The aim of the present study was to identify the larvicidal activity of extracellular toxins from Pseudomonas spp for the control of dengue vector, Aedes aegypti. Bacterial isolates KUN1, KUN2, KUN3, KUN4, and KUBS were isolated from rhizosphere soil of the agricultural fields in Coimbatore, Tamil Nadu. Lyophilized culture supernatant of KUN2 (24, 48, and 72 h culture) and the solvent extracts from the diethyl ether, petroleum ether, chloroform and ethyl acetate were tested against the IV instar larvae of Ae. aegypti. Morphological and biochemical characterization of KUN2 showed its resemblance to Pseudomonas spp. Further, characterization by molecular methods confirmed it as Pseudomonas aeruginosa. Lyophilized culture supernatant of KUN2 showed more toxicity towards the larvae of Ae. aegypti when grown in the modified medium. Secondary metabolite from the petroleum ether extract was found more toxic to the Ae. aegypti larvae even at low concentration (50 μg/ml). The supernatant of 48 h culture of KUN2 recorded 100% larvicidal activity when compared to other isolates. Further, the rate of mortality was 100% at 24 h when treated with 100 μg/ml of petroleum ether extract of KUN2. Among the isolates used for the control of Ae. aegypti, the isolate KUN2 showed increased larvicidal activity when grown in the modified medium. The maximum larval mortality was observed in the solvent extract of petroleum ether. The mortality of the larvae might be due to the effect of the toxic compound present in the extract which would have entered the larvae through its cuticle damaging its whole system and obstructing further development. Further, studies on the toxic compound responsible for the larvicidal activity need to be carried out for effective dengue control.
Recent advances in phlebotomine sand fly research related to leishmaniasis control.
Bates, Paul A; Depaquit, Jerôme; Galati, Eunice A B; Kamhawi, Shaden; Maroli, Michele; McDowell, Mary Ann; Picado, Albert; Ready, Paul D; Salomón, O Daniel; Shaw, Jeffrey J; Traub-Csekö, Yara M; Warburg, Alon
2015-02-27
Phlebotomine sand flies are the subject of much research because of the role of their females as the only proven natural vectors of Leishmania species, the parasitic protozoans that are the causative agents of the neglected tropical disease leishmaniasis. Activity in this field was highlighted by the eighth International Symposium on Phlebotomine Sand flies (ISOPS) held in September 2014, which prompted this review focusing on vector control. Topics reviewed include: Taxonomy and phylogenetics, Vector competence, Genetics, genomics and transcriptomics, Eco-epidemiology, and Vector control. Research on sand flies as leishmaniasis vectors has revealed a diverse array of zoonotic and anthroponotic transmission cycles, mostly in subtropical and tropical regions of Africa, Asia and Latin America, but also in Mediterranean Europe. The challenge is to progress beyond descriptive eco-epidemiology, in order to separate vectors of biomedical importance from the sand fly species that are competent vectors but lack the vectorial capacity to cause much human disease. Transmission modelling is required to identify the vectors that are a public health priority, the ones that must be controlled as part of the integrated control of leishmaniasis. Effective modelling of transmission will require the use of entomological indices more precise than those usually reported in the leishmaniasis literature.
Fritzell, Camille; Raude, Jocelyn; Adde, Antoine; Dusfour, Isabelle; Quenel, Philippe; Flamand, Claude
2016-11-01
During the last decade, French Guiana has been affected by major dengue fever outbreaks. Although this arbovirus has been a focus of many awareness campaigns, very little information is available about beliefs, attitudes and behaviors regarding vector-borne diseases among the population of French Guiana. During the first outbreak of the chikungunya virus, a quantitative survey was conducted among high school students to study experiences, practices and perceptions related to mosquito-borne diseases and to identify socio-demographic, cognitive and environmental factors that could be associated with the engagement in protective behaviors. A cross-sectional survey was administered in May 2014, with a total of 1462 students interviewed. Classrooms were randomly selected using a two-stage selection procedure with cluster samples. A multiple correspondence analysis (MCA) associated with a hierarchical cluster analysis and with an ordinal logistic regression was performed. Chikungunya was less understood and perceived as a more dreadful disease than dengue fever. The analysis identified three groups of individual protection levels against mosquito-borne diseases: "low" (30%), "moderate" (42%) and "high" (28%)". Protective health behaviors were found to be performed more frequently among students who were female, had a parent with a higher educational status, lived in an individual house, and had a better understanding of the disease. This study allowed us to estimate the level of protective practices against vector-borne diseases among students after the emergence of a new arbovirus. These results revealed that the adoption of protective behaviors is a multi-factorial process that depends on both sociocultural and cognitive factors. These findings may help public health authorities to strengthen communication and outreach strategies, thereby increasing the adoption of protective health behaviors, particularly in high-risk populations.
Japanese encephalitis vaccines: current vaccines and future prospects.
Monath, T P
2002-01-01
Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.
Sethi, Ajay K; Acher, Charles W; Kirenga, Bruce; Mead, Scott; Donskey, Curtis J; Katamba, Achilles
2012-09-01
Effective implementation of infection control programs and adherence to standard precautions are challenging in resource-limited settings. The objective of this study was to describe infection control knowledge, attitudes, and practices among healthcare workers (HCWs) in Uganda. We conducted a survey of hospital employees who had direct contact with patients or their immediate environment. We also performed an environmental assessment of resource availability and utilization within hospital wards. Surgical, medicine, and obstetrics wards at a national referral hospital in Kampala, Uganda. One hundred eighty-three randomly selected HCWs. Almost all HCWs knew to wash their hands, although nursing and support staff were less likely to perceive that HCWs' hands can be a vector of disease transmission. Hand washing was valued more as a means of self-protection than as a means to prevent patient-to-patient transmission, consistent with the prevailing belief that infection control was important for occupational safety. Sinks were not readily accessible, and soap at sinks was uncommon throughout the medicine and obstetrics wards but more commonly available in the surgery wards. Alcohol gel was rarely available. Changing infection control practices in developing countries will require a multifaceted approach that addresses resource availability, occupational safety, and local understanding and attitudes about infection control.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2011-01-01
Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862
Yamagata, Y; Ochoa, J O; Molina, P A; Sato, H; Uemoto, K; Suzuki, T
1987-09-01
Chemical control against larvae of Simulium ochraceum, the principal vector of onchocerciasis, was carried out from 1979 to 1984 in a 91.3 km2 area of Guatemala where onchocerciasis is endemic. The control operation was divided chronologically into three phases according to the different tactics employed. Phase 1 (1979-1981), using briquettes of fat and detergent containing 10% temephos, was effective only in perennial streams. Phase 2 (1981-1982), which limited the application target to small streams with discharges of 0.1-1 litre/sec, was not effective. Successful control was achieved by Phase 3 (1982-1984), which consisted of fort-nightly applications of 5% temephos water dispersable powder in fixed doses of 24 g (1.2 g active ingredient) to every 50-100 m stretch of all streams with discharge rates of 0.1-50 l/sec. Vector biting rates were reduced by 97.8% in 1982 to 1983 and 97.6% in 1983-1984. The biting density of S. ochraceum at all five stations was reduced to less than 1.9/man/hour, the proposed critical level for long term transmission of onchocerciasis. The biting density of the S. metallicum/horacioi complex was not apparently affected by this operation. Through analysis of the density of S. ochraceum at various distances from the untreated areas, infiltration of the flies was found to be rare, if the distance was beyond 2 km. Fly-round surveys proved to be practical as a surveillance method for detecting larval breeding in untreated or improperly treated streams. The cost for a nation-wide vector control operation was presented.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Bare, E. Ann
1987-01-01
The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.
[Going into the 21st century: should one dream or act?].
Coosemans, M
1991-01-01
A historical review of vector control is made. Despite the available tools, vector borne diseases are still a priority in Public Health. Magic tools, like DDT, were often misused. Adapted strategies and structures for vector control are now required. Progress will mainly result from research and evaluation done in the framework of vector control programmes. Discovery of new tools will find in these operational programmes a point of fall for their application.
Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.
Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter
2016-10-01
Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.
Brand, Samuel P C; Rock, Kat S; Keeling, Matt J
2016-04-01
Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models.
[Hygiene practices for patients with HIV/AIDS].
da Cunha, Gilmara Holanda; de Araujo, Thelma Leite; Lima, Francisca Elisângela Teixeira; Cavalcante, Tahissa Frota; Galvão, Marli Teresinha Gimeniz
2014-09-01
The objective of this study was to analyze the scientific production on health interventions related to hygiene for adults with HIV/AIDS. An integrative literature review was performed using six databases in June 2013. The descriptors AIDS and Hygiene were used, in Portuguese, English or Spanish. A total of 682 articles were found and 16 were selected. Personal hygiene practices were identified, such as hand washing, showers, tooth brushing and quitting smoking. Food hygiene practices involved washing food and kitchen utensils, using treated water, conserving and cooking food. Environmental hygiene took into account raising domestic animals, control of disease vectors, household cleanliness, waste disposal and basic sanitation. In conclusion, these specific hygiene interventions can be applied to the general population and, especially, to people with HIV/AIDS, due to immunosuppression.
Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul
2014-12-01
The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.
Thrust vector control of upper stage with a gimbaled thruster during orbit transfer
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia
2016-10-01
In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.
Yoshioka, Kota; Tercero, Doribel; Pérez, Byron; Nakamura, Jiro; Pérez, Lenin
2017-03-06
Chagas disease is one of the neglected tropical diseases (NTDs). International goals for its control involve elimination of vector-borne transmission. Central American countries face challenges in establishing sustainable vector control programmes, since the main vector, Triatoma dimidiata, cannot be eliminated. In 2012, the Ministry of Health in Nicaragua started a field test of a vector surveillance-response system to control domestic vector infestation. This paper reports the main findings from this pilot study. This study was carried out from 2012 to 2015 in the Municipality of Totogalpa. The Japan International Cooperation Agency provided technical cooperation in designing and monitoring the surveillance-response system until 2014. This system involved 1) vector reports by householders to health facilities, 2) data analysis and planning of responses at the municipal health centre and 3) house visits or insecticide spraying by health personnel as a response. We registered all vector reports and responses in a digital database. The collected data were used to describe and analyse the system performance in terms of amount of vector reports as well as rates and timeliness of responses. During the study period, T. dimidiata was reported 396 times. Spatiotemporal analysis identified some high-risk clusters. All houses reported to be infested were visited by health personnel in 2013 and this response rate dropped to 39% in 2015. Rates of insecticide spraying rose above 80% in 2013 but no spraying was carried out in the following 2 years. The timeliness of house visits improved significantly after the responsibility was transferred from a vector control technician to primary health care staff. We argue that the proposed vector surveillance-response system is workable within the resource-constrained health system in Nicaragua. Integration to the primary health care services was a key to improve the system performance. Continual efforts are necessary to keep adapting the surveillance-response system to the dynamic health systems. We also discuss that the goal of eliminating vector-borne transmission remains unachievable. This paper provides lessons not only for Chagas disease control in Central America, but also for control efforts for other NTDs that need a sustainable surveillance-response system to support elimination.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako
The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.
Teaching Vectors Through an Interactive Game Based Laboratory
NASA Astrophysics Data System (ADS)
O'Brien, James; Sirokman, Gergely
2014-03-01
In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.
Electromagnetic Monitoring and Control of a Plurality of Nanosatellites
NASA Technical Reports Server (NTRS)
Soloway, Donald I. (Inventor)
2017-01-01
A method for monitoring position of and controlling a second nanosatellite (NS) relative to a position of a first NS. Each of the first and second NSs has a rectangular or cubical configuration of independently activatable, current-carrying solenoids, each solenoid having an independent magnetic dipole moment vector, .mu.1 and .mu.2. A vector force F and a vector torque are expressed as linear or bilinear combinations of the first set and second set of magnetic moments, and a distance vector extending between the first and second NSs is estimated. Control equations are applied to estimate vectors, .mu.1 and .mu.2, required to move the NSs toward a desired NS configuration. This extends to control of N nanosatellites.
Genetic therapy in gliomas: historical analysis and future perspectives.
Mattei, Tobias Alécio; Ramina, Ricardo; Miura, Flavio Key; Aguiar, Paulo Henrique; Valiengo, Leandro da Costa
2005-03-01
High-grade gliomas are relatively frequent in adults, and consist of the most malignant kind of primary brain tumor. Being resistant to standard treatment modalities such as surgery, radiation, and chemotherapy, it is fatal within 1 to 2 years of onset of symptoms. Although several gene therapy systems proved to be efficient in controlling or eradicating these tumors in animal models, the clinical studies performed so far were not equally successful. Most clinical studies showed that methodologies that increase tumor infection/transduction and, consequently confer more permanent activity against the tumor, will lead to enhanced therapeutic results. Due to the promising practical clinical benefits that can be expected for the near future, an exposition to the practicing neurosurgeon about the basic issues in genetic therapy of gliomas seems convenient. Among the main topics, we shall discuss anti-tumoral mechanisms of various genes that can be transfected, the advantages and drawbacks of the different vectors utilized, the possibilities of tumor targeting by modifications in the native tropism of virus vectors, as well as the different physical methods for vector delivery to the tumors. Along with the exposition we will also review of the history of the genetic therapy for gliomas, with special focus on the main problems found during the advancement of scientific discoveries in this area. A general analysis is also made of the present state of this promising therapeutic modality, with reference to the problems that still must be solved and the new paradigms for future research in this area.
García-Betancourt, Tatiana; Higuera-Mendieta, Diana Rocío; González-Uribe, Catalina; Cortés, Sebastian; Quintero, Juliana
2015-01-01
The main preventive measure against dengue virus transmission is often based on actions to control Ae. Aegypti reproduction by targeting water containers of clean and stagnant water. Household water storage has received special attention in prevention strategies but the evidence about the rationale of this human practice is limited. The objective was to identify and describe water storage practices among residents of an urban area in Colombia (Girardot) and its association with reported perceptions, rationales and socio-demographic characteristics with a mixed methods approach. Knowledge, attitudes and practices and entomological surveys from 1,721 households and 26 semi-structured interviews were conducted among residents of Girardot and technicians of the local vector borne disease program. A multivariate analysis was performed to identify associations between a water storage practice and socio-demographic characteristics, and knowledge, attitudes and practices about dengue and immature forms of the vector, which were then triangulated with qualitative information. Water storage is a cultural practice in Girardot. There are two main reasons for storage: The scarcity concern based on a long history of shortages of water in the region and the perception of high prices in water rates, contrary to what was reported by the local water company. The practice of water storage was associated with being a housewife (Inverse OR: 2.6, 95% CI 1.5 -4.3). The use of stored water depends on the type of container used, while water stored in alberca (Intra household cement basins) is mainly used for domestic cleaning chores, water in plastic containers is used for cooking. It is essential to understand social practices that can increase or reduce the number of breeding sites of Ae. Aegypti. Identification of individuals who store water and the rationale of such storage allow a better understanding of the social dynamics that lead to water accumulation.
González-Uribe, Catalina; Cortés, Sebastian; Quintero, Juliana
2015-01-01
Introduction The main preventive measure against dengue virus transmission is often based on actions to control Ae. Aegypti reproduction by targeting water containers of clean and stagnant water. Household water storage has received special attention in prevention strategies but the evidence about the rationale of this human practice is limited. The objective was to identify and describe water storage practices among residents of an urban area in Colombia (Girardot) and its association with reported perceptions, rationales and socio-demographic characteristics with a mixed methods approach. Methods Knowledge, attitudes and practices and entomological surveys from 1,721 households and 26 semi-structured interviews were conducted among residents of Girardot and technicians of the local vector borne disease program. A multivariate analysis was performed to identify associations between a water storage practice and socio-demographic characteristics, and knowledge, attitudes and practices about dengue and immature forms of the vector, which were then triangulated with qualitative information. Results Water storage is a cultural practice in Girardot. There are two main reasons for storage: The scarcity concern based on a long history of shortages of water in the region and the perception of high prices in water rates, contrary to what was reported by the local water company. The practice of water storage was associated with being a housewife (Inverse OR: 2.6, 95% CI 1.5 -4.3). The use of stored water depends on the type of container used, while water stored in alberca (Intra household cement basins) is mainly used for domestic cleaning chores, water in plastic containers is used for cooking. Conclusions It is essential to understand social practices that can increase or reduce the number of breeding sites of Ae. Aegypti. Identification of individuals who store water and the rationale of such storage allow a better understanding of the social dynamics that lead to water accumulation. PMID:26061628
Virucidal effects of rodent cage-cleaning practices on the viability of adenovirus vectors.
Porter, Jacqueline D; Lyons, Russette M
2002-09-01
Human adenoviruses and adenoviral vectors are classified as Risk Group 2 agents and require BSL2 containment and practices. An additional consideration in using adenoviruses and viral vectors in laboratory animal studies is the possible transmission of these agents to other animals and/or personnel as a result of viral shedding in animal urine and feces. When handling BSL2 agents, cage-wash staff are required to wear appropriate personnel protective equipment, including scrubs, Tyvek suit, hair covering, dust mask, shoes covers, and gloves. Current decontamination procedures are to bag and autoclave soiled rodent cages containing bedding prior to washing in the cage washer to prevent possible adenoviral transmission. However, the practice of autoclaving softens the polycarbonate-based rodent cages, allowing damaging agents or conditions to affect the integrity of the plastic and degrade the cages. The objective of this study was to determine whether current rodent cage-cleaning practices produced virucidal effects for use in lieu of or prior to autoclaving the cages. We found that heating an Av3GFP vector in a test tube to a temperature of 74 degrees C (165 degrees F) for 6 min conditions equivalent to those of the cage washer resulted in greater than an 11-log reduction in infectivity of the vector as evaluated by its cytopathic effect on cells. The combination of heating and a liquid, phosphate-free alkaline detergent produced the same reduction in vector infectivity. However, common cage-cleaning solutions alone possessed no virucidal activity. The high temperatures used in cage-washing procedures alone or in combination with a cleaning solution reduced or eliminated the risk of transmission from viral shedding through urine and feces even at vector concentrations far greater than would ever be expected to be present. Autoclaving cages diminishes the stability and integrity of the polycarbonate cages without providing a further reduction in the risk of virus or vector transmission. On the basis of results from this study, new cage-wash recommendations include dumping the contaminated bedding into a HEPA-filtered waste disposal system and autoclaving the bags of bedding before disposal, then cleaning the cages in the rack washer at wash temperatures of 74 degrees C (165 F) and rinse temperatures of 82 degrees C (180 F).
Dynamic Forms. Part 1: Functions
NASA Technical Reports Server (NTRS)
Meyer, George; Smith, G. Allan
1993-01-01
The formalism of dynamic forms is developed as a means for organizing and systematizing the design control systems. The formalism allows the designer to easily compute derivatives to various orders of large composite functions that occur in flight-control design. Such functions involve many function-of-a-function calls that may be nested to many levels. The component functions may be multiaxis, nonlinear, and they may include rotation transformations. A dynamic form is defined as a variable together with its time derivatives up to some fixed but arbitrary order. The variable may be a scalar, a vector, a matrix, a direction cosine matrix, Euler angles, or Euler parameters. Algorithms for standard elementary functions and operations of scalar dynamic forms are developed first. Then vector and matrix operations and transformations between parameterization of rotations are developed in the next level in the hierarchy. Commonly occurring algorithms in control-system design, including inversion of pure feedback systems, are developed in the third level. A large-angle, three-axis attitude servo and other examples are included to illustrate the effectiveness of the developed formalism. All algorithms were implemented in FORTRAN code. Practical experience shows that the proposed formalism may significantly improve the productivity of the design and coding process.
Hashimoto, Ken; Zúniga, Concepción; Romero, Eduardo; Morales, Zoraida; Maguire, James H.
2015-01-01
Background Central American countries face a major challenge in the control of Triatoma dimidiata, a widespread vector of Chagas disease that cannot be eliminated. The key to maintaining the risk of transmission of Trypanosoma cruzi at lowest levels is to sustain surveillance throughout endemic areas. Guatemala, El Salvador, and Honduras integrated community-based vector surveillance into local health systems. Community participation was effective in detection of the vector, but some health services had difficulty sustaining their response to reports of vectors from the population. To date, no research has investigated how best to maintain and reinforce health service responsiveness, especially in resource-limited settings. Methodology/Principal Findings We reviewed surveillance and response records of 12 health centers in Guatemala, El Salvador, and Honduras from 2008 to 2012 and analyzed the data in relation to the volume of reports of vector infestation, local geography, demography, human resources, managerial approach, and results of interviews with health workers. Health service responsiveness was defined as the percentage of households that reported vector infestation for which the local health service provided indoor residual spraying of insecticide or educational advice. Eight potential determinants of responsiveness were evaluated by linear and mixed-effects multi-linear regression. Health service responsiveness (overall 77.4%) was significantly associated with quarterly monitoring by departmental health offices. Other potential determinants of responsiveness were not found to be significant, partly because of short- and long-term strategies, such as temporary adjustments in manpower and redistribution of tasks among local participants in the effort. Conclusions/Significance Consistent monitoring within the local health system contributes to sustainability of health service responsiveness in community-based vector surveillance of Chagas disease. Even with limited resources, countries can improve health service responsiveness with thoughtful strategies and management practices in the local health systems. PMID:26252767
Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Karandeev, D.
2015-10-01
The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.
Chagas disease vector control and Taylor's law
Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.
2017-01-01
Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728
On the reliability of Shewhart-type control charts for multivariate process variability
NASA Astrophysics Data System (ADS)
Djauhari, Maman A.; Salleh, Rohayu Mohd; Zolkeply, Zunnaaim; Li, Lee Siaw
2017-05-01
We show that in the current practice of multivariate process variability monitoring, the reliability of Shewhart-type control charts cannot be measured except when the sub-group size n tends to infinity. However, the requirement of large n is meaningless not only in manufacturing industry where n is small but also in service industry where n is moderate. In this paper, we introduce a new definition of control limits in the two most appreciated control charts in the literature, i.e., the improved generalized variance chart (IGV-chart) and vector variance chart (VV-chart). With the new definition of control limits, the reliability of the control charts can be determined. Some important properties of new control limits will be derived and the computational technique of probability of false alarm will be delivered.
Kim, Hoyeon; Cheang, U. Kei
2017-01-01
In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles. PMID:29020016
Kim, Hoyeon; Cheang, U Kei; Kim, Min Jun
2017-01-01
In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.
Who Is Vulnerable to Dengue Fever? A Community Survey of the 2014 Outbreak in Guangzhou, China
Chen, Bin; Yang, Jun; Luo, Lei; Yang, Zhicong; Liu, Qiyong
2016-01-01
Unprecedented dengue fever (DF) outbreaks impel China to develop useful disease control strategies. Integrated vector management (IVM) focuses on identifying vulnerable populations and interrupting human–vector contact; however, vulnerable populations have not been clearly identified in China. We conducted a case-control study during the initial stage of the 2014 DF outbreak in Guangzhou, China to assess risk factors for DF infection. Cases were randomly sampled from the National Notifiable Infectious Disease Reporting Information System (NNIDRIS). Controls were healthy individuals recruited from 17 DF infected communities through cluster sampling. A structured questionnaire on demographics, knowledge, practices, and living environment was administered to participants (165 cases; 492 controls). Logistic regression models identified characteristics of vulnerable populations. Awareness of dengue (OR = 0.08, 95% CI = 0.04–0.17), removing trash and stagnant water from around the residence (OR = 0.02, 95% CI = 0.00–0.17), and using mosquito repellent oils (OR = 0.36, 95% CI = 0.16–0.81) were protective factors. Living in an old flat or shed (OR = 2.38, 95% CI = 1.18–4.79) was a risk factor. Coils and bed nets were not protective due to incorrect knowledge of use. Using mosquito repellent oils and other protective measures can reduce vulnerability to DF infection. PMID:27428986
Alphey, Nina; Alphey, Luke; Bonsall, Michael B.
2011-01-01
Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654
NASA Astrophysics Data System (ADS)
Ferhat, Ipar
With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.
Kiware, Samson S; Chitnis, Nakul; Tatarsky, Allison; Wu, Sean; Castellanos, Héctor Manuel Sánchez; Gosling, Roly; Smith, David; Marshall, John M
2017-01-01
Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions. We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination. The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact of combined vector control interventions at the mosquito population level in a range of eco-epidemiological settings. The model predicts specific combinations of vector control tools to achieve local malaria elimination in a range of eco-epidemiological settings and can assist researchers and program decision-makers on the design of experimental or operational research to test vector control interventions. A corresponding graphical user interface is available for national malaria control programs and other end users.
The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft
NASA Technical Reports Server (NTRS)
1983-01-01
A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.
Overgaard, Hans J; Olano, Víctor Alberto; Jaramillo, Juan Felipe; Matiz, María Inés; Sarmiento, Diana; Stenström, Thor Axel; Alexander, Neal
2017-07-27
Aedes aegypti, the major vector of dengue, breeds in domestic water containers. The development of immature mosquitoes in such containers is influenced by various environmental, ecological and socioeconomic factors. Urban and rural disparities in water storage practices and water source supply may affect mosquito immature abundance and, potentially, dengue risk. We evaluated the effect of water and container characteristics on A. aegypti immature abundance in urban and rural areas. Data were collected in the wet season of 2011 in central Colombia from 36 urban and 35 rural containers, which were either mosquito-positive or negative. Immature mosquitoes were identified to species. Data on water and container characteristics were collected from all containers. A total of 1452 Aedes pupae and larvae were collected of which 81% were A. aegypti and 19% A. fluviatilis. Aedes aegypti immatures were found in both urban and rural sites. However, the mean number of A. aegypti pupae was five times higher in containers in the urban sites compared to those in the rural sites. One of the important factors associated with A. aegypti infestation was frequency of container washing. Monthly-washed or never-washed containers were both about four times more likely to be infested than those washed every week. There were no significant differences between urban and rural sites in frequency of washing containers. Aedes aegypti immature infestation was positively associated with total dissolved solids, but negatively associated with dissolved oxygen. Water temperature, total dissolved solids, ammonia, nitrate, and organic matter were significantly higher in urban than in rural containers, which might explain urban-rural differences in breeding of A. aegypti. However, many of these factors vary substantially between studies and in their degree of association with vector breeding, therefore they may not be reliable indices for vector control interventions. Although containers in urban areas were more likely to be infested with A. aegypti, rural containers still provide suitable habitats for A. aegypti. Containers that are washed more frequent are less likely to produce A. aegypti. These results highlight the importance of container washing as an effective vector control tool in both urban and rural areas. In addition, alternative designs of the highly productive washbasins should continue to be explored. To control diseases such as dengue, Zika and chikungunya, effective vector breeding site control must be implemented in addition to other interventions.
NASA Astrophysics Data System (ADS)
Shinnaka, Shinji
This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.
Structural and Practical Identifiability Analysis of Zika Epidemiological Models.
Tuncer, Necibe; Marctheva, Maia; LaBarre, Brian; Payoute, Sabrina
2018-06-13
The Zika virus (ZIKV) epidemic has caused an ongoing threat to global health security and spurred new investigations of the virus. Use of epidemiological models for arbovirus diseases can be a powerful tool to assist in prevention and control of the emerging disease. In this article, we introduce six models of ZIKV, beginning with a general vector-borne model and gradually including different transmission routes of ZIKV. These epidemiological models use various combinations of disease transmission (vector and direct) and infectious classes (asymptomatic and pregnant), with addition to loss of immunity being included. The disease-induced death rate is omitted from the models. We test the structural and practical identifiability of the models to find whether unknown model parameters can uniquely be determined. The models were fit to obtain time-series data of cumulative incidences and pregnant infections from the Florida Department of Health Daily Zika Update Reports. The average relative estimation errors (AREs) were computed from the Monte Carlo simulations to further analyze the identifiability of the models. We show that direct transmission rates are not practically identifiable; however, fixed recovery rates improve identifiability overall. We found ARE is low for each model (only slightly higher for those that account for a pregnant class) and help to confirm a reproduction number greater than one at the start of the Florida epidemic. Basic reproduction number, [Formula: see text], is an epidemiologically important threshold value which gives the number of secondary cases generated by one infected individual in a totally susceptible population in duration of infectiousness. Elasticity of the reproduction numbers suggests that the mosquito-to-human ratio, mosquito life span and biting rate have the greatest potential for reducing the reproduction number of Zika, and therefore, corresponding control measures need to be focused on.
Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.
Gooding, R H
1996-01-01
An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462
Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas
2012-05-01
Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.
Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality
NASA Astrophysics Data System (ADS)
Cherukuru, Nihanth Wagmi
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
Current status of genome editing in vector mosquitoes: A review.
Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah
2017-01-16
Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities.
Mendenhall, Ian H; Manuel, Menchie; Moorthy, Mahesh; Lee, Theodore T M; Low, Dolyce H W; Missé, Dorothée; Gubler, Duane J; Ellis, Brett R; Ooi, Eng Eong; Pompon, Julien
2017-06-01
Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.
Active control of lateral leakage in thin-ridge SOI waveguide structures
NASA Astrophysics Data System (ADS)
Dalvand, Naser; Nguyen, Thach G.; Tummidi, Ravi S.; Koch, Thomas L.; Mitchell, Arnan
2011-12-01
We report on the design and simulation of a novel Silicon-On-Insulator waveguide structures which when excited with TM guided light, emit TE polarized radiation with controlled radiation characteristics[1]. The structures utilize parallel leaky waveguides of specific separations. The structures are simulated using a full-vector mode-matching approach which allows visualisation of the evolution of the propagating and radiating fields over the length of the waveguide structure. It is shown that radiation can be resonantly enhanced or suppressed in different directions depending on the choice of the phase of the excitation of the waveguide components. Steps toward practical demonstration are identified.
A Semi-Vectorization Algorithm to Synthesis of Gravitational Anomaly Quantities on the Earth
NASA Astrophysics Data System (ADS)
Abdollahzadeh, M.; Eshagh, M.; Najafi Alamdari, M.
2009-04-01
The Earth's gravitational potential can be expressed by the well-known spherical harmonic expansion. The computational time of summing up this expansion is an important practical issue which can be reduced by an efficient numerical algorithm. This paper proposes such a method for block-wise synthesizing the anomaly quantities on the Earth surface using vectorization. Fully-vectorization means transformation of the summations to the simple matrix and vector products. It is not a practical for the matrices with large dimensions. Here a semi-vectorization algorithm is proposed to avoid working with large vectors and matrices. It speeds up the computations by using one loop for the summation either on degrees or on orders. The former is a good option to synthesize the anomaly quantities on the Earth surface considering a digital elevation model (DEM). This approach is more efficient than the two-step method which computes the quantities on the reference ellipsoid and continues them upward to the Earth surface. The algorithm has been coded in MATLAB which synthesizes a global grid of 5â²Ã- 5â² (corresponding 9 million points) of gravity anomaly or geoid height using a geopotential model to degree 360 in 10000 seconds by an ordinary computer with 2G RAM.
Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.
2013-01-01
Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606
All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.
Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin
2018-04-01
We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.
Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J
2013-01-01
Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.
An Intelligent Decision System for Intraoperative Somatosensory Evoked Potential Monitoring.
Fan, Bi; Li, Han-Xiong; Hu, Yong
2016-02-01
Somatosensory evoked potential (SEP) is a useful, noninvasive technique widely used for spinal cord monitoring during surgery. One of the main indicators of a spinal cord injury is the drop in amplitude of the SEP signal in comparison to the nominal baseline that is assumed to be constant during the surgery. However, in practice, the real-time baseline is not constant and may vary during the operation due to nonsurgical factors, such as blood pressure, anaesthesia, etc. Thus, a false warning is often generated if the nominal baseline is used for SEP monitoring. In current practice, human experts must be used to prevent this false warning. However, these well-trained human experts are expensive and may not be reliable and consistent due to various reasons like fatigue and emotion. In this paper, an intelligent decision system is proposed to improve SEP monitoring. First, the least squares support vector regression and multi-support vector regression models are trained to construct the dynamic baseline from historical data. Then a control chart is applied to detect abnormalities during surgery. The effectiveness of the intelligent decision system is evaluated by comparing its performance against the nominal baseline model by using the real experimental datasets derived from clinical conditions.
Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?
Rivero, Ana; Vézilier, Julien; Weill, Mylène; Read, Andrew F.; Gandon, Sylvain
2010-01-01
Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way—and there may be no simple generality—the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention. PMID:20700451
Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite
2015-09-04
Aedes aegypti is a vector of international concern because it can transmit to humans three important arboviral diseases: yellow fever, dengue and chikungunya. Epidemics that are repeated year after year in a variety of urban centers indicate that there are control failures, allowing the vector to continue expanding. To identify the most effective vector control strategies and the factors that contributed to the success or failure of each strategy, we carried out a systematic review with meta-analysis of articles published in 12 databases, from 1974 to the month of December 2013. We evaluated the association between the use of whatever chemical substance, mechanical agent, biological or integrated actions against A. aegypti and the control of the vector, as measured by 10 indicators. We found 2,791 articles, but after careful selection, only 26 studies remained for analysis related to control interventions implemented in 15 countries, with 5 biological, 5 chemical, 3 mechanical and 13 integrated strategies. The comparison among all of them, indicated that the control of A. aegypti is significantly associated with the type of strategy used, and that integrated interventions consist of the most effective method for controlling A. aegypti. The most effective control method was the integrated approach, considering the influence of eco-bio-social determinants in the virus-vector-man epidemiological chain, and community involvement, starting with community empowerment as active agents of vector control.
NASA Astrophysics Data System (ADS)
Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong
2018-05-01
This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.
Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L
2014-04-01
Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014.
Shortus, Matthew; Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia
2016-01-01
The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations' effectiveness.
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014
Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia
2016-01-01
Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
Rathor, H R; Mnzava, A; Bile, K M; Hafeez, A; Zaman, S
2010-01-01
The Health Services Academy has launched a 12-month postgraduate diploma course in medical entomology and disease vector control. The objective is to create a core of experts trained to prevent and control vector-borne diseases. The course is a response to the serious health and socioeconomic burden caused by a number of vector-borne diseases in Pakistan. The persistence, emergence and re-emergence of these diseases is mainly attributed to the scarcity of trained vector-control experts. The training course attempts to fill the gap in trained manpower and thus reduce the morbidity and mortality due to these diseases, resulting in incremental gains to public health. This paper aims to outline the steps taken to establish the course and the perceived challenges to be addressed in order to sustain its future implementation.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2009-01-01
Background Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. Methodology/Principal Findings A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m2 were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. Conclusion/Significance Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases. PMID:19365542
Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C
2000-05-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.
Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle
NASA Technical Reports Server (NTRS)
Bergmann, E.; Weiler, P.
1983-01-01
An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.
Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham
2005-12-15
In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements.
Tonnang, Henri E Z; Tchouassi, David P; Juarez, Henry S; Igweta, Lilian K; Djouaka, Rousseau F
2014-05-07
Predicting anopheles vectors' population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km(2)). Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. The potential shifts of these malaria vectors have implications for human exposure to malaria, as recrudescence of the disease is likely to be recorded in several new areas and regions. Therefore, the need to develop, compile and share malaria preventive measures, which can be adapted to different climatic scenarios, remains crucial.
Lee, Seung-Hun; Eo, Kyung-Yeon; Jung, Byeong Yeal; Kwak, Dongmi; Kwon, Oh-Deog
2017-12-01
Besnoitia besnoiti is an obligate intracellular parasite that is transmitted by direct contact or via mechanical transmission by flies as vectors. Besnoitiosis causes economic losses in the cattle industry and is regarded as a re-emerging disease in Europe. This study evaluated the seroprevalence of B. besnoiti in Korean cattle using a commercial ELISA kit. Among 558 serum samples, 19 (3.4%) tested seropositive for B. besnoiti. The statistically significant risk factors included age (≥ 2 years), sex (castrated males), and region (lower latitudes) (P < 0.05). The overall seroprevalence suggested a wide distribution of B. besnoiti infection in cattle reared in Korea. Thus, the practice of intensive cattle husbandry and the regionally different seroprevalence of B. besnoiti infection in cattle in Korea warrant routine monitoring and vector control to reduce economical losses due to bovine besnoitiosis in the country.
Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M
2015-08-05
Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.
Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve
2016-02-01
New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and through engaging powerful policy champions to drive policy change and thereby accelerate access to new vector control tools. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann
2018-02-01
Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials.
Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann
2018-01-01
Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials. PMID:29212357
Research on Parallel Three Phase PWM Converters base on RTDS
NASA Astrophysics Data System (ADS)
Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun
2018-01-01
Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.
Chanda, Emmanuel; Govere, John M; Macdonald, Michael B; Lako, Richard L; Haque, Ubydul; Baba, Samson P; Mnzava, Abraham
2013-10-25
Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial.
Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan
2013-01-01
Background Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. Case description A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. Discussion South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. Conclusion The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial. PMID:24156749
Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J
1996-11-26
Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.
Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.
1996-01-01
Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064
Detection of ferromagnetic target based on mobile magnetic gradient tensor system
NASA Astrophysics Data System (ADS)
Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren
2016-03-01
Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.
Ghosh, Srikant; Nagar, Gaurav
2014-12-01
Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.
Vector control of wind turbine on the basis of the fuzzy selective neural net*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.
NASA Astrophysics Data System (ADS)
Shinnaka, Shinji; Sano, Kousuke
This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.
The Cost of Dengue Vector Control Activities in Malaysia by Different Service Providers.
Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Venugopalan, B; Halasa, Yara A; Shepard, Donald S
2015-11-01
We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia. © 2015 APJPH.
Gürtler, Ricardo E
2011-01-01
Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying) and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical. PMID:19753458
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Wang, Kon-Sheng Charles
1997-01-01
The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.
An optimal control strategies using vaccination and fogging in dengue fever transmission model
NASA Astrophysics Data System (ADS)
Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan
2017-08-01
This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.
Return of epidemic dengue in the United States: implications for the public health practitioner.
Bouri, Nidhi; Sell, Tara Kirk; Franco, Crystal; Adalja, Amesh A; Henderson, D A; Hynes, Noreen A
2012-01-01
Conditions that facilitate sustained dengue transmission exist in the United States, and outbreaks have occurred during the past decade in Texas, Hawaii, and Florida. More outbreaks can also be expected in years to come. To combat dengue, medical and public health practitioners in areas with mosquito vectors that are competent to transmit the virus must be aware of the threat of reemergent dengue, and the need for early reporting and control to reduce the impact of dengue outbreaks. Comprehensive dengue control includes human and vector surveillance, vector management programs, and community engagement efforts. Public health, medical, and vector-control communities must collaborate to prevent and control disease spread. Policy makers should understand the role of mosquito abatement and community engagement in the prevention and control of the disease.
Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.
2010-01-01
The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859
Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.
Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen
2016-11-18
Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.
Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector
Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C.; Miller, W. Allen
2016-01-01
Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits. PMID:27869713
Taiwan's Travel and Border Health Measures in Response to Zika.
Ho, Li-Li; Tsai, Yu-Hui; Lee, Wang-Ping; Liao, Szu-Tsai; Wu, Li-Gin; Wu, Yi-Chun
Zika virus has recently emerged as a worldwide public health concern. Travel and border health measures stand as one of the main strategies and frontline defenses in responding to international epidemics. As of October 31, 2016, Taiwan has reported 13 imported cases, 5 of which were detected through routine entry screening and active monitoring at international airports. This article shares Taiwan's disease surveillance activities at designated points of entry and travel and border health measures in response to Zika. The Taiwan government collaborates with its tourism industry to disseminate information about precautionary measures and encourages tour guides to report suspected individuals or events to activate early response measures. Taiwan also engages in vector control activities at points of entry, including targeting aircraft from countries where vector-borne diseases are endemic, implementing mosquito sweep measures, and collecting vector surveillance data. In future emerging and reemerging disease events, entry surveillance at designated points of entry may enable early detection of diseases of international origin and more rapid activation of public health preparedness activities and international collaboration. Taiwan will continue to maximize border and travel health measures in compliance with IHR (2005) requirements, which rely on continued risk assessment, practical implementation activities, and engagement with all stakeholders.
Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto
2015-01-01
Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951
Rodríguez, Américo David; Penilla, Rosa Patricia; Henry-Rodríguez, Mario; Hemingway, Janet; Francisco Betanzos, Angel; Hernández-Avila, Juan Eugenio
2003-01-01
To investigate the knowledge and beliefs about malaria transmission and practices for vector control in eight villages on the coastal plain of Chiapas, Mexico. A cross-sectional survey was conducted during May and June 1995 in Chiapas, Mexico. A questionnaire to investigate family structure, knowledge on malaria transmission, preventive measures and attitudes towards seeking treatment was applied to both family heads of a sample of households. Associations were analyzed by estimating odds ratios with confidence intervals and p values, using bivariate and multivariate logistic regression methods. Malaria knowledge was poor and only 48% associated malaria with mosquito bites. The perceived benefit of indoor residual spraying was associated to a reduction of mosquitoes, a reduction in the numbers of cockroaches and rats, but only 3% associated it directly with the prevention of malaria transmission. Most villagers (97.6%) agreed with the indoor residual spraying of insecticides. Ninety nine percent of villagers had mosquito bednets, 75.7% used them all year round. Other measures used by villagers to prevent mosquito bites were smoke and mosquito coils. Above 40% of villagers self-medicated when any member of the family had a fever episode, but 51% attended proper health services (community dispensary, private physician, health worker). About 61% used pesticides for agricultural or livestock purposes and 55% applied themselves. Women had a greater participation as family health promoters, with 70% of the housewives being in charge of the application of self-protection preventive measures. Educational programs aimed at increasing awareness on the participation of mosquitoes on malaria transmission could promote community participation in malaria control in the region. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.
Tropical environments, human activities, and the transmission of infectious diseases.
Sattenspiel, L
2000-01-01
Throughout recent history, the tropical regions of the world have been affected more severely by infectious diseases than the temperate world. Much of the success of infectious diseases in that region is due to both biological and environmental factors that encourage high levels of biodiversity in hosts, vectors, and pathogens, and social factors that compromise efforts to control diseases. Several of these factors are described. Discussion then shifts to specific types of host-pathogen relationships. The most important of these in the tropics is the relationship between humans, a pathogen, and a vector that carries the pathogen from one human to another. Mosquitoes are the vector responsible for the transmission of many vector-borne human diseases. Characteristics of mosquito-human interactions are described, including cultural behaviors humans have developed that both increase the chances of transmission and help to limit that transmission. The transmission of water-borne diseases, fecal-oral transmission, zoonotic diseases, respiratory illnesses, and sexually transmitted diseases are also discussed. Attention is paid to how diseases with these modes of transmission differ in characteristics and importance in tropical human populations compared to those in temperate regions. Following this general discussion, three case studies are presented in some detail. The diseases chosen for the case studies include cholera, lymphatic filariasis, and dracunculiasis (guinea worm). These three case studies taken together provide examples of the diversity of human host-pathogen interactions as well as ways that human activities have both promoted their spread and helped to control them. The transmission of all three diseases is related to the nature and quality of water sources. The transmission of cholera, a water-borne disease, is related to sanitation practices, physical characteristics of the environment such as temperature and humidity, and modern shipping practices. Lymphatic filariasis, a mosquito-borne disease, has increased in frequency in parts of Africa in recent decades as a consequence of large-scale agricultural development projects that have shifted the nature and quantity of water sources and potential mosquito breeding sites. Dracunculiasis is transmitted by a small crustacean that contaminates sources of drinking water. Because its transmission can be prevented by a simple change in human behavior, filtering all water with a small piece of cloth before using it, dracunculiasis has been the focus of a major eradication effort that is near success.
Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham
2005-01-01
Background In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. Objectives To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Methods Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. Results IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. Conclusion People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements. PMID:16356177
Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo
2009-01-01
Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346
Controlling Malaria Using Livestock-Based Interventions: A One Health Approach
Franco, Ana O.; Gomes, M. Gabriela M.; Rowland, Mark; Coleman, Paul G.
2014-01-01
Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases. PMID:25050703
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities
Manuel, Menchie; Low, Dolyce H. W.; Missé, Dorothée; Gubler, Duane J.; Ellis, Brett R.; Ooi, Eng Eong; Pompon, Julien
2017-01-01
Background Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. Methods We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. Results We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Conclusions Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management. PMID:28650959
What is the current state of management practices for biosolids production and application, and how can those be made more effective? How effective are Class B disinfection and vector attraction processes, and public access and harvesting restrictions at reducing the public's exp...
Santangeloyz, K.S.; Bertoneyz, A.L.
2011-01-01
summary Objective To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Methods Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RTPCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2−ΔΔCT) method. Results Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P= 0.0045) or >90% (P= 0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Conclusions Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. PMID:21945742
Herz, Stefan; Füssl, Monika; Steiger, Sandra; Koop, Hans-Ulrich
2005-12-01
Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named "operon-extension" vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5'-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5'-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named "split" plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.
Community Participation in Chagas Disease Vector Surveillance: Systematic Review
Abad-Franch, Fernando; Vega, M. Celeste; Rolón, Miriam S.; Santos, Walter S.; Rojas de Arias, Antonieta
2011-01-01
Background Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. Methodology/Principal Findings We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. Conclusions/Significance CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies. PMID:21713022
Mosquito vector biology and control in latin america-a 24th symposium.
Clark, Gary G; Fernández-Salas, Ildefonso
2014-09-01
The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA, in February 2014. The principal objective, for the previous 23 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 26 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical control, studies of dengue viruses, and insecticide resistance associated with Aedes aegypti; Anopheles vectors of malaria; essential oils; and ethnic groups and vector-borne diseases.
Mng'ong'o, Frank C.; Sambali, Joseph J.; Sabas, Eustachkius; Rubanga, Justine; Magoma, Jaka; Ntamatungiro, Alex J.; Turner, Elizabeth L.; Nyogea, Daniel; Ensink, Jeroen H. J.; Moore, Sarah J.
2011-01-01
Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana) around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR) relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28–0.68, p<0.0001); 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09–0.32, p<0.0001), and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38–0.67, p<0.0001) in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person). L. camara mode of action and suitability for mosquito control is discussed. PMID:22022471
Mng'ong'o, Frank C; Sambali, Joseph J; Sabas, Eustachkius; Rubanga, Justine; Magoma, Jaka; Ntamatungiro, Alex J; Turner, Elizabeth L; Nyogea, Daniel; Ensink, Jeroen H J; Moore, Sarah J
2011-01-01
Sustained malaria control is underway using a combination of vector control, prompt diagnosis and treatment of malaria cases. Progress is excellent, but for long-term control, low-cost, sustainable tools that supplement existing control programs are needed. Conventional vector control tools such as indoor residual spraying and house screening are highly effective, but difficult to deliver in rural areas. Therefore, an additional means of reducing mosquito house entry was evaluated: the screening of mosquito house entry points by planting the tall and densely foliated repellent plant Lantana camara L. around houses. A pilot efficacy study was performed in Kagera Region, Tanzania in an area of high seasonal malaria transmission, where consenting families within the study village planted L. camara (Lantana) around their homes and were responsible for maintaining the plants. Questionnaire data on house design, socioeconomic status, malaria prevention knowledge, attitude and practices was collected from 231 houses with Lantana planted around them 90 houses without repellent plants. Mosquitoes were collected using CDC Light Traps between September 2008 and July 2009. Data were analysed with generalised negative binomial regression, controlling for the effect of sampling period. Indoor catches of mosquitoes in houses with Lantana were compared using the Incidence Rate Ratio (IRR) relative to houses without plants in an adjusted analysis. There were 56% fewer Anopheles gambiae s.s. (IRR 0.44, 95% CI 0.28-0.68, p<0.0001); 83% fewer Anopheles funestus s.s. (IRR 0.17, 95% CI 0.09-0.32, p<0.0001), and 50% fewer mosquitoes of any kind (IRR 0.50, 95% CI 0.38-0.67, p<0.0001) in houses with Lantana relative to controls. House screening using Lantana reduced indoor densities of malaria vectors and nuisance mosquitoes with broad community acceptance. Providing sufficient plants for one home costs US $1.50 including maintenance and labour costs, (30 cents per person). L. camara mode of action and suitability for mosquito control is discussed.
Caprara, Andrea; De Oliveira Lima, José Wellington; Rocha Peixoto, Ana Carolina; Vasconcelos Motta, Cyntia Monteiro; Soares Nobre, Joana Mary; Sommerfeld, Johannes; Kroeger, Axel
2015-01-01
Background This study intended to implement a novel intervention strategy, in Brazil, using an ecohealth approach and analyse its effectiveness and costs in reducing Aedes aegypti vector density as well as its acceptance, feasibility and sustainability. The intervention was conducted from 2012 to 2013 in the municipality of Fortaleza, northeast Brazil. Methodology A cluster randomized controlled trial was designed by comparing ten intervention clusters with ten control clusters where routine vector control activities were conducted. The intervention included: community workshops; community involvement in clean-up campaigns; covering the elevated containers and in-house rubbish disposal without larviciding; mobilization of schoolchildren and senior inhabitants; and distribution of information, education and communication (IEC) materials in the community. Results Differences in terms of social participation, commitment and leadership were present in the clusters. The results showed the effectiveness of the intervention package in comparison with the routine control programme. Differences regarding the costs of the intervention were reasonable and could be adopted by public health services. Conclusions Embedding social participation and environmental management for improved dengue vector control was feasible and significantly reduced vector densities. Such a participatory ecohealth approach offers a promising alternative to routine vector control measures. PMID:25604760
Lang, Bethan J; Idugboe, Stefano; McManus, Kirelle; Drury, Florence; Qureshi, Alima
2018-01-01
Abstract Control of Aedes aegypti (L.) (Diptera: Culicidae) populations is vital for reducing the transmission of several pervasive human diseases. The success of new vector control technologies will be influenced by the fitness of laboratory-reared transgenic males. However, there has been relatively little published data on how rearing practices influence male fitness in Aedes mosquitoes. In the laboratory, the effect of larval food availability on adult male fitness was tested, using a range of different fitness measures. Larval food availability was demonstrated to be positively correlated with adult body size. Larger males survived longer and exhibited greater swarming activity. As a consequence, larger males may have more mating opportunities in the wild. However, we also found that within a swarm larger males did not have an increased likelihood of copulating with a female. The outcome of the mating competition experiments depended on the methodology used to mark the males. These results show that fitness assessment can vary depending on the measure analyzed, and the methodology used to determine it. Continued investigation into these fitness measures and methodologies, and critically, their utility for predicting male performance in the field, will increase the efficiency of vector control programs. PMID:29029298
Malaria Vector Control Still Matters despite Insecticide Resistance.
Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna
2017-08-01
Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wolbachia: A biological control strategy against arboviral diseases.
Mohanty, Ipsita; Rath, Animesha; Mahapatra, Namita; Hazra, Rupenangshu K
2016-01-01
Vector-borne diseases particularly those transmitted by mosquitoes like Dengue are among the leading causes of mortality and morbidity in human population. There are no effective vaccines or treatment against dengue fever till date and the control methods are limited. So, new approaches are urgently in need to reverse these trends. Vector control is currently the primary intervention tool. Strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. Wolbachia an endosymbiont of arthropod vectors is being explored as a novel ecofriendly control strategy. Studies in Drosophila have shown that Wolbachia can confer resistance to diverse RNA viruses and protect flies from virus-induced mortality. This review was focused on biology of the Wolbachia and its implication as a control measure for arboviral diseases mainly Dengue and Chikungunya.
NASA Astrophysics Data System (ADS)
Douglas, Joanne T.
The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.
1991-07-01
nose bodyj Top view of velocity probe PropllerRotating shaft ’V Generator Aerodynamic shape like a small elevator RPV’s attitude Irrespctiveduring...28 Part It: Maximizing Thrust-Vectoring Control Power and Agility Metrics ............ 29 Laboratory & Flight...8217Ideal Standards’ - Ba- ror maximizing PST-TV-aglilty/rIlght-control power , iI - Extracting new TV-potentials to further reduce any righter’s optical
On the He-McKellar-Wilkens phase of an electric dipole
NASA Astrophysics Data System (ADS)
Rai, Yam P.; Rai, Dhurba
2017-08-01
The He-McKellar-Wilkens (HMW) phase of an electric dipole moving in a static magnetic field is derived by explicitly considering the interaction between the currents associated with the moving dipole and the magnetic vector potential. Conditions for the observation of the HMW phase in different field configurations are investigated. A practical setup is proposed that provides essentially a radial magnetic field with inverse radial dependence for the observation of the HMW phase with magnetic field alone. Possible magnetic field control of exciton current in an open ring setup is discussed.
van den Berg, Henk; Yadav, Rajpal S; Zaim, Morteza
2014-09-18
Public health pesticides has been the mainstay control of vectors of malaria and other diseases, and public health pests, but there is increasing concern over how these pesticides are being managed. Poor pesticide management could lead to risks to human health and the environment, or diminish the effectiveness of interventions. Strategies for strengthening the management of public health pesticides, from manufacture to disposal, should be evaluated to propose future directions. The process and outcomes of three strategies were studied in five regions of the WHO (African Region, Eastern Mediterranean Region, South-East Asia Region, Western Pacific Region, and American Region) and 13 selected countries. These strategies are: regional policy development, in-depth country support and thematic support across countries. Consensus, frameworks and action plans on public health pesticide management were developed at regional level. Country support for situation analysis and national action planning highlighted weaknesses over the entire spectrum of pesticide management practices, mainly related to malaria control. The thematic support on pesticide quality control contributed to structural improvements on a priority issue for malaria control across countries. The three strategies showed promising and complementary results, but guidelines and tools for implementation of the strategies should be further improved. Increased national and international priority should be given to support the development of policy, legislation and capacity that are necessary for sound management of public health pesticides.
Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.
Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I
2015-02-01
Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.
Improvement in vehicle agility and stability by G-Vectoring control
NASA Astrophysics Data System (ADS)
Yamakado, Makoto; Takahashi, Jyunya; Saito, Shinjiro; Yokoyama, Atsushi; Abe, Masato
2010-12-01
We extracted a trade-off strategy between longitudinal traction/braking force and cornering force by using jerk information through observing an expert driver's voluntary braking and turning action. Using the expert driver's strategy, we developed a new control concept, called 'G-Vectoring control', which is an automatic longitudinal acceleration control (No DYC) in accordance with the vehicle's lateral jerk caused by the driver's steering manoeuvres. With the control, the direction of synthetic acceleration (G) changes seamlessly (i.e. vectoring). The improvements in vehicle agility and stability were evaluated by theoretical analysis and through computer simulation. We then introduced a 'G-Vectoring' equipped test vehicle realised by brake-by-wire technology and executed a detailed examination on a test track. We have confirmed that the vehicle motion in view of both handling and ride quality has improved dramatically.
Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.
Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian
2015-06-03
Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.
NASA Technical Reports Server (NTRS)
Bates, Lisa B.; Young, David T.
2012-01-01
This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.
Variable Speed CMG Control of a Dual-Spin Stabilized Unconventional VTOL Air Vehicle
NASA Technical Reports Server (NTRS)
Lim, Kyong B.; Moerder, Daniel D.; Shin, J-Y.
2004-01-01
This paper describes an approach based on using both bias momentum and multiple control moment gyros for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The stabilization approach described in this paper uses these internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other outer loop control functions, including CMG stabilization/ desaturation under persistent external disturbances. Simulation results show the feasibility of (1) improved vehicle performance beyond bias momentum assisted vector thrusting control, and (2) using control moment gyros to significantly reduce the external torque required from the vector thrusting machinery.
Application of three controls optimally in a vector-borne disease - a mathematical study
NASA Astrophysics Data System (ADS)
Kar, T. K.; Jana, Soovoojeet
2013-10-01
We have proposed and analyzed a vector-borne disease model with three types of controls for the eradication of the disease. Four different classes for the human population namely susceptible, infected, recovered and vaccinated and two different classes for the vector populations namely susceptible and infected are considered. In the first part of our analysis the disease dynamics are described for fixed controls and some inferences have been drawn regarding the spread of the disease. Next the optimal control problem is formulated and solved considering control parameters as time dependent. Different possible combination of controls are used and their effectiveness are compared by numerical simulation.
2014-01-01
Background Predicting anopheles vectors’ population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. Methods We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km2). Results Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. Conclusion The potential shifts of these malaria vectors have implications for human exposure to malaria, as recrudescence of the disease is likely to be recorded in several new areas and regions. Therefore, the need to develop, compile and share malaria preventive measures, which can be adapted to different climatic scenarios, remains crucial. PMID:24885061
Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D’Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck
2016-01-01
Background Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Methodology/Principal findings Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Conclusion/Significance Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species. PMID:27906987
Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck
2016-12-01
Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... announced below concerns Identification, Surveillance, and Control of Vector-Borne and Zoonotic Infectious... in response to ``Identification, Surveillance, and Control of Vector- Borne and Zoonotic Infectious... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease...
Thrust vectoring of broad ion beams for spacecraft attitude control
NASA Technical Reports Server (NTRS)
Collett, C. R.; King, H. J.
1973-01-01
Thrust vectoring is shown to increase the attractiveness of ion thrusters for satellite control applications. Incorporating beam deflection into ion thrusters makes it possible to achieve attitude control without adding any thrusters. Two beam vectoring systems are described that can provide up to 10-deg beam deflection in any azimuth. Both systems have been subjected to extended life tests on a 5-cm thruster which resulted in projected life times of from 7500 to 20,000 hours.
Quality control in gastrointestinal surgery.
Ramírez-Barba, Ector Jaime; Arenas-Moya, Diego; Vázquez-Guerrero, Arturo
2011-01-01
We analyzed the Mexican legal framework, identifying the vectors that characterize quality and control in gastrointestinal surgery. Quality is contemplated in the health protection rights determined according to the Mexican Constitution, established in the general health law and included as a specific goal in the actual National Development Plan and Health Sector Plan. Quality control implies planning, verification and application of corrective measures. Mexico has implemented several quality strategies such as certification of hospitals and regulatory agreements by the General Salubrity Council, creation of the National Health Quality Committee, generation of Clinical Practice Guidelines and the Certification of Medical Specialties, among others. Quality control in gastrointestinal surgery must begin at the time of medical education and continue during professional activities of surgeons, encouraging multidisciplinary teamwork, knowledge, abilities, attitudes, values and skills that promote homogeneous, safe and quality health services for the Mexican population.
Family leader empowerment program using participatory learning process for dengue vector control.
Pengvanich, Veerapong
2011-02-01
Assess the performance of the empowerment program using participatory learning process for the control of Dengue vector The program focuses on using the leaders of families as the main executer of the vector control protocol. This quasi-experimental research utilized the two-group pretest-posttest design. The sample group consisted of 120 family leaders from two communities in Mueang Municipality, Chachoengsao Province. The research was conducted during an 8-week period between April and June 2010. The data were collected and analyzed based on frequency, percentage, mean, paired t-test, and independent t-test. The result was evaluated by comparing the difference between the mean prevalence index of mosquito larvae before and after the process implementation in terms of the container index (CI) and the house index (HI). After spending eight weeks in the empowerment program, the family leader's behavior in the aspect of Dengue vector control has improved. The Container Index and the House Index were found to decrease with p = 0.05 statistical significance. The reduction of CI and HI suggested that the program worked well in the selected communities. The success of the Dengue vector control program depended on cooperation and participation of many groups, especially the families in the community When the family leaders have good attitude and are capable of carrying out the vector control protocol, the risk factor leading to the incidence of Dengue rims infection can be reduced.
Viruses vector control proposal: genus Aedes emphasis.
Reis, Nelson Nogueira; Silva, Alcino Lázaro da; Reis, Elma Pereira Guedes; Silva, Flávia Chaves E; Reis, Igor Guedes Nogueira
The dengue fever is a major public health problem in the world. In Brazil, in 2015, there were 1,534,932 cases, being 20,320 cases of severe form, and 811 deaths related to this disease. The distribution of Aedes aegypti, the vector, is extensive. Recently, Zika and Chikungunya viruses had arisen, sharing the same vector as dengue and became a huge public health issue. Without specific treatment, it is urgently required as an effective vector control. This article is focused on reviewing vector control strategies, their effectiveness, viability and economical impact. Among all, the Sterile Insect Technique is highlighted as the best option to be adopted in Brazil, once it is largely effectively used in the USA and Mexico for plagues related to agribusiness. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Njoroge, Margaret M; Tirados, Inaki; Lindsay, Steven W; Vale, Glyn A; Torr, Stephen J; Fillinger, Ulrike
2017-01-10
Malaria vector mosquitoes with exophilic and zoophilic tendencies, or with a high acceptance of alternative blood meal sources when preferred human blood-hosts are unavailable, may help maintain low but constant malaria transmission in areas where indoor vector control has been scaled up. This residual transmission might be addressed by targeting vectors outside the house. Here we investigated the potential of insecticide-treated cattle, as routinely used for control of tsetse and ticks in East Africa, for mosquito control. The malaria vector population in the study area was investigated weekly for 8 months using two different trapping tools: light traps indoors and cattle-baited traps (CBTs) outdoors. The effect of the application of the insecticide deltamethrin and the acaricide amitraz on cattle on host-seeking Anopheles arabiensis was tested experimentally in field-cages and the impact of deltamethrin-treated cattle explored under field conditions on mosquito densities on household level. CBTs collected on average 2.8 (95% CI: 1.8-4.2) primary [Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.)] and 6.3 (95% CI: 3.6-11.3) secondary malaria vectors [An. ivulorum and An. coustani (s.l.)] per trap night and revealed a distinct, complementary seasonality. At the same time on average only 1.4 (95% CI: 0.8-2.3) primary and 1.1 (95% CI: 0.6-2.0) secondary malaria vectors were collected per trap night with light traps indoors. Amitraz had no effect on survival of host-seeking An. arabiensis under experimental conditions but deltamethrin increased mosquito mortality (OR 19, 95% CI: 7-50), but only for 1 week. In the field, vector mortality in association with deltamethrin treatment was detected only with CBTs and only immediately after the treatment (OR 0.25, 95% CI: 0.13-0.52). Entomological sampling with CBTs highlights that targeting cattle for mosquito control has potential since it would not only target naturally zoophilic malaria vectors but also opportunistic feeders that lack access to human hosts as is expected in residual malaria transmission settings. However, the deltamethrin formulation tested here although used widely to treat cattle for tsetse and tick control, is not suitable for the control of malaria vectors since it causes only moderate initial mortality and has little residual activity.
Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M
2016-10-01
The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.
Raghavendra, Kamaraju; Velamuri, Poonam Sharma; Verma, Vaishali; Elamathi, Natarajan; Barik, Tapan Kumar; Bhatt, Rajendra Mohan; Dash, Aditya Prasad
2017-01-01
The Indian vector control programme similar to other programmes in the world is still reliant on chemical insecticides. Anopheles culicifacies is the major vector out of six primary malaria vectors in India and alone contributes about 2/3 malaria cases annually; and per se its control is actually control of malaria in India. For effective management of vectors, current information on their susceptibility status to different insecticides is essential. In this review, an attempt was made to compile and present the available data on the susceptibility status of different malaria vector species in India from the last 2.5 decades. Literature search was conducted by different means mainly web and library search; susceptibility data was collated from 62 sources for the nine malaria vector species from 145 districts in 21 states and two union territories between 1991 and 2016. Interpretation of the susceptibility/resistance status was made on basis of the recent WHO criteria. Comprehensive analysis of the data indicated that An. culicifacies, a major vector species was resistant to at least one insecticide in 70% (101/145) of the districts. It was reported mostly resistant to DDT and malathion whereas, its resistant status against deltamethrin varied across the districts. The major threat for the malaria control programmes is multiple-insecticide-resistance in An. culicifacies which needs immediate attention for resistance management in order to sustain the gains achieved so far, as the programmes have targeted malaria elimination by 2030.
Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos
2018-02-03
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.
Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos
2018-01-01
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670
Pellecer, Mariele J.; Dorn, Patricia L.; Bustamante, Dulce M.; Rodas, Antonieta; Monroy, M. Carlota
2013-01-01
A novel method using vector blood meal sources to assess the impact of control efforts on the risk of transmission of Chagas disease was tested in the village of El Tule, Jutiapa, Guatemala. Control used Ecohealth interventions, where villagers ameliorated the factors identified as most important for transmission. First, after an initial insecticide application, house walls were plastered. Later, bedroom floors were improved and domestic animals were moved outdoors. Only vector blood meal sources revealed the success of the first interventions: human blood meals declined from 38% to 3% after insecticide application and wall plastering. Following all interventions both vector blood meal sources and entomological indices revealed the reduction in transmission risk. These results indicate that vector blood meals may reveal effects of control efforts early on, effects that may not be apparent using traditional entomological indices, and provide further support for the Ecohealth approach to Chagas control in Guatemala. PMID:23382165
Malaria resurgence: a systematic review and assessment of its causes
2012-01-01
Background Considerable declines in malaria have accompanied increased funding for control since the year 2000, but historical failures to maintain gains against the disease underscore the fragility of these successes. Although malaria transmission can be suppressed by effective control measures, in the absence of active intervention malaria will return to an intrinsic equilibrium determined by factors related to ecology, efficiency of mosquito vectors, and socioeconomic characteristics. Understanding where and why resurgence has occurred historically can help current and future malaria control programmes avoid the mistakes of the past. Methods A systematic review of the literature was conducted to identify historical malaria resurgence events. All suggested causes of these events were categorized according to whether they were related to weakened malaria control programmes, increased potential for malaria transmission, or technical obstacles like resistance. Results The review identified 75 resurgence events in 61 countries, occurring from the 1930s through the 2000s. Almost all resurgence events (68/75 = 91%) were attributed at least in part to the weakening of malaria control programmes for a variety of reasons, of which resource constraints were the most common (39/68 = 57%). Over half of the events (44/75 = 59%) were attributed in part to increases in the intrinsic potential for malaria transmission, while only 24/75 (32%) were attributed to vector or drug resistance. Conclusions Given that most malaria resurgences have been linked to weakening of control programmes, there is an urgent need to develop practical solutions to the financial and operational threats to effectively sustaining today’s successful malaria control programmes. PMID:22531245
KILLEEN, GERRY F.; McKENZIE, F. ELLIS; FOY, BRIAN D.; SCHIEFFELIN, CATHERINE; BILLINGSLEY, PETER F.; BEIER, JOHN C.
2008-01-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas. PMID:11289662
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A.; Powers, Joseph F.
2017-01-01
One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A., Jr.; Powers, Joseph F.
2017-01-01
One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
A Lesson in Vectors "Plain" and Simple
ERIC Educational Resources Information Center
Bradshaw, David M.
2004-01-01
The United States Military Academy (USMA) has a four course core mathematics curriculum that is studied by all students. The third course is MA205, Calculus II; a multivariate calculus course filled with practical applications. During a Problem Solving Lab (PSL), students participated in a hands-on exercise with multiple vector operations,…
Dumonteil, Eric; Nouvellet, Pierre; Rosecrans, Kathryn; Ramirez-Sierra, Maria Jesus; Gamboa-León, Rubi; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Gourbière, Sébastien
2013-01-01
Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control.
Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang
2017-07-01
In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.
Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun
2017-01-01
In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562
Alyousefi, Thaker A A; Abdul-Ghani, Rashad; Mahdy, Mohammed A K; Al-Eryani, Samira M A; Al-Mekhlafi, Abdulsalam M; Raja, Yahia A; Shah, Shamusul Azhar; Beier, John C
2016-10-07
Yemen has witnessed several dengue fever outbreaks coincident with the social unrest and war in the country. The aim of the present study was to describe the knowledge, attitudes and practices (KAPs) of at-risk urban populations residing in Taiz, southwest of Yemen. In addition, factors possibly associated with poor preventive practices were investigated. A household-based, cross-sectional survey was conducted in three urban districts encompassing 383 households. Data on the socio-demographic characteristics and KAPs of the participating household heads were collected using a pre-designed, structured questionnaire. The association of socio-demographic characteristics, knowledge and attitudes of the population with poor preventive practices against dengue fever was then analyzed using logistic regression. More than 90.0 % of respondent household heads had correct knowledge about fever, headache and joint pain as common signs and symptoms of dengue fever. Moreover, muscular pain and bleeding were perceived by more than 80.0 % of the respondents as being associated with dengue fever; however, only 65.0 % of the respondents reported skin rash as a sign of dengue fever. More than 95.0 % of respondents agreed about the seriousness and possible transmission of dengue fever; however, negative attitudes regarding the facts of being at risk of the disease and that the infection is preventable were expressed by 15.0 % of respondents. Despite the good level of knowledge and attitudes of the respondent population, poor preventive practices were common. Bivariate analysis identified poor knowledge of dengue signs and symptoms (OR = 2.1, 95 % CI = 1.24-3.68; P = 0.005) and its vector (OR = 2.1, 95 % CI = 1.14-3.84; P = 0.016) as factors significantly associated with poor preventive practices. However, multivariable analysis showed that poor knowledge of the vector is an independent predictor of poor preventive practices of the population (adjusted OR = 2.1, 95 % CI = 1.14-3.84; P = 0.018). The majority of people in urban communities of Taiz have a clear understanding of most signs/symptoms of dengue fever as well as positive attitudes towards the seriousness and possible transmissibility of dengue fever. However, negative attitudes regarding their perception of the risk and possible prevention of the infection are prevailing among a small proportion of the population and need to be targeted by educational campaigns. It appears that the good level of the population knowledge of the signs/symptoms of dengue fever and the factors contributing to the spread and control of its vectors did not translate into good practices.
Tissera, Hasitha; Pannila-Hetti, Nimalka; Samaraweera, Preshila; Weeraman, Jayantha; Palihawadana, Paba; Amarasinghe, Ananda
2016-09-01
Dengue is a leading public health problem in Sri Lanka. All 26 districts and all age groups are affected, with high disease transmission; the estimated average annual incidence is 175/100 000 population. Harnessing the World Health Organization Global strategy for dengue prevention and control, 2012-2020, Sri Lanka has pledged in its National Strategic Framework to achieve a mortality from dengue below 0.1% and to reduce morbidity by 50% (from the average of the last 5 years) by 2020. Turning points in the country's dengue-control programme have been the restructuring and restrategizing of the core functions; this has involved establishment of a separate dengue-control unit to coordinate integrated vector management, and creation of a presidential task force. There has been great progress in disease surveillance, clinical management and vector control. Enhanced real-time surveillance for early warning allows ample preparedness for an outbreak. National guidelines with enhanced diagnostics have significantly improved clinical management of dengue, reducing the case-fatality rate to 0.2%. Proactive integrated vector management, with multisector partnership, has created a positive vector-control environment; however, sustaining this momentum is a challenge. Robust surveillance, evidence-based clinical management, sustainable vector control and effective communication are key strategies that will be implemented to achieve set targets. Improved early detection and a standardized treatment protocol with enhanced diagnostics at all medical care institutions will lead to further reduction in mortality. Making the maximum effort to minimize outbreaks through sustainable vector control in the three dimensions of risk mapping, innovation and risk modification will enable a reduction in morbidity.
Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro
2010-08-01
In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory
NASA Technical Reports Server (NTRS)
Koppang, Paul; Leland, Robert
1996-01-01
Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.
An agent-vector-host-environment model for controlling small arms and light weapons.
Pinto, Andrew D; Sharma, Malika; Muggah, Robert
2011-05-01
Armed violence is a significant public health problem. It results in fatal and non-fatal injuries and disrupts social and economic processes that are essential to the health of individuals and communities. We argue that an agent-vector-host-environment model can be helpful in understanding and describing the availability and misuse of small arms and light weapons. Moreover, such a model can assist in identifying potential control points and in developing mitigation strategies. These concepts have been developed from analogous vector control programs and are applied to controlling arms to reduce their misuse. So-called 'denormalization' and 'de-legitimization' campaigns that focus on the vector - including the industry producing these commodities - can be based on the experience of public health in controlling tobacco use and exposure. This model can assist health professionals, civil society and governments in developing comprehensive strategies to limit the production, distribution and misuse of small arms and light weapons.
1990-01-01
on August 2, 1989. Filiberto Reyes Villanueva, M.S., studied biology at the School of Biological Sciences of the Autonomous Universi- ty of Nueva Le6n...experts (1987), are the entomopathogenic bacteria Bacillus thuringiensis, serotype H-14 and B. sphaericus. These microorgan- isms can operate only...the country, as is the case with A. aegypti. These bacteria offer a potential for the control of those vectors which have already developed a
Studies of Transgenic Mosquitoes in Disease-Endemic Countries: Preparation of Containment Facilities
Mutunga, James Mutuku; Diabaté, Abdoulaye; Namountougou, Moussa; Coulibaly, Mamadou B.; Sylla, Lakamy; Kayondo, Jonathan; Balyesima, Victor; Clark, Lorna; Benedict, Mark Q.; Raymond, Peter
2018-01-01
Abstract Novel approaches to area-wide control of vector species offer promise as additional tools in the fight against vectored diseases. Evaluation of transgenic insect strains aimed at field population control in disease-endemic countries may involve international partnerships and should be done in a stepwise approach, starting with studies in containment facilities. The preparations of both new-build and renovated facilities are described, including working with local and national regulations regarding land use, construction, and biosafety requirements, as well as international guidance to fill any gaps in regulation. The examples given are for containment categorization at Arthropod Containment Level 2 for initial facility design, classification of wastes, and precautions during shipping. Specific lessons were derived from preparations to evaluate transgenic (non-gene drive) mosquitoes in West and East African countries. Documented procedures and the use of a non-transgenic training strain for trial shipments and culturing were used to develop competence and confidence among the African facility staff, and along the chain of custody for transport. This practical description is offered to support other research consortia or institutions preparing containment facilities and operating procedures in conditions where research on transgenic insects is at an early stage. PMID:29337662
Quinlan, M Megan; Mutunga, James Mutuku; Diabaté, Abdoulaye; Namountougou, Moussa; Coulibaly, Mamadou B; Sylla, Lakamy; Kayondo, Jonathan; Balyesima, Victor; Clark, Lorna; Benedict, Mark Q; Raymond, Peter
2018-01-01
Novel approaches to area-wide control of vector species offer promise as additional tools in the fight against vectored diseases. Evaluation of transgenic insect strains aimed at field population control in disease-endemic countries may involve international partnerships and should be done in a stepwise approach, starting with studies in containment facilities. The preparations of both new-build and renovated facilities are described, including working with local and national regulations regarding land use, construction, and biosafety requirements, as well as international guidance to fill any gaps in regulation. The examples given are for containment categorization at Arthropod Containment Level 2 for initial facility design, classification of wastes, and precautions during shipping. Specific lessons were derived from preparations to evaluate transgenic (non-gene drive) mosquitoes in West and East African countries. Documented procedures and the use of a non-transgenic training strain for trial shipments and culturing were used to develop competence and confidence among the African facility staff, and along the chain of custody for transport. This practical description is offered to support other research consortia or institutions preparing containment facilities and operating procedures in conditions where research on transgenic insects is at an early stage.
[Efficacy of the social mobilization and the social participation in dengue control measures].
Cáceres-Manrique, Flor de María; Angulo-Silva, Mary Lupe; Vesga-Gómez, Celmira
2010-01-01
Dengue is a public health problem. However, the efficacy of typical control programs is not well-established. The efficacy of social mobilization was assessed for its role in public empowerment in the improvement of dengue control measures. A community trial was conducted in Comuna Norte, a section of the city of Bucaramanga,Santander. Four high-incidence neighborhoods were selected--two received empowerment training and two served as controls. During 1,968 home visits, information was collected concerning knowledge and practices of dengue control, and information was provided concerning dengue and mosquito larval habitats of the vector. At local schools, dengue control information was provided for 2,455 students. The intervention included training of 155 community leaders and tracking of prevention and control activities. Findings were compared between post-intervention and controls by χ² test, with a significance level of p<0.05. At the home visits, 80.7% of respondents were female. with a mean age of 39.1 and 5.8 years schooling. In comparing the intervention neighborhoods with the controls, differences in knowledge about dengue were as follows: symptoms of bodily pain (χ²=21.0, p<0.001) and abdominal pain (χ²=5.1, p=0.024), reproduction cycle of the mosquito vector (χ²=11.5, p<0.001), knowledge of mosquitos characteristics (χ²=7.1, p=0.008). In washing practices batteries (χ²=7.2, p=0.007), spraying (χ²=7.0, p<0.008), use of bednets (χ²=49.8, p<0.001), consulting a physician (χ²=8.2, p=0.004), participate in meetings (χ²=29.6, p<0.001), prevention methods (χ²=10.4, p=0.013), willingness to lead anti-mosquito campaigns (χ²=6.8, p= 0.009) and to get help for programs (χ²=5.8, p=0.016). There was a decrease in the proportion of households with larvae from 20.0% to 15.9% in both groups. The difference in prevalence of dengue one year after initiation of the program was not significant--4.8% in the intervention group and 6.7% in control (χ²=3.4, p=0.065). The social mobilization was effective for improving actions of empowerment, control, but not dengue prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, M. A.; Strelchenko, Alexei; Vaquero, Alejandro
Lattice quantum chromodynamics simulations in nuclear physics have benefited from a tremendous number of algorithmic advances such as multigrid and eigenvector deflation. These improve the time to solution but do not alleviate the intrinsic memory-bandwidth constraints of the matrix-vector operation dominating iterative solvers. Batching this operation for multiple vectors and exploiting cache and register blocking can yield a super-linear speed up. Block-Krylov solvers can naturally take advantage of such batched matrix-vector operations, further reducing the iterations to solution by sharing the Krylov space between solves. However, practical implementations typically suffer from the quadratic scaling in the number of vector-vector operations.more » Using the QUDA library, we present an implementation of a block-CG solver on NVIDIA GPUs which reduces the memory-bandwidth complexity of vector-vector operations from quadratic to linear. We present results for the HISQ discretization, showing a 5x speedup compared to highly-optimized independent Krylov solves on NVIDIA's SaturnV cluster.« less
Ban, Hiroshi; Nishishita, Naoki; Fusaki, Noemi; Tabata, Toshiaki; Saeki, Koichi; Shikamura, Masayuki; Takada, Nozomi; Inoue, Makoto; Hasegawa, Mamoru; Kawamata, Shin; Nishikawa, Shin-Ichi
2011-01-01
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. PMID:21821793
Recent Developments In Theory Of Balanced Linear Systems
NASA Technical Reports Server (NTRS)
Gawronski, Wodek
1994-01-01
Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.
A Critical Assessment of Vector Control for Dengue Prevention
Achee, Nicole L.; Gould, Fred; Perkins, T. Alex; Reiner, Robert C.; Morrison, Amy C.; Ritchie, Scott A.; Gubler, Duane J.; Teyssou, Remy; Scott, Thomas W.
2015-01-01
Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103
Santangelo, K S; Bertone, A L
2011-12-01
To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2(-ΔΔCT)) method. Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P=0.0045) or >90% (P=0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Castañeda, Oneida; Segura, Omar; Ramírez, Alba N
2011-06-01
17 cases of dengue were reported from the town of El Playón (7°28'15"-N/73°12'00"-W/altitude 510 masl) during epidemiological study weeks 5-6 and 12-13/2010. The Santander Department's Health Secretariat sought outbreak investigation and community knowledge-attitudes-practice (KAP) assessment on 16-4-2010 concerning a dengue fever outbreak in the town after an epidemiological surveillance committee had met; this was to strengthen local action regarding Aedes aegypti vector promotion-prevention-control. This was a descriptive outbreak investigation study using an active search for cases having clinical manifestations of dengue according to protocol definitions, an entomological survey and a KAP survey of 47 people selected by simple-random-sampling. Data was systematised and analysed using Epi-INFO (3.5.1) with measures of central tendency-male ratio, in-house Aegypti (IA), water-storage (WI) and Breatau (BI) indexes. 4,774 clinical records were examined. There were 67 records compatible with dengue, 24 cases were notified (75 % town-25 % department), 15 (63 %) being women and 9 (38 %) men. 20 (83 %) cases occurred in the urban area and 4 (17 %) in rural areas. Attack rate/cumulated incidence: initial=0.3 % (17/6 303), final=0.4 % (24/6 303), male ratio=1.5. 47 houses and 142 water-storage items proved positive: low water-stores=8.7 %(4/46), rubber tyres=8.3 %(1/12), others=4.4 %(2/45), plants=2.9 %(1/34). IA=5 %, WI=6%, BI=17%, taxonomy confirmed=15 %(7/47). 47 KAP, 36 (77 %) women, 11 (23 %) men; knowledge on disease, symptoms and signs 44 (94 %), eliminating larvae deposits 32(68 %), asked about dengue 3(6 %), informed about responsibilities related to control 25(53 %). The local community knows about risk factors and is aware of its responsibility regarding vector control. Community participation should be promoted using the ecosystem as a strategy for mosquito and dengue transmission control.
Vectorized program architectures for supercomputer-aided circuit design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzoli, V.; Ferlito, M.; Neri, A.
1986-01-01
Vector processors (supercomputers) can be effectively employed in MIC or MMIC applications to solve problems of large numerical size such as broad-band nonlinear design or statistical design (yield optimization). In order to fully exploit the capabilities of a vector hardware, any program architecture must be structured accordingly. This paper presents a possible approach to the ''semantic'' vectorization of microwave circuit design software. Speed-up factors of the order of 50 can be obtained on a typical vector processor (Cray X-MP), with respect to the most powerful scaler computers (CDC 7600), with cost reductions of more than one order of magnitude. Thismore » could broaden the horizon of microwave CAD techniques to include problems that are practically out of the reach of conventional systems.« less
Kumar, Manish; Mohanty, Ajeet Kumar; Sreenivasamurthy, Sreelakshmi K; Dey, Gourav; Advani, Jayshree; Pinto, Sneha M; Kumar, Ashwani; Prasad, Thottethodi Subrahmanya Keshava
2017-09-01
Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.
Corbel, Vincent; Fonseca, Dina M; Weetman, David; Pinto, João; Achee, Nicole L; Chandre, Fabrice; Coulibaly, Mamadou B; Dusfour, Isabelle; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J; Moyes, Catherine; Ng, Lee Ching; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Muller, Pie; Kasai, Shinji; Fouque, Florence; Velayudhan, Raman; Durot, Claire; David, Jean-Philippe
2017-06-02
Vector-borne diseases transmitted by insect vectors such as mosquitoes occur in over 100 countries and affect almost half of the world's population. Dengue is currently the most prevalent arboviral disease but chikungunya, Zika and yellow fever show increasing prevalence and severity. Vector control, mainly by the use of insecticides, play a key role in disease prevention but the use of the same chemicals for more than 40 years, together with the dissemination of mosquitoes by trade and environmental changes, resulted in the global spread of insecticide resistance. In this context, innovative tools and strategies for vector control, including the management of resistance, are urgently needed. This report summarizes the main outputs of the first international workshop on Insecticide resistance in vectors of arboviruses held in Rio de Janeiro, Brazil, 5-8 December 2016. The primary aims of this workshop were to identify strategies for the development and implementation of standardized insecticide resistance management, also to allow comparisons across nations and across time, and to define research priorities for control of vectors of arboviruses. The workshop brought together 163 participants from 28 nationalities and was accessible, live, through the web (> 70,000 web-accesses over 3 days).
Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame
2014-04-20
A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.
Gürtler, Ricardo E; Yadon, Zaida E
2015-02-01
This article provides an overview of three research projects which designed and implemented innovative interventions for Chagas disease vector control in Bolivia, Guatemala and Mexico. The research initiative was based on sound principles of community-based ecosystem management (ecohealth), integrated vector management, and interdisciplinary analysis. The initial situational analysis achieved a better understanding of ecological, biological and social determinants of domestic infestation. The key factors identified included: housing quality; type of peridomestic habitats; presence and abundance of domestic dogs, chickens and synanthropic rodents; proximity to public lights; location in the periphery of the village. In Bolivia, plastering of mud walls with appropriate local materials and regular cleaning of beds and of clothes next to the walls, substantially decreased domestic infestation and abundance of the insect vector Triatoma infestans. The Guatemalan project revealed close links between house infestation by rodents and Triatoma dimidiata, and vector infection with Trypanosoma cruzi. A novel community-operated rodent control program significantly reduced rodent infestation and bug infection. In Mexico, large-scale implementation of window screens translated into promising reductions in domestic infestation. A multi-pronged approach including community mobilisation and empowerment, intersectoral cooperation and adhesion to integrated vector management principles may be the key to sustainable vector and disease control in the affected regions. © World Health Organization 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
A push-pull system to reduce house entry of malaria mosquitoes
2014-01-01
Background Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull system is presented, that operates by the simultaneous use of repellent and attractive volatile odorants. Method/Results Experiments were carried out in a semi-field set-up: a traditional house which was constructed inside a screenhouse. The release of different repellent compounds, para-menthane-3,8-diol (PMD), catnip oil e.o. and delta-undecalactone, from the four corners of the house resulted in significant reductions of 45% to 81.5% in house entry of host-seeking malaria mosquitoes. The highest reductions in house entry (up to 95.5%), were achieved by simultaneously repelling mosquitoes from the house (push) and removing them from the experimental set-up using attractant-baited traps (pull). Conclusions The outcome of this study suggests that a push-pull system based on attractive and repellent volatiles may successfully be employed to target mosquito vectors of human disease. Reductions in house entry of malaria vectors, of the magnitude that was achieved in these experiments, would likely affect malaria transmission. The repellents used are non-toxic and can be used safely in a human environment. Delta-undecalactone is a novel repellent that showed higher effectiveness than the established repellent PMD. These results encourage further development of the system for practical implementation in the field. PMID:24674451
Factors conditioning the habitat of bilharziasis intermediate hosts of the family Planorbidae
Abdel Malek, Emile
1958-01-01
In this article, the author examines certain physical, chemical and biological characteristics of water-bodies which make them suitable or unsuitable as habitats for planorbid snails acting as vectors of bilharziasis. The principal conditioning factors appear to be: amount of food available; extent of the growth of aquatic weeds; oxygen content of the water; amount of sunlight able to penetrate the water; strength of the current; nature of the substratum; ionic composition of the water; and presence or absence of parasites and predators. Several of these factors are interdependent. Although there are differences between the various species in their habitat requirements, their ranges of tolerance were found to overlap greatly. The optimum conditions are similar for all species, but extremes are tolerated better by some species than by others. Theoretically, extremes of certain factors should be capable of eliminating snails from a body of water; in practice such extremes rarely occur, and the absence of vectors must be attributed to the combined effect of several factors. Although certain parasites and predators exterminate vectors in the laboratory, the author considers it unlikely that they would do so in nature, as under laboratory conditions the biological balance is disturbed to the disadvantage of the snail. The data available are still too scanty for an exact assessment to be made of the importance of individual environmental factors in controlling the size of vector populations; but this review of present knowledge indicates the lines along which further investigation can be most profitably pursued. PMID:13573113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanungo, Jyotshna
RNA silencing is used as a common method for investigating loss-of-function effects of genes of interest. In mammalian cells, RNA interference (RNAi) or RNA silencing can be achieved by transient siRNA (small or short interfering RNA) transfection or by stable shRNA (short hairpin RNA) systems. Various vectors are used for efficient delivery of shRNA. Lentiviral vectors offer an efficient delivery system for stable and long-term expression of the shRNA in mammalian cells. The widely used lentiviral pLKO.1 plasmid vector is very popular in RNAi studies. A large RNAi database, a TRC (the RNAi Consortium) library, was established based on themore » pLKO.1-TRC plasmid vector. This plasmid (also called pLKO.1-puro) has a puromycin-resistant gene for selection in mammalian cells along with designs for generating lentiviral particles as well for RNA silencing. While using the pLKO.1-puro TRC control shRNA plasmid for transfection in murine P19 embryonic stem (ES) cells, it was unexpectedly discovered that this plasmid vector induced robust endodermal differentiation. Since P19 ES cells are pluripotent and respond to external stimuli that have the potential to alter the phenotype and thus its stemness, other cell types used in RNA silencing studies do not display the obvious effect and therefore, may affect experiments in subtle ways that would go undetected. This study for the first time provides evidence that raises concern and warrants extreme caution while using the pLKO.1-puro control shRNA vector because of its unexpected non-specific effects on cellular integrity. - Highlights: • In P19 ES cells the pLKO.1-puro lentiviral control shRNA vector induced endodermal differentiation. • P19 ES cells harboring the pCDNA3 plasmid vector retained their stem-ness as opposed to those harboring the pLKO.1-puro vector. • P19 ES cells can serve as a sensor to determine vector safety. • Extreme caution is warranted while using the widely used pLKO.1-puro lentiviral vector for experimental and therapeutic designs.« less
Kelly-Hope, Louise; Paulo, Rossely; Thomas, Brent; Brito, Miguel; Unnasch, Thomas R; Molyneux, David
2017-04-05
Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research. We identified 89 primary published documents on the two main L. loa vectors C. silacea and C dimidiata. These were collated into a database summarising the publication, field and laboratory procedures, species distributions, ecology, habitats and methods of vector control. The majority of articles were from the 1950-1960s. Field studies conducted in Cameroon, Democratic Republic of Congo, Equatorial Guinea, Nigeria and Sudan highlighted that C. silacea is the most important and widespread vector. This species breeds in muddy streams or swampy areas of forests or plantations, descends from forest canopies to feed on humans during the day, is more readily adapted to human dwellings and attracted to wood fires. Main vector targeted measures proposed to impact on L. loa transmission included personal repellents, household screening, indoor residual spraying, community-based environmental management, adulticiding and larviciding. This is the first comprehensive review of the major L. loa vectors for several decades. It highlights key vector transmission characteristics that may be targeted for vector control providing insights into the potential for integrated vector management, with multiple diseases being targeted simultaneously, with shared human and financial resources and multiple impact. Integrated vector management programmes for filarial infections, especially in low transmission areas of onchocerciasis, require innovative approaches and alternative strategies if the elimination targets established by the World Health Organization are to be achieved.
Basáñez, María-Gloria; Razali, Karina; Renz, Alfons; Kelly, David
2007-03-01
The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.
Is outdoor vector control needed for malaria elimination? An individual-based modelling study.
Zhu, Lin; Müller, Günter C; Marshall, John M; Arheart, Kristopher L; Qualls, Whitney A; Hlaing, WayWay M; Schlein, Yosef; Traore, Sekou F; Doumbia, Seydou; Beier, John C
2017-07-03
Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, but there were no significant difference in the probability of mosquito extinction and the time when annual EIR is less than one between 50% LLIN and outdoor ATSBs; and there was no significant difference in EIR between all three interventions. A minimum of 2 months of efficacy period is needed to bring out the best possible effect of the vector control tools, and to achieve long-term mosquito reduction, a minimum of 3 months of efficacy period is needed. The results highlight the value of incorporating outdoor vector control into IVM as a supplement to traditional indoor practices for malaria elimination in Africa, especially in village settings of clustered houses where LLINs alone is far from sufficient.
Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V
2007-06-15
A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.
Targeted Screening Strategies to Detect Trypanosoma cruzi Infection in Children
Levy, Michael Z.; Kawai, Vivian; Bowman, Natalie M.; Waller, Lance A.; Cabrera, Lilia; Pinedo-Cancino, Viviana V.; Seitz, Amy E.; Steurer, Frank J.; Cornejo del Carpio, Juan G.; Cordova-Benzaquen, Eleazar; Maguire, James H.; Gilman, Robert H.; Bern, Caryn
2007-01-01
Background Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy. Methods and Findings We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children. Conclusions We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings. PMID:18160979
2014-01-01
Background This paper establishes empirical evidence relating the agriculture and health sectors in Uganda. The analysis explores linkages between agricultural management, malaria and implications for improving community health outcomes in rural Uganda. The goal of this exploratory work is to expand the evidence-base for collaboration between the agricultural and health sectors in Uganda. Methods The paper presents an analysis of data from the 2006 Uganda National Household Survey using a parametric multivariate Two-Limit Tobit model to identify correlations between agro-ecological variables including geographically joined daily seasonal precipitation records and household level malaria risk. The analysis of agricultural and environmental factors as they affect household malaria rates, disaggregated by age-group, is inspired by a complimentary review of existing agricultural malaria literature indicating a gap in evidence with respect to agricultural management as a form of malaria vector management. Crop choices and agricultural management practices may contribute to vector control through the simultaneous effects of reducing malaria transmission, improving housing and nutrition through income gains, and reducing insecticide resistance in both malaria vectors and agricultural pests. Results The econometric results show the existence of statistically significant correlations between crops, such as sweet potatoes/yams, beans, millet and sorghum, with household malaria risk. Local environmental factors are also influential- daily maximum temperature is negatively correlated with malaria, while daily minimum temperature is positively correlated with malaria, confirming trends in the broader literature are applicable to the Ugandan context. Conclusions Although not necessarily causative, the findings provide sufficient evidence to warrant purposefully designed work to test for agriculture health causation in vector management. A key constraint to modeling the agricultural basis of malaria transmission is the lack of data integrating both the health and agricultural information necessary to satisfy the differing methodologies used by the two sectors. A national platform for collaboration between the agricultural and health sectors could help align programs to achieve better measurements of agricultural interactions with vector reproduction and evaluate the potential for agricultural policy and programs to support rural malaria control. PMID:24990158
UDE-based control of variable-speed wind turbine systems
NASA Astrophysics Data System (ADS)
Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang
2017-01-01
In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.
Thomas Nicholls
2009-01-01
This is a summary of the 25-year history of studies of mammal and bird vectors of lodgepole pine dwarf mistletoe (Arceuthobium americanum), ethephon control of dwarf mistletoe, and the ecology of the most important dwarf mistletoe vector, the gray jay (Persisoreus canadensis), on the USDA Forest Service, Fraser Experimental Forest...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector... Malaria Prevention and Control in the Republic of Uganda as Part of the President's Malaria Initiative... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector...
NASA Technical Reports Server (NTRS)
Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.;
1996-01-01
Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.
Bardosh, Kevin Louis; Ryan, Sadie J; Ebi, Kris; Welburn, Susan; Singer, Burton
2017-12-11
The threat of a rapidly changing planet - of coupled social, environmental and climatic change - pose new conceptual and practical challenges in responding to vector-borne diseases. These include non-linear and uncertain spatial-temporal change dynamics associated with climate, animals, land, water, food, settlement, conflict, ecology and human socio-cultural, economic and political-institutional systems. To date, research efforts have been dominated by disease modeling, which has provided limited practical advice to policymakers and practitioners in developing policies and programmes on the ground. In this paper, we provide an alternative biosocial perspective grounded in social science insights, drawing upon concepts of vulnerability, resilience, participation and community-based adaptation. Our analysis was informed by a realist review (provided in the Additional file 2) focused on seven major climate-sensitive vector-borne diseases: malaria, schistosomiasis, dengue, leishmaniasis, sleeping sickness, chagas disease, and rift valley fever. Here, we situate our analysis of existing community-based interventions within the context of global change processes and the wider social science literature. We identify and discuss best practices and conceptual principles that should guide future community-based efforts to mitigate human vulnerability to vector-borne diseases. We argue that more focused attention and investments are needed in meaningful public participation, appropriate technologies, the strengthening of health systems, sustainable development, wider institutional changes and attention to the social determinants of health, including the drivers of co-infection. In order to respond effectively to uncertain future scenarios for vector-borne disease in a changing world, more attention needs to be given to building resilient and equitable systems in the present.
Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.
Kime, Cody; Rand, Tim A; Ivey, Kathryn N; Srivastava, Deepak; Yamanaka, Shinya; Tomoda, Kiichiro
2015-10-06
The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency. Here, we describe commonly practiced methods for non-integrating induced pluripotent stem cell generation using nucleofection of episomal reprogramming plasmids. These methods are adapted from recent studies that demonstrate increased hiPS cell reprogramming efficacy with the application of three powerful episomal hiPS cell reprogramming factor vectors and the inclusion of an accessory vector expressing EBNA1. Copyright © 2015 John Wiley & Sons, Inc.
Elliptic-symmetry vector optical fields.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian
2014-08-11
We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.
Lara-Silva, Fabiana de Oliveira; Michalsky, Érika Monteiro; Fortes-Dias, Consuelo Latorre; Fiuza, Vanessa de Oliveira Pires; Dias, Edelberto Santos
2017-12-01
Leishmaniases are vector-borne diseases that are transmitted to humans through the bite of Leishmania-infected phlebotomine sand flies (Diptera:Psychodidae). The main proved vector of visceral leishmaniais (VL) in the New World - Lutzomyia longipalpis - is well-adapted to urban areas and has extensive distribution within the five geographical regions of Brazil. Integrated public health actions directed for the vector, domestic reservoir and humans for the control of VL are preferentially applied in municipalities with higher epidemiological risk of transmission. In this study, we evaluated the individual impact of two main vector control actions - chemical spraying and environmental management - in two districts with no reported cases of human VL. Although belonging to an endemic municipality for VL in Brazil, the integrated control actions have not been applied in these districts due to the absence of human cases. The number of L. longipalpis captured in a two-year period was used as indicator of the population density of the vector. After chemical spraying a tendency of reduction in L. longipalpis was observed but with no statistical significance compared to the control. Environmental management was effective in that reduction and it may help in the control of VL by reducing the population density of the vector in a preventive and more permanent action, perhaps associated with chemical spraying. Copyright © 2017 Elsevier B.V. All rights reserved.
The vector of the tobacco epidemic: tobacco industry practices in low and middle-income countries.
Lee, Sungkyu; Ling, Pamela M; Glantz, Stanton A
2012-03-01
To understand transnational tobacco companies' (TTCs) practices in low and middle-income countries which serve to block tobacco-control policies and promote tobacco use. Systematic review of published research on tobacco industry activities to promote tobacco use and oppose tobacco-control policies in low and middle-income countries. TTCs' strategies used in low and middle-income countries followed four main themes-economic activity; marketing/promotion; political activity; and deceptive/manipulative activity. Economic activity, including foreign investment and smuggling, was used to enter new markets. Political activities included lobbying, offering voluntary self-regulatory codes, and mounting corporate social responsibility campaigns. Deceptive activities included manipulation of science and use of third-party allies to oppose smoke-free policies, delay other tobacco-control policies, and maintain support of policymakers and the public for a pro-tobacco industry policy environment. TTCs used tactics for marketing, advertising, and promoting their brands that were tailored to specific market environments. These activities included direct and indirect tactis, targeting particular populations, and introducing new tobacco products designed to limit marketing restrictions and taxes, maintain the social acceptability of tobacco use, and counter tobacco-control efforts. TTCs have used similar strategies in high-income countries as these being described in low and middle-income countries. As required by FCTC Article 5.3, to counter tobacco industry pressures and to implement effective tobacco-control policies, governments and health professionals in low and middle-income countries should fully understand TTCs practices and counter them.
Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.
Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R
2010-01-06
Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.
The Effects of City Streets on an Urban Disease Vector
Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.
2013-01-01
With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756
Saghafipour, Abedin; Vatandoost, Hassan; Zahraei-Ramazani, Ali Reza; Yaghoobi-Ershadi, Mohammad Reza; Rassi, Yavar; Shirzadi, Mohammad Reza; Akhavan, Amir Ahmad
2016-01-01
Phlebotomus papatasi is the main vector of the zoonotic cutaneous leishmaniasis (ZCL) in Qom Province and many other provinces of Iran. Attractive toxic sugar baits (ATSB) treated barrier fence is one of the new methods for controlling the vectors such as sandflies. The present study was designed to evaluate the residual activity of ATSB-treated barrier fence that was used in control of P. papatasi. Following the selection of villages in Markazi district of Qom Province, central Iran during 2015 for ATSB and ASB (bait containing no active ingredient) methods; barrier fences on the ground in front of the rodent's colony were installed. A total of four conical tubes were installed and fixed on surfaces of treated barrier net of dimension 25 Χ 25 cm at biweekly interval. In each conical tube, 10 sand flies were released and after 3 min of exposure they were transferred to sterile cups. After 24 h, the obtained results were recorded according to the survival and mortality rate of sandflies. These tests were carried out five days after the installation of barrier fences, and repeated every 15 days until the mortality rate decreased to 60-65%. The bioassay tests results showed that the mortality rate of P. papatasi on ATSB-treated barrier fence for 5, 15, 30 and 45 days after spraying was 100, 95.83, 88.18 and 66.67% respectively, which decreased to 50.83% after 60 days. Persistence and residual activity of the active ingredient of the bait in the hot and dry climatic conditions of Qom Province remained significantly effective for at most 45 days, which subsequently decreased at a high rate. Hence, every 45 days barrier fences need to be impregnated with ATSB bait. The method also appeared cost-effective and could be practical in implementation of vector control programmes against ZCL.
Chaves, Luis Fernando; Calzada, Jose E; Rigg, Chystrie; Valderrama, Anayansi; Gottdenker, Nicole L; Saldaña, Azael
2013-06-06
Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency.
Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs.
Busquets, Núria; Lorenzo, Gema; López-Gil, Elena; Rivas, Raquel; Solanes, David; Galindo-Cardiel, Iván; Abad, F Xavier; Rodríguez, Fernando; Bensaid, Albert; Warimwe, George; Gilbert, Sarah C; Domingo, Mariano; Brun, Alejandro
2014-08-01
The present study has evaluated the protection conferred by a single subcutaneous dose of a modified vaccinia virus Ankara (MVA) vectored vaccine encoding the Rift Valley Fever virus (RVFV) glycoproteins Gn and Gc in lambs. Three groups of six to seven lambs were immunized as follows: one group received the vaccine (termed rMVA-GnGc), a second group received an MVA vector (vector control) and a third group received saline solution (non-vaccinated control). Fourteen days later, all animals were subcutaneously challenged with 10(5) TCID50 of the virulent RVFV isolate 56/74 and vaccine efficacy assessed using standard endpoints. Two lambs (one from the vaccine group and one from the vector control group) succumbed to RVFV challenge, showing characteristic liver lesions. Lambs from both the vector control and non-vaccinated groups were febrile from days 2 to 5 post challenge (pc) while those in the rMVA-GnGc group showed a single peak of pyrexia at day 3 pc. RVFV RNA was detected in both nasal and oral swabs from days 3 to 7 pc in some lambs from the vector control and non-vaccinated groups, but no viral shedding could be detected in the surviving lambs vaccinated with rMVA-GnGc. Together, the data suggest that a single dose of the rMVA-GnGc vaccine may be sufficient to reduce RVFV shedding and duration of viremia but does not provide sterile immunity nor protection from disease. Further optimization of this vaccine approach in lambs is warranted. Copyright © 2014 Elsevier B.V. All rights reserved.
Leslie, Teresa E.; Carson, Marianne; van Coeverden, Els; De Klein, Kirsten; Braks, Marieta; Krumeich, Anja
2017-01-01
ABSTRACT Background: In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti mosquito. Unfortunately, community based interventions are not always simple, as community perceptions and responses shape actions and influence behavioural responses Objective: The aim of this study was to determine how the Sint Eustatius population perceives the Aedes aegypti mosquito, mosquito-borne diseases and prevention and control measures and hypothesized that increased knowledge of the virus, vector, control and prevention should result in a lower AQ1 prevalence and incidence of mosquito-borne diseases. Methods: This study was conducted in Sint Eustatius island in the Eastern Caribbean. We combined qualitative and quantitative designs. We conducted interviews and focus groups discussions among community member and health professional in 2013 and 2015. We also conducted cross-sectional survey to assess local knowledge on the vector, virus, and control and prevention. Results: The population is knowledgeable; ©however, mosquito-borne diseases are not the highest health priority. While local knowledge is sometimes put into action, it happens on the 20 household/individual level as opposed to the community level. After the 2014 CHIK outbreak, there was an increase in knowledge about mosquito control and mosquito-borne diseases. Discussion: In the context of Sint Eustatius, when controlling the Aedes population it may be a strategic option to focus on the household level rather than the community and build collaborations with households by supporting them when they actively practice mosquito 25 control. To further increase the level of knowledge on the significance of mosquito-borne diseases, it may also be an option to contextualize the issue of the virus, vector, prevention and control into a broader context. Conclusion: As evidenced by the increasing number of mosquito-borne diseases on the island, it appears that knowledge amongst the lay community may not be transferred into 30 action. This may be attributed to the perception of the Sint Eustatius populations that mosquitoes and the viruses they carry are not a high priority in comparison to other health concerns. PMID:28766466
Leslie, Teresa E; Carson, Marianne; Coeverden, Els van; De Klein, Kirsten; Braks, Marieta; Krumeich, Anja
2017-01-01
In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti mosquito. Unfortunately, community based interventions are not always simple, as community perceptions and responses shape actions and influence behavioural responses Objective: The aim of this study was to determine how the Sint Eustatius population perceives the Aedes aegypti mosquito, mosquito-borne diseases and prevention and control measures and hypothesized that increased knowledge of the virus, vector, control and prevention should result in a lower AQ1 prevalence and incidence of mosquito-borne diseases. This study was conducted in Sint Eustatius island in the Eastern Caribbean. We combined qualitative and quantitative designs. We conducted interviews and focus groups discussions among community member and health professional in 2013 and 2015. We also conducted cross-sectional survey to assess local knowledge on the vector, virus, and control and prevention. The population is knowledgeable; ©however, mosquito-borne diseases are not the highest health priority. While local knowledge is sometimes put into action, it happens on the 20 household/individual level as opposed to the community level. After the 2014 CHIK outbreak, there was an increase in knowledge about mosquito control and mosquito-borne diseases. In the context of Sint Eustatius, when controlling the Aedes population it may be a strategic option to focus on the household level rather than the community and build collaborations with households by supporting them when they actively practice mosquito 25 control. To further increase the level of knowledge on the significance of mosquito-borne diseases, it may also be an option to contextualize the issue of the virus, vector, prevention and control into a broader context. As evidenced by the increasing number of mosquito-borne diseases on the island, it appears that knowledge amongst the lay community may not be transferred into 30 action. This may be attributed to the perception of the Sint Eustatius populations that mosquitoes and the viruses they carry are not a high priority in comparison to other health concerns.
Wong, Gwendolyn K L; Jim, C Y
2016-12-15
Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes to improve disease control efficacy amidst surging urbanization and changing climate. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Belov, Dmitry I.
2008-01-01
In educational practice, a test assembly problem is formulated as a system of inequalities induced by test specifications. Each solution to the system is a test, represented by a 0-1 vector, where each element corresponds to an item included (1) or not included (0) into the test. Therefore, the size of a 0-1 vector equals the number of items "n"…
ERIC Educational Resources Information Center
Mikula, Brendon D.; Heckler, Andrew F.
2017-01-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…
Deming, Regan; Manrique-Saide, Pablo; Medina Barreiro, Anuar; Cardeña, Edgar Ulises Koyoc; Che-Mendoza, Azael; Jones, Bryant; Liebman, Kelly; Vizcaino, Lucrecia; Vazquez-Prokopec, Gonzalo; Lenhart, Audrey
2016-02-04
Dengue is a major public health problem in Mexico, where the use of chemical insecticides to control the principal dengue vector, Aedes aegypti, is widespread. Resistance to insecticides has been reported in multiple sites, and the frequency of kdr mutations associated with pyrethroid resistance has increased rapidly in recent years. In the present study, we characterized patterns of insecticide resistance in Ae. aegypti populations in five small towns surrounding the city of Merida, Mexico. A cross-sectional, entomological survey was performed between June and August 2013 in 250 houses in each of the five towns. Indoor resting adult mosquitoes were collected in all houses and four ovitraps were placed in each study block. CDC bottle bioassays were conducted using F0-F2 individuals reared from the ovitraps and kdr allele (Ile1016 and Cys1534) frequencies were determined. High, but varying, levels of resistance to chorpyrifos-ethyl was detected in all study towns, complete susceptibility to bendiocarb in all except one town, and variations in resistance to deltamethrin between towns, ranging from 63-88% mortality. Significant associations were detected between deltamethrin resistance and the presence of both kdr alleles. Phenotypic resistance was highly predictive of the presence of both alleles, however, not all mosquitoes containing a mutant allele were phenotypically resistant. An analysis of genotypic differentiation (exact G test) between the five towns based on the adult female Ae. aegypti collected from inside houses showed highly significant differences (p < 0.0001) between genotypes for both loci. When this was further analyzed to look for fine scale differences at the block level within towns, genotypic differentiation was significant for both loci in San Lorenzo (Ile1016, p = 0.018 and Cys1534, p = 0.007) and for Ile1016 in Acanceh (p = 0.013) and Conkal (p = 0.031). The results from this study suggest that 3 years after switching chemical groups, deltamethrin resistance and a high frequency of kdr alleles persisted in Ae. aegypti populations. The spatial variation that was detected in both resistance phenotypes and genotypes has practical implications, both for vector control operations as well as insecticide resistance management strategies.
Leandro-Reguillo, Patricia; Thomson-Luque, Richard; Monteiro, Wuelton M; de Lacerda, Marcus V G
2015-07-22
In the Amazon, m alaria is highly endemic in indigenous populations, which are often considered one of the last barriers to malaria elimination due to geographic isolation. Although the improvement of housing conditions is a good strategy towards the control and prevention of vector-borne diseases, such as malaria, this preventive practice has been barely undertaken in Latin America. An analysis of the architectural and urban features of indigenous Amazonian populations is essential to define and adapt these vector control measures. A total of 32 villages of 29 different ethnicities were studied and mapped by reviewing literature and visual information, and using a geographic information system. The most important architectural and urban characteristics influencing malaria were analysed according to the following categories: number of households and dimensions, supporting area, openings, materials, lifespan and location. Housing typologies found were classified within each of these variables. The results of this typological analysis included an easy-to-handle working template and revealing of features that benefit or hamper the presence of malaria vectors in Amerindians communities. Among risk factors, presence of open eaves, permeable walls, open-side constructions, large number of sleepers indoors, temporary-ephemeral houses, linear villages along stream banks, houseboats villages, poor urban drainage and villages surrounded by anthropogenic environments were highlighted. Indigenous settlements very permissive for anophelines were identified in ethnic groups, such as the Yanomami, Palikur, Paumari, Waimiri-Atroari and Wajãpi. Positive features were also recognized, including opaque and closed houses, large radial villages on bare soil, highly elevated stilted houses and the fire indoors, found among the Yawalapiti, Ashaninka, and Gavião-Parkatejê tribes. However, as Amazonian indigenous settlement typologies vary greatly even among villages of the same ethnic group, it is imperative to undertake an individual study for each community. Using the working template in Amazonian settlements it is possible to obtain data that will help researchers not only understand how architectural and urban features affect transmission, but also define vector control measures easily applicable by health authorities and acceptable by these communities.
Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases?
Benelli, Giovanni; Pavela, Roman; Canale, Angelo; Mehlhorn, Heinz
2016-07-01
Arthropods are dangerous vectors of agents of deadly diseases, which may hit as epidemics or pandemics in the increasing world population of humans and animals. Among them, ticks transmit more pathogen species than any other group of blood-feeding arthropods worldwide. Thus, the effective and eco-friendly control of tick vectors in a constantly changing environment is a crucial challenge. A number of novel routes have been attempted to prevent and control tick-borne diseases, including the development of (i) vaccines against viruses vectored by ticks; (ii) pheromone-based control tools, with special reference to the "lure and kill" techniques; (iii) biological control programmes relying on ticks' natural enemies and pathogens; and (iv) the integrated pest management practices aimed at reducing tick interactions with livestock. However, the extensive employment of acaricides and tick repellents still remains the two most effective and ready-to-use strategies. Unfortunately, the first one is limited by the rapid development of resistance in ticks, as well as by serious environmental concerns. On the other hand, the exploitation of plants as sources of effective tick repellents is often promising. Here, we reviewed current knowledge concerning the effectiveness of plant extracts as acaricides or repellents against tick vectors of public health importance, with special reference to Ixodes ricinus, Ixodes persulcatus, Amblyomma cajennense, Haemaphysalis bispinosa, Haemaphysalis longicornis, Hyalomma anatolicum, Hyalomma marginatum rufipes, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) microplus, Rhipicephalus pulchellus, Rhipicephalus sanguineus and Rhipicephalus turanicus. Eighty-three plant species from 35 botanical families were selected. The most frequent botanical families exploited as sources of acaricides and repellents against ticks were Asteraceae (15 % of the selected studies), Fabaceae (9 %), Lamiaceae (10 %), Meliaceae (5 %), Solanaceae (6 %) and Verbenaceae (5 %). Regression equation analyses showed that the literature grew by approximately 20 % per year (period: 2005-2015). Lastly, in the final section, insights for future research are discussed. We focused on some caveats for future data collection and analysis. Current critical points mainly deal with (a) not uniform methods used, which prevent proper comparison of the results; (b) inaccurate tested concentrations, frequently 100 % concentration corresponded to the gross extract, where the exact amounts of extracted substances are unknown; and (c) not homogeneous size of tested tick instars and species. Overall, the knowledge summarized in this review may be helpful for comparative screening among extensive numbers of plant-borne preparations, in order to develop newer and safer tick control tools.
Genetics and evolution of triatomines: from phylogeny to vector control
Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E
2012-01-01
Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436
Thrust vectoring for lateral-directional stability
NASA Technical Reports Server (NTRS)
Peron, Lee R.; Carpenter, Thomas
1992-01-01
The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.
Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba
2016-05-01
In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Loroño-Pino, María Alba; García-Rejón, Julián E.; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; del Rosario Nájera-Vázquez, Maria; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K.; Black, William C.; Keefe, Thomas J.; Eisen, Lars; Beaty, Barry J.
2013-01-01
The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus–infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254
Bandeira, Maria da C A; Brito, Gustavo A; da Penha, Adriane; Santos, Ciro L C; Rebêlo, José M M
2017-06-01
We investigated whether biting midges in peridomestic environments are affected by environmental management practices and the presence of domestic animals. We used CDC light traps to collect midges in 112 residences across 24 locations along tourism routes of Maranhão, Brazil. The collection areas were characterized as follows: i) peridomestic area with domestic animals and without management (dirty); ii) peridomestic with domestic animals and management (clean); iii) peridomestic without animals and with management (clean); iv) peridomestic without animals and without management (dirty). The first two treatments had higher biting midge species richness and abundance, respectively. Generalized linear models indicated a positive correlation between the presence of domestic animals and midge abundance, with an approximate four-fold increase in Culicoides (Diptera: Ceratopogonidae) abundance in peridomestic areas with animals. The same model showed that domestic animals have no influence on richness. Environmental management does not appear to influence species richness or abundance of biting midges. © 2017 The Society for Vector Ecology.
Humanlike agents with posture planning ability
NASA Astrophysics Data System (ADS)
Jung, Moon R.; Badler, Norman I.
1992-11-01
Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend versus squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of `lumped' control parameters, that is, control points and vectors.
Human-like agents with posture planning ability
NASA Technical Reports Server (NTRS)
Jung, Moon R.; Badler, Norman
1992-01-01
Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend vs. squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of 'lumped' control parameters, that is, control points and vectors.
NASA Astrophysics Data System (ADS)
Park, Kyoung-Duck; Raschke, Markus B.
2018-05-01
Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.
Taiwan's Travel and Border Health Measures in Response to Zika
Ho, Li-Li; Tsai, Yu-Hui; Lee, Wang-Ping; Liao, Szu-Tsai; Wu, Li-Gin
2017-01-01
Zika virus has recently emerged as a worldwide public health concern. Travel and border health measures stand as one of the main strategies and frontline defenses in responding to international epidemics. As of October 31, 2016, Taiwan has reported 13 imported cases, 5 of which were detected through routine entry screening and active monitoring at international airports. This article shares Taiwan's disease surveillance activities at designated points of entry and travel and border health measures in response to Zika. The Taiwan government collaborates with its tourism industry to disseminate information about precautionary measures and encourages tour guides to report suspected individuals or events to activate early response measures. Taiwan also engages in vector control activities at points of entry, including targeting aircraft from countries where vector-borne diseases are endemic, implementing mosquito sweep measures, and collecting vector surveillance data. In future emerging and reemerging disease events, entry surveillance at designated points of entry may enable early detection of diseases of international origin and more rapid activation of public health preparedness activities and international collaboration. Taiwan will continue to maximize border and travel health measures in compliance with IHR (2005) requirements, which rely on continued risk assessment, practical implementation activities, and engagement with all stakeholders. PMID:28418744
Dumonteil, Eric; Nouvellet, Pierre; Rosecrans, Kathryn; Ramirez-Sierra, Maria Jesus; Gamboa-León, Rubi; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Gourbière, Sébastien
2013-01-01
Background Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. Methodology/principal findings We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. Conclusions/significance These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control. PMID:24086790
Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chia, A.; Wiseman, H. M.
2011-07-15
Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensivemore » use of vector-operator algebra.« less
Age- and bite-structured models for vector-borne diseases.
Rock, K S; Wood, D A; Keeling, M J
2015-09-01
The biology and behaviour of biting insects is a vitally important aspect in the spread of vector-borne diseases. This paper aims to determine, through the use of mathematical models, what effect incorporating vector senescence and realistic feeding patterns has on disease. A novel model is developed to enable the effects of age- and bite-structure to be examined in detail. This original PDE framework extends previous age-structured models into a further dimension to give a new insight into the role of vector biting and its interaction with vector mortality and spread of disease. Through the PDE model, the roles of the vector death and bite rates are examined in a way which is impossible under the traditional ODE formulation. It is demonstrated that incorporating more realistic functions for vector biting and mortality in a model may give rise to different dynamics than those seen under a more simple ODE formulation. The numerical results indicate that the efficacy of control methods that increase vector mortality may not be as great as predicted under a standard host-vector model, whereas other controls including treatment of humans may be more effective than previously thought. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Expanding integrated vector management to promote healthy environments
Lizzi, Karina M.; Qualls, Whitney A.; Brown, Scott C.; Beier, John C.
2014-01-01
Integrated Vector Management (IVM) strategies are intended to protect communities from pathogen transmission by arthropods. These strategies target multiple vectors and different ecological and socioeconomic settings, but the aggregate benefits of IVM are limited by the narrow focus of its approach; IVM strategies only aim to control arthropod vectors. We argue that IVM should encompass environmental modifications at early stages, for instance, infrastructural development and sanitation services, to regulate not only vectors but also nuisance-biting arthropods. An additional focus on nuisance-biting arthropods will improve public health, quality of life, and minimize social disparity issues fostered by pests. Optimally, IVM could incorporate environmental awareness and promotion of control methods in order to proactively reduce threats of serious pest situations. PMID:25028090
Spray characterization of ULV sprayers typically used in vector control
USDA-ARS?s Scientific Manuscript database
Numerous spray machines are used to apply products for the control of human disease vectors, such as mosquitoes and flies. However, the selection and setup of these machines significantly affect the level of control achieved during an application. The droplet spectra produced by nine different ULV...
Polynomial interpretation of multipole vectors
NASA Astrophysics Data System (ADS)
Katz, Gabriel; Weeks, Jeff
2004-09-01
Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.
Aerial images visual localization on a vector map using color-texture segmentation
NASA Astrophysics Data System (ADS)
Kunina, I. A.; Teplyakov, L. M.; Gladkov, A. P.; Khanipov, T. M.; Nikolaev, D. P.
2018-04-01
In this paper we study the problem of combining UAV obtained optical data and a coastal vector map in absence of satellite navigation data. The method is based on presenting the territory as a set of segments produced by color-texture image segmentation. We then find such geometric transform which gives the best match between these segments and land and water areas of the georeferenced vector map. We calculate transform consisting of an arbitrary shift relatively to the vector map and bound rotation and scaling. These parameters are estimated using the RANSAC algorithm which matches the segments contours and the contours of land and water areas of the vector map. To implement this matching we suggest computing shape descriptors robust to rotation and scaling. We performed numerical experiments demonstrating the practical applicability of the proposed method.
Padilla-Torres, Samael D.; Ferraz, Gonçalo; Luz, Sergio L. B.; Zamora-Perea, Elvira; Abad-Franch, Fernando
2013-01-01
Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim. PMID:23472194
Bouzid, Maha; Brainard, Julii; Hooper, Lee; Hunter, Paul R.
2016-01-01
Background There is renewed interest in effective measures to control Zika and dengue vectors. A synthesis of published literature with a focus on the quality of evidence is warranted to determine the effectiveness of vector control strategies. Methodology We conducted a meta-review assessing the effectiveness of any Aedes control measure. We searched Scopus and Medline for relevant reviews through to May 2016. Titles, abstracts and full texts were assessed independently for inclusion by two authors. Data extraction was performed in duplicate and validity of the evidence was assessed using GRADE criteria. Findings 13 systematic reviews that investigated the effect of control measures on entomological parameters or disease incidence were included. Biological controls seem to achieve better reduction of entomological indices than chemical controls, while educational campaigns can reduce breeding habitats. Integrated vector control strategies may not always increase effectiveness. The efficacy of any control programme is dependent on local settings, intervention type, resources and study duration, which may partly explain the varying degree of success between studies. Nevertheless, the quality of evidence was mostly low to very low due to poor reporting of study design, observational methodologies, heterogeneity, and indirect outcomes, thus hindering an evidence-based recommendation. Conclusions The evidence for the effectiveness of Aedes control measures is mixed. Chemical control, which is commonly used, does not appear to be associated with sustainable reductions of mosquito populations over time. Indeed, by contributing to a false sense of security, chemical control may reduce the effectiveness of educational interventions aimed at encouraging local people to remove mosquito breeding sites. Better quality studies of the impact of vector control interventions on the incidence of human infections with Dengue or Zika are still needed. PMID:27926934
Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México
Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén
2017-01-01
Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups (n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence. PMID:28786919
Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México.
Mendoza-Cano, Oliver; Hernandez-Suarez, Carlos Moisés; Trujillo, Xochitl; Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén
2017-08-08
Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups ( n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence.
Ecology of Anopheles darlingi Root with respect to vector importance: a review
2011-01-01
Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies. Increasing our knowledge of An. darlingi is necessary. PMID:21923902
2013-01-01
Background Interruption of vector-borne transmission of Trypanosoma cruzi remains an unrealized objective in many Latin American countries. The task of vector control is complicated by the emergence of vector insects in urban areas. Methods Utilizing data from a large-scale vector control program in Arequipa, Peru, we explored the spatial patterns of infestation by Triatoma infestans in an urban and peri-urban landscape. Multilevel logistic regression was utilized to assess the associations between household infestation and household- and locality-level socio-environmental measures. Results Of 37,229 households inspected for infestation, 6,982 (18.8%; 95% CI: 18.4 – 19.2%) were infested by T. infestans. Eighty clusters of infestation were identified, ranging in area from 0.1 to 68.7 hectares and containing as few as one and as many as 1,139 infested households. Spatial dependence between infested households was significant at distances up to 2,000 meters. Household T. infestans infestation was associated with household- and locality-level factors, including housing density, elevation, land surface temperature, and locality type. Conclusions High levels of T. infestans infestation, characterized by spatial heterogeneity, were found across extensive urban and peri-urban areas prior to vector control. Several environmental and social factors, which may directly or indirectly influence the biology and behavior of T. infestans, were associated with infestation. Spatial clustering of infestation in the urban context may both challenge and inform surveillance and control of vector reemergence after insecticide intervention. PMID:24171704
The Extinction of Dengue through Natural Vulnerability of Its Vectors
Williams, Craig R.; Bader, Christie A.; Kearney, Michael R.; Ritchie, Scott A.; Russell, Richard C.
2010-01-01
Background Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. Methodology/Principal Findings Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. Conclusions/Significance These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies. PMID:21200424
Vectors, hosts, and control measures for Zika virus in the Americas
Thompson, Sarah J.; Pearce, John; Ramey, Andy M.
2017-01-01
We examine Zika virus (ZIKV) from an ecological perspective and with a focus on the Americas. We assess (1) the role of wildlife in ZIKV disease ecology, (2) how mosquito behavior and biology influence disease dynamics, and (3) how nontarget species and ecosystems may be impacted by vector control programs. Our review suggests that free-ranging, non-human primates may be involved in ZIKV transmission in the Old World; however, other wildlife species likely play a limited role in maintaining or transmitting ZIKV. In the Americas, a zoonotic cycle has not yet been definitively established. Understanding behaviors and habitat tolerances of Aedes aegypti and Aedes albopictus, two ZIKV competent vectors in the Americas, will allow more accurate modeling of disease spread and facilitate targeted and effective control efforts. Vector control efforts may have direct and indirect impacts to wildlife, particularly invertebrate feeding species; however, strategies could be implemented to limit detrimental ecological effects.
VectorBase: a data resource for invertebrate vector genomics
Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.
2009-01-01
VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744
Unsymmetric Lanczos model reduction and linear state function observer for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1991-01-01
This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.
Stevens, Lori; Monroy, M. Carlota; Rodas, Antonieta Guadalupe; Dorn, Patricia L.
2014-01-01
Background Triatoma dimidiata, currently the major Central American vector of Trypanosoma cruzi, the parasite that causes Chagas disease, inhabits caves throughout the region. This research investigates the possibility that cave dwelling T. dimidiata might transmit the parasite to humans and links the blood meal sources of cave vectors to cultural practices that differ among locations. Methodology/Principal Findings We determined the blood meal sources of twenty-four T. dimidiata collected from two locations in Guatemala and one in Belize where human interactions with the caves differ. Blood meal sources were determined by cloning and sequencing PCR products amplified from DNA extracted from the vector abdomen using primers specific for the vertebrate 12S mitochondrial gene. The blood meal sources were inferred by ≥99% identity with published sequences. We found 70% of cave-collected T. dimidiata positive for human DNA. The vectors had fed on 10 additional vertebrates with a variety of relationships to humans, including companion animal (dog), food animals (pig, sheep/goat), wild animals (duck, two bat, two opossum species) and commensal animals (mouse, rat). Vectors from all locations fed on humans and commensal animals. The blood meal sources differ among locations, as well as the likelihood of feeding on dog and food animals. Vectors from one location were tested for T. cruzi infection, and 30% (3/10) tested positive, including two positive for human blood meals. Conclusions/Significance Cave dwelling Chagas disease vectors feed on humans and commensal animals as well as dog, food animals and wild animals. Blood meal sources were related to human uses of the caves. We caution that just as T. dimidiata in caves may pose an epidemiological risk, there may be other situations where risk is thought to be minimal, but is not. PMID:25211347
Nie, Xiao-wei; Sun, Li-jun; Hao, Yue-wen; Yang, Guang-xiao; Wang, Quan-ying
2011-03-01
To synthesize the minimal and artificial HRE, and to insert it into the anterior extremity of CMV promoter of a AAV plasmid, and then to construct the AAV regulated by hypoxic-responsive element which was introduced into 293 cell by method of Ca3(PO4)2 using three plasmids. Thus obtaining the adenoassociated virus vector regulated by hypoxic-responsive element was possibly used for gene therapy in ischemia angiocardiopathy and cerebrovascular disease. Artificially synthesize the 36 bp nucleotide sequences of four connection in series HIF-binding sites A/GCGTG(4×HBS)and a 35 bp nucleotide sequences spacing inserted into anterior extremity of CMV promoter TATA Box, then amplified by PCR. The cDNA fragment was confirmed to be right by DNA sequencing. Molecular biology routine method was used to construct a AAV vector regulated by minimal hypoxic-responsive element after the normal CMV promoter in AAV vector was replaced by the CMV promoter included minimal hypoxic-responsive element. Then, NT4-6His-PR39 fusogenic peptide was inserted into MCS of the plasmid, the recombinant AAV vector was obtained by three plasmid co-transfection in 293 cells, in which we can also investigate the expression of 6×His using immunochemistry in hypoxia environment. Artificial HRE was inserted into anterior extremity of CMV promoter and there was a correct spacing between the HRE and the TATA-box. The DNA sequencing and restriction enzyme digestion results indicated that the AAV regulated by hypoxic-responsive element was successfully constructed. Compared to the control group, the expressions of 6×His was significantly increased in the experimental groups in hypoxia environment, which confirmed that the AAV effectually regulated by the minimal HRE was inserted into anterior extremity of CMV promoter. The HRE is inserted into anterior extremity of CMV promoter to lack incision enzyme recognition site by PCR. And eukaryotic expression vector regulated by hypoxic-responsive is constructed. The AAV effectually regulated by the minimal HRE inserted into anterior extremity of CMV promoter. The vector is successfully constructed and it has important theoretical and practical value in the synteresis and therapy of ischemia angiocardiopathy and cerebrovascular disease.
Kuo, Chi-Chien; Huang, Jing-Lun; Shu, Pei-Yun; Lee, Pei-Lung; Kelt, Douglas A; Wang, Hsi-Chieh
2012-09-01
The increase in global travel and trade has facilitated the dissemination of disease vectors. Globalization can also indirectly affect vector-borne diseases through the liberalization of cross-border trade, which has far-reaching, worldwide effects on agricultural practices and may in turn influence vectors through the modification of the ecological landscape. While the cascading effect of economic globalization on vector-borne diseases, sometimes acting synergistically with regional agricultural policy, could be substantial and have significant economic, agricultural, and public health implications, research into this remains very limited. We evaluated how abandonment of rice paddies in Taiwan after joining the World Trade Organization, along with periodic plowing, an agricultural policy to reduce farm pests in abandoned fields can unexpectedly influence risks to diseases transmitted by ticks and chiggers (larval trombiculid mites), which we collected from their small-mammal hosts. Sampling was limited to abandoned (fallow) and plowed fields due to the challenge of trapping small mammals in flooded rice paddies. Striped field mice (Apodemus agrarius) are the main hosts for both vectors. They harbored six times more ticks and three times more chiggers in fallow than in plowed plots. The proportion of ticks infected with Rickettsia spp. (etiologic agent of spotted fever) was three times higher in fallow plots, while that of Orientia tsutsugamushi (scrub typhus) in chiggers was similar in both treatments. Fallow plots had more ground cover and higher vegetation than plowed ones. Moreover, ticks and chiggers in both field types were dominated by species known to infest humans. Because ticks and chiggers should exhibit very low survival in flooded rice paddies, we propose that farm abandonment in Taiwan, driven by globalization, may have inadvertently led to increased risks of spotted fever and scrub typhus. However, periodic plowing can unintentionally mitigate vector burdens. Economic globalization can have unexpected consequences on disease risk through modification of the agricultural landscape, but the outcome may also be influenced by agricultural policies, calling for further research on vector-borne diseases and their control from broader perspectives.
Hanawa, Hideki; Yamamoto, Motoko; Zhao, Huifen; Shimada, Takashi; Persons, Derek A
2009-01-01
Hematopoietic cell gene therapy using retroviral vectors has achieved success in clinical trials. However, safety issues regarding vector insertional mutagenesis have emerged. In two different trials, vector insertion resulted in the transcriptional activation of proto-oncogenes. One strategy for potentially diminishing vector insertional mutagenesis is through the use of self-inactivating lentiviral vectors containing the 1.2-kb insulator element derived from the chicken β-globin locus. However, use of this element can dramatically decrease both vector titer and transgene expression, thereby compromising its practical use. Here, we studied lentiviral vectors containing either the full-length 1.2-kb insulator or the smaller 0.25-kb core element in both orientations in the partially deleted long-terminal repeat. We show that use of the 0.25-kb core insulator rescued vector titer by alleviating a postentry block to reverse transcription associated with the 1.2-kb element. In addition, in an orientation-dependent manner, the 0.25-kb core element significantly increased transgene expression from an internal promoter due to improved transcriptional termination. This element also demonstrated barrier activity, reducing variability of expression due to position effects. As it is known that the 0.25-kb core insulator has enhancer-blocking activity, this particular insulated lentiviral vector design may be useful for clinical application. PMID:19223867
Naranjo, Diana P; Qualls, Whitney A; Jurado, Hugo; Perez, Juan C; Xue, Rui-De; Gomez, Eduardo; Beier, John C
2014-07-02
Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health.
The control of snail hosts of bilharziasis and fascioliasis in Southern Rhodesia.
CLARKE, V D; SHIFF, C J; BLAIR, D M
1961-01-01
The authors review the experimental work that has been done since the Second World War on the use of chemical molluscicides in Southern Rhodesia and describe the development of a co-operative snail control campaign involving local landowners and various Government departments. In 1959 and 1960 efforts were concentrated on four large-scale experiments to test the methods of application of copper sulfate, sodium pentachlorophenate and Bayer 73 under a variety of climatic and physiographic conditions.From this work the authors conclude that it would appear possible and practicable to control vector snails in natural water courses and reservoirs in savannah areas of Central Africa to a degree at which it is thought that transmission of bilharziasis from man to man and of fascioliasis from animal to animal does not take place.
The control of snail hosts of bilharziasis and fascioliasis in Southern Rhodesia
Clarke, V. DE V.; Shiff, C. J.; Blair, D. M.
1961-01-01
The authors review the experimental work that has been done since the Second World War on the use of chemical molluscicides in Southern Rhodesia and describe the development of a co-operative snail control campaign involving local landowners and various Government departments. In 1959 and 1960 efforts were concentrated on four large-scale experiments to test the methods of application of copper sulfate, sodium pentachlorophenate and Bayer 73 under a variety of climatic and physiographic conditions. From this work the authors conclude that it would appear possible and practicable to control vector snails in natural water courses and reservoirs in savannah areas of Central Africa to a degree at which it is thought that transmission of bilharziasis from man to man and of fascioliasis from animal to animal does not take place. PMID:13879773
Impact of flight systems integration on future aircraft design
NASA Technical Reports Server (NTRS)
Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.
1984-01-01
Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.
Procedures for generation and reduction of linear models of a turbofan engine
NASA Technical Reports Server (NTRS)
Seldner, K.; Cwynar, D. S.
1978-01-01
A real time hybrid simulation of the Pratt & Whitney F100-PW-F100 turbofan engine was used for linear-model generation. The linear models were used to analyze the effect of disturbances about an operating point on the dynamic performance of the engine. A procedure that disturbs, samples, and records the state and control variables was developed. For large systems, such as the F100 engine, the state vector is large and may contain high-frequency information not required for control. This, reducing the full-state to a reduced-order model may be a practicable approach to simplifying the control design. A reduction technique was developed to generate reduced-order models. Selected linear and nonlinear output responses to exhaust-nozzle area and main-burner fuel flow disturbances are presented for comparison.
Dayanidhi, Sudarshan; Hedberg, Åsa; Forssberg, Hans
2013-01-01
While it is clear that the development of dexterous manipulation in children exhibits dramatic improvements over an extended period, it is difficult to separate musculoskeletal from neural contributors to these important functional gains. This is in part due to the inability of current methods to disambiguate improvements in hand strength from gains in finger dexterity (i.e., the dynamic control of fingertip force vectors at low magnitudes). We adapted our novel instrumentation to evaluate finger dexterity in 130 typically developing children between the ages of 4 and 16 yr. We find that finger dexterity continues to develop well into late adolescence and musculoskeletal growth and strength are poorly correlated with the improvements in dexterity. Importantly, because these behavioral results seem to mirror the known timelines of neuroanatomical development up to adolescence, we speculate that they reflect the functional benefits of such continual neural maturation. This novel perspective now enables the systematic study of the functional roles of specific neuroanatomical structures and their connectivity, maturity, and plasticity. Moreover, the temporal dynamics of the fingertip force vectors shows improvements in stability that provide a novel way to look at the maturation of finger control. From a clinical perspective, our results provide a practical means to chart functional development of dexterous manipulation in typically developing children and could be adapted for clinical use and for use in children with developmental disorders. PMID:23864371
Tana, Susilowati; Umniyati, SittiRahmah; Petzold, Max; Kroeger, Axel; Sommerfeld, Johannes
2012-01-01
Background and Objectives Dengue is an important public health problem in Yogyakarta city, Indonesia. The aim of this study was to build an innovative community-centered dengue-ecosystem management intervention in the city and to assess the process and results. Methods For describing the baseline situation, entomological surveys and household surveys were carried out in six randomly selected neighborhoods in Yogyakarta city, documents were analyzed and different stakeholders involved in dengue control and environmental management were interviewed. Then a community-centered dengue-ecosystem management intervention was built up in two of the neighborhoods (Demangan and Giwangan) whereas two neighborhoods served as controls with no intervention (Tahunan and Bener). Six months after the intervention follow up surveys (household interviews and entomological) were conducted as well as focus group discussions and key informant interviews. FIindings The intervention results included: better community knowledge, attitude and practices in dengue prevention; increased household and community participation; improved partnership including a variety of stakeholders with prospects for sustainability; vector control efforts refocused on environmental and health issues; increased community ownership of dengue vector management including broader community development activities such as solid waste management and recycling. Conclusion The community-centred approach needs a lot of effort at the beginning but has better prospects for sustainability than the vertical “top-down” approach. PMID:23318239
Leach, Adrian W.; Benedict, Mark Q.; Facchinelli, Luca; Quinlan, M. Megan
2018-01-01
Abstract Transgenic mosquitoes are being developed as novel components of area-wide approaches to vector-borne disease control. Best practice is to develop these in phases, beginning with laboratory studies, before moving to field testing and inclusion in control programs, to ensure safety and prevent costly field testing of unsuitable strains. The process of identifying and developing good candidate strains requires maintenance of transgenic colonies over many generations in containment facilities. By working in disease endemic countries with target vector populations, laboratory strains may be developed and selected for properties that will enhance intended control efficacy in the next phase, while avoiding traits that introduce unnecessary risks. Candidate strains aiming toward field use must consistently achieve established performance criteria, throughout the process of scaling up from small study colonies to production of sufficient numbers for field testing and possible open release. Maintenance of a consistent quality can be demonstrated by a set of insect quality and insectary operating indicators, measured over time at predetermined intervals. These indicators: inform comparability of studies using various candidate strains at different times and locations; provide evidence of conformity relevant to compliance with terms of approval for regulated use; and can be used to validate some assumptions related to risk assessments covering the contained phase and for release into the environment. PMID:29337661
Mumford, John D; Leach, Adrian W; Benedict, Mark Q; Facchinelli, Luca; Quinlan, M Megan
2018-01-01
Transgenic mosquitoes are being developed as novel components of area-wide approaches to vector-borne disease control. Best practice is to develop these in phases, beginning with laboratory studies, before moving to field testing and inclusion in control programs, to ensure safety and prevent costly field testing of unsuitable strains. The process of identifying and developing good candidate strains requires maintenance of transgenic colonies over many generations in containment facilities. By working in disease endemic countries with target vector populations, laboratory strains may be developed and selected for properties that will enhance intended control efficacy in the next phase, while avoiding traits that introduce unnecessary risks. Candidate strains aiming toward field use must consistently achieve established performance criteria, throughout the process of scaling up from small study colonies to production of sufficient numbers for field testing and possible open release. Maintenance of a consistent quality can be demonstrated by a set of insect quality and insectary operating indicators, measured over time at predetermined intervals. These indicators: inform comparability of studies using various candidate strains at different times and locations; provide evidence of conformity relevant to compliance with terms of approval for regulated use; and can be used to validate some assumptions related to risk assessments covering the contained phase and for release into the environment.
Lang, Bethan J; Idugboe, Stefano; McManus, Kirelle; Drury, Florence; Qureshi, Alima; Cator, Lauren J
2018-01-10
Control of Aedes aegypti (L.) (Diptera: Culicidae) populations is vital for reducing the transmission of several pervasive human diseases. The success of new vector control technologies will be influenced by the fitness of laboratory-reared transgenic males. However, there has been relatively little published data on how rearing practices influence male fitness in Aedes mosquitoes. In the laboratory, the effect of larval food availability on adult male fitness was tested, using a range of different fitness measures. Larval food availability was demonstrated to be positively correlated with adult body size. Larger males survived longer and exhibited greater swarming activity. As a consequence, larger males may have more mating opportunities in the wild. However, we also found that within a swarm larger males did not have an increased likelihood of copulating with a female. The outcome of the mating competition experiments depended on the methodology used to mark the males. These results show that fitness assessment can vary depending on the measure analyzed, and the methodology used to determine it. Continued investigation into these fitness measures and methodologies, and critically, their utility for predicting male performance in the field, will increase the efficiency of vector control programs. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Discussion and Practical Aspects on Control Allocation for a Multi-Rotor Helicopter
NASA Astrophysics Data System (ADS)
Ducard, G. J. J.; Hua, M.-D.
2011-09-01
This paper presents practical methods to improve the flight performance of an unmanned multi-rotor helicopter by using an efficient control allocation strategy. The flying vehicle considered is an hexacopter. It is indeed particularly suited for long missions and for carrying a significant payload such as all the sensors needed in the context of cartography, photogrammetry, inspection, surveillance and transportation. Moreover, a stable flight is often required for precise data recording during the mission. Therefore, a high performance flight control system is required to operate the UAV. However, the flight performance of a multi-rotor vehicle is tightly dependent on the control allocation strategy that is used to map the virtual control vector v = [T, L, M, N ]T composed of the thrust and the torques in roll, pitch and yaw, respectively, to the propellers' speed. This paper shows that a control allocation strategy based on the classical approach of pseudo-inverse matrix only exploits a limited range of the vehicle capabilities to generate thrust and moments. Thus, in this paper, a novel approach is presented, which is based on a weighted pseudo-inverse matrix method capable of exploiting a much larger domain in v. The proposed control allocation algorithm is designed with explicit laws for fast operation and low computational load, suitable for a small microcontroller with limited floating-point operation capability.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1995-01-01
During this year, we concentrated our efforts on the design of controllers for lateral/directional control using mu synthesis. This proved to be a more difficult task than we anticipated and we are still working on the designs. In the lateral-directional control problem, the inputs are pilot lateral stick and pedal commands and the outputs are roll rate about the velocity vector and side slip angle. The control effectors are ailerons, rudder deflection, and directional thrust vectoring vane deflection which produces a yawing moment about the body axis. Our math model does not contain any provision for thrust vectoring of rolling moment. This has resulted in limitations of performance at high angles of attack. During 1994-95, the following tasks for the lateral-directional controllers were accomplished: (1) Designed both inner and outer loop dynamic inversion controllers. These controllers are implemented using accelerometer outputs rather than an a priori model of the vehicle aerodynamics; (2) Used classical techniques to design controllers for the system linearized by dynamics inversion. These controllers acted to control roll rate and Dutch roll response; (3) Implemented the inner loop dynamic inversion and classical controllers on the six DOF simulation; (4) Developed a lateral-directional control allocation scheme based on minimizing required control effort among the ailerons, rudder, and directional thrust vectoring; and (5) Developed mu outer loop controllers combined with classical inner loop controllers.
James L. Hanula; Brian Sullivan
2008-01-01
Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is a native of Southeast Asia recently established in coastal forests of Georgia, SC and Florida It vectors a wilt fungus, Raffaeka sp., lethal to redbay trees, Persea borbonia L. Spreng, and certain other Lauraceae. No practical monitoring system exists for this beetle so we...
Poché, David M; Grant, William E; Wang, Hsiao-Hsuan
2016-08-01
Visceral leishmaniasis (VL) is a disease caused by two known vector-borne parasite species (Leishmania donovani, L. infantum), transmitted to man by phlebotomine sand flies (species: Phlebotomus and Lutzomyia), resulting in ≈50,000 human fatalities annually, ≈67% occurring on the Indian subcontinent. Indoor residual spraying is the current method of sand fly control in India, but alternative means of vector control, such as the treatment of livestock with systemic insecticide-based drugs, are being evaluated. We describe an individual-based, stochastic, life-stage-structured model that represents a sand fly vector population within a village in India and simulates the effects of vector control via fipronil-based drugs orally administered to cattle, which target both blood-feeding adults and larvae that feed on host feces. Simulation results indicated efficacy of fipronil-based control schemes in reducing sand fly abundance depended on timing of drug applications relative to seasonality of the sand fly life cycle. Taking into account cost-effectiveness and logistical feasibility, two of the most efficacious treatment schemes reduced population peaks occurring from April through August by ≈90% (applications 3 times per year at 2-month intervals initiated in March) and >95% (applications 6 times per year at 2-month intervals initiated in January) relative to no control, with the cumulative number of sand fly days occurring April-August reduced by ≈83% and ≈97%, respectively, and more specifically during the summer months of peak human exposure (June-August) by ≈85% and ≈97%, respectively. Our model should prove useful in a priori evaluation of the efficacy of fipronil-based drugs in controlling leishmaniasis on the Indian subcontinent and beyond.
2013-01-01
Background Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. Methods We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. Results We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Conclusion Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency. PMID:23742709
Russomando, Graciela; Cousiño, Blanca; Sanchez, Zunilda; Franco, Laura X; Nara, Eva M; Chena, Lilian; Martínez, Magaly; Galeano, María E; Benitez, Lucio
2017-05-01
Since the early 1990s, programs to control Chagas disease in South America have focused on eradicating domiciliary Triatoma infestans, the main vector. Seroprevalence studies of the chagasic infection are included as part of the vector control programs; they are essential to assess the impact of vector control measures and to monitor the prevention of vector transmission. To assess the interruption of domiciliary vector transmission of Chagas disease by T. infestans in Paraguay by evaluating the current state of transmission in rural areas. A survey of seroprevalence of Chagas disease was carried out in a representative sample group of Paraguayans aged one to five years living in rural areas of Paraguay in 2008. Blood samples collected on filter paper from 12,776 children were tested using an enzyme-linked immunosorbent assay. Children whose serology was positive or undetermined (n = 41) were recalled to donate a whole blood sample for retesting. Their homes were inspected for current triatomine infestation. Blood samples from their respective mothers were also collected and tested to check possible transmission of the disease by a congenital route. A seroprevalence rate of 0.24% for Trypanosoma cruzi infection was detected in children under five years of age among the country's rural population. Our findings indicate that T. cruzi was transmitted to these children vertically. The total number of infected children, aged one to five years living in these departments, was estimated at 1,691 cases with an annual incidence of congenital transmission of 338 cases per year. We determined the impact of vector control in the transmission of T. cruzi, following uninterrupted vector control measures employed since 1999 in contiguous T. infestans-endemic areas of Paraguay, and this allowed us to estimate the degree of risk of congenital transmission in the country.
Mapping the magnetic field vector in a fountain clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Mosquito vector biology and control in Latin America - A 25th Symposium
USDA-ARS?s Scientific Manuscript database
The 25th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 81st Annual Meeting in New Orleans, LA, in March 2015. The principal objective, for the previous 24 symposia, was to promote participation in the AMCA by vector control spec...
Mosquito vector biology and control in Latin America - a 24th symposium
USDA-ARS?s Scientific Manuscript database
The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA in February 2014. The principal objective, as for the previous 23 symposia, was to promote participation in the AMCA by vector control spe...
MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA- An 18TH SYMPOSIUM
USDA-ARS?s Scientific Manuscript database
The 18th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 74th Annual Meeting in Sparks, NV, in March 2008. The principal objective, as for the previous 17 symposia, was to promote participation in the AMCA by vector control speci...
Definition of Contravariant Velocity Components
NASA Technical Reports Server (NTRS)
Hung, Ching-moa; Kwak, Dochan (Technical Monitor)
2002-01-01
In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.
Design and test of a high power electromechanical actuator for thrust vector control
NASA Technical Reports Server (NTRS)
Cowan, J. R.; Myers, W. N.
1992-01-01
NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.
Design and test of a high power electromechanical actuator for thrust vector control
NASA Astrophysics Data System (ADS)
Cowan, J. R.; Myers, W. N.
1992-07-01
NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.
Precomputed state dependent digital control of a nuclear rocket engine
NASA Technical Reports Server (NTRS)
Johnson, M. R.
1972-01-01
A control method applicable to multiple-input multiple-output nonlinear time-invariant systems in which desired behavior can be expressed explicitly as a trajectory in system state space is developed. The precomputed state dependent control method is basically a synthesis technique in which a suboptimal control law is developed off-line, prior to system operation. This law is obtained by conducting searches at a finite number of points in state space, in the vicinity of some desired trajectory, to obtain a set of constant control vectors which tend to return the system to the desired trajectory. These vectors are used to evaluate the unknown coefficients in a control law having an assumed hyperellipsoidal form. The resulting coefficients constitute the heart of the controller and are used in the on-line computation of control vectors. Two examples of PSDC are given prior to the more detailed description of the NERVA control system development.
Harnessing Integrated Vector Management for Enhanced Disease Prevention.
Chanda, Emmanuel; Ameneshewa, Birkinesh; Bagayoko, Magaran; Govere, John M; Macdonald, Michael B
2017-01-01
The increasing global threat of emerging and re-emerging vector-borne diseases (VBDs) poses a serious health problem. The World Health Organization (WHO) recommends integrated vector management (IVM) strategy for combating VBD transmission. An IVM approach requires entomological knowledge, technical and infrastructure capacity, and systems facilitating stakeholder collaboration. In sub-Saharan Africa, successful operational IVM experience comes from relatively few countries. This article provides an update on the extent to which IVM is official national policy, the degree of IVM implementation, the level of compliance with WHO guidelines, and concordance in the understanding of IVM, and it assesses the operational impact of IVM. The future outlook encompasses rational and sustainable use of effective vector control tools and inherent improved return for investment for disease vector control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia.
Corbel, Vincent; Nosten, Francois; Thanispong, Kanutcharee; Luxemburger, Christine; Kongmee, Monthathip; Chareonviriyaphap, Theeraphap
2013-12-01
Despite significant advances in the search for potential dengue vaccines and new therapeutic schemes for malaria, the control of these diseases remains difficult. In Thailand, malaria incidence is falling whereas that of dengue is rising, with an increase in the proportion of reported severe cases. In the absence of antiviral therapeutic options for acute dengue, appropriate case management reduces mortality. However, the interruption of transmission still relies on vector control measures that are currently insufficient to curtail the cycle of epidemics. Drug resistance in malaria parasites is increasing, compromising malaria control and elimination. Deficiencies in our knowledge of vector biology and vectorial capacity also hinder public health efforts for vector control. Challenges to dengue and malaria control are discussed, and research priorities identified. Copyright © 2013. Published by Elsevier Ltd.
Dell'Arciprete, Ana; Braunstein, José; Touris, Cecilia; Dinardi, Graciela; Llovet, Ignacio; Sosa-Estani, Sergio
2014-01-29
Ninety percent of the aboriginal communities of Argentina are located in areas of endemic vectorial transmission of Chagas disease. Control activities in these communities have not been effective. The goal of this research was to explore the role played by beliefs, habits, and practices of Pilaga and Wichi indigenous communities in their interaction with the local health system in the province of Formosa. This article contributes to the understanding of the cultural barriers that affect the communication process between indigenous peoples and their health care providers. Twenty-nine open ended interviews were carried out with members of four indigenous communities (Pilaga and Wichi) located in central Formosa. These interviews were used to describe and compare these communities' approach to health and disease as they pertain to Chagas as well as their perceptions of Western medicine and its incarnation in local health practice. Five key findings are presented: 1) members of these communities tend to see disease as caused by other people or by the person's violation of taboos instead of as a biological process; 2) while the Pilaga are more inclined to accept Western medicine, the Wichi often favour the indigenous approach to health care over the Western approach; 3) members of these communities do not associate the vector with the transmission of the disease and they have little awareness of the need for vector control activities; 4) indigenous individuals who undergo diagnostic tests and accept treatment often do so without full information and knowledge; 5) the clinical encounter is rife with conflict between the expectations of health care providers and those of members of these communities. Our analysis suggests that there is a need to consider the role of the cultural patterning of health and disease when developing interventions to prevent and control Chagas disease among indigenous communities in Northern Argentina. This is especially important when communicating with these communities about prevention and control. These research findings might also be of value to national and provincial agencies in charge of decreasing the rates of Chagas disease among indigenous populations.
2014-01-01
Introduction Ninety percent of the aboriginal communities of Argentina are located in areas of endemic vectorial transmission of Chagas disease. Control activities in these communities have not been effective. The goal of this research was to explore the role played by beliefs, habits, and practices of Pilaga and Wichi indigenous communities in their interaction with the local health system in the province of Formosa. This article contributes to the understanding of the cultural barriers that affect the communication process between indigenous peoples and their health care providers. Methods Twenty-nine open ended interviews were carried out with members of four indigenous communities (Pilaga and Wichi) located in central Formosa. These interviews were used to describe and compare these communities’ approach to health and disease as they pertain to Chagas as well as their perceptions of Western medicine and its incarnation in local health practice. Results Five key findings are presented: 1) members of these communities tend to see disease as caused by other people or by the person’s violation of taboos instead of as a biological process; 2) while the Pilaga are more inclined to accept Western medicine, the Wichi often favour the indigenous approach to health care over the Western approach; 3) members of these communities do not associate the vector with the transmission of the disease and they have little awareness of the need for vector control activities; 4) indigenous individuals who undergo diagnostic tests and accept treatment often do so without full information and knowledge; 5) the clinical encounter is rife with conflict between the expectations of health care providers and those of members of these communities. Conclusion Our analysis suggests that there is a need to consider the role of the cultural patterning of health and disease when developing interventions to prevent and control Chagas disease among indigenous communities in Northern Argentina. This is especially important when communicating with these communities about prevention and control. These research findings might also be of value to national and provincial agencies in charge of decreasing the rates of Chagas disease among indigenous populations. PMID:24476151
Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria.
Thomas, Shalu; Ravishankaran, Sangamithra; Justin, N A Johnson Amala; Asokan, Aswin; Mathai, Manu Thomas; Valecha, Neena; Montgomery, Jacqui; Thomas, Matthew B; Eapen, Alex
2017-03-10
The Indian city of Chennai is endemic for malaria and the known local malaria vector is Anopheles stephensi. Plasmodium vivax is the predominant malaria parasite species, though Plasmodium falciparum is present at low levels. The urban ecotype of malaria prevails in Chennai with perennial transmission despite vector surveillance by the Urban Malaria Scheme (UMS) of the National Vector Borne Disease Control Programme (NVBDCP). Understanding the feeding and resting preferences, together with the transmission potential of adult vectors in the area is essential in effective planning and execution of improved vector control measures. A yearlong survey was carried out in cattle sheds and human dwellings to check the resting, feeding preferences and transmission potential of An. stephensi. The gonotrophic status, age structure, resting and host seeking preferences were studied. The infection rate in An. stephensi and Anopheles subpictus were analysed by circumsporozoite ELISA (CS-ELISA). Adult vectors were found more frequently and at higher densities in cattle sheds than human dwellings. The overall Human Blood Index (HBI) was 0.009 indicating the vectors to be strongly zoophilic. Among the vectors collected from human dwellings, 94.2% were from thatched structures and the remaining 5.8% from tiled and asbestos structures. 57.75% of the dissected vectors were nulliparous whereas, 35.83% were monoparous and the rest 6.42% biparous. Sporozoite positivity rate was 0.55% (4/720) and 1.92% (1/52) for An. stephensi collected from cattle sheds and human dwellings, respectively. One adult An. subpictus (1/155) was also found to be infected with P. falciparum. Control of the adult vector populations can be successful only by understanding the resting and feeding preferences. The present study indicates that adult vectors predominantly feed on cattle and cattle sheds are the preferred resting place, possibly due to easy availability of blood meal source and lack of any insecticide or repellent pressure. Hence targeting these resting sites with cost effective, socially acceptable intervention tools, together with effective larval source management to reduce vector breeding, could provide an improved integrated vector management strategy to help drive down malaria transmission and assist in India's plan to eliminate malaria by 2030.
Sheela, A M; Sarun, S; Justus, J; Vineetha, P; Sheeja, R V
2015-04-01
Vector borne diseases are a threat to human health. Little attention has been paid to the prevention of these diseases. We attempted to identify the significant wetland characteristics associated with the spread of chikungunya, dengue fever and malaria in Kerala, a tropical region of South West India using multivariate analyses (hierarchical cluster analysis, factor analysis and multiple regression). High/medium turbid coastal lagoons and inland water-logged wetlands with aquatic vegetation have significant effect on the incidence of chikungunya while dengue influenced by high turbid coastal beaches and malaria by medium turbid coastal beaches. The high turbidity in water is due to the urban waste discharge namely sewage, sullage and garbage from the densely populated cities and towns. The large extent of wetland is low land area favours the occurrence of vector borne diseases. Hence the provision of pollution control measures at source including soil erosion control measures is vital. The identification of vulnerable zones favouring the vector borne diseases will help the authorities to control pollution especially from urban areas and prevent these vector borne diseases. Future research should cover land use cover changes, climatic factors, seasonal variations in weather and pollution factors favouring the occurrence of vector borne diseases.
Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.
Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor
2004-01-01
Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337
An innovative ecohealth intervention for Chagas disease vector control in Yucatan, Mexico.
Waleckx, Etienne; Camara-Mejia, Javier; Ramirez-Sierra, Maria Jesus; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Vazquez-Narvaez, Santos; Najera-Vazquez, Rosario; Gourbière, Sébastien; Dumonteil, Eric
2015-02-01
Non-domiciliated (intrusive) triatomine vectors remain a challenge for the sustainability of Chagas disease vector control as these triatomines are able to transiently (re-)infest houses. One of the best-characterized examples is Triatoma dimidiata from the Yucatan peninsula, Mexico, where adult insects seasonally infest houses between March and July. We focused our study on three rural villages in the state of Yucatan, Mexico, in which we performed a situation analysis as a first step before the implementation of an ecohealth (ecosystem approach to health) vector control intervention. The identification of the key determinants affecting the transient invasion of human dwellings by T. dimidiata was performed by exploring associations between bug presence and qualitative and quantitative variables describing the ecological, biological and social context of the communities. We then used a participatory action research approach for implementation and evaluation of a control strategy based on window insect screens to reduce house infestation by T. dimidiata. This ecohealth approach may represent a valuable alternative to vertically-organized insecticide spraying. Further evaluation may confirm that it is sustainable and provides effective control (in the sense of limiting infestation of human dwellings and vector/human contacts) of intrusive triatomines in the region. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
NASA Technical Reports Server (NTRS)
Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.
1998-01-01
A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.
Chimpanzee adenoviral vectors as vaccines for outbreak pathogens
2017-01-01
ABSTRACT The 2014–15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS. PMID:29083948
NASA Astrophysics Data System (ADS)
Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua
2018-02-01
For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.
Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver
2015-01-01
The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Evaluating the promise of recombinant transmissible vaccines
Basinski, Andrew J.; Varrelman, Tanner J.; Smithson, Mark W.; May, Ryan H.; Remien, Christopher H.; Nuismer, Scott L.
2018-01-01
Transmissible vaccines have the potential to revolutionize infectious disease control by reducing the vaccination effort required to protect a population against a disease. Recent efforts to develop transmissible vaccines focus on recombinant transmissible vaccine designs (RTVs) because they pose reduced risk if intra-host evolution causes the vaccine to revert to its vector form. However, the shared antigenicity of the vaccine and vector may confer vaccine-immunity to hosts infected with the vector, thwarting the ability of the vaccine to spread through the population. We build a mathematical model to test whether a RTV can facilitate disease management in instances where reversion is likely to introduce the vector into the population or when the vector organism is already established in the host population, and the vector and vaccine share perfect cross-immunity. Our results show that a RTV can autonomously eradicate a pathogen, or protect a population from pathogen invasion, when cross-immunity between vaccine and vector is absent. If cross-immunity between vaccine and vector exists, however, our results show that a RTV can substantially reduce the vaccination effort necessary to control or eradicate a pathogen only when continuously augmented with direct manual vaccination. These results demonstrate that estimating the extent of cross-immunity between vector and vaccine is a critical step in RTV design, and that herpesvirus vectors showing facile reinfection and weak cross-immunity are promising. PMID:29279283
Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K.; Kersey, Paul J.; Maslen, Gareth L.; Takken, Willem; Koenraadt, Constantianus J. M.; Oliva, Clelia F.; Busquets, Núria; Abad, F. Xavier; Failloux, Anna-Bella; Levashina, Elena A.; Wilson, Anthony J.; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D.
2016-01-01
Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector–pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations. PMID:27677378
Overexpression of SASH1 related to the decreased invasion ability of human glioma U251 cells.
Yang, Liu; Liu, Mei; Gu, Zhikai; Chen, Jianguo; Yan, Yaohua; Li, Jian
2012-12-01
The purpose of this study was to investigate the impact of SAM- and SH3-domain containing 1 (SASH1) on the biological behavior of glioma cells, including its effects on cellular growth, proliferation, apoptosis, invasion, and metastasis, and thereby to provide an experimental basis for future therapeutic treatments. A pcDNA3.1-SASH1 eukaryotic expression vector was constructed and transfected into the U251 human glioma cell line. Using the tetrazolium-based colorimetric (MTT) assay, flow cytometry analyses, transwell invasion chamber experiments, and other methods, we examined the impact of SASH1 on the biological behaviors of U251 cells, including effects on viability, cell cycle, apoptosis, and invasion. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, and other proteins was observed. Compared to the empty vector and blank control groups, the pcDNA3.1-SASH1 group of U251 cells exhibited significantly reduced cell viability, proliferation, and invasion (p < 0.05), although there was no difference between the empty vector and blank control groups. The pcDNA3.1-SASH1 group demonstrated a significantly higher apoptotic index than did the empty vector and blank control groups (p < 0.05), and the percentage of apoptotic cells was similar between the empty vector and blank control groups. In addition, the pcDNA3.1-SASH1 group expressed significantly lower protein levels of cyclin D1 and MMP-2/9 compared to the control and empty vector groups (p < 0.05) and significantly higher protein levels of caspase-3 than the other two groups (p < 0.05). Cyclin D1, caspase-3, and MMP-2/9 expression was unchanged between the empty vector and blank control groups. SASH1 gene expression might be related to the inhibition of the growth, proliferation, and invasion of U251 cells and the promotion of U251 cells apoptosis.
Jacob, Juliah W; Tchouassi, David P; Lagat, Zipporah O; Mathenge, Evan M; Mweresa, Collins K; Torto, Baldwyn
2018-04-27
Several studies have shown that odors of plant and animal origin can be developed into lures for use in surveillance of mosquito vectors of infectious diseases. However, the effect of combining plant- and mammalian-derived odors into an improved lure for monitoring both nectar- and blood-seeking mosquito populations in traps is yet to be explored. Here we used both laboratory dual choice olfactometer and field assays to investigate responses of the malaria vector, Anopheles gambiae, to plant- and mammalian-derived compounds and a combined blend derived from these two odor sources. Using subtractive bioassays in dual choice olfactometer we show that a 3-component terpenoid plant-derived blend comprising (E)-linalool oxide, β-pinene, β-ocimene was more attractive to females of An. gambiae than (E)-linalool oxide only (previously found attractive in field trials) and addition of limonene to this blend antagonized its attractiveness. Likewise, a mammalian-derived lure comprising the aldehydes heptanal, octanal, nonanal and decanal, was more preferred than (E)-linalool oxide. Surprisingly, combining the plant-derived 3-component blend with the mammalian derived 4-component blend attracted fewer females of An. gambiae than the individual blends in laboratory assays. However, this pattern was not replicated in field trials, where we observed a dose-dependent effect on trap catches while combining both blends with significantly improved trap catches at higher doses. The observed dose-dependent attractiveness for An. gambiae has practical implication in the design of vector control strategies involving kairomones from plant- and mammalian-based sources. Copyright © 2018 Elsevier B.V. All rights reserved.
Semakula, Henry M; Song, Guobao; Zhang, Shushen; Achuu, Simon P
2015-09-01
The increasing protection gaps of insecticide-treated nets and indoor-residual spraying methods against malaria have led to an emergence of residual transmission in sub-Saharan Africa and thus, supplementary strategies to control mosquitoes are urgently required. To assess household environmental resources and practices that increase or reduce malaria risk among children under-five years of age in order to identify those aspects that can be adopted to control residual transmission. Household environmental resources, practices and malaria test results were extracted from Malaria Indicators Survey datasets for Tanzania, Burundi, Malawi and Liberia with 16,747 children from 11,469 households utilised in the analysis. Logistic regressions were performed to quantify the contribution of each factor to malaria occurrence. Cattle rearing reduced malaria risk between 26%-49% while rearing goats increased the risk between 26%-32%. All piped-water systems reduced malaria risk between 30%-87% (Tanzania), 48%-95% (Burundi), 67%-77% (Malawi) and 58%-73 (Liberia). Flush toilets reduced malaria risk between 47%-96%. Protected-wells increased malaria risk between 19%-44%. Interestingly, boreholes increased malaria risk between 19%-75%. Charcoal use reduced malaria risk between 11%-49%. Vector control options for tackling mosquitoes were revealed based on their risk levels. These included cattle rearing, installation of piped-water systems and flush toilets as well as use of smokeless fuels.
Modern technology for landfill waste placement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, D.L.
1995-12-31
The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits ofmore » this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.« less
Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation
NASA Technical Reports Server (NTRS)
Zwerneman, W. D.; Eller, B. G.
1994-01-01
For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.
Video Vectorization via Tetrahedral Remeshing.
Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping
2017-02-09
We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.
RNA Interference in Insect Vectors for Plant Viruses.
Kanakala, Surapathrudu; Ghanim, Murad
2016-12-12
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
RNA Interference in Insect Vectors for Plant Viruses
Kanakala, Surapathrudu; Ghanim, Murad
2016-01-01
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists. PMID:27973446
Poché, Richard M; Githaka, Naftaly; van Gool, Frans; Kading, Rebekah C; Hartman, Daniel; Polyakova, Larisa; Abworo, Edward Okoth; Nene, Vishvanath; Lozano-Fuentes, Saul
2017-12-01
Globally, malaria remains one of the most important vector-borne diseases despite the extensive use of vector control, including indoor residual spraying (IRS) and insecticide-treated nets (ITNs). These control methods target endophagic vectors, whereas some malaria vectors, such as Anopheles arabiensis, preferentially feed outdoors on cattle, making it a complicated vector to control using conventional strategies. Our study evaluated whether treating cattle with a capsule containing the active ingredient (AI) fipronil could reduce vector density and sporozoite rates, and alter blood feeding behavior, when applied in a small-scale field study. A pilot field study was carried out in the Samia District, Western Kenya, from May to July 2015. Four plots, each comprised of 50 huts used for sleeping, were randomly designated to serve as control or treatment. A week before cattle treatment, baseline mosquito collections were performed inside the houses using mechanical aspirators. Animals in the treatment (and buffer) were administered a single oral application of fipronil at ∼0.5mg/kg of body weight. Indoor mosquito collections were performed once a week for four weeks following treatment. Female mosquitoes were first identified morphologically to species complex, followed by PCR-based methods to obtain species identity, sporozoite presence, and the host source of the blood meal. All three species of anophelines found in the study area (An. gambiae s.s., An. arabiensis, An. funestus s.s.) were actively transmitting Plasmodium falciparum during the study period. The indoor resting density of An. arabiensis was significantly reduced in treatment plot one at three weeks post-treatment (T1) (efficacy=89%; T1 density=0.08, 95% credibility intervals [0.05, 0.10]; control plot density=0.78 [0.22, 0.29]) and at four weeks post-treatment (efficacy=64%; T1 density=0.16 [0.08, 0.14]; control plot density=0.48 [0.17, 0.22]). The reduction of An. arabiensis mosquitoes captured in the treatment plot two was higher: zero females were collected after treatment. The indoor resting density of An. gambiae s.s. was not significantly different between the treatment (T1, T2) and their corresponding control plots (C1, C2). An. funestus s.s. showed an increase in density over time. The results of this preliminary study suggest that treating cattle orally with fipronil, to target exophagic and zoophagic malaria vectors, could be a valuable control strategy to supplement existing vector control interventions which target endophilic anthropophilic species. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Wolbachia Effects on Rift Valley Virus Infection in Culex tarsalis Mosquitoes
2017-04-25
Vector-Borne Disease Section, Division of Communicable Diseases, Center 14" for Infectious Diseases, California Department of Public Health ...Wolbachia. 44" 45" Author Summary 46" An integrated vector management program utilizes several practices, including pesticide 47" application and source...mosquitoes and can block pathogen transmission to humans . 51" Additionally, Wolbachia is maternally-inherited, allowing it to spread quickly through
Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.
Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min
2014-05-19
The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.
Yoshioka, Kota; Nakamura, Jiro; Pérez, Byron; Tercero, Doribel; Pérez, Lenin; Tabaru, Yuichiro
2015-12-01
Chagas disease is one of the most serious health problems in Latin America. Because the disease is transmitted mainly by triatomine vectors, a three-phase vector control strategy was used to reduce its vector-borne transmission. In Nicaragua, we implemented an indoor insecticide spraying program in five northern departments to reduce house infestation by Triatoma dimidiata. The spraying program was performed in two rounds. After each round, we conducted entomological evaluation to compare the vector infestation level before and after spraying. A total of 66,200 and 44,683 houses were sprayed in the first and second spraying rounds, respectively. The entomological evaluation showed that the proportion of houses infested by T. dimidiata was reduced from 17.0% to 3.0% after the first spraying, which was statistically significant (P < 0.0001). However, the second spraying round did not demonstrate clear effectiveness. Space-time analysis revealed that reinfestation of T. dimidiata is more likely to occur in clusters where the pre-spray infestation level is high. Here we discuss how large-scale insecticide spraying is neither effective nor affordable when T. dimidiata is widely distributed at low infestation levels. Further challenges involve research on T. dimidiata reinfestation, diversification of vector control strategies, and implementation of sustainable vector surveillance. © The American Society of Tropical Medicine and Hygiene.
MOSQUITO VECTOR CONTROL AND BIOLOGY IN LATIN AMERICA - A 19TH SYMPOSIUM
USDA-ARS?s Scientific Manuscript database
The 19th Annual Latin American symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 75th Annual Meeting in New Orleans, LA, in April 2009. The principal objective, as for the previous 18 symposia, was to promote participation in the AMCA by vector control s...
Kabula, Bilali; Derua, Yahya A; Tungui, Patrick; Massue, Dennis J; Sambu, Edward; Stanley, Grades; Mosha, Franklin W; Kisinza, William N
2011-12-01
In Sub Saharan Africa where most of the malaria cases and deaths occur, members of the Anopheles gambiae species complex and Anophelesfunestus species group are the important malaria vectors. Control efforts against these vectors in Tanzania like in most other Sub Saharan countries have failed to achieve the set objectives of eliminating transmission due to scarcity of information about the enormous diversity of Anopheles mosquito species and their susceptibility status to insecticides used for malaria vector control. Understanding the diversity and insecticide susceptibility status of these vectors and other factors relating to their importance as vectors (such as malaria transmission dynamics, vector biology, ecology, behaviour and population genetics) is crucial to developing a better and sound intervention strategies that will reduce man-vector contact and also manage the emergency of insecticide resistance early and hence .a success in malaria control. The objective of this review was therefore to obtain the information from published and unpublished documents on spatial distribution and composition of malaria vectors, key features of their behaviour, transmission indices and susceptibility status to insecticides in Tanzania. All data available were collated into a database. Details recorded for each data source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, species identification methods, insecticide resistance status, including evidence of the kdr allele, and Plasmodium falciparum sporozoite rate. This collation resulted in a total of 368 publications, encompassing 806,273 Anopheles mosquitoes from 157 georeferenced locations being collected and identified across Tanzania from 1950s to 2010. Overall, the vector species most often reported included An. gambiae complex (66.8%), An. funestus complex (21.8%), An. gambiae s.s. (2.1%) and An. arabiensis (9%). A variety of sampling/ collection and species identification methods were used with an increase in molecular techniques in recent decades. Only 32.2% and 8.4% of the data sets reported on sporozoite analysis and entomological inoculation rate (EIR), respectively which highlights the paucity of such important information in the country. Studies demonstrated efficacy of all four major classes of insecticides against malaria vectors in Tanzania with focal points showing phenotypic resistance. About 95% of malaria entomological data was obtained from northeastern Tanzania. This shows the disproportionate nature of the available information with the western part of the country having none. Therefore it is important for the country to establish entomological surveillance system with state of the art to capture all vitally important entomological indices including vector bionomics in areas of Tanzania where very few or no studies have been done. This is vital in planning and implementing evidence based malaria vector control programmes as well as in monitoring the current malaria control interventions.
The vector of the tobacco epidemic: tobacco industry practices in low and middle-income countries
Lee, Sungkyu; Ling, Pamela M.; Glantz, Stanton A.
2012-01-01
Purpose To understand transnational tobacco companiesr’ (TTCs) practices in low and middle-income countries which serve to block tobacco-control policies and promote tobacco use. Methods Systematic review of published research on tobacco industry activities to promote tobacco use and oppose tobacco-control policies in low and middle-income countries. Results TTCs’ strategies used in low and middle-income countries followed four main themes—economic activity; marketing/promotion; political activity; and deceptive/manipulative activity. Economic activity, including foreign investment and smuggling, was used to enter new markets. Political activities included lobbying, offering voluntary self-regulatory codes, and mounting corporate social responsibility campaigns. Deceptive activities included manipulation of science and use of third-party allies to oppose smoke-free policies, delay other tobacco-control policies, and maintain support of policymakers and the public for a pro-tobacco industry policy environment. TTCs used tactics for marketing, advertising, and promoting their brands that were tailored to specific market environments. These activities included direct and indirect tactis, targeting particular populations, and introducing new tobacco products designed to limit marketing restrictions and taxes, maintain the social acceptability of tobacco use, and counter tobacco-control efforts. Conclusions TTCs have used similar strategies in high-income countries as these being described in low and middle-income countries. As required by FCTC Article 5.3, to counter tobacco industry pressures and to implement effective tobacco-control policies, governments and health professionals in low and middle-income countries should fully understand TTCs practices and counter them. PMID:22370696
NASA Technical Reports Server (NTRS)
Butt, Adam; Paseur, Lila F.; Pitts, Hank M.
2012-01-01
On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs.
Qian, Ying-Jun; Li, Shi-Zhu; Xu, Jun-Fang; Zhang, Li; Fu, Qing; Zhou, Xiao-Nong
2013-12-01
To set up a framework of indicators for schistosomiasis and malaria to guide the formulation and evaluation of vector-borne disease control policies focusing on adaptation to the negative impact of climate change. A 2-level indicator framework was set up on the basis of literature review, and Delphi method was applied to a total of 22 and 19 experts working on schistosomiasis and malaria, respectively. The result was analyzed to calculate the weight of various indicators. A total of 41 questionnaires was delivered, and 38 with valid response (92.7%). The system included 4 indicators at first level, i.e. surveillance, scientific research, disease control and intervention, and adaptation capacity building, with 25 indicators for schistosomiasis and 21 for malaria at the second level. Among indicators at the first level, disease surveillance ranked first with a weight of 0.32. Among the indicators at the second level, vector monitoring scored the highest in terms of both schistosomiasis and malaria. The indicators set up by Delphi method are practical,universal and effective ones using in the field, which is also useful to technically support the establishment of adaptation to climate change in the field of public health.
Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India
Arunachalam, Natarajan; Tyagi, Brij Kishore; Samuel, Miriam; Krishnamoorthi, R; Manavalan, R; Tewari, Satish Chandra; Ashokkumar, V; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max
2012-01-01
Background Dengue is highly endemic in Chennai city, South India, in spite of continuous vector control efforts. This intervention study was aimed at establishing the efficacy as well as the favouring and limiting factors relating to a community-based environmental intervention package to control the dengue vector Aedes aegypti. Methods A cluster randomized controlled trial was designed to measure the outcome of a new vector control package and process analysis; different data collection tools were used to determine the performance. Ten randomly selected intervention clusters (neighbourhoods with 100 houses each) were paired with ten control clusters on the basis of ecological/entomological indices and sociological parameters collected during baseline studies. In the intervention clusters, Aedes control was carried out using a community-based environmental management approach like provision of water container covers through community actors, clean-up campaigns, and dissemination of dengue information through schoolchildren. The main outcome measure was reduction in pupal indices (pupae per person index), used as a proxy measure of adult vectors, in the intervention clusters compared to the control clusters. Results At baseline, almost half the respondents did not know that dengue is serious but preventable, or that it is transmitted by mosquitoes. The stakeholder analysis showed that dengue vector control is carried out by vertically structured programmes of national, state, and local administrative bodies through fogging and larval control with temephos, without any involvement of community-based organizations, and that vector control efforts were conducted in an isolated and irregular way. The most productive container types for Aedes pupae were cement tanks, drums, and discarded containers. All ten intervention clusters with a total of 1000 houses and 4639 inhabitants received the intervention while the ten control clusters with a total of 1000 houses and 4439 inhabitants received only the routine government services and some of the information education and communication project materials. The follow-up studies showed that there was a substantial increase in dengue understanding in the intervention group with only minor knowledge changes in the control group. Community involvement and the partnership among stakeholders (particularly women’s self-help groups) worked well. After 10 months of intervention, the pupae per person index was significantly reduced to 0.004 pupae per person from 1.075 (P = 0.020) in the intervention clusters compared to control clusters. There were also significant reductions in the Stegomyia indices: the house index was reduced to 4.2%, the container index to 1.05%, and the Breteau index to 4.3 from the baseline values of 19.6, 8.91, and 30.8 in the intervention arm. Conclusion A community-based approach together with other stakeholders that promoted interventions to prevent dengue vector breeding led to a substantial reduction in dengue vector density. PMID:23318241
Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India.
Arunachalam, Natarajan; Tyagi, Brij Kishore; Samuel, Miriam; Krishnamoorthi, R; Manavalan, R; Tewari, Satish Chandra; Ashokkumar, V; Kroeger, Axel; Sommerfeld, Johannes; Petzold, Max
2012-12-01
Dengue is highly endemic in Chennai city, South India, in spite of continuous vector control efforts. This intervention study was aimed at establishing the efficacy as well as the favouring and limiting factors relating to a community-based environmental intervention package to control the dengue vector Aedes aegypti. A cluster randomized controlled trial was designed to measure the outcome of a new vector control package and process analysis; different data collection tools were used to determine the performance. Ten randomly selected intervention clusters (neighbourhoods with 100 houses each) were paired with ten control clusters on the basis of ecological/entomological indices and sociological parameters collected during baseline studies. In the intervention clusters, Aedes control was carried out using a community-based environmental management approach like provision of water container covers through community actors, clean-up campaigns, and dissemination of dengue information through schoolchildren. The main outcome measure was reduction in pupal indices (pupae per person index), used as a proxy measure of adult vectors, in the intervention clusters compared to the control clusters. At baseline, almost half the respondents did not know that dengue is serious but preventable, or that it is transmitted by mosquitoes. The stakeholder analysis showed that dengue vector control is carried out by vertically structured programmes of national, state, and local administrative bodies through fogging and larval control with temephos, without any involvement of community-based organizations, and that vector control efforts were conducted in an isolated and irregular way. The most productive container types for Aedes pupae were cement tanks, drums, and discarded containers. All ten intervention clusters with a total of 1000 houses and 4639 inhabitants received the intervention while the ten control clusters with a total of 1000 houses and 4439 inhabitants received only the routine government services and some of the information education and communication project materials. The follow-up studies showed that there was a substantial increase in dengue understanding in the intervention group with only minor knowledge changes in the control group. Community involvement and the partnership among stakeholders (particularly women's self-help groups) worked well. After 10 months of intervention, the pupae per person index was significantly reduced to 0·004 pupae per person from 1·075 (P = 0·020) in the intervention clusters compared to control clusters. There were also significant reductions in the Stegomyia indices: the house index was reduced to 4·2%, the container index to 1·05%, and the Breteau index to 4·3 from the baseline values of 19·6, 8·91, and 30·8 in the intervention arm. A community-based approach together with other stakeholders that promoted interventions to prevent dengue vector breeding led to a substantial reduction in dengue vector density.
Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A
2009-12-30
Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency.
Irvine, M A; Reimer, L J; Njenga, S M; Gunawardena, S; Kelly-Hope, L; Bockarie, M; Hollingsworth, T D
2015-10-22
With ambitious targets to eliminate lymphatic filariasis over the coming years, there is a need to identify optimal strategies to achieve them in areas with different baseline prevalence and stages of control. Modelling can assist in identifying what data should be collected and what strategies are best for which scenarios. We develop a new individual-based, stochastic mathematical model of the transmission of lymphatic filariasis. We validate the model by fitting to a first time point and predicting future timepoints from surveillance data in Kenya and Sri Lanka, which have different vectors and different stages of the control programme. We then simulate different treatment scenarios in low, medium and high transmission settings, comparing once yearly mass drug administration (MDA) with more frequent MDA and higher coverage. We investigate the potential impact that vector control, systematic non-compliance and different levels of aggregation have on the dynamics of transmission and control. In all settings, increasing coverage from 65 to 80 % has a similar impact on control to treating twice a year at 65 % coverage, for fewer drug treatments being distributed. Vector control has a large impact, even at moderate levels. The extent of aggregation of parasite loads amongst a small portion of the population, which has been estimated to be highly variable in different settings, can undermine the success of a programme, particularly if high risk sub-communities are not accessing interventions. Even moderate levels of vector control have a large impact both on the reduction in prevalence and the maintenance of gains made during MDA, even when parasite loads are highly aggregated, and use of vector control is at moderate levels. For the same prevalence, differences in aggregation and adherence can result in very different dynamics. The novel analysis of a small amount of surveillance data and resulting simulations highlight the need for more individual level data to be analysed to effectively tailor programmes in the drive for elimination.
Epigenetic Control of Prostate Cancer Metastasis: Role of Runx2 Phosphorylation
2014-04-01
prostate cancer cells. In the third budget year, we achieved the following: a. Generation of retrovirus and lentivirus vectors expressing WT RUNX2 and S301A... retrovirus vectors will be developed that express β-galactosidase (negative control), wild type Runx2, S301A/S319A (non-phosphorylated) or S301E/S310E...constitutively active) Runx2 mutants. As described last year, retrovirus and lentivirus vectors were constructed to stably introduce wild type and mutant
Noise-induced hearing loss and associated factors among vector control workers in a Malaysian state.
Masilamani, Retneswari; Rasib, Abdul; Darus, Azlan; Ting, Anselm Su
2014-11-01
This study aims to determine the prevalence and associated factors of noise-induced hearing loss (NIHL) among vector control workers in the state of Negeri Sembilan, Malaysia. This was an analytical cross-sectional study conducted on 181 vector control workers who were working in district health offices in a state in Malaysia. Data were collected using a self-administered questionnaire and audiometry. Prevalence of NIHL was 26% among this group of workers. NIHL was significantly associated with the age-group of 40 years and older, length of service of 10 or more years, current occupational noise exposure, listening to loud music, history of firearms use, and history of mumps/measles infection. Following logistic regression, age of more than 40 years and noise exposure in current occupation were associated with NIHL with an odds ratio of 3.45 (95% confidence interval = 1.68-7.07) and 6.87 (95% confidence interval = 1.54-30.69), respectively, among this group of vector control workers. © 2012 APJPH.
Chemosterilants for Control of Insects and Insect Vectors of Disease.
Baxter, Richard H G
2016-10-01
Both historically and at present, vector control is the most generally effective means of controlling malaria transmission. Insecticides are the predominant method of vector control, but the sterile insect technique (SIT) is a complementary strategy with a successful track record in both agricultural and public health sectors. Strategies of genetic and radiation-induced sterilization of Anopheles have to date been limited by logistical and/or regulatory hurdles. A safe and effective mosquito chemosterilant would therefore be of major utility to future deployment of SIT for malaria control. Here we review the prior and current use of chemosterilants in SIT, and assess the potential for future research. Recent genomic and proteomic studies reveal opportunities for specific targeting of seminal fluid proteins, and the capacity to interfere with sperm motility and storage in the female.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernoguzov, Alexander; Markham, Thomas R.; Haridas, Harshal S.
A method includes generating at least one access vector associated with a specified device in an industrial process control and automation system. The specified device has one of multiple device roles. The at least one access vector is generated based on one or more communication policies defining communications between one or more pairs of devices roles in the industrial process control and automation system, where each pair of device roles includes the device role of the specified device. The method also includes providing the at least one access vector to at least one of the specified device and one ormore » more other devices in the industrial process control and automation system in order to control communications to or from the specified device.« less
Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT).
McDowell, Mary Ann
2015-08-01
More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian
2014-05-01
Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.
Rydzanicz, Katarzyna; Lonc, Elzbieta; Becker, Norbert
2009-01-01
Current strategy of Integrated Vector Management (IVM) comprises the general approach of environmentally friendly control measures. With regard to mosquitoes it includes first of all application of microbial insecticides based on Bacillus thuringiensis israelensis (Bti) and B. sphaericus (Bs) delta-endotoxins as well as the reduction of breeding habitats and natural enemy augmentation. It can be achieved thorough implementation of the interdisciplinary program, i. e., understanding of mosquito vector ecology, the appropriate vector-diseases (e. g., malariometric) measurements and training of local personnel responsible for mosquito abatement activities, as well as community involvement. Biocontrol methods as an alternative to chemical insecticides result from the sustainability development concept, growing awareness of environmental pollution and the development of insecticide-resistant strains of vector-mosquito populations in many parts of the world. Although sustainable trends are usually considered in terms of the monetary and training resources within countries, environmental concerns are actually more limiting factors for the duration of an otherwise successful vector control effort. In order to meet these new needs, increasing efforts have been made in search of and application of natural enemies, such as parasites, bacterial pathogens and predators which may control populations of insect vectors. The biological control agent based on the bacterial toxins Bti and Bs has been used in the Wrocław's University and Municipal Mosquito Control Programs since 1998. In West-Africa biocontrol appears to be an effective and safe tool to combat malaria in addition to bed-nets, residual indoor spraying and appropriate diagnosis and treatment of malaria parasites which are the major tools in the WHO Roll Back Malaria Program. IVM studies carried out 2005-2008 in Cotonou (Benin) as well those in Wrocław Irrigated Fields during the last years include the following major steps: 1. Mapping of all breeding sites in the project area and recording data in a geographical information system (GIS/relational database). All districts, streets and houses are numbered for quick reference during the operation; 2. Studying mosquito vector bionomics, migration and vectorial capacity in the project area, before, during and after the routine Bti treatments; 3. Assessment of the optimum for effective larvicide insecticide dosages at major breeding sites against the different target mosquito species; 4. Implementation of the microbial control agents in the integrated routine program. Adaptation of the application equipment to the local situation, training of the field staff, and routine treatments; 5. Conducting surveillance of vector-disease (e. g., malariometric) parameters in the control and experimental area before, during, and after the application of biocontrol agents.
Eisen, Lars; Lozano-Fuentes, Saul
2009-01-01
The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163
Bunch of restless vector solitons in a fiber laser with SESAM.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X
2009-05-11
We report on the experimental observation of a novel form of vector soliton interaction in a fiber laser mode-locked with SESAM. Several vector solitons bunch in the cavity and move as a unit with the cavity repetition rate. However, inside the bunch the vector solitons make repeatedly contractive and repulsive motions, resembling the contraction and extension of a spring. The number of vector solitons in the bunch is controllable by changing the pump power. In addition, polarization rotation locking and period doubling bifurcation of the vector soliton bunch are also experimentally observed.
2014-01-01
Background Indoor Residual Spraying (IRS) and Long-Lasting Insecticidal nets (LLINs) are major malaria vector control tools in Ethiopia. However, recent reports from different parts of the country showed that populations of Anopheles arabiensis, the principal malaria vector, have developed resistance to most families of insecticides recommended for public health use which may compromise the efficacy of both of these key vector control interventions. Thus, this study evaluated the efficacy of DDT IRS and LLINs against resistant populations of An. arabiensis using experimental huts in Asendabo area, southwestern Ethiopia. Methods The susceptibility status of populations of An. arabiensis was assessed using WHO test kits to DDT, deltamethrin, malathion, lambda-cyhalothrin, fenitrothion and bendiocarb. The efficacy of LLIN (PermaNet® 2.0), was evaluated using the WHO cone bioassay. Moreover, the effect of the observed resistance against malaria vector control interventions (DDT IRS and LLINs) were assessed using experimental huts. Results The findings of this study revealed that populations of An. arabiensis were resistant to DDT, deltamethrin, lambda-cyhalothrin and malathion with mortality rates of 1.3%, 18.8%, 36.3% and 72.5%, respectively but susceptible to fenitrothion and bendiocarb with mortality rates of 98.81% and 97.5%, respectively. The bio-efficacy test of LLIN (PermaNet® 2.0) against An. arabiensis revealed that the mosquito population showed moderate knockdown (64%) and mortality (78%). Moreover, mosquito mortalities in DDT sprayed huts and in huts with LLINs were not significantly different (p > 0.05) from their respective controls. Conclusion The evaluation of the efficacy of DDT IRS and LLINs using experimental huts showed that both vector control tools had only low to moderate efficacy against An. arabiensis populations from Ethiopia. Despite DDT being replaced by carbamates for IRS, the low efficacy of LLINs against the resistant population of An. arabiensis is still a problem. Thus, there is a need for alternative vector control tools and implementation of appropriate insecticide resistance management strategies as part of integrated vector management by the national malaria control program. PMID:24678605
A consensus for the development of a vector model to assess clinical complexity.
Corazza, Gino Roberto; Klersy, Catherine; Formagnana, Pietro; Lenti, Marco Vincenzo; Padula, Donatella
2017-12-01
The progressive rise in multimorbidity has made management of complex patients one of the most topical and challenging issues in medicine, both in clinical practice and for healthcare organizations. To make this easier, a score of clinical complexity (CC) would be useful. A vector model to evaluate biological and extra-biological (socio-economic, cultural, behavioural, environmental) domains of CC was proposed a few years ago. However, given that the variables that grade each domain had never been defined, this model has never been used in clinical practice. To overcome these limits, a consensus meeting was organised to grade each domain of CC, and to establish the hierarchy of the domains. A one-day consensus meeting consisting of a multi-professional panel of 25 people was held at our Hospital. In a preliminary phase, the proponents selected seven variables as qualifiers for each of the five above-mentioned domains. In the course of the meeting, the panel voted for five variables considered to be the most representative for each domain. Consensus was established with 2/3 agreement, and all variables were dichotomised. Finally, the various domains were parametrized and ranked within a feasible vector model. A Clinical Complexity Index was set up using the chosen variables. All the domains were graphically represented through a vector model: the biological domain was chosen as the most significant (highest slope), followed by the behavioural and socio-economic domains (intermediate slope), and lastly by the cultural and environmental ones (lowest slope). A feasible and comprehensive tool to evaluate CC in clinical practice is proposed herein.
Electric control of wave vector filtering in a hybrid magnetic-electric-barrier nanostructure
NASA Astrophysics Data System (ADS)
Kong, Yong-Hong; Lu, Ke-Yu; He, Ya-Ping; Liu, Xu-Hui; Fu, Xi; Li, Ai-Hua
2018-06-01
We theoretically investigate how to manipulate the wave vector filtering effect by a traverse electric field for electrons across a hybrid magnetic-electric-barrier nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe and a Schottky-metal stripe on top and bottom of a GaAs/Al x Ga1- x As heterostructure, respectively. The wave vector filtering effect is found to be related closely to the applied electric field. Moreover, the wave vector filtering efficiency can be manipulated by changing direction or adjusting strength of the traverse electric field. Therefore, such a nanostructure can be employed as an electrically controllable electron-momentum filter for nanoelectronics applications.
Frozen orbit realization using LQR analogy
NASA Astrophysics Data System (ADS)
Nagarajan, N.; Rayan, H. Reno
In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.
Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M
2015-12-30
Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
2014-01-01
Background Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. Methods Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. Results Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. Conclusion IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health. PMID:24990155
Extrapolation methods for vector sequences
NASA Technical Reports Server (NTRS)
Smith, David A.; Ford, William F.; Sidi, Avram
1987-01-01
This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.
A small scale field trial with expanded polystyrene beads for mosquito control in septic tanks.
Chang, M S; Lian, S; Jute, N
1995-01-01
A field trial of the use of expanded polystyrene beads (EPSB) to control the breeding of mosquito larvae in household septic tanks was conducted in Sarawak. One week after treatment, the breeding of Culex quinquefasciatus and Aedes albopictus was reduced by 100% and 68.7% respectively. For both species combined, a 57.25% reduction in the adult emergence rate was achieved. No adult was caught in the emergence trap one month after treatment. A reduction in mosquito biting rates was reported by 87.3% of respondents. All households regarded the EPSB treatment as effective. This study has reduced the relatively high infestation rate of A. albopictus in the septic tanks to 16-20%. The EPSB treatment is feasible and practical. Post-treatment assessment using adult emergence traps and the implications for the vector control programme of the local authority are discussed.
Applications of Java and Vector Graphics to Astrophysical Visualization
NASA Astrophysics Data System (ADS)
Edirisinghe, D.; Budiardja, R.; Chae, K.; Edirisinghe, G.; Lingerfelt, E.; Guidry, M.
2002-12-01
We describe a series of projects utilizing the portability of Java programming coupled with the compact nature of vector graphics (SVG and SWF formats) for setup and control of calculations, local and collaborative visualization, and interactive 2D and 3D animation presentations in astrophysics. Through a set of examples, we demonstrate how such an approach can allow efficient and user-friendly control of calculations in compiled languages such as Fortran 90 or C++ through portable graphical interfaces written in Java, and how the output of such calculations can be packaged in vector-based animation having interactive controls and extremely high visual quality, but very low bandwidth requirements.
Factors Associated with Correct and Consistent Insecticide Treated Curtain Use in Iquitos, Peru
Scott, Thomas W.; Elder, John P.; Alexander, Neal; Halsey, Eric S.; McCall, Philip J.
2016-01-01
Dengue is an arthropod-borne virus of great public health importance, and control of its mosquito vectors is currently the only available method for prevention. Previous research has suggested that insecticide treated curtains (ITCs) can lower dengue vector infestations in houses. This observational study investigated individual and household-level socio-demographic factors associated with correct and consistent use of ITCs in Iquitos, Peru. A baseline knowledge, attitudes, and practices (KAP) survey was administered to 1,333 study participants, and ITCs were then distributed to 593 households as part of a cluster-randomized trial. Follow up KAP surveys and ITC-monitoring checklists were conducted at 9, 18, and 27 months post-ITC distribution. At 9 months post-distribution, almost 70% of ITCs were hanging properly (e.g. hanging fully extended or tied up), particularly those hung on walls compared to other locations. Proper ITC hanging dropped at 18 months to 45.7%. The odds of hanging ITCs correctly and consistently were significantly greater among those participants who were housewives, knew three or more correct symptoms of dengue and at least one correct treatment for dengue, knew a relative or close friend who had had dengue, had children sleeping under a mosquito net, or perceived a change in the amount of mosquitoes in the home. Additionally, the odds of recommending ITCs in the future were significantly greater among those who perceived a change in the amount of mosquitoes in the home (e.g. perceived the ITCs to be effective). Despite various challenges associated with the sustained effectiveness of the selected ITCs, almost half of the ITCs were still hanging at 18 months, suggesting a feasible vector control strategy for sustained community use. PMID:26967157
Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Bowers, Albion H.; Pahle, Joseph W.
1996-01-01
Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.
Vector Control During Operation Restore Hope - Somalia
2008-11-16
Restore Hope, focusing primarily on pest battalion provided services including and vector control operations. Much of identification of the preventive...and usable arthropod Identification larval mosquito surveys were conducted, materials (i.e., keys) were nonexistent. but only in areas that were...bait would be mosquitoes. The pesticide used for placed adjacent to but away from troop mosquito control ( malathion - ULV) was areas, attracting flies
Transgenic Mosquitoes - Fact or Fiction?
Wilke, André B B; Beier, John C; Benelli, Giovanni
2018-06-01
Technologies for controlling mosquito vectors based on genetic manipulation and the release of genetically modified mosquitoes (GMMs) are gaining ground. However, concrete epidemiological evidence of their effectiveness, sustainability, and impact on the environment and nontarget species is lacking; no reliable ecological evidence on the potential interactions among GMMs, target populations, and other mosquito species populations exists; and no GMM technology has yet been approved by the WHO Vector Control Advisory Group. Our opinion is that, although GMMs may be considered a promising control tool, more studies are needed to assess their true effectiveness, risks, and benefits. Overall, several lines of evidence must be provided before GMM-based control strategies can be used under the integrated vector management framework. Copyright © 2018 Elsevier Ltd. All rights reserved.
Discovering and Designing New Insecticides and their Development Vector Control.
USDA-ARS?s Scientific Manuscript database
The discovery and development of novel insecticides for vector control is a primary focus of toxicology research conducted at the Mosquito and Fly Research Unit, Gainesville, FL. To identify new active ingredients, the screening of large numbers of experimental compounds is conducted using a primary...
Quintero, Juliana; Brochero, Helena; Manrique-Saide, Pablo; Barrera-Pérez, Mario; Basso, César; Romero, Sonnia; Caprara, Andrea; De Lima Cunha, Jane Cris; Beltrán-Ayala, Efraín; Mitchell-Foster, Kendra; Kroeger, Axel; Sommerfeld, Johannnes; Petzold, Max
2014-01-21
Dengue is an increasingly important public health problem in most Latin American countries and more cost-effective ways of reducing dengue vector densities to prevent transmission are in demand by vector control programs. This multi-centre study attempted to identify key factors associated with vector breeding and development as a basis for improving targeted intervention strategies. In each of 5 participant cities in Mexico, Colombia, Ecuador, Brazil and Uruguay, 20 clusters were randomly selected by grid sampling to incorporate 100 contiguous households, non-residential private buildings (businesses) and public spaces. Standardized household surveys, cluster background surveys and entomological surveys specifically targeted to obtain pupal indices for Aedes aegypti, were conducted in the dry and wet seasons. The study clusters included mainly urban low-middle class populations with satisfactory infrastructure and -except for Uruguay- favourable climatic conditions for dengue vector development. Household knowledge about dengue and "dengue mosquitoes" was widespread, mainly through mass media, but there was less awareness around interventions to reduce vector densities. Vector production (measured through pupal indices) was favoured when water containers were outdoor, uncovered, unused (even in Colombia and Ecuador where the large tanks used for household water storage and washing were predominantly productive) and -particularly during the dry season- rainwater filled. Larval infestation did not reflect productive container types. All productive container types, including those important in the dry season, were identified by pupal surveys executed during the rainy season. A number of findings are relevant for improving vector control: 1) there is a need for complementing larval surveys with occasional pupal surveys (to be conducted during the wet season) for identifying and subsequently targeting productive container types; 2) the need to raise public awareness about useful and effective interventions in productive container types specific to their area; and 3) the motivation for control services that-according to this and similar studies in Asia- dedicated, targeted vector management can make a difference in terms of reducing vector abundance.
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.
X-31 quasi-tailless flight demonstration
NASA Technical Reports Server (NTRS)
Huber, Peter; Schellenger, Harvey G.
1994-01-01
The primary objective of the quasi-tailless flight demonstration is to demonstrate the feasibility of using thrust vectoring for directional control of an unstable aircraft. By using this low-cost, low-risk approach it is possible to get information about required thrust vector control power and deflection rates from an inflight experiment as well as insight in low-power thrust vectoring issues. The quasi-tailless flight demonstration series with the X-31 began in March 1994. The demonstration flight condition was Mach 1.2 at 37,500 feet. A series of basic flying quality maneuvers, doublets, bank to bank rolls, and wind-up-turns have been performed with a simulated 100% vertical tail reduction. Flight test and supporting simulation demonstrated that the quasi-tailless approach is effective in representing the reduced stability of tailless configurations. The flights also demonstrated that thrust vectoring could be effectively used to stabilize a directionally unstable configuration and provide control power for maneuver coordination.
Identification and Optimization of New Leads for Malaria Vector Control.
Hueter, Ottmar F; Hoppé, Mark; Wege, Philip; Maienfisch, Peter
2016-10-01
A significant proportion of the world's population remains at risk from malaria, and whilst great progress has been made in reducing the number of malaria cases globally through the use of vector control insecticides, these gains are under threat from the emergence of insecticide resistance. The spread of resistance in the vector populations, principally to pyrethroids, is driving the need for the development of new tools for malaria vector control. In order to identify new leads 30,000 compounds from the Syngenta corporate chemical collection were tested in a newly developed screening platform. More than 3000 compounds (10%) showed activity at ≤200 mg active ingredient (AI) litre -1 against Anopheles stephensi. Further evaluation resulted in the identification of 12 viable leads for the control of adult mosquitoes, most originating from current or former insecticide projects. Surprisingly, one of these leads emerged from a former PPO herbicide project and one from a former complex III fungicide project. This indicates that representatives of certain herbicide and fungicide projects and modes of action can also represent a valuable source of leads for malaria vector control. Optimization of the diphenyl ether lead 1 resulted in the identification of the cyano-pyridyl compound 31. This compound 31 exhibits good activity against mosquito species including rdl resistant Anopheles. It is only slightly weaker than permethrin and does not show relevant levels of cross-resistance to the organochlorine insecticide dieldrin.
Quinde-Calderón, Leonardo; Rios-Quituizaca, Paulina; Solorzano, Luis; Dumonteil, Eric
2016-01-01
To describe the current situation of Chagas disease in Ecuador and to evaluate the impact of vector control for the period 2004-2014. Since 2004, the Ministry of Public Health has formalized activities for the surveillance and control of Chagas disease and we analyzed here available records. More than 200 000 houses were surveyed, and 2.6% were found to be infested (95% CI: 2.6-2.7), and more than 51 000 houses were sprayed with residual insecticide, with important yearly variations. A total of 915 cases of T. cruzi infection were registered. The Amazon region is emerging as a high priority area, where nearly half of T. cruzi infection cases originate. The costal region and the southern highland valleys remain important high-risk area. Vector control efforts over the past 10 years have been effective in the coastal region, where T. dimidiata predominates, and resulted in important reductions in house infestation indices in many areas, even reaching negligible levels in some parishes. Vector efforts need to be sustained and expanded for the elimination of T. dimidiata to be feasible. Novel vector control interventions need to be designed to reduce intrusion by several triatomine species present in the Amazon region and southern Ecuador. Strong political commitment is needed to sustain current achievements and improve the national coverage of these programmes. © 2015 John Wiley & Sons Ltd.
A malaria transmission-directed model of mosquito life cycle and ecology
2011-01-01
Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for mosquito population dynamics, effects of weather, and impacts of multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns. Results Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both alone and in combination, are displayed for a single-location simulation with vector species and seasonality characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored. Conclusions The ability to model a spectrum of local vector species with different ecologies and behaviours allows local customization of packages of interventions and exploration of the effect of proposed new tools. PMID:21999664
Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand
2013-01-01
Physiological resistance and behavioral responses of mosquito vectors to insecticides are critical aspects of the chemical-based disease control equation. The complex interaction between lethal, sub-lethal and excitation/repellent ('excito-repellent’) properties of chemicals is typically overlooked in vector management and control programs. The development of “physiological” resistance, metabolic and/or target site modifications, to insecticides has been well documented in many insect groups and disease vectors around the world. In Thailand, resistance in many mosquito populations has developed to all three classes of insecticidal active ingredients currently used for vector control with a majority being synthetic-derived pyrethroids. Evidence of low-grade insecticide resistance requires immediate countermeasures to mitigate further intensification and spread of the genetic mechanisms responsible for resistance. This can take the form of rotation of a different class of chemical, addition of a synergist, mixtures of chemicals or concurrent mosaic application of different classes of chemicals. From the gathered evidence, the distribution and degree of physiological resistance has been restricted in specific areas of Thailand in spite of long-term use of chemicals to control insect pests and disease vectors throughout the country. Most surprisingly, there have been no reported cases of pyrethroid resistance in anopheline populations in the country from 2000 to 2011. The precise reasons for this are unclear but we assume that behavioral avoidance to insecticides may play a significant role in reducing the selection pressure and thus occurrence and spread of insecticide resistance. The review herein provides information regarding the status of physiological resistance and behavioral avoidance of the primary mosquito vectors of human diseases to insecticides in Thailand from 2000 to 2011. PMID:24294938
Evidence of man-vector contact in torn long-lasting insecticide-treated nets
2013-01-01
Background Studies indicate that physical damage to long-lasting insecticide-treated nets (LLINs) occurs at a surprisingly rapid rate following net distribution. To what extent does such damage affect the impact of LLINs? Can vectors pass a compromised LLIN barrier to bite? Do more resistant vectors enter the insecticide-treated nets (ITNs) through holes? Methods The study was carried out in three geo-locations. Two types of LLINs (polyester and polyethylene) with ‘standardized’ physical damage were compared with similarly damaged, but non-insecticidal (control) nets. The proportionate Holes Index (pHI) of each net was 276. Mosquitoes were captured inside the nets, identified taxonomically, and subjected to molecular analysis to estimate Knock-down resistance (Kdr) frequency. Results The most commonly observed species was Anopheles gambiae, accounting for approximately 70% (1,076/1,550) of the total mosquitoes collected both in LLINs and non-insecticidal nets. When compared with controls, number of vectors captured in torn LLINs was significantly reduced. Nonetheless in a night, an average of 5 An. gambiae s.l could enter the damaged LLINs to bite. Similar numbers of resistant mosquitoes were collected in both LLINs and non-insecticidal (control) nets (p > 0.05). Conclusions At a pHI of 276, man-vector contact was observed in torn LLINs. The insecticide at the surface of LLINs could only reduce the number of vectors. Resistant mosquitoes have opportunity to enter both non-insecticidal (control) nets and LLINs to bite. PMID:23941585
Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto
2016-10-01
Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer-probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications.
Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto
2016-01-01
Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer–probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications. PMID:27763786
Mu, Dongdong; Wang, Guofeng; Fan, Yunsheng; Sun, Xiaojie; Qiu, Bingbing
2018-06-08
This paper presents a complete scheme for research on the three degrees of freedom model and response model of the vector propulsion of an unmanned surface vehicle. The object of this paper is “Lanxin”, an unmanned surface vehicle (7.02 m × 2.6 m), which is equipped with a single vector propulsion device. First, the “Lanxin” unmanned surface vehicle and the related field experiments (turning test and zig-zag test) are introduced and experimental data are collected through various sensors. Then, the thrust of the vector thruster is estimated by the empirical formula method. Third, using the hypothesis and simplification, the three degrees of freedom model and the response model of USV are deduced and established, respectively. Fourth, the parameters of the models (three degrees of freedom model, response model and thruster servo model) are obtained by system identification, and we compare the simulated turning test and zig-zag test with the actual data to verify the accuracy of the identification results. Finally, the biggest advantage of this paper is that it combines theory with practice. Based on identified response model, simulation and practical course keeping experiments are carried out to further verify feasibility and correctness of modeling and identification.
Emergence and Prevalence of Human Vector-Borne Diseases in Sink Vector Populations
Rascalou, Guilhem; Pontier, Dominique; Menu, Frédéric; Gourbière, Sébastien
2012-01-01
Vector-borne diseases represent a major public health concern in most tropical and subtropical areas, and an emerging threat for more developed countries. Our understanding of the ecology, evolution and control of these diseases relies predominantly on theory and data on pathogen transmission in large self-sustaining ‘source’ populations of vectors representative of highly endemic areas. However, there are numerous places where environmental conditions are less favourable to vector populations, but where immigration allows them to persist. We built an epidemiological model to investigate the dynamics of six major human vector borne-diseases in such non self-sustaining ‘sink’ vector populations. The model was parameterized through a review of the literature, and we performed extensive sensitivity analysis to look at the emergence and prevalence of the pathogen that could be encountered in these populations. Despite the low vector abundance in typical sink populations, all six human diseases were able to spread in 15–55% of cases after accidental introduction. The rate of spread was much more strongly influenced by vector longevity, immigration and feeding rates, than by transmission and virulence of the pathogen. Prevalence in humans remained lower than 5% for dengue, leishmaniasis and Japanese encephalitis, but substantially higher for diseases with longer duration of infection; malaria and the American and African trypanosomiasis. Vector-related parameters were again the key factors, although their influence was lower than on pathogen emergence. Our results emphasize the need for ecology and evolution to be thought in the context of metapopulations made of a mosaic of sink and source habitats, and to design vector control program not only targeting areas of high vector density, but working at a larger spatial scale. PMID:22629337
Endersby-Harshman, Nancy M; Wuliandari, Juli Rochmijati; Harshman, Lawrence G; Frohn, Verena; Johnson, Brian J; Ritchie, Scott A; Hoffmann, Ary A
2017-11-07
Although pesticide resistance is common in insect vectors of human diseases, the evolution of resistance might be delayed if management practices are adopted that limit selection of resistance alleles. Outbreaks of dengue fever have occurred in Queensland, Australia, since the late 1800s, leading to ongoing attempts to control the mosquito vector, Aedes aegypti (L.). Since the 1990s, pyrethroid insecticides have been used for this purpose, but have been applied in a strategic manner with a variety of delivery methods including indoor residual spraying, lethal ovitraps, and use of insect growth regulators as larvicides. Separate selection experiments on mosquitoes from Queensland using Type I and Type II pyrethroids did not produce resistant lines of Ae. aegypti, and bioassays of field material from Queensland showed only weak tolerance in comparison with a susceptible line. There was no evidence of knockdown resistance (kdr) mutations in Ae. aegypti from Queensland, in stark contrast to the situation in nearby southeast Asia. We suspect that careful management of pyrethroid insecticide use combined with surveillance and interception of exotic incursions has helped to maintain pyrethroid (and particularly kdr-based) susceptibility in Ae. aegypti in Australia. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Xue, Ya-jun; Dong, Yan; Han, Xi; Wei, Mei-yang; Ge, Jun-hui; Cai, Ru-jue; Hu, Guo-han; Luo, Chun; Zhu, Cheng; Lu, Yi-cheng
2006-09-05
To explore the protective effect of glial growth factor-2 (GGF2) on brain injury. Thirty-four SD rats underwent lateral fluid percussion to establish brain injury models and then were randomly divided into 4 groups: treatment group (n = 10, the plasmid pEGFP-N1-GGF2 mixed with liposome was injected into the brain tissue directly), vector control group (n = 10, the vector pEGFP-N1 mixed with liposome was injected into the brain tissue directly), liposome control group (n = 10, liposome was injected), and sham operation group (n = 4). Three assessment tasks were performed for neurobehavioral evaluation: Clivas Test, Beam Balance Test and Beam Walking Test. 10 days after brain injury, the rats were sacrificed and their brains were embedded in paraffin for HE staining, Nissle staining and immunohistochemical examination of MBP, NSE, and GFAP. The Clivas test score of the treatment group was 66.25 +/- 3.54, significantly higher than those of the vector control group and. liposome control group (58.31 +/- 3.72 and 57.21 +/- 3.93 respectively, both P < 0.05). The beam test score of the treatment group was 2.59 +/- 0.21, significantly lower than those the vector control group and liposome control group (3.41 +/- 0.25 and 3.24 +/- 0.22 respectively, both P < 0.05). The walking test score of the treatment group was 20.15 +/- 2.59, significantly lower than those of control group and liposome control group (27.00 +/- 3.47 and 27.80 +/- 3.00 respectively, both P < 0.05). The improvement in beam walking test was the greatest. The neuron number in the external granular layer and external pyramidal layer in cortex of the treatment group was 98 +/- 10, significantly more than those of the vector control group and liposome group (75 +/- 7 and 67 +/- 8, both P < 0.05). The neuron number in the internal pyramidal layer in cortex of the treatment group was 37 +/- 4, significantly more than those of the vector control group and liposome group (19 +/- 3 and 23 +/- 4 respectively, both P < 0.05). The neuron number in the CA1 region in hippocampus of the treatment group was 102 +/- 11, significantly more than those of the vector control group and liposome group (67 +/- 8 and 58 +/- 9 respectively, both P < 0.01). Higher level of immunoreactivity with MBP was also detected in the cortex in the rats of the treatment group. Cationic liposome-mediated GGF2 gene therapy effectively promotes the recovery of brain injury.
Assessing the potential for AAV vector genotoxicity in a murine model
Li, Hojun; Malani, Nirav; Hamilton, Shari R.; Schlachterman, Alexander; Bussadori, Giulio; Edmonson, Shyrie E.; Shah, Rachel; Arruda, Valder R.; Mingozzi, Federico; Fraser Wright, J.; Bushman, Frederic D.
2011-01-01
Gene transfer using adeno-associated virus (AAV) vectors has great potential for treating human disease. Recently, questions have arisen about the safety of AAV vectors, specifically, whether integration of vector DNA in transduced cell genomes promotes tumor formation. This study addresses these questions with high-dose liver-directed AAV-mediated gene transfer in the adult mouse as a model (80 AAV-injected mice and 52 controls). After 18 months of follow-up, AAV-injected mice did not show a significantly higher rate of hepatocellular carcinoma compared with controls. Tumors in mice treated with AAV vectors did not have significantly different amounts of vector DNA compared with adjacent normal tissue. A novel high-throughput method for identifying AAV vector integration sites was developed and used to clone 1029 integrants. Integration patterns in tumor tissue and adjacent normal tissue were similar to each other, showing preferences for active genes, cytosine-phosphate-guanosine islands, and guanosine/cysteine-rich regions. Gene expression data showed that genes near integration sites did not show significant changes in expression patterns compared with genes more distal to integration sites. No integration events were identified as causing increased oncogene expression. Thus, we did not find evidence that AAV vectors cause insertional activation of oncogenes and subsequent tumor formation. PMID:21106988
Bezodis, Neil E; North, Jamie S; Razavet, Jane L
2017-09-01
A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes completed maximal effort 10-m accelerations in three conditions following different verbal instructions intended to manipulate the force vector orientation. Ground reaction forces (GRFs) were collected from the step nearest 5-m and stance leg kinematics at touchdown were also analysed to understand specific kinematic features of touchdown technique which may influence the consequent force vector orientation. Magnitude-based inferences were used to compare findings between conditions. There was a likely more horizontally oriented ground reaction force vector and a likely lower peak vertical force in the control condition compared with the experimental conditions. 10-m sprint time was very likely quickest in the control condition which confirmed the importance of force vector orientation for acceleration performance on a within-athlete basis. The stance leg kinematics revealed that a more horizontally oriented force vector during stance was preceded at touchdown by a likely more dorsiflexed ankle, a likely more flexed knee, and a possibly or likely greater hip extension velocity.
Winbanks, Catherine E; Beyer, Claudia; Qian, Hongwei; Gregorevic, Paul
2012-01-01
Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.
Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin
2014-09-01
Human immunodeficiency virus (HIV)-associated sensory neuropathy is a common neurological complication of HIV infection affecting up to 30% of HIV-positive individuals. However, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments for HIV-related neuropathic pain (NP). In this study, we tested the hypothesis that inhibition of proinflammatory factors with overexpression of interleukin (IL)-10 reduces HIV-related NP in a rat model. NP was induced by the application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve. The hindpaws of rats were inoculated with nonreplicating herpes simplex virus (HSV) vectors expressing anti-inflammatory cytokine IL-10 or control vector. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The mechanical threshold response was assessed over time using the area under curves. The expression of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 in both the lumbar spinal cord and the L4/5 dorsal root ganglia (DRG), was examined at 14 and 28 days after vector inoculation using Western blots. We found that in the gp120-induced NP model, IL-10 overexpression mediated by the HSV vector resulted in a significant elevation of the mechanical threshold that was apparent on day 3 after vector inoculation compared with the control vector (P < 0.001). The antiallodynic effect of the single HSV vector inoculation expressing IL-10 lasted >28 days. The area under curve in the HSV vector expressing IL-10 was increased compared with that in the control vector (P < 0.0001). HSV vectors expressing IL-10 reversed the upregulation of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 expression at 14 and/or 28 days in the DRG and/or the spinal dorsal horn. Our studies demonstrate that blocking the signaling of these proinflammatory molecules in the DRG and/or the spinal cord using the HSV vector expressing IL-10 is able to reduce HIV-related NP. These results provide new insights on the potential mechanisms of HIV-associated NP and a proof of concept for treating painful HIV sensory neuropathy with this type of gene therapy.
Chemical ecology of animal and human pathogen vectors in a changing global climate.
Pickett, John A; Birkett, Michael A; Dewhirst, Sarah Y; Logan, James G; Omolo, Maurice O; Torto, Baldwyn; Pelletier, Julien; Syed, Zainulabeuddin; Leal, Walter S
2010-01-01
Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.
Russomando, Graciela; Cousiño, Blanca; Sanchez, Zunilda; Franco, Laura X; Nara, Eva M; Chena, Lilian; Martínez, Magaly; Galeano, María E; Benitez, Lucio
2017-01-01
BACKGROUND Since the early 1990s, programs to control Chagas disease in South America have focused on eradicating domiciliary Triatoma infestans, the main vector. Seroprevalence studies of the chagasic infection are included as part of the vector control programs; they are essential to assess the impact of vector control measures and to monitor the prevention of vector transmission. OBJECTIVE To assess the interruption of domiciliary vector transmission of Chagas disease by T. infestans in Paraguay by evaluating the current state of transmission in rural areas. METHODS A survey of seroprevalence of Chagas disease was carried out in a representative sample group of Paraguayans aged one to five years living in rural areas of Paraguay in 2008. Blood samples collected on filter paper from 12,776 children were tested using an enzyme-linked immunosorbent assay. Children whose serology was positive or undetermined (n = 41) were recalled to donate a whole blood sample for retesting. Their homes were inspected for current triatomine infestation. Blood samples from their respective mothers were also collected and tested to check possible transmission of the disease by a congenital route. FINDINGS A seroprevalence rate of 0.24% for Trypanosoma cruzi infection was detected in children under five years of age among the country’s rural population. Our findings indicate that T. cruzi was transmitted to these children vertically. The total number of infected children, aged one to five years living in these departments, was estimated at 1,691 cases with an annual incidence of congenital transmission of 338 cases per year. MAIN CONCLUSION We determined the impact of vector control in the transmission of T. cruzi, following uninterrupted vector control measures employed since 1999 in contiguous T. infestans-endemic areas of Paraguay, and this allowed us to estimate the degree of risk of congenital transmission in the country. PMID:28443980