Sample records for vector control strategy

  1. Comparative field trial of alternative vector control strategies for non-domiciliated Triatoma dimidiata.

    PubMed

    Ferral, Jhibran; Chavez-Nuñez, Leysi; Euan-Garcia, Maria; Ramirez-Sierra, Maria Jesus; Najera-Vazquez, M Rosario; Dumonteil, Eric

    2010-01-01

    Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.

  2. Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2011-01-01

    Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862

  3. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti.

    PubMed

    Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite

    2015-09-04

    Aedes aegypti is a vector of international concern because it can transmit to humans three important arboviral diseases: yellow fever, dengue and chikungunya. Epidemics that are repeated year after year in a variety of urban centers indicate that there are control failures, allowing the vector to continue expanding. To identify the most effective vector control strategies and the factors that contributed to the success or failure of each strategy, we carried out a systematic review with meta-analysis of articles published in 12 databases, from 1974 to the month of December 2013. We evaluated the association between the use of whatever chemical substance, mechanical agent, biological or integrated actions against A. aegypti and the control of the vector, as measured by 10 indicators. We found 2,791 articles, but after careful selection, only 26 studies remained for analysis related to control interventions implemented in 15 countries, with 5 biological, 5 chemical, 3 mechanical and 13 integrated strategies. The comparison among all of them, indicated that the control of A. aegypti is significantly associated with the type of strategy used, and that integrated interventions consist of the most effective method for controlling A. aegypti. The most effective control method was the integrated approach, considering the influence of eco-bio-social determinants in the virus-vector-man epidemiological chain, and community involvement, starting with community empowerment as active agents of vector control.

  4. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.

  5. Cost-Effectiveness of Chagas Disease Vector Control Strategies in Northwestern Argentina

    PubMed Central

    Vazquez-Prokopec, Gonzalo M.; Spillmann, Cynthia; Zaidenberg, Mario; Kitron, Uriel; Gürtler, Ricardo E.

    2009-01-01

    Background Control and prevention of Chagas disease rely mostly on residual spraying of insecticides. In Argentina, vector control shifted from a vertical to a fully horizontal strategy based on community participation between 1992 and 2004. The effects of such strategy on Triatoma infestans, the main domestic vector, and on disease transmission have not been assessed. Methods and Findings Based on retrospective (1993–2004) records from the Argentinean Ministry of Health for the Moreno Department, Northwestern Argentina, we performed a cost-effectiveness (CE) analysis and compared the observed CE of the fully horizontal vector control strategy with the expected CE for a vertical or a mixed (i.e., vertical attack phase followed by horizontal surveillance) strategy. Total direct costs (in 2004 US$) of the horizontal and mixed strategies were, respectively, 3.3 and 1.7 times lower than the costs of the vertical strategy, due to reductions in personnel costs. The estimated CE ratios for the vertical, mixed and horizontal strategies were US$132, US$82 and US$45 per averted human case, respectively. When per diems were excluded from the costs (i.e., simulating the decentralization of control activities), the CE of vertical, mixed and horizontal strategies was reduced to US$60, US$42 and US$32 per averted case, respectively. Conclusions and Significance The mixed strategy would have averted between 1.6 and 4.0 times more human cases than the fully horizontal strategy, and would have been the most cost-effective option to interrupt parasite transmission in the Department. In rural and dispersed areas where waning vertical vector programs cannot accomplish full insecticide coverage, alternative strategies need to be developed. If properly implemented, community participation represents not only the most appealing but also the most cost-effective alternative to accomplish such objectives. PMID:19156190

  6. Wolbachia: A biological control strategy against arboviral diseases.

    PubMed

    Mohanty, Ipsita; Rath, Animesha; Mahapatra, Namita; Hazra, Rupenangshu K

    2016-01-01

    Vector-borne diseases particularly those transmitted by mosquitoes like Dengue are among the leading causes of mortality and morbidity in human population. There are no effective vaccines or treatment against dengue fever till date and the control methods are limited. So, new approaches are urgently in need to reverse these trends. Vector control is currently the primary intervention tool. Strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. Wolbachia an endosymbiont of arthropod vectors is being explored as a novel ecofriendly control strategy. Studies in Drosophila have shown that Wolbachia can confer resistance to diverse RNA viruses and protect flies from virus-induced mortality. This review was focused on biology of the Wolbachia and its implication as a control measure for arboviral diseases mainly Dengue and Chikungunya.

  7. Current vector control challenges in the fight against malaria.

    PubMed

    Benelli, Giovanni; Beier, John C

    2017-10-01

    The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Impact of vectorborne parasitic neglected tropical diseases on child health.

    PubMed

    Barry, Meagan A; Murray, Kristy O; Hotez, Peter J; Jones, Kathryn M

    2016-07-01

    Chagas disease, leishmaniasis, onchocerciasis and lymphatic filariasis are all vectorborne neglected tropical diseases (NTDs) that are responsible for significant disease burden in impoverished children and adults worldwide. As vectorborne parasitic diseases, they can all be targeted for elimination through vector control strategies. Examples of successful vector control programmes for these diseases over the past two decades have included the Southern Cone Initiative against Chagas disease, the Kala-azar Control Scheme against leishmaniasis, the Onchocerciasis Control Programme and the lymphatic filariasis control programme in The Gambia. A common vector control component in all of these programmes is the use of adulticides including dichlorodiphenyltrichloroethane and newer synthetic pyrethroid insecticides against the insect vectors of disease. Household spraying has been used against Chagas disease and leishmaniasis, and insecticide-treated bed nets have helped prevent leishmaniasis and lymphatic filariasis. Recent trends in vector control focus on collaborations between programmes and sectors to achieve integrated vector management that addresses the holistic vector control needs of a community rather than approaching it on a disease-by-disease basis, with the goals of increased efficacy, sustainability and cost-effectiveness. As evidence of vector resistance to currently used insecticide regimens emerges, research to develop new and improved insecticides and novel control strategies will be critical in reducing disease burden. In the quest to eliminate these vectorborne NTDs, efforts need to be made to continue existing control programmes, further implement integrated vector control strategies and stimulate research into new insecticides and control methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Environmental management: a re-emerging vector control strategy.

    PubMed

    Ault, S K

    1994-01-01

    Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.

  10. Expanding integrated vector management to promote healthy environments

    PubMed Central

    Lizzi, Karina M.; Qualls, Whitney A.; Brown, Scott C.; Beier, John C.

    2014-01-01

    Integrated Vector Management (IVM) strategies are intended to protect communities from pathogen transmission by arthropods. These strategies target multiple vectors and different ecological and socioeconomic settings, but the aggregate benefits of IVM are limited by the narrow focus of its approach; IVM strategies only aim to control arthropod vectors. We argue that IVM should encompass environmental modifications at early stages, for instance, infrastructural development and sanitation services, to regulate not only vectors but also nuisance-biting arthropods. An additional focus on nuisance-biting arthropods will improve public health, quality of life, and minimize social disparity issues fostered by pests. Optimally, IVM could incorporate environmental awareness and promotion of control methods in order to proactively reduce threats of serious pest situations. PMID:25028090

  11. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  12. Biological Control of Mosquito Vectors: Past, Present, and Future

    PubMed Central

    Benelli, Giovanni; Jeffries, Claire L.; Walker, Thomas

    2016-01-01

    Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs) is available for most of these diseases and vector control is still the main form of prevention. The limitations of traditional insecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In this review, we outline non-insecticide based strategies that have been implemented or are currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies. PMID:27706105

  13. Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges

    PubMed Central

    Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2009-01-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346

  14. Consolidating strategic planning and operational frameworks for integrated vector management in Eritrea.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini

    2015-12-02

    Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance monitoring techniques; initiating the global plan for insecticide resistance management; conducting needs' assessments and developing standard operating procedure for insectaries; developing a guidance document on malaria vector control based on eco-epidemiological strata, a vector surveillance plan and harmonized mapping, data collection and reporting tools. Eritrea has successfully consolidated strategic frameworks for vector control. Rational decision-making remains critical to ensure that the interventions are effective and their choice is evidence-based, and to optimize the use of resources for vector control. Implementation of effective IVM requires proper collaboration and coordination, consistent technical and financial capacity and support to offer greater benefits.

  15. Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: successes and barriers to integrated vector management.

    PubMed

    Naranjo, Diana P; Qualls, Whitney A; Jurado, Hugo; Perez, Juan C; Xue, Rui-De; Gomez, Eduardo; Beier, John C

    2014-07-02

    Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health.

  16. An economic evaluation of vector control in the age of a dengue vaccine.

    PubMed

    Fitzpatrick, Christopher; Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman

    2017-08-01

    Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.

  17. An economic evaluation of vector control in the age of a dengue vaccine

    PubMed Central

    Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman

    2017-01-01

    Introduction Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. Methods We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Results Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70–90%, the cost per disability-adjusted life year averted is 2013 US$ 679–1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50–70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Discussion Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control. PMID:28806786

  18. Predictive control strategies for wind turbine system based on permanent magnet synchronous generator.

    PubMed

    Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba

    2016-05-01

    In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan.

    PubMed

    Chanda, Emmanuel; Govere, John M; Macdonald, Michael B; Lako, Richard L; Haque, Ubydul; Baba, Samson P; Mnzava, Abraham

    2013-10-25

    Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial.

  20. Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan

    PubMed Central

    2013-01-01

    Background Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. Case description A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. Discussion South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. Conclusion The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial. PMID:24156749

  1. Improvement in vehicle agility and stability by G-Vectoring control

    NASA Astrophysics Data System (ADS)

    Yamakado, Makoto; Takahashi, Jyunya; Saito, Shinjiro; Yokoyama, Atsushi; Abe, Masato

    2010-12-01

    We extracted a trade-off strategy between longitudinal traction/braking force and cornering force by using jerk information through observing an expert driver's voluntary braking and turning action. Using the expert driver's strategy, we developed a new control concept, called 'G-Vectoring control', which is an automatic longitudinal acceleration control (No DYC) in accordance with the vehicle's lateral jerk caused by the driver's steering manoeuvres. With the control, the direction of synthetic acceleration (G) changes seamlessly (i.e. vectoring). The improvements in vehicle agility and stability were evaluated by theoretical analysis and through computer simulation. We then introduced a 'G-Vectoring' equipped test vehicle realised by brake-by-wire technology and executed a detailed examination on a test track. We have confirmed that the vehicle motion in view of both handling and ride quality has improved dramatically.

  2. Successes and failures of sixty years of vector control in French Guiana: what is the next step?

    PubMed

    Epelboin, Yanouk; Chaney, Sarah C; Guidez, Amandine; Habchi-Hanriot, Nausicaa; Talaga, Stanislas; Wang, Lanjiao; Dusfour, Isabelle

    2018-03-12

    Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.

  3. Vaccination strategies for SIR vector-transmitted diseases.

    PubMed

    Cruz-Pacheco, Gustavo; Esteva, Lourdes; Vargas, Cristobal

    2014-08-01

    Vector-borne diseases are one of the major public health problems in the world with the fastest spreading rate. Control measures have been focused on vector control, with poor results in most cases. Vaccines should help to reduce the diseases incidence, but vaccination strategies should also be defined. In this work, we propose a vector-transmitted SIR disease model with age-structured population subject to a vaccination program. We find an expression for the age-dependent basic reproductive number R(0), and we show that the disease-free equilibrium is locally stable for R(0) ≤ 1, and a unique endemic equilibrium exists for R(0) > 1. We apply the theoretical results to public data to evaluate vaccination strategies, immunization levels, and optimal age of vaccination for dengue disease.

  4. [Going into the 21st century: should one dream or act?].

    PubMed

    Coosemans, M

    1991-01-01

    A historical review of vector control is made. Despite the available tools, vector borne diseases are still a priority in Public Health. Magic tools, like DDT, were often misused. Adapted strategies and structures for vector control are now required. Progress will mainly result from research and evaluation done in the framework of vector control programmes. Discovery of new tools will find in these operational programmes a point of fall for their application.

  5. Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group.

    PubMed

    1995-01-01

    Since the Ministerial Conference on Malaria in 1992, which acknowledged the urgent need for worldwide commitment to malaria control, efforts have been directed to implementation of a Global Malaria Control Strategy. Vector control, an essential component of malaria control, has become less effective in recent years, partly as a result of poor use of alternative control tools, inappropriate use of insecticides, lack of an epidemiological basis for interventions, inadequate resources and infrastructure, and weak management. Changing environmental conditions, the behavioural characteristics of certain vectors, and resistance to insecticides have added to the difficulties. This report of a WHO Study Group provides guidelines for the planning, implementation and evaluation of cost-effective and sustainable vector control in the context of the Global Malaria Control Strategy. It reviews the available methods - indoor residual spraying, personal protection, larval control and environmental management - stressing the need for selective and flexible use of interventions according to local conditions. Requirements for data collection and the appropriate use of entomological parameters and techniques are discussed and priorities identified for the development of local capacity for vector control and for operational research. Emphasis is placed both on the monitoring and evaluation of vector control to ensure cost-effectiveness and on the development of strong managerial structures, which can support community participation and intersectoral collaboration and accommodate the control of other vector-borne diseases. The report concludes with recommendations aimed at promoting the targeted and efficient use of vector control in preventing and controlling malaria, thereby reducing the threat to health and socioeconomic development in many tropical countries.

  6. An agent-vector-host-environment model for controlling small arms and light weapons.

    PubMed

    Pinto, Andrew D; Sharma, Malika; Muggah, Robert

    2011-05-01

    Armed violence is a significant public health problem. It results in fatal and non-fatal injuries and disrupts social and economic processes that are essential to the health of individuals and communities. We argue that an agent-vector-host-environment model can be helpful in understanding and describing the availability and misuse of small arms and light weapons. Moreover, such a model can assist in identifying potential control points and in developing mitigation strategies. These concepts have been developed from analogous vector control programs and are applied to controlling arms to reduce their misuse. So-called 'denormalization' and 'de-legitimization' campaigns that focus on the vector - including the industry producing these commodities - can be based on the experience of public health in controlling tobacco use and exposure. This model can assist health professionals, civil society and governments in developing comprehensive strategies to limit the production, distribution and misuse of small arms and light weapons.

  7. Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.

    PubMed

    Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian

    2015-06-03

    Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.

  8. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  9. Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: successes and barriers to integrated vector management

    PubMed Central

    2014-01-01

    Background Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities. Methods Methods included descriptive findings of the MCP operations. Information was obtained from vector control specialists, directors, and residents through field trips, surveys, and questionnaires. Evaluations of the strategies and assets of the control programs where obtained through SWOT analysis and within an IVM approach. Results Organizationally, the Floridian MCP is a tax-based District able to make decisions independently from county government officials, with the oversight of an elected board of commissioners. The Guayas program is directed by the country government and assessed by non-governmental organizations like the World health Organization. Operationally, the Floridian MCP conducts entomological surveillance and the Ecuadorian MCP focuses on epidemiological monitoring of human disease cases. Strengths of both MCPs were their community participation and educational programs. Weaknesses for both MCPs included limitations in budgets and technical capabilities. Opportunities, for both MCPs, are additional funding and partnerships with private, non-governmental, and governmental organizations. Threats experienced by both MCPs included political constraints and changes in the social and ecological environment that affect mosquito densities and control efforts. IVM pillars for policy making were used to compare the information among the programs. Differences included how the Ecuadorian MCP relies heavily on the community for vector control while the American MCP relies on technologies and research. Conclusion IVM based recommendations direct health policy leaders toward improving surveillance systems both entomologically and epidemiologically, improving community risk perceptions by integrating components of community participation, maximizing resources though the use of applied research, and protecting the environment by selecting low-risk pesticides. Outcomes of the research revealed that inter-sectorial and multidisciplinary interventions are critical to improve public health. PMID:24990155

  10. Predicting the Impact of Intervention Strategies for Sleeping Sickness in Two High-Endemicity Health Zones of the Democratic Republic of Congo.

    PubMed

    Rock, Kat S; Torr, Steve J; Lumbala, Crispin; Keeling, Matt J

    2017-01-01

    Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. Six key strategies and twelve variations were considered which covered a range of recruitment strategies for screening and vector control. It was found that effectiveness of HAT screening could be improved by increasing effort to recruit high-risk groups for screening. Furthermore, seven proposed strategies which included vector control were predicted to be sufficient to achieve an incidence of less than 1 reported case per 10,000 people by 2020 in the study region. All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT.

  11. Predicting the Impact of Intervention Strategies for Sleeping Sickness in Two High-Endemicity Health Zones of the Democratic Republic of Congo

    PubMed Central

    Torr, Steve J.; Lumbala, Crispin; Keeling, Matt J.

    2017-01-01

    Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. Six key strategies and twelve variations were considered which covered a range of recruitment strategies for screening and vector control. It was found that effectiveness of HAT screening could be improved by increasing effort to recruit high-risk groups for screening. Furthermore, seven proposed strategies which included vector control were predicted to be sufficient to achieve an incidence of less than 1 reported case per 10,000 people by 2020 in the study region. All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT. PMID:28056016

  12. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand

    PubMed Central

    Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat

    2012-01-01

    Background Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Methodology Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Results Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. Conclusion An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities. PMID:23318236

  13. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand.

    PubMed

    Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat

    2012-12-01

    Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities.

  14. Response to Blood Meal in the Fat Body of Anopheles stephensi Using Quantitative Proteomics: Toward New Vector Control Strategies Against Malaria.

    PubMed

    Kumar, Manish; Mohanty, Ajeet Kumar; Sreenivasamurthy, Sreelakshmi K; Dey, Gourav; Advani, Jayshree; Pinto, Sneha M; Kumar, Ashwani; Prasad, Thottethodi Subrahmanya Keshava

    2017-09-01

    Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.

  15. An optimal control strategies using vaccination and fogging in dengue fever transmission model

    NASA Astrophysics Data System (ADS)

    Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan

    2017-08-01

    This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.

  16. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    PubMed

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina Faso between 2008 and 2010 under the Corus 6015 research program. This review aims to show: (i) the insecticide resistance in B. tabaci as well as in An. gambiae; and (ii) due to this, the impact of selection of resistant populations on malaria vector control strategies. Some measures that could be beneficial for crop protection and vector control strategies in West Africa are proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Influence of vectors' risk-spreading strategies and environmental stochasticity on the epidemiology and evolution of vector-borne diseases: the example of Chagas' disease.

    PubMed

    Pelosse, Perrine; Kribs-Zaleta, Christopher M; Ginoux, Marine; Rabinovich, Jorge E; Gourbière, Sébastien; Menu, Frédéric

    2013-01-01

    Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control.

  18. Integrated vector management for malaria control

    PubMed Central

    Beier, John C; Keating, Joseph; Githure, John I; Macdonald, Michael B; Impoinvil, Daniel E; Novak, Robert J

    2008-01-01

    Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa. PMID:19091038

  19. Chemosterilants for Control of Insects and Insect Vectors of Disease.

    PubMed

    Baxter, Richard H G

    2016-10-01

    Both historically and at present, vector control is the most generally effective means of controlling malaria transmission. Insecticides are the predominant method of vector control, but the sterile insect technique (SIT) is a complementary strategy with a successful track record in both agricultural and public health sectors. Strategies of genetic and radiation-induced sterilization of Anopheles have to date been limited by logistical and/or regulatory hurdles. A safe and effective mosquito chemosterilant would therefore be of major utility to future deployment of SIT for malaria control. Here we review the prior and current use of chemosterilants in SIT, and assess the potential for future research. Recent genomic and proteomic studies reveal opportunities for specific targeting of seminal fluid proteins, and the capacity to interfere with sperm motility and storage in the female.

  20. A Model Framework to Estimate Impact and Cost of Genetics-Based Sterile Insect Methods for Dengue Vector Control

    PubMed Central

    Alphey, Nina; Alphey, Luke; Bonsall, Michael B.

    2011-01-01

    Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654

  1. Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.

    PubMed

    Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter

    2016-10-01

    Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.

  2. Public Health Interventions for Aedes Control in the Time of Zikavirus– A Meta-Review on Effectiveness of Vector Control Strategies

    PubMed Central

    Bouzid, Maha; Brainard, Julii; Hooper, Lee; Hunter, Paul R.

    2016-01-01

    Background There is renewed interest in effective measures to control Zika and dengue vectors. A synthesis of published literature with a focus on the quality of evidence is warranted to determine the effectiveness of vector control strategies. Methodology We conducted a meta-review assessing the effectiveness of any Aedes control measure. We searched Scopus and Medline for relevant reviews through to May 2016. Titles, abstracts and full texts were assessed independently for inclusion by two authors. Data extraction was performed in duplicate and validity of the evidence was assessed using GRADE criteria. Findings 13 systematic reviews that investigated the effect of control measures on entomological parameters or disease incidence were included. Biological controls seem to achieve better reduction of entomological indices than chemical controls, while educational campaigns can reduce breeding habitats. Integrated vector control strategies may not always increase effectiveness. The efficacy of any control programme is dependent on local settings, intervention type, resources and study duration, which may partly explain the varying degree of success between studies. Nevertheless, the quality of evidence was mostly low to very low due to poor reporting of study design, observational methodologies, heterogeneity, and indirect outcomes, thus hindering an evidence-based recommendation. Conclusions The evidence for the effectiveness of Aedes control measures is mixed. Chemical control, which is commonly used, does not appear to be associated with sustainable reductions of mosquito populations over time. Indeed, by contributing to a false sense of security, chemical control may reduce the effectiveness of educational interventions aimed at encouraging local people to remove mosquito breeding sites. Better quality studies of the impact of vector control interventions on the incidence of human infections with Dengue or Zika are still needed. PMID:27926934

  3. Robust model predictive control for satellite formation keeping with eccentricity/inclination vector separation

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong

    2018-05-01

    This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.

  4. Prevention and Control Strategies to Counter Dengue Virus Infection

    PubMed Central

    Rather, Irfan A.; Parray, Hilal A.; Lone, Jameel B.; Paek, Woon K.; Lim, Jeongheui; Bajpai, Vivek K.; Park, Yong-Ha

    2017-01-01

    Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus. PMID:28791258

  5. Prevention and Control Strategies to Counter Dengue Virus Infection.

    PubMed

    Rather, Irfan A; Parray, Hilal A; Lone, Jameel B; Paek, Woon K; Lim, Jeongheui; Bajpai, Vivek K; Park, Yong-Ha

    2017-01-01

    Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.

  6. Influence of Vectors’ Risk-Spreading Strategies and Environmental Stochasticity on the Epidemiology and Evolution of Vector-Borne Diseases: The Example of Chagas’ Disease

    PubMed Central

    Pelosse, Perrine; Kribs-Zaleta, Christopher M.; Ginoux, Marine; Rabinovich, Jorge E.; Gourbière, Sébastien; Menu, Frédéric

    2013-01-01

    Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control. PMID:23951018

  7. Vector-borne disease intelligence: strategies to deal with disease burden and threats.

    PubMed

    Braks, Marieta; Medlock, Jolyon M; Hubalek, Zdenek; Hjertqvist, Marika; Perrin, Yvon; Lancelot, Renaud; Duchyene, Els; Hendrickx, Guy; Stroo, Arjan; Heyman, Paul; Sprong, Hein

    2014-01-01

    Owing to the complex nature of vector-borne diseases (VBDs), whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of VBDs. Knowledge on the presence and distribution of vectors and the pathogens that they transmit is vital to the risk assessment process to permit effective early warning, surveillance, and control of VBDs. Upon accepting this reality, public health authorities face an ever-increasing range of possible surveillance targets and an associated prioritization process. Here, we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance, and context-based surveillance for EU member states to tailor the best surveillance strategy for control of VBDs in their geographic region. By classifying the surveillance structure into five different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for VBDs entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure.

  8. Vector-Borne Disease Intelligence: Strategies to Deal with Disease Burden and Threats

    PubMed Central

    Braks, Marieta; Medlock, Jolyon M.; Hubalek, Zdenek; Hjertqvist, Marika; Perrin, Yvon; Lancelot, Renaud; Duchyene, Els; Hendrickx, Guy; Stroo, Arjan; Heyman, Paul; Sprong, Hein

    2014-01-01

    Owing to the complex nature of vector-borne diseases (VBDs), whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of VBDs. Knowledge on the presence and distribution of vectors and the pathogens that they transmit is vital to the risk assessment process to permit effective early warning, surveillance, and control of VBDs. Upon accepting this reality, public health authorities face an ever-increasing range of possible surveillance targets and an associated prioritization process. Here, we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance, and context-based surveillance for EU member states to tailor the best surveillance strategy for control of VBDs in their geographic region. By classifying the surveillance structure into five different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for VBDs entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure. PMID:25566522

  9. Genetics and evolution of triatomines: from phylogeny to vector control

    PubMed Central

    Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E

    2012-01-01

    Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436

  10. International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil.

    PubMed

    Corbel, Vincent; Fonseca, Dina M; Weetman, David; Pinto, João; Achee, Nicole L; Chandre, Fabrice; Coulibaly, Mamadou B; Dusfour, Isabelle; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J; Moyes, Catherine; Ng, Lee Ching; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Muller, Pie; Kasai, Shinji; Fouque, Florence; Velayudhan, Raman; Durot, Claire; David, Jean-Philippe

    2017-06-02

    Vector-borne diseases transmitted by insect vectors such as mosquitoes occur in over 100 countries and affect almost half of the world's population. Dengue is currently the most prevalent arboviral disease but chikungunya, Zika and yellow fever show increasing prevalence and severity. Vector control, mainly by the use of insecticides, play a key role in disease prevention but the use of the same chemicals for more than 40 years, together with the dissemination of mosquitoes by trade and environmental changes, resulted in the global spread of insecticide resistance. In this context, innovative tools and strategies for vector control, including the management of resistance, are urgently needed. This report summarizes the main outputs of the first international workshop on Insecticide resistance in vectors of arboviruses held in Rio de Janeiro, Brazil, 5-8 December 2016. The primary aims of this workshop were to identify strategies for the development and implementation of standardized insecticide resistance management, also to allow comparisons across nations and across time, and to define research priorities for control of vectors of arboviruses. The workshop brought together 163 participants from 28 nationalities and was accessible, live, through the web (> 70,000 web-accesses over 3 days).

  11. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease

    PubMed Central

    Waleckx, Etienne; Gourbière, Sébastien; Dumonteil, Eric

    2015-01-01

    Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions. PMID:25993504

  12. Optimization of Control Strategies for Non-Domiciliated Triatoma dimidiata, Chagas Disease Vector in the Yucatán Peninsula, Mexico

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2009-01-01

    Background Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. Methodology/Principal Findings A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m2 were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. Conclusion/Significance Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases. PMID:19365542

  13. Consolidating tactical planning and implementation frameworks for integrated vector management in Uganda.

    PubMed

    Okia, Michael; Okui, Peter; Lugemwa, Myers; Govere, John M; Katamba, Vincent; Rwakimari, John B; Mpeka, Betty; Chanda, Emmanuel

    2016-04-14

    Integrated vector management (IVM) is the recommended approach for controlling some vector-borne diseases (VBD). In the face of current challenges to disease vector control, IVM is vital to achieve national targets set for VBD control. Though global efforts, especially for combating malaria, now focus on elimination and eradication, IVM remains useful for Uganda which is principally still in the control phase of the malaria continuum. This paper outlines the processes undertaken to consolidate tactical planning and implementation frameworks for IVM in Uganda. The Uganda National Malaria Control Programme with its efforts to implement an IVM approach to vector control was the 'case' for this study. Integrated management of malaria vectors in Uganda remained an underdeveloped component of malaria control policy. In 2012, knowledge and perceptions of malaria vector control policy and IVM were assessed, and recommendations for a specific IVM policy were made. In 2014, a thorough vector control needs assessment (VCNA) was conducted according to WHO recommendations. The findings of the VCNA informed the development of the national IVM strategic guidelines. Information sources for this study included all available data and accessible archived documentary records on VBD control in Uganda. The literature was reviewed and adapted to the local context and translated into the consolidated tactical framework. WHO recommends implementation of IVM as the main strategy to vector control and has encouraged member states to adopt the approach. However, many VBD-endemic countries lack IVM policy frameworks to guide implementation of the approach. In Uganda most VBD coexists and could be managed more effectively if done in tandem. In order to successfully control malaria and other VBD and move towards their elimination, the country needs to scale up proven and effective vector control interventions and also learn from the experience of other countries. The IVM strategy is important in consolidating inter-sectoral collaboration and coordination and providing the tactical direction for effective deployment of vector control interventions along the five key elements of the approach and to align them with contemporary epidemiology of VBD in the country. Uganda has successfully established an evidence-based IVM approach and consolidated strategic planning and operational frameworks for VBD control. However, operating implementation arrangements as outlined in the national strategic guidelines for IVM and managing insecticide resistance, as well as improving vector surveillance, are imperative. In addition, strengthened information, education and communication/behaviour change and communication, collaboration and coordination will be crucial in scaling up and using vector control interventions.

  14. Biological Control of Mosquito Vectors: Past, Present, and Future.

    PubMed

    Benelli, Giovanni; Jeffries, Claire L; Walker, Thomas

    2016-10-03

    Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs) is available for most of these diseases andvectorcontrolisstillthemainformofprevention. Thelimitationsoftraditionalinsecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In thisreview, weoutline non-insecticide basedstrategiesthat havebeenimplemented orare currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies.

  15. How Can Onchocerciasis Elimination in Africa Be Accelerated? Modeling the Impact of Increased Ivermectin Treatment Frequency and Complementary Vector Control.

    PubMed

    Verver, Suzanne; Walker, Martin; Kim, Young Eun; Fobi, Grace; Tekle, Afework H; Zouré, Honorat G M; Wanji, Samuel; Boakye, Daniel A; Kuesel, Annette C; de Vlas, Sake J; Boussinesq, Michel; Basáñez, Maria-Gloria; Stolk, Wilma A

    2018-06-01

    Great strides have been made toward onchocerciasis elimination by mass drug administration (MDA) of ivermectin. Focusing on MDA-eligible areas, we investigated where the elimination goal can be achieved by 2025 by continuation of current practice (annual MDA with ivermectin) and where intensification or additional vector control is required. We did not consider areas hypoendemic for onchocerciasis with loiasis coendemicity where MDA is contraindicated. We used 2 previously published mathematical models, ONCHOSIM and EPIONCHO, to simulate future trends in microfilarial prevalence for 80 different settings (defined by precontrol endemicity and past MDA frequency and coverage) under different future treatment scenarios (annual, biannual, or quarterly MDA with different treatment coverage through 2025, with or without vector control strategies), assessing for each strategy whether it eventually leads to elimination. Areas with 40%-50% precontrol microfilarial prevalence and ≥10 years of annual MDA may achieve elimination with a further 7 years of annual MDA, if not achieved already, according to both models. For most areas with 70%-80% precontrol prevalence, ONCHOSIM predicts that either annual or biannual MDA is sufficient to achieve elimination by 2025, whereas EPIONCHO predicts that elimination will not be achieved even with complementary vector control. Whether elimination will be reached by 2025 depends on precontrol endemicity, control history, and strategies chosen from now until 2025. Biannual or quarterly MDA will accelerate progress toward elimination but cannot guarantee it by 2025 in high-endemicity areas. Long-term concomitant MDA and vector control for high-endemicity areas might be useful.

  16. Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases.

    PubMed

    Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L

    2016-03-01

    Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies.

  17. Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases

    PubMed Central

    Okamoto, Kenichi W.; Gould, Fred; Lloyd, Alun L.

    2016-01-01

    Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences—consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies. PMID:26962871

  18. Modelling strategies to break transmission of lymphatic filariasis--aggregation, adherence and vector competence greatly alter elimination.

    PubMed

    Irvine, M A; Reimer, L J; Njenga, S M; Gunawardena, S; Kelly-Hope, L; Bockarie, M; Hollingsworth, T D

    2015-10-22

    With ambitious targets to eliminate lymphatic filariasis over the coming years, there is a need to identify optimal strategies to achieve them in areas with different baseline prevalence and stages of control. Modelling can assist in identifying what data should be collected and what strategies are best for which scenarios. We develop a new individual-based, stochastic mathematical model of the transmission of lymphatic filariasis. We validate the model by fitting to a first time point and predicting future timepoints from surveillance data in Kenya and Sri Lanka, which have different vectors and different stages of the control programme. We then simulate different treatment scenarios in low, medium and high transmission settings, comparing once yearly mass drug administration (MDA) with more frequent MDA and higher coverage. We investigate the potential impact that vector control, systematic non-compliance and different levels of aggregation have on the dynamics of transmission and control. In all settings, increasing coverage from 65 to 80 % has a similar impact on control to treating twice a year at 65 % coverage, for fewer drug treatments being distributed. Vector control has a large impact, even at moderate levels. The extent of aggregation of parasite loads amongst a small portion of the population, which has been estimated to be highly variable in different settings, can undermine the success of a programme, particularly if high risk sub-communities are not accessing interventions. Even moderate levels of vector control have a large impact both on the reduction in prevalence and the maintenance of gains made during MDA, even when parasite loads are highly aggregated, and use of vector control is at moderate levels. For the same prevalence, differences in aggregation and adherence can result in very different dynamics. The novel analysis of a small amount of surveillance data and resulting simulations highlight the need for more individual level data to be analysed to effectively tailor programmes in the drive for elimination.

  19. Community Participation in Chagas Disease Vector Surveillance: Systematic Review

    PubMed Central

    Abad-Franch, Fernando; Vega, M. Celeste; Rolón, Miriam S.; Santos, Walter S.; Rojas de Arias, Antonieta

    2011-01-01

    Background Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. Methodology/Principal Findings We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. Conclusions/Significance CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies. PMID:21713022

  20. Antipathogen genes and the replacement of disease-vectoring mosquito populations: a model-based evaluation

    PubMed Central

    Robert, Michael A; Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L

    2014-01-01

    Recently, genetic strategies aimed at controlling populations of disease-vectoring mosquitoes have received considerable attention as alternatives to traditional measures. Theoretical studies have shown that female-killing (FK), antipathogen (AP), and reduce and replace (R&R) strategies can each decrease the number competent vectors. In this study, we utilize a mathematical model to evaluate impacts on competent Aedes aegypti populations of FK, AP, and R&R releases as well as hybrid strategies that result from combinations of these three approaches. We show that while the ordering of efficacy of these strategies depends upon population life history parameters, sex ratio of releases, and switch time in combination strategies, AP-only and R&R/AP releases typically lead to the greatest long-term reduction in competent vectors. R&R-only releases are often less effective at long-term reduction of competent vectors than AP-only releases or R&R/AP releases. Furthermore, the reduction in competent vectors caused by AP-only releases is easier to maintain than that caused by FK-only or R&R-only releases even when the AP gene confers a fitness cost. We discuss the roles that density dependence and inclusion of females play in the order of efficacy of the strategies. We anticipate that our results will provide added impetus to continue developing AP strategies. PMID:25558284

  1. A stable RNA virus-based vector for citrus trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter.more » These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.« less

  2. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  3. Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México

    PubMed Central

    Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén

    2017-01-01

    Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups (n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence. PMID:28786919

  4. Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México.

    PubMed

    Mendoza-Cano, Oliver; Hernandez-Suarez, Carlos Moisés; Trujillo, Xochitl; Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén

    2017-08-08

    Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups ( n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence.

  5. Sustainable dengue prevention and control through a comprehensive integrated approach: the Sri Lankan perspective.

    PubMed

    Tissera, Hasitha; Pannila-Hetti, Nimalka; Samaraweera, Preshila; Weeraman, Jayantha; Palihawadana, Paba; Amarasinghe, Ananda

    2016-09-01

    Dengue is a leading public health problem in Sri Lanka. All 26 districts and all age groups are affected, with high disease transmission; the estimated average annual incidence is 175/100 000 population. Harnessing the World Health Organization Global strategy for dengue prevention and control, 2012-2020, Sri Lanka has pledged in its National Strategic Framework to achieve a mortality from dengue below 0.1% and to reduce morbidity by 50% (from the average of the last 5 years) by 2020. Turning points in the country's dengue-control programme have been the restructuring and restrategizing of the core functions; this has involved establishment of a separate dengue-control unit to coordinate integrated vector management, and creation of a presidential task force. There has been great progress in disease surveillance, clinical management and vector control. Enhanced real-time surveillance for early warning allows ample preparedness for an outbreak. National guidelines with enhanced diagnostics have significantly improved clinical management of dengue, reducing the case-fatality rate to 0.2%. Proactive integrated vector management, with multisector partnership, has created a positive vector-control environment; however, sustaining this momentum is a challenge. Robust surveillance, evidence-based clinical management, sustainable vector control and effective communication are key strategies that will be implemented to achieve set targets. Improved early detection and a standardized treatment protocol with enhanced diagnostics at all medical care institutions will lead to further reduction in mortality. Making the maximum effort to minimize outbreaks through sustainable vector control in the three dimensions of risk mapping, innovation and risk modification will enable a reduction in morbidity.

  6. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  7. Progress in malaria vector control.

    PubMed

    Pant, C P; Rishikesh, N; Bang, Y H; Smith, A

    1981-01-01

    Malaria control, except in tropical Africa, will probably continue to be based to a large extent on the use of insecticides for many years. However, the development of resistance to insecticides in the vectors has caused serious difficulties and it is necessary to change the strategy of insecticide use to maximize their efficacy. A thorough knowledge of the ecology and behaviour of each vector species is required before the control strategy can be adapted to different epidemiological situations. The behavioural differences between sibling species have been recognized for several years, but study of this problem has recently been simplified by improved means of identification that involve chromosomal banding patterns and electrophoretic analysis. Behavioural differences have also been associated with certain chromosomal rearrangements.New records of insecticide resistance among anophelines continue to appear and the impact of this on antimalaria operations has been seriously felt in Central America (multi-resistance in Anopheles albimanus), Turkey (A. sacharovi), India and several Asian countries (A. culicifacies and A. stephensi), and some other countries. Work continues on the screening and testing of newer insecticides that can be used as alternatives, but DDT, malathion, temephos, fenitrothion, and propoxur continue to be used as the main insecticides in many malaria control projects. The search for simpler and innovative approaches to insecticide application also continues.Biological control of vectors is receiving increased attention, as it could become an important component of integrated vector control strategies, and most progress has been made with the spore-forming bacterium, serotype H-14 of Bacillus thuringiensis. Larvivorous fish such as Gambusia spp. and Poecilia spp. continue to be used in some programmes.Application of environmental management measures, such as source reduction, source elimination, flushing of drainage and irrigation channels, and intermittent irrigation have been re-examined and currently a great deal of interest is being shown in these approaches.There has been limited interest in the genetic control of mosquitos and the phenomenon of refractoriness in some strains of the disease vectors, with the idea of replacing the vector species with the refractory strain. More research is needed before this approach can become a practical tool.It is apparent that in future a more integrated approach will have to be used for vector control within the context of antimalaria programmes. Training of staff, research, and cooperation at all levels will be an essential requirement for this approach.

  8. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases.

    PubMed

    Tabachnick, Walter J

    2003-09-01

    The completion of the Anopheles gambiae Giles genome sequencing project is a milestone toward developing more effective strategies in reducing the impact of malaria and other vector borne diseases. The successes in developing transgenic approaches using mosquitoes have provided another essential new tool for further progress in basic vector genetics and the goal of disease control. The use of transgenic approaches to develop refractory mosquitoes is also possible. The ability to use genome sequence to identify genes, and transgenic approaches to construct refractory mosquitoes, has provided the opportunity that with the future development of an appropriate genetic drive system, refractory transgenes can be released into vector populations leading to nontransmitting mosquitoes. An. gambiae populations incapable of transmitting malaria. This compelling strategy will be very difficult to achieve and will require a broad substantial research program for success. The fundamental information that is required on genome structure, gene function and environmental effects on genetic expression are largely unknown. The ability to predict gene effects on phenotype is rudimentary, particularly in natural populations. As a result, the release of a refractory transgene into natural mosquito populations is imprecise and there is little ability to predict unintended consequences. The new genetic tools at hand provide opportunities to address an array of important issues, many of which can have immediate impact on the effectiveness of a host of strategies to control vector borne disease. Transgenic release approaches represent only one strategy that should be pursued. A balanced research program is required.

  9. Ecology of Anopheles darlingi Root with respect to vector importance: a review

    PubMed Central

    2011-01-01

    Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies. Increasing our knowledge of An. darlingi is necessary. PMID:21923902

  10. Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies

    PubMed Central

    Conn, Jan E.; Norris, Douglas E.; Donnelly, Martin J.; Beebe, Nigel W.; Burkot, Thomas R.; Coulibaly, Mamadou B.; Chery, Laura; Eapen, Alex; Keven, John B.; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W.; Moreno, Marta; Quinones, Martha; Reimer, Lisa J.; Russell, Tanya L.; Smith, David L.; Thomas, Matthew B.; Walker, Edward D.; Wilson, Mark L.; Yan, Guiyun

    2015-01-01

    The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and “sub patent” vector transmission. PMID:26259942

  11. Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies.

    PubMed

    Conn, Jan E; Norris, Douglas E; Donnelly, Martin J; Beebe, Nigel W; Burkot, Thomas R; Coulibaly, Mamadou B; Chery, Laura; Eapen, Alex; Keven, John B; Kilama, Maxwell; Kumar, Ashwani; Lindsay, Steve W; Moreno, Marta; Quinones, Martha; Reimer, Lisa J; Russell, Tanya L; Smith, David L; Thomas, Matthew B; Walker, Edward D; Wilson, Mark L; Yan, Guiyun

    2015-09-01

    The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and "sub patent" vector transmission. © The American Society of Tropical Medicine and Hygiene.

  12. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  13. Effectiveness of Large-Scale Chagas Disease Vector Control Program in Nicaragua by Residual Insecticide Spraying Against Triatoma dimidiata.

    PubMed

    Yoshioka, Kota; Nakamura, Jiro; Pérez, Byron; Tercero, Doribel; Pérez, Lenin; Tabaru, Yuichiro

    2015-12-01

    Chagas disease is one of the most serious health problems in Latin America. Because the disease is transmitted mainly by triatomine vectors, a three-phase vector control strategy was used to reduce its vector-borne transmission. In Nicaragua, we implemented an indoor insecticide spraying program in five northern departments to reduce house infestation by Triatoma dimidiata. The spraying program was performed in two rounds. After each round, we conducted entomological evaluation to compare the vector infestation level before and after spraying. A total of 66,200 and 44,683 houses were sprayed in the first and second spraying rounds, respectively. The entomological evaluation showed that the proportion of houses infested by T. dimidiata was reduced from 17.0% to 3.0% after the first spraying, which was statistically significant (P < 0.0001). However, the second spraying round did not demonstrate clear effectiveness. Space-time analysis revealed that reinfestation of T. dimidiata is more likely to occur in clusters where the pre-spray infestation level is high. Here we discuss how large-scale insecticide spraying is neither effective nor affordable when T. dimidiata is widely distributed at low infestation levels. Further challenges involve research on T. dimidiata reinfestation, diversification of vector control strategies, and implementation of sustainable vector surveillance. © The American Society of Tropical Medicine and Hygiene.

  14. Targeted Screening Strategies to Detect Trypanosoma cruzi Infection in Children

    PubMed Central

    Levy, Michael Z.; Kawai, Vivian; Bowman, Natalie M.; Waller, Lance A.; Cabrera, Lilia; Pinedo-Cancino, Viviana V.; Seitz, Amy E.; Steurer, Frank J.; Cornejo del Carpio, Juan G.; Cordova-Benzaquen, Eleazar; Maguire, James H.; Gilman, Robert H.; Bern, Caryn

    2007-01-01

    Background Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy. Methods and Findings We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children. Conclusions We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings. PMID:18160979

  15. Rear wheel torque vectoring model predictive control with velocity regulation for electric vehicles

    NASA Astrophysics Data System (ADS)

    Siampis, Efstathios; Velenis, Efstathios; Longo, Stefano

    2015-11-01

    In this paper we propose a constrained optimal control architecture for combined velocity, yaw and sideslip regulation for stabilisation of the vehicle near the limit of lateral acceleration using the rear axle electric torque vectoring configuration of an electric vehicle. A nonlinear vehicle and tyre model are used to find reference steady-state cornering conditions and design two model predictive control (MPC) strategies of different levels of fidelity: one that uses a linearised version of the full vehicle model with the rear wheels' torques as the input, and another one that neglects the wheel dynamics and uses the rear wheels' slips as the input instead. After analysing the relative trade-offs between performance and computational effort, we compare the two MPC strategies against each other and against an unconstrained optimal control strategy in Simulink and Carsim environment.

  16. Insecticide Resistance and Malaria Vector Control: The Importance of Fitness Cost Mechanisms in Determining Economically Optimal Control Trajectories

    PubMed Central

    Brown, Zachary S.; Dickinson, Katherine L.; Kramer, Randall A.

    2014-01-01

    The evolutionary dynamics of insecticide resistance in harmful arthropods has economic implications, not only for the control of agricultural pests (as has been well studied), but also for the control of disease vectors, such as malaria-transmitting Anopheles mosquitoes. Previous economic work on insecticide resistance illustrates the policy relevance of knowing whether insecticide resistance mutations involve fitness costs. Using a theoretical model, this article investigates economically optimal strategies for controlling malaria-transmitting mosquitoes when there is the potential for mosquitoes to evolve resistance to insecticides. Consistent with previous literature, we find that fitness costs are a key element in the computation of economically optimal resistance management strategies. Additionally, our models indicate that different biological mechanisms underlying these fitness costs (e.g., increased adult mortality and/or decreased fecundity) can significantly alter economically optimal resistance management strategies. PMID:23448053

  17. The interplay between mosquitoes, entomopathogens and symbiotic microbes: A niche for the development of novel microbial-derived vector control strategies

    USDA-ARS?s Scientific Manuscript database

    The current outbreak of Zika virus in the Americas has highlighted the need for improved methods of control. This concern is exacerbated if we consider that all three major arboviruses (Zika, dengue, and chikungunya virus) are transmitted efficiently by two wide spread mosquito vectors: Aedes aegypt...

  18. Optimal control of malaria: combining vector interventions and drug therapies.

    PubMed

    Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B

    2018-04-24

    The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.

  19. The control of malaria vectors in the context of the Health for All by the Year 2000 Global Strategy.

    PubMed

    Slooff, R

    1987-12-01

    The changing picture of malaria worldwide needs to be viewed in the context of other developments before we can determine the directions to take to be able to provide the thrusts required in malaria vector control. As a result of population growth, increasing urbanization and continuing pressure on scarce natural resources, the epidemiology of malaria and its manifestation as a public health problem are undergoing profound modifications, indeed in several parts of the world. This picture is further complicated by the spread of resistance to pesticides in the vector and to drugs in Plasmodium falciparum. In the immediate future, these trends will continue. In addition, the appearance of suitable vaccines is a highly probable event to be taken into consideration. The WHO Global Strategy of Health For All by the Year 2000 aims at the improvement of levels of health through primary health care. Among other things, this implies a greater reliance on community involvement and on intersectoral collaboration for health. In this light, the major malaria problems in the year 2000 will be: (1) "hard core" endemic areas with inadequate infrastructure and poor socio-economic development; (2) resource development areas, in particular those under illegal or poor controlled exploitation; (3) expanding urban areas and (4) increased mobility of non-immunes, particularly if uncontrolled. In order to cope with these problems, thrusts are required towards the development of vector control strategies, covering the following fields: (1) tools for vector control integrated in primary health care, (2) new chemicals, (3) improved and new biologicals, (4) environmental management and the adoption of health safeguards in resource development projects and (5) manpower development.

  20. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers.

    PubMed

    Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F

    2016-07-01

    In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Detection of Wolbachia in Aedes albopictus and Their Effects on Chikungunya Virus

    PubMed Central

    Ahmad, Noor Afizah; Vythilingam, Indra; Lim, Yvonne A. L.; Zabari, Nur Zatil Aqmar M.; Lee, Han Lim

    2017-01-01

    Wolbachia-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing Wolbachia as a novel vector control strategy, it is crucial to understand the Wolbachia–mosquito interactions. In this study, field surveys were conducted to screen for the infection status of Wolbachia in field-collected Aedes albopictus. The effects of Wolbachia in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of Wolbachia-infected field-collected Ae. albopictus was estimated to be 98.6% (N = 142) for females and 95.1% (N = 102) for males in the population studied. The Ae. albopictus were naturally infected with both wAlbA and wAlbB strains. We also found that the native Wolbachia has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs. PMID:27920393

  2. Conditions for success of engineered underdominance gene drive systems.

    PubMed

    Edgington, Matthew P; Alphey, Luke S

    2017-10-07

    Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The Preventive Control of a Dengue Disease Using Pontryagin Minimum Principal

    NASA Astrophysics Data System (ADS)

    Ratna Sari, Eminugroho; Insani, Nur; Lestari, Dwi

    2017-06-01

    Behaviour analysis for host-vector model without control of dengue disease is based on the value of basic reproduction number obtained using next generation matrices. Furthermore, the model is further developed involving a preventive control to minimize the contact between host and vector. The purpose is to obtain an optimal preventive strategy with minimal cost. The Pontryagin Minimum Principal is used to find the optimal control analytically. The derived optimality model is then solved numerically to investigate control effort to reduce infected class.

  4. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

    PubMed

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang

    2017-07-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

  5. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China

    PubMed Central

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun

    2017-01-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562

  6. Viruses vector control proposal: genus Aedes emphasis.

    PubMed

    Reis, Nelson Nogueira; Silva, Alcino Lázaro da; Reis, Elma Pereira Guedes; Silva, Flávia Chaves E; Reis, Igor Guedes Nogueira

    The dengue fever is a major public health problem in the world. In Brazil, in 2015, there were 1,534,932 cases, being 20,320 cases of severe form, and 811 deaths related to this disease. The distribution of Aedes aegypti, the vector, is extensive. Recently, Zika and Chikungunya viruses had arisen, sharing the same vector as dengue and became a huge public health issue. Without specific treatment, it is urgently required as an effective vector control. This article is focused on reviewing vector control strategies, their effectiveness, viability and economical impact. Among all, the Sterile Insect Technique is highlighted as the best option to be adopted in Brazil, once it is largely effectively used in the USA and Mexico for plagues related to agribusiness. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Strategies and approaches to vector control in nine malaria-eliminating countries: a cross-case study analysis.

    PubMed

    Smith Gueye, Cara; Newby, Gretchen; Gosling, Roland D; Whittaker, Maxine A; Chandramohan, Daniel; Slutsker, Laurence; Tanner, Marcel

    2016-01-04

    There has been progress towards malaria elimination in the last decade. In response, WHO launched the Global Technical Strategy (GTS), in which vector surveillance and control play important roles. Country experiences in the Eliminating Malaria Case Study Series were reviewed to identify success factors on the road to elimination using a cross-case study analytic approach. Reports were included in the analysis if final English language draft reports or publications were available at the time of analysis (Bhutan, Cape Verde, Malaysia, Mauritius, Namibia, Philippines, Sri Lanka, Turkey, Turkmenistan). A conceptual framework for vector control in malaria elimination was developed, reviewed, formatted as a matrix, and case study data was extracted and entered into the matrix. A workshop was convened during which participants conducted reviews of the case studies and matrices and arrived at a consensus on the evidence and lessons. The framework was revised and a second round of data extraction, synthesis and summary of the case study reports was conducted. Countries implemented a range of vector control interventions. Most countries aligned with integrated vector management, however its impact was not well articulated. All programmes conducted entomological surveillance, but the response (i.e., stratification and targeting of interventions, outbreak forecasting and strategy) was limited or not described. Indoor residual spraying (IRS) was commonly used by countries. There were several examples of severe reductions or halting of IRS coverage and subsequent resurgence of malaria. Funding and operational constraints and poor implementation had roles. Bed nets were commonly used by most programmes; coverage and effectiveness were either not measured or not articulated. Larval control was an important intervention for several countries, preventing re-introduction, however coverage and impact on incidence were not described. Across all interventions, coverage indicators were incomparable, and the rationale for which tools were used and which were not used appeared to be a function of the availability of funding, operational issues and cost instead of evidence of effectiveness to reduce incidence. More work is required to fill gaps in programme guidance, clarify the best methods for choosing and targeting vector control interventions, and support to measure cost, cost-effectiveness and cost-benefit of vector surveillance and control interventions.

  8. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  9. Reverse chemical ecology approach for the identification of a mosquito oviposition attractant

    USDA-ARS?s Scientific Manuscript database

    Pheromones and other semiochemicals play a crucial role in today’s integrated pest and vector management strategies for controlling populations of insects causing loses to agriculture and vectoring diseases to humans. These semiochemicals are typically discovered by bioassay-guided approaches. Here,...

  10. Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinean city without a dengue vector control programme.

    PubMed

    Espinosa, Manuel O; Polop, Francisco; Rotela, Camilo H; Abril, Marcelo; Scavuzzo, Carlos M

    2016-11-21

    The main objective of this study was to obtain and analyse the space-time dynamics of Aedes aegypti breeding sites in Clorinda City, Formosa Province, Argentina coupled with landscape analysis using the maximum entropy approach in order to generate a dengue vector niche model. In urban areas, without vector control activities, 12 entomologic (larval) samplings were performed during three years (October 2011 to October 2014). The entomologic surveillance area represented 16,511 houses. Predictive models for Aedes distribution were developed using vector breeding abundance data, density analysis, clustering and geoprocessing techniques coupled with Earth observation satellite data. The spatial analysis showed a vector spatial distribution pattern with clusters of high density in the central region of Clorinda with a well-defined high-risk area in the western part of the city. It also showed a differential temporal behaviour among different areas, which could have implications for risk models and control strategies at the urban scale. The niche model obtained for Ae. aegypti, based on only one year of field data, showed that 85.8% of the distribution of breeding sites is explained by the percentage of water supply (48.2%), urban distribution (33.2%), and the percentage of urban coverage (4.4%). The consequences for the development of control strategies are discussed with reference to the results obtained using distribution maps based on environmental variables.

  11. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases

    PubMed Central

    2011-01-01

    The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular. PMID:22206355

  12. RNAi-based strategy for Asian citrus psyllid (Diaphorina citri) Control: A method to reduce the spread of citrus greening disease

    USDA-ARS?s Scientific Manuscript database

    Citrus greening disease is a serious bacterial disease of citrus worldwide and is vectored by the Asian citrus pysllid (Diaphorina Citri). The only effective control strategy includes vigorous control of the psyllid, primarily through heavy reliance on pesticides. As a more sustainable and environm...

  13. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.

    PubMed

    Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C

    2015-06-01

    Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission.

  14. Impact of Education Campaign on Community-Based Vector Control in Hastening the Process of Elimination of Lymphatic Filariasis in Tamil Nadu, South India

    ERIC Educational Resources Information Center

    Nandha, B.; Krishnamoorthy, K.

    2012-01-01

    Globally mosquito-borne lymphatic filariasis (LF) is targeted for elimination by 2020. Towards this goal, the scope of community-based vector control as a supplementary strategy to mass drug administration (MDA) was assessed through an intensive education campaign and evaluated using pre- and post-educational surveys in an intervention and…

  15. Preventing malaria in the Peruvian Amazon: a qualitative study in Iquitos, Peru.

    PubMed

    Newell, Ian; Wiskin, Connie; Anthoney, James; Meza, Graciela; de Wildt, Gilles

    2018-01-16

    In Peru, despite decades of concerted control efforts, malaria remains a significant public health burden. Peru has recently exhibited a dramatic rise in malaria incidence, impeding South America's progress towards malaria elimination. The Amazon basin, in particular the Loreto region of Peru, has been identified as a target for the implementation of intensified control strategies, aiming for elimination. No research has addressed why vector control strategies in Loreto have had limited impact in the past, despite vector control elsewhere being highly effective in reducing malaria transmission. This study employed qualitative methods to explore factors limiting the success of vector control strategies in the region. Twenty semi-structured interviews were conducted among adults attending a primary care centre in Iquitos, Peru, together with 3 interviews with key informants (health care professionals). The interviews focussed on how local knowledge, together with social and cultural attitudes, determined the use of vector control methods. Five themes emerged. (a) Participants believed malaria to be embedded within their culture, and commonly blamed this for a lack of regard for prevention. (b) They perceived a shift in mosquito biting times to early evening, rendering night-time use of bed nets less effective. (c) Poor preventive practices were compounded by a consensus that malaria prevention was the government's responsibility, and that this reduced motivation for personal prevention. (d) Participants confused the purpose of space-spraying. (e) Participants' responses also exposed persisting misconceptions, mainly concerning the cause of malaria and best practices for its prevention. To eliminate malaria from the Americas, region-specific strategies need to be developed that take into account the local social and cultural contexts. In Loreto, further research is needed to explore the potential shift in biting behaviour of Anopheles darlingi, and how this interacts with the population's social behaviours and current use of preventive measures. Attitudes concerning personal responsibility for malaria prevention and long-standing misconceptions as to the cause of malaria and best preventive practices also need to be addressed.

  16. Effects of climate and different management strategies on Aedes aegypti breeding sites: a longitudinal survey in Brasília (DF, Brazil).

    PubMed

    Favier, Charly; Degallier, Nicolas; Vilarinhos, Paulo de Tarso Ribeiro; de Carvalho, Maria do Socorro Laurentino; Yoshizawa, Maria Amelia Cavalcanti; Knox, Monique Britto

    2006-07-01

    To determine the influence of climate and of environmental vector control with or without insecticide on Aedes aegypti larval indices and pupae density. An 18-month longitudinal survey of infestation of Ae. aegypti immature stages was conducted for the 1015 residences (premises) of Vila Planalto, an area of Brasilia where the Breteau Index was about 40 before the study. This area was divided into five zones: a control zone with environmental management alone and four zones with insecticide treatment (methoprene, Bti, temephos). We tested for significant differences between infestation levels in the control and insecticide-treated areas, for relationships between climatic variables and larval indices, and to determine risk factors of infestation for certain types of premises and containers. Environmental vector control strategies dramatically decreased infestation in the five areas. No significant differences could be detected between control strategies with insecticide and without. Some premises and container types were particularly suitable for breeding. The influence of climate on the emergence of Ae. aegypti adults for the area is described. In a moderately infested area such as Brasilia, insecticides do not improve environmental vector control. Rather, infestations could be further reduced by focusing on residences and containers particularly at risk. The nature of the link between climate and larval population should be investigated in larger-scale studies before being used in forecasting models.

  17. Reducing Human-Tsetse Contact Significantly Enhances the Efficacy of Sleeping Sickness Active Screening Campaigns: A Promising Result in the Context of Elimination.

    PubMed

    Courtin, Fabrice; Camara, Mamadou; Rayaisse, Jean-Baptiste; Kagbadouno, Moise; Dama, Emilie; Camara, Oumou; Traoré, Ibrahima S; Rouamba, Jérémi; Peylhard, Moana; Somda, Martin B; Leno, Mamadou; Lehane, Mike J; Torr, Steve J; Solano, Philippe; Jamonneau, Vincent; Bucheton, Bruno

    2015-01-01

    Control of gambiense sleeping sickness, a neglected tropical disease targeted for elimination by 2020, relies mainly on mass screening of populations at risk and treatment of cases. This strategy is however challenged by the existence of undetected reservoirs of parasites that contribute to the maintenance of transmission. In this study, performed in the Boffa disease focus of Guinea, we evaluated the value of adding vector control to medical surveys and measured its impact on disease burden. The focus was divided into two parts (screen and treat in the western part; screen and treat plus vector control in the eastern part) separated by the Rio Pongo river. Population census and baseline entomological data were collected from the entire focus at the beginning of the study and insecticide impregnated targets were deployed on the eastern bank only. Medical surveys were performed in both areas in 2012 and 2013. In the vector control area, there was an 80% decrease in tsetse density, resulting in a significant decrease of human tsetse contacts, and a decrease of disease prevalence (from 0.3% to 0.1%; p=0.01), and an almost nil incidence of new infections (<0.1%). In contrast, incidence was 10 times higher in the area without vector control (>1%, p<0.0001) with a disease prevalence increasing slightly (from 0.5 to 0.7%, p=0.34). Combining medical and vector control was decisive in reducing T. b. gambiense transmission and in speeding up progress towards elimination. Similar strategies could be applied in other foci.

  18. Strategies for targeting primate neural circuits with viral vectors

    PubMed Central

    El-Shamayleh, Yasmine; Ni, Amy M.

    2016-01-01

    Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level. PMID:27052579

  19. Resurgent vector-borne diseases as a global health problem.

    PubMed Central

    Gubler, D. J.

    1998-01-01

    Vector-borne infectious diseases are emerging or resurging as a result of changes in public health policy, insecticide and drug resistance, shift in emphasis from prevention to emergency response, demographic and societal changes, and genetic changes in pathogens. Effective prevention strategies can reverse this trend. Research on vaccines, environmentally safe insecticides, alternative approaches to vector control, and training programs for health-care workers are needed. PMID:9716967

  20. Current strategies and successes in engaging women in vector control: a systematic review

    PubMed Central

    Gunn, Jayleen K L; Ernst, Kacey C; Center, Katherine E; Bischoff, Kristi; Nuñez, Annabelle V; Huynh, Megan; Okello, Amanda; Hayden, Mary H

    2018-01-01

    Introduction Vector-borne diseases (VBDs) cause significant mortality and morbidity in low-income and middle-income countries and present a risk to high-income countries. Vector control programmes may confront social and cultural norms that impede their execution. Anecdotal evidence suggests that incorporating women in the design, delivery and adoption of health interventions increases acceptance and compliance. A better understanding of programmes that have attempted to increase women’s involvement in vector control could help shape best practices. The objective of this systematic review was to assess and critically summarise evidence regarding the effectiveness of women participating in vector control. Methods Seven databases were searched from inception to 21 December 2015. Two investigators independently reviewed all titles and abstracts for relevant articles. Grey literature was searched by assessing websites that focus on international development and vector control. Results In total, 23 articles representing 17 unique studies were included in this review. Studies discussed the involvement of women in the control of vectors for malaria (n=10), dengue (n=8), human African trypanosomiasis (n=3), schistosomiasis (n=1) and a combination (malaria and schistosomiasis, n=1). Seven programmes were found in the grey literature or through personal communications. Available literature indicates that women can be successfully engaged in vector control programmes and, when given the opportunity, they can create and sustain businesses that aim to decrease the burden of VBDs in their communities. Conclusion This systematic review demonstrated that women can be successfully engaged in vector control programmes at the community level. However, rigorous comparative effectiveness studies need to be conducted. PMID:29515913

  1. Cloning strategy for producing brush-forming protein-based polymers.

    PubMed

    Henderson, Douglas B; Davis, Richey M; Ducker, William A; Van Cott, Kevin E

    2005-01-01

    Brush-forming polymers are being used in a variety of applications, and by using recombinant DNA technology, there exists the potential to produce protein-based polymers that incorporate unique structures and functions in these brush layers. Despite this potential, production of protein-based brush-forming polymers is not routinely performed. For the design and production of new protein-based polymers with optimal brush-forming properties, it would be desirable to have a cloning strategy that allows an iterative approach wherein the protein based-polymer product can be produced and evaluated, and then if necessary, it can be sequentially modified in a controlled manner to obtain optimal surface density and brush extension. In this work, we report on the development of a cloning strategy intended for the production of protein-based brush-forming polymers. This strategy is based on the assembly of modules of DNA that encode for blocks of protein-based polymers into a commercially available expression vector; there is no need for custom-modified vectors and no need for intermediate cloning vectors. Additionally, because the design of new protein-based biopolymers can be an iterative process, our method enables sequential modification of a protein-based polymer product. With at least 21 bacterial expression vectors and 11 yeast expression vectors compatible with this strategy, there are a number of options available for production of protein-based polymers. It is our intent that this strategy will aid in advancing the production of protein-based brush-forming polymers.

  2. Harnessing Integrated Vector Management for Enhanced Disease Prevention.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Bagayoko, Magaran; Govere, John M; Macdonald, Michael B

    2017-01-01

    The increasing global threat of emerging and re-emerging vector-borne diseases (VBDs) poses a serious health problem. The World Health Organization (WHO) recommends integrated vector management (IVM) strategy for combating VBD transmission. An IVM approach requires entomological knowledge, technical and infrastructure capacity, and systems facilitating stakeholder collaboration. In sub-Saharan Africa, successful operational IVM experience comes from relatively few countries. This article provides an update on the extent to which IVM is official national policy, the degree of IVM implementation, the level of compliance with WHO guidelines, and concordance in the understanding of IVM, and it assesses the operational impact of IVM. The future outlook encompasses rational and sustainable use of effective vector control tools and inherent improved return for investment for disease vector control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Anti-influenza vaccination in animals].

    PubMed

    Bublot, M

    2009-01-01

    Until recently, Influenza was considered as a veterinary problem in avian, swine and horse only. New influenza strains able to infect and cause a disease in dogs and cats emerged these last six years. The most widely used influenza veterinary vaccines are the inactivated adjuvanted vaccines which are based on whole or split virus. New technologies have allowed the development of new generation vaccines including modified-live and vector vaccines. Modified-live influenza vaccines are available for horses only but they are in development in other species. Vector vaccines are already in use in chickens (replicative fowlpox vector) and in horses (non-replicative canarypox vector). These vaccines induce a rapid cellular and humoral immunity. Experimental studies have also shown that these vector vaccines are protective in other domestic species. These vector vaccines are compatible with the "DIVA" strategy which consists in differentiating infected from vaccinated animals and which allows disease eradication. The successive use of vector and inactivated vaccines (heterologous "prime-boost") induces a superior protective immunity in domestic poultry and constitutes a promising strategy for the control of H5N1 infection.

  4. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT).

    PubMed

    McDowell, Mary Ann

    2015-08-01

    More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modelling control of epidemics spreading by long-range interactions.

    PubMed

    Dybiec, Bartłomiej; Kleczkowski, Adam; Gilligan, Christopher A

    2009-10-06

    We have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an alpha-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the alpha-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.

  6. New repellent effective against African malaria mosquito Anopheles gambiae: implications for vector control.

    PubMed

    Hodson, C N; Yu, Y; Plettner, E; Roitberg, B D

    2016-12-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is a vector for Plasmodium, the causative agent of malaria. Current control strategies to reduce the impact of malaria focus on reducing the frequency of mosquito attacks on humans, thereby decreasing Plasmodium transmission. A need for new repellents effective against Anopheles mosquitoes has arisen because of changes in vector behaviour as a result of control strategies and concern over the health impacts of current repellents. The response of A. gambiae to potential repellents was investigated through an electroantennogram screen and the most promising of these candidates (1-allyloxy-4-propoxybenzene, 3c{3,6}) chosen for behavioural testing. An assay to evaluate the blood-host seeking behaviour of A. gambiae towards a simulated host protected with this repellent was then performed. The compound 3c{3,6} was shown to be an effective repellent, causing mosquitoes to reduce their contact with a simulated blood-host and probe less at the host odour. Thus, 3c{3,6} may be an effective repellent for the control of A. gambiae. © 2016 The Royal Entomological Society.

  7. Sustainability of vector control strategies in the Gran Chaco Region: current challenges and possible approaches

    PubMed Central

    Gürtler, Ricardo E

    2011-01-01

    Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying) and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical. PMID:19753458

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobina, C.B.; Silva, E.R.C. da; Lima, A.M.N.

    This paper investigates the PWM operation of a four switch three phase inverter (FSTPI), in the case of digital implementation. Different switching sequence strategies for vector control are described and a digital scalar method is also presented. The influence of different switching patterns on the output voltage symmetry, current waveform and switching frequency are examined. The results obtained by employing the vector and scalar strategies are compared and a relationship between them is established. This comparison is based on analytical study and is corroborated either by the computer simulations and by the experimental results. The vector approach makes ease themore » understanding and analysis of the FSTPI, as well the choice of a PWM pattern. However, similar results may be obtained through the scalar approach, which has a simpler implementation. The experimental results of the use of the FSTPI and digital PWM to control an induction motor are presented.« less

  9. Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses.

    PubMed

    Silva, José V J; Lopes, Thaísa R R; Oliveira-Filho, Edmilson F de; Oliveira, Renato A S; Durães-Carvalho, Ricardo; Gil, Laura H V G

    2018-06-01

    Emerging and re-emerging viral infections transmitted by insect vectors (arthopode-borne viruses, arbovirus) are a serious threat to global public health. Among them, yellow fever (YFV), dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses are particularly important in tropical and subtropical regions. Although vector control is one of the most used prophylactic measures against arboviruses, it often faces obstacles, such as vector diversity, uncontrolled urbanization and increasing resistance to insecticides. In this context, vaccines may be the best control strategy for arboviral diseases. Here, we provide a general overview about licensed vaccines and the most advanced vaccine candidates against YFV, DENV, CHIKV and ZIKV. In particular, we highlight vaccine difficulties, the current status of the most advanced strategies and discuss how the molecular characteristics of each virus can influence the choice of the different vaccine formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Vectors, hosts, and control measures for Zika virus in the Americas

    USGS Publications Warehouse

    Thompson, Sarah J.; Pearce, John; Ramey, Andy M.

    2017-01-01

    We examine Zika virus (ZIKV) from an ecological perspective and with a focus on the Americas. We assess (1) the role of wildlife in ZIKV disease ecology, (2) how mosquito behavior and biology influence disease dynamics, and (3) how nontarget species and ecosystems may be impacted by vector control programs. Our review suggests that free-ranging, non-human primates may be involved in ZIKV transmission in the Old World; however, other wildlife species likely play a limited role in maintaining or transmitting ZIKV. In the Americas, a zoonotic cycle has not yet been definitively established. Understanding behaviors and habitat tolerances of Aedes aegypti and Aedes albopictus, two ZIKV competent vectors in the Americas, will allow more accurate modeling of disease spread and facilitate targeted and effective control efforts. Vector control efforts may have direct and indirect impacts to wildlife, particularly invertebrate feeding species; however, strategies could be implemented to limit detrimental ecological effects.

  11. Biological Control Strategies for Mosquito Vectors of Arboviruses.

    PubMed

    Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L

    2017-02-10

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses.

  12. Biological Control Strategies for Mosquito Vectors of Arboviruses

    PubMed Central

    Huang, Yan-Jang S.; Higgs, Stephen; Vanlandingham, Dana L.

    2017-01-01

    Historically, biological control utilizes predatory species and pathogenic microorganisms to reduce the population of mosquitoes as disease vectors. This is particularly important for the control of mosquito-borne arboviruses, which normally do not have specific antiviral therapies available. Although development of resistance is likely, the advantages of biological control are that the resources used are typically biodegradable and ecologically friendly. Over the past decade, the advancement of molecular biology has enabled optimization by the manipulation of genetic materials associated with biological control agents. Two significant advancements are the discovery of cytoplasmic incompatibility induced by Wolbachia bacteria, which has enhanced replacement programs, and the introduction of dominant lethal genes into local mosquito populations through the release of genetically modified mosquitoes. As various arboviruses continue to be significant public health threats, biological control strategies have evolved to be more diverse and become critical tools to reduce the disease burden of arboviruses. PMID:28208639

  13. Transgenic Mosquitoes - Fact or Fiction?

    PubMed

    Wilke, André B B; Beier, John C; Benelli, Giovanni

    2018-06-01

    Technologies for controlling mosquito vectors based on genetic manipulation and the release of genetically modified mosquitoes (GMMs) are gaining ground. However, concrete epidemiological evidence of their effectiveness, sustainability, and impact on the environment and nontarget species is lacking; no reliable ecological evidence on the potential interactions among GMMs, target populations, and other mosquito species populations exists; and no GMM technology has yet been approved by the WHO Vector Control Advisory Group. Our opinion is that, although GMMs may be considered a promising control tool, more studies are needed to assess their true effectiveness, risks, and benefits. Overall, several lines of evidence must be provided before GMM-based control strategies can be used under the integrated vector management framework. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Opportunities for Improved Chagas Disease Vector Control Based on Knowledge, Attitudes and Practices of Communities in the Yucatan Peninsula, Mexico

    PubMed Central

    Rosecrans, Kathryn; Cruz-Martin, Gabriela; King, Ashley; Dumonteil, Eric

    2014-01-01

    Background Chagas disease is a vector-borne parasitic disease of major public health importance. Current prevention efforts are based on triatomine vector control to reduce transmission to humans. Success of vector control interventions depends on their acceptability and value to affected communities. We aimed to identify opportunities for and barriers to improved vector control strategies in the Yucatan peninsula, Mexico. Methodology/principal findings We employed a sequence of qualitative and quantitative research methods to investigate knowledge, attitudes and practices surrounding Chagas disease, triatomines and vector control in three rural communities. Our combined data show that community members are well aware of triatomines and are knowledgeable about their habits. However, most have a limited understanding of the transmission dynamics and clinical manifestations of Chagas disease. While triatomine control is not a priority for community members, they frequently use domestic insecticide products including insecticide spray, mosquito coils and plug-in repellents. Families spend about $32 US per year on these products. Alternative methods such as yard cleaning and window screens are perceived as desirable and potentially more effective. Screens are nonetheless described as unaffordable, in spite of a cost comparable to the average annual spending on insecticide products. Conclusion/Significance Further education campaigns and possibly financing schemes may lead families to redirect their current vector control spending from insecticide products to window screens. Also, synergism with mosquito control efforts should be further explored to motivate community involvement and ensure sustainability of Chagas disease vector control. PMID:24676038

  15. Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil

    PubMed Central

    Caprara, Andrea; De Oliveira Lima, José Wellington; Rocha Peixoto, Ana Carolina; Vasconcelos Motta, Cyntia Monteiro; Soares Nobre, Joana Mary; Sommerfeld, Johannes; Kroeger, Axel

    2015-01-01

    Background This study intended to implement a novel intervention strategy, in Brazil, using an ecohealth approach and analyse its effectiveness and costs in reducing Aedes aegypti vector density as well as its acceptance, feasibility and sustainability. The intervention was conducted from 2012 to 2013 in the municipality of Fortaleza, northeast Brazil. Methodology A cluster randomized controlled trial was designed by comparing ten intervention clusters with ten control clusters where routine vector control activities were conducted. The intervention included: community workshops; community involvement in clean-up campaigns; covering the elevated containers and in-house rubbish disposal without larviciding; mobilization of schoolchildren and senior inhabitants; and distribution of information, education and communication (IEC) materials in the community. Results Differences in terms of social participation, commitment and leadership were present in the clusters. The results showed the effectiveness of the intervention package in comparison with the routine control programme. Differences regarding the costs of the intervention were reasonable and could be adopted by public health services. Conclusions Embedding social participation and environmental management for improved dengue vector control was feasible and significantly reduced vector densities. Such a participatory ecohealth approach offers a promising alternative to routine vector control measures. PMID:25604760

  16. Malaria control under unstable dynamics: reactive vs. climate-based strategies.

    PubMed

    Baeza, Andres; Bouma, Menno J; Dhiman, Ramesh; Pascual, Mercedes

    2014-01-01

    In areas of the world where malaria prevails under unstable conditions, attacking the adult vector population through insecticide-based Indoor Residual Spraying (IRS) is the most common method for controlling epidemics. Defined in policy guidance, the use of Annual Parasitic Incidence (API) is an important tool for assessing the effectiveness of control and for planning new interventions. To investigate the consequences that a policy based on API in previous seasons might have on the population dynamics of the disease and on control itself in regions of low and seasonal transmission, we formulate a mathematical malaria model that couples epidemiologic and vector dynamics with IRS intervention. This model is parameterized for a low transmission and semi-arid region in northwest India, where epidemics are driven by high rainfall variability. We show that this type of feedback mechanism in control strategies can generate transient cycles in malaria even in the absence of environmental variability, and that this tendency to cycle can in turn limit the effectiveness of control in the presence of such variability. Specifically, for realistic rainfall conditions and over a range of control intensities, the effectiveness of such 'reactive' intervention is compared to that of an alternative strategy based on rainfall and therefore vector variability. Results show that the efficacy of intervention is strongly influenced by rainfall variability and the type of policy implemented. In particular, under an API 'reactive' policy, high vector populations can coincide more frequently with low control coverage, and in so doing generate large unexpected epidemics and decrease the likelihood of elimination. These results highlight the importance of incorporating information on climate variability, rather than previous incidence, in planning IRS interventions in regions of unstable malaria. These findings are discussed in the more general context of elimination and other low transmission regions such as highlands. Copyright © 2013. Published by Elsevier B.V.

  17. Mission Accomplished? We Need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control.

    PubMed

    Ritchie, Scott A; van den Hurk, Andrew F; Smout, Michael J; Staunton, Kyran M; Hoffmann, Ary A

    2018-03-01

    Historically, sustained control of Aedes aegypti, the vector of dengue, chikungunya, yellow fever, and Zika viruses, has been largely ineffective. Subsequently, two novel 'rear and release' control strategies utilizing mosquitoes infected with Wolbachia are currently being developed and deployed widely. In the incompatible insect technique, male Aedes mosquitoes, infected with Wolbachia, suppress populations through unproductive mating. In the transinfection strategy, both male and female Wolbachia-infected Ae. aegypti mosquitoes rapidly infect the wild population with Wolbachia, blocking virus transmission. It is critical to monitor the long-term stability of Wolbachia in host populations, and also the ability of this bacterium to continually inhibit virus transmission. Ongoing release and monitoring programs must be future-proofed should political support weaken when these vectors are successfully controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Underpinning Sustainable Vector Control through Informed Insecticide Resistance Management

    PubMed Central

    Hemmings, Kay; Hughes, Angela J.; Chanda, Emmanuel; Musapa, Mulenga; Kamuliwo, Mulakwa; Phiri, Faustina N.; Muzia, Lucy; Chanda, Javan; Kandyata, Alister; Chirwa, Brian; Poer, Kathleen; Hemingway, Janet; Wondji, Charles S.; Ranson, Hilary; Coleman, Michael

    2014-01-01

    Background There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions. Methodology/Principal Findings A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s. Conclusions/Significance Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan. PMID:24932861

  19. Microsatellites Reveal a High Population Structure in Triatoma infestans from Chuquisaca, Bolivia

    PubMed Central

    Pizarro, Juan Carlos; Gilligan, Lauren M.; Stevens, Lori

    2008-01-01

    Background For Chagas disease, the most serious infectious disease in the Americas, effective disease control depends on elimination of vectors through spraying with insecticides. Molecular genetic research can help vector control programs by identifying and characterizing vector populations and then developing effective intervention strategies. Methods and Findings The population genetic structure of Triatoma infestans (Hemiptera: Reduviidae), the main vector of Chagas disease in Bolivia, was investigated using a hierarchical sampling strategy. A total of 230 adults and nymphs from 23 localities throughout the department of Chuquisaca in Southern Bolivia were analyzed at ten microsatellite loci. Population structure, estimated using analysis of molecular variance (AMOVA) to estimate FST (infinite alleles model) and RST (stepwise mutation model), was significant between western and eastern regions within Chuquisaca and between insects collected in domestic and peri-domestic habitats. Genetic differentiation at three different hierarchical geographic levels was significant, even in the case of adjacent households within a single locality (R ST = 0.14, F ST = 0.07). On the largest geographic scale, among five communities up to 100 km apart, R ST = 0.12 and F ST = 0.06. Cluster analysis combined with assignment tests identified five clusters within the five communities. Conclusions Some houses are colonized by insects from several genetic clusters after spraying, whereas other households are colonized predominately by insects from a single cluster. Significant population structure, measured by both R ST and F ST, supports the hypothesis of poor dispersal ability and/or reduced migration of T. infestans. The high degree of genetic structure at small geographic scales, inferences from cluster analysis and assignment tests, and demographic data suggest reinfesting vectors are coming from nearby and from recrudescence (hatching of eggs that were laid before insecticide spraying). Suggestions for using these results in vector control strategies are made. PMID:18365033

  20. Control of Visceral Leishmaniasis in Latin America—A Systematic Review

    PubMed Central

    Romero, Gustavo A. S.; Boelaert, Marleen

    2010-01-01

    Background While three countries in South Asia decided to eliminate anthroponotic visceral leishmaniasis (VL) by 2015, its control in other regions seems fraught with difficulties. Is there a scope for more effective VL control in the Americas where transmission is zoonotic? We reviewed the evidence on VL control strategies in Latin America—diagnosis, treatment, veterinary interventions, vector control—with respect to entomological and clinical outcomes. Methodology/Principal Findings We searched the electronic databases of MEDLINE, LILACS, and the Cochrane Central Register of Controlled Trials, from 1960 to November 2008 and references of selected articles. Intervention trials as well as observational studies that evaluated control strategies of VL in the Americas were included. While the use of rapid diagnostic tests for VL diagnosis seems well established, there is a striking lack of evidence from clinical trials for drug therapy and few well designed intervention studies for control of vectors or canine reservoirs. Conclusion Elimination of zoonotic VL in the Americas does not seem a realistic goal at this point given the lack of political commitment, gaps in scientific knowledge, and the weakness of case management and surveillance systems. Research priorities and current strategies should be reviewed with the aim of achieving better VL control. PMID:20098726

  1. Vector-borne disease risk indexes in spatially structured populations

    PubMed Central

    Anzo-Hernández, Andrés; Bonilla-Capilla, Beatriz; Soto-Bajo, Moisés; Fraguela-Collar, Andrés

    2018-01-01

    There are economic and physical limitations when applying prevention and control strategies for urban vector borne diseases. Consequently, there are increasing concerns and interest in designing efficient strategies and regulations that health agencies can follow in order to reduce the imminent impact of viruses like Dengue, Zika and Chikungunya. That includes fumigation, abatization, reducing the hatcheries, picking up trash, information campaigns. A basic question that arise when designing control strategies is about which and where these ones should focus. In other words, one would like to know whether preventing the contagion or decrease vector population, and in which area of the city, is more efficient. In this work, we propose risk indexes based on the idea of secondary cases from patch to patch. Thus, they take into account human mobility and indicate which patch has more chance to be a corridor for the spread of the disease and which is more vulnerable, i.e. more likely to have cases?. They can also indicate the neighborhood where hatchery control will reduce more the number of potential cases. In order to illustrate the usefulness of these indexes, we run a set of numerical simulations in a mathematical model that takes into account the urban mobility and the differences in population density among the areas of a city. If we label by i a particular neighborhood, the transmission risk index (TRi) measures the potential secondary cases caused by a host in that neighborhood. The vector transmission risk index (VTRi) measures the potential secondary cases caused by a vector. Finally, the vulnerability risk index (VRi) measures the potential secondary cases in the neighborhood. Transmission indexes can be used to give geographical priority to some neighborhoods when applying prevention and control measures. On the other hand, the vulnerability index can be useful to implement monitoring campaigns or public health investment. PMID:29432455

  2. Modeling, analysis, control and design application guidelines of Doubly Fed Induction Generator (DFIG) for wind power applications

    NASA Astrophysics Data System (ADS)

    Masaud, Tarek

    Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet to be solved before they can be implemented in some specific applications. This dissertation deals with the general analysis, modeling, control and applications of the DFIG for large wind farm applications. A detailed "d-q" model of DFIG along with other applications is simulated using the MATLAB/Simulink platform. The simulation results have been discussed in detail in both sub-synchronous and super-synchronous mode of operation. An improved vector control strategy based on the rotor flux oriented vector control has been proposed to control the active power output of the DFIG. The new vector control strategy is compared with the stator flux oriented vector control which is commonly used. It is observed that the new improved vector control method provides a better active power tracking accuracy compare with the stator flux oriented vector control. The behavior of the DFIG -based wind farm under the various grid disturbances is also studied in this dissertation. The implementation of the Flexible AC Transmission System devices (FACTS) to overcome the voltage stability issue for such applications is investigated. The study includes the implementation of both a static synchronous compensator (STATCOM), and the static VAR compensator (SVC) as dynamic reactive power compensators at the point of common coupling to support DFIG-based wind farm during disturbances. Integrating FACTS protect the grid connected DFIG-based wind farm from going offline during and after the disturbances. It is found that the both devices improve the transient performance and therefore helps the wind turbine generator system to remain in service during grid faults. A comparison between the performance of the two devices in terms of the amount of reactive power injected, time response and the application cost has been discussed in this dissertation. Finally, the integration of the battery energy storage system (BESS) into a grid connected DFIG- based wind turbine as a proposed solution to smooth out the output power during wind speed variations is also addressed.

  3. Optimal combinations of control strategies and cost-effective analysis for visceral leishmaniasis disease transmission.

    PubMed

    Biswas, Santanu; Subramanian, Abhishek; ELMojtaba, Ibrahim M; Chattopadhyay, Joydev; Sarkar, Ram Rup

    2017-01-01

    Visceral leishmaniasis (VL) is a deadly neglected tropical disease that poses a serious problem in various countries all over the world. Implementation of various intervention strategies fail in controlling the spread of this disease due to issues of parasite drug resistance and resistance of sandfly vectors to insecticide sprays. Due to this, policy makers need to develop novel strategies or resort to a combination of multiple intervention strategies to control the spread of the disease. To address this issue, we propose an extensive SIR-type model for anthroponotic visceral leishmaniasis transmission with seasonal fluctuations modeled in the form of periodic sandfly biting rate. Fitting the model for real data reported in South Sudan, we estimate the model parameters and compare the model predictions with known VL cases. Using optimal control theory, we study the effects of popular control strategies namely, drug-based treatment of symptomatic and PKDL-infected individuals, insecticide treated bednets and spray of insecticides on the dynamics of infected human and vector populations. We propose that the strategies remain ineffective in curbing the disease individually, as opposed to the use of optimal combinations of the mentioned strategies. Testing the model for different optimal combinations while considering periodic seasonal fluctuations, we find that the optimal combination of treatment of individuals and insecticide sprays perform well in controlling the disease for the time period of intervention introduced. Performing a cost-effective analysis we identify that the same strategy also proves to be efficacious and cost-effective. Finally, we suggest that our model would be helpful for policy makers to predict the best intervention strategies for specific time periods and their appropriate implementation for elimination of visceral leishmaniasis.

  4. Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi.

    PubMed

    Gomes-Solecki, Maria

    2014-01-01

    Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans.

  5. Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi

    PubMed Central

    Gomes-Solecki, Maria

    2014-01-01

    Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans. PMID:25309883

  6. Plant extracts as potential mosquito larvicides

    PubMed Central

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-01-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed. PMID:22771587

  7. Plant extracts as potential mosquito larvicides.

    PubMed

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-05-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.

  8. Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control.

    PubMed

    Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M

    2016-10-01

    The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.

  9. A molecular insight into papaya leaf curl-a severe viral disease.

    PubMed

    Varun, Priyanka; Ranade, S A; Saxena, Sangeeta

    2017-11-01

    Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.

  10. Chemical ecology of animal and human pathogen vectors in a changing global climate.

    PubMed

    Pickett, John A; Birkett, Michael A; Dewhirst, Sarah Y; Logan, James G; Omolo, Maurice O; Torto, Baldwyn; Pelletier, Julien; Syed, Zainulabeuddin; Leal, Walter S

    2010-01-01

    Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.

  11. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria?

    PubMed Central

    Hemingway, Janet; Shretta, Rima; Wells, Timothy N. C.; Bell, David; Djimdé, Abdoulaye A.; Achee, Nicole; Qi, Gao

    2016-01-01

    Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication. PMID:26934361

  12. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria?

    PubMed

    Hemingway, Janet; Shretta, Rima; Wells, Timothy N C; Bell, David; Djimdé, Abdoulaye A; Achee, Nicole; Qi, Gao

    2016-03-01

    Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication.

  13. Strengthening public health pesticide management in countries endemic with malaria or other major vector-borne diseases: an evaluation of three strategies.

    PubMed

    van den Berg, Henk; Yadav, Rajpal S; Zaim, Morteza

    2014-09-18

    Public health pesticides has been the mainstay control of vectors of malaria and other diseases, and public health pests, but there is increasing concern over how these pesticides are being managed. Poor pesticide management could lead to risks to human health and the environment, or diminish the effectiveness of interventions. Strategies for strengthening the management of public health pesticides, from manufacture to disposal, should be evaluated to propose future directions. The process and outcomes of three strategies were studied in five regions of the WHO (African Region, Eastern Mediterranean Region, South-East Asia Region, Western Pacific Region, and American Region) and 13 selected countries. These strategies are: regional policy development, in-depth country support and thematic support across countries. Consensus, frameworks and action plans on public health pesticide management were developed at regional level. Country support for situation analysis and national action planning highlighted weaknesses over the entire spectrum of pesticide management practices, mainly related to malaria control. The thematic support on pesticide quality control contributed to structural improvements on a priority issue for malaria control across countries. The three strategies showed promising and complementary results, but guidelines and tools for implementation of the strategies should be further improved. Increased national and international priority should be given to support the development of policy, legislation and capacity that are necessary for sound management of public health pesticides.

  14. Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response.

    PubMed

    Chaskopoulou, Alexandra; L'Ambert, Gregory; Petric, Dusan; Bellini, Romeo; Zgomba, Marija; Groen, Thomas A; Marrama, Laurence; Bicout, Dominique J

    2016-09-02

    West Nile virus (WNV) represents a serious burden to human and animal health because of its capacity to cause unforeseen and large epidemics. Until 2004, only lineage 1 and 3 WNV strains had been found in Europe. Lineage 2 strains were initially isolated in 2004 (Hungary) and in 2008 (Austria) and for the first time caused a major WNV epidemic in 2010 in Greece with 262 clinical human cases and 35 fatalities. Since then, WNV lineage 2 outbreaks have been reported in several European countries including Italy, Serbia and Greece. Understanding the interaction of ecological factors that affect WNV transmission is crucial for preventing or decreasing the impact of future epidemics. The synchronous co-occurrence of competent mosquito vectors, virus, bird reservoir hosts, and susceptible humans is necessary for the initiation and propagation of an epidemic. Weather is the key abiotic factor influencing the life-cycles of the mosquito vector, the virus, the reservoir hosts and the interactions between them. The purpose of this paper is to review and compare mosquito population dynamics, and weather conditions, in three ecologically different contexts (urban/semi-urban, rural/agricultural, natural) across four European countries (Italy, France, Serbia, Greece) with a history of WNV outbreaks. Local control strategies will be described as well. Improving our understanding of WNV ecology is a prerequisite step for appraising and optimizing vector control strategies in Europe with the ultimate goal to minimize the probability of WNV infection.

  15. Evaluating long-term effectiveness of sleeping sickness control measures in Guinea.

    PubMed

    Pandey, Abhishek; Atkins, Katherine E; Bucheton, Bruno; Camara, Mamadou; Aksoy, Serap; Galvani, Alison P; Ndeffo-Mbah, Martial L

    2015-10-22

    Human African Trypanosomiasis threatens human health across Africa. The subspecies T.b. gambiense is responsible for the vast majority of reported HAT cases. Over the past decade, expanded control efforts accomplished a substantial reduction in HAT transmission, spurring the WHO to include Gambian HAT on its roadmap for 2020 elimination. To inform the implementation of this elimination goal, we evaluated the likelihood that current control interventions will achieve the 2020 target in Boffa prefecture in Guinea, which has one of the highest prevalences for HAT in the country, and where vector control measures have been implemented in combination with the traditional screen and treat strategy. We developed a three-species mathematical model of HAT and used a Bayesian melding approach to calibrate the model to epidemiological and entomological data from Boffa. From the calibrated model, we generated the probabilistic predictions regarding the likelihood that the current HAT control programs could achieve elimination by 2020 in Boffa. Our model projections indicate that if annual vector control is implemented in combination with annual or biennial active case detection and treatment, the probability of eliminating HAT as public health problem in Boffa by 2020 is over 90%. Annual implementation of vector control alone has a significant impact but a decreased chance of reaching the objective (77%). However, if the ongoing control efforts are interrupted, HAT will continue to remain a public health problem. In the presence of a non-human animal transmission reservoir, intervention strategies must be maintained at high coverage, even after 2020 elimination, to prevent HAT reemerging as a public health problem. Complementing active screening and treatment with vector control has the potential to achieve the elimination target before 2020 in the Boffa focus. However, surveillance must continue after elimination to prevent reemergence.

  16. Preliminary efficacy investigations of oral fipronil against Anopheles arabiensis when administered to Zebu cattle (Bos indicus) under field conditions.

    PubMed

    Poché, Richard M; Githaka, Naftaly; van Gool, Frans; Kading, Rebekah C; Hartman, Daniel; Polyakova, Larisa; Abworo, Edward Okoth; Nene, Vishvanath; Lozano-Fuentes, Saul

    2017-12-01

    Globally, malaria remains one of the most important vector-borne diseases despite the extensive use of vector control, including indoor residual spraying (IRS) and insecticide-treated nets (ITNs). These control methods target endophagic vectors, whereas some malaria vectors, such as Anopheles arabiensis, preferentially feed outdoors on cattle, making it a complicated vector to control using conventional strategies. Our study evaluated whether treating cattle with a capsule containing the active ingredient (AI) fipronil could reduce vector density and sporozoite rates, and alter blood feeding behavior, when applied in a small-scale field study. A pilot field study was carried out in the Samia District, Western Kenya, from May to July 2015. Four plots, each comprised of 50 huts used for sleeping, were randomly designated to serve as control or treatment. A week before cattle treatment, baseline mosquito collections were performed inside the houses using mechanical aspirators. Animals in the treatment (and buffer) were administered a single oral application of fipronil at ∼0.5mg/kg of body weight. Indoor mosquito collections were performed once a week for four weeks following treatment. Female mosquitoes were first identified morphologically to species complex, followed by PCR-based methods to obtain species identity, sporozoite presence, and the host source of the blood meal. All three species of anophelines found in the study area (An. gambiae s.s., An. arabiensis, An. funestus s.s.) were actively transmitting Plasmodium falciparum during the study period. The indoor resting density of An. arabiensis was significantly reduced in treatment plot one at three weeks post-treatment (T1) (efficacy=89%; T1 density=0.08, 95% credibility intervals [0.05, 0.10]; control plot density=0.78 [0.22, 0.29]) and at four weeks post-treatment (efficacy=64%; T1 density=0.16 [0.08, 0.14]; control plot density=0.48 [0.17, 0.22]). The reduction of An. arabiensis mosquitoes captured in the treatment plot two was higher: zero females were collected after treatment. The indoor resting density of An. gambiae s.s. was not significantly different between the treatment (T1, T2) and their corresponding control plots (C1, C2). An. funestus s.s. showed an increase in density over time. The results of this preliminary study suggest that treating cattle orally with fipronil, to target exophagic and zoophagic malaria vectors, could be a valuable control strategy to supplement existing vector control interventions which target endophilic anthropophilic species. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector?

    PubMed

    Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul

    2014-12-01

    The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.

  18. A Critical Assessment of Vector Control for Dengue Prevention

    PubMed Central

    Achee, Nicole L.; Gould, Fred; Perkins, T. Alex; Reiner, Robert C.; Morrison, Amy C.; Ritchie, Scott A.; Gubler, Duane J.; Teyssou, Remy; Scott, Thomas W.

    2015-01-01

    Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103

  19. The prevention of canine leishmaniasis and its impact on public health.

    PubMed

    Otranto, Domenico; Dantas-Torres, Filipe

    2013-07-01

    Canine leishmaniasis (CanL) caused by Leishmania infantum is a vector-borne disease of great veterinary and medical significance. Prevention of CanL requires a combined approach including measures focused on dogs and the environment where the vectors perpetuate. Over past decades, considerable effort has been put towards developing novel and cost-effective strategies against CanL. Vaccination is considered among the most promising tools for controlling CanL, and synthetic pyrethroids are useful and cost-effective in reducing risk of L. infantum infection in dogs. The effectiveness of the use of vaccines plus repellents in preventing L. infantum infection and subsequent disease development should be assessed by means of large-scale, randomized controlled field trials because this combined strategy may become the next frontier in the control of CanL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Genetic resistance: tolerance to vector-borne diseases and the prospects and challenges of genomics.

    PubMed

    Bahbahani, H; Hanotte, O

    2015-04-01

    Vector-borne diseases in cattle and small ruminants (e.g. trypanosomosis, Rift Valley fever and East Coast fever) are associated with major economic losses in tropical countries, and particularly on the African continent. A variety of control strategies (e.g. management, vaccination and/or acaricide treatments) are used to minimise their negative impacts. These strategies are often associated with environmental, technical and/or economic drawbacks. However, several indigenous livestock populations have been reported to show a level of genetic tolerance or resistance to such disease challenges (e.g. trypanotolerant N'Dama cattle and Djallonké sheep). Use of these populations represents a sustainable alternative approach to minimising the negative impact of such infection/infestation on livestock production. This review summarises the current understanding of the genetic control of these adaptations, identifies knowledge gaps and critically examines the possible impacts of genomics approaches to the genetic improvement of tolerance and/or resistance to vector-borne diseases.

  1. Interpretations and pitfalls in modelling vector-transmitted infections.

    PubMed

    Amaku, M; Azevedo, F; Burattini, M N; Coutinho, F A B; Lopez, L F; Massad, E

    2015-07-01

    In this paper we propose a debate on the role of mathematical models in evaluating control strategies for vector-borne infections. Mathematical models must have their complexity adjusted to their goals, and we have basically two classes of models. At one extreme we have models that are intended to check if our intuition about why a certain phenomenon occurs is correct. At the other extreme, we have models whose goals are to predict future outcomes. These models are necessarily very complex. There are models in between these classes. Here we examine two models, one of each class and study the possible pitfalls that may be incurred. We begin by showing how to simplify the description of a complicated model for a vector-borne infection. Next, we examine one example found in a recent paper that illustrates the dangers of basing control strategies on models without considering their limitations. The model in this paper is of the second class. Following this, we review an interesting paper (a model of the first class) that contains some biological assumptions that are inappropriate for dengue but may apply to other vector-borne infections. In conclusion, we list some misgivings about modelling presented in this paper for debate.

  2. Network analysis reveals why Xylella fastidiosa will persist in Europe.

    PubMed

    Strona, Giovanni; Carstens, Corrie Jacobien; Beck, Pieter S A

    2017-03-06

    The insect vector borne bacterium Xylella fastidiosa was first detected in olive trees in Southern Italy in 2013, and identified as the main culprit behind the 'olive quick decline syndrome'. Since then, the disease has spread rapidly through Italy's main olive oil producing region. The epidemiology of the outbreak is largely unstudied, with the list of X. fastidiosa hosts and vectors in Europe likely incomplete, and the role humans play in dispersal unknown. These knowledge gaps have led to management strategies based on general assumptions that require, among others, local vector control and, in certain areas, the destruction of infected plants and healthy ones around them in an attempt to eradicate or halt the spreading pest. Here we show that, regardless of epidemiological uncertainties, the mere distribution of olive orchards in Southern Italy makes the chances of eradicating X. fastidiosa from the region extremely slim. Our results imply that Southern Italy is becoming a reservoir for X. fastidiosa. As a consequence, management strategies should keep the prevalence of X. fastidiosa in the region as low as possible, primarily through vector control, lest the pathogen, that has also been detected in southern France and the island of Mallorca (Spain), continues spreading through Italy and Europe.

  3. Day-to-Day Population Movement and the Management of Dengue Epidemics.

    PubMed

    Falcón-Lezama, Jorge A; Martínez-Vega, Ruth A; Kuri-Morales, Pablo A; Ramos-Castañeda, José; Adams, Ben

    2016-10-01

    Dengue is a growing public health problem in tropical and subtropical cities. It is transmitted by mosquitoes, and the main strategy for epidemic prevention and control is insecticide fumigation. Effective management is, however, proving elusive. People's day-to-day movement about the city is believed to be an important factor in the epidemiological dynamics. We use a simple model to examine the fundamental roles of broad demographic and spatial structures in epidemic initiation, growth and control. We show that the key factors are local dilution, characterised by the vector-host ratio, and spatial connectivity, characterised by the extent of habitually variable movement patterns. Epidemic risk in the population is driven by the demographic groups that frequent the areas with the highest vector-host ratio, even if they only spend some of their time there. Synchronisation of epidemic trajectories in different demographic groups is governed by the vector-host ratios to which they are exposed and the strength of connectivity. Strategies for epidemic prevention and management may be made more effective if they take into account the fluctuating landscape of transmission intensity associated with spatial heterogeneity in the vector-host ratio and people's day-to-day movement patterns.

  4. RNA Interference in Insect Vectors for Plant Viruses.

    PubMed

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-12-12

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  5. RNA Interference in Insect Vectors for Plant Viruses

    PubMed Central

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists. PMID:27973446

  6. On the analysis of competitive displacement in dengue disease transmission

    NASA Astrophysics Data System (ADS)

    Wijaya, Karunia P.; Nuraini, Nuning; Soewono, Edy; Handayani, Dewi

    2014-03-01

    We study a host-vector model involving the interplay of competitive displacement mechanism in a specific DENV serotype, both in human blood and mosquito blood. Using phylogenetic analysis, world virologists investigate the severe manifestations of dengue fever caused by the displacements within weakly virulent pathogens (native strains) by more virulent pathogens (invasive strains) in one serotype. We construct SIR model for human and SI model for mosquito to explore the key determinants of those displacements. Analysis of nonnegativity and boundedness of the solution as well as the basic reproduction number (R0) are taken into account for verifying the model into biological meaningfulness. To generate predictions of the outcomes of control strategies, we derive an optimal control model which involves two control apparatus: fluid infusion (for human) and fumigation (for vector). Numerical results show the dynamics of host-vector in an observation period, both under control and without control.

  7. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    PubMed

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  8. Therapeutic vaccines in HBV: lessons from HCV.

    PubMed

    Barnes, Eleanor

    2015-02-01

    Currently, millions of people infected with hepatitis B virus (HBV) are committed to decades of treatment with anti-viral therapy to control viral replication. However, new tools for immunotherapy that include both viral vectors and molecular checkpoint inhibitors are now available. This has led to a resurgence of interest in new strategies to develop immunotherapeutic strategies with the aim of inducing HBeAg seroconversion--an end-point that has been associated with a decrease in the rates of disease progression. Ultimately, a true cure will involve the elimination of covalently closed circular DNA which presents a greater challenge for immunotherapy. In this manuscript, I describe the development of immunotherapeutic strategies for HBV that are approaching or currently in clinical studies, and draw on observations of T cell function in natural infection supported by recent animal studies that may lead to additional rational vaccine strategies using checkpoint inhibitors. I also draw on our recent experience in developing potent vaccines for HCV prophylaxis based on simian adenoviral and MVA vectors used in prime-boost strategies in both healthy volunteers and HCV infected patients. I have shown that the induction of T cell immune responses is markedly attenuated when administered to people with persistent HCV viremia. These studies and recently published animal studies using the woodchuck model suggest that potent vaccines based on DNA or adenoviral vectored vaccination represent a rational way forward. However, combining these with drugs to suppress viral replication, alongside checkpoint inhibitors may be required to induce long-term immune control.

  9. Plant-based strategies for mosquito control

    USDA-ARS?s Scientific Manuscript database

    Mosquitoes transmit some of the most devastating emerging infectious diseases of humans, domestic animals, and wildlife. Although vector control by use of chemical insecticides has played an important role in prevention and management of these diseases, their sustained use remains questionable due t...

  10. Recommendations for control of East african sleeping sickness in Uganda.

    PubMed

    Kotlyar, Simon

    2010-01-01

    East African sleeping sickness, caused by Trypanosoma brucei rhodesiense, is prominent in Uganda and poses a serious public health challenge in the region. This publication attempts to provide key components for designing a strategy for a nationwide initiative to provide insecticide-treatment of the animal reservoir to control T. b. rhodesiense. The contents of this article will focus on insecticide-based vector control strategies, monitoring and evaluation framework, and knowledge gaps required for future initiatives.

  11. Modelling malaria control by introduction of larvivorous fish.

    PubMed

    Lou, Yijun; Zhao, Xiao-Qiang

    2011-10-01

    Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host-vector interaction and the predator-prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.

  12. Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnlA.

    PubMed

    Bowen, J K; Templeton, M D; Sharrock, K R; Crowhurst, R N; Rikkerink, E H

    1995-01-20

    The feasibility of performing routine transformation-mediated mutagenesis in Glomerella cingulata was analysed by adopting three one-step gene disruption strategies targeted at the pectin lyase gene pnlA. The efficiencies of disruption following transformation with gene replacement- or gene truncation-disruption vectors were compared. To effect replacement-disruption, G. cingulata was transformed with a vector carrying DNA from the pnlA locus in which the majority of the coding sequence had been replaced by the gene for hygromycin B resistance. Two of the five transformants investigated contained an inactivated pnlA gene (pnlA-); both also contained ectopically integrated vector sequences. The efficacy of gene disruption by transformation with two gene truncation-disruption vectors was also assessed. Both vectors carried at 5' and 3' truncated copy of the pnlA coding sequence, adjacent to the gene for hygromycin B resistance. The promoter sequences controlling the selectable marker differed in the two vectors. In one vector the homologous G. cingulata gpdA promoter controlled hygromycin B phosphotransferase expression (homologous truncation vector), whereas in the second vector promoter elements were from the Aspergillus nidulans gpdA gene (heterologous truncation vector). Following transformation with the homologous truncation vector, nine transformants were analysed by Southern hybridisation; no transformants contained a disrupted pnlA gene. Of nineteen heterologous truncation vector transformants, three contained a disrupted pnlA gene; Southern analysis revealed single integrations of vector sequence at pnlA in two of these transformants. pnlA mRNA was not detected by Northern hybridisation in pnlA- transformants. pnlA- transformants failed to produce a PNLA protein with a pI identical to one normally detected in wild-type isolates by silver and activity staining of isoelectric focussing gels. Pathogenesis on Capsicum and apple was unaffected by disruption of the pnlA gene, indicating that the corresponding gene product, PNLA, is not essential for pathogenicity. Gene disruption is a feasible method for selectively mutating defined loci in G. cingulata for functional analysis of the corresponding gene products.

  13. Global Status of DDT and Its Alternatives for Use in Vector Control to Prevent Disease

    PubMed Central

    van den Berg, Henk

    2009-01-01

    Objective I review the status of dichlorodiphenyltrichloroethane (DDT), used for disease vector control, along with current evidence on its benefits and risks in relation to the available alternatives. Data sources and extraction Contemporary data on DDT use were largely obtained from questionnaires and reports. I also conducted a Scopus search to retrieve published articles. Data synthesis DDT has been recommended as part of the arsenal of insecticides available for indoor residual spraying until suitable alternatives are available. Approximately 14 countries use DDT for disease control, and several countries are preparing to reintroduce DDT. The effectiveness of DDT depends on local settings and merits close consideration in relation to the alternatives. Concerns about the continued use of DDT are fueled by recent reports of high levels of human exposure associated with indoor spraying amid accumulating evidence on chronic health effects. There are signs that more malaria vectors are becoming resistant to the toxic action of DDT, and that resistance is spreading to new countries. A comprehensive cost assessment of DDT versus its alternatives that takes side effects into account is missing. Effective chemical methods are available as immediate alternatives to DDT, but the choice of insecticide class is limited, and in certain areas the development of resistance is undermining the efficacy of insecticidal tools. New insecticides are not expected in the short term. Nonchemical methods are potentially important, but their effectiveness at program level needs urgent study. Conclusions To reduce reliance on DDT, support is needed for integrated and multipartner strategies of vector control and for the continued development of new technologies. Integrated vector management provides a framework for developing and implementing effective technologies and strategies as sustainable alternatives to reliance on DDT. PMID:20049114

  14. Controlling and Coordinating Development in Vector-Transmitted Parasites

    PubMed Central

    Matthews, Keith R.

    2013-01-01

    Vector-borne parasites cause major human diseases of the developing world, including malaria, human African trypanosomiasis, Chagas disease, leishmaniasis, filariasis, and schistosomiasis. Although the life cycles of these parasites were defined over 100 years ago, the strategies they use to optimize their successful transmission are only now being understood in molecular terms. Parasites are now known to monitor their environment in both their host and vector and in response to other parasites. This allows them to adapt their developmental cycles and to counteract any unfavorable conditions they encounter. Here, I review the interactions that parasites engage in with their hosts and vectors to maximize their survival and spread. PMID:21385707

  15. Molecular phylogeny of the Anopheles gambiae complex suggests genetic introgression between principal malaria vectors.

    PubMed Central

    Besansky, N J; Powell, J R; Caccone, A; Hamm, D M; Scott, J A; Collins, F H

    1994-01-01

    The six Afrotropical species of mosquitoes comprising the Anopheles gambiae complex include the most efficient vectors of malaria in the world as well as a nonvector species. The accepted interpretation of evolutionary relationships among these species is based on chromosomal inversions and suggests that the two principal vectors, A. gambiae and Anopheles arabiensis, are on distant branches of the phylogenetic tree. However, DNA sequence data indicate that these two species are sister taxa and suggest gene flow between them. These results have important implications for malaria control strategies involving the replacement of vector with nonvector populations. Images PMID:8041714

  16. Eco-bio-social research on dengue in Asia: a multicountry study on ecosystem and community-based approaches for the control of dengue vectors in urban and peri-urban Asia.

    PubMed

    Sommerfeld, Johannes; Kroeger, Axel

    2012-12-01

    This article provides an overview of methods and cross-site insights of a 5-year research and capacity building initiative conducted between 2006 and 2011 in six countries of South Asia (India, Sri Lanka) and South-East Asia (Indonesia, Myanmar, Philippines, Thailand).The initiative managed an interdisciplinary investigation of ecological, biological, and social (i.e., eco-bio-social) dimensions of dengue in urban and peri-urban areas, and developed community-based interventions aimed at reducing dengue vector breeding and viral transmission. The multicountry study comprised interdisciplinary research groups from six leading Asian research institutions. The groups conducted a detailed situation analysis to identify and characterize local eco-bio-social conditions, and formed a community-of-practice for EcoHealth research where group partners disseminated results and collaboratively developed site-specific intervention tools for vector-borne diseases. In sites where water containers produced more than 70% of Aedes pupae, interventions ranged from mechanical lid covers for containers to biological control. Where small discarded containers presented the main problem, groups experimented with solid waste management, composting and recycling schemes. Many intervention tools were locally produced and all tools were implemented through community partnership strategies. All sites developed socially and culturally appropriate health education materials. The study also mobilised and empowered women's, students' and community groups and at several sites organized new volunteer groups for environmental health. The initiative's programmes showed significant impact on vector densities in some sites. Other sites showed varying effect - partially attributable to the 'contamination' of control groups - yet led to significant outcomes at the community level where local groups united around broad interests in environmental hygiene and sanitation. The programme's findings are relevant for defining efficient, effective and ecologically sound vector control interventions based on local evidence and in accordance with WHO's strategy for integrated vector management.

  17. Characterization of the spatial and temporal dynamics of the dengue vector population established in urban areas of Fernando de Noronha, a Brazilian oceanic island.

    PubMed

    Regis, Lêda N; Acioli, Ridelane Veiga; Silveira, José Constantino; de Melo-Santos, Maria Alice Varjal; da Cunha, Mércia Cristiane Santana; Souza, Fátima; Batista, Carlos Alberto Vieira; Barbosa, Rosângela Maria Rodrigues; de Oliveira, Cláudia Maria Fontes; Ayres, Constância Flávia Junqueira; Monteiro, Antonio Miguel Vieira; Souza, Wayner Vieira

    2014-09-01

    Aedes aegypti has played a major role in the dramatic expansion of dengue worldwide. The failure of control programs in reducing the rhythm of global dengue expansion through vector control suggests the need for studies to support more appropriated control strategies. We report here the results of a longitudinal study on Ae. aegypti population dynamics through continuous egg sampling aiming to characterize the infestation of urban areas of a Brazilian oceanic island, Fernando de Noronha. The spatial and temporal distribution of the dengue vector population in urban areas of the island was described using a monitoring system (SMCP-Aedes) based on a 103-trap network for Aedes egg sampling, using GIS and spatial statistics analysis tools. Mean egg densities were estimated over a 29-month period starting in 2011 and producing monthly maps of mosquito abundance. The system detected continuous Ae. aegypti oviposition in most traps. The high global positive ovitrap index (POI=83.7% of 2815 events) indicated the frequent presence of blood-fed-egg laying females at every sampling station. Egg density (eggs/ovitrap/month) reached peak values of 297.3 (0 - 2020) in May and 295 (0 - 2140) in August 2012. The presence of a stable Ae. aegypti population established throughout the inhabited areas of the island was demonstrated. A strong association between egg abundance and rainfall with a 2-month lag was observed, which combined with a first-order autocorrelation observed in the series of egg counts can provide an important forecasting tool. This first description of the characteristics of the island infestation by the dengue vector provides baseline information to analyze relationships between the spatial distribution of the vector and dengue cases, and to the development of integrated vector control strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Eco-bio-social research on dengue in Asia: a multicountry study on ecosystem and community-based approaches for the control of dengue vectors in urban and peri-urban Asia

    PubMed Central

    Sommerfeld, Johannes; Kroeger, Axel

    2012-01-01

    This article provides an overview of methods and cross-site insights of a 5-year research and capacity building initiative conducted between 2006 and 2011 in six countries of South Asia (India, Sri Lanka) and South-East Asia (Indonesia, Myanmar, Philippines, Thailand).The initiative managed an interdisciplinary investigation of ecological, biological, and social (i.e., eco-bio-social) dimensions of dengue in urban and peri-urban areas, and developed community-based interventions aimed at reducing dengue vector breeding and viral transmission. The multicountry study comprised interdisciplinary research groups from six leading Asian research institutions. The groups conducted a detailed situation analysis to identify and characterize local eco-bio-social conditions, and formed a community-of-practice for EcoHealth research where group partners disseminated results and collaboratively developed site-specific intervention tools for vector-borne diseases. In sites where water containers produced more than 70% of Aedes pupae, interventions ranged from mechanical lid covers for containers to biological control. Where small discarded containers presented the main problem, groups experimented with solid waste management, composting and recycling schemes. Many intervention tools were locally produced and all tools were implemented through community partnership strategies. All sites developed socially and culturally appropriate health education materials. The study also mobilised and empowered women’s, students’ and community groups and at several sites organized new volunteer groups for environmental health. The initiative’s programmes showed significant impact on vector densities in some sites. Other sites showed varying effect — partially attributable to the ‘contamination’ of control groups — yet led to significant outcomes at the community level where local groups united around broad interests in environmental hygiene and sanitation. The programme’s findings are relevant for defining efficient, effective and ecologically sound vector control interventions based on local evidence and in accordance with WHO’s strategy for integrated vector management. PMID:23318234

  19. A Deterministic Model to Quantify Risk and Guide Mitigation Strategies to Reduce Bluetongue Virus Transmission in California Dairy Cattle

    PubMed Central

    Mayo, Christie; Shelley, Courtney; MacLachlan, N. James; Gardner, Ian; Hartley, David; Barker, Christopher

    2016-01-01

    The global distribution of bluetongue virus (BTV) has been changing recently, perhaps as a result of climate change. To evaluate the risk of BTV infection and transmission in a BTV-endemic region of California, sentinel dairy cows were evaluated for BTV infection, and populations of Culicoides vectors were collected at different sites using carbon dioxide. A deterministic model was developed to quantify risk and guide future mitigation strategies to reduce BTV infection in California dairy cattle. The greatest risk of BTV transmission was predicted within the warm Central Valley of California that contains the highest density of dairy cattle in the United States. Temperature and parameters associated with Culicoides vectors (transmission probabilities, carrying capacity, and survivorship) had the greatest effect on BTV’s basic reproduction number, R0. Based on these analyses, optimal control strategies for reducing BTV infection risk in dairy cattle will be highly reliant upon early efforts to reduce vector abundance during the months prior to peak transmission. PMID:27812161

  20. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites.

    PubMed

    Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian

    2017-06-05

    Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.

  1. Viral Paratransgenesis in the Malaria Vector Anopheles gambiae

    PubMed Central

    Ren, Xiaoxia; Hoiczyk, Egbert; Rasgon, Jason L.

    2008-01-01

    Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae. PMID:18725926

  2. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    NASA Astrophysics Data System (ADS)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  3. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface

    PubMed Central

    Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine

    2012-01-01

    The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082

  4. Antibody-Based Preventive and Therapeutic Strategies Against HIV.

    PubMed

    Fabra-Garcia, Amanda; Beltran, Carolina; Sanchez-Merino, Victor; Yuste, Eloisa

    2016-01-01

    Over the years, numerous studies have been carried out demonstrating the role of antibodies in HIV control leading to the development of antibody-based therapeutic and prophylactic strategies. The objective of this review is to provide updated information on the role of antibodies in the prevention and control of HIV infection and the strategies against HIV that have been designed based on this information. Passive transfer of anti-HIV antibodies in animal models has proven the efficacy of certain antibodies in the prevention and treatment of infection. The capacity of antibodies to control the virus was first attributed to their neutralizing capacity. However, we now know that there are other Fc-mediated antibody activities associated with virus protection. When it comes to better understanding protection against HIV, we ought to pay particular attention to mucosal immune responses. The evidence accumulated so far indicates that an effective vaccine against HIV should generate both mucosal IgAs and systemic IgGs. Due to the problematic induction of protective anti-HIV antibodies, several groups have developed alternative approaches based on antibody delivery via gene therapy vectors. Experiments in animal models with these vectors have shown impressive protection levels and this strategy is now being clinically trialed. Taking into account all the information included in this review, it seems evident that anti-HIV-1 antibodies play an important role in virus control and prevention. This review aims to give an overview of the strategies used and the advances in antibody-based preventive and therapeutic strategies against HIV-1.

  5. Strengthening tactical planning and operational frameworks for vector control: the roadmap for malaria elimination in Namibia.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M

    2015-08-05

    Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.

  6. A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016.

    PubMed

    Kyalo, David; Amratia, Punam; Mundia, Clara W; Mbogo, Charles M; Coetzee, Maureen; Snow, Robert W

    2017-01-01

    Background : Understanding the distribution of anopheline vectors of malaria is an important prelude to the design of national malaria control and elimination programmes. A single, geo-coded continental inventory of anophelines using all available published and unpublished data has not been undertaken since the 1960s. Methods : We have searched African, European and World Health Organization archives to identify unpublished reports on anopheline surveys in 48 sub-Saharan Africa countries. This search was supplemented by identification of reports that formed part of post-graduate theses, conference abstracts, regional insecticide resistance databases and more traditional bibliographic searches of peer-reviewed literature. Finally, a check was made against two recent repositories of dominant malaria vector species locations ( circa 2,500). Each report was used to extract information on the survey dates, village locations (geo-coded to provide a longitude and latitude), sampling methods, species identification methods and all anopheline species found present during the survey. Survey records were collapsed to a single site over time.    Results : The search strategy took years and resulted in 13,331 unique, geo-coded survey locations of anopheline vector occurrence between 1898 and 2016. A total of 12,204 (92%) sites reported the presence of 10 dominant vector species/sibling species; 4,473 (37%) of these sites were sampled since 2005. 4,442 (33%) sites reported at least one of 13 possible secondary vector species; 1,107 (25%) of these sites were sampled since 2005. Distributions of dominant and secondary vectors conform to previous descriptions of the ecological ranges of these vectors. Conclusion : We have assembled the largest ever geo-coded database of anophelines in Africa, representing a legacy dataset for future updating and identification of knowledge gaps at national levels. The geo-coded database is available on Harvard Dataverse as a reference source for African national malaria control programmes planning their future control and elimination strategies.

  7. A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016

    PubMed Central

    Kyalo, David; Amratia, Punam; Mundia, Clara W.; Mbogo, Charles M.; Coetzee, Maureen; Snow, Robert W.

    2017-01-01

    Background: Understanding the distribution of anopheline vectors of malaria is an important prelude to the design of national malaria control and elimination programmes. A single, geo-coded continental inventory of anophelines using all available published and unpublished data has not been undertaken since the 1960s. Methods: We have searched African, European and World Health Organization archives to identify unpublished reports on anopheline surveys in 48 sub-Saharan Africa countries. This search was supplemented by identification of reports that formed part of post-graduate theses, conference abstracts, regional insecticide resistance databases and more traditional bibliographic searches of peer-reviewed literature. Finally, a check was made against two recent repositories of dominant malaria vector species locations ( circa 2,500). Each report was used to extract information on the survey dates, village locations (geo-coded to provide a longitude and latitude), sampling methods, species identification methods and all anopheline species found present during the survey. Survey records were collapsed to a single site over time.    Results: The search strategy took years and resulted in 13,331 unique, geo-coded survey locations of anopheline vector occurrence between 1898 and 2016. A total of 12,204 (92%) sites reported the presence of 10 dominant vector species/sibling species; 4,473 (37%) of these sites were sampled since 2005. 4,442 (33%) sites reported at least one of 13 possible secondary vector species; 1,107 (25%) of these sites were sampled since 2005. Distributions of dominant and secondary vectors conform to previous descriptions of the ecological ranges of these vectors. Conclusion: We have assembled the largest ever geo-coded database of anophelines in Africa, representing a legacy dataset for future updating and identification of knowledge gaps at national levels. The geo-coded database is available on Harvard Dataverse as a reference source for African national malaria control programmes planning their future control and elimination strategies. PMID:28884158

  8. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria.

    PubMed

    Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve

    2016-02-01

    New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and through engaging powerful policy champions to drive policy change and thereby accelerate access to new vector control tools. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  9. The impact of dissociation on transposon-mediated disease control strategies.

    PubMed

    Marshall, John M

    2008-03-01

    Vector-borne diseases such as malaria and dengue fever continue to be a major health concern through much of the world. The emergence of chloroquine-resistant strains of malaria and insecticide-resistant mosquitoes emphasize the need for novel methods of disease control. Recently, there has been much interest in the use of transposable elements to drive resistance genes into vector populations as a means of disease control. One concern that must be addressed before a release is performed is the potential loss of linkage between a transposable element and a resistance gene. Transposable elements such as P and hobo have been shown to produce internal deletion derivatives at a significant rate, and there is concern that a similar process could lead to loss of the resistance gene from the drive system following a transgenic release. Additionally, transposable elements such as Himar1 have been shown to transpose significantly more frequently when free of exogenous DNA. Here, we show that any transposon-mediated gene drive strategy must have an exceptionally low rate of dissociation if it is to be effective. Additionally, the resistance gene must confer a large selective advantage to the vector to surmount the effects of a moderate dissociation rate and transpositional handicap.

  10. An innovative ecohealth intervention for Chagas disease vector control in Yucatan, Mexico.

    PubMed

    Waleckx, Etienne; Camara-Mejia, Javier; Ramirez-Sierra, Maria Jesus; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Vazquez-Narvaez, Santos; Najera-Vazquez, Rosario; Gourbière, Sébastien; Dumonteil, Eric

    2015-02-01

    Non-domiciliated (intrusive) triatomine vectors remain a challenge for the sustainability of Chagas disease vector control as these triatomines are able to transiently (re-)infest houses. One of the best-characterized examples is Triatoma dimidiata from the Yucatan peninsula, Mexico, where adult insects seasonally infest houses between March and July. We focused our study on three rural villages in the state of Yucatan, Mexico, in which we performed a situation analysis as a first step before the implementation of an ecohealth (ecosystem approach to health) vector control intervention. The identification of the key determinants affecting the transient invasion of human dwellings by T. dimidiata was performed by exploring associations between bug presence and qualitative and quantitative variables describing the ecological, biological and social context of the communities. We then used a participatory action research approach for implementation and evaluation of a control strategy based on window insect screens to reduce house infestation by T. dimidiata. This ecohealth approach may represent a valuable alternative to vertically-organized insecticide spraying. Further evaluation may confirm that it is sustainable and provides effective control (in the sense of limiting infestation of human dwellings and vector/human contacts) of intrusive triatomines in the region. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  11. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites.

    PubMed

    Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver

    2015-01-01

    The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area

    PubMed Central

    Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D’Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2016-01-01

    Background Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Methodology/Principal findings Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Conclusion/Significance Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species. PMID:27906987

  13. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area.

    PubMed

    Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2016-12-01

    Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species.

  14. Maximum power extraction under different vector-control schemes and grid-synchronization strategy of a wind-driven Brushless Doubly-Fed Reluctance Generator.

    PubMed

    Mousa, Mohamed G; Allam, S M; Rashad, Essam M

    2018-01-01

    This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases

    PubMed Central

    Kilpatrick, A. Marm; Randolph, Sarah E.

    2013-01-01

    Emerging vector-borne diseases represent an important issue for global health. Many vector-borne pathogens have appeared in new regions in the past two decades, and many endemic diseases have increased in incidence. Although introductions and local emergence are frequently considered distinct processes, many emerging endemic pathogens are in fact invading at a local scale coincident with habitat change. We highlight key differences in the dynamics and disease burden that result from increased pathogen transmission following habitat change compared with the introduction of pathogens to new regions. Truly in situ emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles whereas pathogen invasion results from anthropogenic trade and travel and suitable conditions for a pathogen, including hosts, vectors, and climate. Once established, ecological factors related to vector characteristics shape the evolutionary selective pressure on pathogens that may result in increased use of humans as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that may be more effective in the long term. PMID:23200503

  16. GENETIC STRUCTURE OF TRIATOMA INFESTANS POPULATIONS IN RURAL COMMUNITIES OF SANTIAGO DEL ESTERO, NORTHERN ARGENTINA

    PubMed Central

    Marcet, PL; Mora, MS; Cutrera, AP; Jones, L; Gürtler, RE; Kitron, U; Dotson, EM

    2008-01-01

    To gain an understanding of the genetic structure and dispersal dynamics of T. infestans populations, we analyzed the multilocus genotype of 10 microsatellite loci for 352 T. infestans collected in 21 houses of 11 rural communities in October 2002. Genetic structure was analyzed at the community and house compound levels. Analysis revealed that vector control actions affected the genetic structure of T. infestans populations. Bug populations from communities under sustained vector control (core area) were highly structured and genetic differentiation between neighboring house compounds was significant. In contrast, bug populations from communities with sporadic vector control actions were more homogeneous and lacked defined genetic clusters. Genetic differentiation between population pairs did not fit a model of isolation by distance at the microgeographical level. Evidence consistent with flight or walking bug dispersal was detected within and among communities, dispersal was more female-biased in the core area and results suggested that houses received immigrants from more than one source. Putative sources and mechanisms of re-infestation are described. These data may be use to design improved vector control strategies PMID:18773972

  17. Gene Delivery Strategies to Promote Spinal Cord Repair

    PubMed Central

    Walthers, Christopher M; Seidlits, Stephanie K

    2015-01-01

    Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed. PMID:25922572

  18. [Aedes aegypti control strategies: a review].

    PubMed

    Zara, Ana Laura de Sene Amâncio; Santos, Sandra Maria Dos; Fernandes-Oliveira, Ellen Synthia; Carvalho, Roberta Gomes; Coelho, Giovanini Evelim

    2016-01-01

    to describe the main strategies to control Aedes aegypti, with emphasis on promising technological innovations for use in Brazil. this study is a non-systematic review of the literature. several technologies have been developed as alternatives in the control of Ae. aegypti, using different mechanisms of action, such as selective monitoring of the infestation, social interventions, dispersing insecticides, new biological control agents and molecular techniques for population control of mosquitoes, also considering the combination between them. Evolving technologies require evaluation of the effectiveness, feasibility and costs of implementation strategies as complementary to the actions already recommended by the National Program for Dengue Control. the integration of different compatible and effective vector control strategies, considering the available technologies and regional characteristics, appears to be a viable method to try to reduce the infestation of mosquitoes and the incidence of arbovirus transmitted by them.

  19. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect transmitted infectious diseases. The fact that many viruses carry...

  20. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector.

    PubMed

    Akbari, Omar S; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A

    2013-09-04

    Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org).

  1. Aspects of pathogen genomics, diversity, epidemiology, vector dynamics, and disease management for a newly emerged disease of potato: zebra chip.

    PubMed

    Lin, Hong; Gudmestad, Neil C

    2013-06-01

    An overview is provided for the aspects of history, biology, genomics, genetics, and epidemiology of zebra chip (ZC), a destructive disease of potato (Solanum tuberosum) that represents a major threat to the potato industries in the United States as well as other potato-production regions in the world. The disease is associated with a gram-negative, phloem-limited, insect-vectored, unculturable prokaryote, 'Candidatus Liberibacter solanacearum', that belongs to the Rhizobiaceae family of α-Proteobacteria. The closest cultivated relatives of 'Ca. L. solanacearum' are members of the group of bacteria known as the α-2 subgroup. In spite of the fact that Koch's postulates sensu stricto have not been fulfilled, a great deal of progress has been made in understanding the ZC disease complex since discovery of the disease. Nevertheless, more research is needed to better understand vector biology, disease mechanisms, host response, and epidemiology in the context of vector-pathogen-plant interactions. Current ZC management strategies focus primarily on psyllid control. The ultimate control of ZC likely relies on host resistance. Unfortunately, all commercial potato cultivars are susceptible to ZC. Elucidation of the 'Ca. L. solanacearum' genome sequence has provided insights into the genetic basis of virulence and physiological and metabolic capability of this organism. Finally, the most effective, sustainable management of ZC is likely to be based on integrated strategies, including removal or reduction of vectors or inocula, improvement of host resistance to the presumptive pathogen and psyllid vectors, and novel gene-based therapeutic treatment.

  2. The Extinction of Dengue through Natural Vulnerability of Its Vectors

    PubMed Central

    Williams, Craig R.; Bader, Christie A.; Kearney, Michael R.; Ritchie, Scott A.; Russell, Richard C.

    2010-01-01

    Background Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. Methodology/Principal Findings Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. Conclusions/Significance These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies. PMID:21200424

  3. The Effects of City Streets on an Urban Disease Vector

    PubMed Central

    Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.

    2013-01-01

    With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756

  4. Controlling Malaria Using Livestock-Based Interventions: A One Health Approach

    PubMed Central

    Franco, Ana O.; Gomes, M. Gabriela M.; Rowland, Mark; Coleman, Paul G.

    2014-01-01

    Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases. PMID:25050703

  5. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication

    PubMed Central

    2017-01-01

    Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination. PMID:29190291

  6. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication.

    PubMed

    2017-11-01

    Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.

  7. Developing an expanded vector control toolbox for malaria elimination

    PubMed Central

    Tatarsky, Allison; Diabate, Abdoulaye; Chaccour, Carlos J; Marshall, John M; Okumu, Fredros O; Brunner, Shannon; Newby, Gretchen; Williams, Yasmin A; Malone, David; Tusting, Lucy S; Gosling, Roland D

    2017-01-01

    Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions. PMID:28589022

  8. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    PubMed Central

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  9. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements

    PubMed Central

    Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K.; Kersey, Paul J.; Maslen, Gareth L.; Takken, Willem; Koenraadt, Constantianus J. M.; Oliva, Clelia F.; Busquets, Núria; Abad, F. Xavier; Failloux, Anna-Bella; Levashina, Elena A.; Wilson, Anthony J.; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D.

    2016-01-01

    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector–pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations. PMID:27677378

  10. The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review

    PubMed Central

    Gortazar, Christian; Diez-Delgado, Iratxe; Barasona, Jose Angel; Vicente, Joaquin; De La Fuente, Jose; Boadella, Mariana

    2015-01-01

    The control of diseases shared with wildlife requires the development of strategies that will reduce pathogen transmission between wildlife and both domestic animals and human beings. This review describes and criticizes the options currently applied and attempts to forecast wildlife disease control in the coming decades. Establishing a proper surveillance and monitoring scheme (disease and population wise) is the absolute priority before even making the decision as to whether or not to intervene. Disease control can be achieved by different means, including: (1) preventive actions, (2) arthropod vector control, (3) host population control through random or selective culling, habitat management or reproductive control, and (4) vaccination. The alternative options of zoning or no-action should also be considered, particularly in view of a cost/benefit assessment. Ideally, tools from several fields should be combined in an integrated control strategy. The success of disease control in wildlife depends on many factors, including disease ecology, natural history, and the characteristics of the pathogen, the availability of suitable diagnostic tools, the characteristics of the domestic and wildlife host(s) and vectors, the geographical spread of the problem, the scale of the control effort and stakeholders’ attitudes. PMID:26664926

  11. Progress towards understanding the ecology and epidemiology of malaria in the western Kenya highlands: opportunities and challenges for control under climate change risk.

    PubMed

    Githeko, A K; Ototo, E N; Guiyun, Yan

    2012-01-01

    Following severe malaria epidemics in the western Kenya highlands after the late 1980s it became imperative to undertake eco-epidemiological assessments of the disease and determine its drivers, spatial-temporal distribution and control strategies. Extensive research has indicated that the major biophysical drivers of the disease are climate change and variability, terrain, topography, hydrology and immunity. Vector distribution is focalized at valley bottoms and abundance is closely related with drainage efficiency, habitat availability, stability and productivity of the ecosystems. Early epidemic prediction models have been developed and they can be used to assess climate risks that warrant extra interventions with a lead time of 2-4 months. Targeted integrated vector management strategies can significantly reduce the cost on the indoor residual spraying by targeting the foci of transmission in transmission hotspots. Malaria control in the highlands has reduced vector population by 90%, infections by 50-90% in humans and in some cases transmission has been interrupted. Insecticide resistance is increasing and as transmission decreases so will immunity. Active surveillance will be required to monitor and contain emerging threats. More studies on eco-stratification of the disease, based on its major drivers, are required so that interventions are tailored for specific ecosystems. New and innovative control interventions such as house modification with a one-application strategy may reduce the threat from insecticide resistance and low compliance associated with the use of ITNs. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Risk analysis and prediction of visceral leishmaniasis dispersion in São Paulo State, Brazil.

    PubMed

    Sevá, Anaiá da Paixão; Mao, Liang; Galvis-Ovallos, Fredy; Tucker Lima, Joanna Marie; Valle, Denis

    2017-02-01

    Visceral leishmaniasis (VL) is an important neglected disease caused by a protozoan parasite, and represents a serious public health problem in many parts of the world. It is zoonotic in Europe and Latin America, where infected dogs constitute the main domestic reservoir for the parasite and play a key role in VL transmission to humans. In Brazil this disease is caused by the protozoan Leishmania infantum chagasi, and is transmitted by the sand fly Lutzomyia longipalpis. Despite programs aimed at eliminating infection sources, the disease continues to spread throughout the Country. VL in São Paulo State, Brazil, first appeared in the northwestern region, spreading in a southeasterly direction over time. We integrate data on the VL vector, infected dogs and infected human dispersion from 1999 to 2013 through an innovative spatial temporal Bayesian model in conjunction with geographic information system. This model is used to infer the drivers of the invasion process and predict the future progression of VL through the State. We found that vector dispersion was influenced by vector presence in nearby municipalities at the previous time step, proximity to the Bolívia-Brazil gas pipeline, and high temperatures (i.e., annual average between 20 and 23°C). Key factors affecting infected dog dispersion included proximity to the Marechal Rondon Highway, high temperatures, and presence of the competent vector within the same municipality. Finally, vector presence, presence of infected dogs, and rainfall (approx. 270 to 540mm/year) drove the dispersion of human VL cases. Surprisingly, economic factors exhibited no noticeable influence on disease dispersion. Based on these drivers and stochastic simulations, we identified which municipalities are most likely to be invaded by vectors and infected hosts in the future. Prioritizing prevention and control strategies within the identified municipalities may help halt the spread of VL while reducing monitoring costs. Our results contribute important knowledge to public and animal health policy planning, and suggest that prevention and control strategies should focus on vector control and on blocking contact between vectors and hosts in the priority areas identified to be at risk.

  13. Risk analysis and prediction of visceral leishmaniasis dispersion in São Paulo State, Brazil

    PubMed Central

    Mao, Liang; Galvis-Ovallos, Fredy; Tucker Lima, Joanna Marie; Valle, Denis

    2017-01-01

    Visceral leishmaniasis (VL) is an important neglected disease caused by a protozoan parasite, and represents a serious public health problem in many parts of the world. It is zoonotic in Europe and Latin America, where infected dogs constitute the main domestic reservoir for the parasite and play a key role in VL transmission to humans. In Brazil this disease is caused by the protozoan Leishmania infantum chagasi, and is transmitted by the sand fly Lutzomyia longipalpis. Despite programs aimed at eliminating infection sources, the disease continues to spread throughout the Country. VL in São Paulo State, Brazil, first appeared in the northwestern region, spreading in a southeasterly direction over time. We integrate data on the VL vector, infected dogs and infected human dispersion from 1999 to 2013 through an innovative spatial temporal Bayesian model in conjunction with geographic information system. This model is used to infer the drivers of the invasion process and predict the future progression of VL through the State. We found that vector dispersion was influenced by vector presence in nearby municipalities at the previous time step, proximity to the Bolívia-Brazil gas pipeline, and high temperatures (i.e., annual average between 20 and 23°C). Key factors affecting infected dog dispersion included proximity to the Marechal Rondon Highway, high temperatures, and presence of the competent vector within the same municipality. Finally, vector presence, presence of infected dogs, and rainfall (approx. 270 to 540mm/year) drove the dispersion of human VL cases. Surprisingly, economic factors exhibited no noticeable influence on disease dispersion. Based on these drivers and stochastic simulations, we identified which municipalities are most likely to be invaded by vectors and infected hosts in the future. Prioritizing prevention and control strategies within the identified municipalities may help halt the spread of VL while reducing monitoring costs. Our results contribute important knowledge to public and animal health policy planning, and suggest that prevention and control strategies should focus on vector control and on blocking contact between vectors and hosts in the priority areas identified to be at risk. PMID:28166251

  14. Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol

    PubMed Central

    Alonso, Sergi; Zulliger, Rose; Wagman, Joe; Saifodine, Abuchahama; Candrinho, Baltazar; Macete, Eusébio; Brew, Joe; Fornadel, Christen; Kassim, Hidayat; Loch, Lourdes; Sacoor, Charfudin; Varela, Kenyssony; Carty, Cara L; Robertson, Molly; Saute, Francisco

    2018-01-01

    Background Most of the reduction in malaria prevalence seen in Africa since 2000 has been attributed to vector control interventions. Yet increases in the distribution and intensity of insecticide resistance and higher costs of newer insecticides pose a challenge to sustaining these gains. Thus, endemic countries face challenging decisions regarding the choice of vector control interventions. Methods A cluster randomised trial is being carried out in Mopeia District in the Zambezia Province of Mozambique, where malaria prevalence in children under 5 is high (68% in 2015), despite continuous and campaign distribution of long-lasting insecticide-treated nets (LLINs). Study arm 1 will continue to use the standard, LLIN-based National Malaria Control Programme vector control strategy (LLINs only), while study arm 2 will receive indoor residual spraying (IRS) once a year for 2 years with a microencapsulated formulation of pirimiphos-methyl (Actellic 300 CS), in addition to the standard LLIN strategy (LLINs+IRS). Prior to the 2016 IRS implementation (the first of two IRS campaigns in this study), 146 clusters were defined and stratified per number of households. Clusters were then randomised 1:1 into the two study arms. The public health impact and cost-effectiveness of IRS intervention will be evaluated over 2 years using multiple methods: (1) monthly active malaria case detection in a cohort of 1548 total children aged 6–59 months; (2) enhanced passive surveillance at health facilities and with community health workers; (3) annual cross-sectional surveys; and (4) entomological surveillance. Prospective microcosting of the intervention and provider and societal costs will be conducted. Insecticide resistance status pattern and changes in local Anopheline populations will be included as important supportive outcomes. Discussion By evaluating the public health impact and cost-effectiveness of IRS with a non-pyrethroid insecticide in a high-transmission setting with high LLIN ownership, it is expected that this study will provide programmatic and policy-relevant data to guide national and global vector control strategies. Trial registration number NCT02910934. PMID:29564161

  15. Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol.

    PubMed

    Chaccour, Carlos J; Alonso, Sergi; Zulliger, Rose; Wagman, Joe; Saifodine, Abuchahama; Candrinho, Baltazar; Macete, Eusébio; Brew, Joe; Fornadel, Christen; Kassim, Hidayat; Loch, Lourdes; Sacoor, Charfudin; Varela, Kenyssony; Carty, Cara L; Robertson, Molly; Saute, Francisco

    2018-01-01

    Most of the reduction in malaria prevalence seen in Africa since 2000 has been attributed to vector control interventions. Yet increases in the distribution and intensity of insecticide resistance and higher costs of newer insecticides pose a challenge to sustaining these gains. Thus, endemic countries face challenging decisions regarding the choice of vector control interventions. A cluster randomised trial is being carried out in Mopeia District in the Zambezia Province of Mozambique, where malaria prevalence in children under 5 is high (68% in 2015), despite continuous and campaign distribution of long-lasting insecticide-treated nets (LLINs). Study arm 1 will continue to use the standard, LLIN-based National Malaria Control Programme vector control strategy (LLINs only), while study arm 2 will receive indoor residual spraying (IRS) once a year for 2 years with a microencapsulated formulation of pirimiphos-methyl (Actellic 300 CS), in addition to the standard LLIN strategy (LLINs+IRS). Prior to the 2016 IRS implementation (the first of two IRS campaigns in this study), 146 clusters were defined and stratified per number of households. Clusters were then randomised 1:1 into the two study arms. The public health impact and cost-effectiveness of IRS intervention will be evaluated over 2 years using multiple methods: (1) monthly active malaria case detection in a cohort of 1548 total children aged 6-59 months; (2) enhanced passive surveillance at health facilities and with community health workers; (3) annual cross-sectional surveys; and (4) entomological surveillance. Prospective microcosting of the intervention and provider and societal costs will be conducted. Insecticide resistance status pattern and changes in local Anopheline populations will be included as important supportive outcomes. By evaluating the public health impact and cost-effectiveness of IRS with a non-pyrethroid insecticide in a high-transmission setting with high LLIN ownership, it is expected that this study will provide programmatic and policy-relevant data to guide national and global vector control strategies. NCT02910934.

  16. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control

    PubMed Central

    Grisales, Nelson; Poupardin, Rodolphe; Gomez, Santiago; Fonseca-Gonzalez, Idalyd; Ranson, Hilary; Lenhart, Audrey

    2013-01-01

    Background Control and prevention of dengue relies heavily on the application of insecticides to control dengue vector mosquitoes. In Colombia, application of the larvicide temephos to the aquatic breeding sites of Aedes aegypti is a key part of the dengue control strategy. Resistance to temephos was recently detected in the dengue-endemic city of Cucuta, leading to questions about its efficacy as a control tool. Here, we characterize the underlying mechanisms and estimate the operational impact of this resistance. Methodology/Principal Findings Larval bioassays of Ae. aegypti larvae from Cucuta determined the temephos LC50 to be 0.066 ppm (95% CI 0.06–0.074), approximately 15× higher than the value obtained from a susceptible laboratory colony. The efficacy of the field dose of temephos at killing this resistant Cucuta population was greatly reduced, with mortality rates <80% two weeks after application and <50% after 4 weeks. Neither biochemical assays nor partial sequencing of the ace-1 gene implicated target site resistance as the primary resistance mechanism. Synergism assays and microarray analysis suggested that metabolic mechanisms were most likely responsible for the temephos resistance. Interestingly, although the greatest synergism was observed with the carboxylesterase inhibitor, DEF, the primary candidate genes from the microarray analysis, and confirmed by quantitative PCR, were cytochrome P450 oxidases, notably CYP6N12, CYP6F3 and CYP6M11. Conclusions/Significance In Colombia, resistance to temephos in Ae. aegypti compromises the duration of its effect as a vector control tool. Several candidate genes potentially responsible for metabolic resistance to temephos were identified. Given the limited number of insecticides that are approved for vector control, future chemical-based control strategies should take into account the mechanisms underlying the resistance to discern which insecticides would likely lead to the greatest control efficacy while minimizing further selection of resistant phenotypes. PMID:24069492

  17. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  18. Anopheles Vectors in Mainland China While Approaching Malaria Elimination.

    PubMed

    Zhang, Shaosen; Guo, Shaohua; Feng, Xinyu; Afelt, Aneta; Frutos, Roger; Zhou, Shuisen; Manguin, Sylvie

    2017-11-01

    China is approaching malaria elimination; however, well-documented information on malaria vectors is still missing, which could hinder the development of appropriate surveillance strategies and WHO certification. This review summarizes the nationwide distribution of malaria vectors, their bionomic characteristics, control measures, and related studies. After several years of effort, the area of distribution of the principal malaria vectors was reduced, in particular for Anopheles lesteri (synonym: An. anthropophagus) and Anopheles dirus s.l., which nearly disappeared from their former endemic regions. Anopheles sinensis is becoming the predominant species in southwestern China. The bionomic characteristics of these species have changed, and resistance to insecticides was reported. There is a need to update surveillance tools and investigate the role of secondary vectors in malaria transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Insecticide susceptibility of Anopheles stephensi to DDT and current insecticides in an elimination area in Iran.

    PubMed

    Zare, Mehdi; Soleimani-Ahmadi, Moussa; Davoodi, Sayed Hossein; Sanei-Dehkordi, Alireza

    2016-11-04

    Iran has recently initiated a malaria elimination program with emphasis on vector control strategies which are heavily reliant on indoor residual spraying and long-lasting insecticidal nets. Insecticide resistance seriously threatens the efficacy of vector control strategies. This study was conducted to determine the insecticide susceptibility of Anopheles stephensi to DDT and current insecticides in Jask county as an active malaria focus in southeastern Iran. In this study, the anopheline larvae were collected from different aquatic habitats in Jask county and transported to insectarium, fed with sugar and then 3-day-old adults were used for susceptibility tests. WHO insecticide susceptibility tests were performed with DDT (4 %), malathion (5 %), lambda-cyhalothrin (0.05 %), deltamethrin (0.05 %) and permethrin (0.75 %). The field strain of An. stephensi was found resistant to DDT and lambda-cyhalothrin. The LT 50 values for DDT and lambda-cyhalothrin in this species were 130.25, and 37.71 min, respectively. Moreover, An. stephensi was completely susceptible to malathion and permethrin and tolerant to deltamethrin. The present study results confirm the resistance of the major malaria vector, An. stephensi, to DDT and lambda-cyhalothrin, and tolerance to deltamethrin, which could gradually increase and spread into other malaria endemic areas. Thus, there is a need for regular monitoring of insecticide resistance in order to select suitable insecticides for vector control interventions towards malaria elimination.

  20. Learning and memory in disease vector insects

    PubMed Central

    Vinauger, Clément; Lahondère, Chloé; Cohuet, Anna; Lazzari, Claudio R.; Riffell, Jeffrey A.

    2016-01-01

    Learning and memory plays an important role in host preference and parasite transmission by disease vector insects. Historically there has been a dearth of standardized protocols that permit testing their learning abilities, thus limiting discussion on the potential epidemiological consequences of learning and memory to a largely speculative extent. However, with increasing evidence that individual experience and associative learning can affect processes such as oviposition site selection and host preference, it is timely to review the recently acquired knowledge, identify research gaps and discuss the implication of learning in disease vector insects in perspective with control strategies. PMID:27450224

  1. Malaria on the Guiana Shield: a review of the situation in French Guiana

    PubMed Central

    Musset, Lise; Pelleau, Stéphane; Girod, Romain; Ardillon, Vanessa; Carvalho, Luisiane; Dusfour, Isabelle; Gomes, Margarete SM; Djossou, Félix; Legrand, Eric

    2014-01-01

    In a climate of growing concern that Plasmodium falciparum may be developing a drug resistance to artemisinin derivatives in the Guiana Shield, this review details our current knowledge of malaria and control strategy in one part of the Shield, French Guiana. Local epidemiology, test-treat-track strategy, the state of parasite drug resistance and vector control measures are summarised. Current issues in terms of mobile populations and legislative limitations are also discussed. PMID:25184998

  2. Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance - developing strategies for future disease mitigation.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-03-03

    The incidence of mosquito-borne diseases is increasing in Europe, partly due to the incursion of a number of invasive species known to be vectors of dengue and chikungunya viruses, but also due to the involvement of native species in the transmission of West Nile virus and malaria. For some of these pathogens, there is a risk of the re-emergence of vector-borne diseases that were once widespread in Europe, but declined partly due to large-scale land-drainage projects. Some mosquito species exploit container habitats as breeding sites in urban areas; an adaptation to human-made micro-habitats resulting from increased urbanisation. However, many species thrive in natural wetland ecosystems. Owing to the impacts of climate change there is an urgent need for environmental adaptation, such as the creation of new wetlands to mitigate coastal and inland flooding. In some cases, these initiatives can be coupled with environmental change strategies to protect a range of endangered flora and fauna species by enhancing and extending wetland landscapes, which may by driven by European legislation, particularly in urban areas. This paper reviews field studies conducted in England to assess the impact of newly created wetlands on mosquito colonisation in a) coastal, b) urban and c) arable reversion habitats. It also considers the impact of wetland management on mosquito populations and explores the implications of various water and vegetation management options on the range of British mosquito species. Understanding the impact of wetland creation and management strategies on mosquito prevalence and the potential risk of increasing the levels of nuisance or disease vector species will be crucial in informing health and well-being risk assessments, guiding targeted control, and anticipating the social effects of extreme weather and climate change. Although new wetlands will certainly extend aquatic habitats for mosquitoes, not all species will become a major nuisance or a vector concern as a result. Understanding how the design and management of wetlands might exacerbate mosquito densities is crucial if we are to manage nuisance mosquitoes and control vector species in the event of a disease outbreak. This entomological evidence-base will ensure that control strategies achieve optimal efficacy at minimal cost.

  3. Analysis and Experimentation of Control Strategies for Underactuated Spacecraft

    DTIC Science & Technology

    2009-09-01

    control techniques that provide time -invariant global asymptotic stability of the fully actuated spacecraft system of equations. Although these control ...momentum wheel actuators in finite time under the restriction that the total angular momentum vector of the system is zero. This control methodology...can be stabilizable to an arbitrarily small region about the equilibrium of the system via time -invariant smooth state feedback control

  4. wFlu: Characterization and Evaluation of a Native Wolbachia from the Mosquito Aedes fluviatilis as a Potential Vector Control Agent

    PubMed Central

    Gonçalves, Daniela da Silva; Moreira, Luciano Andrade

    2013-01-01

    There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility), as well as vector competence (susceptibility) for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen interference when artificially-transfected to the novel mosquito hosts that are the vectors of human pathogens. PMID:23555728

  5. "Triplet" polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors.

    PubMed

    Mathison, Megumi; Singh, Vivek P; Gersch, Robert P; Ramirez, Maricela O; Cooney, Austin; Kaminsky, Stephen M; Chiuchiolo, Maria J; Nasser, Ahmed; Yang, Jianchang; Crystal, Ronald G; Rosengart, Todd K

    2014-10-01

    The in situ reprogramming of cardiac fibroblasts into induced cardiomyocytes by the administration of gene transfer vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) has been shown to improve ventricular function in myocardial infarction models. The efficacy of this strategy could, however, be limited by the need for fibroblast targets to be infected 3 times--once by each of the 3 transgene vectors. We hypothesized that a polycistronic "triplet" vector encoding all 3 transgenes would enhance postinfarct ventricular function compared with use of "singlet" vectors. After validation of the polycistronic vector expression in vitro, adult male Fischer 344 rats (n=6) underwent coronary ligation with or without intramyocardial administration of an adenovirus encoding all 3 major vascular endothelial growth factor (VEGF) isoforms (AdVEGF-All6A positive), followed 3 weeks later by the administration to AdVEGF-All6A-positive treated rats of singlet lentivirus encoding G, M, or T (1×10(5) transducing units each) or the same total dose of a GMT "triplet" lentivirus vector. Western blots demonstrated that triplet and singlet vectors yielded equivalent GMT transgene expression, and fluorescence activated cell sorting demonstrated that triplet vectors were nearly twice as potent as singlet vectors in generating induced cardiomyocytes from cardiac fibroblasts. Echocardiography demonstrated that GMT triplet vectors were more effective than the 3 combined singlet vectors in enhancing ventricular function from postinfarct baselines (triplet, 37%±10%; singlet, 13%±7%; negative control, 9%±5%; P<.05). These data have confirmed that the in situ administration of G, M, and T induces postinfarct ventricular functional improvement and that GMT polycistronic vectors enhance the efficacy of this strategy. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  6. Comparison of Aedes aegypti (Diptera: Culicidae) resting behavior on two fabric types under consideration for insecticide treatment in a push-pull strategy.

    PubMed

    Tainchum, Krajana; Polsomboon, Suppaluck; Grieco, John P; Suwonkerd, Wannapa; Prabaripai, Atchariya; Sungvornyothin, Sungsit; Chareonviriyaphap, Theeraphap; Achee, Nicole L

    2013-01-01

    Aedes aegypti (L.), the primary vector of dengue and dengue hemorrhagic fever, breeds and rests predominately inside human dwellings. With no current vaccine available, vector control remains the mainstay for dengue management and novel approaches continue to be needed to reduce virus transmission. This requires a full understanding of Ae. aegypti ecology to design effective strategies. One novel approach is the use of contact irritants at target resting sites inside homes to make the surface unacceptable and cause vectors to escape before biting. The objective of the current study was to observe indoor resting behavior patterns of female Ae. aegypti within experimental huts in response to two fabrics under consideration for insecticide treatment: cotton and polyester. Results indicate that fabric type, coverage ratio of dark to light fabric and placement configuration (vertical vs. horizontal) all influenced the resting pattern of mosquito cohorts. Findings from this study will guide evaluations of a push-pull strategy designed to exploit contact irritant behaviors and drive Ae. aegypti out of homes prefeeding.

  7. Evaluation of the Human IgG Antibody Response to Aedes albopictus Saliva as a New Specific Biomarker of Exposure to Vector Bites

    PubMed Central

    Doucoure, Souleymane; Mouchet, François; Cornelie, Sylvie; DeHecq, Jean Sébastien; Rutee, Abdul Hamid; Roca, Yelin; Walter, Annie; Hervé, Jean Pierre; Misse, Dorothée; Favier, François; Gasque, Philippe; Remoue, Franck

    2012-01-01

    Background The spread of Aedes albopictus, a vector for re-emergent arbovirus diseases like chikungunya and dengue, points up the need for better control strategies and new tools to evaluate transmission risk. Human antibody (Ab) responses to mosquito salivary proteins could represent a reliable biomarker for evaluating human-vector contact and the efficacy of control programs. Methodology/Principal Findings We used ELISA tests to evaluate specific immunoglobulin G (IgG) responses to salivary gland extracts (SGE) in adults exposed to Aedes albopictus in Reunion Island. The percentage of immune responders (88%) and levels of anti-SGE IgG Abs were high in exposed individuals. At an individual level, our results indicate heterogeneity of the exposure to Aedes albopictus bites. In addition, low-level immune cross-reactivity between Aedes albopictus and Aedes aegypti SGEs was observed, mainly in the highest responders. Conclusion/Significance Ab responses to saliva could be used as an immuno-epidemiological tool for evaluating exposure to Aedes albopictus bites. Combined with entomological and epidemiological methods, a “salivary” biomarker of exposure to Aedes albopictus could enhance surveillance of its spread and the risk of arbovirus transmission, and could be used as a direct tool for the evaluation of Aedes albopictus control strategies. PMID:22363823

  8. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors.

    PubMed

    Nyasembe, Vincent O; Tchouassi, David P; Pirk, Christian W W; Sole, Catherine L; Torto, Baldwyn

    2018-02-01

    The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology.

  9. Ecological Connectivity of Trypanosoma cruzi Reservoirs and Triatoma pallidipennis Hosts in an Anthropogenic Landscape with Endemic Chagas Disease

    PubMed Central

    Ramsey, Janine M.; Gutiérrez-Cabrera, Ana E.; Salgado-Ramírez, Liliana; Peterson, A. Townsend; Sánchez-Cordero, Victor; Ibarra-Cerdeña, Carlos N.

    2012-01-01

    Traditional methods for Chagas disease prevention are targeted at domestic vector reduction, as well as control of transfusion and maternal-fetal transmission. Population connectivity of Trypanosoma cruzi-infected vectors and hosts, among sylvatic, ecotone and domestic habitats could jeopardize targeted efforts to reduce human exposure. This connectivity was evaluated in a Mexican community with reports of high vector infestation, human infection, and Chagas disease, surrounded by agricultural and natural areas. We surveyed bats, rodents, and triatomines in dry and rainy seasons in three adjacent habitats (domestic, ecotone, sylvatic), and measured T. cruzi prevalence, and host feeding sources of triatomines. Of 12 bat and 7 rodent species, no bat tested positive for T. cruzi, but all rodent species tested positive in at least one season or habitat. Highest T. cruzi infection prevalence was found in the rodents, Baiomys musculus and Neotoma mexicana. In general, parasite prevalence was not related to habitat or season, although the sylvatic habitat had higher infection prevalence than by chance, during the dry season. Wild and domestic mammals were identified as bloodmeals of T. pallidipennis, with 9% of individuals having mixed human (4.8% single human) and other mammal species in bloodmeals, especially in the dry season; these vectors tested >50% positive for T. cruzi. Overall, ecological connectivity is broad across this matrix, based on high rodent community similarity, vector and T. cruzi presence. Cost-effective T. cruzi, vector control strategies and Chagas disease transmission prevention will need to consider continuous potential for parasite movement over the entire landscape. This study provides clear evidence that these strategies will need to include reservoir/host species in at least ecotones, in addition to domestic habitats. PMID:23049923

  10. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors

    PubMed Central

    Nyasembe, Vincent O.; Tchouassi, David P.; Pirk, Christian W. W.; Sole, Catherine L.

    2018-01-01

    The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology. PMID:29462150

  11. An SIR-Dengue transmission model with seasonal effects and impulsive control.

    PubMed

    Páez Chávez, Joseph; Götz, Thomas; Siegmund, Stefan; Wijaya, Karunia Putra

    2017-07-01

    In recent decades, Dengue fever and its deadly complications, such as Dengue hemorrhagic fever, have become one of the major mosquito-transmitted diseases, with an estimate of 390 million cases occurring annually in over 100 tropical and subtropical countries, most of which belonging to the developing world. Empirical evidence indicates that the most effective mechanism to reduce Dengue infections is to combat the disease-carrying vector, which is often implemented via chemical pesticides to destroy mosquitoes in their adult or larval stages. The present paper considers an SIR epidemiological model describing the vector-to-host and host-to-vector transmission dynamics. The model includes pesticide control represented in terms of periodic impulsive perturbations, as well as seasonal fluctuations of the vector growth and transmission rates of the disease. The effectiveness of the control strategy is studied numerically in detail by means of path-following techniques for non-smooth dynamical systems. Special attention is given to determining the optimal timing of the pesticide applications, in such a way that the number of infections and the required amount of pesticide are minimized. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Biology, diversity and strategies for the monitoring and control of triatomines--Chagas disease vectors.

    PubMed

    Costa, Jane; Lorenzo, Marcelo

    2009-07-01

    Despite the relevant achievements in the control of the main Chagas disease vectors Triatoma infestans and Rhodnius prolixus, several factors still promote the risk of infection. The disease is a real threat to the poor rural regions of several countries in Latin America. The current situation in Brazil requires renewed attention due to its high diversity of triatomine species and to the rapid and drastic environmental changes that are occurring. Using the biology, behaviour and diversity of triatomines as a basis for new strategies for monitoring and controlling the vectorial transmission are discussed here. The importance of ongoing long-term monitoring activities for house infestations by T. infestans, Triatoma brasiliensis, Panstrongylus megistus, Triatoma rubrovaria and R. prolixus is also stressed, as well as understanding the invasion by sylvatic species. Moreover, the insecticide resistance is analysed. Strong efforts to sustain and improve surveillance procedures are crucial, especially when the vectorial transmission is considered interrupted in many endemic areas.

  13. Paratransgenic Control of Vector Borne Diseases

    PubMed Central

    Hurwitz, Ivy; Fieck, Annabeth; Read, Amber; Hillesland, Heidi; Klein, Nichole; Kang, Angray; Durvasula, Ravi

    2011-01-01

    Conventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host's ability to transmit the pathogen. We have successfully utilized this strategy to reduce carriage rates of Trypanosoma cruzi, the causative agent of Chagas disease, in the triatomine bug, Rhodnius prolixus, and are currently developing this methodology to control the transmission of Leishmania donovani by the sand fly Phlebotomus argentipes. Several effector molecules, including antimicrobial peptides and highly specific single chain antibodies, are currently being explored for their anti-parasite activities in these two systems. In preparation for eventual field use, we are actively engaged in risk assessment studies addressing the issue of horizontal gene transfer from the modified bacteria to environmental microbes. PMID:22110385

  14. Dual silencing of Bcl-2 and Survivin by HSV-1 vector shows better antitumor efficacy in higher PKR phosphorylation tumor cells in vitro and in vivo.

    PubMed

    Chen, X; Zhou, Y; Wang, J; Wang, J; Yang, J; Zhai, Y; Li, B

    2015-08-01

    RNA interference (RNAi) is a promising tool for cancer therapy, but its delivery strategy is a major challenge for its application. Oncolytic herpes simplex virus type 1 (HSV-1) is not only an effective antitumor drug but also an excellent vector. Herein, RNAi of oncogenes Bcl-2 and Survivin was combined with oncolytic HSV-1 (ICP34.5-/ICP6-/ICP47-/CMV-GM-CSF) and a new vector HSV010-BS was constructed. Transfected cell viability assays and animal experiments revealed that the dual silencing of Bcl-2 and Survivin improved the antitumor effect of oncolytic HSV-1 in vitro and in vivo, while the antitumor effect was correlated with the phosphorylation levels of PKR of the tumor cells. The higher the phosphorylation levels of PKR of the tumor cells, the weaker the replication ability of oncolytic HSV-1, and the more powerful HSV010-BS was than its control vectors in inhibiting the growth of the tumor cells. The results provided direct supportive proofs for a new potential cancer therapy strategy.

  15. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    PubMed Central

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  16. An approach of the exact linearization techniques to analysis of population dynamics of the mosquito Aedes aegypti.

    PubMed

    Dos Reis, Célia A; Florentino, Helenice de O; Cólon, Diego; Rosa, Suélia R Fleury; Cantane, Daniela R

    2018-05-01

    Dengue fever, chikungunya and zika are caused by different viruses and mainly transmitted by Aedes aegypti mosquitoes. These diseases have received special attention of public health officials due to the large number of infected people in tropical and subtropical countries and the possible sequels that those diseases can cause. In severe cases, the infection can have devastating effects, affecting the central nervous system, muscles, brain and respiratory system, often resulting in death. Vaccines against these diseases are still under development and, therefore, current studies are focused on the treatment of diseases and vector (mosquito) control. This work focuses on this last topic, and presents the analysis of a mathematical model describing the population dynamics of Aedes aegypti, as well as present the design of a control law for the mosquito population (vector control) via exact linearization techniques and optimal control. This control strategy optimizes the use of resources for vector control, and focuses on the aquatic stage of the mosquito life. Theoretical and computational results are also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies.

    PubMed

    Ohlfest, John R; Freese, Andrew B; Largaespada, David A

    2005-12-01

    Gene therapy has the potential to improve the clinical outcome of many cancers by transferring therapeutic genes into tumor cells or normal host tissue. Gene transfer into tumor cells or tumor-associated stroma is being employed to induce tumor cell death, stimulate anti-tumor immune response, inhibit angiogenesis, and control tumor cell growth. Viral vectors have been used to achieve this proof of principle in animal models and, in select cases, in human clinical trials. Nevertheless, there has been considerable interest in developing nonviral vectors for cancer gene therapy. Nonviral vectors are simpler, more amenable to large-scale manufacture, and potentially safer for clinical use. Nonviral vectors were once limited by low gene transfer efficiency and transient or steadily declining gene expression. However, recent improvements in plasmid-based vectors and delivery methods are showing promise in circumventing these obstacles. This article reviews the current status of nonviral cancer gene therapy, with an emphasis on combination strategies, long-term gene transfer using transposons and bacteriophage integrases, and future directions.

  18. Optimal strategies in the neighborhood of a collision course

    NASA Technical Reports Server (NTRS)

    Gutman, S.; Leitmann, G.

    1976-01-01

    We consider a simple differential game between pursuer P and evader E in the neighborhood of a nominal collision course. The payoff is the terminal lateral miss-distance. The control of each player is his acceleration normal to his velocity vector, and both players' controls are bounded. Saddlepoint strategies are deduced for three combinations of the acceleration bounds and are shown to be related to the sign of the derivative of the orientation of the line of sight (L.O.S.).

  19. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.

  20. The Biological Control of the Malaria Vector

    PubMed Central

    Kamareddine, Layla

    2012-01-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  1. Frozen orbit realization using LQR analogy

    NASA Astrophysics Data System (ADS)

    Nagarajan, N.; Rayan, H. Reno

    In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.

  2. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems.

    PubMed

    Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M

    2015-12-30

    Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Modeling Dengue Vector Dynamics under Imperfect Detection: Three Years of Site-Occupancy by Aedes aegypti and Aedes albopictus in Urban Amazonia

    PubMed Central

    Padilla-Torres, Samael D.; Ferraz, Gonçalo; Luz, Sergio L. B.; Zamora-Perea, Elvira; Abad-Franch, Fernando

    2013-01-01

    Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim. PMID:23472194

  4. Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter

    NASA Astrophysics Data System (ADS)

    Zorig, Abdelmalik; Belkeiri, Mohammed; Barkat, Said; Rabhi, Abdelhamid

    2016-08-01

    Three-level T-Type inverter (3LT2I) topology has numerous advantageous compared to three-level neutral-point-clamped (NPC) inverter. The main benefits of 3LT2I inverter are the efficiency, inverter cost, switching losses, and the quality of output voltage waveforms. In this paper, a photovoltaic distributed generation system based on dual-stage topology of DC-DC boost converter and 3LT2I is introduced. To that end, a decoupling control strategy of 3LT2I is proposed to control the current injected into the grid, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal grid currents, and to ensure reactive power compensation. The voltage-balancing control of two split DC capacitors of the 3LT2I is achieved using three-level space vector modulation with balancing strategy based on the effective use of the redundant switching states of the inverter voltage vectors. The proposed system performance is investigated at different operating conditions.

  5. Loa loa vectors Chrysops spp.: perspectives on research, distribution, bionomics, and implications for elimination of lymphatic filariasis and onchocerciasis.

    PubMed

    Kelly-Hope, Louise; Paulo, Rossely; Thomas, Brent; Brito, Miguel; Unnasch, Thomas R; Molyneux, David

    2017-04-05

    Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research. We identified 89 primary published documents on the two main L. loa vectors C. silacea and C dimidiata. These were collated into a database summarising the publication, field and laboratory procedures, species distributions, ecology, habitats and methods of vector control. The majority of articles were from the 1950-1960s. Field studies conducted in Cameroon, Democratic Republic of Congo, Equatorial Guinea, Nigeria and Sudan highlighted that C. silacea is the most important and widespread vector. This species breeds in muddy streams or swampy areas of forests or plantations, descends from forest canopies to feed on humans during the day, is more readily adapted to human dwellings and attracted to wood fires. Main vector targeted measures proposed to impact on L. loa transmission included personal repellents, household screening, indoor residual spraying, community-based environmental management, adulticiding and larviciding. This is the first comprehensive review of the major L. loa vectors for several decades. It highlights key vector transmission characteristics that may be targeted for vector control providing insights into the potential for integrated vector management, with multiple diseases being targeted simultaneously, with shared human and financial resources and multiple impact. Integrated vector management programmes for filarial infections, especially in low transmission areas of onchocerciasis, require innovative approaches and alternative strategies if the elimination targets established by the World Health Organization are to be achieved.

  6. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.

    PubMed

    Ruktanonchai, Nick W; Smith, David L; De Leenheer, Patrick

    2016-09-01

    We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross-Macdonald malaria model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the existence of a globally stable steady state, and a threshold that determines whether a pathogen is either absent from all patches, or endemic and present at some level in all patches. Each patch is characterized by a local basic reproduction number, whose value predicts whether the disease is cleared or not when the patch is isolated: patches are known as "demographic sinks" if they have a local basic reproduction number less than one, and hence would clear the disease if isolated; patches with a basic reproduction number above one would sustain endemic infection in isolation, and become "demographic sources" of parasites when connected to other patches. Sources are also considered focal areas of transmission for the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. We show how to determine the various basic reproduction numbers from steady state estimates in the patched network and knowledge of additional model parameters, hereby identifying parasite sources in the process. This is useful in the context of control of the infection on natural landscapes, because a commonly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction numbers less than one, effectively turning them into sinks. We show that this is indeed a successful control strategy-albeit a conservative and possibly expensive one-in case either the human host, or the vector does not move. However, we also show that when both humans and vectors move, this strategy may fail, depending on the specific movement patterns exhibited by hosts and vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Modeling Dynamics of Culex pipiens Complex Populations and Assessing Abatement Strategies for West Nile Virus

    PubMed Central

    Pawelek, Kasia A.; Hager, Elizabeth J.; Hunt, Gregg J.

    2014-01-01

    The primary mosquito species associated with underground stormwater systems in the United States are the Culex pipiens complex species. This group represents important vectors of West Nile virus (WNV) throughout regions of the continental U.S. In this study, we designed a mathematical model and compared it with surveillance data for the Cx. pipiens complex collected in Beaufort County, South Carolina. Based on the best fit of the model to the data, we estimated parameters associated with the effectiveness of public health insecticide (adulticide) treatments (primarily pyrethrin products) as well as the birth, maturation, and death rates of immature and adult Cx. pipiens complex mosquitoes. We used these estimates for modeling the spread of WNV to obtain more reliable disease outbreak predictions and performed numerical simulations to test various mosquito abatement strategies. We demonstrated that insecticide treatments produced significant reductions in the Cx. pipiens complex populations. However, abatement efforts were effective for approximately one day and the vector mosquitoes rebounded until the next treatment. These results suggest that frequent insecticide applications are necessary to control these mosquitoes. We derived the basic reproductive number (ℜ0) to predict the conditions under which disease outbreaks are likely to occur and to evaluate mosquito abatement strategies. We concluded that enhancing the mosquito death rate results in lower values of ℜ0, and if ℜ0<1, then an epidemic will not occur. Our modeling results provide insights about control strategies of the vector populations and, consequently, a potential decrease in the risk of a WNV outbreak. PMID:25268229

  8. Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.

    PubMed

    Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He

    2009-05-01

    DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.

  9. EMIRA: Ecologic Malaria Reduction for Africa--innovative tools for integrated malaria control.

    PubMed

    Dambach, Peter; Traoré, Issouf; Becker, Norbert; Kaiser, Achim; Sié, Ali; Sauerborn, Rainer

    2014-01-01

    Malaria control is based on early treatment of cases and on vector control. The current measures for malaria vector control in Africa are mainly based on long-lasting insecticide treated nets (LLINs) and to a much smaller extent on indoor residual spraying (IRS). A third pillar in the fight against the malaria vector, larval source management (LSM), has virtually not been used in Africa since the ban of DDT in the 1960s. Within the light of recent WHO recommendations for Bacillus thuringiensis israelensis (Bti) use against malaria and other vector species, larval source management could see a revival in the upcoming years. In this project we analyze the ecologic and health impacts as well as the cost effectiveness of larval source management under different larviciding scenarios in a health district in Burkina Faso. The project is designed as prospective intervention study with duration of three years (2013-2015). Its spatial scale includes three arms of interventions and control, comprising a total of 127 villages and the district capital Nouna in the extended HDSS (Health Demographic Surveillance System) of the Kossi province. Baseline data on mosquito abundance, parasitemia in U5 children, and malaria related morbidity and mortality are gathered over the project duration. Besides the outcome on ecologic and health parameters, the economic costs are seized and valued against the achieved health benefits. Risk map based, guided larvicide application might be a possibility to further decrease economic cost of LSM and facilitate its faster incorporation to integrated malaria control programs. Given the limited resources in many malaria endemic countries, it is of utmost importance to relate the costs of novel strategies for malaria prevention to their effect on the burden of the disease. Occurring costs and the impact on the health situation will be made comparable to other, existing intervention strategies, allowing stakeholders and policymakers decision making.

  10. A semi-active H∞ control strategy with application to the vibration suppression of nonlinear high-rise building under earthquake excitations.

    PubMed

    Yan, Guiyun; Chen, Fuquan; Wu, Yingxiong

    2016-01-01

    Different from previous researches which mostly focused on linear response control of seismically excited high-rise buildings, this study aims to control nonlinear seismic response of high-rise buildings. To this end, a semi-active control strategy, in which H∞ control algorithm is used and magneto-rheological dampers are employed for an actuator, is presented to suppress the nonlinear vibration. In this strategy, a modified Kalman-Bucy observer which is suitable for the proposed semi-active strategy is developed to obtain the state vector from the measured semi-active control force and acceleration feedback, taking into account of the effects of nonlinearity, disturbance and uncertainty of controlled system parameters by the observed nonlinear accelerations. Then, the proposed semi-active H∞ control strategy is applied to the ASCE 20-story benchmark building when subjected to earthquake excitation and compared with the other control approaches by some control criteria. It is indicated that the proposed semi-active H∞ control strategy provides much better control performances by comparison with the semi-active MPC and Clipped-LQG control approaches, and can reduce nonlinear seismic response and minimize the damage in the buildings. Besides, it enhances the reliability of the control performance when compared with the active control strategy. Thus, the proposed semi-active H∞ control strategy is suitable for suppressing the nonlinear vibration of high-rise buildings.

  11. Malaria vector control at a crossroads: public health entomology and the drive to elimination.

    PubMed

    Mnzava, Abraham P; Macdonald, Michael B; Knox, Tessa B; Temu, Emmanuel A; Shiff, Clive J

    2014-09-01

    Vector control has been at the core of successful malaria control. However, a dearth of field-oriented vector biologists threatens to undermine global reductions in malaria burden. Skilled cadres are needed to manage insecticide resistance, to maintain coverage with current interventions, to develop new paradigms for tackling 'residual' transmission and to target interventions as transmission becomes increasingly heterogeneous. Recognising this human resource crisis, in September 2013, WHO Global Malaria Programme issued guidance for capacity building in entomology and vector control, including recommendations for countries and implementing partners. Ministries were urged to develop long-range strategic plans for building human resources for public health entomology and vector control (including skills in epidemiology, geographic information systems, operational research and programme management) and to set in place the requisite professional posts and career opportunities. Capacity building and national ownership in all partner projects and a clear exit strategy to sustain human and technical resources after project completion were emphasised. Implementing partners were urged to support global and regional efforts to enhance public health entomology capacity. While the challenges inherent in such capacity building are great, so too are the opportunities to establish the next generation of public health entomologists that will enable programmes to continue on the path to malaria elimination. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    PubMed

    Sim, Shuzhen; Hibberd, Martin L

    2016-03-02

    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.

  13. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention.

    PubMed

    Weaver, Scott C

    2013-08-01

    Arthropod-borne viruses (arboviruses) mainly infect people via direct spillover from enzootic cycles. However, dengue, chikungunya, and yellow fever viruses have repeatedly initiated urban transmission cycles involving human amplification and peridomestic mosquito vectors to cause major epidemics. Here, I review these urban emergences and potential strategies for their prevention and control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Clustering, climate and dengue transmission.

    PubMed

    Junxiong, Pang; Yee-Sin, Leo

    2015-06-01

    Dengue is currently the most rapidly spreading vector-borne disease, with an increasing burden over recent decades. Currently, neither a licensed vaccine nor an effective anti-viral therapy is available, and treatment largely remains supportive. Current vector control strategies to prevent and reduce dengue transmission are neither efficient nor sustainable as long-term interventions. Increased globalization and climate change have been reported to influence dengue transmission. In this article, we reviewed the non-climatic and climatic risk factors which facilitate dengue transmission. Sustainable and effective interventions to reduce the increasing threat from dengue would require the integration of these risk factors into current and future prevention strategies, including dengue vaccination, as well as the continuous support and commitment from the political and environmental stakeholders.

  15. Economic evaluation of an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey

    USDA-ARS?s Scientific Manuscript database

    Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM) is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and ...

  16. N-Player Stochastic Differential Games. [control theory

    NASA Technical Reports Server (NTRS)

    Varaiya, P.

    1974-01-01

    Conditions are described which guarantee that the control strategies adopted by N players constitute an efficient solution, an equilibrium, or a core solution. The system dynamics are described by an Ito equation, and all players have perfect information. It was found that when the set of instantaneous joint costs and velocity vectors is convex, the conditions are necessary.

  17. Combining fungal biopesticides and insecticide-treated bednets to enhance malaria control.

    PubMed

    Hancock, Penelope A

    2009-10-01

    In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.

  18. A panel of ten microsatellite loci for the Chagas disease vector Rhodnius prolixus (Hemiptera: Reduviidae).

    PubMed

    Fitzpatrick, S; Watts, P C; Feliciangeli, M D; Miles, M A; Kemp, S J

    2009-03-01

    Rhodnius prolixus is the main vector of Chagas disease in Venezuela, where it is found colonising rural housing consisting of unplastered adobe walls with palm and/or metal roofs. Vector control failure in Venezuela may be due to the invasion of houses by silvatic populations of R. prolixus found in palms. As part of a study to determine if domestic and silvatic populations of R. prolixus are isolated, thus clarifying the role of silvatic populations in maintaining house infestations, we constructed three partial genomic microsatellite libraries. A panel of ten dinucleotide polymorphic microsatellite markers was selected for genotyping. Allele numbers per locus ranged from three to twelve, with observed and expected heterozygosity ranging from 0.26 to 0.55 and 0.32 to 0.66. The microsatellite markers presented here will contribute to the control of Chagas disease in Venezuela and Colombia through the provision of population information that may allow the design of improved control strategies.

  19. A lentiviral vector with expression controlled by E2F-1: A potential tool for the study and treatment of proliferative diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Bryan E.; Patricio, Juliana Rotelli; Program in Biotechnology, University of Sao Paulo

    2006-10-06

    We have constructed a lentiviral vector with expression limited to cells presenting active E2F-1 protein, a potential advantage for gene therapy of proliferative diseases. For the FE2FLW vector, the promoter region of the human E2F-1 gene was utilized to drive expression of luciferase cDNA, included as a reporter of viral expression. Primary, immortalized, and transformed cells were transduced with the FE2FLW vector and cell cycle alterations were induced with serum starvation/replacement, contact inhibition or drug treatment, revealing cell cycle-dependent changes in reporter activity. Forced E2F-1 expression, but not E2F-2 or E2F-3, increased reporter activity, indicating a major role for thismore » factor in controlling expression from the FE2FLW virus. We show the utility of this vector as a reporter of E2F-1 and proliferation-dependent cellular alterations upon cytotoxic/cytostatic treatment, such as the introduction of tumor suppressor genes. We propose that the FE2FLW vector may be a starting point for the development of gene therapy strategies for proliferative diseases, such as cancer or restinosis.« less

  20. The Influence of Dams on Malaria Transmission in Sub-Saharan Africa.

    PubMed

    Kibret, Solomon; Wilson, G Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2017-06-01

    The construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa. Common themes emerging from the literature were that dams intensified malaria transmission in semi-arid and highland areas with unstable malaria transmission but had little or no impact in areas with perennial transmission. Differences in the impacts of dams resulted from the types and characteristics of malaria vectors and their breeding habitats in different settings of sub-Saharan Africa. A higher abundance of a less anthropophilic Anopheles arabiensis than a highly efficient vector A. gambiae explains why dams did not increase malaria in stable areas. In unstable areas where transmission is limited by availability of water bodies for vector breeding, dams generally increase malaria by providing breeding habitats for prominent malaria vector species. Integrated vector control measures that include reservoir management, coupled with conventional malaria control strategies, could optimize a reduction of the risk of malaria transmission around dams in the region.

  1. "RCL-Pooling Assay": A Simplified Method for the Detection of Replication-Competent Lentiviruses in Vector Batches Using Sequential Pooling.

    PubMed

    Corre, Guillaume; Dessainte, Michel; Marteau, Jean-Brice; Dalle, Bruno; Fenard, David; Galy, Anne

    2016-02-01

    Nonreplicative recombinant HIV-1-derived lentiviral vectors (LV) are increasingly used in gene therapy of various genetic diseases, infectious diseases, and cancer. Before they are used in humans, preparations of LV must undergo extensive quality control testing. In particular, testing of LV must demonstrate the absence of replication-competent lentiviruses (RCL) with suitable methods, on representative fractions of vector batches. Current methods based on cell culture are challenging because high titers of vector batches translate into high volumes of cell culture to be tested in RCL assays. As vector batch size and titers are continuously increasing because of the improvement of production and purification methods, it became necessary for us to modify the current RCL assay based on the detection of p24 in cultures of indicator cells. Here, we propose a practical optimization of this method using a pairwise pooling strategy enabling easier testing of higher vector inoculum volumes. These modifications significantly decrease material handling and operator time, leading to a cost-effective method, while maintaining optimal sensibility of the RCL testing. This optimized "RCL-pooling assay" ameliorates the feasibility of the quality control of large-scale batches of clinical-grade LV while maintaining the same sensitivity.

  2. Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals.

    PubMed

    Mo, Annie X; Agosti, Jan M; Walson, Judd L; Hall, B Fenton; Gordon, Lance

    2014-01-01

    In March 2013, the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation co-sponsored a meeting entitled "Schistosomiasis Elimination Strategy and Potential Role of a Vaccine in Achieving Global Health Goals" to discuss the potential role of schistosomiasis vaccines and other tools in the context of schistosomiasis control and elimination strategies. It was concluded that although schistosomiasis elimination in some focal areas may be achievable through current mass drug administration programs, global control and elimination will face several significant scientific and operational challenges, and will require an integrated approach with other, additional interventions. These challenges include vector (snail) control; environmental modification; water, sanitation, and hygiene; and other future innovative tools such as vaccines. Defining a clear product development plan that reflects a vaccine strategy as complementary to the existing control programs to combat different forms of schistosomiasis will be important to develop a vaccine effectively.

  3. Phase 1 Gene Therapy for Duchenne Muscular Dystrophy Using a Translational Optimized AAV Vector

    PubMed Central

    Bowles, Dawn E; McPhee, Scott WJ; Li, Chengwen; Gray, Steven J; Samulski, Jade J; Camp, Angelique S; Li, Juan; Wang, Bing; Monahan, Paul E; Rabinowitz, Joseph E; Grieger, Joshua C; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Xiao, Xiao; Samulski, R Jude

    2012-01-01

    Efficient and widespread gene transfer is required for successful treatment of Duchenne muscular dystrophy (DMD). Here, we performed the first clinical trial using a chimeric adeno-associated virus (AAV) capsid variant (designated AAV2.5) derived from a rational design strategy. AAV2.5 was generated from the AAV2 capsid with five mutations from AAV1. The novel chimeric vector combines the improved muscle transduction capacity of AAV1 with reduced antigenic crossreactivity against both parental serotypes, while keeping the AAV2 receptor binding. In a randomized double-blind placebo-controlled phase I clinical study in DMD boys, AAV2.5 vector was injected into the bicep muscle in one arm, with saline control in the contralateral arm. A subset of patients received AAV empty capsid instead of saline in an effort to distinguish an immune response to vector versus minidystrophin transgene. Recombinant AAV genomes were detected in all patients with up to 2.56 vector copies per diploid genome. There was no cellular immune response to AAV2.5 capsid. This trial established that rationally designed AAV2.5 vector was safe and well tolerated, lays the foundation of customizing AAV vectors that best suit the clinical objective (e.g., limb infusion gene delivery) and should usher in the next generation of viral delivery systems for human gene transfer. PMID:22068425

  4. A computer simulation model of Wolbachia invasion for disease vector population modification.

    PubMed

    Guevara-Souza, Mauricio; Vallejo, Edgar E

    2015-10-05

    Wolbachia invasion has been proved to be a promising alternative for controlling vector-borne diseases, particularly Dengue fever. Creating computer models that can provide insight into how vector population modification can be achieved under different conditions would be most valuable for assessing the efficacy of control strategies for this disease. In this paper, we present a computer model that simulates the behavior of native mosquito populations after the introduction of mosquitoes infected with the Wolbachia bacteria. We studied how different factors such as fecundity, fitness cost of infection, migration rates, number of populations, population size, and number of introduced infected mosquitoes affect the spread of the Wolbachia bacteria among native mosquito populations. Two main scenarios of the island model are presented in this paper, with infected mosquitoes introduced into the largest source population and peripheral populations. Overall, the results are promising; Wolbachia infection spreads among native populations and the computer model is capable of reproducing the results obtained by mathematical models and field experiments. Computer models can be very useful for gaining insight into how Wolbachia invasion works and are a promising alternative for complementing experimental and mathematical approaches for vector-borne disease control.

  5. The simulation on diode-clamped five-level converters common-mode voltage suppression with zero-vector PWM strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggao; Gao, Yanli; Long, Lizhong

    2012-04-01

    More and more researchers have great concern on the issue of Common-mode voltage (CMV) in high voltage large power converter. A novel common-mode voltage suppression scheme based on zero-vector PWM strategy (ZVPWM) is present in this paper. Taking a diode-clamped five-level converter as example, the principle of zero vector PWM common-mode voltage (ZCMVPWM) suppression method is studied in detail. ZCMVPWM suppression strategy is including four important parts, which are locating the sector of reference voltage vector, locating the small triangular sub-sector of reference voltage vector, reference vector synthesis, and calculating the operating time of vector. The principles of four important pars are illustrated in detail and the corresponding MATLAB models are established. System simulation and experimental results are provided. It gives some consultation value for the development and research of multi-level converters.

  6. A research agenda for malaria eradication: vector control.

    PubMed

    2011-01-25

    Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population.

  7. Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya

    NASA Astrophysics Data System (ADS)

    Ngaina, J. N.

    2017-12-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling

  8. Evidence and strategies for malaria prevention and control: a historical analysis.

    PubMed

    Gachelin, Gabriel; Garner, Paul; Ferroni, Eliana; Verhave, Jan Peter; Opinel, Annick

    2018-02-27

    Public health strategies for malaria in endemic countries aim to prevent transmission of the disease and control the vector. This historical analysis considers the strategies for vector control developed during the first four decades of the twentieth century. In 1925, policies and technological advances were debated internationally for the first time after the outbreak of malaria in Europe which followed World War I. This dialogue had implications for policies in Europe, Russia and the Middle East, and influenced the broader international control agenda. The analysis draws on the advances made before 1930, and includes the effects of mosquito-proofing of houses; the use of larvicides (Paris Green) and larvivorous fish (Gambusia); the role of large-scale engineering works; and the emergence of biological approaches to malaria. The importance of strong government and civil servant support was outlined. Despite best efforts of public health authorities, it became clear that it was notoriously difficult to interrupt transmission in areas of moderately high transmission. The importance of combining a variety of measures to achieve control became clear and proved successful in Palestine between 1923 and 1925, and improved education, economic circumstances and sustained political commitment emerge as key factors in the longer term control of malaria. The analysis shows that the principles for many of the present public health strategies for malaria have nearly all been defined before 1930, apart from large scale usage of pesticides, which came later at the end of the Second World War. No single intervention provided an effective single answer to preventing transmission, but certainly approaches taken that are locally relevant and applied in combination, are relevant to today's efforts at elimination.

  9. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria.

    PubMed

    Thomas, Shalu; Ravishankaran, Sangamithra; Justin, N A Johnson Amala; Asokan, Aswin; Mathai, Manu Thomas; Valecha, Neena; Montgomery, Jacqui; Thomas, Matthew B; Eapen, Alex

    2017-03-10

    The Indian city of Chennai is endemic for malaria and the known local malaria vector is Anopheles stephensi. Plasmodium vivax is the predominant malaria parasite species, though Plasmodium falciparum is present at low levels. The urban ecotype of malaria prevails in Chennai with perennial transmission despite vector surveillance by the Urban Malaria Scheme (UMS) of the National Vector Borne Disease Control Programme (NVBDCP). Understanding the feeding and resting preferences, together with the transmission potential of adult vectors in the area is essential in effective planning and execution of improved vector control measures. A yearlong survey was carried out in cattle sheds and human dwellings to check the resting, feeding preferences and transmission potential of An. stephensi. The gonotrophic status, age structure, resting and host seeking preferences were studied. The infection rate in An. stephensi and Anopheles subpictus were analysed by circumsporozoite ELISA (CS-ELISA). Adult vectors were found more frequently and at higher densities in cattle sheds than human dwellings. The overall Human Blood Index (HBI) was 0.009 indicating the vectors to be strongly zoophilic. Among the vectors collected from human dwellings, 94.2% were from thatched structures and the remaining 5.8% from tiled and asbestos structures. 57.75% of the dissected vectors were nulliparous whereas, 35.83% were monoparous and the rest 6.42% biparous. Sporozoite positivity rate was 0.55% (4/720) and 1.92% (1/52) for An. stephensi collected from cattle sheds and human dwellings, respectively. One adult An. subpictus (1/155) was also found to be infected with P. falciparum. Control of the adult vector populations can be successful only by understanding the resting and feeding preferences. The present study indicates that adult vectors predominantly feed on cattle and cattle sheds are the preferred resting place, possibly due to easy availability of blood meal source and lack of any insecticide or repellent pressure. Hence targeting these resting sites with cost effective, socially acceptable intervention tools, together with effective larval source management to reduce vector breeding, could provide an improved integrated vector management strategy to help drive down malaria transmission and assist in India's plan to eliminate malaria by 2030.

  10. Microbiome influences on insect host vector competence

    PubMed Central

    Weiss, Brian

    2011-01-01

    Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes may influence their host’s ability to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector. PMID:21697014

  11. Eliminating malaria vectors

    PubMed Central

    2013-01-01

    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations. PMID:23758937

  12. Integrated Tools for American Cutaneous Leishmaniasis Surveillance and Control: Intervention in an Endemic Area in Rio de Janeiro, RJ, Brazil

    PubMed Central

    Gouveia, Cheryl; de Oliveira, Rosely Magalhães; Zwetsch, Adriana; Motta-Silva, Daniel; Carvalho, Bruno Moreira; de Santana, Antônio Ferreira; Rangel, Elizabeth Ferreira

    2012-01-01

    American cutaneous leishmaniasis (ACL) is a focal disease whose surveillance and control require complex actions. The present study aimed to apply integrated tools related to entomological surveillance, environmental management, and health education practices in an ACL-endemic area in Rio de Janeiro city, RJ, Brazil. The distribution of the disease, the particular characteristics of the localities, and entomological data were used as additional information about ACL determinants. Environmental management actions were evaluated after health education practices. The frequency of ACL vectors Lutzomyia (N.) intermedia and L. migonei inside and outside houses varied according to environment characteristics, probably influenced by the way of life of the popular groups. In this kind of situation environmental management and community mobilization become essential, as they help both specialists and residents create strategies that can interfere in the dynamics of vector's population and the contact between man and vectors. PMID:22988458

  13. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study.

    PubMed

    Quintero, Juliana; Brochero, Helena; Manrique-Saide, Pablo; Barrera-Pérez, Mario; Basso, César; Romero, Sonnia; Caprara, Andrea; De Lima Cunha, Jane Cris; Beltrán-Ayala, Efraín; Mitchell-Foster, Kendra; Kroeger, Axel; Sommerfeld, Johannnes; Petzold, Max

    2014-01-21

    Dengue is an increasingly important public health problem in most Latin American countries and more cost-effective ways of reducing dengue vector densities to prevent transmission are in demand by vector control programs. This multi-centre study attempted to identify key factors associated with vector breeding and development as a basis for improving targeted intervention strategies. In each of 5 participant cities in Mexico, Colombia, Ecuador, Brazil and Uruguay, 20 clusters were randomly selected by grid sampling to incorporate 100 contiguous households, non-residential private buildings (businesses) and public spaces. Standardized household surveys, cluster background surveys and entomological surveys specifically targeted to obtain pupal indices for Aedes aegypti, were conducted in the dry and wet seasons. The study clusters included mainly urban low-middle class populations with satisfactory infrastructure and -except for Uruguay- favourable climatic conditions for dengue vector development. Household knowledge about dengue and "dengue mosquitoes" was widespread, mainly through mass media, but there was less awareness around interventions to reduce vector densities. Vector production (measured through pupal indices) was favoured when water containers were outdoor, uncovered, unused (even in Colombia and Ecuador where the large tanks used for household water storage and washing were predominantly productive) and -particularly during the dry season- rainwater filled. Larval infestation did not reflect productive container types. All productive container types, including those important in the dry season, were identified by pupal surveys executed during the rainy season. A number of findings are relevant for improving vector control: 1) there is a need for complementing larval surveys with occasional pupal surveys (to be conducted during the wet season) for identifying and subsequently targeting productive container types; 2) the need to raise public awareness about useful and effective interventions in productive container types specific to their area; and 3) the motivation for control services that-according to this and similar studies in Asia- dedicated, targeted vector management can make a difference in terms of reducing vector abundance.

  14. Multi-modal Analysis of Courtship Behaviour in the Old World Leishmaniasis Vector Phlebotomus argentipes

    PubMed Central

    Bray, Daniel P.; Yaman, Khatijah; Underhilll, Beryl A.; Mitchell, Fraser; Carter, Victoria; Hamilton, James G. C.

    2014-01-01

    Background The sand fly Phlebotomus argentipes is arguably the most important vector of leishmaniasis worldwide. As there is no vaccine against the parasites that cause leishmaniasis, disease prevention focuses on control of the insect vector. Understanding reproductive behaviour will be essential to controlling populations of P. argentipes, and developing new strategies for reducing leishmaniasis transmission. Through statistical analysis of male-female interactions, this study provides a detailed description of P. argentipes courtship, and behaviours critical to mating success are highlighted. The potential for a role of cuticular hydrocarbons in P. argentipes courtship is also investigated, by comparing chemicals extracted from the surface of male and female flies. Principal Findings P. argentipes courtship shared many similarities with that of both Phlebotomus papatasi and the New World leishmaniasis vector Lutzomyia longipalpis. Male wing-flapping while approaching the female during courtship predicted mating success, and touching between males and females was a common and frequent occurrence. Both sexes were able to reject a potential partner. Significant differences were found in the profile of chemicals extracted from the surface of males and females. Results of GC analysis indicate that female extracts contained a number of peaks with relatively short retention times not present in males. Extracts from males had higher peaks for chemicals with relatively long retention times. Conclusions The importance of male approach flapping suggests that production of audio signals through wing beating, or dispersal of sex pheromones, are important to mating in this species. Frequent touching as a means of communication, and the differences in the chemical profiles extracted from males and females, may also indicate a role for cuticular hydrocarbons in P. argentipes courtship. Comparing characteristics of successful and unsuccessful mates could aid in identifying the modality of signals involved in P. argentipes courtship, and their potential for use in developing new strategies for vector control. PMID:25474027

  15. Determinants of Health Service Responsiveness in Community-Based Vector Surveillance for Chagas Disease in Guatemala, El Salvador, and Honduras.

    PubMed

    Hashimoto, Ken; Zúniga, Concepción; Romero, Eduardo; Morales, Zoraida; Maguire, James H

    2015-01-01

    Central American countries face a major challenge in the control of Triatoma dimidiata, a widespread vector of Chagas disease that cannot be eliminated. The key to maintaining the risk of transmission of Trypanosoma cruzi at lowest levels is to sustain surveillance throughout endemic areas. Guatemala, El Salvador, and Honduras integrated community-based vector surveillance into local health systems. Community participation was effective in detection of the vector, but some health services had difficulty sustaining their response to reports of vectors from the population. To date, no research has investigated how best to maintain and reinforce health service responsiveness, especially in resource-limited settings. We reviewed surveillance and response records of 12 health centers in Guatemala, El Salvador, and Honduras from 2008 to 2012 and analyzed the data in relation to the volume of reports of vector infestation, local geography, demography, human resources, managerial approach, and results of interviews with health workers. Health service responsiveness was defined as the percentage of households that reported vector infestation for which the local health service provided indoor residual spraying of insecticide or educational advice. Eight potential determinants of responsiveness were evaluated by linear and mixed-effects multi-linear regression. Health service responsiveness (overall 77.4%) was significantly associated with quarterly monitoring by departmental health offices. Other potential determinants of responsiveness were not found to be significant, partly because of short- and long-term strategies, such as temporary adjustments in manpower and redistribution of tasks among local participants in the effort. Consistent monitoring within the local health system contributes to sustainability of health service responsiveness in community-based vector surveillance of Chagas disease. Even with limited resources, countries can improve health service responsiveness with thoughtful strategies and management practices in the local health systems.

  16. Paratransgenesis applied for control of tsetse transmitted sleeping sickness.

    PubMed

    Aksoy, Serap; Weiss, Brian; Attardo, Geoffrey

    2008-01-01

    African trypanosomiasis (sleeping sickness) is a major cause of morbidity and mortality in Subsaharan Africa for human and animal health. In the absence of effective vaccines and efficacious drugs, vector control is an alternative intervention tool to break the disease cycle. This chapter describes the vectorial and symbiotic biology of tsetse with emphasis on the current knowledge on tsetse symbiont genomics and functional biology, and tsetse's trypanosome transmission capability. The ability to culture one of tsetse's commensal symbiotic microbes, Sodalis in vitro has allowed for the development of a genetic transformation system for this organism. Tsetse can be repopulated with the modified Sodalis symbiont, which can express foreign gene products (an approach we refer to as paratransgenic expression system). Expanding knowledge on tsetse immunity effectors, on genomics of tsetse symbionts and on tsetse's parasite transmission biology stands to enhance the development and potential application of paratransgenesis as a new vector-control strategy. We describe the hallmarks of the paratransgenic transformation technology where the modified symbionts expressing trypanocidal compounds can be used to manipulate host functions and lead to the control of trypanosomiasis by blocking trypanosome transmission in the tsetse vector.

  17. Modeling Chagas Disease at Population Level to Explain Venezuela's Real Data

    PubMed Central

    González-Parra, Gilberto; Chen-Charpentier, Benito M.; Bermúdez, Moises

    2015-01-01

    Objectives In this paper we present an age-structured epidemiological model for Chagas disease. This model includes the interactions between human and vector populations that transmit Chagas disease. Methods The human population is divided into age groups since the proportion of infected individuals in this population changes with age as shown by real prevalence data. Moreover, the age-structured model allows more accurate information regarding the prevalence, which can help to design more specific control programs. We apply this proposed model to data from the country of Venezuela for two periods, 1961–1971, and 1961–1991 taking into account real demographic data for these periods. Results Numerical computer simulations are presented to show the suitability of the age-structured model to explain the real data regarding prevalence of Chagas disease in each of the age groups. In addition, a numerical simulation varying the death rate of the vector is done to illustrate prevention and control strategies against Chagas disease. Conclusion The proposed model can be used to determine the effect of control strategies in different age groups. PMID:26929912

  18. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?

    PubMed Central

    Macias, Vanessa M.; Ohm, Johanna R.; Rasgon, Jason L.

    2017-01-01

    Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease. PMID:28869513

  19. Dynamics of Huanglongbing-associated Bacterium Candidatus Liberibacter asiaticus in Citrus aurantifolia Swingle (Mexican Lime).

    PubMed

    Abel Lopez-Buenfil, Jose; Abrahan Ramirez-Pool, Jose; Ruiz-Medrano, Roberto; Del Carmen Montes-Horcasitas, Maria; Chavarin-Palacio, Claudio; Moya-Hinojosa, Jesus; Javier Trujillo-Arriaga, Francisco; Carmona, Rosalia Lira; Xoconostle-Cazares, Beatriz

    2017-01-01

    The bacterial disease citrus huanglongbing (HLB), associated with "Candidatus Liberibacter asiaticus" (C.Las) has severely impacted the citrus industry, causing a significant reduction in production and fruit quality. In the present study, it was monitored the C.Las population dynamics in symptomatic, HLB-positive Mexican lime trees (Citrus aurantifolia Swingle) in a tropical, citrus-producing area of Mexico. The objective of this study was to identify the dynamics of the population of huanglongbing-associated bacterium Candidatus Liberibacter asiaticus and its insect vector in Citrus aurantifolia Swingle (Mexican lime). Leaf samples were collected every 2 months over a period of 26 months for quantification of bacterial titers and young and mature leaves were collected in each season to determine preferential sites of bacterial accumulation. The proportion of living and dead bacterial cells could be determined through the use of quantitative real-time PCR in the presence of ethidium monoazide (EMA-qPCR). It was observed a lower bacterial titer at high temperatures in the infected trees relative to titers in mild weather, despite a higher accumulation of the insect vector Diaphorina citri in these conditions. This study also revealed seasonal fluctuations in the titers of bacteria in mature leaves when compared to young leaves. No statistically significant correlation between any meteorological variable, C.Las concentration and D. citri population could be drawn. Although, HLB management strategies have focused on vector control, host tree phenology may be important. The evaluation of citrus phenology, C.Las concentration, ACP population and environmental conditions provides insights into the cyclical, seasonal variations of both the HLB pathogen and its vector. These findings should help in the design of integrative HLB control strategies that take into account the accumulation of the pathogen and the presence of its vector.

  20. Legal aspects of public health: difficulties in controlling vector-borne and zoonotic diseases in Brazil.

    PubMed

    Mendes, Marcílio S; de Moraes, Josué

    2014-11-01

    In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Human Antibody Responses to the Anopheles Salivary gSG6-P1 Peptide: A Novel Tool for Evaluating the Efficacy of ITNs in Malaria Vector Control

    PubMed Central

    Drame, Papa Makhtar; Poinsignon, Anne; Besnard, Patrick; Cornelie, Sylvie; Le Mire, Jacques; Toto, Jean-Claude; Foumane, Vincent; Dos-Santos, Maria Adelaide; Sembène, Mbacké; Fortes, Filomeno; Simondon, Francois; Carnevale, Pierre; Remoue, Franck

    2010-01-01

    To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact. PMID:21179476

  2. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control.

    PubMed

    Drame, Papa Makhtar; Poinsignon, Anne; Besnard, Patrick; Cornelie, Sylvie; Le Mire, Jacques; Toto, Jean-Claude; Foumane, Vincent; Dos-Santos, Maria Adelaide; Sembène, Mbacké; Fortes, Filomeno; Simondon, Francois; Carnevale, Pierre; Remoue, Franck

    2010-12-14

    To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.

  3. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors

    PubMed Central

    Chorny, Michael; Fishbein, Ilia; Tengood, Jillian E.; Adamo, Richard F.; Alferiev, Ivan S.; Levy, Robert J.

    2013-01-01

    Gene therapeutic strategies have shown promise in treating vascular disease. However, their translation into clinical use requires pharmaceutical carriers enabling effective, site-specific delivery as well as providing sustained transgene expression in blood vessels. While replication-deficient adenovirus (Ad) offers several important advantages as a vector for vascular gene therapy, its clinical applicability is limited by rapid inactivation, suboptimal transduction efficiency in vascular cells, and serious systemic adverse effects. We hypothesized that novel zinc oleate-based magnetic nanoparticles (MNPs) loaded with Ad would enable effective arterial cell transduction by shifting vector processing to an alternative pathway, protect Ad from inactivation by neutralizing factors, and allow site-specific gene transfer to arteries treated with stent angioplasty using a 2-source magnetic guidance strategy. Ad-loaded MNPs effectively transduced cultured endothelial and smooth muscle cells under magnetic conditions compared to controls and retained capacity for gene transfer after exposure to neutralizing antibodies and lithium iodide, a lytic agent causing disruption of free Ad. Localized arterial gene expression significantly stronger than in control animal groups was demonstrated after magnetically guided MNP delivery in a rat stenting model 2 and 9 d post-treatment, confirming feasibility of using Ad-loaded MNPs to achieve site-specific transduction in stented blood vessels. In conclusion, Ad-loaded MNPs formed by controlled precipitation of zinc oleate represent a novel delivery system, well-suited for efficient, magnetically targeted vascular gene transfer.—Chorny, M., Fishbein, I., Tengood, J. E., Adamo, R. F., Alferiev, I. S., Levy, R. J. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. PMID:23407712

  4. Improved tools and strategies for the prevention and control of arboviral diseases: A research-to-policy forum.

    PubMed

    Olliaro, Piero; Fouque, Florence; Kroeger, Axel; Bowman, Leigh; Velayudhan, Raman; Santelli, Ana Carolina; Garcia, Diego; Skewes Ramm, Ronald; Sulaiman, Lokman H; Tejeda, Gustavo Sanchez; Morales, Fabiàn Correa; Gozzer, Ernesto; Garrido, César Basso; Quang, Luong Chan; Gutierrez, Gamaliel; Yadon, Zaida E; Runge-Ranzinger, Silvia

    2018-02-01

    Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled.

  5. Improved tools and strategies for the prevention and control of arboviral diseases: A research-to-policy forum

    PubMed Central

    Olliaro, Piero; Fouque, Florence; Kroeger, Axel; Bowman, Leigh; Velayudhan, Raman; Santelli, Ana Carolina; Garcia, Diego; Skewes Ramm, Ronald; Sulaiman, Lokman H.; Tejeda, Gustavo Sanchez; Morales, Fabiàn Correa; Gozzer, Ernesto; Garrido, César Basso; Quang, Luong Chan; Gutierrez, Gamaliel; Yadon, Zaida E.

    2018-01-01

    Background Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. Method A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. Results The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. Conclusions The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled. PMID:29389959

  6. Dengue knowledge, attitudes and practices and their impact on community-based vector control in rural Cambodia

    PubMed Central

    Doum, Dyna; Keo, Vanney; Sokha, Ly; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Liverani, Marco; Prasetyo, Didot Budi; Rachmat, Agus; Lopes, Sergio; Hii, Jeffrey; Rithea, Leang; Shafique, Muhammad; Hustedt, John

    2018-01-01

    Background Globally there are an estimated 390 million dengue infections per year, of which 96 million are clinically apparent. In Cambodia, estimates suggest as many as 185,850 cases annually. The World Health Organization global strategy for dengue prevention aims to reduce mortality rates by 50% and morbidity by 25% by 2020. The adoption of integrated vector management approach using community-based methods tailored to the local context is one of the recommended strategies to achieve these objectives. Understanding local knowledge, attitudes and practices is therefore essential to designing suitable strategies to fit each local context. Methods and findings A Knowledge, Attitudes and Practices survey in 600 randomly chosen households was administered in 30 villages in Kampong Cham which is one of the most populated provinces of Cambodia. KAP surveys were administered to a sub-sample of households where an entomology survey was conducted (1200 households), during which Aedes larval/pupae and adult female Aedes mosquito densities were recorded. Participants had high levels of knowledge regarding the transmission of dengue, Aedes breeding, and biting prevention methods; the majority of participants believed they were at risk and that dengue transmission is preventable. However, self-reported vector control practices did not match observed practices recorded in our surveys. No correlation was found between knowledge and observed practices either. Conclusion An education campaign regarding dengue prevention in this setting with high knowledge levels is unlikely to have any significant effect on practices unless it is incorporated in a more comprehensive strategy for behavioural change, such a COMBI method, which includes behavioural models as well as communication and marketing theory and practice. Trial registration ISRCTN85307778. PMID:29451879

  7. Dengue knowledge, attitudes and practices and their impact on community-based vector control in rural Cambodia.

    PubMed

    Kumaran, Emmanuelle; Doum, Dyna; Keo, Vanney; Sokha, Ly; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Liverani, Marco; Prasetyo, Didot Budi; Rachmat, Agus; Lopes, Sergio; Hii, Jeffrey; Rithea, Leang; Shafique, Muhammad; Hustedt, John

    2018-02-01

    Globally there are an estimated 390 million dengue infections per year, of which 96 million are clinically apparent. In Cambodia, estimates suggest as many as 185,850 cases annually. The World Health Organization global strategy for dengue prevention aims to reduce mortality rates by 50% and morbidity by 25% by 2020. The adoption of integrated vector management approach using community-based methods tailored to the local context is one of the recommended strategies to achieve these objectives. Understanding local knowledge, attitudes and practices is therefore essential to designing suitable strategies to fit each local context. A Knowledge, Attitudes and Practices survey in 600 randomly chosen households was administered in 30 villages in Kampong Cham which is one of the most populated provinces of Cambodia. KAP surveys were administered to a sub-sample of households where an entomology survey was conducted (1200 households), during which Aedes larval/pupae and adult female Aedes mosquito densities were recorded. Participants had high levels of knowledge regarding the transmission of dengue, Aedes breeding, and biting prevention methods; the majority of participants believed they were at risk and that dengue transmission is preventable. However, self-reported vector control practices did not match observed practices recorded in our surveys. No correlation was found between knowledge and observed practices either. An education campaign regarding dengue prevention in this setting with high knowledge levels is unlikely to have any significant effect on practices unless it is incorporated in a more comprehensive strategy for behavioural change, such a COMBI method, which includes behavioural models as well as communication and marketing theory and practice. ISRCTN85307778.

  8. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  9. Optimizing insecticide allocation strategies based on houses and livestock shelters for visceral leishmaniasis control in Bihar, India.

    PubMed

    Gorahava, Kaushik K; Rosenberger, Jay M; Mubayi, Anuj

    2015-07-01

    Visceral leishmaniasis (VL) is the most deadly form of the leishmaniasis family of diseases, which affects numerous developing countries. The Indian state of Bihar has the highest prevalence and mortality rate of VL in the world. Insecticide spraying is believed to be an effective vector control program for controlling the spread of VL in Bihar; however, it is expensive and less effective if not implemented systematically. This study develops and analyzes a novel optimization model for VL control in Bihar that identifies an optimal (best possible) allocation of chosen insecticide (dichlorodiphenyltrichloroethane [DDT] or deltamethrin) based on the sizes of human and cattle populations in the region. The model maximizes the insecticide-induced sandfly death rate in human and cattle dwellings while staying within the current state budget for VL vector control efforts. The model results suggest that deltamethrin might not be a good replacement for DDT because the insecticide-induced sandfly deaths are 3.72 times more in case of DDT even after 90 days post spray. Different insecticide allocation strategies between the two types of sites (houses and cattle sheds) are suggested based on the state VL-control budget and have a direct implication on VL elimination efforts in a resource-limited region. © The American Society of Tropical Medicine and Hygiene.

  10. Impact of community-based vector control on house infestation and Trypanosoma cruzi infection in Triatoma infestans, dogs and cats in the Argentine Chaco.

    PubMed

    Cardinal, M V; Lauricella, M A; Marcet, P L; Orozco, M M; Kitron, U; Gürtler, R E

    2007-09-01

    The relative impact of two community-based vector control strategies on house infestation by Triatoma infestans and Trypanosoma cruzi infection in bugs, domestic dogs and cats was assessed in two neighboring rural areas comprising 40 small villages and 323 houses in one of the regions most endemic for Chagas disease in northern Argentina. The prevalence and abundance of domestic infestation were 1.5- and 6.5-fold higher, respectively, in the area under pulsed, non-supervised control actions operating under the guidelines of the National Vector Control Program (NCVP) than in the area under sustained, supervised surveillance carried out jointly by the UBA research team and NCVP. The prevalence of infestation and infection varied widely among village groups within each area. In the pulsed control area, the prevalence of infection in bugs, dogs and cats was two- to three-fold higher than in the area under sustained surveillance, most of the infected animals qualified as autochthonous cases, and evidence of recent transmission was observed. Infection was highly aggregated at the household level and fell close to the 80/20 rule. Using multiple logistic regression analysis clustered by household, infection in dogs was associated positively and significantly with variables reflecting local exposure to infected T. infestans, thus demonstrating weak performance of the vector surveillance system. For high-risk areas in the Gran Chaco region, interruption of vector-mediated domestic transmission of T. cruzi requires residual insecticide spraying that is more intense, of a higher quality and sustained in time, combined with community participation and environmental management measures.

  11. Community-based biological control of malaria mosquitoes using Bacillus thuringiensis var. israelensis (Bti) in Rwanda: community awareness, acceptance and participation.

    PubMed

    Ingabire, Chantal Marie; Hakizimana, Emmanuel; Rulisa, Alexis; Kateera, Fredrick; Van Den Borne, Bart; Muvunyi, Claude Mambo; Mutesa, Leon; Van Vugt, Michelle; Koenraadt, Constantianus J M; Takken, Willem; Alaii, Jane

    2017-10-03

    Targeting the aquatic stages of malaria vectors via larval source management (LSM) in collaboration with local communities could accelerate progress towards malaria elimination when deployed in addition to existing vector control strategies. However, the precise role that communities can assume in implementing such an intervention has not been fully investigated. This study investigated community awareness, acceptance and participation in a study that incorporated the socio-economic and entomological impact of LSM using Bacillus thuringiensis var. israelensis (Bti) in eastern Rwanda, and identified challenges and recommendations for future scale-up. The implementation of the community-based LSM intervention took place in Ruhuha, Rwanda, from February to July 2015. The intervention included three arms: control, community-based (CB) and project-supervised (PS). Mixed methods were used to collect baseline and endline socio-economic data in January and October 2015. A high perceived safety and effectiveness of Bti was reported at the start of the intervention. Being aware of malaria symptoms and perceiving Bti as safe on other living organisms increased the likelihood of community participation through investment of labour time for Bti application. On the other hand, the likelihood for community participation was lower if respondents: (1) perceived rice farming as very profitable; (2) provided more money to the cooperative as a capital; and, (3) were already involved in rice farming for more than 6 years. After 6 months of implementation, an increase in knowledge and skills regarding Bti application was reported. The community perceived a reduction in mosquito density and nuisance biting on treated arms. Main operational, seasonal and geographical challenges included manual application of Bti, long working hours, and need for transportation for reaching the fields. Recommendations were made for future scale-up, including addressing above-mentioned concerns and government adoption of LSM as part of its vector control strategies. Community awareness and support for LSM increased following Bti application. A high effectiveness of Bti in terms of reduction of mosquito abundance and nuisance biting was perceived. The study confirmed the feasibility of community-based LSM interventions and served as evidence for future scale-up of Bti application and adoption into Rwandan malaria vector control strategies.

  12. An Operational Framework for Insecticide Resistance Management Planning

    PubMed Central

    Chanda, Emmanuel; Thomsen, Edward K.; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G.; Norris, Douglas E.; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H.; Muleba, Mbanga; Craig, Allen; Govere, John M.; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B.

    2016-01-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future. PMID:27089119

  13. An Operational Framework for Insecticide Resistance Management Planning.

    PubMed

    Chanda, Emmanuel; Thomsen, Edward K; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G; Norris, Douglas E; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H; Muleba, Mbanga; Craig, Allen; Govere, John M; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B; Coleman, Michael

    2016-05-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.

  14. Hypothesis: Impregnated school uniforms reduce the incidence of dengue infections in school children.

    PubMed

    Wilder-Smith, A; Lover, A; Kittayapong, P; Burnham, G

    2011-06-01

    Dengue infection causes a significant economic, social and medical burden in affected populations in over 100 countries in the tropics and sub-tropics. Current dengue control efforts have generally focused on vector control but have not shown major impact. School-aged children are especially vulnerable to infection, due to sustained human-vector-human transmission in the close proximity environments of schools. Infection in children has a higher rate of complications, including dengue hemorrhagic fever and shock syndromes, than infections in adults. There is an urgent need for integrated and complementary population-based strategies to protect vulnerable children. We hypothesize that insecticide-treated school uniforms will reduce the incidence of dengue in school-aged children. The hypothesis would need to be tested in a community based randomized trial. If proven to be true, insecticide-treated school uniforms would be a cost-effective and scalable community based strategy to reduce the burden of dengue in children. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Evaluation of the efficacy of DDT indoor residual spraying and long-lasting insecticidal nets against insecticide resistant populations of Anopheles arabiensis Patton (Diptera: Culicidae) from Ethiopia using experimental huts

    PubMed Central

    2014-01-01

    Background Indoor Residual Spraying (IRS) and Long-Lasting Insecticidal nets (LLINs) are major malaria vector control tools in Ethiopia. However, recent reports from different parts of the country showed that populations of Anopheles arabiensis, the principal malaria vector, have developed resistance to most families of insecticides recommended for public health use which may compromise the efficacy of both of these key vector control interventions. Thus, this study evaluated the efficacy of DDT IRS and LLINs against resistant populations of An. arabiensis using experimental huts in Asendabo area, southwestern Ethiopia. Methods The susceptibility status of populations of An. arabiensis was assessed using WHO test kits to DDT, deltamethrin, malathion, lambda-cyhalothrin, fenitrothion and bendiocarb. The efficacy of LLIN (PermaNet® 2.0), was evaluated using the WHO cone bioassay. Moreover, the effect of the observed resistance against malaria vector control interventions (DDT IRS and LLINs) were assessed using experimental huts. Results The findings of this study revealed that populations of An. arabiensis were resistant to DDT, deltamethrin, lambda-cyhalothrin and malathion with mortality rates of 1.3%, 18.8%, 36.3% and 72.5%, respectively but susceptible to fenitrothion and bendiocarb with mortality rates of 98.81% and 97.5%, respectively. The bio-efficacy test of LLIN (PermaNet® 2.0) against An. arabiensis revealed that the mosquito population showed moderate knockdown (64%) and mortality (78%). Moreover, mosquito mortalities in DDT sprayed huts and in huts with LLINs were not significantly different (p > 0.05) from their respective controls. Conclusion The evaluation of the efficacy of DDT IRS and LLINs using experimental huts showed that both vector control tools had only low to moderate efficacy against An. arabiensis populations from Ethiopia. Despite DDT being replaced by carbamates for IRS, the low efficacy of LLINs against the resistant population of An. arabiensis is still a problem. Thus, there is a need for alternative vector control tools and implementation of appropriate insecticide resistance management strategies as part of integrated vector management by the national malaria control program. PMID:24678605

  16. Real time hardware implementation of power converters for grid integration of distributed generation and STATCOM systems

    NASA Astrophysics Data System (ADS)

    Jaithwa, Ishan

    Deployment of smart grid technologies is accelerating. Smart grid enables bidirectional flows of energy and energy-related communications. The future electricity grid will look very different from today's power system. Large variable renewable energy sources will provide a greater portion of electricity, small DERs and energy storage systems will become more common, and utilities will operate many different kinds of energy efficiency. All of these changes will add complexity to the grid and require operators to be able to respond to fast dynamic changes to maintain system stability and security. This thesis investigates advanced control technology for grid integration of renewable energy sources and STATCOM systems by verifying them on real time hardware experiments using two different systems: d SPACE and OPAL RT. Three controls: conventional, direct vector control and the intelligent Neural network control were first simulated using Matlab to check the stability and safety of the system and were then implemented on real time hardware using the d SPACE and OPAL RT systems. The thesis then shows how dynamic-programming (DP) methods employed to train the neural networks are better than any other controllers where, an optimal control strategy is developed to ensure effective power delivery and to improve system stability. Through real time hardware implementation it is proved that the neural vector control approach produces the fastest response time, low overshoot, and, the best performance compared to the conventional standard vector control method and DCC vector control technique. Finally the entrepreneurial approach taken to drive the technologies from the lab to market via ORANGE ELECTRIC is discussed in brief.

  17. Targeting male mosquito swarms to control malaria vector density

    PubMed Central

    Sawadogo, Simon Peguedwinde; Niang, Abdoulaye; Bilgo, Etienne; Millogo, Azize; Maïga, Hamidou; Dabire, Roch K.; Tripet, Frederic; Diabaté, Abdoulaye

    2017-01-01

    Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. It has been estimated that the spread of resistance could lead to an additional 120000 deaths per year, and interfere with the prospects for sustained control or the feasibility of achieving malaria elimination. Another complication for the development of resistance management strategies is that, in addition to insecticide resistance, mosquito behavior evolves in a manner that diminishes the impact of LLINs and IRS. Mosquitoes may circumvent LLIN and IRS control through preferential feeding and resting outside human houses and/or being active earlier in the evening before people go to sleep. Recent developments in our understanding of mosquito swarming suggest that new tools targeting mosquito swarms can be designed to cut down the high reproductive rate of malaria vectors. Targeting swarms of major malaria vectors may provide an effective control method to counteract behavioral resistance developed by mosquitoes. Here, we evaluated the impact of systematic spraying of swarms of Anopheles gambiae s.l. using a mixed carbamate and pyrethroid aerosol. The impact of this intervention on vector density, female insemination rates and the age structure of males was measured. We showed that the resulting mass killing of swarming males and some mate-seeking females resulted in a dramatic 80% decrease in population size compared to a control population. A significant decrease in female insemination rate and a significant shift in the age structure of the male population towards younger males incapable of mating were observed. This paradigm-shift study therefore demonstrates that targeting primarily males rather than females, can have a drastic impact on mosquito population. PMID:28278212

  18. The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections

    PubMed Central

    Kamtchum-Tatuene, Joseph; Makepeace, Benjamin L.; Benjamin, Laura; Baylis, Matthew; Solomon, Tom

    2017-01-01

    Purpose of review Wolbachia is a genus of Gram-negative intracellular bacteria that is naturally found in more than half of all arthropod species. These bacteria cannot only reduce the fitness and the reproductive capacities of arthropod vectors, but also increase their resistance to arthropod-borne viruses (arboviruses). This article reviews the evidence supporting a Wolbachia-based strategy for controlling the transmission of dengue and other arboviral infections. Recent findings Studies conducted 1 year after the field release of Wolbachia-infected mosquitoes in Australia have demonstrated the suppression of dengue virus (DENV) replication in and dissemination by mosquitoes. Recent mathematical models show that this strategy could reduce the transmission of DENV by 70%. Consequently, the WHO is encouraging countries to boost the development and implementation of Wolbachia-based prevention strategies against other arboviral infections. However, the evidence regarding the efficacy of Wolbachia to prevent the transmission of other arboviral infections is still limited to an experimental framework with conflicting results in some cases. There is a need to demonstrate the efficacy of such strategies in the field under various climatic conditions, to select the Wolbachia strain that has the best pathogen interference/spread trade-off, and to continue to build community acceptance. Summary Wolbachia represents a promising tool for controlling the transmission of arboviral infections that needs to be developed further. Long-term environmental monitoring will be necessary for timely detection of potential changes in Wolbachia/vector/virus interactions. PMID:27849636

  19. Biological Control of the Chagas Disease Vector Triatoma infestans with the Entomopathogenic Fungus Beauveria bassiana Combined with an Aggregation Cue: Field, Laboratory and Mathematical Modeling Assessment

    PubMed Central

    Forlani, Lucas; Pedrini, Nicolás; Girotti, Juan R.; Mijailovsky, Sergio J.; Cardozo, Rubén M.; Gentile, Alberto G.; Hernández-Suárez, Carlos M.; Rabinovich, Jorge E.; Juárez, M. Patricia

    2015-01-01

    Background Current Chagas disease vector control strategies, based on chemical insecticide spraying, are growingly threatened by the emergence of pyrethroid-resistant Triatoma infestans populations in the Gran Chaco region of South America. Methodology and findings We have already shown that the entomopathogenic fungus Beauveria bassiana has the ability to breach the insect cuticle and is effective both against pyrethroid-susceptible and pyrethroid-resistant T. infestans, in laboratory as well as field assays. It is also known that T. infestans cuticle lipids play a major role as contact aggregation pheromones. We estimated the effectiveness of pheromone-based infection boxes containing B. bassiana spores to kill indoor bugs, and its effect on the vector population dynamics. Laboratory assays were performed to estimate the effect of fungal infection on female reproductive parameters. The effect of insect exuviae as an aggregation signal in the performance of the infection boxes was estimated both in the laboratory and in the field. We developed a stage-specific matrix model of T. infestans to describe the fungal infection effects on insect population dynamics, and to analyze the performance of the biopesticide device in vector biological control. Conclusions The pheromone-containing infective box is a promising new tool against indoor populations of this Chagas disease vector, with the number of boxes per house being the main driver of the reduction of the total domestic bug population. This ecologically safe approach is the first proven alternative to chemical insecticides in the control of T. infestans. The advantageous reduction in vector population by delayed-action fungal biopesticides in a contained environment is here shown supported by mathematical modeling. PMID:25969989

  20. Would the control of invasive alien plants reduce malaria transmission? A review.

    PubMed

    Stone, Christopher M; Witt, Arne B R; Walsh, Guillermo Cabrera; Foster, Woodbridge A; Murphy, Sean T

    2018-02-01

    Vector control has been the most effective preventive measure against malaria and other vector-borne diseases. However, due to concerns such as insecticide resistance and budget shortfalls, an integrated control approach will be required to ensure sustainable, long-term effectiveness. An integrated management strategy should entail some aspects of environmental management, relying on coordination between various scientific disciplines. Here, we review one such environmental control tactic: invasive alien plant management. This covers salient plant-mosquito interactions for both terrestrial and aquatic invasive plants and how these affect a vector's ability to transmit malaria. Invasive plants tend to have longer flowering durations, more vigorous growth, and their spread can result in an increase in biomass, particularly in areas where previously little vegetation existed. Some invasive alien plants provide shelter or resting sites for adult mosquitoes and are also attractive nectar-producing hosts, enhancing their vectorial capacity. We conclude that these plants may increase malaria transmission rates in certain environments, though many questions still need to be answered, to determine how often this conclusion holds. However, in the case of aquatic invasive plants, available evidence suggests that the management of these plants would contribute to malaria control. We also examine and review the opportunities for large-scale invasive alien plant management, including options for biological control. Finally, we highlight the research priorities that must be addressed in order to ensure that integrated vector and invasive alien plant management operate in a synergistic fashion.

  1. Camino Verde (The Green Way): evidence-based community mobilisation for dengue control in Nicaragua and Mexico: feasibility study and study protocol for a randomised controlled trial.

    PubMed

    Andersson, Neil; Arostegui, Jorge; Nava-Aguilera, Elizabeth; Harris, Eva; Ledogar, Robert J

    2017-05-30

    Since the Aedes aegypti mosquitoes that transmit dengue virus can breed in clean water, WHO-endorsed vector control strategies place sachets of organophosphate pesticide, temephos (Abate), in household water storage containers. These and other pesticide-dependent approaches have failed to curb the spread of dengue and multiple dengue virus serotypes continue to spread throughout tropical and subtropical regions worldwide. A feasibility study in Managua, Nicaragua, generated instruments, intervention protocols, training schedules and impact assessment tools for a cluster randomised controlled trial of community-based approaches to vector control comprising an alternative strategy for dengue prevention and control in Nicaragua and Mexico. The Camino Verde (Green Way) is a pragmatic parallel group trial of pesticide-free dengue vector control, adding effectiveness to the standard government dengue control. A random sample from the most recent census in three coastal regions of Guerrero state in Mexico will generate 90 study clusters and the equivalent sampling frame in Managua, Nicaragua will generate 60 clusters, making a total of 150 clusters each of 137-140 households. After a baseline study, computer-driven randomisation will allocate to intervention one half of the sites, stratified by country, evidence of recent dengue virus infection in children aged 3-9 years and, in Nicaragua, level of community organisation. Following a common evidence-based education protocol, each cluster will develop and implement its own collective interventions including house-to-house visits, school-based programmes and inter-community visits. After 18 months, a follow-up study will compare dengue history, serological evidence of recent dengue virus infection (via measurement of anti-dengue virus antibodies in saliva samples) and entomological indices between intervention and control sites. Our hypothesis is that informed community mobilisation adds effectiveness in controlling dengue. ISRCTN27581154 .

  2. Construction and applications of exon-trapping gene-targeting vectors with a novel strategy for negative selection.

    PubMed

    Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka

    2015-06-30

    Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.

  3. Sustainable malaria control: transdisciplinary approaches for translational applications

    PubMed Central

    2012-01-01

    With the adoption of the Global Malaria Action Plan, several countries are moving from malaria control towards elimination and eradication. However, the sustainability of some of the approaches taken may be questionable. Here, an overview of malaria control and elimination strategies is provided and the sustainability of each in context of vector- and parasite control is assessed. From this, it can be concluded that transdisciplinary approaches are essential for sustained malaria control and elimination in malaria-endemic communities. PMID:23268712

  4. Holding back the tiger: Successful control program protects Australia from Aedes albopictus expansion

    PubMed Central

    Devine, Gregor; Davis, Joseph; Crunkhorn, Bruce; van den Hurk, Andrew; Whelan, Peter; Russell, Richard; Walker, James; Horne, Peter; Ehlers, Gerhard; Ritchie, Scott

    2017-01-01

    Background The Asian tiger mosquito, Aedes albopictus, is an important vector of dengue, chikungunya and Zika viruses and is a highly invasive and aggressive biter. Established populations of this species were first recognised in Australia in 2005 when they were discovered on islands in the Torres Strait, between mainland Australia and Papua New Guinea. A control program was implemented with the original goal of eliminating Ae. albopictus from the Torres Strait. We describe the evolution of management strategies that provide a template for Ae. albopictus control that can be adopted elsewhere. Methodology / Principal findings The control strategy implemented between 2005 and 2008 targeted larval habitats using source reduction, insect-growth regulator and pyrethroid insecticide to control larvae and adults in the containers. However, the infrequency of insecticide reapplication, the continual accumulation and replacement of containers, and imminent re-introduction of mosquitoes through people’s movement from elsewhere compromised the program. Consequently, in 2009 the objective of the program changed from elimination to quarantine, with the goal of preventing Ae albopictus from infesting Thursday and Horn islands, which are the transport hubs connecting the Torres Strait to mainland Australia. However, larval control strategies did not prevent the species establishing on these islands in 2010. Thereafter, an additional strategy adopted by the quarantine program in early 2011 was harborage spraying, whereby the vegetated, well shaded resting sites of adult Ae. albopictus were treated with a residual pyrethroid insecticide. Inclusion of this additional measure led to a 97% decline in Ae. albopictus numbers within two years. In addition, the frequency of container treatment was increased to five weeks between treatments, compared to an average of 8 weeks that occurred in the earlier iterations of the program. By 2015 and 2016, Ae. albopictus populations on the two islands were undetectable in 70–90% of surveys conducted. Importantly, a comprehensive surveillance network in selected strategic areas has not identified established populations of this species on the Australian mainland. Conclusions / Significance The program has successfully reduced Ae. albopictus populations on Thursday Island and Horn Island to levels where it is undetectable in up to 90% of surveys, and has largely removed the risk of mainland establishment via that route. The vector management strategies adopted in the later years of the program have been demonstrably successful and provide a practical management framework for dengue, chikungunya or Zika virus outbreaks vectored by Ae. albopictus. As of June 2016, Ae. albopictus had not established on the Australian mainland and this program has likely contributed significantly to this outcome. PMID:28192520

  5. Community mobilization and household level waste management for dengue vector control in Gampaha district of Sri Lanka; an intervention study.

    PubMed

    Abeyewickreme, W; Wickremasinghe, A R; Karunatilake, K; Sommerfeld, J; Axel, Kroeger

    2012-12-01

    Waste management through community mobilization to reduce breeding places at household level could be an effective and sustainable dengue vector control strategy in areas where vector breeding takes place in small discarded water containers. The objective of this study was to assess the validity of this assumption. An intervention study was conducted from February 2009 to February 2010 in the populous Gampaha District of Sri Lanka. Eight neighborhoods (clusters) with roughly 200 houses each were selected randomly from high and low dengue endemic areas; 4 of them were allocated to the intervention arm (2 in the high and 2 in the low endemicity areas) and in the same way 4 clusters to the control arm. A baseline household survey was conducted and entomological and sociological surveys were carried out simultaneously at baseline, at 3 months, at 9 months and at 15 months after the start of the intervention. The intervention programme in the treatment clusters consisted of building partnerships of local stakeholders, waste management at household level, the promotion of composting biodegradable household waste, raising awareness on the importance of solid waste management in dengue control and improving garbage collection with the assistance of local government authorities. The intervention and control clusters were very similar and there were no significant differences in pupal and larval indices of Aedes mosquitoes. The establishment of partnerships among local authorities was well accepted and sustainable; the involvement of communities and households was successful. Waste management with the elimination of the most productive water container types (bowls, tins, bottles) led to a significant reduction of pupal indices as a proxy for adult vector densities. The coordination of local authorities along with increased household responsibility for targeted vector interventions (in our case solid waste management due to the type of preferred vector breeding places) is vital for effective and sustained dengue control.

  6. Community mobilization and household level waste management for dengue vector control in Gampaha district of Sri Lanka; an intervention study

    PubMed Central

    Abeyewickreme, W; Wickremasinghe, A R; Karunatilake, K; Sommerfeld, Johannes; Kroeger, Axel

    2012-01-01

    Introduction Waste management through community mobilization to reduce breeding places at household level could be an effective and sustainable dengue vector control strategy in areas where vector breeding takes place in small discarded water containers. The objective of this study was to assess the validity of this assumption. Methods An intervention study was conducted from February 2009 to February 2010 in the populous Gampaha District of Sri Lanka. Eight neighborhoods (clusters) with roughly 200 houses each were selected randomly from high and low dengue endemic areas; 4 of them were allocated to the intervention arm (2 in the high and 2 in the low endemicity areas) and in the same way 4 clusters to the control arm. A baseline household survey was conducted and entomological and sociological surveys were carried out simultaneously at baseline, at 3 months, at 9 months and at 15 months after the start of the intervention. The intervention programme in the treatment clusters consisted of building partnerships of local stakeholders, waste management at household level, the promotion of composting biodegradable household waste, raising awareness on the importance of solid waste management in dengue control and improving garbage collection with the assistance of local government authorities. Results The intervention and control clusters were very similar and there were no significant differences in pupal and larval indices of Aedes mosquitoes. The establishment of partnerships among local authorities was well accepted and sustainable; the involvement of communities and households was successful. Waste management with the elimination of the most productive water container types (bowls, tins, bottles) led to a significant reduction of pupal indices as a proxy for adult vector densities. Conclusion The coordination of local authorities along with increased household responsibility for targeted vector interventions (in our case solid waste management due to the type of preferred vector breeding places) is vital for effective and sustained dengue control. PMID:23318240

  7. Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2009-12-29

    Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.

  8. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus.

    PubMed

    Kim, Shin-Hee; Paldurai, Anandan; Samal, Siba K

    2017-03-01

    Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A Randomized Longitudinal Factorial Design to Assess Malaria Vector Control and Disease Management Interventions in Rural Tanzania

    PubMed Central

    Kramer, Randall A.; Mboera, Leonard E. G.; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H.; Paul, Christopher J.; Miranda, Marie Lynn

    2014-01-01

    The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials. PMID:24840349

  10. A randomized longitudinal factorial design to assess malaria vector control and disease management interventions in rural Tanzania.

    PubMed

    Kramer, Randall A; Mboera, Leonard E G; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H; Paul, Christopher J; Miranda, Marie Lynn

    2014-05-16

    The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials.

  11. The current status of the Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) species complex

    PubMed Central

    Souza, Nataly A; Brazil, Reginaldo P; Araki, Alejandra S

    2017-01-01

    Lutzomyia longipalpis s.l. is a complex of sibling species and is the principal vector of American visceral leishmaniasis. The present review summarises the diversity of efforts that have been undertaken to elucidate the number of unnamed species in this species complex and the phylogenetic relationships among them. A wide variety of evidence, including chemical, behavioral and molecular traits, suggests very recent speciation events and complex population structure in this group. Although significant advances have been achieved to date, differential vector capacity and the correlation between structure of parasite and vector populations have yet to be elucidated. Furthermore, increased knowledge about recent epidemiological changes, such as urbanisation, is essential for pursuing effective strategies for sandfly control in the New World. PMID:28225906

  12. The current status of the Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) species complex.

    PubMed

    Souza, Nataly A; Brazil, Reginaldo P; Araki, Alejandra S

    2017-03-01

    Lutzomyia longipalpis s.l. is a complex of sibling species and is the principal vector of American visceral leishmaniasis. The present review summarises the diversity of efforts that have been undertaken to elucidate the number of unnamed species in this species complex and the phylogenetic relationships among them. A wide variety of evidence, including chemical, behavioral and molecular traits, suggests very recent speciation events and complex population structure in this group. Although significant advances have been achieved to date, differential vector capacity and the correlation between structure of parasite and vector populations have yet to be elucidated. Furthermore, increased knowledge about recent epidemiological changes, such as urbanisation, is essential for pursuing effective strategies for sandfly control in the New World.

  13. Patterns of insecticide resistance and knock down resistance (kdr) in malaria vectors An. arabiensis, An. coluzzii and An. gambiae from sympatric areas in Senegal.

    PubMed

    Niang, El Hadji Amadou; Konaté, Lassana; Diallo, Mawlouth; Faye, Ousmane; Dia, Ibrahima

    2016-02-05

    Malaria vector control in Africa relies on insecticides targeting adult mosquito vectors via insecticide treated nets or indoor residual spraying. Despite the proven efficacy of these strategies, the emergence and rapid rise in insecticide resistance in malaria vectors raises many concerns about their sustainability. Therefore, the monitoring of insecticide resistance is essential for resistance management strategies implementation. We investigated the kdr mutation frequencies in 20 sympatric sites of An. arabiensis Patton, An. coluzzii Coetzee & Wilkerson and An. gambiae Giles and its importance in malaria vector control by evaluating the susceptibility to insecticides in four representative sites in Senegal. Sibling species identification and kdr mutation detection were determined using polymerase chain reaction on mosquitoes collected using pyrethrum sprays collection in 20 sites belonging to two transects with differential insecticide selection pressure. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to DDT, deltamethrin, lambdacyholothrin, permethrin, bendiocarb and malathion in four representative sites. The L1014F kdr mutation was widely distributed and was predominant in An. gambiae in comparison to An. arabiensis and An. coluzzii. The bioassay tests showed a general trend with a resistance to DDT and pyrethroids and a susceptibility to organophosphate and carbamate according to WHO thresholds. For deltamethrin and permethrin, the two most used insecticides, no significant difference were observed either between the two transects or between mortality rates suggesting no differential selection pressures on malaria vectors. The study of the KD times showed similar trends as comparable levels of resistance were observed, the effect being more pronounced for permethrin. Our study showed a widespread resistance of malaria vectors to DDT and pyrethroids and a widespread distribution of the 1014F kdr allele. These combined observations could suggest the involvement of the kdr mutation. The existence of other resistance mechanisms could not be ruled out as a proportion of mosquitoes did not harbour the kdr allele whereas the populations were fully resistant. The susceptibility to carbamate and organophosphate could be exploited as alternative for insecticide resistance management.

  14. Modeling the Cost Effectiveness of Malaria Control Interventions in the Highlands of Western Kenya

    PubMed Central

    Stuckey, Erin M.; Stevenson, Jennifer; Galactionova, Katya; Baidjoe, Amrish Y.; Bousema, Teun; Odongo, Wycliffe; Kariuki, Simon; Drakeley, Chris; Smith, Thomas A.; Cox, Jonathan; Chitnis, Nakul

    2014-01-01

    Introduction Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. Methods Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. Results The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. Conclusions All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions. PMID:25290939

  15. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya.

    PubMed

    Stuckey, Erin M; Stevenson, Jennifer; Galactionova, Katya; Baidjoe, Amrish Y; Bousema, Teun; Odongo, Wycliffe; Kariuki, Simon; Drakeley, Chris; Smith, Thomas A; Cox, Jonathan; Chitnis, Nakul

    2014-01-01

    Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions.

  16. Vaccines and immunization strategies for dengue prevention

    PubMed Central

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  17. Tsetse Control and Gambian Sleeping Sickness; Implications for Control Strategy.

    PubMed

    Tirados, Inaki; Esterhuizen, Johan; Kovacic, Vanja; Mangwiro, T N Clement; Vale, Glyn A; Hastings, Ian; Solano, Philippe; Lehane, Michael J; Torr, Steve J

    2015-01-01

    Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km2). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised.

  18. Tsetse Control and Gambian Sleeping Sickness; Implications for Control Strategy

    PubMed Central

    Kovacic, Vanja; Mangwiro, T. N. Clement; Vale, Glyn A.; Hastings, Ian; Solano, Philippe; Lehane, Michael J.; Torr, Steve J.

    2015-01-01

    Background Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. Methods and Findings The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km2). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. Interpretation The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised. PMID:26267814

  19. Assessment of the effect of larval source management and house improvement on malaria transmission when added to standard malaria control strategies in southern Malawi: study protocol for a cluster-randomised controlled trial.

    PubMed

    McCann, Robert S; van den Berg, Henk; Diggle, Peter J; van Vugt, Michèle; Terlouw, Dianne J; Phiri, Kamija S; Di Pasquale, Aurelio; Maire, Nicolas; Gowelo, Steven; Mburu, Monicah M; Kabaghe, Alinune N; Mzilahowa, Themba; Chipeta, Michael G; Takken, Willem

    2017-09-22

    Due to outdoor and residual transmission and insecticide resistance, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) will be insufficient as stand-alone malaria vector control interventions in many settings as programmes shift toward malaria elimination. Combining additional vector control interventions as part of an integrated strategy would potentially overcome these challenges. Larval source management (LSM) and structural house improvements (HI) are appealing as additional components of an integrated vector management plan because of their long histories of use, evidence on effectiveness in appropriate settings, and unique modes of action compared to LLINs and IRS. Implementation of LSM and HI through a community-based approach could provide a path for rolling-out these interventions sustainably and on a large scale. We will implement community-based LSM and HI, as additional interventions to the current national malaria control strategies, using a randomised block, 2 × 2 factorial, cluster-randomised design in rural, southern Malawi. These interventions will be continued for two years. The trial catchment area covers about 25,000 people living in 65 villages. Community participation is encouraged by training community volunteers as health animators, and supporting the organisation of village-level committees in collaboration with The Hunger Project, a non-governmental organisation. Household-level cross-sectional surveys, including parasitological and entomological sampling, will be conducted on a rolling, 2-monthly schedule to measure outcomes over two years (2016 to 2018). Coverage of LSM and HI will also be assessed throughout the trial area. Combining LSM and/or HI together with the interventions currently implemented by the Malawi National Malaria Control Programme is anticipated to reduce malaria transmission below the level reached by current interventions alone. Implementation of LSM and HI through a community-based approach provides an opportunity for optimum adaptation to the local ecological and social setting, and enhances the potential for sustainability. Registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493.

  20. Bluetongue outbreaks: Looking for effective control strategies against Culicoides vectors.

    PubMed

    Benelli, Giovanni; Buttazzoni, Luca; Canale, Angelo; D'Andrea, Armando; Del Serrone, Paola; Delrio, Gavino; Foxi, Cipriano; Mariani, Susanna; Savini, Giovanni; Vadivalagan, Chithravel; Murugan, Kadarkarai; Toniolo, Chiara; Nicoletti, Marcello; Serafini, Mauro

    2017-12-01

    Several arthropod-borne diseases are now rising with increasing impact and risks for public health, due to environmental changes and resistance to pesticides currently marketed. In addition to community surveillance programs and a careful management of herds, a next-generation of effective products is urgently needed to control the spread of these diseases, with special reference to arboviral ones. Natural product research can afford alternative solutions. Recently, a re-emerging of bluetongue disease is ongoing in Italy. Bluetongue is a viral disease that affects ruminants and is spread through the bite of bloodsucking insects, especially Culicoides species. In this review, we focused on the importance of vector control programs for prevention or bluetongue outbreaks, outlining the lack of effective tools in the fight against Culicoides vectors. Then, we analyzed a field case study in Sardinia (Italy) concerning the utilization of the neem cake (Azadirachta indica), to control young instar populations of Culicoides biting midges, the vectors of bluetongue virus. Neem cake is a cheap and eco-friendly by-product obtained from the extraction of neem oil. Overall, we propose that the employ of neem extraction by-products as aqueous formulations in muddy sites close to livestock grazing areas may represent an effective tool in the fight against the spread of bluetongue virus in the Mediterranean areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters.

    PubMed

    Mpolya, Emmanuel A; Yashima, Kenta; Ohtsuki, Hisashi; Sasaki, Akira

    2014-02-21

    We develop a star-network of connections between a central city and peripheral villages and analyze the epidemic dynamics of a vector-borne disease as influenced by daily commuters. We obtain an analytical solution for the global basic reproductive number R0 and investigate its dependence on key parameters for disease control. We find that in a star-network topology the central hub is not always the best place to focus disease intervention strategies. Disease control decisions are sensitive to the number of commuters from villages to the city as well as the relative densities of mosquitoes between villages and city. With more commuters it becomes important to focus on the surrounding villages. Commuting to the city paradoxically reduces the disease burden even when the bulk of infections are in the city because of the resulting diluting effects of transmissions with more commuters. This effect decreases with heterogeneity in host and vector population sizes in the villages due to the formation of peripheral epicenters of infection. We suggest that to ensure effective control of vector-borne diseases in star networks of villages and cities it is also important to focus on the commuters and where they come from. © 2013 Published by Elsevier Ltd.

  2. Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells.

    PubMed

    Tao, Ke; Frisch, Janina; Rey-Rico, Ana; Venkatesan, Jagadeesh K; Schmitt, Gertrud; Madry, Henning; Lin, Jianhao; Cucchiarini, Magali

    2016-02-01

    Articular cartilage has a limited potential for self-healing. Transplantation of genetically modified progenitor cells like bone marrow-derived mesenchymal stem cells (MSCs) is an attractive strategy to improve the intrinsic repair capacities of damaged articular cartilage. In this study, we examined the potential benefits of co-overexpressing the pleiotropic transformation growth factor beta (TGF-β) with the cartilage-specific transcription factor SOX9 via gene transfer with recombinant adeno-associated virus (rAAV) vectors upon the biological activities of human MSCs (hMSCs). Freshly isolated hMSCs were transduced over time with separate rAAV vectors carrying either TGF-β or sox9 in chondrogenically-induced aggregate cultures to evaluate the efficacy and duration of transgene expression and to monitor the effects of rAAV-mediated genetic modification upon the cellular activities (proliferation, matrix synthesis) and chondrogenic differentiation potency compared with control conditions (lacZ treatment, sequential transductions). Significant, prolonged TGF-β/sox9 co-overexpression was achieved in chondrogenically-induced hMSCs upon co-transduction via rAAV for up to 21 days, leading to enhanced proliferative, biosynthetic, and chondrogenic activities relative to control treatments, especially when co-applying the candidate vectors at the highest vector doses tested. Optimal co-administration of TGF-β with sox9 also advantageously reduced hypertrophic differentiation of the cells in the conditions applied here. The present findings demonstrate the possibility of modifying MSCs by combined therapeutic gene transfer as potent future strategies for implantation in clinically relevant animal models of cartilage defects in vivo.

  3. Characteristics of and factors associated with dengue vector breeding sites in the City of Colombo, Sri Lanka

    PubMed Central

    Kusumawathie, Pad; Palihawadana, Paba; Janaki, Sakoo; Wijemuni, Ruwan; Wilder-Smith, Annelies; Tissera, Hasitha A.

    2016-01-01

    Introduction Dengue has emerged as a major public health problem in Sri Lanka. Vector control at community level is a frequent and widespread strategy for dengue control. The aim of the study was to assess Aedes mosquito breeding sites and the prevention practices of community members in a heavily urbanized part of Colombo. Methods A cross-sectional entomological survey was conducted from April to June 2013 in 1469 premises located in a subdistrict of the City of Colombo. Types of breeding sites and, where found, their infestation with larvae or pupae were recorded. Furthermore, a questionnaire was administered to the occupants of these premises to record current practices of dengue vector control. Results The surveyed premises consisted of 1341 residential premises and 110 non-residential premises (11 schools, 99 work or public sites), 5 open lands, and 13 non-specified. In these 1469 premises, 15447 potential breeding sites suitable to host larvae of pupae were found; of these sites18.0% contained water. Among the 2775 potential breeding sites that contained water, 452 (16.3%) were positive for larvae and/or pupae. Schools were associated with the proportionally highest number of breeding sites; 85 out of 133 (63.9%) breeding sites were positive for larvae and/or pupae in schools compared with 338 out of 2288 (14.8%) in residential premises. The odds ratio (OR) for schools and work or public sites for being infested with larvae and/or pupae was 2.77 (95% CI 1.58, 4.86), when compared to residential premises. Occupants of 80.8% of the residential premises, 54.5% of the schools and 67.7% of the work or public sites reported using preventive measures. The main prevention practices were coverage of containers and elimination of mosquito breeding places. Occupants of residential premises were much more likely to practice preventive measures than were those of non-residential premises (OR 2.23; 1.49, 3.36). Conclusion Schools and working sites were associated with the highest numbers of breeding sites and lacked preventive measures for vector control. In addition to pursuing vector control measures at residential level, public health strategies should be expanded in schools and work places. PMID:27241954

  4. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China

    PubMed Central

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis. The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies. PMID:28848504

  5. Insecticide Resistance in Areas under Investigation by the International Centers of Excellence for Malaria Research: A Challenge for Malaria Control and Elimination

    PubMed Central

    Quiñones, Martha L.; Norris, Douglas E.; Conn, Jan E.; Moreno, Marta; Burkot, Thomas R.; Bugoro, Hugo; Keven, John B.; Cooper, Robert; Yan, Guiyun; Rosas, Angel; Palomino, Miriam; Donnelly, Martin J.; Mawejje, Henry D.; Eapen, Alex; Montgomery, Jacqui; Coulibaly, Mamadou B.; Beier, John C.; Kumar, Ashwani

    2015-01-01

    Scale-up of the main vector control interventions, residual insecticides sprayed on walls or structures and/or impregnated in bed nets, together with prompt diagnosis and effective treatment, have led to a global reduction in malaria transmission. However, resistance in vectors to almost all classes of insecticides, particularly to the synthetic pyrethroids, is posing a challenge to the recent trend of declining malaria. Ten International Centers of Excellence for Malaria Research (ICEMR) located in the most malaria-endemic regions of the world are currently addressing insecticide resistance in the main vector populations, which not only threaten hope for elimination in malaria-endemic countries but also may lead to reversal where notable reductions in malaria have been documented. This communication illustrates the current status of insecticide resistance with a focus on the countries where activities are ongoing for 9 out of the 10 ICEMRs. Most of the primary malaria vectors in the ICEMR countries exhibit insecticide resistance, albeit of varying magnitude, and spanning all mechanisms of resistance. New alternatives to the insecticides currently available are still to be fully developed for deployment. Integrated vector management principles need to be better understood and encouraged, and viable insecticide resistance management strategies need to be developed and implemented. PMID:26259947

  6. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China.

    PubMed

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.

  7. Mosquito Avoidance Practices and Knowledge of Arboviral Diseases in Cities with Differing Recent History of Disease

    PubMed Central

    Haenchen, Steven D.; Hayden, Mary H.; Dickinson, Katherine L.; Walker, Kathleen; Jacobs, Elizabeth E.; Brown, Heidi E.; Gunn, Jayleen K. L.; Kohler, Lindsay N.; Ernst, Kacey C.

    2016-01-01

    As the range of dengue virus (DENV) transmission expands, an understanding of community uptake of prevention and control strategies is needed both in geographic areas where the virus has recently been circulating and in areas with the potential for DENV introduction. Personal protective behaviors such as the use of mosquito repellent to limit human–vector contact and the reduction of vector density through elimination of oviposition sites are the primary control methods for Aedes aegypti, the main vector of DENV. Here, we examined personal mosquito control measures taken by individuals in Key West, FL, in 2012, which had experienced a recent outbreak of DENV, and Tucson, AZ, which has a high potential for introduction but has not yet experienced autochthonous transmission. In both cities, there was a positive association between the numbers of mosquitoes noticed outdoors and the overall number of avoidance behaviors, use of repellent, and removal of standing water. Increased awareness and perceived risk of DENV were associated with increases in one of the most effective household prevention behaviors, removal of standing water, but only in Key West. PMID:27527634

  8. Costs and Cost-Effectiveness of Plasmodium vivax Control.

    PubMed

    White, Michael T; Yeung, Shunmay; Patouillard, Edith; Cibulskis, Richard

    2016-12-28

    The continued success of efforts to reduce the global malaria burden will require sustained funding for interventions specifically targeting Plasmodium vivax The optimal use of limited financial resources necessitates cost and cost-effectiveness analyses of strategies for diagnosing and treating P. vivax and vector control tools. Herein, we review the existing published evidence on the costs and cost-effectiveness of interventions for controlling P. vivax, identifying nine studies focused on diagnosis and treatment and seven studies focused on vector control. Although many of the results from the much more extensive P. falciparum literature can be applied to P. vivax, it is not always possible to extrapolate results from P. falciparum-specific cost-effectiveness analyses. Notably, there is a need for additional studies to evaluate the potential cost-effectiveness of radical cure with primaquine for the prevention of P. vivax relapses with glucose-6-phosphate dehydrogenase testing. © The American Society of Tropical Medicine and Hygiene.

  9. Costs and Cost-Effectiveness of Plasmodium vivax Control

    PubMed Central

    White, Michael T.; Yeung, Shunmay; Patouillard, Edith; Cibulskis, Richard

    2016-01-01

    The continued success of efforts to reduce the global malaria burden will require sustained funding for interventions specifically targeting Plasmodium vivax. The optimal use of limited financial resources necessitates cost and cost-effectiveness analyses of strategies for diagnosing and treating P. vivax and vector control tools. Herein, we review the existing published evidence on the costs and cost-effectiveness of interventions for controlling P. vivax, identifying nine studies focused on diagnosis and treatment and seven studies focused on vector control. Although many of the results from the much more extensive P. falciparum literature can be applied to P. vivax, it is not always possible to extrapolate results from P. falciparum–specific cost-effectiveness analyses. Notably, there is a need for additional studies to evaluate the potential cost-effectiveness of radical cure with primaquine for the prevention of P. vivax relapses with glucose-6-phosphate dehydrogenase testing. PMID:28025283

  10. Space-time variability of citrus leprosis as strategic planning for crop management.

    PubMed

    Andrade, Daniel J; Lorençon, José R; Siqueira, Diego S; Novelli, Valdenice M; Bassanezi, Renato B

    2018-01-31

    Citrus leprosis is the most important viral disease of citrus. Knowledge of its spatiotemporal structure is fundamental to a representative sampling plan focused on the disease control approach. Such a well-crafted sampling design helps to reduce pesticide use in agriculture to control pests and diseases. Despite the use of acaricides to control citrus leprosis vector (Brevipalpus spp.) populations, the disease has spread rapidly through experimental areas. Citrus leprosis has an aggregate spatial distribution, with high dependence among symptomatic plants. Temporal variation in disease incidence increased among symptomatic plants by 4% per month. Use of acaricides alone to control the vector of leprosis is insufficient to avoid its incidence in healthy plants. Preliminary investigation into the time and space variation in the incidence of the disease is fundamental to select a sampling plan and determine effective strategies for disease management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  11. Cost-effectiveness of environmental management for vector control in resource development projects.

    PubMed

    Bos, R

    1991-01-01

    Vector control methods are traditionally divided in chemical, biological and environmental management approaches, and this distinction also reflected in certain financial and economic aspects. This is particularly true for environmental modification, usually engineering or other structural works. It is highly capital intensive, as opposed to chemical and biological control which require recurrent expenditures, and discount rates are therefore a prominent consideration in deciding for one or the other approach. Environmental manipulation requires recurrent action, but can often be carried out with the community participation, which raises the issue of opportunity costs. The incorporation of environmental management in resource projects is generally impeded by economic considerations. The Internal Rate of Return continues to be a crucial criterion for funding agencies and development banks to support new projects; at the same time Governments of debt-riden countries in the Third World will do their best to avoid additional loans on such frills as environmental and health safeguards. Two approaches can be recommended to nevertheless ensure the incorporation of environmental management measures in resource projects in an affordable way. First, there are several examples of cases where environmental management measures either have a dual benefit (increasing both agricultural production and reducing vector-borne disease transmission) or can be implemented at zero costs. Second, the additional costs involved in structural modifications can be separated from the project development costs considered in the calculations of the Internal Rate of Return, and financial support can be sought from bilateral technical cooperation agencies particularly interested in environmental and health issues. There is a dearth of information in the cost-effectiveness of alternative vector control strategies in the developing country context. The process of integrating vector control in the general health services will make it even more difficult to gain a clear insight in the matter.

  12. Virus immobilization on biomaterial scaffolds through biotin-avidin interaction for improving bone regeneration.

    PubMed

    Hu, Wei-Wen; Wang, Zhuo; Krebsbach, Paul H

    2016-02-01

    To spatially control therapeutic gene delivery for potential tissue engineering applications, a biotin-avidin interaction strategy was applied to immobilize viral vectors on biomaterial scaffolds. Both adenoviral vectors and gelatin sponges were biotinylated and avidin was applied to link them in a virus-biotin-avidin-biotin-material (VBABM) arrangement. The tethered viral particles were stably maintained within scaffolds and SEM images illustrated that viral particles were evenly distributed in three-dimensional (3D) gelatin sponges. An in vivo study demonstrated that transgene expression was restricted to the implant sites only and transduction efficiency was improved using this conjugation method. For an orthotopic bone regeneration model, adenovirus encoding BMP-2 (AdBMP2) was immobilized to gelatin sponges before implanting into critical-sized bone defects in rat calvaria. Compared to gelatin sponges with AdBMP2 loaded in a freely suspended form, the VBABM method enhanced gene transfer and bone regeneration was significantly improved. These results suggest that biotin-avidin immobilization of viral vectors to biomaterial scaffolds may be an effective strategy to facilitate tissue regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Efficiency Evaluation of Nozawa-Style Black Light Trap for Control of Anopheline Mosquitoes

    PubMed Central

    Lee, Hee Il; Seo, Bo Youl; Shin, E-Hyun; Burkett, Douglas A.; Lee, Jong-Koo

    2009-01-01

    House-residual spraying and insecticide-treated bed nets have achieved some success in controlling anthropophilic and endophagic vectors. However, these methods have relatively low efficacy in Korea because Anopheles sinensis, the primary malaria vector, is highly zoophilic and exophilic. So, we focused our vector control efforts within livestock enclosures using ultraviolet black light traps as a mechanical control measure. We found that black light traps captured significantly more mosquitoes at 2 and 2.5 m above the ground (P < 0.05). We also evaluated the effectiveness of trap spacing within the livestock enclosure. In general, traps spaced between 4 and 7 m apart captured mosquitoes more efficiently than those spaced closer together (P > 0.05). Based on these findings, we concluded that each black light trap in the livestock enclosures killed 7,586 female mosquitoes per trap per night during the peak mosquito season (July-August). In May-August 2003, additional concurrent field trials were conducted in Ganghwa county. We got 74.9% reduction (P < 0.05) of An. sinensis in human dwellings and 61.5% reduction (P > 0.05) in the livestock enclosures. The black light trap operation in the livestock enclosures proved to be an effective control method and should be incorporated into existing control strategies in developed countries. PMID:19488423

  14. Schistosomiasis Elimination Strategies and Potential Role of a Vaccine in Achieving Global Health Goals

    PubMed Central

    Mo, Annie X.; Agosti, Jan M.; Walson, Judd L.; Hall, B. Fenton; Gordon, Lance

    2014-01-01

    In March 2013, the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation co-sponsored a meeting entitled “Schistosomiasis Elimination Strategy and Potential Role of a Vaccine in Achieving Global Health Goals” to discuss the potential role of schistosomiasis vaccines and other tools in the context of schistosomiasis control and elimination strategies. It was concluded that although schistosomiasis elimination in some focal areas may be achievable through current mass drug administration programs, global control and elimination will face several significant scientific and operational challenges, and will require an integrated approach with other, additional interventions. These challenges include vector (snail) control; environmental modification; water, sanitation, and hygiene; and other future innovative tools such as vaccines. Defining a clear product development plan that reflects a vaccine strategy as complementary to the existing control programs to combat different forms of schistosomiasis will be important to develop a vaccine effectively. PMID:24402703

  15. Adenoviral Vector Immunity: Its Implications and circumvention strategies

    PubMed Central

    Ahi, Yadvinder S.; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Adenoviral (Ad) vectors have emerged as a promising gene delivery platform for a variety of therapeutic and vaccine purposes during last two decades. However, the presence of preexisting Ad immunity and the rapid development of Ad vector immunity still pose significant challenges to the clinical use of these vectors. Innate inflammatory response following Ad vector administration may lead to systemic toxicity, drastically limit vector transduction efficiency and significantly abbreviate the duration of transgene expression. Currently, a number of approaches are being extensively pursued to overcome these drawbacks by strategies that target either the host or the Ad vector. In addition, significant progress has been made in the development of novel Ad vectors based on less prevalent human Ad serotypes and nonhuman Ad. This review provides an update on our current understanding of immune responses to Ad vectors and delineates various approaches for eluding Ad vector immunity. Approaches targeting the host and those targeting the vector are discussed in light of their promises and limitations. PMID:21453277

  16. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases.

    PubMed

    Abd-Ella, Aly; Stankiewicz, Maria; Mikulska, Karolina; Nowak, Wieslaw; Pennetier, Cédric; Goulu, Mathilde; Fruchart-Gaillard, Carole; Licznar, Patricia; Apaire-Marchais, Véronique; List, Olivier; Corbel, Vincent; Servent, Denis; Lapied, Bruno

    2015-01-01

    Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes.

  17. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases

    PubMed Central

    Abd-Ella, Aly; Stankiewicz, Maria; Mikulska, Karolina; Nowak, Wieslaw; Pennetier, Cédric; Goulu, Mathilde; Fruchart-Gaillard, Carole; Licznar, Patricia; Apaire-Marchais, Véronique; List, Olivier; Corbel, Vincent; Servent, Denis; Lapied, Bruno

    2015-01-01

    Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes. PMID:25961834

  18. Epidemiological trends and risk factors associated with dengue disease in Pakistan (1980-2014): a systematic literature search and analysis.

    PubMed

    Khan, Jehangir; Khan, Inamullah; Ghaffar, Abdul; Khalid, Bushra

    2018-06-15

    Dengue is becoming more common in Pakistan with its alarming spreading rate. A historical review needs to be carried out to find the root causes of dengue dynamics, the factors responsible for its spread and lastly to formulate future strategies for its control. We searched (January, 2015) all the published literature between 1980 and 2014 to determine spread/burden of dengue disease in Pakistan. A total of 81 reports were identified, showing high numbers of dengue cases in 2010, 2011, and 2013. The tendency of dengue to occur in younger than in older age groups was evident throughout the survey period and all four serotypes were recorded, with DENV1 the least common. Most dengue hemorrhagic fever (DHF) cases fell in the 20-45 years age range. High frequencies tended to be observed first in the Southern coastal region characterized by mild winters and humid warm summers and then the disease progressed towards the lowland areas of the Indus plain with cool winters, hot summers and monsoon rainfall. Based on this survey, new risk maps and infection estimates were identified reflecting public health burden imposed by dengue at the national level. Our study showed that dengue is common in the three provinces of Pakistan, i.e., Khyber Pakhtunkhwa (KP), Punjab and Sindh. Based on the literature review as well as on our study analysis the current expansion of dengue seems multifactorial and may include climate change, virus evolution, and societal factors such as rapid urbanization, population growth and development, socioeconomic factors, as well as global travel and trade. Due to inadequate remedial strategies, effective vector control measures are essential to target the dengue vector mosquito where high levels of human-vector contact occur. The known social, economic, and disease burden of dengue is alarming globally and it is evident that the wider impact of this disease is grossly underestimated. An international multi-sectoral response, outlined in the WHO Global Strategy for Dengue Prevention and Control, 2012-2020, is now essential to reduce the significant influence of this disease in Dengue endemic areas. Overall gaps were identified in knowledge around seroprevalence, dengue incidence, vector control, genotype evolution and age-stratified serotype circulation.

  19. Integrated Approach to Malaria Control

    PubMed Central

    Shiff, Clive

    2002-01-01

    Malaria draws global attention in a cyclic manner, with interest and associated financing waxing and waning according to political and humanitarian concerns. Currently we are on an upswing, which should be carefully developed. Malaria parasites have been eliminated from Europe and North America through the use of residual insecticides and manipulation of environmental and ecological characteristics; however, in many tropical and some temperate areas the incidence of disease is increasing dramatically. Much of this increase results from a breakdown of effective control methods developed and implemented in the 1960s, but it has also occurred because of a lack of trained scientists and control specialists who live and work in the areas of endemic infection. Add to this the widespread resistance to the most effective antimalarial drug, chloroquine, developing resistance to other first-line drugs such as sulfadoxine-pyrimethamine, and resistance of certain vector species of mosquito to some of the previously effective insecticides and we have a crisis situation. Vaccine research has proceeded for over 30 years, but as yet there is no effective product, although research continues in many promising areas. A global strategy for malaria control has been accepted, but there are critics who suggest that the single strategy cannot confront the wide range of conditions in which malaria exists and that reliance on chemotherapy without proper control of drug usage and diagnosis will select for drug resistant parasites, thus exacerbating the problem. An integrated approach to control using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, and human behavior patterns is needed to prevent continued upsurge in malaria in the endemic areas. PMID:11932233

  20. Insecticide susceptibility of Phlebotomus argentipes & assessment of vector control in two districts of West Bengal, India.

    PubMed

    Kumar, Vijay; Shankar, Lokesh; Kesari, Shreekant; Bhunia, Gouri Shankar; Dinesh, Diwakar Singh; Mandal, Rakesh; Das, Pradeep

    2015-08-01

    Kala-azar or visceral leishmanisis (VL) is known to be endemic in several States of India including West Bengal (WB). Only meager information is available on the vector dynamics of its vector species, Phlebotomus argentipes particularly in relation to control measure from this State. Hence, a pilot study was undertaken to assess the control strategy and its impact on vector in two endemic districts of WB, India. Two villages each from the two districts, Maldah and Burdwan, were selected for the study. Seasonal variation of sandflies was observed during pre-monsoon, post-monsoon and winter seasons. Susceptibility test of P. argentipes against DDT and bioassay on DDT sprayed wall and on long lasting insecticide nets (LN) Perma Net [®] 2.0 were conducted as per the WHO standard methods. P. argentipes density was high during March to October. Susceptibility status of P. argentipes ranged from 40 to 61.54 per cent. Bioassay test showed 57.89 per cent mortality against LN PermaNet [®] -2.0. and 50 per cent against DDT on wall within 30 min of exposure. Despite the integrated vector management approach, the sandfly population was high in the study area. The reason could be development of resistance in P. argentipes against DDT and low effectiveness of LN PermaNet [®] -2.0. The more pragmatic step will be to conduct large studies to monitor the susceptibility level in P. argentipes against DDT.

  1. Framework for rapid assessment and adoption of new vector control tools.

    PubMed

    Vontas, John; Moore, Sarah; Kleinschmidt, Immo; Ranson, Hilary; Lindsay, Steve; Lengeler, Christian; Hamon, Nicholas; McLean, Tom; Hemingway, Janet

    2014-04-01

    Evidence-informed health policy making is reliant on systematic access to, and appraisal of, the best available research evidence. This review suggests a strategy to improve the speed at which evidence is gathered on new vector control tools (VCTs) using a framework based on measurements of the vectorial capacity of an insect population to transmit disease. We explore links between indicators of VCT efficacy measurable in small-scale experiments that are relevant to entomological and epidemiological parameters measurable only in large-scale proof-of-concept randomised control trials (RCTs). We hypothesise that once RCTs establish links between entomological and epidemiological indicators then rapid evaluation of new products within the same product category may be conducted through smaller scale experiments without repetition of lengthy and expensive RCTs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  3. Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy

    PubMed Central

    Negro-Demontel, María Luciana; Saccardo, Paolo; Giacomini, Cecilia; Yáñez-Muñoz, Rafael Joaquín; Ferrer-Miralles, Neus; Vazquez, Esther; Villaverde, Antonio; Peluffo, Hugo

    2014-01-01

    Traumatic brain injury (TBI) remains as one of the leading causes of mortality and morbidity worldwide and there are no effective treatments currently available. Gene therapy applications have emerged as important alternatives for the treatment of diverse nervous system injuries. New strategies are evolving with the notion that each particular pathological condition may require a specific vector. Moreover, the lack of detailed comparative studies between different vectors under similar conditions hampers the selection of an ideal vector for a given pathological condition. The potential use of lentiviral vectors versus several modular protein-based nanovectors was compared using a controlled cortical impact model of TBI under the same gene therapy conditions. We show that variables such as protein/DNA ratio, incubation volume, and presence of serum or chloroquine in the transfection medium impact on both nanovector formation and transfection efficiency in vitro. While lentiviral vectors showed GFP protein 1 day after TBI and increased expression at 14 days, nanovectors showed stable and lower GFP transgene expression from 1 to 14 days. No toxicity after TBI by any of the vectors was observed as determined by resulting levels of IL-1β or using neurological sticky tape test. In fact, both vector types induced functional improvement per se. PMID:26015985

  4. Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens

    PubMed Central

    Abd-Alla, Adly M.M.; Bergoin, Max; Parker, Andrew G.; Maniania, Nguya K.; Vlak, Just M.; Bourtzis, Kostas; Boucias, Drion G.; Aksoy, Serap

    2013-01-01

    Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a six year Coordinated Research Project (CRP) entitled “Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens”. The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue. PMID:22841636

  5. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study

    PubMed Central

    2014-01-01

    Background Dengue is an increasingly important public health problem in most Latin American countries and more cost-effective ways of reducing dengue vector densities to prevent transmission are in demand by vector control programs. This multi-centre study attempted to identify key factors associated with vector breeding and development as a basis for improving targeted intervention strategies. Methods In each of 5 participant cities in Mexico, Colombia, Ecuador, Brazil and Uruguay, 20 clusters were randomly selected by grid sampling to incorporate 100 contiguous households, non-residential private buildings (businesses) and public spaces. Standardized household surveys, cluster background surveys and entomological surveys specifically targeted to obtain pupal indices for Aedes aegypti, were conducted in the dry and wet seasons. Results The study clusters included mainly urban low-middle class populations with satisfactory infrastructure and –except for Uruguay- favourable climatic conditions for dengue vector development. Household knowledge about dengue and “dengue mosquitoes” was widespread, mainly through mass media, but there was less awareness around interventions to reduce vector densities. Vector production (measured through pupal indices) was favoured when water containers were outdoor, uncovered, unused (even in Colombia and Ecuador where the large tanks used for household water storage and washing were predominantly productive) and –particularly during the dry season- rainwater filled. Larval infestation did not reflect productive container types. All productive container types, including those important in the dry season, were identified by pupal surveys executed during the rainy season. Conclusions A number of findings are relevant for improving vector control: 1) there is a need for complementing larval surveys with occasional pupal surveys (to be conducted during the wet season) for identifying and subsequently targeting productive container types; 2) the need to raise public awareness about useful and effective interventions in productive container types specific to their area; and 3) the motivation for control services that-according to this and similar studies in Asia- dedicated, targeted vector management can make a difference in terms of reducing vector abundance. PMID:24447796

  6. Microgeographic Genetic Variation of the Malaria Vector Anopheles darlingi Root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia

    PubMed Central

    Gutiérrez, Lina A.; Gómez, Giovan F.; González, John J.; Castro, Martha I.; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2010-01-01

    Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia. PMID:20595475

  7. Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control.

    PubMed

    Mitchell, Sara N; Catteruccia, Flaminia

    2017-12-01

    Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Network-level reproduction number and extinction threshold for vector-borne diseases.

    PubMed

    Xue, Ling; Scoglio, Caterina

    2015-06-01

    The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.

  9. [Malaria in the Republic of Djibouti. Strategy for control using a biological antilarval campaign: indigenous larvivorous fishes (Aphanius dispar) and bacterial toxins].

    PubMed

    Louis, J P; Albert, J P

    1988-01-01

    The authors take stock of the present situation of malaria in the Republic of Djibouti which, after several decades of silence, seems to have been reintroduced at the beginning of the seventies. Actually it is hypo-endemic malaria with Plasmodium falciparum of which the only vector seems to be Anopheles arabiensis, gambiae complex. The specificity of the larvae nests allows a control strategy based on the only treatment of larvae sites by biological control: larvivorous fishes (Aphanius Dispar) and in addition the pin-point use of bacterial toxins as a complementary measure. The first results obtained in the rural zones around the capital are encouraging and permit to envisage the extensions of such a strategy to the whole of the territory of the Republic.

  10. RNA-seq de novo Assembly Reveals Differential Gene Expression in Glossina palpalis gambiensis Infected with Trypanosoma brucei gambiense vs. Non-Infected and Self-Cured Flies

    PubMed Central

    Hamidou Soumana, Illiassou; Klopp, Christophe; Ravel, Sophie; Nabihoudine, Ibouniyamine; Tchicaya, Bernadette; Parrinello, Hugues; Abate, Luc; Rialle, Stéphanie; Geiger, Anne

    2015-01-01

    Trypanosoma brucei gambiense (Tbg), causing the sleeping sickness chronic form, completes its developmental cycle within the tsetse fly vector Glossina palpalis gambiensis (Gpg) before its transmission to humans. Within the framework of an anti-vector disease control strategy, a global gene expression profiling of trypanosome infected (susceptible), non-infected, and self-cured (refractory) tsetse flies was performed, on their midguts, to determine differential genes expression resulting from in vivo trypanosomes, tsetse flies (and their microbiome) interactions. An RNAseq de novo assembly was achieved. The assembled transcripts were mapped to reference sequences for functional annotation. Twenty-four percent of the 16,936 contigs could not be annotated, possibly representing untranslated mRNA regions, or Gpg- or Tbg-specific ORFs. The remaining contigs were classified into 65 functional groups. Only a few transposable elements were present in the Gpg midgut transcriptome, which may represent active transpositions and play regulatory roles. One thousand three hundred and seventy three genes differentially expressed (DEGs) between stimulated and non-stimulated flies were identified at day-3 post-feeding; 52 and 1025 between infected and self-cured flies at 10 and 20 days post-feeding, respectively. The possible roles of several DEGs regarding fly susceptibility and refractoriness are discussed. The results provide new means to decipher fly infection mechanisms, crucial to develop anti-vector control strategies. PMID:26617594

  11. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially by changing host community structure to favor hosts that are short-lived with high reproductive rates. Study results apply to potential environmental management strategies for Chagas disease. PMID:23166846

  12. Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers.

    PubMed

    Nmor, Jephtha C; Sunahara, Toshihiko; Goto, Kensuke; Futami, Kyoko; Sonye, George; Akweywa, Peter; Dida, Gabriel; Minakawa, Noboru

    2013-01-16

    Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The predictability of habitat types varied. Drains, foot-prints, puddles and swamp habitat types were most predictable. Both SRTM and ASTER models had similar predictive potentials, which were sufficiently accurate to predict vector habitats. The free availability of these DEMs suggests that topographic predictive models could be widely used by vector control managers in Africa to complement malaria control strategies.

  13. Malaria entomological profile in Tanzania from 1950 to 2010: a review of mosquito distribution, vectorial capacity and insecticide resistance.

    PubMed

    Kabula, Bilali; Derua, Yahya A; Tungui, Patrick; Massue, Dennis J; Sambu, Edward; Stanley, Grades; Mosha, Franklin W; Kisinza, William N

    2011-12-01

    In Sub Saharan Africa where most of the malaria cases and deaths occur, members of the Anopheles gambiae species complex and Anophelesfunestus species group are the important malaria vectors. Control efforts against these vectors in Tanzania like in most other Sub Saharan countries have failed to achieve the set objectives of eliminating transmission due to scarcity of information about the enormous diversity of Anopheles mosquito species and their susceptibility status to insecticides used for malaria vector control. Understanding the diversity and insecticide susceptibility status of these vectors and other factors relating to their importance as vectors (such as malaria transmission dynamics, vector biology, ecology, behaviour and population genetics) is crucial to developing a better and sound intervention strategies that will reduce man-vector contact and also manage the emergency of insecticide resistance early and hence .a success in malaria control. The objective of this review was therefore to obtain the information from published and unpublished documents on spatial distribution and composition of malaria vectors, key features of their behaviour, transmission indices and susceptibility status to insecticides in Tanzania. All data available were collated into a database. Details recorded for each data source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, species identification methods, insecticide resistance status, including evidence of the kdr allele, and Plasmodium falciparum sporozoite rate. This collation resulted in a total of 368 publications, encompassing 806,273 Anopheles mosquitoes from 157 georeferenced locations being collected and identified across Tanzania from 1950s to 2010. Overall, the vector species most often reported included An. gambiae complex (66.8%), An. funestus complex (21.8%), An. gambiae s.s. (2.1%) and An. arabiensis (9%). A variety of sampling/ collection and species identification methods were used with an increase in molecular techniques in recent decades. Only 32.2% and 8.4% of the data sets reported on sporozoite analysis and entomological inoculation rate (EIR), respectively which highlights the paucity of such important information in the country. Studies demonstrated efficacy of all four major classes of insecticides against malaria vectors in Tanzania with focal points showing phenotypic resistance. About 95% of malaria entomological data was obtained from northeastern Tanzania. This shows the disproportionate nature of the available information with the western part of the country having none. Therefore it is important for the country to establish entomological surveillance system with state of the art to capture all vitally important entomological indices including vector bionomics in areas of Tanzania where very few or no studies have been done. This is vital in planning and implementing evidence based malaria vector control programmes as well as in monitoring the current malaria control interventions.

  14. Determining the efficacy of guppies and pyriproxyfen (Sumilarv® 2MR) combined with community engagement on dengue vectors in Cambodia: study protocol for a randomized controlled trial.

    PubMed

    Hustedt, John; Doum, Dyna; Keo, Vanney; Ly, Sokha; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Prasetyo, Didot Budi; Rachmat, Agus; Muhammad, Shafique; Lopes, Sergio; Leang, Rithea; Hii, Jeffrey

    2017-08-04

    Evidence on the effectiveness of low-cost, sustainable, biological vector-control tools for the Aedes mosquitoes is limited. Therefore, the purpose of this trial is to estimate the impact of guppy fish (guppies), in combination with the use of the larvicide pyriproxyfen (Sumilarv® 2MR), and Communication for Behavioral Impact (COMBI) activities to reduce entomological indices in Cambodia. In this cluster randomized controlled, superiority trial, 30 clusters comprising one or more villages each (with approximately 170 households) will be allocated, in a 1:1:1 ratio, to receive either (1) three interventions (guppies, Sumilarv® 2MR, and COMBI activities), (2) two interventions (guppies and COMBI activities), or (3) control (standard vector control). Households will be invited to participate, and entomology surveys among 40 randomly selected households per cluster will be carried out quarterly. The primary outcome will be the population density of adult female Aedes mosquitoes (i.e., number per house) trapped using adult resting collections. Secondary outcome measures will include the House Index, Container Index, Breteau Index, Pupae Per House, Pupae Per Person, mosquito infection rate, guppy fish coverage, Sumilarv® 2MR coverage, and percentage of respondents with knowledge about Aedes mosquitoes causing dengue. In the primary analysis, adult female Aedes density and mosquito infection rates will be aggregated over follow-up time points to give a single rate per cluster. This will be analyzed by negative binomial regression, yielding density ratios. This trial is expected to provide robust estimates of the intervention effect. A rigorous evaluation of these vector-control interventions is vital to developing an evidence-based dengue control strategy and to help direct government resources. Current Controlled Trials, ID: ISRCTN85307778 . Registered on 25 October 2015.

  15. Vector population manipulation for control of arboviruses--a novel prospect for India.

    PubMed

    Niranjan Reddy, Bp; Gupta, Bhavna; Rao, B Prasad

    2014-04-01

    India, the seventh largest country in the world, has diverse geographical and climatic regions with vast rural and peri-urban areas. Many are experiencing an escalation in the spread and intensity of numerous human diseases transmitted by insects. Classically, the management of these vector-borne diseases is underpinned by either chemical insecticides and/or environmental management targeted at the vector. However, these methods or their present implementation do not offer acceptable levels of control, and more effective and sustainable options are now available. Genetic strategies for the prevention of arbovirus transmission are most advanced for dengue and chikungunya, targeting their primary vector, Aedes aegypti. The national burden in terms of morbidity and mortality as a direct consequence of dengue virus in India is considered to be the largest worldwide, over 4 times that of any other country. Presently, new genetic technologies are undergoing field evaluation of their biosafety and efficacy in several countries. This paper discusses the merits of these approaches and argues for fair and transparent appraisal in India as a matter of urgency. Identification of any associated risks and their appropriate mitigation are fundamental to that process. © 2013 Society of Chemical Industry.

  16. Determinants of Health Service Responsiveness in Community-Based Vector Surveillance for Chagas Disease in Guatemala, El Salvador, and Honduras

    PubMed Central

    Hashimoto, Ken; Zúniga, Concepción; Romero, Eduardo; Morales, Zoraida; Maguire, James H.

    2015-01-01

    Background Central American countries face a major challenge in the control of Triatoma dimidiata, a widespread vector of Chagas disease that cannot be eliminated. The key to maintaining the risk of transmission of Trypanosoma cruzi at lowest levels is to sustain surveillance throughout endemic areas. Guatemala, El Salvador, and Honduras integrated community-based vector surveillance into local health systems. Community participation was effective in detection of the vector, but some health services had difficulty sustaining their response to reports of vectors from the population. To date, no research has investigated how best to maintain and reinforce health service responsiveness, especially in resource-limited settings. Methodology/Principal Findings We reviewed surveillance and response records of 12 health centers in Guatemala, El Salvador, and Honduras from 2008 to 2012 and analyzed the data in relation to the volume of reports of vector infestation, local geography, demography, human resources, managerial approach, and results of interviews with health workers. Health service responsiveness was defined as the percentage of households that reported vector infestation for which the local health service provided indoor residual spraying of insecticide or educational advice. Eight potential determinants of responsiveness were evaluated by linear and mixed-effects multi-linear regression. Health service responsiveness (overall 77.4%) was significantly associated with quarterly monitoring by departmental health offices. Other potential determinants of responsiveness were not found to be significant, partly because of short- and long-term strategies, such as temporary adjustments in manpower and redistribution of tasks among local participants in the effort. Conclusions/Significance Consistent monitoring within the local health system contributes to sustainability of health service responsiveness in community-based vector surveillance of Chagas disease. Even with limited resources, countries can improve health service responsiveness with thoughtful strategies and management practices in the local health systems. PMID:26252767

  17. Coffee, its roasted form, and their residues cause birth failure and shorten lifespan in dengue vectors.

    PubMed

    Dieng, Hamady; Ellias, Salbiah Binti; Satho, Tomomitsu; Ahmad, Abu Hassan; Abang, Fatimah; Ghani, Idris Abd; Noor, Sabina; Ahmad, Hamdan; Zuharah, Wan Fatma; Morales Vargas, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Attrapadung, Siriluck; Noweg, Gabriel Tonga

    2017-06-01

    In dengue mosquitoes, successful embryonic development and long lifespan are key determinants for the persistence of both virus and vector. Therefore, targeting the egg stage and vector lifespan would be expected to have greater impacts than larvicides or adulticides, both strategies that have lost effectiveness due to the development of resistance. Therefore, there is now a pressing need to find novel chemical means of vector control. Coffee contains many chemicals, and its waste, which has become a growing environmental concern, is as rich in toxicants as the green coffee beans; these chemicals do not have a history of resistance in insects, but some are lost in the roasting process. We examined whether exposure to coffee during embryonic development could alter larval eclosion and lifespan of dengue vectors. A series of bioassays with different coffee forms and their residues indicated that larval eclosion responses of Aedes albopictus and Ae. aegypti were appreciably lower when embryonic maturation occurred in environments containing coffee, especially roasted coffee crude extract (RCC). In addition, the lifespan of adults derived from eggs that hatched successfully in a coffee milieu was reduced, but this effect was less pronounced with roasted and green coffee extracts (RCU and GCU, respectively). Taken together, these findings suggested that coffee and its residues have embryocidal activities with impacts that are carried over onto the adult lifespan of dengue vectors. These effects may significantly reduce the vectorial capacity of these insects. Reutilizing coffee waste in vector control may also represent a realistic solution to the issues associated with its pollution.

  18. Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: the vector Lutzomyia sand flies and reservoir mammals.

    PubMed

    Hashiguchi, Yoshihisa; Gomez L, Eduardo A; Cáceres, Abraham G; Velez, Lenin N; Villegas, Nancy V; Hashiguchi, Kazue; Mimori, Tatsuyuki; Uezato, Hiroshi; Kato, Hirotomo

    2018-02-01

    The vector Lutzomyia sand flies and reservoir host mammals of the Leishmania parasites, causing the Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador were thoroughly reviewed, performing a survey of literatures including our unpublished data. The Peruvian L. (V.) peruviana, a principal Leishmania species causing Andean-CL in Peru, possessed three Lutzomyia species, Lu. peruensis, Lu. verrucarum and Lu. ayacuchensis as vectors, while the Ecuadorian L. (L.) mexicana parasite possessed only one species Lu. ayacuchensis as the vector. Among these, the Ecuadorian showed a markedly higher rate of natural Leishmania infections. However, the monthly and diurnal biting activities were mostly similar among these vector species was in both countries, and the higher rates of infection (transmission) reported, corresponded to sand fly's higher monthly-activity season (rainy season). The Lu. tejadai sand fly participated as a vector of a hybrid parasite of L. (V.) braziliensis/L. (V.) peruviana in the Peruvian Andes. Dogs were considered to be principal reservoir hosts of the L. (V.) peruviana and L. (L.) mexicana parasites in both countries, followed by other sylvatic mammals such as Phyllotis andium, Didelphis albiventris and Akodon sp. in Peru, and Rattus rattus in Ecuador, but information on the reservoir hosts/mammals was extremely poor in both countries. Thus, the Peruvian disease form demonstrated more complicated transmission dynamics than the Ecuadorian. A brief review was also given to the control of vector and reservoirs in the Andes areas. Such information is crucial for future development of the control strategies of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Design and application of electromechanical actuators for deep space missions

    NASA Technical Reports Server (NTRS)

    Haskew, Tim A.; Wander, John

    1993-01-01

    The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.

  20. Current procedures of the integrated urban vector-mosquito control as an example in Cotonou (Benin, West Africa) and Wrocław area (Poland).

    PubMed

    Rydzanicz, Katarzyna; Lonc, Elzbieta; Becker, Norbert

    2009-01-01

    Current strategy of Integrated Vector Management (IVM) comprises the general approach of environmentally friendly control measures. With regard to mosquitoes it includes first of all application of microbial insecticides based on Bacillus thuringiensis israelensis (Bti) and B. sphaericus (Bs) delta-endotoxins as well as the reduction of breeding habitats and natural enemy augmentation. It can be achieved thorough implementation of the interdisciplinary program, i. e., understanding of mosquito vector ecology, the appropriate vector-diseases (e. g., malariometric) measurements and training of local personnel responsible for mosquito abatement activities, as well as community involvement. Biocontrol methods as an alternative to chemical insecticides result from the sustainability development concept, growing awareness of environmental pollution and the development of insecticide-resistant strains of vector-mosquito populations in many parts of the world. Although sustainable trends are usually considered in terms of the monetary and training resources within countries, environmental concerns are actually more limiting factors for the duration of an otherwise successful vector control effort. In order to meet these new needs, increasing efforts have been made in search of and application of natural enemies, such as parasites, bacterial pathogens and predators which may control populations of insect vectors. The biological control agent based on the bacterial toxins Bti and Bs has been used in the Wrocław's University and Municipal Mosquito Control Programs since 1998. In West-Africa biocontrol appears to be an effective and safe tool to combat malaria in addition to bed-nets, residual indoor spraying and appropriate diagnosis and treatment of malaria parasites which are the major tools in the WHO Roll Back Malaria Program. IVM studies carried out 2005-2008 in Cotonou (Benin) as well those in Wrocław Irrigated Fields during the last years include the following major steps: 1. Mapping of all breeding sites in the project area and recording data in a geographical information system (GIS/relational database). All districts, streets and houses are numbered for quick reference during the operation; 2. Studying mosquito vector bionomics, migration and vectorial capacity in the project area, before, during and after the routine Bti treatments; 3. Assessment of the optimum for effective larvicide insecticide dosages at major breeding sites against the different target mosquito species; 4. Implementation of the microbial control agents in the integrated routine program. Adaptation of the application equipment to the local situation, training of the field staff, and routine treatments; 5. Conducting surveillance of vector-disease (e. g., malariometric) parameters in the control and experimental area before, during, and after the application of biocontrol agents.

  1. Genetically Modifying the Insect Gut Microbiota to Control Chagas Disease Vectors through Systemic RNAi

    PubMed Central

    Taracena, Mabel L.; Oliveira, Pedro L.; Almendares, Olivia; Umaña, Claudia; Lowenberger, Carl; Dotson, Ellen M.; Paiva-Silva, Gabriela O.; Pennington, Pamela M.

    2015-01-01

    Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control. PMID:25675102

  2. N-player stochastic differential games

    NASA Technical Reports Server (NTRS)

    Varaiya, P.

    1976-01-01

    The paper presents conditions which guarantee that the control strategies adopted by N players constitute an efficient solution, an equilibrium, or a core solution. The system dynamics are described by an Ito equation, and all players have perfect information. When the set of instantaneous joint costs and velocity vectors is convex, the conditions are necessary.

  3. Evaluation of a peridomestic mosquito trap for integration into an Aedes aegypti (Diptera: Culicidae) push-pull control strategy.

    PubMed

    Salazar, Ferdinand V; Achee, Nicole L; Grieco, John P; Prabaripai, Atchariya; Eisen, Lars; Shah, Pankhil; Chareonviriyaphap, Theeraphap

    2012-06-01

    We determined the feasibility of using the BG-Sentinel™ mosquito trap (BGS) as the pull component in a push-pull strategy to reduce indoor biting by Aedes aegypti. This included evaluating varying numbers of traps (1-4) and mosquito release numbers (10, 25, 50, 100, 150, 200, and 250) on recapture rates under screen house conditions. Based on these variations in trap and mosquito numbers, release intervals were rotated through a completely randomized design with environmental factors (temperature, relative humidity, and light intensity) and monitored throughout each experiment. Data from four sampling time points (05:30, 09:30, 13:30, and 17:30) indicate a recapture range among treatments of 66-98%. Furthermore, 2-3 traps were as effective in recapturing mosquitoes as 4 traps for all mosquito release numbers. Time trends indicate Day 1 (the day the mosquitoes were released) as the "impact period" for recapture with peak numbers of marked mosquitoes collected at 09:30 or 4 h post-release. Information from this study will be used to guide the configuration of the BGS trap component of a push-pull vector control strategy currently in the proof-of-concept stage of development in Thailand and Peru. © 2012 The Society for Vector Ecology.

  4. Initial Assessment of the Acceptability of a Push-Pull Aedes aegypti Control Strategy in Iquitos, Peru and Kanchanaburi, Thailand

    PubMed Central

    Paz-Soldan, Valerie A.; Plasai, Valaikanya; Morrison, Amy C.; Rios-Lopez, Esther J.; Guedez-Gonzales, Shirly; Grieco, John P.; Mundal, Kirk; Chareonviriyaphap, Theeraphap; Achee, Nicole L.

    2011-01-01

    As part of a larger research program evaluating chemical threshold levels for a Push-Pull intervention to reduce man-vector (Aedes aegypti) contact, this qualitative study explored local perceptions and strategies associated with mosquito control within dengue-endemic communities in Peru and Thailand. Focus groups were used to provide preliminary information that would identify possible public acceptance issues to the Push-Pull strategy in each site. Nine focus group discussions (total of 102 individuals) conducted between September 2008 and March 2009 examined several themes: 1) current mosquito control practices; 2) perceptions of spatial repellency and contact irritancy versus killing mosquitoes; and 3) initial perceptions toward mosquito host-seeking traps. Results indicate participants use household-level strategies for insect control that reveal familiarity with the concept of spatial repellent and contact irritant actions of chemicals and that placing traps in the peridomestic environment to remove repelled mosquitoes was acceptable. Preliminary evidence suggests a Push-Pull strategy should be well accepted in these locations. These results will be beneficial for developing future large scale push-pull interventions and are currently being used to guide insecticide application strategies in (entomological) proof-of-concept studies using experimental huts. PMID:21292886

  5. The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti

    PubMed Central

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-01-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  6. Development of a community-based intervention for the control of Chagas disease based on peridomestic animal management: an eco-bio-social perspective

    PubMed Central

    De Urioste-Stone, Sandra M.; Pennington, Pamela M.; Pellecer, Elizabeth; Aguilar, Teresa M.; Samayoa, Gabriela; Perdomo, Hugo D.; Enríquez, Hugo; Juárez, José G.

    2015-01-01

    Background Integrated vector management strategies depend on local eco-bio-social conditions, community participation, political will and inter-sectorial partnership. Previously identified risk factors for persistent Triatoma dimidiata infestation include the presence of rodents and chickens, tiled roofs, dirt floors, partial wall plastering and dog density. Methods A community-based intervention was developed and implemented based on cyclical stakeholder and situational analyses. Intervention implementation and evaluation combined participatory action research and cluster randomized pre-test post-test experimental designs. The intervention included modified insecticide application, education regarding Chagas disease and risk factors, and participatory rodent control. Results At final evaluation there was no significant difference in post-test triatomine infestation between intervention and control, keeping pre-test rodent and triatomine infestations constant. Knowledge levels regarding Chagas disease and prevention practices including rodent control, chicken management and health service access increased significantly only in intervention communities. The odds of nymph infection and rat infestation were 8.3 and 1.9-fold higher in control compared to intervention communities, respectively. Conclusion Vector control measures without reservoir control are insufficient to reduce transmission risk in areas with persistent triatomine infestation. This integrated vector management program can complement house improvement initiatives by prioritizing households with risk factors such as tiled roofs. Requirement for active participation and multi-sectorial coordination poses implementation challenges. PMID:25604767

  7. Sensorless sliding mode observer for a five-phase permanent magnet synchronous motor drive.

    PubMed

    Hosseyni, Anissa; Trabelsi, Ramzi; Mimouni, Med Faouzi; Iqbal, Atif; Alammari, Rashid

    2015-09-01

    This paper deals with the sensorless vector controlled five-phase permanent magnet synchronous motor (PMSM) drive based on a sliding mode observer (SMO). The observer is designed considering the back electromotive force (EMF) of five-phase permanent magnet synchronous motor. The SMO structure and design are illustrated. Stability of the proposed observer is demonstrated using Lyapunov stability criteria. The proposed strategy is asymptotically stable in the context of Lyapunov theory. Simulated results on a five-phase PMSM drive are displayed to validate the feasibility and the effectiveness of the proposed control strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Knowledge, Attitude, and Practices Regarding Vector-borne Diseases in Western Jamaica.

    PubMed

    Alobuia, Wilson M; Missikpode, Celestin; Aung, Maung; Jolly, Pauline E

    2015-01-01

    Outbreaks of vector-borne diseases (VBDs) such as dengue and malaria can overwhelm health systems in resource-poor countries. Environmental management strategies that reduce or eliminate vector breeding sites combined with improved personal prevention strategies can help to significantly reduce transmission of these infections. The aim of this study was to assess the knowledge, attitudes, and practices (KAPs) of residents in western Jamaica regarding control of mosquito vectors and protection from mosquito bites. A cross-sectional study was conducted between May and August 2010 among patients or family members of patients waiting to be seen at hospitals in western Jamaica. Participants completed an interviewer-administered questionnaire on sociodemographic factors and KAPs regarding VBDs. KAP scores were calculated and categorized as high or low based on the number of correct or positive responses. Logistic regression analyses were conducted to identify predictors of KAP and linear regression analysis conducted to determine if knowledge and attitude scores predicted practice scores. In all, 361 (85 men and 276 women) people participated in the study. Most participants (87%) scored low on knowledge and practice items (78%). Conversely, 78% scored high on attitude items. By multivariate logistic regression, housewives were 82% less likely than laborers to have high attitude scores; homeowners were 65% less likely than renters to have high attitude scores. Participants from households with 1 to 2 children were 3.4 times more likely to have high attitude scores compared with those from households with no children. Participants from households with at least 5 people were 65% less likely than those from households with fewer than 5 people to have high practice scores. By multivariable linear regression knowledge and attitude scores were significant predictors of practice score. The study revealed poor knowledge of VBDs and poor prevention practices among participants. It identified specific groups that can be targeted with vector control and personal protection interventions to decrease transmission of the infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Helper-dependent adenoviral vectors for liver-directed gene therapy

    PubMed Central

    Brunetti-Pierri, Nicola; Ng, Philip

    2011-01-01

    Helper-dependent adenoviral (HDAd) vectors devoid of all viral-coding sequences are promising non-integrating vectors for liver-directed gene therapy because they have a large cloning capacity, can efficiently transduce a wide variety of cell types from various species independent of the cell cycle and can result in long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd for liver-directed gene therapy is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration resulting in acute toxicity, the severity of which is dependent on vector dose. Intense efforts have been focused on elucidating the factors involved in this acute response and various strategies have been investigated to improve the therapeutic index of HDAd vectors. These strategies have yielded encouraging results with the potential for clinical translation. PMID:21470977

  10. Current and future vaccines and vaccination strategies against infectious laryngotracheitis (ILT) respiratory disease of poultry.

    PubMed

    García, Maricarmen

    2017-07-01

    Infectious laryngotracheitis (ILT) is an economically important respiratory disease of poultry that affects the industry worldwide. Vaccination is the principal tool in the control of the disease. Two types of vaccines, live attenuated and recombinant viral vector, are commercially available. The first generation of GaHV-1 vaccines available since the early 1960's are live viruses, attenuated by continuous passages in cell culture or embryos. These vaccines significantly reduce mortalities and, in particular, the chicken embryo origin (CEO) vaccines have shown to limit outbreaks of the disease. However, the CEO vaccines can regain virulence and become the source of outbreaks. Recombinant viral vector vaccines, the second generation of GaHV-1 vaccines, were first introduced in the early 2000's. These are Fowl Pox virus (FPV) and Herpes virus of turkeys (HVT) vectors expressing one or multiple GaHV-1 immunogenic proteins. Recombinant viral vector vaccines are considered a much safer alternative because they do not regain virulence. In the face of challenge, they improve bird performance and ameliorate clinical signs of the disease but fail to reduce shedding of the challenge virus increasing the likelihood of outbreaks. At the moment, several new strategies are being evaluated to improve both live attenuated and viral vector vaccines. Potential new live vaccines attenuated by deletion of genes associated with virulence or by selection of CEO viral subpopulations that do not exhibit increased virulence upon passages in birds are being evaluated. Also new vector alternatives to express GaHV-1 glycoproteins in Newcastle diseases virus (NDV) or in modified very virulent (vv) serotype I Marek's disease virus (MDV) were developed and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential.

    PubMed

    Walker, K; Lynch, M

    2007-03-01

    Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.

  12. Exposure of a Dengue Vector to Tea and Its Waste: Survival, Developmental Consequences, and Significance for Pest Management.

    PubMed

    Dieng, Hamady; Tan Yusop, Nur Syafiqah Bt; Kamal, Nurafidah Natasyah Bt; Ahmad, Abu Hassan; Ghani, Idris Abd; Abang, Fatimah; Satho, Tomomitsu; Ahmad, Hamdan; Zuharah, Wan Fatma; Majid, Abdul Hafiz Ab; Morales, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Noweg, Gabriel Tonga

    2016-05-11

    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.

  13. Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2010-01-01

    Background Chagas disease is a major parasitic disease in Latin America, prevented in part by vector control programs that reduce domestic populations of triatomines. However, the design of control strategies adapted to non-domiciliated vectors, such as Triatoma dimidiata, remains a challenge because it requires an accurate description of their spatio-temporal distributions, and a proper understanding of the underlying dispersal processes. Methodology/Principal Findings We combined extensive spatio-temporal data sets describing house infestation dynamics by T. dimidiata within a village, and spatially explicit population dynamics models in a selection model approach. Several models were implemented to provide theoretical predictions under different hypotheses on the origin of the dispersers and their dispersal characteristics, which we compared with the spatio-temporal pattern of infestation observed in the field. The best models fitted the dynamic of infestation described by a one year time-series, and also predicted with a very good accuracy the infestation process observed during a second replicate one year time-series. The parameterized models gave key insights into the dispersal of these vectors. i) About 55% of the triatomines infesting houses came from the peridomestic habitat, the rest corresponding to immigration from the sylvatic habitat, ii) dispersing triatomines were 5–15 times more attracted by houses than by peridomestic area, and iii) the moving individuals spread on average over rather small distances, typically 40–60 m/15 days. Conclusion/Significance Since these dispersal characteristics are associated with much higher abundance of insects in the periphery of the village, we discuss the possibility that spatially targeted interventions allow for optimizing the efficacy of vector control activities within villages. Such optimization could prove very useful in the context of limited resources devoted to vector control. PMID:20689823

  14. Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells.

    PubMed

    Prill, Jan-Michael; Espenlaub, Sigrid; Samen, Ulrike; Engler, Tatjana; Schmidt, Erika; Vetrini, Francesco; Rosewell, Amanda; Grove, Nathan; Palmer, Donna; Ng, Philip; Kochanek, Stefan; Kreppel, Florian

    2011-01-01

    In vivo gene transfer with adenovirus vectors would significantly benefit from a tight control of the adenovirus-inherent liver tropism. For efficient hepatocyte transduction, adenovirus vectors need to evade from Kupffer cell scavenging while delivery to peripheral tissues or tumors could be improved if both scavenging by Kupffer cells and uptake by hepatocytes were blocked. Here, we provide evidence that a single point mutation in the hexon capsomere designed to enable defined chemical capsid modifications may permit both detargeting from and targeting to hepatocytes with evasion from Kupffer cell scavenging. Vector particles modified with small polyethylene glycol (PEG) moieties specifically on hexon exhibited decreased transduction of hepatocytes by shielding from blood coagulation factor binding. Vector particles modified with transferrin or, surprisingly, 5,000 Da PEG or dextran increased hepatocyte transduction up to 18-fold independent of the presence of Kupffer cells. We further show that our strategy can be used to target high-capacity adenovirus vectors to hepatocytes emphasizing the potential for therapeutic liver-directed gene transfer. Our approach may lead to a detailed understanding of the interactions between adenovirus vectors and Kupffer cells, one of the most important barriers for adenovirus-mediated gene delivery.

  15. Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector.

    PubMed

    Lobo, N F; Hua-Van, A; Li, X; Nolen, B M; Fraser, M J

    2002-04-01

    Mosquito-vectored diseases such as yellow fever and dengue fever continue to have a substantial impact on human populations world-wide. Novel strategies for control of these mosquito vectored diseases can arise through the development of reliable systems for genetic manipulation of the insect vector. A piggyBac vector marked with the Drosophila melanogaster cinnabar (cn) gene was used to transform the white-eyed khw strain of Aedes aegypti. Microinjection of preblastoderm embryos resulted in four families of cinnabar transformed insects. An overall transformation frequency of 4%, with a range of 0% to as high as 13% for individual experiments, was achieved when using a heat-shock induced transposase providing helper plasmid. Southern hybridizations indicated multiple insertion events in three of four transgenic lines, while the presence of duplicated target TTAA sites at either ends of individual insertions confirmed characteristic piggyBac transposition events in these three transgenic lines. The transgenic phenotype has remained stable for more than twenty generations. The transformations effected using the piggyBac element establish the potential of this element as a germ-line transformation vector for Aedine mosquitoes.

  16. A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus)

    PubMed Central

    Shafapour Tehrany, Mahyat; Solhjouy-fard, Samaneh; Kumar, Lalit

    2018-01-01

    Aedes albopictus, the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion. PMID:29576954

  17. A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus).

    PubMed

    Shabani, Farzin; Shafapour Tehrany, Mahyat; Solhjouy-Fard, Samaneh; Kumar, Lalit

    2018-01-01

    Aedes albopictus , the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus ? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion.

  18. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria parasites in hotspots or suspected areas established in most endemic GMS countries implementing the National Malaria Control Programs, in addition to what is guided by the World Health Organization. PMID:25349605

  19. Zoonotic aspects of vector-borne infections.

    PubMed

    Failloux, A-B; Moutailler, S

    2015-04-01

    Vector-borne diseases are principally zoonotic diseases transmitted to humans by animals. Pathogens such as bacteria, parasites and viruses are primarily maintained within an enzootic cycle between populations of non-human primates or other mammals and largely non-anthropophilic vectors. This 'wild' cycle sometimes spills over in the form of occasional infections of humans and domestic animals. Lifestyle changes, incursions by humans into natural habitats and changes in agropastoral practices create opportunities that make the borders between wildlife and humans more permeable. Some vector-borne diseases have dispensed with the need for amplification in wild or domestic animals and they can now be directly transmitted to humans. This applies to some viruses (dengue and chikungunya) that have caused major epidemics. Bacteria of the genus Bartonella have reduced their transmission cycle to the minimum, with humans acting as reservoir, amplifier and disseminator. The design of control strategies for vector-borne diseases should be guided by research into emergence mechanisms in order to understand how a wild cycle can produce a pathogen that goes on to cause devastating urban epidemics.

  20. Plasmodium knowlesi malaria an emerging public health problem in Hulu Selangor, Selangor, Malaysia (2009-2013): epidemiologic and entomologic analysis.

    PubMed

    Vythilingam, Indra; Lim, Yvonne Al; Venugopalan, Balan; Ngui, Romano; Leong, Cherng Shii; Wong, Meng Li; Khaw, LokeTim; Goh, XiangTing; Yap, NanJiun; Sulaiman, Wan Yusoff Wan; Jeffery, John; Zawiah, Ab Ghani Ct; Nor Aszlina, Ismail; Sharma, Reuben Sk; Yee Ling, Lau; Mahmud, Rohela

    2014-09-15

    While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria. Cases of knowlesi/malariae malaria in the Hulu Selangor district were retrospectively reviewed and analyzed from 2009 to 2013. Mosquitoes were collected from areas where cases occurred in order to determine the vectors. Leucosphyrus group of mosquitoes were genetically characterized targeting the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit I (CO1). In addition, temporal and spatial analyses were carried out for human cases and vectors. Of the 100 microscopy diagnosed P. knowlesi/P. malariae cases over the 5 year period in the Hulu Selangor district, there was predominance of P. knowlesi/P. malariae cases among the young adults (ages 20-39 years; 67 cases; 67%). The majority of the infected people were involved in occupations related to agriculture and forestry (51; 51%). No death was recorded in all these cases.Five hundred and thirty five mosquitoes belonging to 14 species were obtained during the study. Anopheles maculatus was the predominant species (49.5%) followed by Anopheles letifer (13.1%) and Anopheles introlatus (11.6%). Molecular and phylogenetic analysis confirmed the species of the Leucosphyrus group to be An. introlatus. In the present study, only An. introlatus was positive for oocysts. Kernel Density analysis showed that P. knowlesi hotspot areas overlapped with areas where the infected An. introlatus was discovered. This further strengthens the hypothesis that An. introlatusis is the vector for P. knowlesi in the Hulu Selangor district.Unless more information is obtained on the vectors as well as macaque involved in the transmission, it will be difficult to plan effective control strategies. The utilization of modern analytical tools such as GIS (Geographic Information System) is crucial in estimating hotspot areas for targeted control strategies. Anopheles introlatus has been incriminated as vector of P. knowlesi in Hulu Selangor. The cases of P. knowlesi are on the increase and further research using molecular techniques is needed.

  1. Complete mitochondrial genome of Lutzomyia (Nyssomyia) umbratilis (Diptera: Psychodidae), the main vector of Leishmania guyanensis.

    PubMed

    Kocher, Arthur; Gantier, Jean-Charles; Holota, Hélène; Jeziorski, Céline; Coissac, Eric; Bañuls, Anne-Laure; Girod, Romain; Gaborit, Pascal; Murienne, Jérôme

    2016-11-01

    The nearly complete mitochondrial genome of Lutzomyia umbratilis Ward & Fraiha, 1977 (Psychodidae: Phlebotominae), considered as the main vector of Leishmania guyanensis, is presented. The sequencing has been performed on an Illumina Hiseq 2500 platform, with a genome skimming strategy. The full nuclear ribosomal RNA segment was also assembled. The mitogenome of L. umbratilis was determined to be at least 15,717 bp-long and presents an architecture found in many mitogenomes of insect (13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and one non-coding region also referred as the control region). The control region contains a large repeated element of c. 370 bp and a poly-AT region of unknown length. This is the first mitogenome of Psychodidae to be described.

  2. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years.

    PubMed

    Mwangangi, Joseph M; Mbogo, Charles M; Orindi, Benedict O; Muturi, Ephantus J; Midega, Janet T; Nzovu, Joseph; Gatakaa, Hellen; Githure, John; Borgemeister, Christian; Keating, Joseph; Beier, John C

    2013-01-08

    Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90-0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.

  3. Integrated vector management: the Zambian experience.

    PubMed

    Chanda, Emmanuel; Masaninga, Fred; Coleman, Michael; Sikaala, Chadwick; Katebe, Cecilia; Macdonald, Michael; Baboo, Kumar S; Govere, John; Manga, Lucien

    2008-08-27

    The Zambian Malaria Control Programme with the Roll Back Malaria (RBM) partners have developed the current National Malaria Strategic Plan (NMSP 2006-2011) which focuses on prevention based on the Integrated Vector Management (IVM) strategy. The introduction and implementation of an IVM strategy was planned in accordance with the World Health Organization (WHO) steps towards IVM implementation namely Introduction Phase, Consolidation Phase and Expansion Phase. IVM has created commitment for Legal and Regulatory policy review, monitoring, Research and a strong stewardship by the chemical suppliers. It has also leveraged additional resources, improved inter-sectoral collaboration, capacity building and enhanced community participation which facilitated a steady scaling up in coverage and utilisation of key preventive interventions. Thus, markedly reducing malaria incidence and case fatalities in the country. Zambia has successfully introduced, consolidated and expanded IVM activities. Resulting in increased coverage and utilization of interventions and markedly reducing malaria-related morbidity and mortality while ensuring a better protection of the environment.

  4. House-to-house human movement drives dengue virus transmission

    PubMed Central

    Stoddard, Steven T.; Forshey, Brett M.; Morrison, Amy C.; Paz-Soldan, Valerie A.; Vazquez-Prokopec, Gonzalo M.; Astete, Helvio; Reiner, Robert C.; Vilcarromero, Stalin; Elder, John P.; Halsey, Eric S.; Kochel, Tadeusz J.; Kitron, Uriel; Scott, Thomas W.

    2013-01-01

    Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention. PMID:23277539

  5. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    PubMed

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  6. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing

    PubMed Central

    Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (K m = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (K m = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484

  7. Analysis of a general SIS model with infective vectors on the complex networks

    NASA Astrophysics Data System (ADS)

    Juang, Jonq; Liang, Yu-Hao

    2015-11-01

    A general SIS model with infective vectors on complex networks is studied in this paper. In particular, the model considers the linear combination of three possible routes of disease propagation between infected and susceptible individuals as well as two possible transmission types which describe how the susceptible vectors attack the infected individuals. A new technique based on the basic reproduction matrix is introduced to obtain the following results. First, necessary and sufficient conditions are obtained for the global stability of the model through a unified approach. As a result, we are able to produce the exact basic reproduction number and the precise epidemic thresholds with respect to three spreading strengths, the curing strength or the immunization strength all at once. Second, the monotonicity of the basic reproduction number and the above mentioned epidemic thresholds with respect to all other parameters can be rigorously characterized. Finally, we are able to compare the effectiveness of various immunization strategies under the assumption that the number of persons getting vaccinated is the same for all strategies. In particular, we prove that in the scale-free networks, both targeted and acquaintance immunizations are more effective than uniform and active immunizations and that active immunization is the least effective strategy among those four. We are also able to determine how the vaccine should be used at minimum to control the outbreak of the disease.

  8. Evidence of anopheline mosquito resistance to agrochemicals in northern Thailand.

    PubMed

    Overgaard, Hans J; Sandve, Simen R; Suwonkerd, Wannapa

    2005-01-01

    The objective of this study was to assess insecticide resistance in anopheline mosquito populations in agroecosystems with high and low insecticide use in a malaria endemic area in Chiang Mai province in northern Thailand. Anopheline mosquitoes were collected in May and June 2004 from two locations with different agricultural insecticide intensity (HIGH and LOW), but similar in vector control strategies. The F1-generation of Anopheles maculatus s.s. and An. sawadwongporni were subjected to diagnostic doses of methyl parathion (MeP) and cypermethrin (Cyp), both commonly used insecticides in fruit orchards in Thailand. An. minimus A from the HIGH location was subjected to diagnostic doses to Cyp. CDC bottle bioassays were used to determine insecticide susceptibility. Time-mortality data were subjected to Probit analyses to estimate lethal time values (LT50 and LT90). Lethal time ratios (LTR) were computed to determine differences in lethal time response between populations from HIGH and LOW locations. The mortality of An. maculatus to MeP was 74% and 92% in the HIGH and LOW locations, respectively. The corresponding figures for An. sawadwongporni were 94% and 99%. There was no indication of resistance to Cyp for all species tested in either location. The LT90 and LT50 values of An. maculatus s.s. subjected to diagnostic doses of MeP were significantly different between locations (p<0.05). Reduced susceptibility to MeP in mosquito populations in the HIGH location is caused by intensive agricultural pest control and not by vector control activities, because organophosphates have never been used for vector control in the area. Our results indicate that there are still susceptible anopheline populations to pyrethroids, which is consistent with other research from the region. Therefore, there is presently no direct threat to vector control. However increased use of pyrethroids in agriculture may cause problems for future vector control.

  9. Research on Parallel Three Phase PWM Converters base on RTDS

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun

    2018-01-01

    Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.

  10. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil.

    PubMed

    Macoris, Maria de Lourdes; Martins, Ademir Jesus; Andrighetti, Maria Teresa Macoris; Lima, José Bento Pereira; Valle, Denise

    2018-03-01

    Aedes aegypti, vector of dengue, chikungunya and Zika viruses, is found at high densities in tropical urban areas. The dissemination of this vector is partially the consequence of failures in current vector control methods, still mainly relying upon insecticides. In the State of São Paulo (SP), Brazil, public health managers employed pyrethroids against Ae. aegypti adults from 1989 to 2000, when a robust insecticide resistance monitoring system detected resistance to pyrethroids in several Ae. aegypti populations. However, pyrethroids are also the preferred compounds engaged in household applications due to their rapid knockdown effect, lower toxicity to mammals and less irritating smell. We evaluated pyrethroid resistance in Ae. aegypti populations over the course of a decade, from 2004 to 2015, after interruption of pyrethroid public applications in SP. Qualitative bioassays with papers impregnated with a deltamethrin diagnostic dose (DD) performed with insects from seven SP municipalities and evaluated yearly from 2006 to 2014, detected resistance in most of the cases. Quantitative bioassays were also carried out with four populations in 2011, suggesting a positive correlation between resistance level and survivorship in the DD bioassays. Biochemical tests conducted with seven insect populations in 2006 and 2015, detected increasing metabolic alterations of all major classes of detoxifying enzymes, mostly of mixed function oxidases. Genotyping of the voltage-gated sodium channel (AaNaV, the pyrethroid target-site) with a TaqMan real time PCR based technique was performed from 2004 to 2014 in all seven localities. The two kdr mutations, Val1016Ile and Phe1534Cys, known to be spread throughout Brazil, were always present with a severe decrease of the susceptible allele over time. These results are discussed in the context of public and domestic insecticide use, the necessity of implementation of a strong integrated vector control strategy and the conceptual misunderstanding between 'vector control' and 'chemical control of vectors'.

  11. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil

    PubMed Central

    Andrighetti, Maria Teresa Macoris; Lima, José Bento Pereira; Valle, Denise

    2018-01-01

    Background Aedes aegypti, vector of dengue, chikungunya and Zika viruses, is found at high densities in tropical urban areas. The dissemination of this vector is partially the consequence of failures in current vector control methods, still mainly relying upon insecticides. In the State of São Paulo (SP), Brazil, public health managers employed pyrethroids against Ae. aegypti adults from 1989 to 2000, when a robust insecticide resistance monitoring system detected resistance to pyrethroids in several Ae. aegypti populations. However, pyrethroids are also the preferred compounds engaged in household applications due to their rapid knockdown effect, lower toxicity to mammals and less irritating smell. Methodology/Principal findings We evaluated pyrethroid resistance in Ae. aegypti populations over the course of a decade, from 2004 to 2015, after interruption of pyrethroid public applications in SP. Qualitative bioassays with papers impregnated with a deltamethrin diagnostic dose (DD) performed with insects from seven SP municipalities and evaluated yearly from 2006 to 2014, detected resistance in most of the cases. Quantitative bioassays were also carried out with four populations in 2011, suggesting a positive correlation between resistance level and survivorship in the DD bioassays. Biochemical tests conducted with seven insect populations in 2006 and 2015, detected increasing metabolic alterations of all major classes of detoxifying enzymes, mostly of mixed function oxidases. Genotyping of the voltage-gated sodium channel (AaNaV, the pyrethroid target-site) with a TaqMan real time PCR based technique was performed from 2004 to 2014 in all seven localities. The two kdr mutations, Val1016Ile and Phe1534Cys, known to be spread throughout Brazil, were always present with a severe decrease of the susceptible allele over time. Conclusions/Significance These results are discussed in the context of public and domestic insecticide use, the necessity of implementation of a strong integrated vector control strategy and the conceptual misunderstanding between 'vector control' and 'chemical control of vectors'. PMID:29601580

  12. Cross-Coordinated Control: An Experimentally Verified Technique for the Hybrid Twist and Wrench Control of a Voltage-Controlled Industrial Robot

    DTIC Science & Technology

    1988-12-30

    11 2.1 Introduction and O bjective ............................ 11 2.2 Line Geometry and Screw Theory ....... .................. 12 2.3 K inestatics... geometry . 13 Also, an important requirement for many advanced control strategies is the capability for real time velocity computation . While the...dynamics reduces to the following familiar equation. r = H(0)0 + C ( O , O ) + G( O ) + J(G)Tw (3.51) Here 0 is a vector of joint angles, H is the inertia matrix, C

  13. Assessing Strategies Against Gambiense Sleeping Sickness Through Mathematical Modeling

    PubMed Central

    Rock, Kat S; Ndeffo-Mbah, Martial L; Castaño, Soledad; Palmer, Cody; Pandey, Abhishek; Atkins, Katherine E; Ndung’u, Joseph M; Hollingsworth, T Déirdre; Galvani, Alison; Bever, Caitlin; Chitnis, Nakul; Keeling, Matt J

    2018-01-01

    Abstract Background Control of gambiense sleeping sickness relies predominantly on passive and active screening of people, followed by treatment. Methods Mathematical modeling explores the potential of 3 complementary interventions in high- and low-transmission settings. Results Intervention strategies that included vector control are predicted to halt transmission most quickly. Targeted active screening, with better and more focused coverage, and enhanced passive surveillance, with improved access to diagnosis and treatment, are both estimated to avert many new infections but, when used alone, are unlikely to halt transmission before 2030 in high-risk settings. Conclusions There was general model consensus in the ranking of the 3 complementary interventions studied, although with discrepancies between the quantitative predictions due to differing epidemiological assumptions within the models. While these predictions provide generic insights into improving control, the most effective strategy in any situation depends on the specific epidemiology in the region and the associated costs. PMID:29860287

  14. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells.

    PubMed

    Emmerling, Verena V; Pegel, Antje; Milian, Ernest G; Venereo-Sanchez, Alina; Kunz, Marion; Wegele, Jessica; Kamen, Amine A; Kochanek, Stefan; Hoerer, Markus

    2016-02-01

    Viral vectors used for gene and oncolytic therapy belong to the most promising biological products for future therapeutics. Clinical success of recombinant adeno-associated virus (rAAV) based therapies raises considerable demand for viral vectors, which cannot be met by current manufacturing strategies. Addressing existing bottlenecks, we improved a plasmid system termed rep/cap split packaging and designed a minimal plasmid encoding adenoviral helper function. Plasmid modifications led to a 12-fold increase in rAAV vector titers compared to the widely used pDG standard system. Evaluation of different production approaches revealed superiority of processes based on anchorage- and serum-dependent HEK293T cells, exhibiting about 15-fold higher specific and volumetric productivity compared to well-established suspension cells cultivated in serum-free medium. As for most other viral vectors, classical stirred-tank bioreactor production is thus still not capable of providing drug product of sufficient amount. We show that manufacturing strategies employing classical surface-providing culture systems can be successfully transferred to the new fully-controlled, single-use bioreactor system Integrity(TM) iCELLis(TM) . In summary, we demonstrate substantial bioprocess optimizations leading to more efficient and scalable production processes suggesting a promising way for flexible large-scale rAAV manufacturing. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dispersal of male and female Culex quinquefasciatus and Aedes albopictus mosquitoes using stable isotope enrichment

    PubMed Central

    Roark, E. Brendan; Hamer, Gabriel L.

    2017-01-01

    The dispersal patterns of mosquito vectors are important drivers of vector-borne infectious disease dynamics and understanding movement patterns is pivotal to devise successful intervention strategies. Here, we investigate the dispersal patterns of two globally important mosquito vectors, Aedes albopictus and Culex quinquefasciatus, by marking naturally-occurring larvae with stable isotopes (13C or 15N). Marked individuals were captured with 32 CDC light trap, 32 gravid trap, and 16 BG Sentinel at different locations within two-kilometer radii of six larval habitats enriched with either 13C or 15N. In total, 720 trap nights from July to August 2013 yielded a total of 32,140 Cx. quinquefasciatus and 7,722 Ae. albopictus. Overall, 69 marked female mosquitoes and 24 marked male mosquitoes were captured throughout the study period. The distance that Cx. quinquefasciatus females traveled differed for host-seeking and oviposition-seeking traps, with females seeking oviposition sites traveling further than those seeking hosts. Our analysis suggests that 41% of Cx. quinquefasciatus females that were host-seeking occurred 1–2 kilometer from their respective natal site, while 59% remained within a kilometer of their natal site. In contrast, 59% of Cx. quinquefasciatus females that were seeking oviposition sites occurred between 1–2 kilometer away from their larval habitat, while 15% occurred > 2 kilometer away from their natal site. Our analysis estimated that approximately 100% of Ae. albopictus females remained within 1 km of their respective natal site, with 79% occurring within 250m. In addition, we found that male Ae. albopictus dispersed farther than females, suggesting male-biased dispersal in this Ae. albopictus population. This study provides important insights on the dispersal patterns of two globally relevant vector species, and will be important in planning next generation vector control strategies that mitigate mosquito-borne disease through sterile insect techniques, novel Wolbachia infection, and gene drive strategies. PMID:28135281

  16. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy

    PubMed Central

    Kasala, Dayananda; Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-01-01

    Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research. PMID:27348247

  17. Coupling Vector-host Dynamics with Weather Geography and Mitigation Measures to Model Rift Valley Fever in Africa.

    PubMed

    McMahon, B H; Manore, C A; Hyman, J M; LaBute, M X; Fair, J M

    2014-01-01

    We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East Africa with geographic spread on a network, rule-based mitigation measures, and mosquito infection and population dynamics. Susceptible populations are depleted by disease and vaccination and are replenished with the birth of new animals. We observe that the severity of the epidemics is strongly correlated with the duration of the rainy season and that even severe epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity is established, total mortality across 25 years is relatively insensitive to many mitigation approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better understanding of RVF epidemiology would result from serology surveys to quantify the importance of herd immunity in epidemic control, and sequencing of virus from representative animals to quantify the realative importance of transportation and local reservoirs in nucleating yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would include vector control, movement control, and vaccination of young animals yearly, even in the absence of expected rainfall.

  18. Effects of Local Anthropogenic Changes on Potential Malaria Vector Anopheles hyrcanus and West Nile Virus Vector Culex modestus, Camargue, France

    PubMed Central

    Ponçon, Nicolas; Balenghien, Thomas; Toty, Céline; Ferré, Jean Baptiste; Thomas, Cyrille; Dervieux, Alain; L’Ambert, Grégory; Schaffner, Francis; Bardin, Olivier

    2007-01-01

    Using historical data, we highlight the consequences of anthropogenic ecosystem modifications on the abundance of mosquitoes implicated as the current most important potential malaria vector, Anopheles hyrcanus, and the most important West Nile virus (WNV) vector, Culex modestus, in the Camargue region, France. From World War II to 1971, populations of these species increased as rice cultivation expanded in the region in a political context that supported agriculture. They then fell, likely because of decreased cultivation and increased pesticide use to control a rice pest. The species increased again after 2000 with the advent of more targeted pest-management strategies, mainly the results of European regulations decisions. An intertwined influence of political context, environmental constraints, technical improvements, and social factors led to changes in mosquito abundance that had potential consequences on malaria and WNV transmission. These findings suggest that anthropogenic changes should not be underestimated in vectorborne disease recrudescence. PMID:18258028

  19. Mosquito biting activity on humans & detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India.

    PubMed

    Korgaonkar, Nandini S; Kumar, Ashwani; Yadav, Rajpal S; Kabadi, Dipak; Dash, Aditya P

    2012-01-01

    Knowledge of the bionomics of mosquitoes, especially of disease vectors, is essential to plan appropriate vector avoidance and control strategies. Information on biting activity of vectors during the night hours in different seasons is important for choosing personal protection measures. This study was carried out to find out the composition of mosquito fauna biting on humans and seasonal biting trends in Goa, India. Biting activities of all mosquitoes including vectors were studied from 1800 to 0600 h during 85 nights using human volunteers in 14 different localities of three distinct ecotypes in Goa. Seasonal biting trends of vector species were analysed and compared. Seasonal biting periodicity during different phases of night was also studied using William's mean. A total of 4,191 mosquitoes of five genera and 23 species were collected. Ten species belonged to Anopheles, eight to Culex, three to Aedes and one each to Mansonia and Armigeres. Eleven vector species had human hosts, including malaria vectors Anopheles stephensi (1.3%), An. fluviatilis (1.8%), and An. culicifacies (0.76%); filariasis vectors Culex quinquefasciatus (40.8%) and Mansonia uniformis (1.8%); Japanese encephalitis vectors Cx. tritaeniorhynchus (17.4%), Cx. vishnui (7.7%), Cx. pseudovishnui (0.1%), and Cx. gelidus (2.4%); and dengue and chikungunya vectors Aedes albopictus (0.9%) and Ae. aegypti (0.6%). Two An. stephensi of the total 831 female anophelines, were found positive for P. falciparum sporozoites. The entomological inoculation rate (EIR) of P. falciparum was 18.1 and 2.35 for Panaji city and Goa, respectively. Most of the mosquito vector species were collected in all seasons and throughout the scotophase. Biting rates of different vector species differed during different phases of night and seasons. Personal protection methods could be used to stop vector-host contact.

  20. Monitoring the tobacco use epidemic IV. The vector: Tobacco industry data sources and recommendations for research and evaluation.

    PubMed

    Cruz, Tess Boley

    2009-01-01

    This Vector paper (IV of V on monitoring the tobacco use epidemic) presents the data sources and methods that can be used to monitor tobacco marketing and makes recommendations for creating a national surveillance system. In 2002, the Vector Work Group of the National Tobacco Monitoring, Research and Evaluation Workshop identified priority indicators of tobacco marketing: tobacco brand pricing strategies, retail environment advertising and promotional allowances, gray market or smuggling activities, lobbying, direct mail marketing, tobacco brand placements in films, Internet promotions, and sponsorship at bars and events. This paper reviews and identifies data sources and gaps for these priority indicators and for 12 other indicators of interest. There are 38 commercial data sites and Internet sources, as well as individual research efforts that address the priority indicators. These sources are not integrated, often costly, and limited in standardization. Tobacco marketing could be more effectively monitored with the development of a national research network. Surveillance of the tobacco industry's methods to push tobacco and pull consumers can help the public health community identify new markets and campaigns, justify and tailor effective tobacco control strategies, and evaluate existing counter-marketing efforts.

  1. Physical non-viral gene delivery methods for tissue engineering.

    PubMed

    Mellott, Adam J; Forrest, M Laird; Detamore, Michael S

    2013-03-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.

  2. Physical non-viral gene delivery methods for tissue engineering

    PubMed Central

    Mellott, Adam J.; Forrest, M. Laird; Detamore, Michael S.

    2016-01-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications. PMID:23099792

  3. Assessment of geraniol-incorporated polymers to control Aedes albopictus (Diptera: culicidae)

    PubMed Central

    Chuaycharoensuk, T.; Manguin, S.; Duvallet, G.; Chareonviriyaphap, T.

    2012-01-01

    Effective control of mosquito borne diseases has proven extremely difficult with both vector and pathogen remaining entrenched and expanding in many disease endemic areas. When lacking an effective vaccine, vector control methods targeting both larval habitats and adult mosquito populations remain the primary strategy for reducing risk. Aedes albopictus from Thailand was used as a reference baseline for evaluation of natural insecticides incorporated in polymer disks and pellets and tested both in laboratory and field conditions. In laboratory and field tests, the highest larval mortality was obtained with disks or pellets containing IKHC (Insect Killer Highly Concentrate) from Fulltec AG Company. This product is reputed to contain geraniol as an active ingredient. With pellets, high mortality of Ae. albopictus larvae (92%) was observed in presence of 1 g of pellets per 500 ml of water at day 1st, and the mortality was 100% at day 1st for larvae in presence of 5 or 10 g of pellets. Fulltec AG Company has not accepted to give us the exact composition of their IKHC product. Therefore, we cannot recommend it, but the principle of using monoterpenes like geraniol, incorporated into polymer disks or pellets as natural larvicide needs more attention as it could be considered as a powerful alternative in mosquito vector control. PMID:22910616

  4. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.

  5. The babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission o...

  6. Prediction, Assessment of the Rift Valley fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    USDA-ARS?s Scientific Manuscript database

    Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Nino/Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and ...

  7. Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hualan; Price, Morgan N.; Waters, Robert Jordan

    Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach for discovering the functions of bacterial genes. However, the development of a suitable TnSeq strategy for a given bacterium can be costly and time-consuming. To meet this challenge, we describe a part-based strategy for constructing libraries of hundreds of transposon delivery vectors, which we term “magic pools.” Within a magic pool, each transposon vector has a different combination of upstream sequences (promoters and ribosome binding sites) and antibiotic resistance markers as well as a random DNA barcode sequence, which allows the tracking of each vector during mutagenesis experiments. Tomore » identify an efficient vector for a given bacterium, we mutagenize it with a magic pool and sequence the resulting insertions; we then use this efficient vector to generate a large mutant library. We used the magic pool strategy to construct transposon mutant libraries in five genera of bacteria, including three genera of the phylumBacteroidetes. IMPORTANCEMolecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria.« less

  8. Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria

    DOE PAGES

    Liu, Hualan; Price, Morgan N.; Waters, Robert Jordan; ...

    2018-01-16

    Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach for discovering the functions of bacterial genes. However, the development of a suitable TnSeq strategy for a given bacterium can be costly and time-consuming. To meet this challenge, we describe a part-based strategy for constructing libraries of hundreds of transposon delivery vectors, which we term “magic pools.” Within a magic pool, each transposon vector has a different combination of upstream sequences (promoters and ribosome binding sites) and antibiotic resistance markers as well as a random DNA barcode sequence, which allows the tracking of each vector during mutagenesis experiments. Tomore » identify an efficient vector for a given bacterium, we mutagenize it with a magic pool and sequence the resulting insertions; we then use this efficient vector to generate a large mutant library. We used the magic pool strategy to construct transposon mutant libraries in five genera of bacteria, including three genera of the phylumBacteroidetes. IMPORTANCEMolecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria.« less

  9. Managing the resilience space of the German energy system - A vector analysis.

    PubMed

    Schlör, Holger; Venghaus, Sandra; Märker, Carolin; Hake, Jürgen-Friedrich

    2018-07-15

    The UN Sustainable Development Goals formulated in 2016 confirmed the sustainability concept of the Earth Summit of 1992 and supported UNEP's green economy transition concept. The transformation of the energy system (Energiewende) is the keystone of Germany's sustainability strategy and of the German green economy concept. We use ten updated energy-related indicators of the German sustainability strategy to analyse the German energy system. The development of the sustainable indicators is examined in the monitoring process by a vector analysis performed in two-dimensional Euclidean space (Euclidean plane). The aim of the novel vector analysis is to measure the current status of the Energiewende in Germany and thereby provide decision makers with information about the strains for the specific remaining pathway of the single indicators and of the total system in order to meet the sustainability targets of the Energiewende. Within this vector model, three vectors (the normative sustainable development vector, the real development vector, and the green economy vector) define the resilience space of our analysis. The resilience space encloses a number of vectors representing different pathways with different technological and socio-economic strains to achieve a sustainable development of the green economy. In this space, the decision will be made as to whether the government measures will lead to a resilient energy system or whether a readjustment of indicator targets or political measures is necessary. The vector analysis enables us to analyse both the government's ambitiousness, which is expressed in the sustainability target for the indicators at the start of the sustainability strategy representing the starting preference order of the German government (SPO) and, secondly, the current preference order of German society in order to bridge the remaining distance to reach the specific sustainability goals of the strategy summarized in the current preference order (CPO). Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Active model-based balancing strategy for self-reconfigurable batteries

    NASA Astrophysics Data System (ADS)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2016-08-01

    This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.

  11. Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control.

    PubMed

    Ammar, Abdelkarim; Bourek, Amor; Benakcha, Abdelhamid

    2017-03-01

    This paper presents a nonlinear Direct Torque Control (DTC) strategy with Space Vector Modulation (SVM) for an induction motor. A nonlinear input-output feedback linearization (IOFL) is implemented to achieve a decoupled torque and flux control and the SVM is employed to reduce high torque and flux ripples. Furthermore, the control scheme performance is improved by inserting a super twisting speed controller in the outer loop and a load torque observer to enhance the speed regulation. The combining of dual nonlinear strategies ensures a good dynamic and robustness against parameters variation and disturbance. The system stability has been analyzed using Lyapunov stability theory. The effectiveness of the control algorithm is investigated by simulation and experimental validation using Matlab/Simulink software with real-time interface based on dSpace 1104. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A CRISPR-Cas9 sex-ratio distortion system for genetic control

    PubMed Central

    Galizi, Roberto; Hammond, Andrew; Kyrou, Kyros; Taxiarchi, Chrysanthi; Bernardini, Federica; O’Loughlin, Samantha M.; Papathanos, Philippos-Aris; Nolan, Tony; Windbichler, Nikolai; Crisanti, Andrea

    2016-01-01

    Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome. PMID:27484623

  13. Strategies for new and improved vaccines against ticks and tick-borne diseases.

    PubMed

    de la Fuente, J; Kopáček, P; Lew-Tabor, A; Maritz-Olivier, C

    2016-12-01

    Ticks infest a variety of animal species and transmit pathogens causing disease in both humans and animals worldwide. Tick-host-pathogen interactions have evolved through dynamic processes that accommodated the genetic traits of the hosts, pathogens transmitted and the vector tick species that mediate their development and survival. New approaches for tick control are dependent on defining molecular interactions between hosts, ticks and pathogens to allow for discovery of key molecules that could be tested in vaccines or new generation therapeutics for intervention of tick-pathogen cycles. Currently, tick vaccines constitute an effective and environmentally sound approach for the control of ticks and the transmission of the associated tick-borne diseases. New candidate protective antigens will most likely be identified by focusing on proteins with relevant biological function in the feeding, reproduction, development, immune response, subversion of host immunity of the tick vector and/or molecules vital for pathogen infection and transmission. This review addresses different approaches and strategies used for the discovery of protective antigens, including focusing on relevant tick biological functions and proteins, reverse genetics, vaccinomics and tick protein evolution and interactomics. New and improved tick vaccines will most likely contain multiple antigens to control tick infestations and pathogen infection and transmission. © 2016 John Wiley & Sons Ltd.

  14. Detection of Onchocerca volvulus (Nematoda: Onchocercidae) infection in vectors from Amazonian Brazil following mass Mectizan distribution.

    PubMed

    Marchon-Silva, Verônica; Caër, Julien Charles; Post, Rory James; Maia-Herzog, Marilza; Fernandes, Octavio

    2007-05-01

    Detection of Onchocerca volvulus in Simulium populations is of primary importance in the assessment of the effectiveness of onchocerciasis control programs. In Brazil, the main focus of onchocerciasis is in the Amazon region, in a Yanomami reserve. The main onchocerciasis control strategy in Brazil is the semi-annually mass distribution of the microfilaricide ivermectin. In accordance with the control strategy for the disease, polymerase chain reaction (PCR) was applied in pools of simuliids from the area to detect the helminth infection in the vectors, as recommended by the Onchocerciasis Elimination Program for the Americas and the World Health Organization. Systematic sampling was performed monthly from September 1998 to October 1999, and a total of 4942 blackflies were collected from two sites (2576 from Balawaú and 2366 from Toototobi). The molecular methodology was found to be highly sensitive and specific for the detection of infected and/or infective blackflies in pools of 50 blackflies. The results from the material collected under field conditions showed that after the sixth cycle of distribution of ivermectin, the prevalence of infected blackflies with O. volvulus had decreased from 8.6 to 0.3% in Balawaú and from 4 to 0.1% in Toototobi.

  15. Controlled Striatal DOPA Production From a Gene Delivery System in a Rodent Model of Parkinson's Disease.

    PubMed

    Cederfjäll, Erik; Broom, Lauren; Kirik, Deniz

    2015-05-01

    Conventional symptomatic treatment for Parkinson's disease (PD) with long-term L-3,4-dihydroxyphenylalanine (DOPA) is complicated with development of drug-induced side effects. In vivo viral vector-mediated gene expression encoding tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) provides a drug delivery strategy of DOPA with distinct advantages over pharmacotherapy. Since the brain alterations made with current gene transfer techniques are irreversible, the therapeutic approaches taken to the clinic should preferably be controllable to match the needs of each individual during the course of their disease. We used a recently described tunable gene expression system based on the use of destabilized dihydrofolate reductase (DD) and generated a N-terminally coupled GCH1 enzyme (DD-GCH1) while the TH enzyme was constitutively expressed, packaged in adeno-associated viral (AAV) vectors. Expression of DD-GCH1 was regulated by the activating ligand trimethoprim (TMP) that crosses the blood-brain barrier. We show that the resulting intervention provides a TMP-dose-dependent regulation of DOPA synthesis that is closely linked to the magnitude of functional effects. Our data constitutes the first proof of principle for controlled reconstitution of dopamine capacity in the brain and suggests that such next-generation gene therapy strategies are now mature for preclinical development toward use in patients with PD.

  16. Community involvement in dengue vector control: cluster randomised trial.

    PubMed

    Vanlerberghe, V; Toledo, M E; Rodríguez, M; Gómez, D; Baly, A; Benítez, J R; Van der Stuyft, P

    2010-01-01

    To assess the effectiveness of an integrated community based environmental management strategy to control Aedes aegypti, the vector of dengue, compared with a routine strategy. Design Cluster randomised trial. Setting Guantanamo, Cuba. Participants 32 circumscriptions (around 2000 inhabitants each). Interventions The circumscriptions were randomly allocated to control clusters (n=16) comprising routine Aedes control programme (entomological surveillance, source reduction, selective adulticiding, and health education) and to intervention clusters (n=16) comprising the routine Aedes control programme combined with a community based environmental management approach. The primary outcome was levels of Aedes infestation: house index (number of houses positive for at least one container with immature stages of Ae aegypti per 100 inspected houses), Breteau index (number of containers positive for immature stages of Ae aegypti per 100 inspected houses), and the pupae per inhabitant statistic (number of Ae aegypti pupae per inhabitant). All clusters were subjected to the intended intervention; all completed the study protocol up to February 2006 and all were included in the analysis. At baseline the Aedes infestation levels were comparable between intervention and control clusters: house index 0.25% v 0.20%, pupae per inhabitant 0.44 x 10(-3) v 0.29 x 10(-3). At the end of the intervention these indices were significantly lower in the intervention clusters: rate ratio for house indices 0.49 (95% confidence interval 0.27 to 0.88) and rate ratio for pupae per inhabitant 0.27 (0.09 to 0.76). A community based environmental management embedded in a routine control programme was effective at reducing levels of Aedes infestation. Trial Registration Current Controlled Trials ISRCTN88405796.

  17. Community involvement in dengue vector control: cluster randomised trial.

    PubMed

    Vanlerberghe, V; Toledo, M E; Rodríguez, M; Gomez, D; Baly, A; Benitez, J R; Van der Stuyft, P

    2009-06-09

    To assess the effectiveness of an integrated community based environmental management strategy to control Aedes aegypti, the vector of dengue, compared with a routine strategy. Cluster randomised trial. Guantanamo, Cuba. 32 circumscriptions (around 2000 inhabitants each). The circumscriptions were randomly allocated to control clusters (n=16) comprising routine Aedes control programme (entomological surveillance, source reduction, selective adulticiding, and health education) and to intervention clusters (n=16) comprising the routine Aedes control programme combined with a community based environmental management approach. The primary outcome was levels of Aedes infestation: house index (number of houses positive for at least one container with immature stages of Ae aegypti per 100 inspected houses), Breteau index (number of containers positive for immature stages of Ae aegypti per 100 inspected houses), and the pupae per inhabitant statistic (number of Ae aegypti pupae per inhabitant). All clusters were subjected to the intended intervention; all completed the study protocol up to February 2006 and all were included in the analysis. At baseline the Aedes infestation levels were comparable between intervention and control clusters: house index 0.25% v 0.20%, pupae per inhabitant 0.44x10(-3) v 0.29x10(-3). At the end of the intervention these indices were significantly lower in the intervention clusters: rate ratio for house indices 0.49 (95% confidence interval 0.27 to 0.88) and rate ratio for pupae per inhabitant 0.27 (0.09 to 0.76). A community based environmental management embedded in a routine control programme was effective at reducing levels of Aedes infestation. Current Controlled Trials ISRCTN88405796.

  18. Recombination–deletion between homologous cassettes in retrovirus is suppressed via a strategy of degenerate codon substitution

    PubMed Central

    Im, Eung Jun; Bais, Anthony J; Yang, Wen; Ma, Qiangzhong; Guo, Xiuyang; Sepe, Steven M; Junghans, Richard P

    2014-01-01

    Transduction and expression procedures in gene therapy protocols may optimally transfer more than a single gene to correct a defect and/or transmit new functions to recipient cells or organisms. This may be accomplished by transduction with two (or more) vectors, or, more efficiently, in a single vector. Occasionally, it may be useful to coexpress homologous genes or chimeric proteins with regions of shared homology. Retroviridae include the dominant vector systems for gene transfer (e.g., gamma-retro and lentiviruses) and are capable of such multigene expression. However, these same viruses are known for efficient recombination–deletion when domains are duplicated within the viral genome. This problem can be averted by resorting to two-vector strategies (two-chain two-vector), but at a penalty to cost, convenience, and efficiency. Employing a chimeric antigen receptor system as an example, we confirm that coexpression of two genes with homologous domains in a single gamma-retroviral vector (two-chain single-vector) leads to recombination–deletion between repeated sequences, excising the equivalent of one of the chimeric antigen receptors. Here, we show that a degenerate codon substitution strategy in the two-chain single-vector format efficiently suppressed intravector deletional loss with rescue of balanced gene coexpression by minimizing sequence homology between repeated domains and preserving the final protein sequence. PMID:25419532

  19. Rational design of gene-based vaccines.

    PubMed

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Study protocol for a cluster randomised controlled factorial design trial to assess the effectiveness and feasibility of reactive focal mass drug administration and vector control to reduce malaria transmission in the low endemic setting of Namibia

    PubMed Central

    Medzihradsky, Oliver F; Kleinschmidt, Immo; Mumbengegwi, Davis; Roberts, Kathryn W; McCreesh, Patrick; Dufour, Mi-Suk Kang; Uusiku, Petrina; Katokele, Stark; Bennett, Adam; Smith, Jennifer; Sturrock, Hugh; Prach, Lisa M; Ntuku, Henry; Tambo, Munyaradzi; Didier, Bradley; Greenhouse, Bryan; Gani, Zaahira; Aerts, Ann; Gosling, Roly; Hsiang, Michelle S

    2018-01-01

    Introduction To interrupt malaria transmission, strategies must target the parasite reservoir in both humans and mosquitos. Testing of community members linked to an index case, termed reactive case detection (RACD), is commonly implemented in low transmission areas, though its impact may be limited by the sensitivity of current diagnostics. Indoor residual spraying (IRS) before malaria season is a cornerstone of vector control efforts. Despite their implementation in Namibia, a country approaching elimination, these methods have been met with recent plateaus in transmission reduction. This study evaluates the effectiveness and feasibility of two new targeted strategies, reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in Namibia. Methods and analysis This is an open-label cluster randomised controlled trial with 2×2 factorial design. The interventions include: rfMDA (presumptive treatment with artemether-lumefantrine (AL)) versus RACD (rapid diagnostic testing and treatment using AL) and RAVC (IRS with Acellic 300CS) versus no RAVC. Factorial design also enables comparison of the combined rfMDA+RAVC intervention to RACD. Participants living in 56 enumeration areas will be randomised to one of four arms: rfMDA, rfMDA+RAVC, RACD or RACD+RAVC. These interventions, triggered by index cases detected at health facilities, will be targeted to individuals residing within 500 m of an index. The primary outcome is cumulative incidence of locally acquired malaria detected at health facilities over 1 year. Secondary outcomes include seroprevalence, infection prevalence, intervention coverage, safety, acceptability, adherence, cost and cost-effectiveness. Ethics and dissemination Findings will be reported on clinicaltrials.gov, in peer-reviewed publications and through stakeholder meetings with MoHSS and community leaders in Namibia. Trial registration number NCT02610400; Pre-results. PMID:29374672

  1. Study protocol for a cluster randomised controlled factorial design trial to assess the effectiveness and feasibility of reactive focal mass drug administration and vector control to reduce malaria transmission in the low endemic setting of Namibia.

    PubMed

    Medzihradsky, Oliver F; Kleinschmidt, Immo; Mumbengegwi, Davis; Roberts, Kathryn W; McCreesh, Patrick; Dufour, Mi-Suk Kang; Uusiku, Petrina; Katokele, Stark; Bennett, Adam; Smith, Jennifer; Sturrock, Hugh; Prach, Lisa M; Ntuku, Henry; Tambo, Munyaradzi; Didier, Bradley; Greenhouse, Bryan; Gani, Zaahira; Aerts, Ann; Gosling, Roly; Hsiang, Michelle S

    2018-01-27

    To interrupt malaria transmission, strategies must target the parasite reservoir in both humans and mosquitos. Testing of community members linked to an index case, termed reactive case detection (RACD), is commonly implemented in low transmission areas, though its impact may be limited by the sensitivity of current diagnostics. Indoor residual spraying (IRS) before malaria season is a cornerstone of vector control efforts. Despite their implementation in Namibia, a country approaching elimination, these methods have been met with recent plateaus in transmission reduction. This study evaluates the effectiveness and feasibility of two new targeted strategies, reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in Namibia. This is an open-label cluster randomised controlled trial with 2×2 factorial design. The interventions include: rfMDA (presumptive treatment with artemether-lumefantrine (AL)) versus RACD (rapid diagnostic testing and treatment using AL) and RAVC (IRS with Acellic 300CS) versus no RAVC. Factorial design also enables comparison of the combined rfMDA+RAVC intervention to RACD. Participants living in 56 enumeration areas will be randomised to one of four arms: rfMDA, rfMDA+RAVC, RACD or RACD+RAVC. These interventions, triggered by index cases detected at health facilities, will be targeted to individuals residing within 500 m of an index. The primary outcome is cumulative incidence of locally acquired malaria detected at health facilities over 1 year. Secondary outcomes include seroprevalence, infection prevalence, intervention coverage, safety, acceptability, adherence, cost and cost-effectiveness. Findings will be reported on clinicaltrials.gov, in peer-reviewed publications and through stakeholder meetings with MoHSS and community leaders in Namibia. NCT02610400; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Insights from agriculture for the management of insecticide resistance in disease vectors.

    PubMed

    Sternberg, Eleanore D; Thomas, Matthew B

    2018-04-01

    Key to contemporary management of diseases such as malaria, dengue, and filariasis is control of the insect vectors responsible for transmission. Insecticide-based interventions have contributed to declines in disease burdens in many areas, but this progress could be threatened by the emergence of insecticide resistance in vector populations. Insecticide resistance is likewise a major concern in agriculture, where insect pests can cause substantial yield losses. Here, we explore overlaps between understanding and managing insecticide resistance in agriculture and in public health. We have used the Global Plan for Insecticide Resistance Management in malaria vectors, developed under the auspices of the World Health Organization Global Malaria Program, as a framework for this exploration because it serves as one of the few cohesive documents for managing a global insecticide resistance crisis. Generally, this comparison highlights some fundamental differences between insect control in agriculture and in public health. Moreover, we emphasize that the success of insecticide resistance management strategies is strongly dependent on the biological specifics of each system. We suggest that the biological, operational, and regulatory differences between agriculture and public health limit the wholesale transfer of knowledge and practices from one system to the other. Nonetheless, there are some valuable insights from agriculture that could assist in advancing the existing Global Plan for Insecticide Resistance Management framework.

  3. Adulticidal Susceptibility Evaluation of Aedes albopictus Using New Diagnostic Doses in Penang Island, Malaysia.

    PubMed

    Rahim, Junaid; Ahmad, Abu H; Ahmad, Hamdan; Ishak, Intan H; Rus, Adanan Che; Maimusa, Hamisu A

    2017-09-01

    Insecticide-based vector control approaches are facing challenges due to the development of resistance in vector mosquitoes. Therefore, a proper resistance surveillance program using baseline lethal concentrations is crucial for resistance management strategies. Currently, the World Health Organization's (WHO) diagnostic doses established for Aedes aegypti and Anopheles species are being used to study the resistance status of Aedes albopictus. In this study, we established the diagnostic doses for permethrin, deltamethrin, and malathion using a known susceptible reference strain. Five field-collected populations were screened against these doses, following the WHO protocol. This study established the diagnostic dose of malathion at 2.4%, permethrin at 0.95%, and deltamethrin at 0.28%, which differ from the WHO doses for Aedes aegypti and Anopheles spp. Among the insecticides tested on the 5 wild populations, only deltamethrin showed high effectiveness. Different susceptibility and resistance patterns were observed with permethrin, malathion, and dichloro-diphenyl-trichloroethane (DDT) at 4%. This study may assist the health authorities to improve future chemical-based vector control operations in dengue-endemic areas.

  4. KGFR as a possible therapeutic target in middle ear cholesteatoma.

    PubMed

    Yamamoto-Fukuda, Tomomi; Akiyama, Naotaro; Shibata, Yasuaki; Takahashi, Haruo; Ikeda, Tohru; Kohno, Michiaki; Koji, Takehiko

    2014-11-01

    We demonstrated that repression of keratinocyte growth factor (KGF) receptor (KGFR) could be a potentially useful strategy in the conservative treatment of middle ear cholesteatoma. Recently, the use of a selective inhibitor of the KGFR, SU5402, in an in vitro experiment resulted in the inhibition of the differentiation and proliferation of epithelial cells through KGF secretion by fibroblasts isolated from the cholesteatoma. In this study, we investigated the effects of the KGFR inhibitor during middle ear cholesteatoma formation in vivo. Based on the role of KGF in the development of cholesteatoma, Flag-hKGF cDNA driven by CMV14 promoter was transfected through electroporation into the external auditory canal of rats five times on every fourth day. Ears transfected with empty vector were used as controls. KGFR selective inhibitor (SU5402) or MEK inhibitor (PD0325901) was administered in the right ear of five rats after vector transfection. In the control, 2% DMSO in PBS was administered in the other ears after vector transfection. The use of a selective KGFR inhibitor, SU5402, completely prevented middle ear cholesteatoma formation in the rats.

  5. Host-seeking strategies of mosquito disease vectors.

    PubMed

    Day, Jonathan F

    2005-12-01

    Disease transmission by arthropods normally requires at least 2 host contacts. During the first, a pathogen (nematode, protozoan, or virus) is acquired along with the blood from an infected vertebrate host. The pathogen penetrates the vector's midgut and infects a variety of tissues, where replication may occur during an extrinsic incubation period lasting 3-30, days depending on vector and parasite physiology and ambient temperature. Following salivary-gland infection, the pathogen is usually transmitted to additional susceptible vertebrate hosts during future probing or blood feeding. The host-seeking strategies used by arthropod vectors can, in part, affect the efficiency of disease transmission. Vector abundance, seasonal distribution, habitat and host preference, and susceptibility to infection are all important components of disease-transmission cycles. Examples of 3 mosquito vectors of human disease are presented here to highlight the diversity of host seeking and to show how specific behaviors may influence disease-transmission cycles. In the African tropics, Anopheles gambiae s.s. is an efficient vector of human malaria due to its remarkably focused preference for human blood. Aedes aegypti is the main vector of dengue viruses in the New and Old World tropics and subtropics. This mosquito has evolved a domestic lifestyle and shares human habitations throughout much of its range. It prospers in settings where humans are its main source of blood. In south Florida, Culex nigripalpus is the major vector of St. Louis encephalitis (SLE) and West Nile (WN) viruses. This mosquito is opportunistic and blood feeds on virtually any available vertebrate host. It serves as an arboviral vector, in part, due to its ability to produce large populations in a short period of time. These 3 host-seeking and blood-feeding strategies make the specialist, as well as the opportunist, equally dangerous disease vectors.

  6. Analysis of population structure and insecticide resistance in mosquitoes of the genus Culex, Anopheles and Aedes from different environments of Greece with a history of mosquito borne disease transmission.

    PubMed

    Fotakis, Emmanouil A; Chaskopoulou, Alexandra; Grigoraki, Linda; Tsiamantas, Alexandros; Kounadi, Stella; Georgiou, Loukas; Vontas, John

    2017-10-01

    Greece has been recently affected by several mosquito borne diseases with the West Nile Virus (WNV) outbreak in 2010 being one of the largest reported in Europe. Currently at the epicenter of an economic and refugee crisis and visited by over 16 million tourists a year the integrated management of diseases transmitted by mosquitoes is a public health and economic priority. Vector control programs rely mainly on insecticides, however data on insecticide resistance and the mosquito fauna is essential for successful applications. We determined the mosquito species composition and population dynamics in areas of increased vulnerability to vector borne disease transmission, as well as investigated the resistance status of major nuisance and disease vectors to insecticides. High mosquito densities were recorded in Thessaloniki and Evros, with Aedes caspius, a nuisance species, Culex pipiens, a known vector of WNV and Anopheles hyrcanus a potential vector of malaria being among the most prevalent species. Both vector species populations reached their peak in late summer. Aedes albopictus was recorded at high densities in Thessaloniki, but not in Evros. Notably, Cx. pipiens hybrids, which show an opportunistic biting behavior and are suspected to be involved in the transmission of the WNV, were recorded in considerable numbers in Thessaloniki and Attica. Culex pipiens and An. hyrcanus, but not Ae. caspius mosquitoes, showed moderate levels of resistance to deltamethrin. The presence of resistance in areas not exposed to vector control indicates that other factors could be selecting for resistance, i.e. pesticide applications for agriculture. Both L1014F and L101C kdr mutations were detected in Cx. pipiens populations. Anopheles hyrcanus resistance was not associated with mutations at the L1014 site. The Ace-1 mutations conferring insensitivity to organophosphates and carbamates were detected at low frequencies in all Cx. pipiens populations. Increased activity of P450s and esterases was found in Cx. pipiens individuals from Thessaloniki. Our study contributes evidence for sustainable and efficient vector control strategies and the prevention of disease outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Human gene therapy: novel approaches to improve the current gene delivery systems.

    PubMed

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  8. Live attenuated pre-erythrocytic malaria vaccines.

    PubMed

    Keitany, Gladys J; Vignali, Marissa; Wang, Ruobing

    2014-01-01

    Although recent control measures have significantly reduced malaria cases and deaths in many endemic areas, an effective vaccine will be essential to eradicate this parasitic disease. Malaria vaccine strategies developed to date focus on different phases of the parasite's complex life cycle in the human host and mosquito vector, and include both subunit-based and whole-parasite vaccines. This review focuses on the 3 live-attenuated malaria vaccination strategies that have been tested in humans to date, and discusses their progress, challenges and the immune correlates of protection that have been identified.

  9. A new instantaneous torque control of PM synchronous motor for high-performance direct-drive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, S.K.; Kim, H.S.; Kim, C.G.

    1998-05-01

    a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal fluxmore » distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.« less

  10. Controlling Attitude of a Solar-Sail Spacecraft Using Vanes

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Ahmet; Ploen, Scott

    2006-01-01

    A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.

  11. The Effect of Oral Anthelmintics on the Survivorship and Re-feeding Frequency of Anthropophilic Mosquito Disease Vectors

    PubMed Central

    Kobylinski, Kevin C.; Deus, Kelsey M.; Butters, Matt T.; Hongyu, Tan; Gray, Meg; Silva, Ines Marques da; Sylla, Massamba; Foy, Brian D.

    2010-01-01

    In the Tropics, there is substantial temporal and spatial overlap of diseases propagated by anthropophilic mosquito vectors (such as malaria and dengue) and human helminth diseases (such as onchocerciasis and lymphatic filariasis) that are treated though mass drug administrations (MDA). This overlap will result in mosquito vectors imbibing significant quantities of these drugs when they blood feed on humans. Since many anthelmintic drugs have broad anti-invertebrate effects, the possibility of combined helminth control and mosquito-borne disease control through MDA is apparent. It has been previously shown that ivermectin can reduce mosquito survivorship when administered in a blood meal, but more detailed examinations are needed if MDA is to ever be developed into a tool for malaria or dengue control. We examined concentrations of drugs that follow human pharmacokinetics after MDA and that matched with mosquito feeding times, for effects against the anthropophilic mosquito vectors Anopheles gambiae s.s. and Aedes aegypti. Ivermectin was the only human-approved MDA drug we tested that affected mosquito survivorship, and only An. gambiae s.s. were affected at concentrations respecting human pharmacokinetics at indicated doses. Ivermectin also delayed An. gambiae s.s. re-feeding frequency and defecation rates, and two successive ivermectin-spiked blood meals following human pharmacokinetic concentrations compounded mortality effects compared to controls. These findings suggest that ivermectin MDA in Africa may be used to decrease malaria transmission if MDAs were administered more frequently. Such a strategy would broaden the current scope of polyparasitism control already afforded by MDAs, and which is needed in many African villages simultaneously burdened by many parasitic diseases. PMID:20540931

  12. Insecticide-treated durable wall lining (ITWL): future prospects for control of malaria and other vector-borne diseases.

    PubMed

    Messenger, Louisa A; Rowland, Mark

    2017-05-22

    While long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control throughout sub-Saharan Africa, there is an urgent need for the development of novel insecticide delivery mechanisms to sustain and consolidate gains in disease reduction and to transition towards malaria elimination and eradication. Insecticide-treated durable wall lining (ITWL) may represent a new paradigm for malaria control as a potential complementary or alternate longer-lasting intervention to IRS. ITWL can be attached to inner house walls, remain efficacious over multiple years and overcome some of the operational constraints of first-line control strategies, specifically nightly behavioural compliance required of LLINs and re-current costs and user fatigue associated with IRS campaigns. Initial experimental hut trials of insecticide-treated plastic sheeting reported promising results, achieving high levels of vector mortality, deterrence and blood-feeding inhibition, particularly when combined with LLINs. Two generations of commercial ITWL have been manufactured to date containing either pyrethroid or non-pyrethroid formulations. While some Phase III trials of these products have demonstrated reductions in malaria incidence, further large-scale evidence is still required before operational implementation of ITWL can be considered either in a programmatic or more targeted community context. Qualitative studies of ITWL have identified aesthetic value and observable entomological efficacy as key determinants of household acceptability. However, concerns have been raised regarding installation feasibility and anticipated cost-effectiveness. This paper critically reviews ITWL as both a putative mechanism of house improvement or more conventional intervention and discusses its future prospects as a method for controlling malaria and other vector-borne diseases.

  13. RNA interference targeting the ACE gene reduced blood pressure and improved myocardial remodelling in SHRs.

    PubMed

    He, Junhua; Bian, Yunfei; Gao, Fen; Li, Maolian; Qiu, Ling; Wu, Weidong; Zhou, Hua; Liu, Gaizhen; Xiao, Chuanshi

    2009-02-01

    The purpose of the present study was to investigate the effects on blood pressure and myocardial hypertrophy in SHRs (spontaneously hypertensive rats) of RNAi (RNA interference) targeting ACE (angiotensin-converting enzyme). SHRs were treated with normal saline as vehicle controls, with Ad5-EGFP as vector controls, and with recombinant adenoviral vectors Ad5-EGFP-ACE-shRNA, carrying shRNA (small hairpin RNA) for ACE as ACE-RNAi. WKY (Wistar-Kyoto) rats were used as normotensive controls treated with normal saline. The systolic blood pressure of the caudal artery was recorded. Serum levels of ACE and AngII (angiotensin II) were determined using ELISA. ACE mRNA and protein levels were determined in aorta, myocardium, kidney and lung. On day 32 of the experiment, the heart was pathologically examined. The ratios of heart weight/body weight and left ventricular weight/body weight were calculated. The serum concentration of ACE was lower in ACE-RNAi rats (16.37+/-3.90 ng/ml) compared with vehicle controls and vector controls (48.26+/-1.50 ng/ml and 46.67+/-2.82 ng/ml respectively; both P<0.05), but comparable between ACE-RNAi rats and WKY rats (14.88+/-3.15 ng/ml; P>0.05). The serum concentration of AngII was also significantly lower in ACE-RNAi rats (18.24+/-3.69 pg/ml) compared with vehicle controls and vector controls (46.21+/-5.06 pg/ml and 44.93+/-4.12 pg/ml respectively; both P<0.05), but comparable between ACE-RNAi rats and WKY rats (16.06+/-3.11 pg/ml; P>0.05). The expression of ACE mRNA and ACE protein were significantly reduced in the myocardium, aorta, kidney and lung in ACE-RNAi rats compared with that in vehicle controls and in vector controls (all P<0.05). ACE-RNAi treatment resulted in a reduction in systolic blood pressure by 22+/-3 mmHg and the ACE-RNAi-induced reduction lasted for more than 14 days. In contrast, blood pressure was continuously increased in the vehicle controls as well as in the vector controls. The ratios of heart weight/body weight and left ventricular weight/body weight were significantly lower in ACE-RNAi rats (3.12+/-0.23 mg/g and 2.24+/-0.19 mg/g) compared with the vehicle controls (4.29+/-0.24 mg/g and 3.21+/-0.13 mg/g; P<0.05) and the vector controls (4.43+/-0.19 mg/g and 3.13+/-0.12 mg/g; P<0.05). The conclusion of the present study is that ACE-silencing had significant antihypertensive effects and reversed hypertensive-induced cardiac hypertrophy in SHRs, and therefore RNAi might be a new strategy in controlling hypertension.

  14. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    NASA Astrophysics Data System (ADS)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  15. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination.

    PubMed

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J W; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-12

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  16. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    PubMed Central

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-01-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity. PMID:26868185

  17. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities.

    PubMed

    Ramirez, Jose Luis; Short, Sarah M; Bahia, Ana C; Saraiva, Raul G; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-10-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

  18. HIV-1 vaccine strategies utilizing viral vectors including antigen- displayed inoviral vectors.

    PubMed

    Hassapis, Kyriakos A; Kostrikis, Leondios G

    2013-12-01

    Antigen-presenting viral vectors have been extensively used as vehicles for the presentation of antigens to the immune system in numerous vaccine strategies. Particularly in HIV vaccine development efforts, two main viral vectors have been used as antigen carriers: (a) live attenuated vectors and (b) virus-like particles (VLPs); the former, although highly effective in animal studies, cannot be clinically tested in humans due to safety concerns and the latter have failed to induce broadly neutralizing anti-HIV antibodies. For more than two decades, Inoviruses (non-lytic bacterial phages) have also been utilized as antigen carriers in several vaccine studies. Inoviral vectors are important antigen-carriers in vaccine development due to their ability to present an antigen on their outer architecture in many copies and to their natural high immunogenicity. Numerous fundamental studies have been conducted, which have established the unique properties of antigen-displayed inoviral vectors in HIV vaccine efforts. The recent isolation of new, potent anti-HIV broadly neutralizing monoclonal antibodies provides a new momentum in this emerging technology.

  19. Anopheles coluzzii larval habitat and insecticide resistance in the island area of Manoka, Cameroon.

    PubMed

    Etang, Josiane; Mbida Mbida, Arthur; Ntonga Akono, Patrick; Binyang, Jerome; Eboumbou Moukoko, Carole Else; Lehman, Leopold Gustave; Awono-Ambene, Parfait; Talipouo, Abdou; Ekoko Eyisab, Wolfgang; Tagne, Darus; Tchoffo, Romeo; Manga, Lucien; Mimpfoundi, Remy

    2016-05-20

    The effectiveness of Long-Lasting Insecticidal Nets and Indoor Residual Spraying in malaria vector control is threatened by vector resistance to insecticides. Knowledge of mosquito habitats and patterns of insecticide resistance would facilitate the development of appropriate vector control strategies. Therefore, we investigated An. coluzzii larval habitats and resistance to insecticides in the Manoka rural island area compared with the Youpwe suburban inland area, in Douala VI and II districts respectively. Anopheline larvae and pupae were collected from open water bodies in December 2013 and April 2014 and reared until adult emergence. Two to four day old emerging females were morphologically identified as belonging to the An. gambiae complex and used for WHO susceptibility tests with 4 % DDT, 0.75 % permethrin, and 0.05 % deltamethrin, with or without piperonyl butoxide (PBO) synergist. Control and surviving specimens were identified down to the species using a PCR-RFLP method. Survivors were genotyped for kdr L1014 mutations using Hot Oligonucleotide Ligation Assay. In both study sites, ponds, residual puddles, boats, and drains were identified as the major An. gambiae s.l. larval habitats. A total of 1397 females, including 784 specimens from Manoka and 613 from Youpwe, were used for resistance testing. The two mosquito populations displayed resistance to DDT, permethrin and deltamethrin, with variable mortality rates from 1 % to 90 %. The knock-down times were also significantly increased (at least 2.8 fold). Pre-exposure of mosquitoes to PBO did not impact on their mortality to DDT, conversely the mortality rates to permethrin and deltamethrin were significantly increased (7.56 ≤ X(2) ≤ 48.63, df = 1, p < 0.01), suggesting involvement of P450 oxidases in pyrethroid resistance. A subsample of 400 An. gambiae s.l. specimens including 280 control and 120 survivors from bioassays were all found to be An. coluzzii species. Only the kdr 1014 F mutation was found in survivors, with 88.5 % (N = 76) and 75 % (N = 44) frequencies in Youpwe and Manoka respectively. This is the first report of An. coluzzii resistance to insecticides in an insular area in Cameroon. Since permanent larval habitats have been identified, larval source management strategies may be trialed in this area as complementary vector control interventions.

  20. MIRO and IRbase: IT Tools for the Epidemiological Monitoring of Insecticide Resistance in Mosquito Disease Vectors

    PubMed Central

    Dialynas, Emmanuel; Topalis, Pantelis; Vontas, John; Louis, Christos

    2009-01-01

    Background Monitoring of insect vector populations with respect to their susceptibility to one or more insecticides is a crucial element of the strategies used for the control of arthropod-borne diseases. This management task can nowadays be achieved more efficiently when assisted by IT (Information Technology) tools, ranging from modern integrated databases to GIS (Geographic Information System). Here we describe an application ontology that we developed de novo, and a specially designed database that, based on this ontology, can be used for the purpose of controlling mosquitoes and, thus, the diseases that they transmit. Methodology/Principal Findings The ontology, named MIRO for Mosquito Insecticide Resistance Ontology, developed using the OBO-Edit software, describes all pertinent aspects of insecticide resistance, including specific methodology and mode of action. MIRO, then, forms the basis for the design and development of a dedicated database, IRbase, constructed using open source software, which can be used to retrieve data on mosquito populations in a temporally and spatially separate way, as well as to map the output using a Google Earth interface. The dependency of the database on the MIRO allows for a rational and efficient hierarchical search possibility. Conclusions/Significance The fact that the MIRO complies with the rules set forward by the OBO (Open Biomedical Ontologies) Foundry introduces cross-referencing with other biomedical ontologies and, thus, both MIRO and IRbase are suitable as parts of future comprehensive surveillance tools and decision support systems that will be used for the control of vector-borne diseases. MIRO is downloadable from and IRbase is accessible at VectorBase, the NIAID-sponsored open access database for arthropod vectors of disease. PMID:19547750

  1. [Distribution of Leishmania infantum vector species in Colombia].

    PubMed

    González, Camila; Cabrera, Olga L; Munstermann, Leonard E; Ferro, Cristina

    2006-10-01

    Since entomological surveillance is the main control strategy for visceral leishmaniasis, updated information on the distribution and ecology of involved vector species is necessary for planning preventive measures. To present the updated and geo-referenced distribution of L. longipalpis and L. evansi, vectors of visceral leishmaniasis in Colombia, considering their relationship with their habitat. Distribution was estimated from records of the sand fly specimens collected since 1967. The information was organized in a database from which the localities were selected and geographically analyzed with Arc view in order to develop the distribution maps. 40 localities were established for L. longipalpis along the upper (24), middle (11) and lower (5) Magdalena river valley. L. evansi was recorded in 19 localities of the middle (5) and lower (14) Magdalena valley. Both species showed consistent association with dry tropical forest (sensu Holdridge 1967), confirming the epidemiological risk for visceral leishmaniasis in these areas.

  2. Parasitic diseases and urban development.

    PubMed Central

    Mott, K. E.; Desjeux, P.; Moncayo, A.; Ranque, P.; de Raadt, P.

    1990-01-01

    The distribution and epidemiology of parasitic diseases in both urban and periurban areas of endemic countries have been changing as development progresses. The following different scenarios involving Chagas disease, lymphatic filariasis, leishmaniasis and schistosomiasis are discussed: (1) infected persons entering nonendemic urban areas without vectors; (2) infected persons entering nonendemic urban areas with vectors; (3) infected persons entering endemic urban areas; (4) non-infected persons entering endemic urban areas; (5) urbanization or domestication of natural zoonotic foci; and (6) vectors entering nonendemic urban areas. Cultural and social habits from the rural areas, such as type of house construction and domestic water usage, are adopted by migrants to urban areas and increase the risk of disease transmission which adversely affects employment in urban populations. As the urban health services must deal with the rise in parasitic diseases, appropriate control strategies for the urban setting must be developed and implemented. PMID:2127380

  3. Effective Clipart Image Vectorization through Direct Optimization of Bezigons.

    PubMed

    Yang, Ming; Chao, Hongyang; Zhang, Chi; Guo, Jun; Yuan, Lu; Sun, Jian

    2016-02-01

    Bezigons, i.e., closed paths composed of Bézier curves, have been widely employed to describe shapes in image vectorization results. However, most existing vectorization techniques infer the bezigons by simply approximating an intermediate vector representation (such as polygons). Consequently, the resultant bezigons are sometimes imperfect due to accumulated errors, fitting ambiguities, and a lack of curve priors, especially for low-resolution images. In this paper, we describe a novel method for vectorizing clipart images. In contrast to previous methods, we directly optimize the bezigons rather than using other intermediate representations; therefore, the resultant bezigons are not only of higher fidelity compared with the original raster image but also more reasonable because they were traced by a proficient expert. To enable such optimization, we have overcome several challenges and have devised a differentiable data energy as well as several curve-based prior terms. To improve the efficiency of the optimization, we also take advantage of the local control property of bezigons and adopt an overlapped piecewise optimization strategy. The experimental results show that our method outperforms both the current state-of-the-art method and commonly used commercial software in terms of bezigon quality.

  4. Effect of handling characteristics on minimum time cornering with torque vectoring

    NASA Astrophysics Data System (ADS)

    Smith, E. N.; Velenis, E.; Tavernini, D.; Cao, D.

    2018-02-01

    In this paper, the effect of both passive and actively-modified vehicle handling characteristics on minimum time manoeuvring for vehicles with 4-wheel torque vectoring (TV) capability is studied. First, a baseline optimal TV strategy is sought, independent of any causal control law. An optimal control problem (OCP) is initially formulated considering 4 independent wheel torque inputs, together with the steering angle rate, as the control variables. Using this formulation, the performance benefit using TV against an electric drive train with a fixed torque distribution, is demonstrated. The sensitivity of TV-controlled manoeuvre time to the passive understeer gradient of the vehicle is then studied. A second formulation of the OCP is introduced where a closed-loop TV controller is incorporated into the system dynamics of the OCP. This formulation allows the effect of actively modifying a vehicle's handling characteristic via TV on its minimum time cornering performance of the vehicle to be assessed. In particular, the effect of the target understeer gradient as the key tuning parameter of the literature-standard steady-state linear single-track model yaw rate reference is analysed.

  5. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems.

    PubMed

    Dietrich, Isabelle; Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Brennan, Benjamin; Elliott, Richard M; Diallo, Mawlouth; Sall, Amadou A; Failloux, Anna-Bella; Schnettler, Esther; Kohl, Alain; Becker, Stefanie C

    2017-01-01

    The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus , Bunyaviridae ) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster . We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies.

  6. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems

    PubMed Central

    Jansen, Stephanie; Fall, Gamou; Lorenzen, Stephan; Rudolf, Martin; Huber, Katrin; Heitmann, Anna; Schicht, Sabine; Ndiaye, El Hadji; Watson, Mick; Castelli, Ilaria; Elliott, Richard M.; Diallo, Mawlouth; Sall, Amadou A.; Failloux, Anna-Bella; Schnettler, Esther

    2017-01-01

    ABSTRACT The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster. We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies. PMID:28497117

  7. Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: systematic literature review.

    PubMed

    Boyce, R; Lenhart, A; Kroeger, A; Velayudhan, R; Roberts, B; Horstick, O

    2013-05-01

    To systematically review the literature on the effectiveness of Bacillus thuringiensis israelensis (Bti), when used as a single agent in the field, for the control of dengue vectors. Systematic literature search of the published and grey literature was carried out using the following databases: MEDLINE, EMBASE, Global Health, Web of Science, the Cochrane Library, WHOLIS, ELDIS, the New York Academy of Medicine Gray Literature Report, Africa-Wide and Google. All results were screened for duplicates and assessed for eligibility. Relevant data were extracted, and a quality assessment was conducted using the CONSORT 2010 checklist. Fourteen studies satisfied the eligibility criteria, incorporating a wide range of interventions and outcome measures. Six studies were classified as effectiveness studies, and the remaining eight examined the efficacy of Bti in more controlled settings. Twelve (all eight efficacy studies and 4 of 6 effectiveness studies) reported reductions in entomological indices with an average duration of control of 2-4 weeks. The two effectiveness studies that did not report significant entomological reductions were both cluster-randomised study designs that utilised basic interventions such as environmental management or general education on environment control practices in their respective control groups. Only one study described a reduction in entomological indices together with epidemiological data, reporting one dengue case in the treated area compared to 15 dengue cases in the untreated area during the observed study period. While Bti can be effective in reducing the number of immature Aedes in treated containers in the short term, there is very limited evidence that dengue morbidity can be reduced through the use of Bti alone. There is currently insufficient evidence to recommend the use of Bti as a single agent for the long-term control of dengue vectors and prevention of dengue fever. Further studies examining the role of Bti in combination with other strategies to control dengue vectors are warranted. © 2013 Blackwell Publishing Ltd.

  8. Spatial Repellency and the Field Evaluation of a Push-Pull Strategy for the Control of Malaria Vectors in Northern Belize, Central America

    DTIC Science & Technology

    2014-09-18

    monitoring of knocked down mosquitoes. To control for residual chemical contamination from repellent treatments, all huts and interception traps were...to discontinue any ongoing trial if the institution is found to have contravened any of the above conditions. 7. The applicant shall cover food ...albopictus (Skuse) from Selangor, Malaysia . Trap Biomed 30:220-30 31. Cherington E, Ek E, Cho P, Burgess F, Hernandez B, et al. 2010. Forest Cover and

  9. Stance Postural Strategies in Patients with Chronic Inflammatory Demyelinating Polyradiculoneuropathy

    PubMed Central

    Missori, Paolo; Trompetto, Carlo; Fattapposta, Francesco

    2016-01-01

    Introduction Polyneuropathy leads to postural instability and an increased risk of falling. We investigated how impaired motor impairment and proprioceptive input due to neuropathy influences postural strategies. Methods Platformless bisegmental posturography data were recorded in healthy subjects and patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Each subject stood on the floor, wore a head and a hip electromagnetic tracker. Sway amplitude and velocity were recorded and the mean direction difference (MDD) in the velocity vector between trackers was calculated as a flexibility index. Results Head and hip postural sway increased more in patients with CIDP than in healthy controls. MDD values reflecting hip strategies also increased more in patients than in controls. In the eyes closed condition MDD values in healthy subjects decreased but in patients remained unchanged. Discussion Sensori-motor impairment changes the balance between postural strategies that patients adopt to maintain upright quiet stance. Motor impairment leads to hip postural strategy overweight (eyes open), and prevents strategy re-balancing when the sensory context predominantly relies on proprioceptive input (eyes closed). PMID:26977594

  10. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  11. Annotated Differentially Expressed Salivary Proteins of Susceptible and Insecticide-Resistant Mosquitoes of Anopheles stephensi

    PubMed Central

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission. PMID:25742511

  12. Annotated differentially expressed salivary proteins of susceptible and insecticide-resistant mosquitoes of Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission.

  13. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis.

    PubMed

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-03

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  14. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  15. Cost-effective accurate coarse-grid method for highly convective multidimensional unsteady flows

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Niknafs, H. S.

    1991-01-01

    A fundamentally multidimensional convection scheme is described based on vector transient interpolation modeling rewritten in conservative control-volume form. Vector third-order upwinding is used as the basis of the algorithm; this automatically introduces important cross-difference terms that are absent from schemes using component-wise one-dimensional formulas. Third-order phase accuracy is good; this is important for coarse-grid large-eddy or full simulation. Potential overshoots or undershoots are avoided by using a recently developed universal limiter. Higher order accuracy is obtained locally, where needed, by the cost-effective strategy of adaptive stencil expansion in a direction normal to each control-volume face; this is controlled by monitoring the absolute normal gradient and curvature across the face. Higher (than third) order cross-terms do not appear to be needed. Since the wider stencil is used only in isolated narrow regions (near discontinuities), extremely high (in this case, seventh) order accuracy can be achieved for little more than the cost of a globally third-order scheme.

  16. Challenges in reducing dengue burden; diagnostics, control measures and vaccines.

    PubMed

    Lam, Sai Kit

    2013-09-01

    Dengue is a major public health concern worldwide, with the number of infections increasing globally. The illness imposes the greatest economic and human burden on developing countries that have limited resources to deal with the scale of the problem. No cure for dengue exists; treatment is limited to rehydration therapy, and with vector control strategies proving to be relatively ineffective, a vaccine is an urgent priority. Despite the numerous challenges encountered in the development of a dengue vaccine, several vaccine candidates have shown promise in clinical development and it is believed that a vaccination program would be at least as cost-effective as current vector control programs. The lead candidate vaccine is a tetravalent, live attenuated, recombinant vaccine, which is currently in Phase III clinical trials. Vaccine introduction is a complex process that requires consideration and is discussed here. This review discusses the epidemiology, burden and pathogenesis of dengue, as well as the vaccine candidates currently in clinical development.

  17. Dissociable cognitive mechanisms underlying human path integration.

    PubMed

    Wiener, Jan M; Berthoz, Alain; Wolbers, Thomas

    2011-01-01

    Path integration is a fundamental mechanism of spatial navigation. In non-human species, it is assumed to be an online process in which a homing vector is updated continuously during an outward journey. In contrast, human path integration has been conceptualized as a configural process in which travelers store working memory representations of path segments, with the computation of a homing vector only occurring when required. To resolve this apparent discrepancy, we tested whether humans can employ different path integration strategies in the same task. Using a triangle completion paradigm, participants were instructed either to continuously update the start position during locomotion (continuous strategy) or to remember the shape of the outbound path and to calculate home vectors on basis of this representation (configural strategy). While overall homing accuracy was superior in the configural condition, participants were quicker to respond during continuous updating, strongly suggesting that homing vectors were computed online. Corroborating these findings, we observed reliable differences in head orientation during the outbound path: when participants applied the continuous updating strategy, the head deviated significantly from straight ahead in direction of the start place, which can be interpreted as a continuous motor expression of the homing vector. Head orientation-a novel online measure for path integration-can thus inform about the underlying updating mechanism already during locomotion. In addition to demonstrating that humans can employ different cognitive strategies during path integration, our two-systems view helps to resolve recent controversies regarding the role of the medial temporal lobe in human path integration.

  18. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.

    PubMed

    Zhang, Xianghong; Tang, Sanyi; Cheke, Robert A; Zhu, Huaiping

    2016-10-01

    Dengue fever has rapidly become the world's most common vector-borne viral disease. Use of endosymbiotic Wolbachia is an innovative technology to prevent vector mosquitoes from reproducing and so break the cycle of dengue transmission. However, strategies such as population eradication and replacement will only succeed if appropriate augmentations with Wolbachia-infected mosquitoes that take account of a variety of factors are carried out. Here, we describe the spread of Wolbachia in mosquito populations using an impulsive differential system with four state variables, incorporating the effects of cytoplasmic incompatibility and the augmentation of Wolbachia-infected mosquitoes with different sex ratios. We then evaluated (a) how each parameter value contributes to the success of population replacement; (b) how different release quantities of infected mosquitoes with different sex ratios affect the success of population suppression or replacement; and (c) how the success of these two strategies can be realized to block the transmission of dengue fever. Analysis of the system's stability, bifurcations and sensitivity reveals the existence of forward and backward bifurcations, multiple attractors and the contribution of each parameter to the success of the strategies. The results indicate that the initial density of mosquitoes, the quantities of mosquitoes released in augmentations and their sex ratios have impacts on whether or not the strategies of population suppression or replacement can be achieved. Therefore, successful strategies rely on selecting suitable strains of Wolbachia and carefully designing the mosquito augmentation program.

  19. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa.

    PubMed

    Tonnang, Henri E Z; Kangalawe, Richard Y M; Yanda, Pius Z

    2010-04-23

    Malaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa. The development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios. These results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options. Thus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.

  20. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    NASA Astrophysics Data System (ADS)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  1. Synergy between repellents and organophosphates on bed nets: efficacy and behavioural response of natural free-flying An. gambiae mosquitoes.

    PubMed

    Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabiré, Roch K; Lapied, Bruno; Chandre, Fabrice; Hougard, Jean-Marc

    2009-11-19

    Chemicals are used on bed nets in order to prevent infected bites and to kill aggressive malaria vectors. Because pyrethroid resistance has become widespread in the main malaria vectors, research for alternative active ingredients becomes urgent. Mixing a repellent and a non-pyrethroid insecticide seemed to be a promising tool as mixtures in the laboratory showed the same features as pyrethroids. We present here the results of two trials run against free-flying Anopheles gambiae populations comparing the effects of two insect repellents (either DEET or KBR 3023, also known as icaridin) and an organophosphate insecticide at low-doses (pirimiphos-methyl, PM) used alone and in combination on bed nets. We showed that mixtures of PM and the repellents induced higher exophily, blood feeding inhibition and mortality among wild susceptible and resistant malaria vectors than compounds used alone. Nevertheless the synergistic interactions are only involved in the high mortality induced by the two mixtures. These field trials argue in favour of the strategy of mixing repellent and organophosphate on bed nets to better control resistant malaria vectors.

  2. Mosquitoes of field and forest: the scale of habitat segregation in a diverse mosquito assemblage.

    PubMed

    Reiskind, M H; Griffin, R H; Janairo, M S; Hopperstad, K A

    2017-03-01

    Knowledge of the distribution of arthropod vectors across a landscape is important in determining the risk for vector-borne disease. This has been well explored for ticks, but not for mosquitoes, despite their importance in the transmission of a variety of pathogens. This study examined the importance of habitat, habitat edges, and the scale at which mosquito abundance and diversity vary in a rural landscape by trapping along transects from grassland areas into forest patches. Significant patterns of vector diversity and distinct mosquito assemblages across habitats were found. The scale of individual species' responses to habitat edges was often dramatic, with several species rarely straying even 10 m from the edge. The present results suggest blood-seeking mosquito species are faithful to certain habitats, which has consequences for patterns of vector diversity and risk for pathogen transmission. This implies that analysts of risk for pathogen transmission and foci of control, and developers of land management strategies should assess habitat at a finer scale than previously considered. © 2016 The Royal Entomological Society.

  3. Parasite killing in malaria non-vector mosquito Anopheles culicifacies species B: implication of nitric oxide synthase upregulation.

    PubMed

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K; Prasad, Godavarthi B K S; Sharma, Arun

    2011-04-04

    Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness in planning effective vector control strategies.

  4. Parasite Killing in Malaria Non-Vector Mosquito Anopheles culicifacies Species B: Implication of Nitric Oxide Synthase Upregulation

    PubMed Central

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K.; Prasad, Godavarthi B. K. S.; Sharma, Arun

    2011-01-01

    Background Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. Methodology/Principal Findings We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. Conclusions/Significance We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness in planning effective vector control strategies. PMID:21483693

  5. Hierarchical optimal control of large-scale nonlinear chemical processes.

    PubMed

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  6. The past, present and future use of epidemiological intelligence to plan malaria vector control and parasite prevention in Uganda.

    PubMed

    Talisuna, Ambrose O; Noor, Abdisalan M; Okui, Albert P; Snow, Robert W

    2015-04-15

    An important prelude to developing strategies to control infectious diseases is a detailed epidemiological evidence platform to target cost-effective interventions and define resource needs. A review of published and un-published reports of malaria vector control and parasite prevention in Uganda was conducted for the period 1900-2013. The objective was to provide a perspective as to how epidemiological intelligence was used to design malaria control before and during the global malaria eradication programme (GMEP) and to contrast this with the evidence generated in support of the Roll Back Malaria (RBM) initiative from 1998 to date. During the GMEP era, comprehensive investigations were undertaken on the effectiveness of vector and parasite control such as indoor residual house-spraying (IRS) and mass drug administration (MDA) at different sites in Uganda. Nationwide malariometric surveys were undertaken between 1964 and 1967 to provide a profile of risk, epidemiology and seasonality leading to an evidence-based national cartography of risk to characterize the diversity of malaria transmission in Uganda. At the launch of the RBM initiative in the late 1990s, an equivalent level of evidence was lacking. There was no contemporary national evidence-base for the likely impact of insecticide-treated nets (ITN), no new malariometric data, no new national cartography of malaria risk or any evidence of tailored intervention delivery based on variations in the ecology of malaria risk in Uganda. Despite millions of dollars of overseas development assistance over the last ten years in ITN, and more recently the resurrection of the use of IRS, the epidemiological impact of vector control remains uncertain due to an absence of nationwide basic parasite and vector-based field studies. Readily available epidemiological data should become the future business model to maximize malaria funding from 2015. Over the next five to ten years, accountability, impact analysis, financial business cases supported by a culture of data use should become the new paradigm by which malaria programmes, governments and their development partners operate.

  7. Entomologic and Virologic Investigation of Chikungunya, Singapore

    PubMed Central

    Tan, Li-Kiang; Tan, Cheong-Huat; Tan, Sharon S.Y.; Hapuarachchi, Hapuarachchige C.; Pok, Kwoon-Yong; Lai, Yee-Ling; Lam-Phua, Sai-Gek; Bucht, Göran; Lin, Raymond T.P.; Leo, Yee-Sin; Tan, Boon-Hian; Han, Hwi-Kwang; Ooi, Peng-Lim S; James, Lyn; Khoo, Seow-Poh

    2009-01-01

    Local transmission of chikungunya, a debilitating mosquito-borne viral disease, was first reported in Singapore in January 2008. After 3 months of absence, locally acquired Chikungunya cases resurfaced in May 2008, causing an outbreak that resulted in a total of 231 cases by September 2008. The circulating viruses were related to East, Central, and South African genotypes that emerged in the Indian Ocean region in 2005. The first local outbreak was due to a wild-type virus (alanine at codon 226 of the envelope 1 gene) and occurred in an area where Aedes aegypti mosquitoes were the primary vector. Strains isolated during subsequent outbreaks showed alanine to valine substitution (A226V) and largely spread in areas predominated by Ae. albopictus mosquitoes. These findings led to a revision of the current vector control strategy in Singapore. This report highlights the use of entomologic and virologic data to assist in the control of chikungunya in disease-endemic areas. PMID:19751586

  8. [Challenges and inputs of the gender perspective to the study of vector borne diseases].

    PubMed

    Arenas-Monreal, Luz; Piña-Pozas, Maricela; Gómez-Dantés, Héctor

    2015-01-01

    The analysis of social determinants and gender within the health-disease-care process is an imperative to understand the variables that define the vulnerability of populations, their exposure risks, the determinants of their care, and the organization and participation in prevention and control programs. Ecohealth incorporates the study of the social determinants and gender perspectives because the emergency of dengue, malaria and Chagas disease are bound to unplanned urbanization, deficient sanitary infrastructure, and poor housing conditions. Gender emerges as an explanatory element of the roles played by men and women in the different scenarios (domestic, communitarian and social) that shape exposure risks to vectors and offer a better perspective of success for the prevention, control and care strategies. The objective is to contribute to the understanding on the gender perspective in the analysis of health risks through a conceptual framework.

  9. Entomologic and virologic investigation of Chikungunya, Singapore.

    PubMed

    Ng, Lee-Ching; Tan, Li-Kiang; Tan, Cheong-Huat; Tan, Sharon S Y; Hapuarachchi, Hapuarachchige C; Pok, Kwoon-Yong; Lai, Yee-Ling; Lam-Phua, Sai-Gek; Bucht, Göran; Lin, Raymond T P; Leo, Yee-Sin; Tan, Boon-Hian; Han, Hwi-Kwang; Ooi, Peng-Lim S; James, Lyn; Khoo, Seow-Poh

    2009-08-01

    Local transmission of chikungunya, a debilitating mosquito-borne viral disease, was first reported in Singapore in January 2008. After 3 months of absence, locally acquired Chikungunya cases resurfaced in May 2008, causing an outbreak that resulted in a total of 231 cases by September 2008. The circulating viruses were related to East, Central, and South African genotypes that emerged in the Indian Ocean region in 2005. The first local outbreak was due to a wild-type virus (alanine at codon 226 of the envelope 1 gene) and occurred in an area where Aedes aegypti mosquitoes were the primary vector. Strains isolated during subsequent outbreaks showed alanine to valine substitution (A226V) and largely spread in areas predominated by Ae. albopictus mosquitoes. These findings led to a revision of the current vector control strategy in Singapore. This report highlights the use of entomologic and virologic data to assist in the control of chikungunya in disease-endemic areas.

  10. Community involvement in dengue vector control: cluster randomised trial

    PubMed Central

    Toledo, M E; Rodríguez, M; Gomez, D; Baly, A; Benitez, J R; Van der Stuyft, P

    2009-01-01

    Objective To assess the effectiveness of an integrated community based environmental management strategy to control Aedes aegypti, the vector of dengue, compared with a routine strategy. Design Cluster randomised trial. Setting Guantanamo, Cuba. Participants 32 circumscriptions (around 2000 inhabitants each). Interventions The circumscriptions were randomly allocated to control clusters (n=16) comprising routine Aedes control programme (entomological surveillance, source reduction, selective adulticiding, and health education) and to intervention clusters (n=16) comprising the routine Aedes control programme combined with a community based environmental management approach. Main outcome measures The primary outcome was levels of Aedes infestation: house index (number of houses positive for at least one container with immature stages of Ae aegypti per 100 inspected houses), Breteau index (number of containers positive for immature stages of Ae aegypti per 100 inspected houses), and the pupae per inhabitant statistic (number of Ae aegypti pupae per inhabitant). Results All clusters were subjected to the intended intervention; all completed the study protocol up to February 2006 and all were included in the analysis. At baseline the Aedes infestation levels were comparable between intervention and control clusters: house index 0.25% v 0.20%, pupae per inhabitant 0.44×10−3 v 0.29×10−3. At the end of the intervention these indices were significantly lower in the intervention clusters: rate ratio for house indices 0.49 (95% confidence interval 0.27 to 0.88) and rate ratio for pupae per inhabitant 0.27 (0.09 to 0.76). Conclusion A community based environmental management embedded in a routine control programme was effective at reducing levels of Aedes infestation. Trial registration Current Controlled Trials ISRCTN88405796. PMID:19509031

  11. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions.

    PubMed

    Nkya, Theresia Estomih; Poupardin, Rodolphe; Laporte, Frederic; Akhouayri, Idir; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe

    2014-10-16

    Resistance of mosquitoes to insecticides is mainly attributed to their adaptation to vector control interventions. Although pesticides used in agriculture have been frequently mentioned as an additional force driving the selection of resistance, only a few studies were dedicated to validate this hypothesis and characterise the underlying mechanisms. While insecticide resistance is rising dramatically in Africa, deciphering how agriculture affects resistance is crucial for improving resistance management strategies. In this context, the multigenerational effect of agricultural pollutants on the selection of insecticide resistance was examined in Anopheles gambiae. An urban Tanzanian An. gambiae population displaying a low resistance level was used as a parental strain for a selection experiment across 20 generations. At each generation larvae were selected with a mixture containing pesticides and herbicides classically used in agriculture in Africa. The resistance levels of adults to deltamethrin, DDT and bendiocarb were compared between the selected and non-selected strains across the selection process together with the frequency of kdr mutations. A microarray approach was used for pinpointing transcription level variations selected by the agricultural pesticide mixture at the adult stage. A gradual increase of adult resistance to all insecticides was observed across the selection process. The frequency of the L1014S kdr mutation rose from 1.6% to 12.5% after 20 generations of selection. Microarray analysis identified 90 transcripts over-transcribed in the selected strain as compared to the parental and the non-selected strains. Genes encoding cuticle proteins, detoxification enzymes, proteins linked to neurotransmitter activity and transcription regulators were mainly affected. RT-qPCR transcription profiling of candidate genes across multiple generations supported their link with insecticide resistance. This study confirms the potency of agriculture in selecting for insecticide resistance in malaria vectors. We demonstrated that the recurrent exposure of larvae to agricultural pollutants can select for resistance mechanisms to vector control insecticides at the adult stage. Our data suggest that in addition to selected target-site resistance mutations, agricultural pollutants may also favor cuticle, metabolic and synaptic transmission-based resistance mechanisms. These results emphasize the need for integrated resistance management strategies taking into account agriculture activities.

  12. Development of a domain-specific genetic language to design Chlamydomonas reinhardtii expression vectors.

    PubMed

    Wilson, Mandy L; Okumoto, Sakiko; Adam, Laura; Peccoud, Jean

    2014-01-15

    Expression vectors used in different biotechnology applications are designed with domain-specific rules. For instance, promoters, origins of replication or homologous recombination sites are host-specific. Similarly, chromosomal integration or viral delivery of an expression cassette imposes specific structural constraints. As de novo gene synthesis and synthetic biology methods permeate many biotechnology specialties, the design of application-specific expression vectors becomes the new norm. In this context, it is desirable to formalize vector design strategies applicable in different domains. Using the design of constructs to express genes in the chloroplast of Chlamydomonas reinhardtii as an example, we show that a vector design strategy can be formalized as a domain-specific language. We have developed a graphical editor of context-free grammars usable by biologists without prior exposure to language theory. This environment makes it possible for biologists to iteratively improve their design strategies throughout the course of a project. It is also possible to ensure that vectors designed with early iterations of the language are consistent with the latest iteration of the language. The context-free grammar editor is part of the GenoCAD application. A public instance of GenoCAD is available at http://www.genocad.org. GenoCAD source code is available from SourceForge and licensed under the Apache v2.0 open source license.

  13. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy.

    PubMed

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L

    2016-01-01

    Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. Copyright © 2015. Published by Elsevier Inc.

  14. Bioterrorism Preparedness for Infectious Disease

    DTIC Science & Technology

    2005-01-01

    outbreak. The PDC was asked to use its Geographical Information System (GIS) and Global Positioning System (GPS) technology and capabilities to perform data...improvements in the health system . For example, on May 10, 2002, the Hawaii State Department of Health unveiled plans for its long-term dengue fever...management strategy. The plan included a long-term dengue surveillance system statewide, a statewide mosquito population survey, and ongoing vector control

  15. Prediction, Assessment of the Rift Valley Fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    USDA-ARS?s Scientific Manuscript database

    Historical episodic outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns (El Niño and La Niña) of El Niño Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite ...

  16. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania.

    PubMed

    Nkya, Theresia E; Akhouayri, Idir; Poupardin, Rodolphe; Batengana, Bernard; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe

    2014-01-25

    Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference strain and supported the impact of agriculture on resistance mechanisms with multiple genes encoding pesticide targets, detoxification enzymes and proteins linked to neurotransmitter activity affected. In contrast, resistance mechanisms found in the urban area appeared more specific and more related to the use of insecticides for vector control. Overall, this study confirmed the role of the environment in shaping insecticide resistance in mosquitoes with a major impact of agriculture activities. Results are discussed in relation to resistance mechanisms and the optimization of resistance management strategies.

  17. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale.

    PubMed

    Abad-Franch, Fernando; Zamora-Perea, Elvira; Ferraz, Gonçalo; Padilla-Torres, Samael D; Luz, Sérgio L B

    2015-04-01

    Mosquito-borne pathogens pose major public health challenges worldwide. With vaccines or effective drugs still unavailable for most such pathogens, disease prevention heavily relies on vector control. To date, however, mosquito control has proven difficult, with low breeding-site coverage during control campaigns identified as a major drawback. A novel tactic exploits the egg-laying behavior of mosquitoes to have them disseminate tiny particles of a potent larvicide, pyriproxyfen (PPF), from resting to breeding sites, thus improving coverage. This approach has yielded promising results at small spatial scales, but its wider applicability remains unclear. We conducted a four-month trial within a 20-month study to investigate mosquito-driven dissemination of PPF dust-particles from 100 'dissemination stations' (DSs) deployed in a 7-ha sub-area to surveillance dwellings and sentinel breeding sites (SBSs) distributed over an urban neighborhood of about 50 ha. We assessed the impact of the trial by measuring juvenile mosquito mortality and adult mosquito emergence in each SBS-month. Using data from 1,075 dwelling-months, 2,988 SBS-months, and 29,922 individual mosquitoes, we show that mosquito-disseminated PPF yielded high coverage of dwellings (up to 100%) and SBSs (up to 94.3%). Juvenile mosquito mortality in SBSs (about 4% at baseline) increased by over one order of magnitude during PPF dissemination (about 75%). This led to a >10-fold decrease of adult mosquito emergence from SBSs, from approximately 1,000-3,000 adults/month before to about 100 adults/month during PPF dissemination. By expanding breeding-site coverage and boosting juvenile mosquito mortality, a strategy based on mosquito-disseminated PPF has potential to substantially enhance mosquito control. Sharp declines in adult mosquito emergence can lower vector/host ratios, reducing the risk of disease outbreaks. This approach is a very promising complement to current and novel mosquito control strategies; it will probably be especially relevant for the control of urban disease vectors, such as Aedes and Culex species, that often cause large epidemics.

  18. Mosquito-Disseminated Pyriproxyfen Yields High Breeding-Site Coverage and Boosts Juvenile Mosquito Mortality at the Neighborhood Scale

    PubMed Central

    Abad-Franch, Fernando; Zamora-Perea, Elvira; Ferraz, Gonçalo; Padilla-Torres, Samael D.; Luz, Sérgio L. B.

    2015-01-01

    Background Mosquito-borne pathogens pose major public health challenges worldwide. With vaccines or effective drugs still unavailable for most such pathogens, disease prevention heavily relies on vector control. To date, however, mosquito control has proven difficult, with low breeding-site coverage during control campaigns identified as a major drawback. A novel tactic exploits the egg-laying behavior of mosquitoes to have them disseminate tiny particles of a potent larvicide, pyriproxyfen (PPF), from resting to breeding sites, thus improving coverage. This approach has yielded promising results at small spatial scales, but its wider applicability remains unclear. Methodology/Principal Findings We conducted a four-month trial within a 20-month study to investigate mosquito-driven dissemination of PPF dust-particles from 100 ‘dissemination stations’ (DSs) deployed in a 7-ha sub-area to surveillance dwellings and sentinel breeding sites (SBSs) distributed over an urban neighborhood of about 50 ha. We assessed the impact of the trial by measuring juvenile mosquito mortality and adult mosquito emergence in each SBS-month. Using data from 1,075 dwelling-months, 2,988 SBS-months, and 29,922 individual mosquitoes, we show that mosquito-disseminated PPF yielded high coverage of dwellings (up to 100%) and SBSs (up to 94.3%). Juvenile mosquito mortality in SBSs (about 4% at baseline) increased by over one order of magnitude during PPF dissemination (about 75%). This led to a >10-fold decrease of adult mosquito emergence from SBSs, from approximately 1,000–3,000 adults/month before to about 100 adults/month during PPF dissemination. Conclusions/Significance By expanding breeding-site coverage and boosting juvenile mosquito mortality, a strategy based on mosquito-disseminated PPF has potential to substantially enhance mosquito control. Sharp declines in adult mosquito emergence can lower vector/host ratios, reducing the risk of disease outbreaks. This approach is a very promising complement to current and novel mosquito control strategies; it will probably be especially relevant for the control of urban disease vectors, such as Aedes and Culex species, that often cause large epidemics. PMID:25849040

  19. The effects of the fungus Metarhizium anisopliae var. acridum on different stages of Lutzomyia longipalpis (Diptera: Psychodidae).

    PubMed

    Amóra, Sthenia Santos Albano; Bevilaqua, Claudia Maria Leal; Feijó, Francisco Marlon Carneiro; Pereira, Romeika Hermínia de Macedo Assunção; Alves, Nilza Dutra; Freire, Fúlvio Aurélio de Morais; Kamimura, Michel Toth; de Oliveira, Diana Magalhães; Luna-Alves Lima, Elza Aurea; Rocha, Marcos Fábio Gadelha

    2010-03-01

    The control of Visceral Leishmaniasis (VL) vector is often based on the application of chemical residual insecticide. However, this strategy has not been effective. The continuing search for an appropriate vector control may include the use of biological control. This study evaluates the effects of the fungus Metarhizium anisopliae var. acridum on Lutzomyia longipalpis. Five concentrations of the fungus were utilized, 1 x 10(4) to 1 x 10(8) conidia/ml, accompanied by controls. The unhatched eggs, larvae and dead adults previously exposed to fungi were sown to reisolate the fungi and analysis of parameters of growth. The fungus was subsequently identified by PCR and DNA sequencing. M. anisopliae var. acridum reduced egg hatching by 40%. The mortality of infected larvae was significant. The longevity of infected adults was lower than that of negative controls. The effects of fungal infection on the hatching of eggs laid by infected females were also significant. With respect to fungal growth parameters post-infection, only vegetative growth was not significantly higher than that of the fungi before infection. The revalidation of the identification of the reisolated fungus was confirmed post-passage only from adult insects. In terms of larvae mortality and the fecundity of infected females, the results were significant, proving that the main vector species of VL is susceptible to infection by this entomopathogenic fungus in the adult stage. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Molecular Genetics Reveal That Silvatic Rhodnius prolixus Do Colonise Rural Houses

    PubMed Central

    Fitzpatrick, Sinead; Feliciangeli, Maria Dora; Sanchez-Martin, Maria J.; Monteiro, Fernando A.; Miles, Michael A.

    2008-01-01

    Background Rhodnius prolixus is the main vector of Chagas disease in Venezuela. Here, domestic infestations of poor quality rural housing have persisted despite four decades of vector control. This is in contrast to the Southern Cone region of South America, where the main vector, Triatoma infestans, has been eliminated over large areas. The repeated colonisation of houses by silvatic populations of R. prolixus potentially explains the control difficulties. However, controversy surrounds the existence of silvatic R. prolixus: it has been suggested that all silvatic populations are in fact Rhodnius robustus, a related species of minor epidemiological importance. Here we investigate, by direct sequencing (mtcytb, D2) and by microsatellite analysis, 1) the identity of silvatic Rhodnius and 2) whether silvatic populations of Rhodnius are isolated from domestic populations. Methods and Findings Direct sequencing confirmed the presence of R. prolixus in palms and that silvatic bugs can colonise houses, with house and palm specimens sharing seven cytb haplotypes. Additionally, mitochondrial introgression was detected between R. robustus and R. prolixus, indicating a previous hybridisation event. The use of ten polymorphic microsatellite loci revealed a lack of genetic structure between silvatic and domestic ecotopes (non-significant FST values), which is indicative of unrestricted gene flow. Conclusions Our analyses demonstrate that silvatic R. prolixus presents an unquestionable threat to the control of Chagas disease in Venezuela. The design of improved control strategies is essential for successful long term control and could include modified spraying and surveillance practices, together with housing improvements. PMID:18382605

  1. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses.

    PubMed

    Fitzpatrick, Sinead; Feliciangeli, Maria Dora; Sanchez-Martin, Maria J; Monteiro, Fernando A; Miles, Michael A

    2008-04-02

    Rhodnius prolixus is the main vector of Chagas disease in Venezuela. Here, domestic infestations of poor quality rural housing have persisted despite four decades of vector control. This is in contrast to the Southern Cone region of South America, where the main vector, Triatoma infestans, has been eliminated over large areas. The repeated colonisation of houses by silvatic populations of R. prolixus potentially explains the control difficulties. However, controversy surrounds the existence of silvatic R. prolixus: it has been suggested that all silvatic populations are in fact Rhodnius robustus, a related species of minor epidemiological importance. Here we investigate, by direct sequencing (mtcytb, D2) and by microsatellite analysis, 1) the identity of silvatic Rhodnius and 2) whether silvatic populations of Rhodnius are isolated from domestic populations. Direct sequencing confirmed the presence of R. prolixus in palms and that silvatic bugs can colonise houses, with house and palm specimens sharing seven cytb haplotypes. Additionally, mitochondrial introgression was detected between R. robustus and R. prolixus, indicating a previous hybridisation event. The use of ten polymorphic microsatellite loci revealed a lack of genetic structure between silvatic and domestic ecotopes (non-significant F(ST) values), which is indicative of unrestricted gene flow. Our analyses demonstrate that silvatic R. prolixus presents an unquestionable threat to the control of Chagas disease in Venezuela. The design of improved control strategies is essential for successful long term control and could include modified spraying and surveillance practices, together with housing improvements.

  2. The Flies and Eyes project: design and methods of a cluster-randomised intervention study to confirm the importance of flies as trachoma vectors in The Gambia and to test a sustainable method of fly control using pit latrines.

    PubMed

    Emerson, Paul M; Lindsay, Steve W; Walraven, Gijs E L; Dibba, Sheikh Mafuji; Lowe, Kebba O; Bailey, Robin L

    2002-04-01

    The Flies and Eyes project is a community-based, cluster-randomised, intervention trial based in a rural area of The Gambia. It was designed to prove whether flies are mechanical vectors of trachoma; to quantify the relative importance of flies as vectors of trachoma and to test the effectiveness of insecticide spraying and the provision of latrines in trachoma control. A total of 21 clusters, each composed of 300-550 people, are to be recruited in groups of three. One cluster from each group is randomly allocated to receive insecticide spraying, one to receive pit latrines and the remaining to act as a control. The seven groups of clusters are recruited on a step-wise basis separated by two months to aid logistics and allow all seasons to be covered. Standardised, validated trachoma surveys are conducted for people of all ages and both sexes at baseline and six months post intervention. The Muscid fly population is monitored using standard traps and fly-eye contact is measured with catches of flies direct from children's faces. The Flies and Eyes project has been designed to strengthen the evidence base for the 'E' component of the SAFE strategy for trachoma control. The results will assist programme planners and country co-ordinators to make informed decisions on the environmental aspects of trachoma control.

  3. Targeting ticks for control of selected hemoparasitic diseases of cattle.

    PubMed

    Kocan, K M

    1995-03-01

    Development in and transmission of hemoparasites by tick vectors are phenomena closely synchronized with the tick feeding cycle. In all known life cycles, initial infection of tick tissues occurs in midgut epithelial cells and transmission is effected as ticks feed after parasites have developed and multiplied in salivary glands. Many factors reviewed affect development and transmission of hemoparasites by ticks including age of ticks, artificial temperature, climate and/or season, tick stage or sex, hemoparasite variation, concurrent infection of ticks with other pathogens, host cell susceptibility, transovarial transmission, effect of hemoparasites on tick biology, and the effect of infecting parasitemia level in cattle on infection rates in ticks. Four hemoparasites of cattle, Anaplasma marginale, Cowdria ruminantium, Theileria parva, and Babesia spp., are all dependent on ticks for biological transmission. Babesia is transmitted transovarially whereas the other three are transmitted transstadially. Mechanical transfer of infective blood via fomites and mouthparts of biting arthropods is also a major means of transmission for Anaplasma marginale but not of the others. Potential control methods for hemoparasites that target parasites as they are developing in their respective tick hosts include tick control, vaccines (against ticks and parasites), and drugs (against ticks and parasites). Successful application of control strategies will be dependent upon thorough understanding of parasite developmental cycles, biology of the tick vectors and the immune response of cattle to ticks and to hemoparasites. The most effective control measures will be those that are targeted against both ticks and the hemoparasites they vector.

  4. Pesticide susceptibility status of Anopheles mosquitoes in four flood-affected districts of South Punjab, Pakistan.

    PubMed

    Rathor, Hamayun Rashid; Nadeem, Ghazala; Khan, Imtinan Akram

    2013-01-01

    Recent floods drastically increased the burden of disease, in particular the incidence of malaria, in the southern districts of the Punjab province in Pakistan. Control of malaria vector mosquitoes in these districts requires the adoption of an appropriate evidence-based policy on the use of pesticides, and having the latest information on the insecticide resistance status of malaria vector mosquitoes is essential for designing effective disease prevention policy. Using World Health Organization (WHO) test kits, the present study utilized papers impregnated with DDT, malathion, deltamethrin, lambda-cyhalothrin, and permethrin, to determine the insecticide susceptibility/resistance status of malaria vector mosquitoes in four flood-affected districts. The test results showed that both Anopheles stephensi and Anopheles culicifacies remained resistant to DDT and malathion. Tests with three commonly used pyrethroids, permethrin, lambda-cyhalothrin, and deltamethrin, detected resistance in the majority of cases, but in a number of localities mortalities with these three pyrethroids ranged from 80-97% and were therefore placed under verification-required status. This status indicates the presence of susceptible individuals in these populations. These results suggest that if appropriate resistance management strategies are applied in these areas, then the development of high levels of resistance can still be prevented or slowed. This study forms an important evidence base for the strategic planning of vector control in the four flood-affected districts.

  5. Socio-economic, Knowledge Attitude Practices (KAP), household related and demographic based appearance of non-dengue infected individuals in high dengue risk areas of Kandy District, Sri Lanka.

    PubMed

    Udayanga, Lahiru; Gunathilaka, Nayana; Iqbal, M C M; Pahalagedara, Kusumawathie; Amarasinghe, Upali S; Abeyewickreme, Wimaladharma

    2018-02-21

    Socio-economic, demographic factors and Knowledge Attitude Practices (KAPs) have been recognized as critical factors that influence the incidence and transmission of dengue epidemics. However, studies that characterize above features of a risk free or low risk population are rare. Therefore, the present study was conducted to characterize the household related, demographic, socio-economic factors and KAPs status of five selected dengue free communities. An analytical cross-sectional survey was conducted on selected demographic, socio-economic, household related and KAPs in five selected dengue free communities living in dengue risk areas within Kandy District, Central Province, Sri Lanka. Household heads of 1000 randomly selected houses were interviewed in this study. Chi-square test for independence, cluster analysis and Principal Coordinates (PCO) analysis were used for data analysis. Knowledge and awareness regarding dengue, (prevention of the vector breeding, bites of mosquitoes, disease symptoms and waste management) and attitudes of the community (towards home gardening, composting, waste management and maintenance of a clean and dengue free environment) are associated with the dengue free status of the study populations. The vector controlling authorities should focus on socio-economic, demographic and KAPs in stimulating the community to cooperate in the integrated vector management strategies to improve vector control and reduce transmission of dengue within Kandy District.

  6. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control

    PubMed Central

    2010-01-01

    Background In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Methods Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. Results The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. Conclusion The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed. PMID:21182774

  7. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control.

    PubMed

    Van Bortel, Wim; Trung, Ho Dinh; Hoi, Le Xuan; Van Ham, Nguyen; Van Chut, Nguyen; Luu, Nguyen Dinh; Roelants, Patricia; Denis, Leen; Speybroeck, Niko; D'Alessandro, Umberto; Coosemans, Marc

    2010-12-23

    In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed.

  8. Proteome-wide analysis of Anopheles culicifacies mosquito midgut: new insights into the mechanism of refractoriness.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Singh, Jagbir; Adak, Tridibesh; Sharma, Arun

    2018-05-08

    Midgut invasion, a major bottleneck for malaria parasites transmission is considered as a potential target for vector-parasite interaction studies. New intervention strategies are required to explore the midgut proteins and their potential role in refractoriness for malaria control in Anopheles mosquitoes. To better understand the midgut functional proteins of An. culicifacies susceptible and refractory species, proteomic approaches coupled with bioinformatics analysis is an effective means in order to understand the mechanism of refractoriness. In the present study, an integrated in solution- in gel trypsin digestion approach, along with Isobaric tag for relative and absolute quantitation (iTRAQ)-Liquid chromatography/Mass spectrometry (LC/MS/MS) and data mining were performed to identify the proteomic profile and differentially expressed proteins in Anopheles culicifacies susceptible species A and refractory species B. Shot gun proteomics approaches led to the identification of 80 proteins in An. culicifacies susceptible species A and 92 in refractory species B and catalogue was prepared. iTRAQ based proteomic analysis identified 48 differentially expressed proteins from total 130 proteins. Of these, 41 were downregulated and 7 were upregulated in refractory species B in comparison to susceptible species A. We report that the altered midgut proteins identified in naturally refractory mosquitoes are involved in oxidative phosphorylation, antioxidant and proteolysis process that may suggest their role in parasite growth inhibition. Furthermore, real time polymerase chain reaction (PCR) analysis of few proteins indicated higher expression of iTRAQ upregulated protein in refractory species than susceptible species. This study elucidates the first proteome of the midguts of An. culicifacies sibling species that attempts to analyze unique proteogenomic interactions to provide insights for better understanding of the mechanism of refractoriness. Functional implications of these upregulated proteins in refractory species may reflect the phenotypic characteristics of the mosquitoes and will improve our understandings of blood meal digestion process, parasite vector interactions and proteomes of other vectors of human diseases for development of novel vector control strategies.

  9. Current Source Based on H-Bridge Inverter with Output LCL Filter

    NASA Astrophysics Data System (ADS)

    Blahnik, Vojtech; Talla, Jakub; Peroutka, Zdenek

    2015-09-01

    The paper deals with a control of current source with an LCL output filter. The controlled current source is realized as a single-phase inverter and output LCL filter provides low ripple of output current. However, systems incorporating LCL filters require more complex control strategies and there are several interesting approaches to the control of this type of converter. This paper presents the inverter control algorithm, which combines model based control with a direct current control based on resonant controllers and single-phase vector control. The primary goal is to reduce the current ripple and distortion under required limits and provides fast and precise control of output current. The proposed control technique is verified by measurements on the laboratory model.

  10. Novel MSVPWM to reduce the inductor current ripple for Z-source inverter in electric vehicle applications.

    PubMed

    Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang

    2014-01-01

    A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results.

  11. Novel MSVPWM to Reduce the Inductor Current Ripple for Z-Source Inverter in Electric Vehicle Applications

    PubMed Central

    Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang

    2014-01-01

    A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results. PMID:24883412

  12. Abate distribution and dengue control in rural Cambodia.

    PubMed

    Khun, Sokrin; Manderson, Lenore H

    2007-02-01

    Sustainable public health and community collaboration and partnerships are essential for the effective elimination of vector breeding sites to prevent dengue fever. A prerequisite is that community members appreciate the importance of the infection, understand its transmission and preventive activities, and are able to translate such knowledge to action. In this paper, we draw on an ethnographic study of two villages in the eastern province of Kampong Cham, using data collected from qualitative research methods and entomological surveys to describe community knowledge of the vector, practices related to the reduction of breeding sources, and the effectiveness of temephos to control larvae. During the study period, temephos (distributed as Abate) was applied in water containers only in the rainy season, although these containers were also positive with larvae in the dry season. Discarded containers, ignored in terms of control activities, had twice the number of larvae as water storage containers. The continued reliance on Abate creates financial and technical problems, while its inappropriate distribution raises the possibility of larvicide resistance. Based on research findings, we argue that control strategies emphasizing the use of Abate should be reconsidered.

  13. Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa).

    PubMed

    Poda, Serge B; Soma, Dieudonné D; Hien, Aristide; Namountougou, Moussa; Gnankiné, Olivier; Diabaté, Abdoulaye; Fournet, Florence; Baldet, Thierry; Mas-Coma, Santiago; Mosqueira, Beatriz; Dabiré, Roch K

    2018-04-02

    A novel strategy applying an organophosphate-based insecticide paint on doors and windows in combination with long-lasting insecticide-treated nets (LLINs) was tested for the control of pyrethroid-resistant malaria vectors in a village setting in Vallée du Kou, a rice-growing area west of Burkina Faso. Insecticide Paint Inesfly 5A IGR™, comprised of two organophosphates and an insect growth regulator, was applied to doors and windows and tested in combination with pyrethroid-treated LLINs. The killing effect was monitored for 5 months by early morning collections of anophelines and other culicids. The residual efficacy was evaluated monthly by WHO bioassays using Anopheles gambiae 'Kisumu' and local populations of Anopheles coluzzii resistant to pyrethroids. The spatial mortality efficacy (SME) at distances of 1 m was also assessed against pyrethroid-susceptible and -resistant malaria vectors. The frequency of L1014F kdr and Ace-1 R G119S mutations was, respectively, reported throughout the study. The Insecticide Paint Inesfly 5A IGR had been tested in past studies yielding a long-term mortality rate of 80% over 12 months against An. coluzzii, the local pyrethroid-resistant malaria vector. The purpose of the present study is to test if treating smaller, targeted surfaces (e.g. doors and windows) was also efficient in killing malaria vectors. Treating windows and doors alone yielded a killing efficacy of 100% for 1 month against An. coluzzii resistant to pyrethroids, but efficacy reduced quickly afterwards. Likewise, WHO cone bioassays yielded mortalities of 80-100% for 2 months but declined to 90 and 40% 2 and 3 months after treatment, respectively. Mosquitoes exposed to insecticide paint-treated surfaces at distances of 1 m, yielded mortality rates of about 90-80% against local pyrethroids-resistant An. coluzzii during the first 2 months, but decreased to 30% afterwards. Anopheles coluzzii was reported to be exclusively the local malaria vector and resistant to pyrethroids with high L1014 kdr frequency. The combination of insecticide paint on doors and windows with LLINs yielded high mortality rates in the short term against wild pyrethroid-resistant malaria vector populations. A high SME was observed against laboratory strains of pyrethroid-resistant malaria vectors placed for 30 min at 1 m from the treated/control walls. The application of the insecticide paint on doors and windows led to high but short-lasting mortality rates. The strategy may be an option in a context where low cost, rapid responses need to be implemented in areas where malaria vectors are resistant to pyrethroids.

  14. Instruction-based clinical eye-tracking study on the visual interpretation of divergence: How do students look at vector field plots?

    NASA Astrophysics Data System (ADS)

    Klein, P.; Viiri, J.; Mozaffari, S.; Dengel, A.; Kuhn, J.

    2018-06-01

    Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux concept. We test the effectiveness of both strategies in an instruction-based eye-tracking study with N =41 physics majors. We found that students' performance improved when both strategies were introduced (74% correct) instead of only one strategy (64% correct), and students performed best when they were free to choose between the two strategies (88% correct). This finding supports the idea of introducing multiple representations of a physical concept to foster student understanding. Relevant eye-tracking measures demonstrate that both strategies imply different visual processing of the vector field plots, therefore reflecting conceptual differences between the strategies. Advanced analysis methods further reveal significant differences in eye movements between the best and worst performing students. For instance, the best students performed predominantly horizontal and vertical saccades, indicating correct interpretation of partial derivatives. They also focused on smaller regions when they balanced positive and negative flux. This mixed-method research leads to new insights into student visual processing of vector field representations, highlights the advantages and limitations of eye-tracking methodologies in this context, and discusses implications for teaching and for future research. The introduction of saccadic direction analysis expands traditional methods, and shows the potential to discover new insights into student understanding and learning difficulties.

  15. Malaria control in Nicaragua: social and political influences on disease transmission and control activities.

    PubMed

    Garfield, R

    1999-07-31

    Throughout Central America, a traditional malaria control strategy (depending on heavy use of organic pesticides) became less effective during the 1970s. In Nicaragua, an alternative strategy, based on frequent local epidemiological assessments and community participation, was developed in the 1980s. Despite war-related social instability, and continuing vector resistance, this approach was highly successful. By the end of the contra war, there finally existed organisational and ecological conditions that favoured improved malaria control. Yet the expected improvements did not occur. In the 1990s, Nicaragua experienced its worst recorded malaria epidemics. This situation was partly caused by the country's macroeconomic structural adjustment programme. Volunteers now take fewer slides and provide less treatment, malaria control workers are less motivated by the spirit of public service, and some malaria control stations charge for diagnosis or treatment. To "roll back malaria", in Nicaragua at least, will require the roll-back of some erroneous aspects of structural adjustment.

  16. Changing strategy in malaria control

    PubMed Central

    Pampana, E. J.

    1954-01-01

    Residual-insecticide spraying methods may lead to the eradication of malaria from a country or from an area of it, and therefore to the possibility that the spraying campaign may eventually be discontinued. This is the final target to be aimed at in planning national malaria-control campaigns. As it is now known that some anopheline vector species may develop resistance to insecticides, a plea is made that control programmes should be planned to cover such large areas and with such criteria of efficiency as to eradicate malaria and to enable the campaign to be discontinued before resistance may have developed. PMID:13209311

  17. "We need people to collaborate together against this disease": A qualitative exploration of perceptions of dengue fever control in caregivers' of children under 5 years, in the Peruvian Amazon

    PubMed Central

    Beales, Emily R.; de Wildt, Gilles; Meza Sanchez, Graciela; Jones, Laura L.

    2017-01-01

    Background Dengue Fever presents a significant and growing burden of disease to endemic countries, where children are at particular risk. Worldwide, no effective anti-viral treatment has been identified, thus vector control is key for disease prevention, particularly in Peru where no vaccine is currently available. This qualitative study aimed to explore the perceptions of dengue control in caregivers’ of children under 5 years in Peru, to help direct future mosquito control programmes and strategy. Methods Eighteen semi-structured interviews were conducted in one health centre in Iquitos, Peru. Interviews were audio-recorded, transcribed and translated by an independent translator. Data were analysed using an inductive thematic approach. Findings Three core analytic themes were interpreted: (1) awareness of dengue and its control, (2) perceived susceptibility of children, rural riverside communities and city inhabitants, and (3) perceived responsibility of vector control. Participants were aware of dengue symptoms, transmission and larvae eradication strategies. Misconceptions about the day-time biting behaviour of the Aedes aegypti mosquito and confusion with other mosquito-borne diseases influenced preventative practice. Community-wide lack of cooperation was recognised as a key barrier. This was strengthened by attitudes that the government or health centre were responsible for dengue control and a belief that the disease cannot be prevented through individual actions. Participants felt powerless to prevent dengue due to assumed inevitability of infection and lack of faith in preventative practices. However, children and rural communities were believed to be most vulnerable. Conclusions Perceptions of dengue control amongst caregivers to under 5’s were important in shaping their likelihood to participate in preventative practices. There is a need to address the perceived lack of community cooperation through strategies creating a sense of ownership of community control and enhancing social responsibility. The belief that dengue cannot be prevented by individual actions in a community also warrants attention. Specific misconceptions about dengue should be addressed through the community health worker system and further research directed to identify the needs of certain vulnerable groups. PMID:28873408

  18. "We need people to collaborate together against this disease": A qualitative exploration of perceptions of dengue fever control in caregivers' of children under 5 years, in the Peruvian Amazon.

    PubMed

    Frank, Amy L; Beales, Emily R; de Wildt, Gilles; Meza Sanchez, Graciela; Jones, Laura L

    2017-09-01

    Dengue Fever presents a significant and growing burden of disease to endemic countries, where children are at particular risk. Worldwide, no effective anti-viral treatment has been identified, thus vector control is key for disease prevention, particularly in Peru where no vaccine is currently available. This qualitative study aimed to explore the perceptions of dengue control in caregivers' of children under 5 years in Peru, to help direct future mosquito control programmes and strategy. Eighteen semi-structured interviews were conducted in one health centre in Iquitos, Peru. Interviews were audio-recorded, transcribed and translated by an independent translator. Data were analysed using an inductive thematic approach. Three core analytic themes were interpreted: (1) awareness of dengue and its control, (2) perceived susceptibility of children, rural riverside communities and city inhabitants, and (3) perceived responsibility of vector control. Participants were aware of dengue symptoms, transmission and larvae eradication strategies. Misconceptions about the day-time biting behaviour of the Aedes aegypti mosquito and confusion with other mosquito-borne diseases influenced preventative practice. Community-wide lack of cooperation was recognised as a key barrier. This was strengthened by attitudes that the government or health centre were responsible for dengue control and a belief that the disease cannot be prevented through individual actions. Participants felt powerless to prevent dengue due to assumed inevitability of infection and lack of faith in preventative practices. However, children and rural communities were believed to be most vulnerable. Perceptions of dengue control amongst caregivers to under 5's were important in shaping their likelihood to participate in preventative practices. There is a need to address the perceived lack of community cooperation through strategies creating a sense of ownership of community control and enhancing social responsibility. The belief that dengue cannot be prevented by individual actions in a community also warrants attention. Specific misconceptions about dengue should be addressed through the community health worker system and further research directed to identify the needs of certain vulnerable groups.

  19. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control

    PubMed Central

    Gabrieli, Paolo; Buckee, Caroline O.; Catteruccia, Flaminia

    2016-01-01

    The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance. PMID:27977810

  20. Field site selection: getting it right first time around

    PubMed Central

    Malcolm, Colin A; El Sayed, Badria; Babiker, Ahmed; Girod, Romain; Fontenille, Didier; Knols, Bart GJ; Nugud, Abdel Hameed; Benedict, Mark Q

    2009-01-01

    The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract - just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT. PMID:19917079

  1. Factoring nonviral gene therapy into a cure for hemophilia A.

    PubMed

    Gabrovsky, Vanessa; Calos, Michele P

    2008-10-01

    Gene therapy for hemophilia A has fallen short of success despite several clinical trials conducted over the past decade. Challenges to its success include vector immunogenicity, insufficient transgene expression levels of Factor VIII, and inhibitor antibody formation. Gene therapy has been dominated by the use of viral vectors, as well as the immunogenic and oncogenic concerns that accompany these strategies. Because of the complexity of viral vectors, the development of nonviral DNA delivery methods may provide an efficient and safe alternative for the treatment of hemophilia A. New types of nonviral strategies, such as DNA integrating vectors, and the success of several nonviral animal studies, suggest that nonviral gene therapy has curative potential and justifies its clinical development.

  2. Vineyard Colonization by Hyalesthes obsoletus (Hemiptera: Cixiidae) Induced by Stinging Nettle Cut Along Surrounding Ditches.

    PubMed

    Mori, N; Pozzebon, A; Duso, C; Reggiani, N; Pavan, F

    2016-02-01

    Stinging nettle (Urtica dioica L.) is the most important host plant for both phytoplasma associated with Bois noir disease of the grapevine and its vector Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). Vector abundance in vineyards is favored by stinging nettle growing in surrounding areas. Nettle control by herbicides or cutting can reduce vector population in vineyards. However, chemical weeding can cause environmental problems. Many authors suggest that stinging nettle control applied during H. obsoletus flight could force adults to migrate into vineyards. We evaluate if cutting of nettle growing along ditches during adult flight favors vineyard colonization by H. obsoletus. Three different weed management regimes ("no cuts," "one cut" just before the beginning of adult flight, and "frequent cuts" over the whole vegetative season) were applied to the herbaceous vegetation in ditches bordering two vineyards. The flight dynamics of H. obsoletus were recorded by placing yellow sticky traps on the vegetation along the ditches and at different positions in the vineyards. Frequent stinging nettle cuts (compared with a single cut) in surrounding areas favored the dispersion of vectors inside the vineyards. Stinging nettle control should be based on an integration of a single herbicide application before H. obsoletus emergence followed by frequent cuts to minimize negative side effects of chemical weeding. In organic viticulture, a frequent-cuts strategy should avoid cuts during H. obsoletus flight period, at least in the first year of adoption. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Preparing the United States for Zika Virus: Pre-emptive Vector Control and Personal Protection.

    PubMed

    Diaz, James H

    2016-12-01

    Discovered in 1947 in a monkey in the Zika forest of Uganda, Zika virus was dismissed as a cause of a mild illness that was confined to Africa and Southeast Asia and transmitted by Aedes mosquitoes. In 2007, Zika virus appeared outside of its endemic borders in an outbreak on the South Pacific Island of Yap. In 2013, Zika virus was associated with a major neurological complication, Guillain-Barré syndrome, in a larger outbreak in the French Polynesian Islands. From the South Pacific, Zika invaded Brazil in 2015 and caused another severe neurological complication, fetal microcephaly. The mosquito-borne transmission of Zika virus can be propagated by sexual transmission and, possibly, by blood transfusions, close personal contacts, and organ transplants, like other flaviviruses. Since these combined mechanisms of infectious disease transmission could result in catastrophic incidences of severe neurological diseases in adults and children, the public should know what to expect from Zika virus, how to prevent infection, and what the most likely failures in preventive measures will be. With federal research funding stalled, a Zika vaccine is far away. The only national strategies to prepare the United States for Zika virus invasion now are effective vector control measures and personal protection from mosquito bites. In addition to a basic knowledge of Aedes mosquito vectors and their biting behaviors, an understanding of simple household vector control measures, and the selection of the best chemical and physical mosquito repellents will be required to repel the Zika threat. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?

    PubMed

    Chadee, Dave D; Martinez, Raymond

    2016-04-01

    Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Importance of intersectoral co-ordination in the control of communicable diseases, with special reference to plague in Tanzania.

    PubMed

    Kilonzo, B S

    1994-07-01

    Human health, agriculture, including livestock, energy, education, wildlife, construction, forestry and trade sectors are inter-related and their co-ordination is an important pre-requisite for successful control of most communicable diseases including plague. Similar linkage between research, policy, training and extension activities in each sector are essential for any successful control strategy. Inadequate agricultural produce, inaccessibility of people to the available food and ignorance on proper preparation and usage of available food materials are responsible for malnutrition, and malnourished people are very vulnerable to disease. Irrigation schemes facilitate breeding of various disease vectors and transmission of some communicable diseases. Forests are ecologically favourable for some disease vectors and reservoirs for tsetse flies and rodents, while deforestation leads to soil erosion, lack of rainfall and consequently reduced productivity in agriculture which may result in poor nutrition of the population. Wildlife and livestock serve as reservoirs and/or carriers of various zoonoses including plague, trypanosomiasis and rabies. Lack of proper co-ordination of these sectors in communicable disease control programmes can result in serious and undesirable consequences. Indiscriminate killing of rodents in order to minimize food damage by these vermin forces their flea ectoparasites to seek alternative hosts, including man, a development which may result in transmission of plague from rodents to man. Similarly, avoidance of proper quarantine during plague epidemics, an undertaking which is usually aimed at maintaining economic and social links with places outside the affected focus, can result in the disease becoming widespread and consequently make any control strategies more difficult and expensive.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Creating orbiting vorticity vectors in magnetic particle suspensions through field symmetry transitions–a route to multi-axis mixing

    DOE PAGES

    Martin, James E.; Solis, Kyle Jameson

    2015-11-09

    It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less

  7. Surveillance of malaria vector population density and biting behaviour in western Kenya.

    PubMed

    Ototo, Ednah N; Mbugi, Jenard P; Wanjala, Christine L; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2015-06-17

    Malaria is a great public health burden and Africa suffers the largest share of malaria-attributed deaths. Despite control efforts targeting indoor malaria transmission, such as insecticide-treated bed nets (ITNs) and deployment of indoor residual spraying, transmission of the parasite in western Kenya is still maintained. This study was carried out to determine the impact of ITNs on indoor vector densities and biting behaviour in western Kenya. Indoor collection of adult mosquitoes was done monthly in six study sites in western Kenya using pyrethrum spray collections from 2012 to 2014. The rotator trap collections were done in July-August in 2013 and May-June in 2014. Mosquitoes were collected every 2 h between 18.00 and 08.00 h. Human behaviour study was conducted via questionnaire surveys. Species within Anopheles gambiae complex was differentiated by PCR and sporozoite infectivity was determined by ELISA. Species distribution was determined and bed net coverage in the study sites was recorded. During the study a total of 5,469 mosquito vectors were collected from both PSC and Rotator traps comprising 3,181 (58.2%) Anopheles gambiae and 2,288 (41.8%) Anopheles funestus. Compared to all the study sites, Rae had the highest density of An. gambiae with a mean of 1.2 (P<0.001) while Kombewa had the highest density of An. funestus with a mean of 1.08 (P<0.001). Marani had the lowest density of vectors with 0.06 An. gambiae and 0.17 An. funestus (P<0.001). Among the 700 PCR confirmed An. gambiae s.l. individuals, An. gambiae s.s. accounted for 49% and An. arabiensis 51%. Over 50% of the study population stayed outdoors between 18.00 and 20.00 and 06.00 and 08.00 which was the time when highest densities of blood fed vectors were collected. Anopheles gambie s.s. was the main malaria parasite vector in the highland sites and An. arabiensis in the lowland sites. Bed net ownership in 2012 averaged 87% across the study sites. This study suggests that mass distribution of ITNs has had a significant impact on vector densities, species distribution and sporozoite rate. However, shift of biting time poses significant threats to the current malaria vector control strategies which heavily rely on indoor controls.

  8. A Robust H ∞ Controller for an UAV Flight Control System.

    PubMed

    López, J; Dormido, R; Dormido, S; Gómez, J P

    2015-01-01

    The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

  9. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    PubMed Central

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  10. Integrating vector control across diseases.

    PubMed

    Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W

    2015-10-01

    Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.

  11. Instruction-Based Clinical Eye-Tracking Study on the Visual Interpretation of Divergence: How Do Students Look at Vector Field Plots?

    ERIC Educational Resources Information Center

    Klein, P.; Viiri, J.; Mozaffari, S.; Dengel, A.; Kuhn, J.

    2018-01-01

    Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux…

  12. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos

    PubMed Central

    Marcombe, Sébastien; Laforet, Julie; Brey, Paul T.; Corbel, Vincent; Overgaard, Hans J.

    2017-01-01

    Climatic, sociological and environmental conditions are known to affect the spatial distribution of malaria vectors and disease transmission. Intensive use of insecticides in the agricultural and public health sectors exerts a strong selective pressure on resistance genes in malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species’ presence were developed to estimate the probability of presence of malaria vectors and insecticide resistance in Lao PDR. These models were based on environmental and meteorological conditions, and demographic factors. GIS software was used to build and manage a spatial database with data collected from various geographic information providers. GIS was also used to build and run the models. Results showed that potential insecticide use and therefore the probability of resistance to insecticide is greater in the southwestern part of the country, specifically in Champasack province and where malaria incidence is already known to be high. These findings can help national authorities to implement targeted and effective vector control strategies for malaria prevention and elimination among populations most at risk. Results can also be used to focus the insecticide resistance surveillance in Anopheles mosquito populations in more restricted area, reducing the area of surveys, and making the implementation of surveillance system for Anopheles mosquito insecticide resistance possible. PMID:28494013

  13. 2-diethylaminoethyl-dextran methyl methacrylate copolymer nonviral vector: still a long way toward the safety of aerosol gene therapy.

    PubMed

    Zarogoulidis, P; Hohenforst-Schmidt, W; Darwiche, K; Krauss, L; Sparopoulou, D; Sakkas, L; Gschwendtner, A; Huang, H; Turner, F J; Freitag, L; Zarogoulidis, K

    2013-10-01

    Revealing the lung tumor genome has directed the current treatment strategies toward targeted therapy. First line treatments targeting the genome of lung tumor cells have been approved and are on the market. However, they are limited by the small number of patients with the current investigated genetic mutations. Novel treatment administration modalities have been also investigated in an effort to increase the local drug deposition and disease control. In the current study, we investigated the safety of the new nonviral vector 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC; Ryujyu Science), which belongs to the 2-diethylaminoethyl-dextran family by aerosol administration. Thirty male BALBC mice, 2 month old, were included and divided into three groups. However, pathological findings indicated severe emphysema within three aerosol sessions. In addition, the CytoViva technique was applied for the first time to display the nonviral particles within the pulmonary tissue and emphysema lesions, and a spectral library of the nonviral vector was also established. Although our results in BALBC mice prevented us from further investigation of the DDMC nonviral vector as a vehicle for gene therapy, further investigation in animals with larger airways is warranted to properly evaluate the safety of the vector.

  14. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    PubMed

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  15. Cre/lox-Recombinase-Mediated Cassette Exchange for Reversible Site-Specific Genomic Targeting of the Disease Vector, Aedes aegypti.

    PubMed

    Häcker, Irina; Harrell Ii, Robert A; Eichner, Gerrit; Pilitt, Kristina L; O'Brochta, David A; Handler, Alfred M; Schetelig, Marc F

    2017-03-07

    Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting.

  16. [Plant-infecting reoviruses].

    PubMed

    Sasaya, Takahide

    2014-01-01

    The family Reoviridae separates two subfamilies and consists of 15 genera. Fourteen viruses in three genera (Phytoreovirus, Oryzavirus, and Fijivirus) infect plants. The outbreaks of the plant-infecting reoviruses cause sometime the serious yield loss of rice and maize, and are a menace to safe and efficient food production in the Southeast Asia. The plant-infecting reoviruses are double-shelled icosahedral particles, from 50 to 80nm in diameter, and include from 10 to 12 segmented double-stranded genomic RNAs depending on the viruses. These viruses are transmitted in a persistent manner by the vector insects and replicated in both plants and in their vectors. This review provides a brief overview of the plant-infecting reoviruses and their recent research progresses including the strategy for viral controls using transgenic rice plants.

  17. Bombus terrestris as pollinator-and-vector to suppress Botrytis cinerea in greenhouse strawberry.

    PubMed

    Mommaerts, Veerle; Put, Kurt; Smagghe, Guy

    2011-09-01

    Bombus terrestris L. bumblebees are widely used as commercial pollinators, but they might also be of help in the battle against economically important crop diseases. This alternative control strategy is referred to as pollinator-and-vector technology. The present study was designed to investigate the capacity of B. terrestris to fulfil this role in greenhouse strawberry flowers, which were manually inoculated with a major plant pathogen, the grey mould Botrytis cinerea Pers.: Fr. A model microbiological control agent (MCA) product Prestop-Mix was loaded in a newly developed two-way bumblebee dispenser, and, in addition, the use of the diluent Maizena-Plus (corn starch) was tested. Importantly, loading of the MCA caused no adverse effects on bumblebee workers, with no loss of survival or impairment of flight activity of the workers during the 4 week flowering period. Secondly, vectoring of Prestop-Mix by bumblebees resulted in a higher crop production, as 71% of the flowers developed into healthy red strawberries at picking (preharvest yield) as compared with 54% in the controls. In addition, these strawberries were better protected, as 79% of the picked berries remained free of B. cinerea after a 2 day incubation (post-harvest yield), while this percentage was only 43% in the control. Overall, the total yield (preharvest × post-harvest) was 2-2.5 times higher than the total yield in the controls (24%) in plants exposed to bumblebees vectoring Prestop-Mix. Thirdly, the addition of the diluent Maizena-Plus to Prestop-Mix at 1:1 (w/w) resulted in a similar yield to that of Prestop-Mix used alone, and in no negative effects on the bumblebees, flowers and berries. This greenhouse study provides strong evidence that B. terrestris bumblebees can vector a MCA to reduce B. cinerea incidence in greenhouse strawberries, resulting in higher yields. Similar yields obtained in the treatments with Prestop-Mix and Prestop-Mix + Maizena-Plus suggest an equally efficient dissemination of the biocontrol agent into the flowers with only half the initial concentration of Prestop-Mix, which illustrates the importance of the diluent. Copyright © 2011 Society of Chemical Industry.

  18. The Environmental Issues of DDT Pollution and Bioremediation: a Multidisciplinary Review.

    PubMed

    Mansouri, Ahlem; Cregut, Mickael; Abbes, Chiraz; Durand, Marie-Jose; Landoulsi, Ahmed; Thouand, Gerald

    2017-01-01

    DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is probably the best known and most useful organochlorine insecticide in the world which was used since 1945 for agricultural purposes and also for vector-borne disease control such as malaria since 1955, until its banishment in most countries by the Stockholm convention for ecologic considerations. However, the World Health Organization allowed its reintroduction only for control of vector-borne diseases in some tropical countries in 2006. Due to its physicochemical properties and specially its persistence related with a half-life up to 30 years, DDT linked to several health and social problems which are due to its accumulation in the environment and its biomagnification properties in living organisms. This manuscript compiles a multidisciplinary review to evaluate primarily (i) the worldwide contamination of DDT and (ii) its (eco) toxicological impact onto living organisms. Secondly, several ways for DDT bioremediation from contaminated environment are discussed. For this, reports on DDT biodegradation capabilities by microorganisms and ways to enhance bioremediation strategies to remove DDT are presented. The different existing strategies for DDT bioremediation are evaluated with their efficiencies and limitations to struggle efficiently this contaminant. Finally, rising new approaches and technological bottlenecks to promote DDT bioremediation are discussed.

  19. CR-Calculus and adaptive array theory applied to MIMO random vibration control tests

    NASA Astrophysics Data System (ADS)

    Musella, U.; Manzato, S.; Peeters, B.; Guillaume, P.

    2016-09-01

    Performing Multiple-Input Multiple-Output (MIMO) tests to reproduce the vibration environment in a user-defined number of control points of a unit under test is necessary in applications where a realistic environment replication has to be achieved. MIMO tests require vibration control strategies to calculate the required drive signal vector that gives an acceptable replication of the target. This target is a (complex) vector with magnitude and phase information at the control points for MIMO Sine Control tests while in MIMO Random Control tests, in the most general case, the target is a complete spectral density matrix. The idea behind this work is to tailor a MIMO random vibration control approach that can be generalized to other MIMO tests, e.g. MIMO Sine and MIMO Time Waveform Replication. In this work the approach is to use gradient-based procedures over the complex space, applying the so called CR-Calculus and the adaptive array theory. With this approach it is possible to better control the process performances allowing the step-by-step Jacobian Matrix update. The theoretical bases behind the work are followed by an application of the developed method to a two-exciter two-axis system and by performance comparisons with standard methods.

  20. Novel strategies lead to pre-elimination of malaria in previously high-risk areas in Suriname, South America.

    PubMed

    Hiwat, Hélène; Hardjopawiro, Loretta S; Takken, Willem; Villegas, Leopoldo

    2012-01-09

    Suriname was a high malaria risk country before the introduction of a new five-year malaria control program in 2005, the Medical Mission Malaria Programme (MM-MP). Malaria was endemic in the forested interior, where especially the stabile village communities were affected. The interventions of the MM-MP included new strategies for prevention, vector control, case management, behavioral change communication (BCC)/information, education and communication (IEC), and strengthening of the health system (surveillance, monitoring and evaluation and epidemic detection system). After a slow first year with non-satisfying scores for the performance indicators, the MM-MP truly engaged in its intervention activities in 2006 and kept its performance up until the end of 2009. A total of 69,994 long-lasting insecticide-treated nets were distributed and more than 15,000 nets re-impregnated. In high-risk areas, this was complemented with residual spraying of insecticides. Over 10,000 people were screened with active case detection in outbreak and high-risk areas. Additional notification points were established and the national health system was strengthened. In the current paper, the MM-MP is evaluated both on account of the targets established within the programme and on account of its impact on the malaria situation in Suriname. Malaria vector populations, monitored in sentinel sites, collapsed after 2006 and concurrently the number of national malaria cases decreased from 8,618 in 2005 to 1,509 in 2009. Malaria transmission risk shifted from the stabile village communities to the mobile gold mining communities, especially those along the French Guiana border. The novel strategies for malaria control introduced in Suriname within the MM-MP have led to a significant decrease in the national malaria burden. The challenge is to further reduce malaria using the available strategies as appropriate in the affected areas and populations. Elimination of malaria in the country will require a thorough understanding of transmission dynamics and a dedicated investment in key effective interventions.

Top