Sample records for vector controlled induction

  1. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  2. A Novelty Design Of Minimization Of Electrical Losses In A Vector Controlled Induction Machine Drive

    NASA Astrophysics Data System (ADS)

    Aryza, Solly; Irwanto, M.; Lubis, Zulkarnain; Putera Utama Siahaan, Andysah; Rahim, Robbi; Furqan, Mhd.

    2018-01-01

    The induction motor has in the industry . More attention has been a focus to develop and design of induction motor drive. With the method of vector control novelty prove the efficiency of induction motor over their entire speed range. In this paper desirable to design a loss minimization controller which can improve the efficiency. Also, this research described Modeling of an induction motor with core loss included. Realization of methods vector control for an induction motor drive with loss element included. The case of the loss minimization condition. The procedure was successful to calculate the gains of a PI controller. Though the problem of obtaining a robust and sensorless induction motor drive is by no means completely solved, the results obtained as part of this work point in a promising direction.

  3. Implementation of a new fuzzy vector control of induction motor.

    PubMed

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Comparison study of vector control of induction motor with and without saturation and iron loss fed by three level inverter

    NASA Astrophysics Data System (ADS)

    Bougherara, Salim; Golea, Amar; Benchouia, M. Toufik

    2018-05-01

    This paper is addressed to a comparative study of the vector control of a three phase induction motor based on two mathematical models. The first one is the conventional model based on the assumptions that the saturation and the iron losses are neglected; the second model fully accounts for both the fundamental iron loss and main flux saturation with and without compensation. A rotor resistance identifier is developed, so the compensation of its variation is achieved. The induction motor should be fed through a three levels inverter. The simulation results show the performances of the vector control based on the both models.

  5. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  6. Harmonic reduction of Direct Torque Control of six-phase induction motor.

    PubMed

    Taheri, A

    2016-07-01

    In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  8. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  9. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-03-25

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  10. PI controller design for indirect vector controlled induction motor: A decoupling approach.

    PubMed

    Jain, Jitendra Kr; Ghosh, Sandip; Maity, Somnath; Dworak, Pawel

    2017-09-01

    Decoupling of the stator currents is important for smoother torque response of indirect vector controlled induction motors. Typically, feedforward decoupling is used to take care of current coupling that requires exact knowledge of motor parameters, additional circuitry and signal processing. In this paper, a method is proposed to design the regulating proportional-integral gains that minimize coupling without any requirement of the additional decoupler. The variation of the coupling terms for change in load torque is considered as the performance measure. An iterative linear matrix inequality based H ∞ control design approach is used to obtain the controller gains. A comparison between the feedforward and the proposed decoupling schemes is presented through simulation and experimental results. The results show that the proposed scheme is simple yet effective even without additional block or burden on signal processing. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Singer product apertures-A coded aperture system with a fast decoding algorithm

    NASA Astrophysics Data System (ADS)

    Byard, Kevin; Shutler, Paul M. E.

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  12. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  13. P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect transmitted infectious diseases. The fact that many viruses carry...

  14. Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.

    2017-01-01

    This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.

  15. Modeling, analysis, control and design application guidelines of Doubly Fed Induction Generator (DFIG) for wind power applications

    NASA Astrophysics Data System (ADS)

    Masaud, Tarek

    Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet to be solved before they can be implemented in some specific applications. This dissertation deals with the general analysis, modeling, control and applications of the DFIG for large wind farm applications. A detailed "d-q" model of DFIG along with other applications is simulated using the MATLAB/Simulink platform. The simulation results have been discussed in detail in both sub-synchronous and super-synchronous mode of operation. An improved vector control strategy based on the rotor flux oriented vector control has been proposed to control the active power output of the DFIG. The new vector control strategy is compared with the stator flux oriented vector control which is commonly used. It is observed that the new improved vector control method provides a better active power tracking accuracy compare with the stator flux oriented vector control. The behavior of the DFIG -based wind farm under the various grid disturbances is also studied in this dissertation. The implementation of the Flexible AC Transmission System devices (FACTS) to overcome the voltage stability issue for such applications is investigated. The study includes the implementation of both a static synchronous compensator (STATCOM), and the static VAR compensator (SVC) as dynamic reactive power compensators at the point of common coupling to support DFIG-based wind farm during disturbances. Integrating FACTS protect the grid connected DFIG-based wind farm from going offline during and after the disturbances. It is found that the both devices improve the transient performance and therefore helps the wind turbine generator system to remain in service during grid faults. A comparison between the performance of the two devices in terms of the amount of reactive power injected, time response and the application cost has been discussed in this dissertation. Finally, the integration of the battery energy storage system (BESS) into a grid connected DFIG- based wind turbine as a proposed solution to smooth out the output power during wind speed variations is also addressed.

  16. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  17. Contributions a l'etude et a l'application industrielle de la machine asynchrone

    NASA Astrophysics Data System (ADS)

    Ouhrouche, Mohand-Ameziane

    The work presented in this thesis, done in the Electrical Drives Laboratory of Electrical and Computer Engineering Department, deals with the industrial applications of a three-phase induction machine (electrical drives and electricity generation). This thesis, characterized by its multidisciplinary content, has two major parts. The first one deals with the on-line and off-line parametric identification of the induction machine model necessary to achieve accurate vector control strategy. The second part, which is a resume of a research work sponsored by Hydro-Quebec, deals with the application of an induction machine in Asynchronous Non Utility Generators units (ANUG). As it is shown in the following, major scientific contributions are made in both two parts. In the first part of our research work, we propose a new speed sensorless vector control strategy for an induction machine, which is adaptive to the rotor resistance variations. The proposed control strategy is based on the Extended Kalman Filter approach and a decoupling controller which takes into account the rotor resistance variations. The consideration of coupled electrical and mechanical modes leads to a fifth order nonlinear model of the induction machine. The load torque is taken as a function of the rotor angular speed. The Extended Kalman Filter, based on the process's nonlinear (bilinear) model, estimate simultaneously the rotor resistance, angular speed and the flux vector from the startup to the steady state equilibrium point. The machine-converter-control system is implemented in MATLAB/SIMULINK environment and the obtained results confirm the robustness of the proposed scheme. As in the electrical drives erea, the induction machine is now widely used by small to medium power Non Utility Generator units (NUG) to produce electricity. In Quebec, these NUGs units are integrated into the Hydro-Quebec 25 kV distribution system via transformer which exhibit nonlinear characteristics. We have shown by using the ElectroMagnetic Program (EMTP) that, in some islanding scenarios, i.e. that the NUG unit is disconnected from the power grid, in addition to frequency variations, appearence of high an abnormal overvoltages, ferroresonance should occur. As a consequence, normal protective devices could fail to securely operate, which could cause serious damages to the equipment and the maintenance staff. This result, established for the first time , can be useful to improve the reliability of the NUGs units and is considered important by the power engineering community. This has led to a publication in the John Wiley & Sons Encyclopedia of Electrical and Electronics Engineering which will be available in February 1999 ( http://www.engr.wisc.edu/ ece/ece).

  18. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    NASA Astrophysics Data System (ADS)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  19. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type control algorithms. Integrated testing of the controller and actuator will be conducted at a facility yet to be named. The EMA system described above is discussed in detail.

  20. Research and simulation of the decoupling transformation in AC motor vector control

    NASA Astrophysics Data System (ADS)

    He, Jiaojiao; Zhao, Zhongjie; Liu, Ken; Zhang, Yongping; Yao, Tuozhong

    2018-04-01

    Permanent magnet synchronous motor (PMSM) is a nonlinear, strong coupling, multivariable complex object, and transformation decoupling can solve the coupling problem of permanent magnet synchronous motor. This paper gives a permanent magnet synchronous motor (PMSM) mathematical model, introduces the permanent magnet synchronous motor vector control coordinate transformation in the process of modal matrix inductance matrix transform through the matrix related knowledge of different coordinates of diagonalization, which makes the coupling between the independent, realize the control of motor current and excitation the torque current coupling separation, and derived the coordinate transformation matrix, the thought to solve the coupling problem of AC motor. Finally, in the Matlab/Simulink environment, through the establishment and combination between the PMSM ontology, coordinate conversion module, built the simulation model of permanent magnet synchronous motor vector control, introduces the model of each part, and analyzed the simulation results.

  1. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    NASA Astrophysics Data System (ADS)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  2. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    NASA Astrophysics Data System (ADS)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-06-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  3. An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs.

    PubMed

    Tabbache, Bekheïra; Benbouzid, Mohamed; Kheloui, Abdelaziz; Bourgeot, Jean-Matthieu; Mamoune, Abdeslam

    2013-11-01

    This paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector

    PubMed Central

    Werner, Stefan; Breus, Oksana; Symonenko, Yuri; Marillonnet, Sylvestre; Gleba, Yuri

    2011-01-01

    We describe here a unique ethanol-inducible process for expression of recombinant proteins in transgenic plants. The process is based on inducible release of viral RNA replicons from stably integrated DNA proreplicons. A simple treatment with ethanol releases the replicon leading to RNA amplification and high-level protein production. To achieve tight control of replicon activation and spread in the uninduced state, the viral vector has been deconstructed, and its two components, the replicon and the cell-to-cell movement protein, have each been placed separately under the control of an inducible promoter. Transgenic Nicotiana benthamiana plants incorporating this double-inducible system demonstrate negligible background expression, high (over 0.5 × 104-fold) induction multiples, and high absolute levels of protein expression upon induction (up to 4.3 mg/g fresh biomass). The process can be easily scaled up, supports expression of practically important recombinant proteins, and thus can be directly used for industrial manufacturing. PMID:21825158

  5. Lentiviral Protein Transfer Vectors Are an Efficient Vaccine Platform and Induce a Strong Antigen-Specific Cytotoxic T Cell Response

    PubMed Central

    Uhlig, Katharina M.; Schülke, Stefan; Scheuplein, Vivian A. M.; Malczyk, Anna H.; Reusch, Johannes; Kugelmann, Stefanie; Muth, Anke; Koch, Vivian; Hutzler, Stefan; Bodmer, Bianca S.; Schambach, Axel; Buchholz, Christian J.; Waibler, Zoe; Scheurer, Stephan

    2015-01-01

    ABSTRACT To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8+ T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8+ T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8+ T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8+ T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations. PMID:26085166

  6. High-efficiency induction motor drives using type-2 fuzzy logic

    NASA Astrophysics Data System (ADS)

    Khemis, A.; Benlaloui, I.; Drid, S.; Chrifi-Alaoui, L.; Khamari, D.; Menacer, A.

    2018-03-01

    In this work we propose to develop an algorithm for improving the efficiency of an induction motor using type-2 fuzzy logic. Vector control is used to control this motor due to the high performances of this strategy. The type-2 fuzzy logic regulators are developed to obtain the optimal rotor flux for each torque load by minimizing the copper losses. We have compared the performances of our fuzzy type-2 algorithm with the type-1 fuzzy one proposed in the literature. The proposed algorithm is tested with success on the dSPACE DS1104 system even if there is parameters variance.

  7. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    PubMed Central

    Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir

    2013-01-01

    Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  8. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    NASA Astrophysics Data System (ADS)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  9. A Significant Increase of RNAi Efficiency in Human Cells by the CMV Enhancer with a tRNAlys Promoter

    PubMed Central

    Weiwei, Ma; Zhenhua, Xie; Feng, Liu; Hang, Ning; Yuyang, Jiang

    2009-01-01

    RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene. PMID:19859553

  10. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    PubMed Central

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  11. Full-order observer for direct torque control of induction motor based on constant V/F control technique.

    PubMed

    Pimkumwong, Narongrit; Wang, Ming-Shyan

    2018-02-01

    This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobina, C.B.; Silva, E.R.C. da; Lima, A.M.N.

    This paper investigates the PWM operation of a four switch three phase inverter (FSTPI), in the case of digital implementation. Different switching sequence strategies for vector control are described and a digital scalar method is also presented. The influence of different switching patterns on the output voltage symmetry, current waveform and switching frequency are examined. The results obtained by employing the vector and scalar strategies are compared and a relationship between them is established. This comparison is based on analytical study and is corroborated either by the computer simulations and by the experimental results. The vector approach makes ease themore » understanding and analysis of the FSTPI, as well the choice of a PWM pattern. However, similar results may be obtained through the scalar approach, which has a simpler implementation. The experimental results of the use of the FSTPI and digital PWM to control an induction motor are presented.« less

  13. Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control.

    PubMed

    Ammar, Abdelkarim; Bourek, Amor; Benakcha, Abdelhamid

    2017-03-01

    This paper presents a nonlinear Direct Torque Control (DTC) strategy with Space Vector Modulation (SVM) for an induction motor. A nonlinear input-output feedback linearization (IOFL) is implemented to achieve a decoupled torque and flux control and the SVM is employed to reduce high torque and flux ripples. Furthermore, the control scheme performance is improved by inserting a super twisting speed controller in the outer loop and a load torque observer to enhance the speed regulation. The combining of dual nonlinear strategies ensures a good dynamic and robustness against parameters variation and disturbance. The system stability has been analyzed using Lyapunov stability theory. The effectiveness of the control algorithm is investigated by simulation and experimental validation using Matlab/Simulink software with real-time interface based on dSpace 1104. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Design and application of electromechanical actuators for deep space missions

    NASA Technical Reports Server (NTRS)

    Haskew, Tim A.; Wander, John

    1993-01-01

    The annual report Design and Application of Electromechanical Actuators for Deep Space Missions is presented. The reporting period is 16 Aug. 1992 to 15 Aug. 1993. However, the primary focus will be work performed since submission of our semi-annual progress report in Feb. 1993. Substantial progress was made. We currently feel confident in providing guidelines for motor and control strategy selection in electromechanical actuators to be used in thrust vector control (TVC) applications. A small portion was presented in the semi-annual report. At this point, we have implemented highly detailed simulations of various motor/drive systems. The primary motor candidates were the brushless dc machine, permanent magnet synchronous machine, and the induction machine. The primary control implementations were pulse width modulation and hysteresis current control. Each of the two control strategies were applied to each of the three motor choices. With either pulse width modulation or hysteresis current control, the induction machine was always vector controlled. A standard test position command sequence for system performance evaluation is defined. Currently, we are gathering all of the necessary data for formal presentation of the results. Briefly stated for TVC application, we feel that the brushless dc machine operating under PWM current control is the best option. Substantial details on the topic, with supporting simulation results, will be provided later, in the form of a technical paper prepared for submission and also in the next progress report with more detail than allowed for paper publication.

  15. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15.

    PubMed

    Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V

    2007-06-15

    A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.

  16. The babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission o...

  17. An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.

    PubMed

    Linares, Daniel M; Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, María; Alvarez, Miguel A

    2014-12-04

    Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium's regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.

  18. Induction of atherosclerosis in mice and hamsters without germline genetic engineering.

    PubMed

    Bjørklund, Martin Maeng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup; Dagnaes-Hansen, Frederik; Christoffersen, Christina; Mikkelsen, Jacob Giehm; Bentzon, Jacob Fog

    2014-05-23

    Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. To develop a method for induction of atherosclerosis without germline genetic engineering. Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions to the fibroatheromatous stage. To demonstrate the applicability of this method for rapid analysis of the atherosclerosis susceptibility of a mouse strain and for providing temporal control over disease induction, we demonstrated the accelerated atherosclerosis of mature diabetic Akita mice. Furthermore, the versatility of this approach for creating atherosclerosis models also in nonmurine species was demonstrated by inducing hypercholesterolemia and early atherosclerosis in Golden Syrian hamsters. Single injections of proprotein convertase subtilisin/kexin type 9-encoding recombinant adeno-associated viral vectors are a rapid and versatile method to induce atherosclerosis in animals. This method should prove useful for experiments that are high-throughput or involve genetic techniques, strains, or species that do not combine well with current genetically engineered models. © 2014 American Heart Association, Inc.

  19. Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid

    2018-05-01

    The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.

  20. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage

    PubMed Central

    Louboutin, Jean-Pierre; Chekmasova, Alena; Marusich, Elena; Agrawal, Lokesh; Strayer, David S.

    2011-01-01

    Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. We investigated the role of the chemokine receptor CCR5 in seizures. We used a rat model based on intraperitoneal kainic acid (KA) administration. Four months before KA injection, adult rats were given femoral intramarrow inoculations of SV (RNAiR5-RevM10.AU1), which carries an interfering RNA (RNAi) against CCR5, plus a marker epitope (AU1), or its monofunctional RNAi-carrying homologue, SV(RNAiR5). This treatment lowered expression of CCR5 in circulating cells. In control rats, seizures induced elevated expression of CCR5 ligands MIP-1α and RANTES in the microvasculature, increased BBB leakage and CCR5+ cells, as well as neuronal loss, inflammation, and gliosis in the hippocampi. Animals given either the bifunctional or the monofunctional vector were largely protected from KA-induced seizures, neuroinflammation, BBB damage, and neuron loss. Brain CCR5 mRNA was reduced. Rats receiving RNAiR5-bearing vectors showed far greater repair responses: increased neuronal proliferation, and decreased production of MIP-1α and RANTES. Controls received unrelated SV(BUGT) vectors. Decrease in CCR5 in circulating cells strongly protected from excitotoxin-induced seizures, BBB leakage, CNS injury, and inflammation, and facilitated neurogenic repair.—Louboutin, J.-P., Chekmasova, A., Marusich, E., Agrawal, L., Strayer, D. S. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. PMID:20940264

  1. The reflection of evolving bearing faults in the stator current's extended park vector approach for induction machines

    NASA Astrophysics Data System (ADS)

    Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan

    2018-07-01

    Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.

  2. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants.

    PubMed

    Carpentier, Rodolphe; Platel, Anne; Maiz-Gregores, Helena; Nesslany, Fabrice; Betbeder, Didier

    2017-01-01

    Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants' toxicity.

  3. Hydroxyurea therapy requires HbF induction for clinical benefit in a sickle cell mouse model

    PubMed Central

    Lebensburger, Jeffrey D.; Pestina, Tamara I.; Ware, Russell E.; Boyd, Kelli L.; Persons, Derek A.

    2010-01-01

    Hydroxyurea has proven clinical efficacy in patients with sickle cell disease. Potential mechanisms for the beneficial effects include fetal hemoglobin induction and the reduction of cell adhesive properties, inflammation and hypercoagulability. Using a murine model of sickle cell disease in which fetal hemoglobin induction does not occur, we evaluated whether hydroxyurea administration would still yield improvements in hematologic parameters and reduce end-organ damage. Animals given a maximally tolerated dose of hydroxyurea that resulted in significant reductions in the neutrophil and platelet counts showed no improvement in hemolytic anemia and end-organ damage compared to control mice. In contrast, animals having high levels of fetal hemoglobin due to gene transfer with a γ-globin lentiviral vector showed correction of anemia and organ damage. These data suggest that induction of fetal hemoglobin by hydroxyurea is an essential mechanism for its clinical benefits. PMID:20378564

  4. Acoustic vector tomography and its application to magnetoacoustic tomography with magnetic induction (MAT-MI).

    PubMed

    Li, Xu; Xia, Rongmin; He, Bin

    2008-01-01

    A new tomographic algorithm for reconstructing a curl-free vector field, whose divergence serves as acoustic source is proposed. It is shown that under certain conditions, the scalar acoustic measurements obtained from a surface enclosing the source area can be vectorized according to the known measurement geometry and then be used to reconstruct the vector field. The proposed method is validated by numerical experiments. This method can be easily applied to magnetoacoustic tomography with magnetic induction (MAT-MI). A simulation study of applying this method to MAT-MI shows that compared to existing methods, the proposed method can give an accurate estimation of the induced current distribution and a better reconstruction of electrical conductivity within an object.

  5. Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.

    2010-01-01

    In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.

  6. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants

    PubMed Central

    Maiz-Gregores, Helena; Nesslany, Fabrice; Betbeder, Didier

    2017-01-01

    Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants’ toxicity. PMID:28813539

  8. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis.

    PubMed

    Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha

    2014-09-01

    This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    PubMed

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  10. Introducing the Filtered Park's and Filtered Extended Park's Vector Approach to detect broken rotor bars in induction motors independently from the rotor slots number

    NASA Astrophysics Data System (ADS)

    Gyftakis, Konstantinos N.; Marques Cardoso, Antonio J.; Antonino-Daviu, Jose A.

    2017-09-01

    The Park's Vector Approach (PVA), together with its variations, has been one of the most widespread diagnostic methods for electrical machines and drives. Regarding the broken rotor bars fault diagnosis in induction motors, the common practice is to rely on the width increase of the Park's Vector (PV) ring and then apply some more sophisticated signal processing methods. It is shown in this paper that this method can be unreliable and is strongly dependent on the magnetic poles and rotor slot numbers. To overcome this constraint, the novel Filtered Park's/Extended Park's Vector Approach (FPVA/FEPVA) is introduced. The investigation is carried out with FEM simulations and experimental testing. The results prove to satisfyingly coincide, whereas the proposed advanced FPVA method is desirably reliable.

  11. Geomagnetic field models for satellite angular motion studies

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.

    2018-03-01

    Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.

  12. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.; Amm, O.; Viljanen, A.

    2006-10-01

    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  13. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  14. New Method for Solving Inductive Electric Fields in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  15. Exploring the induction of preproinsulin-specific Foxp3+ CD4+ Treg cells that inhibit CD8+ T cell-mediated autoimmune diabetes by DNA vaccination

    PubMed Central

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model. PMID:27406624

  16. Induced antiviral innate immunity in Drosophila.

    PubMed

    Lamiable, Olivier; Imler, Jean-Luc

    2014-08-01

    Immunity to viral infections in the model organism Drosophila melanogaster involves both RNA interference and additional induced responses. The latter include not only cellular mechanisms such as programmed cell death and autophagy, but also the induction of a large set of genes, some of which contribute to the control of viral replication and resistance to infection. This induced response to infection is complex and involves both virus-specific and cell-type specific mechanisms. We review here recent developments, from the sensing of viral infection to the induction of signaling pathways and production of antiviral effector molecules. Our current understanding, although still partial, validates the Drosophila model of antiviral induced immunity for insect pests and disease vectors, as well as for mammals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Vector Analysis of Ionic Collision on CaCO3 Precipitation Based on Vibration Time History

    NASA Astrophysics Data System (ADS)

    Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2017-05-01

    Vibration effects on the piping system can result from the internal factor of fluid or the external factor of the mechanical equipment operation. As the pipe vibrated, the precipitation process of CaCO3 on the inner pipe could be affected. In the previous research, the effect of vibration on CaCO3 precipitation in piping system was clearly verified. This increased the deposition rate and decreased the induction time. However, the mechanism of vibration control in CaCO3 precipitation process as the presence of vibration has not been recognized yet. In the present research, the mechanism of vibration affecting the CaCO3 precipitation was investigated through vector analysis of ionic collision. The ionic vector force was calculated based on the amount of the activation energy and the vibration force was calculated based on the vibration sensor data. The vector resultant of ionic collision based on the vibration time history was analyzed to prove that vibration brings ionic collision randomly to the planar horizontal direction and its collision model was suspected as the cause of the increasing deposition rate.

  18. Evaluation of linear induction motor characteristics : the Yamamura model

    DOT National Transportation Integrated Search

    1975-04-30

    The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...

  19. Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

    2017-04-01

    The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force) or angle ɛ (angle between rotor direct axis and armature magnetomotive force axis) is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.

  20. Optimization of a one-step heat-inducible in vivo mini DNA vector production system.

    PubMed

    Nafissi, Nafiseh; Sum, Chi Hong; Wettig, Shawn; Slavcev, Roderick A

    2014-01-01

    While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called "Super Sequences" that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our system, achieving an overall LCC DNA minivector production efficiency of ∼ 90%.We optimized a robust technology conferring rapid, scalable, one-step in vivo production of LCC DNA minivectors with potential application to gene transfer-mediated therapeutics.

  1. Optimization of a One-Step Heat-Inducible In Vivo Mini DNA Vector Production System

    PubMed Central

    Wettig, Shawn; Slavcev, Roderick A.

    2014-01-01

    While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called “Super Sequences” that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our system, achieving an overall LCC DNA minivector production efficiency of ∼90%.We optimized a robust technology conferring rapid, scalable, one-step in vivo production of LCC DNA minivectors with potential application to gene transfer-mediated therapeutics. PMID:24586704

  2. The analysis of the quality of the frequency control of induction motor carried out on the basis of the processes in the rotor circuit

    NASA Astrophysics Data System (ADS)

    Kodkin, V. L.; Anikin, A. S.; Baldenkov, A. A.

    2018-01-01

    The results of researches of asynchronous electric drives with the frequency control which are carried out for the purpose of establishment of causes and effect relationships between a control method, the implementable standard frequency converter of the Schneider Electric company (ATV-71, ATV-32) and its efficiency are given in article. Tests with asynchronous motors with wound rotor were for the first time carried out. It allowed registering during the experiments the instantaneous values not only the stator currents, but also rotor currents. Authors for the first time applied spectrum analysis of stator and rotor currents, it showed that «sensorless vector» control leads to origin of high-frequency harmonicas with the considerable amplitude and, as a result of they are non-sinusoidal of the created torque and inefficiency of the electric drive. The accelerations that are carried out during the researches to 94, 157 and 251 Rad/s confirmed this feature of vector control that appears incapable to linearize the asynchronous electric drive as it was supposed authors of a method. These results do not contradict theoretical provisions if not to neglect assumptions which usually become in case of an output of the equations of vector control. Unfortunately, the modern researchers do not subject these assumptions to doubts. Continued studies make it possible to create an effective frequency management of asynchronous electric drives required for current technology.

  3. Akt/protein kinase B activation by adenovirus vectors contributes to NFkappaB-dependent CXCL10 expression.

    PubMed

    Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A

    2005-12-01

    In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.

  4. [Prokaryotic expression and immunological activity of human neutrophil gelatinase associated lipocalin].

    PubMed

    Wu, Jianwei; Cai, Lei; Qian, Wei; Jiao, Liyuan; Li, Jiangfeng; Song, Xiaoli; Wang, Jihua

    2015-07-01

    To construct a prokaryotic expression vector of human neutrophil gelatinase associated lipocalin (NGAL) and identify the bioactivity of the fusion protein. The cDNA of human NGAL obtained from GenBank was linked to a cloning vector to construct the prokaryotic expression vector pCold-NGAL. Then the vector was transformed into E.coli BL21(DE3) plysS. Under the optimal induction condition, the recombinant NGAL (rNGAL) was expressed and purified by Ni Sepharose 6 Fast Flow affinity chromatography. The purity and activity of the rNGAL were respectively identified by SDS-PAGE and Western blotting combined with NGAL reagent (Latex enhanced immunoturbidimetry). Restriction enzyme digestion and nucleotide sequencing proved that the expression vector pCold-NGAL was successfully constructed. Under the optimal induction condition that we determined, the rNGAL was expressed in soluble form in E.coli BL21(DE3) plysS. The relative molecular mass of the rNGAL was 25 000, and its purity was more than 98.0%. Furthermore, Western blotting and immunoturbidimetry indicated that the rNGAL reacted with NGAL mAb specifically. Human rNGAL of high purity and bioactivity was successfully constructed in E.coli BL21(DE3) plysS using the expression vector pCold-NGAL.

  5. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy

    PubMed Central

    Chattopadhyay, M; Krisky, D; Wolfe, D; Glorioso, JC; Mata, M; Fink, DJ

    2005-01-01

    We examined the utility of herpes simplex virus (HSV) vector-mediated gene transfer of vascular endothelial growth factor (VEGF) in a mouse model of diabetic neuropathy. A replication-incompetent HSV vector with VEGF under the control of the HSV ICP0 promoter (vector T0VEGF) was constructed. T0VEGF expressed and released VEGF from primary dorsal root ganglion (DRG) neurons in vitro, and following subcutaneous inoculation in the foot, expressed VEGF in DRG and nerve in vivo. At 2 weeks after induction of diabetes, subcutaneous inoculation of T0VEGF prevented the reduction in sensory nerve amplitude characteristic of diabetic neuropathy measured 4 weeks later, preserved autonomic function measured by pilocarpine-induced sweating, and prevented the loss of nerve fibers in the skin and reduction of neuropeptide calcitonin gene-related peptide and substance P in DRG neurons of the diabetic mice. HSV-mediated transfer of VEGF to DRG may prove useful in treatment of diabetic neuropathy. PMID:15843809

  6. Mechanism of Telomerase Inhibition Using a Small Inhibitory RNAs and Induction of Breast Tumor Cell Sensitization

    DTIC Science & Technology

    2007-04-01

    immunoprecipitation; TnT- transcription and translation. References Cited Barik , S. 2004. Control of nonsegmented negative-strand RNA virus replication by siRNA...Virus Res. 102: 27-35. Barquinero, J . et al. 2004. Retroviral vectors: new applications for an old tool. Gene Ther. 11(suppl 1): S3-S9...proteins and heterochromatin. Oncogene. 21: 553-563. Chen, J -L., Blasco, M.A., and Greider, C.W. 2000. Secondary structure of vertebrate telomerase RNA

  7. Factors Affecting the Initial Adhesion and Retention of the Plant Pathogen Xylella fastidiosa in the Foregut of an Insect Vector

    PubMed Central

    Almeida, Rodrigo P. P.

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design. PMID:24185853

  8. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design.

  9. Recombinant poxviruses as mucosal vaccine vectors.

    PubMed

    Gherardi, M Magdalena; Esteban, Mariano

    2005-11-01

    The majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against Mycobacterium tuberculosis. The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.

  10. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    PubMed

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  11. Adaptive control schemes for improving dynamic performance of efficiency-optimized induction motor drives.

    PubMed

    Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P

    2015-07-01

    Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Kankam, M. David

    1997-01-01

    For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control.

  13. Inductive monitoring system constructed from nominal system data and its use in real-time system monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L. (Inventor)

    2008-01-01

    The present invention relates to an Inductive Monitoring System (IMS), its software implementations, hardware embodiments and applications. Training data is received, typically nominal system data acquired from sensors in normally operating systems or from detailed system simulations. The training data is formed into vectors that are used to generate a knowledge database having clusters of nominal operating regions therein. IMS monitors a system's performance or health by comparing cluster parameters in the knowledge database with incoming sensor data from a monitored-system formed into vectors. Nominal performance is concluded when a monitored-system vector is determined to lie within a nominal operating region cluster or lies sufficiently close to a such a cluster as determined by a threshold value and a distance metric. Some embodiments of IMS include cluster indexing and retrieval methods that increase the execution speed of IMS.

  14. Magnetoacoustic Tomography with Magnetic Induction: Bioimepedance reconstruction through vector source imaging

    PubMed Central

    Mariappan, Leo; He, Bin

    2013-01-01

    Magneto acoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761

  15. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    PubMed

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  17. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    PubMed

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  18. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  19. Vector Potential, Electromagnetic Induction and "Physical Meaning"

    ERIC Educational Resources Information Center

    Giuliani, G.

    2010-01-01

    A forgotten experiment by Andre Blondel (1914) proves, as held on the basis of theoretical arguments in a previous paper, that the time variation of the magnetic flux is not the cause of the induced emf; the physical agent is instead the vector potential through the term [equation omitted] (when the induced circuit is at rest). The "good…

  20. A versatile expression vector for the growth and amplification of unmodified phage display polypeptides.

    PubMed

    Winton, Alexander J; Baptiste, Janae L; Allen, Mark A

    2018-09-01

    Proteins and polypeptides represent nature's most complex and versatile polymer. They provide complicated shapes, diverse chemical functionalities, and tightly regulated and controlled sizes. Several disease states are related to the misfolding or overproduction of polypeptides and yet polypeptides are present in several therapeutic molecules. In addition to biological roles; short chain polypeptides have been shown to interact with and drive the bio-inspired synthesis or modification of inorganic materials. This paper outlines the development of a versatile cloning vector which allows for the expression of a short polypeptide by controlling the incorporation of a desired DNA coding insert. As a demonstration of the efficacy of the expression system, a solid binding polypeptide identified from M13 phage display was expressed and purified. The solid binding polypeptide was expressed as a soluble 6xHis-SUMO tagged construct. Expression was performed in E. coli using auto-induction followed by Ni-NTA affinity chromatography and ULP1 protease cleavage. Methodology demonstrates the production of greater than 8 mg of purified polypeptide per liter of E. coli culture. Isotopic labeling of the peptide is also demonstrated. The versatility of the designed cloning vector, use of the 6xHis-SUMO solubility partner, bacterial expression in auto-inducing media and the purification methodology make this expressionun vector a readily scalable and user-friendly system for the creation of desired peptide domains. Copyright © 2018. Published by Elsevier Inc.

  1. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    PubMed

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

  3. Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.

    PubMed

    Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James

    2008-04-11

    The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.

  4. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs

    PubMed Central

    Quan, Shuo; Yang, Liming; Abraham, Nader G.; Kappas, Attallah

    2001-01-01

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin. PMID:11593038

  5. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.

    PubMed

    Quan, S; Yang, L; Abraham, N G; Kappas, A

    2001-10-09

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin.

  6. Primate Neural Retina Upregulates IL-6 and IL-10 in Response to a Herpes Simplex Vector Suggesting the Presence of a Pro-/Anti-inflammatory Axis

    PubMed Central

    Sauter, Monica M.; Brandt, Curtis R.

    2016-01-01

    Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types. RNA in situ hybridization confirmed that IL-6 was expressed in photoreceptor and Muller cells. The IL-10 positive cells in the inner nuclear layer were identified as amacrine cells by immunofluorescence staining with calretinin antibody. hrR3 challenge resulted in activation of NFκB (p65) in Muller glial cells, but not in cone photoreceptors, suggesting a novel regulatory mechanism for IL-6 expression in cone cells. hrR3 replication was not required for IL-6 induction or NFκB (p65) activation. These data suggest a pro-inflammatory (IL-6)/anti-inflammatory (IL-10) axis exists in neural retina and the severity of acute posterior uveitis may be determined by this interaction. Further studies are needed to identify the trigger for IL-6 and IL-10 induction and the mechanism of IL-6 induction in cone cells. PMID:27170050

  7. Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function.

    PubMed

    Di Pasquale, E; Latronico, M V G; Jotti, G S; Condorelli, G

    2012-06-01

    Engineered recombinant viral vectors are a powerful tool for vehiculating genetic information into mammalian cells. Because of their ability to infect both dividing and non-dividing cells with high efficiency, lentiviral vectors have gained particular interest for basic research and preclinical studies in the cardiovascular field. We review here the major applications for lentiviral-vector technology in the cardiovascular field: we will discuss their use in trailing gene expression during the induction of differentiation, in protocols for the isolation of cardiac cells and in the tracking of cardiac cells after transplantation in vivo; we will also describe lentivirally-mediated gene delivery uses, such as the induction of a phenotype of interest in a target cell or the treatment of cardiovascular diseases. In addition, a section of the review will be dedicated to reprogramming approaches, focusing attention on the generation of pluripotent stem cells and on transdifferentiation, two emerging strategies for the production of cardiac myocytes from human cells and for the investigation of human diseases. Finally, in order to give a perspective on their future clinical use we will critically discuss advantages and disadvantages of lentivirus-based strategies for the treatment of cardiovascular diseases.

  8. Gene silencing efficiency and INF-β induction effects of splicing miRNA 155-based artificial miRNA with pre-miRNA stem-loop structures.

    PubMed

    Sin, Onsam; Mabiala, Prudence; Liu, Ye; Sun, Ying; Hu, Tao; Liu, Qingzhen; Guo, Deyin

    2012-02-01

    Artificial microRNA (miRNA) expression vectors have been developed and used for RNA interference. The secondary structure of artificial miRNA is important for RNA interference efficacy. We designed two groups of six artificial splicing miRNA 155-based miRNAs (SM155-based miRNAs) with the same target in the coding region or 3' UTR of a target gene and studied their RNA silencing efficiency and interferon β (IFN-β) induction effects. SM155-based miRNA with a mismatch at the +1 position and a bulge at the +11, +12 positions in a miRNA precursor stem-loop structure showed the highest gene silencing efficiency and lowest IFN-β induction effect (increased IFN-β mRNA level by 10% in both target cases), regardless of the specificity of the target sequence, suggesting that pSM155-based miRNA with this design could be a valuable miRNA expression vector.

  9. Fluctuation dynamo and turbulent induction at small Prandtl number.

    PubMed

    Eyink, Gregory L

    2010-10-01

    We study the Lagrangian mechanism of the fluctuation dynamo at zero Prandtl number and infinite magnetic Reynolds number, in the Kazantsev-Kraichnan model of white-noise advection. With a rough velocity field corresponding to a turbulent inertial range, flux freezing holds only in a stochastic sense. We show that field lines arriving to the same point which were initially separated by many resistive lengths are important to the dynamo. Magnetic vectors of the seed field that point parallel to the initial separation vector arrive anticorrelated and produce an "antidynamo" effect. We also study the problem of "magnetic induction" of a spatially uniform seed field. We find no essential distinction between this process and fluctuation dynamo, both producing the same growth rates and small-scale magnetic correlations. In the regime of very rough velocity fields where fluctuation dynamo fails, we obtain the induced magnetic energy spectra. We use these results to evaluate theories proposed for magnetic spectra in laboratory experiments of turbulent induction.

  10. Solar-wind/magnetospheric dynamos: MHD-scale collective entry of the solar wind energy, momentum and mass into the magnetosphere

    NASA Technical Reports Server (NTRS)

    Song, Yan; Lysak, Robert L.

    1992-01-01

    A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.

  11. Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, Ruxandra; Malone, P. Brandon; Hill, Leigh Anne; Ellis, Kenneth M.; Schwartz, Robert J.; Nordstrom, Jeffrey L.

    2002-01-01

    Regulated animal growth occurred following a single electroporated injection of a mixture of two plasmids (10 microg of DNA), one expressing the GeneSwitch regulator protein, the other an inducible growth hormone releasing hormone (GHRH) gene, into the tibialis anterior muscles of adult SCID mice. Administration of the ligand mifepristone (MFP) up-regulated GHRH expression, as shown by elevations of IGF-I levels, and when MFP dosing was withdrawn, IGF-I returned to baseline levels. Five cycles of IGF-I induction were observed during a five-month period. Chronic MFP dosing for 25 days increased lean body mass, weight gain, and bone mineral density significantly compared with non-MFP treated controls. In summary, long-term drug-regulated GHRH expression was achieved following plasmid-based gene therapy, and chronic induction of GHRH expression in adult animals led to improvements in weight gain and body composition.

  12. Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors.

    PubMed

    Draghia-Akli, Ruxandra; Malone, P Brandon; Hill, Leigh Anne; Ellis, Kenneth M; Schwartz, Robert J; Nordstrom, Jeffrey L

    2002-03-01

    Regulated animal growth occurred following a single electroporated injection of a mixture of two plasmids (10 microg of DNA), one expressing the GeneSwitch regulator protein, the other an inducible growth hormone releasing hormone (GHRH) gene, into the tibialis anterior muscles of adult SCID mice. Administration of the ligand mifepristone (MFP) up-regulated GHRH expression, as shown by elevations of IGF-I levels, and when MFP dosing was withdrawn, IGF-I returned to baseline levels. Five cycles of IGF-I induction were observed during a five-month period. Chronic MFP dosing for 25 days increased lean body mass, weight gain, and bone mineral density significantly compared with non-MFP treated controls. In summary, long-term drug-regulated GHRH expression was achieved following plasmid-based gene therapy, and chronic induction of GHRH expression in adult animals led to improvements in weight gain and body composition.

  13. Viral vector-based influenza vaccines

    PubMed Central

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  14. Viral vector-based influenza vaccines.

    PubMed

    de Vries, Rory D; Rimmelzwaan, Guus F

    2016-11-01

    Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.

  15. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy

    PubMed Central

    Kasala, Dayananda; Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-01-01

    Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research. PMID:27348247

  16. Pre-existing immunity against vaccine vectors – friend or foe?

    PubMed Central

    Saxena, Manvendra; Van, Thi Thu Hao; Baird, Fiona J.; Coloe, Peter J.

    2013-01-01

    Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses. PMID:23175507

  17. Gene Delivery Strategies to Promote Spinal Cord Repair

    PubMed Central

    Walthers, Christopher M; Seidlits, Stephanie K

    2015-01-01

    Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed. PMID:25922572

  18. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8+ T Cells that Protect Against Subcutaneous B16-OVA Melanoma

    PubMed Central

    Stark, Felicity C.; McCluskie, Michael J.; Krishnan, Lakshmi

    2016-01-01

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8+ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8+ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8+ T cell response of up to 45% of all circulating CD8+ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8+ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8+ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8+ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection. PMID:27869670

  19. Maize Chlorotic Mottle Virus Induces Changes in Host Plant Volatiles that Attract Vector Thrips Species.

    PubMed

    Mwando, Nelson L; Tamiru, Amanuel; Nyasani, Johnson O; Obonyo, Meshack A O; Caulfield, John C; Bruce, Toby J A; Subramanian, Sevgan

    2018-06-02

    Maize lethal necrosis is one of the most devastating diseases of maize causing yield losses reaching up to 90% in sub-Saharan Africa. The disease is caused by a combination of maize chlorotic mottle virus (MCMV) and any one of cereal viruses in the Potyviridae group such as sugarcane mosaic virus. MCMV has been reported to be transmitted mainly by maize thrips (Frankliniella williamsi) and onion thrips (Thrips tabaci). To better understand the role of thrips vectors in the epidemiology of the disease, we investigated behavioral responses of F. williamsi and T. tabaci, to volatiles collected from maize seedlings infected with MCMV in a four-arm olfactometer bioassay. Volatile profiles from MCMV-infected and healthy maize plants were compared by gas chromatography (GC) and GC coupled mass spectrometry analyses. In the bioassays, both sexes of F. williamsi and male T. tabaci were significantly attracted to volatiles from maize plants infected with MCMV compared to healthy plants and solvent controls. Moreover, volatile analysis revealed strong induction of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in MCMV-infected maize seedlings. Our findings demonstrate MCMV induces changes in volatile profiles of host plants to elicit attraction of thrips vectors. The increased vector contact rates with MCMV-infected host plants could enhance virus transmission if thrips feed on the infected plants and acquire the pathogen prior to dispersal. Uncovering the mechanisms mediating interactions between vectors, host plants and pathogens provides useful insights for understanding the vector ecology and disease epidemiology, which in turn may contribute in designing integrated vector management strategies.

  20. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    PubMed

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Control of SIV infection and subsequent induction of pandemic H1N1 immunity in rhesus macaques using an Ad5 [E1-, E2b-] vector platform.

    PubMed

    Gabitzsch, Elizabeth S; Balint-Junior, Joseph P; Xu, Younong; Balcaitis, Stephanie; Sanders-Beer, Brigitte; Karl, Julie; Weinhold, Kent J; Paessler, Slobodan; Jones, Frank R

    2012-11-26

    Anti-vector immunity mitigates immune responses induced by recombinant adenovirus vector vaccines, limiting their prime-boost capabilities. We have developed a novel gene delivery and expression platform (Ad5 [E1-, E2b-]) that induces immune responses despite pre-existing and/or developed concomitant Ad5 immunity. In the present study, we evaluated if this new Ad5 platform could overcome the adverse condition of pre-existing Ad5 immunity to induce effective immune responses in prime-boost immunization regimens against two different infectious diseases in the same animal. Ad5 immune rhesus macaques (RM) were immunized multiple times with the Ad5 [E1-, E2b-] platform expressing antigens from simian immunodeficiency virus (SIV). Immunized RM developed cell-mediated immunity against SIV antigens Gag, Pol, Nef and Env as well as antibody against Env. Vaccinated and vector control RMs were challenged intra-rectally with homologous SIVmac239. During a 7-week follow-up, there was perturbation of SIV load in some immunized RM. At 7 weeks post-challenge, eight immunized animals (53%) did not have detectable SIV, compared to two RM controls (13%) (P<0.02; log-rank Mantel-Cox test). There was no correlation of protective MHC contributing to infection control. The RM without detectable circulating SIV, now hyper immune to Ad5, were then vaccinated with the same Ad5 [E1-, E2b-] platform expressing H1N1 influenza hemagglutinin (HA). Thirty days post Ad5 [E1-, E2b-]-HA vaccination, significant levels of influenza neutralizing antibody were induced in all animals that increased after an Ad5 [E1-, E2b-]-HA homologous boost. These data demonstrate the versatility of this new vector platform to immunize against two separate disease targets in the same animal despite the presence of immunity against the delivery platform, permitting homologous repeat immunizations with an Ad5 gene delivery platform. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  3. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Zhang, Hongpeng

    2017-12-01

    A new microfluidic chip is presented to enhance the sensitivity of a micro inductive sensor, and an approach to coil inductance change calculation is introduced for metal particle detection in lubrication oil. Electromagnetic knowledge is used to establish a mathematical model of an inductive sensor for metal particle detection, and the analytic expression of coil inductance change is obtained by a magnetic vector potential. Experimental verification is carried out. The results show that copper particles 50-52 µm in diameter have been detected; the relative errors between the theoretical and experimental values are 7.68% and 10.02% at particle diameters of 108-110 µm and 50-52 µm, respectively. The approach presented here can provide a theoretical basis for an inductive sensor in metal particle detection in oil and other areas of application.

  4. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds.

    PubMed

    Cannon, Edward O; Amini, Ata; Bender, Andreas; Sternberg, Michael J E; Muggleton, Stephen H; Glen, Robert C; Mitchell, John B O

    2007-05-01

    We investigate the classification performance of circular fingerprints in combination with the Naive Bayes Classifier (MP2D), Inductive Logic Programming (ILP) and Support Vector Inductive Logic Programming (SVILP) on a standard molecular benchmark dataset comprising 11 activity classes and about 102,000 structures. The Naive Bayes Classifier treats features independently while ILP combines structural fragments, and then creates new features with higher predictive power. SVILP is a very recently presented method which adds a support vector machine after common ILP procedures. The performance of the methods is evaluated via a number of statistical measures, namely recall, specificity, precision, F-measure, Matthews Correlation Coefficient, area under the Receiver Operating Characteristic (ROC) curve and enrichment factor (EF). According to the F-measure, which takes both recall and precision into account, SVILP is for seven out of the 11 classes the superior method. The results show that the Bayes Classifier gives the best recall performance for eight of the 11 targets, but has a much lower precision, specificity and F-measure. The SVILP model on the other hand has the highest recall for only three of the 11 classes, but generally far superior specificity and precision. To evaluate the statistical significance of the SVILP superiority, we employ McNemar's test which shows that SVILP performs significantly (p < 5%) better than both other methods for six out of 11 activity classes, while being superior with less significance for three of the remaining classes. While previously the Bayes Classifier was shown to perform very well in molecular classification studies, these results suggest that SVILP is able to extract additional knowledge from the data, thus improving classification results further.

  5. Induction of Shock After Intravenous Injection of Adenovirus Vectors: A Critical Role for Platelet-activating Factor

    PubMed Central

    Xu, Zhili; Smith, Jeffrey S.; Tian, Jie; Byrnes, Andrew P.

    2009-01-01

    Innate immune responses are a major barrier to safe systemic gene therapy with adenovirus (Ad) vectors. We show that intravenous (IV) injection of rats with Ad5 vectors causes a novel rapid shock reaction that involves hypotension, hemoconcentration, tissue edema, and vasocongestion, with notable pathology in the pancreas and the gastrointestinal system. We show for the first time that this reaction is dependent on platelet-activating factor (PAF), a lipid signaling molecule that is a known shock inducer. Ad upregulated PAF within 5 minutes in vivo, and antagonists of the PAF receptor were able to prevent Ad-induced shock. Ad upregulated PAF via the reticuloendothelial system (RES), because splenectomy or depletion of phagocytes blocked the ability of Ad to induce both PAF and shock. Rats were considerably more sensitive to Ad-induced shock than were mice, but PAF mediated shock in both species. Other Ad-induced innate immune responses such as cytokine induction and thrombocytopenia were not mediated by PAF. In summary, systemic IV injection of Ad stimulates the RES to upregulate PAF within a matter of minutes, which results in shock. The identification of this novel pathway suggests strategies to improve the safety of systemic gene therapy with Ad vectors. PMID:19953082

  6. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Chowdhury, Priyanka; Ghosh, Utpal

    2016-09-22

    Hadron therapy is an innovative technique where cancer cells are precisely killed leaving surrounding healthy cells least affected by high linear energy transfer (LET) radiation like carbon ion beam. Anti-metastatic effect of carbon ion exposure attracts investigators into the field of hadron biology, although details remain poor. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are well-known radiosensitizer and several PARP-1 inhibitors are in clinical trial. Our previous studies showed that PARP-1 depletion makes the cells more radiosensitive towards carbon ion than gamma. The purpose of the present study was to investigate combining effects of PARP-1 inhibition with carbon ion exposure to control metastatic properties in HeLa cells. Activities of matrix metalloproteinases-2, 9 (MMP-2, MMP-9) were measured using the gelatin zymography after 85 MeV carbon ion exposure or gamma irradiation (0- 4 Gy) to compare metastatic potential between PARP-1 knock down (HsiI) and control cells (H-vector - HeLa transfected with vector without shRNA construct). Expression of MMP-2, MMP-9, tissue inhibitor of MMPs such as TIMP-1, TIMP-2 and TIMP-3 were checked by immunofluorescence and western blot. Cell death by trypan blue, apoptosis and autophagy induction were studied after carbon ion exposure in each cell-type. The data was analyzed using one way ANOVA and 2-tailed paired-samples T-test. PARP-1 silencing significantly reduced MMP-2 and MMP-9 activities and carbon ion exposure further diminished their activities to less than 3 % of control H-vector. On the contrary, gamma radiation enhanced both MMP-2 and MMP-9 activities in H-vector but not in HsiI cells. The expression of MMP-2 and MMP-9 in H-vector and HsiI showed different pattern after carbon ion exposure. All three TIMPs were increased in HsiI, whereas only TIMP-1 was up-regulated in H-vector after irradiation. Notably, the expressions of all TIMPs were significantly higher in HsiI than H-vector at 4 Gy. Apoptosis was the predominant mode of cell death and no autophagic death was observed. Our study demonstrates for the first time that PARP-1 inhibition in combination with carbon ion synergistically decreases MMPs activity along with overall increase of TIMPs. These data open up the possibilities of improvement of carbon ion therapy with PARP-1 inhibition to control highly metastatic cancers.

  7. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  8. HIV-derived vectors for gene therapy targeting dendritic cells.

    PubMed

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  9. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  10. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  11. Leishmania, microbiota and sand fly immunity.

    PubMed

    Telleria, Erich Loza; Martins-da-Silva, Andrea; Tempone, Antonio Jorge; Traub-Csekö, Yara Maria

    2018-06-20

    In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.

  12. Monitoring by Use of Clusters of Sensor-Data Vectors

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2007-01-01

    The inductive monitoring system (IMS) is a system of computer hardware and software for automated monitoring of the performance, operational condition, physical integrity, and other aspects of the health of a complex engineering system (e.g., an industrial process line or a spacecraft). The input to the IMS consists of streams of digitized readings from sensors in the monitored system. The IMS determines the type and amount of any deviation of the monitored system from a nominal or normal ( healthy ) condition on the basis of a comparison between (1) vectors constructed from the incoming sensor data and (2) corresponding vectors in a database of nominal or normal behavior. The term inductive reflects the use of a process reminiscent of traditional mathematical induction to learn about normal operation and build the nominal-condition database. The IMS offers two major advantages over prior computational monitoring systems: The computational burden of the IMS is significantly smaller, and there is no need for abnormal-condition sensor data for training the IMS to recognize abnormal conditions. The figure schematically depicts the relationships among the computational processes effected by the IMS. Training sensor data are gathered during normal operation of the monitored system, detailed computational simulation of operation of the monitored system, or both. The training data are formed into vectors that are used to generate the database. The vectors in the database are clustered into regions that represent normal or nominal operation. Once the database has been generated, the IMS compares the vectors of incoming sensor data with vectors representative of the clusters. The monitored system is deemed to be operating normally or abnormally, depending on whether the vector of incoming sensor data is or is not, respectively, sufficiently close to one of the clusters. For this purpose, a distance between two vectors is calculated by a suitable metric (e.g., Euclidean distance) and "sufficiently close" signifies lying at a distance less than a specified threshold value. It must be emphasized that although the IMS is intended to detect off-nominal or abnormal performance or health, it is not necessarily capable of performing a thorough or detailed diagnosis. Limited diagnostic information may be available under some circumstances. For example, the distance of a vector of incoming sensor data from the nearest cluster could serve as an indication of the severity of a malfunction. The identity of the nearest cluster may be a clue as to the identity of the malfunctioning component or subsystem. It is possible to decrease the IMS computation time by use of a combination of cluster-indexing and -retrieval methods. For example, in one method, the distances between each cluster and two or more reference vectors can be used for the purpose of indexing and retrieval. The clusters are sorted into a list according to these distance values, typically in ascending order of distance. When a set of input data arrives and is to be tested, the data are first arranged as an ordered set (that is, a vector). The distances from the input vector to the reference points are computed. The search of clusters from the list can then be limited to those clusters lying within a certain distance range from the input vector; the computation time is reduced by not searching the clusters at a greater distance.

  13. Soft Computing Application in Fault Detection of Induction Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  14. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei

    2014-03-01

    In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.

  15. Advanced electric motor technology flux mapping

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Campbell, Warren; Dean, Garvin

    1993-01-01

    Design of electric motors which fulfill the needs of Thrust Vector Control (TVC) actuators used in large rocket propelled launch vehicles is covered. To accomplish this end the methodology of design is laid out in some detail. In addition a point design of a motor to fulfill the requirements of a certain actuator specified by MSFC is accomplished and reported upon. In the course of this design great stress has been placed on ridding the actuator of internally generated heat. To conduct the heat out of the motor use is made of the unique properties of the in house MSFC designed driving electronics. This property is that as along as they are operated in a quasi-linear mode the electronics nullify the effects of armature inductance as far as the phase of the armature current versus the rotor position is concerned. Actually the additional inductance due to the extended end turns in this design is of benefit because in the shorted armature failure mode the armature current in the fault (caused by the rotor flux sweeping past the armature) is diminished at a given rotor speed when compared to a more conventional motor with lower inductance. The magnetic circuit is analyzed using electromagnetic finite element methods.

  16. An electromechanical actuation system for an expendable launch vehicle

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary E.

    1992-01-01

    A major effort at NASA-Lewis in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt to overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times.

  17. The increase in the starting torque of PMSM motor by applying of FOC method

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2017-05-01

    The article presents field oriented control method of synchronous permanent magnet motor equipped in optical sensors. This method allows for a wide range regulation of torque and rotational speed of the electric motor. The paper presents mathematical model of electric motor and vector control method. Optical sensors have shorter time response as compared to the inductive sensors, which allow for faster response of the electronic control system to changes of motor loads. The motor driver is based on the digital signal processor which performs advanced mathematical operations in real time. The appliance of Clark and Park transformation in the software defines the angle of rotor position. The presented solution provides smooth adjustment of the rotational speed in the first operating zone and reduces the dead zone of the torque in the second and third operating zones.

  18. AAV vector encoding human VEGF165-transduced pectineus muscular flaps increase the formation of new tissue through induction of angiogenesis in an in vivo chamber for tissue engineering: A technique to enhance tissue and vessels in microsurgically engineered tissue.

    PubMed

    Moimas, Silvia; Manasseri, Benedetto; Cuccia, Giuseppe; Stagno d'Alcontres, Francesco; Geuna, Stefano; Pattarini, Lucia; Zentilin, Lorena; Giacca, Mauro; Colonna, Michele R

    2015-01-01

    In regenerative medicine, new approaches are required for the creation of tissue substitutes, and the interplay between different research areas, such as tissue engineering, microsurgery and gene therapy, is mandatory. In this article, we report a modification of a published model of tissue engineering, based on an arterio-venous loop enveloped in a cross-linked collagen-glycosaminoglycan template, which acts as an isolated chamber for angiogenesis and new tissue formation. In order to foster tissue formation within the chamber, which entails on the development of new vessels, we wondered whether we might combine tissue engineering with a gene therapy approach. Based on the well-described tropism of adeno-associated viral vectors for post-mitotic tissues, a muscular flap was harvested from the pectineus muscle, inserted into the chamber and transduced by either AAV vector encoding human VEGF165 or AAV vector expressing the reporter gene β-galactosidase, as a control. Histological analysis of the specimens showed that muscle transduction by AAV vector encoding human VEGF165 resulted in enhanced tissue formation, with a significant increase in the number of arterioles within the chamber in comparison with the previously published model. Pectineus muscular flap, transduced by adeno-associated viral vectors, acted as a source of the proangiogenic factor vascular endothelial growth factor, thus inducing a consistent enhancement of vessel growth into the newly formed tissue within the chamber. In conclusion, our present findings combine three different research fields such as microsurgery, tissue engineering and gene therapy, suggesting and showing the feasibility of a mixed approach for regenerative medicine.

  19. Multiple Antibiotic Resistance Plasmids Allow Scalable,
PCR-Mediated DNA Manipulation and Near-Zero Background Cloning

    PubMed Central

    Arnak, Remigiusz; Altun, Burcin; Tosato, Valentina

    2016-01-01

    Summary We have constructed two plasmids that can be used for cloning as templates for PCR- -based gene disruption, mutagenesis and the construction of DNA chromosome translocation cassettes. To our knowledge, these plasmids are the first vectors that confer resistance to ampicillin, kanamycin and hygromycin B in bacteria, and to geneticin (G418) and hygromycin B in Saccharomyces cerevisiae simultaneously. The option of simultaneously using up to three resistance markers provides a highly stringent control of recombinant selection and the almost complete elimination of background resistance, while unique restriction sites allow easy cloning of chosen genetic material. Moreover, we successfully used these new vectors as PCR templates for the induction of chromosome translocation in budding yeast by the bridge-induced translocation system. Cells in which translocation was induced carried chromosomal rearrangements as expected and exhibited resistance to both, G418 and hygromycin B. These features make our constructs very handy tools for many molecular biology applications. PMID:27956856

  20. Adenosine Deaminase Acting on RNA 1 (ADAR1) Suppresses the Induction of Interferon by Measles Virus

    PubMed Central

    Li, Zhiqun; Okonski, Kristina M.

    2012-01-01

    ADAR1, the interferon (IFN)-inducible adenosine deaminase acting on RNA, catalyzes the C-6 deamination of adenosine (A) to produce inosine (I) in RNA substrates with a double-stranded character. Because double-stranded RNA is a known inducer of IFN, we tested the role of ADAR1 in IFN induction following virus infection. HeLa cells made stably deficient in ADAR1 (ADAR1kd) were compared to vector control (CONkd) and protein kinase PKR-deficient (PKRkd) cells for IFN-β induction following infection with either parental (wild-type [WT]) recombinant Moraten vaccine strain measles virus (MV) or isogenic knockout mutants deficient for either V (Vko) or C (Cko) protein expression. We observed potent IFN-β transcript induction in ADAR1kd cells by all three viruses; in contrast, in ADAR1-sufficient CONkd cells, only the Cko mutant virus was an effective inducer and the IFN-β RNA induction was amplified by PKR. The enhanced IFN-β transcript-inducing capacity of the WT and Vko viruses seen in ADAR1-deficient cells correlated with the enhanced activation of PKR, IFN regulatory factor IRF3, and activator of transcription ATF2, reaching levels similar to those seen in Cko virus-infected cells. However, the level of IFN-β protein produced was not proportional to the level of IFN-β RNA but rather correlated inversely with the level of activated PKR. These results suggest that ADAR1 functions as an important suppressor of MV-mediated responses, including the activation of PKR and IRF3 and the induction of IFN-β RNA. Our findings further implicate a balanced interplay between PKR and ADAR1 in modulating IFN-β protein production following virus infection. PMID:22278222

  1. Therapeutic vaccines in HBV: lessons from HCV.

    PubMed

    Barnes, Eleanor

    2015-02-01

    Currently, millions of people infected with hepatitis B virus (HBV) are committed to decades of treatment with anti-viral therapy to control viral replication. However, new tools for immunotherapy that include both viral vectors and molecular checkpoint inhibitors are now available. This has led to a resurgence of interest in new strategies to develop immunotherapeutic strategies with the aim of inducing HBeAg seroconversion--an end-point that has been associated with a decrease in the rates of disease progression. Ultimately, a true cure will involve the elimination of covalently closed circular DNA which presents a greater challenge for immunotherapy. In this manuscript, I describe the development of immunotherapeutic strategies for HBV that are approaching or currently in clinical studies, and draw on observations of T cell function in natural infection supported by recent animal studies that may lead to additional rational vaccine strategies using checkpoint inhibitors. I also draw on our recent experience in developing potent vaccines for HCV prophylaxis based on simian adenoviral and MVA vectors used in prime-boost strategies in both healthy volunteers and HCV infected patients. I have shown that the induction of T cell immune responses is markedly attenuated when administered to people with persistent HCV viremia. These studies and recently published animal studies using the woodchuck model suggest that potent vaccines based on DNA or adenoviral vectored vaccination represent a rational way forward. However, combining these with drugs to suppress viral replication, alongside checkpoint inhibitors may be required to induce long-term immune control.

  2. Applications and challenges of multivalent recombinant vaccines

    PubMed Central

    Naim, Hussein Y.

    2013-01-01

    The exceptional discoveries of antigen/gene delivery systems have allowed the development of novel prophylactic and therapeutic vaccine candidates. The vaccine candidates employ various antigen-delivery systems, particularly recombinant viral vectors. Recombinant viral vectors are experimental vaccines similar to DNA vaccines, but they use attenuated viruses or bacterium as a carrier “vector” to introduce microbial DNA to cells of the body. They closely mimic a natural infection and therefore can efficiently stimulate the immune system. Although such recombinant vectors may face extensive preclinical testing and will possibly have to meet stringent regulatory requirements, some of these vectors (e.g. measles virus vectors) may benefit from the profound industrial and clinical experience of the parent vaccine. Most notably, novel vaccines based on live attenuated viruses combine the induction of broad, strong and persistent immune responses with acceptable safety profiles. We assess certain technologies in light of their use against human immunodeficiency virus (HIV). PMID:23249651

  3. External field characterization using CHAMP satellite data for induction studies

    NASA Astrophysics Data System (ADS)

    Kunagu, Praveen; Chandrasekhar, E.

    2013-06-01

    Knowledge of external inducing source field morphology is essential for precise estimation of electromagnetic (EM) induction response. A better characterization of the external source field of magnetospheric origin can be achieved by decomposing it into outer and inner magnetospheric contributions, which are best represented in Geocentric Solar Magnetospheric (GSM) and Solar Magnetic (SM) reference frames, respectively. Thus we propose a spherical harmonic (SH) model to estimate the outer magnetospheric contribution, following the iterative reweighted least squares approach, using the vector magnetic data of the CHAMP satellite. The data covers almost a complete solar cycle from July 2001 to September 2010, spanning 54,474 orbits. The SH model, developed using orbit-averaged vector magnetic data, reveals the existence of a stable outer magnetospheric contribution of about 7.39 nT. This stable field was removed from the CHAMP data after transforming to SM frame. The residual field in the SM frame acts as a primary source for induction in the Earth. The analysis of this time-series using wavelet transformation showed a dominant 27-day periodicity of the geomagnetic field. Therefore, we calculated the inductive EM C-response function in a least squares sense considering the 27-day period variation as the inducing signal. From the estimated C-response, we have determined that the global depth to the perfect substitute conductor is about 1132 km and its conductivity is around 1.05 S/m.

  4. [Construction and selection of effective mouse Smad6 recombinant lenti-virus interference vectors].

    PubMed

    Yu, Jing; Qi, Mengchun; Deng, Jiupeng; Liu, Gang; Chen, Huaiqing

    2010-10-01

    This experiment was designed to construct mouse Smad6 recombinant RNA interference vectors and determine their interference effects on bone marrow mesenchymal stem cells (BMSCs). Three recombinant Smad6 RNA interference vectors were constructed by molecular clone techniques with a lenti-virus vector expressing green fluorescent protein (GFP), and the correctness of recombinant vectors was verified by DNA sequencing. Mouse BMSCs were used for transfection experiments and BMP-2 was in use for osteogenic induction of MSCs. The transfection efficiency of recombinant vectors was examined by Laser confocal scanning microscope and the interference effect of recombinant vectors on Smad6 gene expression was determined by real-time RT-PCR and Western blot, respectively. Three Smad6 recombinant RNA interference vectors were successfully constructed and their correctness was proved by DNA sequencing. After transfection, GFPs were effectively expressed in MSCs and all of three recombinant vectors gained high transfection efficiency (> 95%). Both real-time PCR and Western blot examination indicated that among three recombinant vectors, No. 2 Svector had the best interference effect and the interference effect was nearly 91% at protein level. In conclusion, Mouse recombinant Smad6 RNA interference (RNAi) vector was successfully constructed and it provided an effective tool for further studies on BMP signal pathways.

  5. The human estrogen receptor can regulate exogenous but not endogenous vitellogenin gene promoters in a Xenopus cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiler-Tuyns, A.; Merillat, A.M.; Haefliger, D.N.

    Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5{prime} flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogeninmore » minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells.« less

  6. Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors

    PubMed Central

    Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.

    2012-01-01

    Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537

  7. Polyploidization without mitosis improves in vivo liver transduction with lentiviral vectors.

    PubMed

    Pichard, Virginie; Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas

    2013-02-01

    Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy.

  8. Polyploidization Without Mitosis Improves In Vivo Liver Transduction With Lentiviral Vectors

    PubMed Central

    Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas

    2013-01-01

    Abstract Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy. PMID:23249390

  9. 8-Methoxypsoralen photoinduced plasmid-chromosome recombination in Saccharomyces cerevisiae using a centromeric vector.

    PubMed Central

    Meira, L B; Henriques, J A; Magaña-Schwencke, N

    1995-01-01

    The characterization of a new system to study the induction of plasmid-chromosome recombination is described. Single-stranded and double-stranded centromeric vectors bearing 8-methoxypsoralen photoinduced lesions were used to transform a wild-type yeast strain bearing the leu2-3,112 marker. Using the SSCP methodology and DNA sequencing, it was demonstrated that repair of the lesions in plasmid DNA was mainly due to conversion of the chromosomal allele to the plasmid DNA. Images PMID:7784218

  10. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8⁺ T Cells that Protect Against Subcutaneous B16-OVA Melanoma.

    PubMed

    Stark, Felicity C; McCluskie, Michael J; Krishnan, Lakshmi

    2016-11-17

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8⁺ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8⁺ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8⁺ T cell response of up to 45% of all circulating CD8⁺ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8⁺ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8⁺ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62 low ) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8⁺ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection.

  11. Production of recombinant protein by a novel oxygen-induced system in Escherichia coli.

    PubMed

    Baez, Antonino; Majdalani, Nadim; Shiloach, Joseph

    2014-04-07

    The SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration likely to protect the bacteria from possible oxygen damage. The soxS expression can be increased up to 16 fold, making it a possible candidate for recombinant protein expression. Compared with the existing induction approaches, oxygen induction is advantageous because it does not involve addition or depletion of growth factors or nutrients, addition of chemical inducers or temperature changes that can affect growth and metabolism of the producing bacteria. It also does not affect the composition of the growth medium simplifying the recovery and purification processes. The soxS promoter was cloned into the commercial pGFPmut3.1 plasmid creating pAB49, an expression vector that can be induced by increasing oxygen concentration. The efficiency and the regulatory properties of the soxS promoter were characterized by measuring the GFP expression when the culture dissolved oxygen concentration was increased from 30% to 300% air saturation. The expression level of recombinant GFP was proportional to the oxygen concentration, demonstrating that pAB49 is a controllable expression vector. A possible harmful effect of elevated oxygen concentration on the recombinant product was found to be negligible by determining the protein-carbonyl content and its specific fluorescence. By performing high density growth in modified LB medium, the cells were induced by increasing the oxygen concentration. After 3 hours at 300% air saturation, GFP fluorescence reached 109000 FU (494 mg of GFP/L), representing 3.4% of total protein, and the cell concentration reached 29.1 g/L (DW). Induction of recombinant protein expression by increasing the dissolved oxygen concentration was found to be a simple and efficient alternative expression strategy that excludes the use of chemical, nutrient or thermal inducers that have a potential negative effect on cell growth or the product recovery.

  12. Reconstruction of Vectorial Acoustic Sources in Time-Domain Tomography

    PubMed Central

    Xia, Rongmin; Li, Xu; He, Bin

    2009-01-01

    A new theory is proposed for the reconstruction of curl-free vector field, whose divergence serves as acoustic source. The theory is applied to reconstruct vector acoustic sources from the scalar acoustic signals measured on a surface enclosing the source area. It is shown that, under certain conditions, the scalar acoustic measurements can be vectorized according to the known measurement geometry and subsequently be used to reconstruct the original vector field. Theoretically, this method extends the application domain of the existing acoustic reciprocity principle from a scalar field to a vector field, indicating that the stimulating vectorial source and the transmitted acoustic pressure vector (acoustic pressure vectorized according to certain measurement geometry) are interchangeable. Computer simulation studies were conducted to evaluate the proposed theory, and the numerical results suggest that reconstruction of a vector field using the proposed theory is not sensitive to variation in the detecting distance. The present theory may be applied to magnetoacoustic tomography with magnetic induction (MAT-MI) for reconstructing current distribution from acoustic measurements. A simulation on MAT-MI shows that, compared to existing methods, the present method can give an accurate estimation on the source current distribution and a better conductivity reconstruction. PMID:19211344

  13. An Update on Canine Adenovirus Type 2 and Its Vectors

    PubMed Central

    Bru, Thierry; Salinas, Sara; Kremer, Eric J.

    2010-01-01

    Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors. PMID:21994722

  14. Inductance parameter design based seamless transfer strategy for three-phase converter in microgrid

    NASA Astrophysics Data System (ADS)

    Zhao, Guopeng; Zhou, Xinwei; Jiang, Chao; Lu, Yi; Wang, Yanjie

    2018-06-01

    During the operation of microgrid, especially when the unplanned islanding occurs, the voltage of the point of common coupling (PCC) needs to be maintained within a certain range, otherwise it would affect the operation of loads in microgrid. This paper proposes a seamless transfer strategy based on the inductance parameter design for three-phase converter in microgrid, which considers both the fundamental component of voltage on the inductance and the ripple current in the inductance. In grid-connected mode, the PCC voltage is supported by the grid. When the unplanned islanding occurs, the PCC voltage is affected by the output voltage of converter and the voltage on the inductance. According to the single phase equivalent circuit, analyzing the phasor diagram of voltage and current vector, considering the prescribed range of PCC voltage and satisfying the requirement of the magnitude of ripple current, the inductance parameter is designed. At last, the simulation result shows that the designed inductance can ensure the PCC voltage does not exceed the prescribed range and restrain the ripple current.

  15. Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery

    PubMed Central

    2011-01-01

    Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin. PMID:21255430

  16. Toxicological and biochemical response of the entomopathogenic fungus Beauveria bassiana after exposure to deltamethrin.

    PubMed

    Forlani, Lucas; Juárez, M Patricia; Lavarías, Sabrina; Pedrini, Nicolás

    2014-05-01

    The chemical control of the Chagas disease vector Triatoma infestans is endangered by the emergence of pyrethroid resistance. An effective alternative control tool is the use of the entomopathogenic fungus Beauveria bassiana. The effect of deltamethrin on fungal growth, gene expression and enzyme activity in relation to detoxification, antioxidant response and oxidative stress levels was studied to evaluate fungal tolerance to deltamethrin. The mean inhibitory concentration (IC50 ) was 50 µg deltamethrin/cm(2). Cytochrome P450 genes were differentially expressed; cyp52X1 and cyp617N1 transcripts were > 2-fold induced, followed by cyp655C1 (1.8-fold). Minor effects were observed on genes encoding for other P450s, epoxide hydrolase and glutathione S-transferase (GST). Superoxide dismutase (SOD) genes showed induction levels ≤ 2, catalase (CAT) and glutathione peroxidase genes were also induced ∼ 2-3-fold and < 2-fold, respectively. The activities of enzymes participating in the antioxidant defense system and phase II detoxification were also evaluated; SOD, CAT and GST activity showed significant differences with deltamethrin concentration. Lipid peroxidation levels and free proline content were also altered. Beauveria bassiana GHA can be used combined with deltamethrin without significant metabolic detrimental effects. This combination will help optimizing the benefits and increasing the efficacy of vector control tools. © 2013 Society of Chemical Industry.

  17. Antibody-Based Preventive and Therapeutic Strategies Against HIV.

    PubMed

    Fabra-Garcia, Amanda; Beltran, Carolina; Sanchez-Merino, Victor; Yuste, Eloisa

    2016-01-01

    Over the years, numerous studies have been carried out demonstrating the role of antibodies in HIV control leading to the development of antibody-based therapeutic and prophylactic strategies. The objective of this review is to provide updated information on the role of antibodies in the prevention and control of HIV infection and the strategies against HIV that have been designed based on this information. Passive transfer of anti-HIV antibodies in animal models has proven the efficacy of certain antibodies in the prevention and treatment of infection. The capacity of antibodies to control the virus was first attributed to their neutralizing capacity. However, we now know that there are other Fc-mediated antibody activities associated with virus protection. When it comes to better understanding protection against HIV, we ought to pay particular attention to mucosal immune responses. The evidence accumulated so far indicates that an effective vaccine against HIV should generate both mucosal IgAs and systemic IgGs. Due to the problematic induction of protective anti-HIV antibodies, several groups have developed alternative approaches based on antibody delivery via gene therapy vectors. Experiments in animal models with these vectors have shown impressive protection levels and this strategy is now being clinically trialed. Taking into account all the information included in this review, it seems evident that anti-HIV-1 antibodies play an important role in virus control and prevention. This review aims to give an overview of the strategies used and the advances in antibody-based preventive and therapeutic strategies against HIV-1.

  18. Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors.

    PubMed

    Vande Velde, G; Rangarajan, J R; Toelen, J; Dresselaers, T; Ibrahimi, A; Krylychkina, O; Vreys, R; Van der Linden, A; Maes, F; Debyser, Z; Himmelreich, U; Baekelandt, V

    2011-06-01

    The development of in vivo imaging protocols to reliably track transplanted cells or to report on gene expression is critical for treatment monitoring in (pre)clinical cell and gene therapy protocols. Therefore, we evaluated the potential of lentiviral vectors (LVs) and adeno-associated viral vectors (AAVs) to express the magnetic resonance imaging (MRI) reporter gene ferritin in the rodent brain. First, we compared the induction of background MRI contrast for both vector systems in immune-deficient and immune-competent mice. LV injection resulted in hypointense (that is, dark) changes of T(2)/T(2)(*) (spin-spin relaxation time)-weighted MRI contrast at the injection site, which can be partially explained by an inflammatory response against the vector injection. In contrast to LVs, AAV injection resulted in reduced background contrast. Moreover, AAV-mediated ferritin overexpression resulted in significantly enhanced contrast to background on T(2)(*)-weighted MRI. Although sensitivity associated with the ferritin reporter remains modest, AAVs seem to be the most promising vector system for in vivo MRI reporter gene imaging.

  19. Replicating viral vector platform exploits alarmin signals for potent CD8+ T cell-mediated tumour immunotherapy

    PubMed Central

    Kallert, Sandra M.; Darbre, Stephanie; Bonilla, Weldy V.; Kreutzfeldt, Mario; Page, Nicolas; Müller, Philipp; Kreuzaler, Matthias; Lu, Min; Favre, Stéphanie; Kreppel, Florian; Löhning, Max; Luther, Sanjiv A.; Zippelius, Alfred; Merkler, Doron; Pinschewer, Daniel D.

    2017-01-01

    Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTLeff) responses. Conversely, the induction of protective tumour-specific CTLeff and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTLeff responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTLeff influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy. PMID:28548102

  20. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    PubMed Central

    Sheu, Jonathan; Beltzer, Jim; Fury, Brian; Wilczek, Katarzyna; Tobin, Steve; Falconer, Danny; Nolta, Jan; Bauer, Gerhard

    2015-01-01

    Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation. PMID:26151065

  1. Nonlinear Control of the Doubly Fed Induction Motor with Copper Losses Minimization for Electrical Vehicle

    NASA Astrophysics Data System (ADS)

    Drid, S.; Nait-Said, M.-S.; Tadjine, M.; Makouf, A.

    2008-06-01

    There is an increasing interest in electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved propulsion system for electric vehicles applications with minimal power losses. This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.

  2. Notch3 as a novel therapeutic target in metastatic medullary thyroid cancer.

    PubMed

    Lou, Irene; Odorico, Scott; Yu, Xiao-Min; Harrison, April; Jaskula-Sztul, Renata; Chen, Herbert

    2018-01-01

    Medullary thyroid cancer portends poor survival once liver metastasis occurs. We hypothesize that Notch3 overexpression in medullary thyroid cancer liver metastasis will decrease proliferation and growth of the tumor. TT cells were modified genetically to overexpress Notch3 in the presence of doxycycline, creating the TT-Notch3 cell line. Mice were injected intrasplenically with either TT-Notch3 or control vector TT-TRE cells. Each cell line had 3 treatment groups: control with 12 weeks of standard chow, early DOX with doxycycline chow at day 0 and for 70 days thereafter, and late DOX with doxycycline chow at 8 weeks. Each animal underwent micro-computed tomography to evaluate for tumor formation and tumor quantification was performed. Animals were killed at 12 weeks, and the harvested liver was stained with Ki-67, hematoxylin and eosin, and Notch3. Induction of Notch3 did not prevent formation of medullary thyroid cancer liver metastases as all mice in the early DOX group developed tumors. However, induction of Notch after medullary thyroid cancer liver tumor formation decreased tumor size, as seen on micro-computed tomography scans (late DOX group). This translated to a 37-fold decrease in tumor volume (P = .001). Notch3 overexpression also resulted in decreased Ki-67 index (P = .038). Moreover, Notch3 induction led to increased areas of neutrophil infiltration and necrosis on hematoxylin and eosin staining of the tumors CONCLUSION: Notch3 overexpression demonstrates an antiproliferative effect on established metastatic medullary thyroid cancer liver tumors and is a potential therapeutic target in treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  4. Analysis of chaos attractors of MCG-recordings.

    PubMed

    Jiang, Shiqin; Yang, Fan; Yi, Panke; Chen, Bo; Luo, Ming; Wang, Lemin

    2006-01-01

    By studying the chaos attractor of cardiac magnetic induction strength B(z) generated by the electrical activity of the heart, we found that its projection in the reconstructed phase space has a similar shape with the map of the total current dipole vector. It is worth noting that the map of the total current dipole vector is computed with MCG recordings measured at 36 locations, whereas the chaos attractor of B(z) is generated by only one cardiac magnetic field recordings on the measured plan. We discuss only two subjects of different ages in this paper.

  5. Perturbations of the magnetic induction in a bubbly liquid metal flow

    NASA Astrophysics Data System (ADS)

    Guichou, Rafael; Tordjeman, Philippe; Bergez, Wladimir; Zamansky, Remi; Paumel, Kevin

    2017-11-01

    The presence of bubbles in liquid metal flow subject to AC magnetic field modifies the distribution of eddy currents in the fluid. This situation is encountered in metallurgy and nuclear industry for Sodium Fast Reactors. We will show that the perturbation of the eddy currents can be measured by an Eddy Current Flowmeter coupled with a lock-in amplifier. The experiments point out that the demodulated signal allows to detect the presence of a single bubble in the flow. The signal is sensitive both to the diameter and the relative position of the bubble. Then, we will present a model of a potential perturbation of the current density caused by a bubble and the distortion of the magnetic field. The eddy current distribution is calculated from the induction equation. This model is derived from a potential flow around a spherical particle. The total vector potential is the sum of the vector potential in the liquid metal flow without bubbles and the perturbated vector potential due to the presence of a bubble. The model is then compared to the experimental measurements realized with the eddy current flow meter for various bubble diameters in galinstan. The very good agreement between model and experiments validates the relevance of the perturbative approach.

  6. IGF-1 Gene Transfer to Human Synovial MSCs Promotes Their Chondrogenic Differentiation Potential without Induction of the Hypertrophic Phenotype.

    PubMed

    Ikeda, Yasutoshi; Sakaue, Morito; Chijimatsu, Ryota; Hart, David A; Otsubo, Hidenori; Shimomura, Kazunori; Madry, Henning; Suzuki, Tomoyuki; Yoshikawa, Hideki; Yamashita, Toshihiko; Nakamura, Norimasa

    2017-01-01

    Mesenchymal stem cell- (MSC-) based therapy is a promising treatment for cartilage. However, repair tissue in general fails to regenerate an original hyaline-like tissue. In this study, we focused on increasing the expression levels for insulin-like growth factor-1 (IGF-1) to improve repair tissue quality. The IGF-1 gene was introduced into human synovial MSCs with a lentiviral vector and examined the levels of gene expression and morphological status of MSCs under chondrogenic differentiation condition using pellet cultures. The size of the pellets derived from IGF-1-MSCs were significantly larger than those of the control group. The abundance of glycosaminoglycan (GAG) was also significantly higher in the IGF-1-MSC group. The histology of the IGF-1-induced pellets demonstrated similarities to hyaline cartilage without exhibiting features of a hypertrophic chondrocyte phenotype. Expression levels for the Col2A1 gene and protein were significantly higher in the IGF-1 pellets than in the control pellets, but expression levels for Col10, MMP-13, ALP, and Osterix were not higher. Thus, IGF-1 gene transfer to human synovial MSCs led to an improved chondrogenic differentiation capacity without the detectable induction of a hypertrophic or osteogenic phenotype.

  7. Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease.

    PubMed

    Ko, Hyun-Ja; Chung, Jie-Yu; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Toh, Ban-Hock; Alderuccio, Frank

    2011-05-01

    Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.

  8. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.

  9. Modification of liposomal concentration in liposome/adenoviral complexes allows significant protection of adenoviral vectors from neutralising antibody, in vitro.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel J; Kalle, Wouter H J

    2005-06-01

    Adenoviral vectors have been commonly used in gene therapy protocols, however the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced which limits further administration. This study examines the efficacy of complexing liposomes to adenovirus for the protection of the adenovirus from neutralising antibodies in an in vitro setting. Dimethyldioctadecylammonium bromide (DDAB)-dioleoyl-l-phosphatidylethanolamine (DOPE) liposomes were bound at varying concentrations to adenovirus to form AL complexes and tested these complexes' ability to prevent adenoviral neutralisation. It is shown that by increasing the concentration of liposomes in the adenoviral-liposome (AL) complexes we can increase the level of immuno-shielding afforded the adenovirus. It is also shown that the increase in liposomal concentration may lead to drawbacks such as increased cytotoxicity and reductions in expression levels.

  10. NR4A3 Suppresses Lymphomagenesis through Induction of Proapoptotic Genes.

    PubMed

    Deutsch, Alexander J A; Rinner, Beate; Pichler, Martin; Prochazka, Katharina; Pansy, Katrin; Bischof, Marco; Fechter, Karoline; Hatzl, Stefan; Feichtinger, Julia; Wenzl, Kerstin; Frisch, Marie-Therese; Stiegelbauer, Verena; Prokesch, Andreas; Krogsdam, Anne; Sill, Heinz; Thallinger, Gerhard G; Greinix, Hildegard T; Wang, Chenguang; Beham-Schmid, Christine; Neumeister, Peter

    2017-05-01

    Nuclear orphan receptor NR4A1 exerts an essential tumor suppressor function in aggressive lymphomas. In this study, we investigated the hypothesized contribution of the related NR4A family member NR4A3 to lymphomagenesis. In aggressive lymphoma patients, low expression of NR4A3 was associated with poor survival. Ectopic expression or pharmacological activation of NR4A3 in lymphoma cell lines led to a significantly higher proportion of apoptotic cells. In a mouse NSG xenograft model of lymphoma (stably transduced SuDHL4 cells), NR4A3 expression abrogated tumor growth, compared with vector control and uninduced cells that formed massive tumors. Transcript analysis of four different aggressive lymphoma cell lines overexpressing either NR4A3 or NR4A1 revealed that apoptosis was driven similarly by induction of BAK, Puma, BIK, BIM, BID, and Trail. Overall, our results showed that NR4A3 possesses robust tumor suppressor functions of similar impact to NR4A1 in aggressive lymphomas. Cancer Res; 77(9); 2375-86. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Anaerobically controlled expression system derived from the arcDABC operon of Pseudomonas aeruginosa: application to lipase production.

    PubMed Central

    Winteler, H V; Schneidinger, B; Jaeger, K E; Haas, D

    1996-01-01

    The anaerobically inducible arcDABC operon encodes the enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa. Upon induction, the arcAB mRNAs and proteins reach high intracellular levels, because of a strong anaerobically controlled promoter and mRNA processing in arcD, leading to stable downstream transcripts. We explored the usefulness of this system for the construction of expression vectors. The lacZ gene of Escherichia coli was expressed to the highest levels when fused close to the arc promoter. Insertion of lacZ further downstream into arcA or arcB did not stabilize the intrinsically unstable lacZ mRNA. On the contrary, lacZ mRNA appeared to be a vulnerable endonuclease target destabilizing arcAB mRNAs in the 5'-to-3' direction in P. aeruginosa. The native arc promoter was modified for optional expression in the -10 sequence and in the -40 region, which is a binding site for the anaerobic regulator ANR. In P. aeruginosa grown either anaerobically or with oxygen limitation in unshaken cultures, this promoter was stronger than the induced tac promoter. The P. aeruginosa lipAH genes, which encode extracellular lipase and lipase foldase, respectively, were fused directly to the modified arc promoter in an IncQ vector plasmid. Semianaerobic static cultures of P. aeruginosa PAO1 carrying this recombinant plasmid overproduced extracellular lipase 30-fold during stationary phase compared with the production by strain PAO1 without the plasmid. Severe oxygen limitation, in contrast, resulted in poor lipase productivity despite effective induction of the ANR-dependent promoter, suggesting that secretion of active lipase is blocked by the absence of oxygen. In conclusion, the modified arc promoter is useful for driving the expression of cloned genes in P. aeruginosa during oxygen-limited growth and stationary phase. PMID:8795231

  12. Representing Causation

    ERIC Educational Resources Information Center

    Wolff, Phillip

    2007-01-01

    The dynamics model, which is based on L. Talmy's (1988) theory of force dynamics, characterizes causation as a pattern of forces and a position vector. In contrast to counterfactual and probabilistic models, the dynamics model naturally distinguishes between different cause-related concepts and explains the induction of causal relationships from…

  13. Gorlin syndrome-derived induced pluripotent stem cells are hypersensitive to hedgehog-mediated osteogenic induction.

    PubMed

    Hasegawa, Daigo; Ochiai-Shino, Hiromi; Onodera, Shoko; Nakamura, Takashi; Saito, Akiko; Onda, Takeshi; Watanabe, Katsuhito; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Kosaki, Kenjiro; Yamaguchi, Akira; Shibahara, Takahiko; Azuma, Toshifumi

    2017-01-01

    Gorlin syndrome is an autosomal dominant inherited syndrome that predisposes a patient to the formation of basal cell carcinomas, odontogenic keratocysts, and skeletal anomalies. Causative mutations in several genes associated with the sonic hedgehog (SHH) signaling pathway, including PTCH1, have been identified in Gorlin syndrome patients. However, no definitive genotype-phenotype correlations are evident in these patients, and their clinical presentation varies greatly, often leading to delayed diagnosis and treatment. We generated iPSCs from four unrelated Gorlin syndrome patients with loss-of-function mutations in PTCH1 using the Sendai virus vector (SeVdp(KOSM)302). The patient-derived iPSCs exhibited basic iPSC features, including stem cell marker expression, totipotency, and the ability to form teratomas. GLI1 expression levels were greater in fibroblasts and patient-derived iPSCs than in the corresponding control cells. Patient-derived iPSCs expressed lower basal levels than control iPSCs of the genes encoding the Hh ligands Indian Hedgehog (IHH) and SHH, the Hh acetyltransferase HHAT, Wnt proteins, BMP4, and BMP6. Most of these genes were upregulated in patient-derived iPSCs grown in osteoblast differentiation medium (OBM) and downregulated in control iPSCs cultured in OBM. The expression of GLI1 and GLI2 substantially decreased in both control and patient-derived iPSCs cultured in OBM, whereas GLI3, SHH, and IHH were upregulated in patient-derived iPSCs and downregulated in control iPSCs grown in OBM. Activation of Smoothened by SAG in cells grown in OBM significantly enhanced alkaline phosphatase activity in patient-derived iPSCs compared with control iPSC lines. In summary, patient-derived iPSCs expressed lower basal levels than the control iPSCs of the genes encoding Hh, Wnt, and bone morphogenetic proteins, but their expression of these genes strongly increased under osteogenic conditions. These findings indicate that patient-derived iPSCs are hypersensitive to osteogenic induction. We propose that Hh signaling is constituently active in iPSCs from Gorlin syndrome patients, enhancing their response to osteogenic induction and contributing to disease-associated abnormalities.

  14. Construction and heterologous expression of a truncated Haemagglutinin (HA) protein from the avian influenza virus H5N1 in Escherichia coli.

    PubMed

    Chee Wei, T; Nurul Wahida, A G; Shaharum, S

    2014-12-01

    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.

  15. Microsphere-liposome complexes protect adenoviral vectors from neutralising antibody without losses in transfection efficiency, in-vitro.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Kalle, Wouter H J

    2004-11-01

    Adenoviral vectors have been commonly used in gene therapy protocols but the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced, which limits further administration. This study examines the effectiveness of a novel combination of microspheres and liposomes for the shielding of adenovirus from neutralising antibodies in an in-vitro setting. We show that liposomes are effective in the protection of adenovirus from neutralising antibody and that the conjugation of these complexes to microspheres augments the level of protection. This study further reveals that previously neutralised adenovirus may still be transported into the cell via liposome-cell interactions and is still capable of expressing its genes, making this vector an effective tool for circumvention of the humoral immune response. We also looked at possible side effects of using the complexes, namely increases in cytotoxicity and reductions in transfection efficiency. Our results showed that varying the liposome:adenovirus ratio can reduce the cytotoxicity of the vector as well as increase the transfection efficiency. In addition, in cell lines that are adenoviral competent, transfection efficiencies on par with uncomplexed adenoviral vectors were achievable with the combination vector.

  16. The impact of different stator and rotor slot number combinations on iron losses of a three-phase induction motor at no-load

    NASA Astrophysics Data System (ADS)

    Marčič, T.; Štumberger, B.; Štumberger, G.; Hadžiselimović, M.; Zagradišnik, I.

    The electromechanical characteristics of induction motors depend on the used stator and rotor slot combination. The correlation between the usage of different stator and rotor slot number combinations, magnetic flux density distributions, no-load iron losses and rated load winding over-temperatures for a specific induction motor is presented. The motor's magnetic field was analyzed by traces of the magnetic flux density vector, obtained by FEM. Post-processing of FE magnetic field solution was used for posterior iron loss calculation of the motor iron loss at no-load. The examined motor stator lamination had 36 semi-closed slots and the rotor laminations had 28, 33, 34, 44 and 46 semi-closed slots.

  17. Efficient Power Network Analysis with Modeling of Inductive Effects

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Yu, Wenjian; Hong, Xianlong; Cheng, Chung-Kuan

    In this paper, an efficient method is proposed to accurately analyze large-scale power/ground (P/G) networks, where inductive parasitics are modeled with the partial reluctance. The method is based on frequency-domain circuit analysis and the technique of vector fitting [14], and obtains the time-domain voltage response at given P/G nodes. The frequency-domain circuit equation including partial reluctances is derived, and then solved with the GMRES algorithm with rescaling, preconditioning and recycling techniques. With the merit of sparsified reluctance matrix and iterative solving techniques for the frequency-domain circuit equations, the proposed method is able to handle large-scale P/G networks with complete inductive modeling. Numerical results show that the proposed method is orders of magnitude faster than HSPICE, several times faster than INDUCTWISE [4], and capable of handling the inductive P/G structures with more than 100, 000 wire segments.

  18. Bending Distortion Analysis of a Steel Shaft Manufacturing Chain from Cold Drawing to Grinding

    NASA Astrophysics Data System (ADS)

    Dias, Vinicius Waechter; da Silva Rocha, Alexandre; Zottis, Juliana; Dong, Juan; Epp, Jérémy; Zoch, Hans Werner

    2017-04-01

    Shafts are usually manufactured from bars that are cold drawn, cut machined, induction hardened, straightened, and finally ground. The main distortion is characterized by bending that appears after induction hardening and is corrected by straightening and/or grinding. In this work, the consequence of the variation of manufacturing parameters on the distortion was analyzed for a complete manufacturing route for production of induction hardened shafts made of Grade 1045 steel. A DoE plan was implemented varying the drawing angle, cutting method, induction hardening layer depth, and grinding penetration depth. The distortion was determined by calculating curvature vectors from dimensional analysis by 3D coordinate measurements. Optical microscopy, microhardness testing, residual stress analysis, and FEM process simulation were used to evaluate and understand effects of the main carriers of distortion potential. The drawing process was identified as the most significant influence on the final distortion of the shafts.

  19. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  20. Cloning and expression of N-glycosylation-related mannosidase from Glaciozyma antarctica for the production of a mannosynthase

    NASA Astrophysics Data System (ADS)

    Elangovan, Dharshini; Kamaruddin, Shazilah; Hashim, Noor Haza Fazlin; Bakar, Farah Diba Abu; Murad, Abd. Munir Abd.; Mahadi, Nor Muhammad; Allman, Sarah Ann; Mackeen, Mukram Mohamed

    2016-11-01

    The controlled synthesis of oligosaccharides is of growing interest due to the important roles of oligosaccharides in various biological processes. Enzymatic synthesis enables regio- and stereo-selective control during synthesis which still remains a challenge using total chemical synthesis. In this study, endoplasmic reticulum 1,2-α-mannosidase from Glaciozyma antractica was recombinantly expressed in Pichia pastoris. The gene sequence for ER mannosidase was obtained from the Glaciozyma antractica database. The BLAST (Basic Local Alignment Search Tool) results from bioinformatics screening showed that ER mannosidase had 41 % identity with the equivalent mannosidases from Sacchromyces cerevesiae. ER mannosidase from G. antartica was then cloned into the pPICZαC expression vector and used to transform in the host Pichia pastoris X33 cells. The ER mannosidase (MW˜58 kDa) was successfully expressed at 25 °C with 1.0 % methanol induction.

  1. Evaluating the Acoustic Effect of Over-the-Rotor Foam-Metal Liner Installed on a Low Speed Fan Using Virtual Rotating Microphone Imaging

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.

    2010-01-01

    An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.

  2. Diagnosis of the three-phase induction motor using thermal imaging

    NASA Astrophysics Data System (ADS)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  3. Induction of Pro-Angiogenic Factors by Pregnancy-Specific Glycoproteins and Studies on Receptor Usage

    DTIC Science & Technology

    2008-01-01

    expression vector. The purified bacoluvirus DNA, containing PSG11, was purified and used to transfect Spodoptera frugiperda (Sf-9) cells (Invitrogen) to...proteins in Spodoptera frugiperda cells using biotin acceptor peptides. Anal Biochem, 1998. 262(2): p. 122-8. 175. Hirt, B., Selective extraction of

  4. A control strategy for grid-side converter of DFIG under unbalanced condition based on Dig SILENT/Power Factory

    NASA Astrophysics Data System (ADS)

    Han, Pingping; Zhang, Haitian; Chen, Lingqi; Zhang, Xiaoan

    2018-01-01

    The models of doubly fed induction generator (DFIG) and its grid-side converter (GSC) are established under unbalanced grid condition based on DIgSILENT/PowerFactory. According to the mathematical model, the vector equations of positive and negative sequence voltage and current are deduced in the positive sequence synchronous rotating reference frame d-q-0 when the characteristics of the simulation software are considered adequately. Moreover, the reference value of current component of GSC in the positive sequence frame d-q-0 under unbalanced condition can be obtained to improve the traditional control of GSC when the national issue of unbalanced current limits is combined. The simulated results indicate that the control strategy can restrain negative sequence current and the two times frequency power wave of GSC’s ac side effectively. The voltage of DC bus can be maintained a constant to ensure the uninterrupted operation of DFIG under unbalanced grid condition eventually.

  5. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  6. Perturbation vectors to evaluate air quality using lichens and bromeliads: a Brazilian case study.

    PubMed

    Monna, F; Marques, A N; Guillon, R; Losno, R; Couette, S; Navarro, N; Dongarra, G; Tamburo, E; Varrica, D; Chateau, C; Nepomuceno, F O

    2017-10-17

    Samples of one lichen species, Parmotrema crinitum, and one bromeliad species, Tillandsia usneoides, were collected in the state of Rio de Janeiro, Brazil, at four sites differently affected by anthropogenic pollution. The concentrations of aluminum, cadmium, copper, iron, lanthanum, lead, sulfur, titanium, zinc, and zirconium were determined by inductively coupled plasma-atomic emission spectroscopy. The environmental diagnosis was established by examining compositional changes via perturbation vectors, an underused family of methods designed to circumvent the problem of closure in any compositional dataset. The perturbation vectors between the reference site and the other three sites were similar for both species, although body concentration levels were different. At each site, perturbation vectors between lichens and bromeliads were approximately the same, whatever the local pollution level. It should thus be possible to combine these organisms, though physiologically different, for air quality surveys, after making all results comparable with appropriate correction. The use of perturbation vectors seems particularly suitable for assessing pollution level by biomonitoring, and for many frequently met situations in environmental geochemistry, where elemental ratios are more relevant than absolute concentrations.

  7. Integrating vector control across diseases.

    PubMed

    Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W

    2015-10-01

    Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.

  8. Modeling the control of the central nervous system over the cardiovascular system using support vector machines.

    PubMed

    Díaz, José; Acosta, Jesús; González, Rafael; Cota, Juan; Sifuentes, Ernesto; Nebot, Àngela

    2018-02-01

    The control of the central nervous system (CNS) over the cardiovascular system (CS) has been modeled using different techniques, such as fuzzy inductive reasoning, genetic fuzzy systems, neural networks, and nonlinear autoregressive techniques; the results obtained so far have been significant, but not solid enough to describe the control response of the CNS over the CS. In this research, support vector machines (SVMs) are used to predict the response of a branch of the CNS, specifically, the one that controls an important part of the cardiovascular system. To do this, five models are developed to emulate the output response of five controllers for the same input signal, the carotid sinus blood pressure (CSBP). These controllers regulate parameters such as heart rate, myocardial contractility, peripheral and coronary resistance, and venous tone. The models are trained using a known set of input-output response in each controller; also, there is a set of six input-output signals for testing each proposed model. The input signals are processed using an all-pass filter, and the accuracy performance of the control models is evaluated using the percentage value of the normalized mean square error (MSE). Experimental results reveal that SVM models achieve a better estimation of the dynamical behavior of the CNS control compared to others modeling systems. The main results obtained show that the best case is for the peripheral resistance controller, with a MSE of 1.20e-4%, while the worst case is for the heart rate controller, with a MSE of 1.80e-3%. These novel models show a great reliability in fitting the output response of the CNS which can be used as an input to the hemodynamic system models in order to predict the behavior of the heart and blood vessels in response to blood pressure variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    PubMed

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.

  10. Motional Induction by Tsunamis and Ocean Tides: 10 Years of Progress

    NASA Astrophysics Data System (ADS)

    Minami, Takuto

    2017-09-01

    Motional induction is the process by which the motion of conductive seawater in the ambient geomagnetic main field generates electromagnetic (EM) variations, which are observable on land, at the seafloor, and sometimes at satellite altitudes. Recent years have seen notable progress in our understanding of motional induction associated with tsunamis and with ocean tides. New studies of tsunami motional induction were triggered by the 2004 Sumatra earthquake tsunami and further promoted by subsequent events, such as the 2010 Chile earthquake and the 2011 Tohoku earthquake. These events yielded observations of tsunami-generated EM variations from land and seafloor stations. Studies of magnetic fields generated by ocean tides attracted interest when the Swarm satellite constellation enabled researchers to monitor tide-generated magnetic variations from low Earth orbit. Both avenues of research benefited from the advent of sophisticated seafloor instruments, by which we may exploit motional induction for novel applications. For example, seafloor EM measurements can serve as detectors of vector properties of tsunamis, and seafloor EM data related to ocean tides have proved useful for sounding Earth's deep interior. This paper reviews and discusses the progress made in motional induction studies associated with tsunamis and ocean tides during the last decade.

  11. Environmental management: a re-emerging vector control strategy.

    PubMed

    Ault, S K

    1994-01-01

    Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.

  12. Targeted Knock-Down of miR21 Primary Transcripts Using snoMEN Vectors Induces Apoptosis in Human Cancer Cell Lines.

    PubMed

    Ono, Motoharu; Yamada, Kayo; Avolio, Fabio; Afzal, Vackar; Bensaddek, Dalila; Lamond, Angus I

    2015-01-01

    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.

  13. Current vector control challenges in the fight against malaria.

    PubMed

    Benelli, Giovanni; Beier, John C

    2017-10-01

    The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Non-transmissible Sendai virus vector encoding c-myc suppressor FBP-interacting repressor for cancer therapy

    PubMed Central

    Matsushita, Kazuyuki; Shimada, Hideaki; Ueda, Yasuji; Inoue, Makoto; Hasegawa, Mamoru; Tomonaga, Takeshi; Matsubara, Hisahiro; Nomura, Fumio

    2014-01-01

    AIM: To investigate a novel therapeutic strategy to target and suppress c-myc in human cancers using far up stream element (FUSE)-binding protein-interacting repressor (FIR). METHODS: Endogenous c-Myc suppression and apoptosis induction by a transient FIR-expressing vector was examined in vivo via a HA-tagged FIR (HA-FIR) expression vector. A fusion gene-deficient, non-transmissible, Sendai virus (SeV) vector encoding FIR cDNA, SeV/dF/FIR, was prepared. SeV/dF/FIR was examined for its gene transduction efficiency, viral dose dependency of antitumor effect and apoptosis induction in HeLa (cervical squamous cell carcinoma) cells and SW480 (colon adenocarcinoma) cells. Antitumor efficacy in a mouse xenograft model was also examined. The molecular mechanism of the anti-tumor effect and c-Myc suppression by SeV/dF/FIR was examined using Spliceostatin A (SSA), a SAP155 inhibitor, or SAP155 siRNA which induce c-Myc by increasing FIR∆exon2 in HeLa cells. RESULTS: FIR was found to repress c-myc transcription and in turn the overexpression of FIR drove apoptosis through c-myc suppression. Thus, FIR expressing vectors are potentially applicable for cancer therapy. FIR is alternatively spliced by SAP155 in cancer cells lacking the transcriptional repression domain within exon 2 (FIR∆exon2), counteracting FIR for c-Myc protein expression. Furthermore, FIR forms a complex with SAP155 and inhibits mutual well-established functions. Thus, both the valuable effects and side effects of exogenous FIR stimuli should be tested for future clinical application. SeV/dF/FIR, a cytoplasmic RNA virus, was successfully prepared and showed highly efficient gene transduction in in vivo experiments. Furthermore, in nude mouse tumor xenograft models, SeV/dF/FIR displayed high antitumor efficiency against human cancer cells. SeV/dF/FIR suppressed SSA-activated c-Myc. SAP155 siRNA, potentially produces FIR∆exon2, and led to c-Myc overexpression with phosphorylation at Ser62. HA-FIR suppressed endogenous c-Myc expression and induced apoptosis in HeLa and SW480 cells. A c-myc transcriptional suppressor FIR expressing SeV/dF/FIR showed high gene transduction efficiency with significant antitumor effects and apoptosis induction in HeLa and SW480 cells. CONCLUSION: SeV/dF/FIR showed strong tumor growth suppression with no significant side effects in an animal xenograft model, thus SeV/dF/FIR is potentially applicable for future clinical cancer treatment. PMID:24764668

  15. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  16. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  17. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  18. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  19. 40 CFR 258.22 - Disease vector control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disease vector control. 258.22 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.22 Disease vector control. (a) Owners or operators of all MSWLF units must prevent or control on-site populations of disease vectors using techniques...

  20. Ripple formation on Si surfaces during plasma etching in Cl2

    NASA Astrophysics Data System (ADS)

    Nakazaki, Nobuya; Matsumoto, Haruka; Sonobe, Soma; Hatsuse, Takumi; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2018-05-01

    Nanoscale surface roughening and ripple formation in response to ion incidence angle has been investigated during inductively coupled plasma etching of Si in Cl2, using sheath control plates to achieve the off-normal ion incidence on blank substrate surfaces. The sheath control plate consisted of an array of inclined trenches, being set into place on the rf-biased electrode, where their widths and depths were chosen in such a way that the sheath edge was pushed out of the trenches. The distortion of potential distributions and the consequent deflection of ion trajectories above and in the trenches were then analyzed based on electrostatic particle-in-cell simulations of the plasma sheath, to evaluate the angular distributions of ion fluxes incident on substrates pasted on sidewalls and/or at the bottom of the trenches. Experiments showed well-defined periodic sawtooth-like ripples with their wave vector oriented parallel to the direction of ion incidence at intermediate off-normal angles, while relatively weak corrugations or ripplelike structures with the wave vector perpendicular to it at high off-normal angles. Possible mechanisms for the formation of surface ripples during plasma etching are discussed with the help of Monte Carlo simulations of plasma-surface interactions and feature profile evolution. The results indicate the possibility of providing an alternative to ion beam sputtering for self-organized formation of ordered surface nanostructures.

  1. Energy deposition into heavy gas plasma via pulsed inductive theta-pinch

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan Alan

    The objective of this research is to study the formation processes of a pulsed inductive plasma using heavy gases, specifically the coupling of stored capacitive energy into plasma via formation in a theta pinch coil. To aid in this research, the Missouri Plasmoid Experiment Mk. I (and later Mk. II) was created. In the first paper, the construction of differential magnetic field probes are discussed. The effects of calibration setup on B-dot probes is studied using a Helmholtz coil driven by a vector network analyzer and a pulsed-power system. Calibration in a pulsed-power environment yielded calibration factors at least 9.7% less than the vector network analyzer. In the second paper, energy deposition into various gases using a pulsed inductive test article is investigated. Experimental data are combined with a series RLC model to quantify the energy loss associated with plasma formation in Argon, Hydrogen, and Xenon at pressures from 10-100 mTorr. Plasma resistance is found to vary from 25.8-51.6 mΩ and plasma inductance varies from 41.3--47.0 nH. The greatest amount of initial capacitively stored energy that could be transferred to the plasma was 6.4 J (8.1%) of the initial 79.2 +/- 0.1 J. In the third paper, the effects of a DC preionization source on plasma formation energy is studied. The preionization source radial location is found to have negligible impact on plasma formation repeatability while voltage is found to be critical at low pressures. Without preionization, plasma formation was not possible. At 20 mTorr, 0.20 W of power was sufficient to stabilize plasma formation about the first zero-crossing of the discharge current. Increasing power to 1.49 W increased inductively coupled energy by 39%. At 200 mTorr, 4.3 mW was sufficient to produce repeatable plasma properties.

  2. Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm

    PubMed Central

    Aldhamen, Yasser Ali; Seregin, Sergey S.; Amalfitano, Andrea

    2011-01-01

    Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general. PMID:22566830

  3. Recombinant vesicular stomatitis virus vectors expressing herpes simplex virus type 2 gD elicit robust CD4+ Th1 immune responses and are protective in mouse and guinea pig models of vaginal challenge.

    PubMed

    Natuk, Robert J; Cooper, David; Guo, Min; Calderon, Priscilla; Wright, Kevin J; Nasar, Farooq; Witko, Susan; Pawlyk, Diane; Lee, Margaret; DeStefano, Joanne; Tummolo, Donna; Abramovitz, Aaron S; Gangolli, Seema; Kalyan, Narender; Clarke, David K; Hendry, R Michael; Eldridge, John H; Udem, Stephen A; Kowalski, Jacek

    2006-05-01

    Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.

  4. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet.

    PubMed

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-02-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  5. Germinal Center B Cell and T Follicular Helper Cell Responses to Viral Vector and Protein-in-Adjuvant Vaccines

    PubMed Central

    Wang, Chuan; Hart, Matthew; Chui, Cecilia; Ajuogu, Augustine; Brian, Iona J.; de Cassan, Simone C.; Borrow, Persephone; Draper, Simon J.

    2016-01-01

    There is great interest in the development of Ab-inducing subunit vaccines targeting infections, including HIV, malaria, and Ebola. We previously reported that adenovirus vectored vaccines are potent in priming Ab responses, but uncertainty remains regarding the optimal approach for induction of humoral immune responses. In this study, using OVA as a model Ag, we assessed the magnitude of the primary and anamnestic Ag–specific IgG responses of mice to four clinically relevant vaccine formulations: replication-deficient adenovirus; modified vaccinia Ankara (a poxvirus); protein with alum; and protein in the squalene oil-in-water adjuvant Addavax. We then used flow cytometric assays capable of measuring total and Ag-specific germinal center (GC) B cell and follicular Th cell responses to compare the induction of these responses by the different formulations. We report that adenovirus vectored vaccines induce Ag insert–specific GC B cell and Ab responses of a magnitude comparable to those induced by a potent protein/squalene oil-in-water formulation whereas—despite a robust overall GC response—the insert-specific GC B cell and Ab responses induced by modified vaccinia Ankara were extremely weak. Ag-specific follicular Th cell responses to adenovirus vectored vaccines exceeded those induced by other platforms at day 7 after immunization. We found little evidence that innate immune activation by adenovirus may act as an adjuvant in such a manner that the humoral response to a recombinant protein may be enhanced by coadministering with an adenovirus lacking a transgene of interest. Overall, these studies provide further support for the use of replication-deficient adenoviruses to induce humoral responses. PMID:27412417

  6. Promotion of Flowering by Apple Latent Spherical Virus Vector and Virus Elimination at High Temperature Allow Accelerated Breeding of Apple and Pear.

    PubMed

    Yamagishi, Norioko; Li, Chunjiang; Yoshikawa, Nobuyuki

    2016-01-01

    Plant viral vectors are superior tools for genetic manipulation, allowing rapid induction or suppression of expression of a target gene in plants. This is a particularly effective technology for use in breeding fruit trees, which are difficult to manipulate using recombinant DNA technologies. We reported previously that if apple seed embryos (cotyledons) are infected with an Apple latent spherical virus (ALSV) vector (ALSV-AtFT/MdTFL1) concurrently expressing the Arabidopsis thaliana florigen (AtFT) gene and suppressing the expression of the apple MdTFL1-1 gene, the period prior to initial flowering (generally lasts 5-12 years) will be reduced to about 2 months. In this study, we examined whether or not ALSV vector technology can be used to promote flowering in pear, which undergoes a very long juvenile period (germination to flowering) similar to that of apple. The MdTFL1 sequence in ALSV-AtFT/MdTFL1 was replaced with a portion of the pear PcTFL1-1 gene. The resulting virus (ALSV-AtFT/PcTFL1) and ALSV-AtFT/MdTFL1 were used individually for inoculation to pear cotyledons immediately after germination in two inoculation groups. Those inoculated with ALSV-AtFT/MdTFL1 and ALSV-AtFT/PcTFL1 then initiated flower bud formation starting one to 3 months after inoculation, and subsequently exhibited continuous flowering and fruition by pollination. Conversely, Japanese pear exhibited extremely low systemic infection rates when inoculated with ALSV-AtFT/MdTFL1, and failed to exhibit any induction of flowering. We also developed a simple method for eliminating ALSV vectors from infected plants. An evaluation of the method for eliminating the ALSV vectors from infected apple and pear seedlings revealed that a 4-week high-temperature (37°C) incubation of ALSV-infected apples and pears disabled the movement of ALSV to new growing tissues. This demonstrates that only high-temperature treatment can easily eliminate ALSV from infected fruit trees. A method combining the promotion of flowering in apple and pear by ALSV vector with an ALSV elimination technique is expected to see future application as a new plant breeding technique that can significantly shorten the breeding periods of apple and pear.

  7. Successes and failures of sixty years of vector control in French Guiana: what is the next step?

    PubMed

    Epelboin, Yanouk; Chaney, Sarah C; Guidez, Amandine; Habchi-Hanriot, Nausicaa; Talaga, Stanislas; Wang, Lanjiao; Dusfour, Isabelle

    2018-03-12

    Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.

  8. West Nile Virus-Induced Neuroinflammation: Glial Infection and Capsid Protein-Mediated Neurovirulence▿

    PubMed Central

    van Marle, Guido; Antony, Joseph; Ostermann, Heather; Dunham, Christopher; Hunt, Tracey; Halliday, William; Maingat, Ferdinand; Urbanowski, Matt D.; Hobman, Tom; Peeling, James; Power, Christopher

    2007-01-01

    West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1β, and indolamine-2′,3′-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNVC induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important interactions between the WNV capsid protein and neuroinflammation in the pathogenesis of WNV-induced neurological disorders. PMID:17670819

  9. ACTIVE EFFLUX OF ORGANIC SOLVENTS BY PSEUDOMONAS PUTIDA S12 IS INDUCED BY SOLVENTS

    EPA Science Inventory

    Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the...

  10. An Institutional Approach to University Mathematics Education: From Dual Vector Spaces to Questioning the World

    ERIC Educational Resources Information Center

    Winsløw, Carl; Barquero, Berta; De Vleeschouwer, Martine; Hardy, Nadia

    2014-01-01

    University mathematics education (UME) is considered, in this paper, as a kind of "didactic practice"--characterised by institutional settings and by the purpose of inducting students into "mathematical practices." We present a research programme -- the anthropological theory of the didactic (ATD)--in which this rough…

  11. Various Paths to Faraday's Law

    ERIC Educational Resources Information Center

    Redzic, Dragan V.

    2008-01-01

    In a recent note, the author presented a derivation of Faraday's law of electromagnetic induction for a closed filamentary circuit C(t) which is moving at relativistic velocities and also changing its shape as it moves via the magnetic vector potential. Recently, Kholmetskii et al, while correcting an error in an equation, showed that it can be…

  12. Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines.

    PubMed

    Altenburg, Arwen F; van Trierum, Stella E; de Bruin, Erwin; de Meulder, Dennis; van de Sandt, Carolien E; van der Klis, Fiona R M; Fouchier, Ron A M; Koopmans, Marion P G; Rimmelzwaan, Guus F; de Vries, Rory D

    2018-04-24

    The replication-deficient orthopoxvirus modified vaccinia virus Ankara (MVA) is a promising vaccine vector against various pathogens and has an excellent safety record. However, pre-existing vector-specific immunity is frequently suggested to be a drawback of MVA-based vaccines. To address this issue, mice were vaccinated with MVA-based influenza vaccines in the presence or absence of orthopoxvirus-specific immunity. Importantly, protective efficacy of an MVA-based influenza vaccine against a homologous challenge was not impaired in the presence of orthopoxvirus-specific pre-existing immunity. Nonetheless, orthopoxvirus-specific pre-existing immunity reduced the induction of antigen-specific antibodies under specific conditions and completely prevented induction of antigen-specific T cell responses by rMVA-based vaccination. Notably, antibodies induced by vaccinia virus vaccination, both in mice and humans, were not capable of neutralizing MVA. Thus, when using rMVA-based vaccines it is important to consider the main correlate of protection induced by the vaccine, the vaccine dose and the orthopoxvirus immune status of vaccine recipients.

  13. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection.

  14. Vaccination with Lentiviral Vector Expressing the nfa1 Gene Confers a Protective Immune Response to Mice Infected with Naegleria fowleri

    PubMed Central

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun

    2013-01-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection. PMID:23677321

  15. Design of a Low-Energy FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.; Owens, T.; Dankanich, J.

    2007-01-01

    The design of an electrodeless thruster that relies on a pulsed, rf-assisted discharge and electromagnetic acceleration using an inductive coil is presented. The thruster design is optimized using known performance,scaling parameters, and experimentally-determined design rules, with design targets for discharge energy, plasma exhaust velocity; and thrust efficiency of 100 J/pulse, 25 km/s, and 50%, respectively. Propellant is injected using a high-speed gas valve and preionized by a pulsed-RF signal supplied by a vector inversion generator, allowing for current sheet formation at lower discharge voltages and energies relative to pulsed inductive accelerators that do not employ preionization. The acceleration coil is designed to possess an inductance of at least 700 nH while the target stray (non-coil) inductance in the circuit is 70 nH. A Bernardes and Merryman pulsed power train or a pulse compression power train provide current to the acceleration coil and solid-state components are used to switch both powertrains.

  16. Stable suppression of myostatin gene expression in goat fetal fibroblast cells by lentiviral vector-mediated RNAi.

    PubMed

    Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G

    2015-01-01

    Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.

  17. Vaccine-induced T cells Provide Partial Protection Against High-dose Rectal SIVmac239 Challenge of Rhesus Macaques

    PubMed Central

    Lasaro, Marcio O; Haut, Larissa H; Zhou, Xiangyang; Xiang, Zhiquan; Zhou, Dongming; Li, Yan; Giles-Davis, Wynetta; Li, Hua; Engram, Jessica C; DiMenna, Lauren J; Bian, Ang; Sazanovich, Marina; Parzych, Elizabeth M; Kurupati, Raj; Small, Juliana C; Wu, Te-Lang; Leskowitz, Rachel M; Klatt, Nicole R; Brenchley, Jason M; Garber, David A; Lewis, Mark; Ratcliffe, Sarah J; Betts, Michael R; Silvestri, Guido; Ertl, Hildegund C

    2011-01-01

    Despite enormous efforts by the scientific community, an effective HIV vaccine remains elusive. To further address to what degree T cells in absence of antibodies may protect against simian immunodeficiency virus (SIV) disease progression, rhesus macaques were vaccinated intramuscularly with a chimpanzee-derived Ad vector (AdC) serotype 6 and then boosted intramuscularly with a serologically distinct AdC vector of serotype 7 both expressing Gag of SIVmac239. Animals were subsequently boosted intramuscularly with a modified vaccinia Ankara (MVA) virus expressing Gag and Tat of the homologous SIV before mucosal challenge with a high dose of SIVmac239 given rectally. Whereas vaccinated animals showed only a modest reduction of viral loads, their overall survival was improved, in association with a substantial protection from the loss of CD4+ T cells. In addition, the two vaccinated Mamu-A*01+ macaques controlled viral loads to levels below detection within weeks after challenge. These data strongly suggest that T cells, while unable to affect SIV acquisition upon high-dose rectal infection, can reduce disease progression. Induction of potent T-cell responses should thus remain a component of our efforts to develop an efficacious vaccine to HIV-1. PMID:21081905

  18. Vaccine-induced T cells provide partial protection against high-dose rectal SIVmac239 challenge of rhesus macaques.

    PubMed

    Lasaro, Marcio O; Haut, Larissa H; Zhou, Xiangyang; Xiang, Zhiquan; Zhou, Dongming; Li, Yan; Giles-Davis, Wynetta; Li, Hua; Engram, Jessica C; Dimenna, Lauren J; Bian, Ang; Sazanovich, Marina; Parzych, Elizabeth M; Kurupati, Raj; Small, Juliana C; Wu, Te-Lang; Leskowitz, Rachel M; Klatt, Nicole R; Brenchley, Jason M; Garber, David A; Lewis, Mark; Ratcliffe, Sarah J; Betts, Michael R; Silvestri, Guido; Ertl, Hildegund C

    2011-02-01

    Despite enormous efforts by the scientific community, an effective HIV vaccine remains elusive. To further address to what degree T cells in absence of antibodies may protect against simian immunodeficiency virus (SIV) disease progression, rhesus macaques were vaccinated intramuscularly with a chimpanzee-derived Ad vector (AdC) serotype 6 and then boosted intramuscularly with a serologically distinct AdC vector of serotype 7 both expressing Gag of SIVmac239. Animals were subsequently boosted intramuscularly with a modified vaccinia Ankara (MVA) virus expressing Gag and Tat of the homologous SIV before mucosal challenge with a high dose of SIVmac239 given rectally. Whereas vaccinated animals showed only a modest reduction of viral loads, their overall survival was improved, in association with a substantial protection from the loss of CD4(+) T cells. In addition, the two vaccinated Mamu-A*01(+) macaques controlled viral loads to levels below detection within weeks after challenge. These data strongly suggest that T cells, while unable to affect SIV acquisition upon high-dose rectal infection, can reduce disease progression. Induction of potent T-cell responses should thus remain a component of our efforts to develop an efficacious vaccine to HIV-1.

  19. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.

  20. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  1. Mathematical modeling of Chikungunya fever control

    NASA Astrophysics Data System (ADS)

    Hincapié-Palacio, Doracelly; Ospina, Juan

    2015-05-01

    Chikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures.

  2. IKKβ-induced inflammation impacts the kinetics but not the magnitude of the immune response to a viral vector

    PubMed Central

    Hopewell, Emily L.; Bronk, Crystina C.; Massengill, Michael; Engelman, Robert W.; Beg, Amer A.

    2012-01-01

    Microbial adjuvants in vaccines activate key transcription factors, including NF-κB and interferon response factors (IRFs). However, the individual role of these transcription factor pathways in promoting adaptive immunity by adjuvants is not clear. It is widely believed that induction of a strong inflammatory response potentiates an adaptive immune response. In this study, we sought to determine whether activation of the pro-inflammatory inhibitor of κB kinase β (IKKβ) canonical NF-κB pathway promoted vaccine-induced immune responses. An adenovirus expressing constitutively-activated IKKβ (AdIKK) induced robust DC maturation and high expression of key cytokines compared to a control virus. In vivo, AdIKK triggered rapid inflammation after pulmonary infection, increased leukocyte entry into draining LNs, and enhanced early antibody and T-cell responses. Notably, AdIKK did not influence the overall magnitude of the adaptive immune response. These results indicate that induction of inflammation by IKKβ/NF-κB in this setting impacts the kinetics but not the magnitude of adaptive immune responses. These findings therefore help define the individual role of a key pathway induced by vaccine adjuvants in promoting adaptive immunity. PMID:22161279

  3. Spherical Harmonic Inductive Detection Coils and their use In Dynamic Pre-emphasis for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Edler, Karl T.

    The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field -- an inverse curl operation -- and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI. Keywords: magnetic resonance imaging, eddy currents, dynamic shimming, negative feedback, quasi-static fields, vector potential, inverse curl

  4. Lattice Independent Component Analysis for Mobile Robot Localization

    NASA Astrophysics Data System (ADS)

    Villaverde, Ivan; Fernandez-Gauna, Borja; Zulueta, Ekaitz

    This paper introduces an approach to appearance based mobile robot localization using Lattice Independent Component Analysis (LICA). The Endmember Induction Heuristic Algorithm (EIHA) is used to select a set of Strong Lattice Independent (SLI) vectors, which can be assumed to be Affine Independent, and therefore candidates to be the endmembers of the data. Selected endmembers are used to compute the linear unmixing of the robot's acquired images. The resulting mixing coefficients are used as feature vectors for view recognition through classification. We show on a sample path experiment that our approach can recognise the localization of the robot and we compare the results with the Independent Component Analysis (ICA).

  5. An X-Ray Source for Lithography Based on a Quasi-Optical Maser Undulator

    DTIC Science & Technology

    1989-05-09

    an electron, c is the speed of light in vacuo, B is the peak magnetic induction and X is the period of the planar undulator or wiggler, the wavelength...relativistic motion is given 11 p = Le’ Y 6 [2 - X )2] (4) where = v/c is the particle velocity normalized to the speAd of light , and § /c, where v = -v is...k0 z + Wt),) (7) where E is the amplitude of the electric field, w is the radian frequency A and k a (0,0,k ) is the wave- vector . ez is a unit vector

  6. Intranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice.

    PubMed

    Kim, Eun Hye; Park, Hae-Jung; Han, Gye-Yeong; Song, Man-Ki; Pereboev, Alexander; Hong, Jeong S; Chang, Jun; Byun, Young-Ho; Seong, Baik Lin; Nguyen, Huan H

    2014-09-01

    Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus hemagglutinin and the ectodomain of matrix protein. The vaccine could be used to stimulate cross-protective antibodies for the prevention and treatment of influenza with immediate effect for individuals who fail to respond to or receive the vaccine in due time. The vaccine offers a new tool to control influenza outbreaks, including pandemics. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Correction of Murine Sickle Cell Disease Using γ-Globin Lentiviral Vectors to Mediate High-level Expression of Fetal Hemoglobin

    PubMed Central

    Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A

    2008-01-01

    Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, γ-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different γ-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the γ-globin gene driven by 3.1 kb of β-globin regulatory sequences and a 130-bp β-globin promoter. The second vector, V5m3, was identical except that the γ-globin 3′-untranslated region (3′-UTR) was replaced with the β-globin 3′-UTR. Adult erythroid cells have β-globin mRNA 3′-UTR-binding proteins that enhance β-globin mRNA stability and we postulated this design might enhance γ-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human γ-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of γ-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a γ-globin lentiviral vector. PMID:19050697

  8. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    PubMed

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans.

    PubMed

    Sheehy, Susanne H; Duncan, Christopher J A; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian V S; Draper, Simon J

    2012-12-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.

  10. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    DOEpatents

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  11. Integrated pest management and allocation of control efforts for vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2001-01-01

    Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.

  12. Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.

    2005-01-01

    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.

  13. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe.

    PubMed

    Berthoin, Lionel; Toussaint, Bertrand; Garban, Frédéric; Le Gouellec, Audrey; Caulier, Benjamin; Polack, Benoît; Laurin, David

    2016-11-20

    Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient. We have successfully developed the direct delivery of proteins by an attenuated bacterium with a type 3 secretion system that does not require challenging and laborious steps for production and purification of recombinant molecules. Here we show that this natural micro-syringe is able to inject TFs to primary human fibroblasts and cord blood CD34 + hematopoietic stem cells. The signal sequence for vectorization of the TF Oct4 has no effect on DNA binding to its nucleic target. As soon as one hour after injection, vectorized TFs are detectable in the nucleus. The injection process is not associated with toxicity and the bacteria can be completely removed from cell cultures. A three days targeted release of Oct4 or Sox2 embryonic TFs results in the induction of the core pluripotency genes expression in fibroblasts and CD34 + hematopoietic stem cells. This micro-syringe vectorization represents a new strategy for TF delivery and has potential applications for cell fate reprogramming. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Induction of humoral immune response to multiple recombinant rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    USDA-ARS?s Scientific Manuscript database

    Background: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiologic agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect fee...

  15. Exploiting the potential of vector control for disease prevention.

    PubMed

    Townson, H; Nathan, M B; Zaim, M; Guillet, P; Manga, L; Bos, R; Kindhauser, M

    2005-12-01

    Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities.

  16. Exploiting the potential of vector control for disease prevention.

    PubMed Central

    Townson, H.; Nathan, M. B.; Zaim, M.; Guillet, P.; Manga, L.; Bos, R.; Kindhauser, M.

    2005-01-01

    Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities. PMID:16462987

  17. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques

    PubMed Central

    2013-01-01

    Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113

  18. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNAmore » expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.« less

  19. Consolidating tactical planning and implementation frameworks for integrated vector management in Uganda.

    PubMed

    Okia, Michael; Okui, Peter; Lugemwa, Myers; Govere, John M; Katamba, Vincent; Rwakimari, John B; Mpeka, Betty; Chanda, Emmanuel

    2016-04-14

    Integrated vector management (IVM) is the recommended approach for controlling some vector-borne diseases (VBD). In the face of current challenges to disease vector control, IVM is vital to achieve national targets set for VBD control. Though global efforts, especially for combating malaria, now focus on elimination and eradication, IVM remains useful for Uganda which is principally still in the control phase of the malaria continuum. This paper outlines the processes undertaken to consolidate tactical planning and implementation frameworks for IVM in Uganda. The Uganda National Malaria Control Programme with its efforts to implement an IVM approach to vector control was the 'case' for this study. Integrated management of malaria vectors in Uganda remained an underdeveloped component of malaria control policy. In 2012, knowledge and perceptions of malaria vector control policy and IVM were assessed, and recommendations for a specific IVM policy were made. In 2014, a thorough vector control needs assessment (VCNA) was conducted according to WHO recommendations. The findings of the VCNA informed the development of the national IVM strategic guidelines. Information sources for this study included all available data and accessible archived documentary records on VBD control in Uganda. The literature was reviewed and adapted to the local context and translated into the consolidated tactical framework. WHO recommends implementation of IVM as the main strategy to vector control and has encouraged member states to adopt the approach. However, many VBD-endemic countries lack IVM policy frameworks to guide implementation of the approach. In Uganda most VBD coexists and could be managed more effectively if done in tandem. In order to successfully control malaria and other VBD and move towards their elimination, the country needs to scale up proven and effective vector control interventions and also learn from the experience of other countries. The IVM strategy is important in consolidating inter-sectoral collaboration and coordination and providing the tactical direction for effective deployment of vector control interventions along the five key elements of the approach and to align them with contemporary epidemiology of VBD in the country. Uganda has successfully established an evidence-based IVM approach and consolidated strategic planning and operational frameworks for VBD control. However, operating implementation arrangements as outlined in the national strategic guidelines for IVM and managing insecticide resistance, as well as improving vector surveillance, are imperative. In addition, strengthened information, education and communication/behaviour change and communication, collaboration and coordination will be crucial in scaling up and using vector control interventions.

  20. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand

    PubMed Central

    Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat

    2012-01-01

    Background Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Methodology Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Results Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. Conclusion An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities. PMID:23318236

  1. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand.

    PubMed

    Kittayapong, Pattamaporn; Thongyuan, Suporn; Olanratmanee, Phanthip; Aumchareoun, Worawit; Koyadun, Surachart; Kittayapong, Rungrith; Butraporn, Piyarat

    2012-12-01

    Dengue is considered one of the most important vector-borne diseases in Thailand. Its incidence is increasing despite routine implementation of national dengue control programmes. This study, conducted during 2010, aimed to demonstrate an application of integrated, community-based, eco-bio-social strategies in combination with locally-produced eco-friendly vector control tools in the dengue control programme, emphasizing urban and peri-urban settings in eastern Thailand. Three different community settings were selected and were randomly assigned to intervention and control clusters. Key community leaders and relevant governmental authorities were approached to participate in this intervention programme. Ecohealth volunteers were identified and trained in each study community. They were selected among active community health volunteers and were trained by public health experts to conduct vector control activities in their own communities using environmental management in combination with eco-friendly vector control tools. These trained ecohealth volunteers carried out outreach health education and vector control during household visits. Management of public spaces and public properties, especially solid waste management, was efficiently carried out by local municipalities. Significant reduction in the pupae per person index in the intervention clusters when compared to the control ones was used as a proxy to determine the impact of this programme. Our community-based dengue vector control programme demonstrated a significant reduction in the pupae per person index during entomological surveys which were conducted at two-month intervals from May 2010 for the total of six months in the intervention and control clusters. The programme also raised awareness in applying eco-friendly vector control approaches and increased intersectoral and household participation in dengue control activities. An eco-friendly dengue vector control programme was successfully implemented in urban and peri-urban settings in Thailand, through intersectoral collaboration and practical action at household level, with a significant reduction in vector densities.

  2. CYTOMEGALOVIRUS VECTORS VIOLATE CD8+ T CELL EPITOPE RECOGNITION PARADIGMS

    PubMed Central

    Hansen, Scott G.; Sacha, Jonah B.; Hughes, Colette M.; Ford, Julia C.; Burwitz, Benjamin J.; Scholz, Isabel; Gilbride, Roxanne M.; Lewis, Matthew S.; Gilliam, Awbrey N.; Ventura, Abigail B.; Malouli, Daniel; Xu, Guangwu; Richards, Rebecca; Whizin, Nathan; Reed, Jason S.; Hammond, Katherine B.; Fischer, Miranda; Turner, John M.; Legasse, Alfred W.; Axthelm, Michael K.; Edlefsen, Paul T.; Nelson, Jay A.; Lifson, Jeffrey D.; Früh, Klaus; Picker, Louis J.

    2013-01-01

    CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 (US11) gene, and the promiscuous MHC class I- and class II-restricted CD8+ T cell responses only occur in the absence of the Rh157.4-.6 (UL128-131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition. PMID:23704576

  3. Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines

    PubMed Central

    Chin’ombe, Nyasha; Ruhanya, Vurayai

    2013-01-01

    HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity. These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice) and are yet to reach human trials. PMID:24478808

  4. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    PubMed

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its effective induction of apoptosis and tumor growth inhibition.

  5. INTERIM ANALYSIS OF THE CONTRIBUTION OF HIGH-LEVEL EVIDENCE FOR DENGUE VECTOR CONTROL.

    PubMed

    Horstick, Olaf; Ranzinger, Silvia Runge

    2015-01-01

    This interim analysis reviews the available systematic literature for dengue vector control on three levels: 1) single and combined vector control methods, with existing work on peridomestic space spraying and on Bacillus thuringiensis israelensis; further work is available soon on the use of Temephos, Copepods and larvivorous fish; 2) or for a specific purpose, like outbreak control, and 3) on a strategic level, as for example decentralization vs centralization, with a systematic review on vector control organization. Clear best practice guidelines for methodology of entomological studies are needed. There is a need to include measuring dengue transmission data. The following recommendations emerge: Although vector control can be effective, implementation remains an issue; Single interventions are probably not useful; Combinations of interventions have mixed results; Careful implementation of vector control measures may be most important; Outbreak interventions are often applied with questionable effectiveness.

  6. Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases.

    PubMed

    van den Berg, Henk; Hii, Jeffrey; Soares, Agnes; Mnzava, Abraham; Ameneshewa, Birkinesh; Dash, Aditya P; Ejov, Mikhail; Tan, Soo Hian; Matthews, Graham; Yadav, Rajpal S; Zaim, Morteza

    2011-05-14

    It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach.

  7. Status of pesticide management in the practice of vector control: a global survey in countries at risk of malaria or other major vector-borne diseases

    PubMed Central

    2011-01-01

    Background It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. Methods A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Results Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Conclusions Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach. PMID:21569601

  8. Metal Solidification Imaging Process by Magnetic Induction Tomography.

    PubMed

    Ma, Lu; Spagnul, Stefano; Soleimani, Manuchehr

    2017-11-06

    There are growing number of important applications that require a contactless method for monitoring an object surrounded inside a metallic enclosure. Imaging metal solidification is a great example for which there is no real time monitoring technique at present. This paper introduces a technique - magnetic induction tomography - for the real time in-situ imaging of the metal solidification process. Rigorous experimental verifications are presented. Firstly, a single inductive coil is placed on the top of a melting wood alloy to examine the changes of its inductance during solidification process. Secondly, an array of magnetic induction coils are designed to investigate the feasibility of a tomographic approach, i.e., when one coil is driven by an alternating current as a transmitter and a vector of phase changes are measured from the remaining of the coils as receivers. Phase changes are observed when the wood alloy state changes from liquid to solid. Thirdly, a series of static cold phantoms are created to represent various liquid/solid interfaces to verify the system performance. Finally, a powerful temporal reconstruction method is applied to realise real time in-situ visualisation of the solidification and the measurement of solidified shell thickness, a first report of its kind.

  9. All That Glisters Is Not Gold: Sampling-Process Uncertainty in Disease-Vector Surveys with False-Negative and False-Positive Detections

    PubMed Central

    Abad-Franch, Fernando; Valença-Barbosa, Carolina; Sarquis, Otília; Lima, Marli M.

    2014-01-01

    Background Vector-borne diseases are major public health concerns worldwide. For many of them, vector control is still key to primary prevention, with control actions planned and evaluated using vector occurrence records. Yet vectors can be difficult to detect, and vector occurrence indices will be biased whenever spurious detection/non-detection records arise during surveys. Here, we investigate the process of Chagas disease vector detection, assessing the performance of the surveillance method used in most control programs – active triatomine-bug searches by trained health agents. Methodology/Principal Findings Control agents conducted triplicate vector searches in 414 man-made ecotopes of two rural localities. Ecotope-specific ‘detection histories’ (vectors or their traces detected or not in each individual search) were analyzed using ordinary methods that disregard detection failures and multiple detection-state site-occupancy models that accommodate false-negative and false-positive detections. Mean (±SE) vector-search sensitivity was ∼0.283±0.057. Vector-detection odds increased as bug colonies grew denser, and were lower in houses than in most peridomestic structures, particularly woodpiles. False-positive detections (non-vector fecal streaks misidentified as signs of vector presence) occurred with probability ∼0.011±0.008. The model-averaged estimate of infestation (44.5±6.4%) was ∼2.4–3.9 times higher than naïve indices computed assuming perfect detection after single vector searches (11.4–18.8%); about 106–137 infestation foci went undetected during such standard searches. Conclusions/Significance We illustrate a relatively straightforward approach to addressing vector detection uncertainty under realistic field survey conditions. Standard vector searches had low sensitivity except in certain singular circumstances. Our findings suggest that many infestation foci may go undetected during routine surveys, especially when vector density is low. Undetected foci can cause control failures and induce bias in entomological indices; this may confound disease risk assessment and mislead program managers into flawed decision making. By helping correct bias in naïve indices, the approach we illustrate has potential to critically strengthen vector-borne disease control-surveillance systems. PMID:25233352

  10. Consolidating strategic planning and operational frameworks for integrated vector management in Eritrea.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini

    2015-12-02

    Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance monitoring techniques; initiating the global plan for insecticide resistance management; conducting needs' assessments and developing standard operating procedure for insectaries; developing a guidance document on malaria vector control based on eco-epidemiological strata, a vector surveillance plan and harmonized mapping, data collection and reporting tools. Eritrea has successfully consolidated strategic frameworks for vector control. Rational decision-making remains critical to ensure that the interventions are effective and their choice is evidence-based, and to optimize the use of resources for vector control. Implementation of effective IVM requires proper collaboration and coordination, consistent technical and financial capacity and support to offer greater benefits.

  11. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  12. Impact of vectorborne parasitic neglected tropical diseases on child health.

    PubMed

    Barry, Meagan A; Murray, Kristy O; Hotez, Peter J; Jones, Kathryn M

    2016-07-01

    Chagas disease, leishmaniasis, onchocerciasis and lymphatic filariasis are all vectorborne neglected tropical diseases (NTDs) that are responsible for significant disease burden in impoverished children and adults worldwide. As vectorborne parasitic diseases, they can all be targeted for elimination through vector control strategies. Examples of successful vector control programmes for these diseases over the past two decades have included the Southern Cone Initiative against Chagas disease, the Kala-azar Control Scheme against leishmaniasis, the Onchocerciasis Control Programme and the lymphatic filariasis control programme in The Gambia. A common vector control component in all of these programmes is the use of adulticides including dichlorodiphenyltrichloroethane and newer synthetic pyrethroid insecticides against the insect vectors of disease. Household spraying has been used against Chagas disease and leishmaniasis, and insecticide-treated bed nets have helped prevent leishmaniasis and lymphatic filariasis. Recent trends in vector control focus on collaborations between programmes and sectors to achieve integrated vector management that addresses the holistic vector control needs of a community rather than approaching it on a disease-by-disease basis, with the goals of increased efficacy, sustainability and cost-effectiveness. As evidence of vector resistance to currently used insecticide regimens emerges, research to develop new and improved insecticides and novel control strategies will be critical in reducing disease burden. In the quest to eliminate these vectorborne NTDs, efforts need to be made to continue existing control programmes, further implement integrated vector control strategies and stimulate research into new insecticides and control methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe

    PubMed Central

    2014-01-01

    West Nile virus infection is a growing concern in Europe. Vector management is often the primary option to prevent and control outbreaks of the disease. Its implementation is, however, complex and needs to be supported by integrated multidisciplinary surveillance systems and to be organized within the framework of predefined response plans. The impact of the vector control measures depends on multiple factors and the identification of the best combination of vector control methods is therefore not always straightforward. Therefore, this contribution aims at critically reviewing the existing vector control methods to prevent and control outbreaks of West Nile virus infection and to present the challenges for Europe. Most West Nile virus vector control experiences have been recently developed in the US, where ecological conditions are different from the EU and vector control is organized under a different regulatory frame. The extrapolation of information produced in North America to Europe might be limited because of the seemingly different epidemiology in the European region. Therefore, there is an urgent need to analyse the European experiences of the prevention and control of outbreaks of West Nile virus infection and to perform robust cost-benefit analysis that can guide the implementation of the appropriate control measures. Furthermore, to be effective, vector control programs require a strong organisational backbone relying on a previously defined plan, skilled technicians and operators, appropriate equipment, and sufficient financial resources. A decision making guide scheme is proposed which may assist in the process of implementation of vector control measures tailored on specific areas and considering the available information and possible scenarios. PMID:25015004

  14. Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    2003-01-01

    Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.

  15. Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group.

    PubMed

    1995-01-01

    Since the Ministerial Conference on Malaria in 1992, which acknowledged the urgent need for worldwide commitment to malaria control, efforts have been directed to implementation of a Global Malaria Control Strategy. Vector control, an essential component of malaria control, has become less effective in recent years, partly as a result of poor use of alternative control tools, inappropriate use of insecticides, lack of an epidemiological basis for interventions, inadequate resources and infrastructure, and weak management. Changing environmental conditions, the behavioural characteristics of certain vectors, and resistance to insecticides have added to the difficulties. This report of a WHO Study Group provides guidelines for the planning, implementation and evaluation of cost-effective and sustainable vector control in the context of the Global Malaria Control Strategy. It reviews the available methods - indoor residual spraying, personal protection, larval control and environmental management - stressing the need for selective and flexible use of interventions according to local conditions. Requirements for data collection and the appropriate use of entomological parameters and techniques are discussed and priorities identified for the development of local capacity for vector control and for operational research. Emphasis is placed both on the monitoring and evaluation of vector control to ensure cost-effectiveness and on the development of strong managerial structures, which can support community participation and intersectoral collaboration and accommodate the control of other vector-borne diseases. The report concludes with recommendations aimed at promoting the targeted and efficient use of vector control in preventing and controlling malaria, thereby reducing the threat to health and socioeconomic development in many tropical countries.

  16. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L.

    PubMed

    Długosz, Marek; Wiktorowska, Ewa; Wiśniewska, Anita; Pączkowski, Cezary

    2013-01-01

    In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with β-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions.

  17. An economic evaluation of vector control in the age of a dengue vaccine.

    PubMed

    Fitzpatrick, Christopher; Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman

    2017-08-01

    Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control.

  18. An economic evaluation of vector control in the age of a dengue vaccine

    PubMed Central

    Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman

    2017-01-01

    Introduction Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. Methods We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Results Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70–90%, the cost per disability-adjusted life year averted is 2013 US$ 679–1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50–70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Discussion Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low cost immunization strategy, our results suggest that sustained vector control will continue to play an important role in mitigating the impact of environmental change and urbanization on human health. If additional benefits for the control of other Aedes borne diseases, such as Chikungunya, yellow fever and Zika fever are taken into account, the investment case is even stronger. High-burden endemic countries should proceed to map populations to be covered by sustained vector control. PMID:28806786

  19. Integrated vector management for malaria control

    PubMed Central

    Beier, John C; Keating, Joseph; Githure, John I; Macdonald, Michael B; Impoinvil, Daniel E; Novak, Robert J

    2008-01-01

    Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa. PMID:19091038

  20. Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0 deg to 70 deg

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Capone, Francis J.

    1995-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.

  1. Comparative field trial of alternative vector control strategies for non-domiciliated Triatoma dimidiata.

    PubMed

    Ferral, Jhibran; Chavez-Nuñez, Leysi; Euan-Garcia, Maria; Ramirez-Sierra, Maria Jesus; Najera-Vazquez, M Rosario; Dumonteil, Eric

    2010-01-01

    Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.

  2. Comparison Study of Three Different Image Reconstruction Algorithms for MAT-MI

    PubMed Central

    Xia, Rongmin; Li, Xu

    2010-01-01

    We report a theoretical study on magnetoacoustic tomography with magnetic induction (MAT-MI). According to the description of signal generation mechanism using Green’s function, the acoustic dipole model was proposed to describe acoustic source excited by the Lorentz force. Using Green’s function, three kinds of reconstruction algorithms based on different models of acoustic source (potential energy, vectored acoustic pressure, and divergence of Lorenz force) are deduced and compared, and corresponding numerical simulations were conducted to compare these three kinds of reconstruction algorithms. The computer simulation results indicate that the potential energy method and vectored pressure method can directly reconstruct the Lorentz force distribution and give a more accurate reconstruction of electrical conductivity. PMID:19846363

  3. Ambulatory Monitoring of Congestive Heart Failure by Multiple Bioelectric Impedance Vectors

    PubMed Central

    Khoury, Dirar S.; Naware, Mihir; Siou, Jeff; Blomqvist, Andreas; Mathuria, Nilesh S.; Wang, Jianwen; Shih, Hue-Teh; Nagueh, Sherif F.; Panescu, Dorin

    2009-01-01

    Objectives To investigate properties of multiple bioelectric impedance signals recorded during congestive heart failure (CHF) by utilizing various electrode configurations of an implanted cardiac resynchronization therapy (CRT) system. Background Monitoring of CHF has relied mainly on right-heart sensors. Methods Fifteen normal dogs underwent implantation of CRT systems using standard leads. An additional left atrial (LA) pressure lead-sensor was implanted in 5 dogs. Continuous rapid right ventricular (RV) pacing was applied over several weeks. Left ventricular (LV) catheterization and echocardiography were performed biweekly. Six steady-state impedance signals, utilizing intrathorcaic and intracardiac vectors, were measured via ring (r), coil (c), and device Can electrodes. Results All animals developed CHF after 2–4 weeks of pacing. Impedance diminished gradually during CHF induction, but at varying rates for different vectors. Impedance during CHF decreased significantly in all measured vectors: LVr-Can, −17%; LVr-RVr, −15%; LVr-RAr, −11%; RVr-Can, −12%; RVc-Can, −7%; RAr-Can, −5%. The LVr-Can vector reflected both the fastest and largest change in impedance in comparison to vectors employing only right-heart electrodes, and was highly reflective of changes in LV end-diastolic volume and LA pressure. Conclusions Impedance, acquired via different lead-electrodes, have variable responses to CHF. Impedance vectors employing a LV lead are highly responsive to physiologic changes during CHF. Measuring multiple impedance signals could be useful for optimizing ambulatory monitoring in heart failure patients. PMID:19298923

  4. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  5. The Bacterial Gene IfpA Influences the Potent Induction of Calcitonin Receptor and Osteoclast-Related Genes in Burkholderia Pseudomallei-Induced TRAP-Positive Multinucleated Giant Cells

    DTIC Science & Technology

    2006-06-13

    with arithmetic mean ( UPGMA ) using random tie breaking and uncorrected pairwise distances in MacVector 7.0 (Oxford Molecular). Numbers on branches...denote the UPGMA bootstrap percentage using a highly stringent number (1000) of replications (Felsenstein, 1985). All bootstrap values are 50%, as shown

  6. NMR studies of the helical antiferromagnetic compound EuCo2P2

    NASA Astrophysics Data System (ADS)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  7. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8+ T Cells by Persistent Viruses and Vaccines.

    PubMed

    Gordon, Claire Louse; Lee, Lian Ni; Swadling, Leo; Hutchings, Claire; Zinser, Madeleine; Highton, Andrew John; Capone, Stefania; Folgori, Antonella; Barnes, Eleanor; Klenerman, Paul

    2018-04-17

    The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8 + T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV) and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1 int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1 int CD8 + T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV) (ChAd3-NSmut) and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1 int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803.

    PubMed

    Abe, Koichi; Miyake, Kotone; Nakamura, Mayumi; Kojima, Katsuhiro; Ferri, Stefano; Ikebukuro, Kazunori; Sode, Koji

    2014-03-01

    In order to construct a green-light-regulated gene expression system for cyanobacteria, we characterized a green-light sensing system derived from Synechocystis sp. PCC6803, consisting of the green-light sensing histidine kinase CcaS, the cognate response regulator CcaR, and the promoter of cpcG2 (PcpcG 2 ). CcaS and CcaR act as a genetic controller and activate gene expression from PcpcG 2 with green-light illumination. The green-light induction level of the native PcpcG 2 was investigated using GFPuv as a reporter gene inserted in a broad-host-range vector. A clear induction of protein expression from native PcpcG 2 under green-light illumination was observed; however, the expression level was very low compared with Ptrc , which was reported to act as a constitutive promoter in cyanobacteria. Therefore, a Shine-Dalgarno-like sequence derived from the cpcB gene was inserted in the 5' untranslated region of the cpcG2 gene, and the expression level of CcaR was increased. Thus, constructed engineered green-light sensing system resulted in about 40-fold higher protein expression than with the wild-type promoter with a high ON/OFF ratio under green-light illumination. The engineered green-light gene expression system would be a useful genetic tool for controlling gene expression in the emergent cyanobacterial bioprocesses. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. The synergistic effect of 5Azadc and TSA on maintenance of pluripotency of chicken ESCs by overexpression of NANOG gene.

    PubMed

    Wang, Xiaoyan; Wang, Yingjie; Zuo, Qisheng; Li, Dong; Zhang, Wenhui; Lian, Chao; Tang, Beibei; Xiao, Tianrong; Wang, Man; Wang, Kehua; Li, Bichun; Zhang, Yani

    2016-04-01

    NANOG is a transcription factor that functions in embryonic stem cells (ESCs) and a key factor in maintaining pluripotency. Here, we cloned the NANOG gene promoter from the Rugao yellow chicken and constructed a dual luciferase reporter vector to detect its transcriptional activity and analyze the effects of 5-aza-2'-deoxycytidine (5-Azadc) and trichostatin A (TSA) on NANOG promoter activity and ESC pluripotency maintenance in vitro. NANOG transcriptional activity was enhanced when 5-Azadc and TSA were used alone or together, suggesting the possibility of elevated methylation of the CpG island in the NANOG regulatory region. When ESCs were cultured in basic medium with 5-Azadc and TSA in vitro, significantly more cell colonies were maintained in the 5-Azadc + TSA group than in the control group, which had many differentiated cells and few cell colonies after 6 d of induction. On the tenth day of induction, the cells in the control group fully differentiated and no cell colonies remained, but many cell colonies were present in the 5-Azadc + TSA group. The expression of NANOG in the cell colonies was confirmed by indirect immunofluorescence. Furthermore, ESCs could be passaged to the 12th generation under 5-Azadc and TSA treatment and maintained their pluripotency. Thus, we showed that 5-Azadc and TSA can effectively maintain chicken ESC pluripotency in vitro by increasing NANOG gene expression.

  10. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.

  11. Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?

    PubMed

    Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A

    2015-06-01

    Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  13. Radiation sensitivity of the gastrula-stage embryo: Chromosome aberrations and mutation induction in lacZ transgenic mice: The roles of DNA double-strand break repair systems.

    PubMed

    Jacquet, Paul; van Buul, Paul; van Duijn-Goedhart, Annemarie; Reynaud, Karine; Buset, Jasmine; Neefs, Mieke; Michaux, Arlette; Monsieurs, Pieter; de Boer, Peter; Baatout, Sarah

    2015-10-01

    At the gastrula phase of development, just after the onset of implantation, the embryo proper is characterized by extremely rapid cell proliferation. The importance of DNA repair is illustrated by embryonic lethality at this stage after ablation of the genes involved. Insight into mutation induction is called for by the fact that women often do not realize they are pregnant, shortly after implantation, a circumstance which may have important consequences when women are subjected to medical imaging using ionizing radiation. We screened gastrula embryos for DNA synthesis, nuclear morphology, growth, and chromosome aberrations (CA) shortly after irradiation with doses up to 2.5Gy. In order to obtain an insight into the importance of DNA repair for CA induction, we included mutants for the non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways, as well as Parp1-/- and p53+/- embryos. With the pUR288 shuttle vector assay, we determined the radiation sensitivity for point mutations and small deletions detected in young adults. We found increased numbers of abnormal nuclei 5h after irradiation; an indication of disturbed development was also observed around this time. Chromosome aberrations 7h after irradiation arose in all genotypes and were mainly of the chromatid type, in agreement with a cell cycle dominated by S-phase. Increased frequencies of CA were found for NHEJ and HR mutants. Gastrula embryos are unusual in that they are low in exchange induction, even after compromised HR. Gastrula embryos were radiation sensitive in the pUR288 shuttle vector assay, giving the highest mutation induction ever reported for this genetic toxicology model. On theoretical grounds, a delayed radiation response must be involved. The compromised developmental profile after doses up to 2.5Gy likely is caused by both apoptosis and later cell death due to large deletions. Our data indicate a distinct radiation-sensitive profile of gastrula embryos, including some stage-specific aspects that are not as yet understood. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Optimal control of malaria: combining vector interventions and drug therapies.

    PubMed

    Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B

    2018-04-24

    The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.

  15. Development of an optimized tetracycline-inducible expression system to increase the accumulation of interleukin-10 in tobacco BY-2 suspension cells.

    PubMed

    Bortesi, Luisa; Rademacher, Thomas; Schiermeyer, Andreas; Schuster, Flora; Pezzotti, Mario; Schillberg, Stefan

    2012-07-11

    Plant cell suspension cultures can be used for the production of valuable pharmaceutical and industrial proteins. When the recombinant protein is secreted into the culture medium, restricting expression to a defined growth phase can improve both the quality and quantity of the recovered product by minimizing proteolytic activity. Temporal restriction is also useful for recombinant proteins whose constitutive expression affects cell growth and viability, such as viral interleukin-10 (vIL-10). We have developed a novel, tetracycline-inducible system suitable for tobacco BY-2 suspension cells which increases the yields of vIL-10. The new system is based on a binary vector that is easier to handle than conventional vectors, contains an enhanced inducible promoter and 5'-UTR to improve yields, and incorporates a constitutively-expressed visible marker gene to allow the rapid and straightforward selection of the most promising transformed clones. Stable transformation of BY-2 cells with this vector, without extensive optimization of the induction conditions, led to a 3.5 fold increase in vIL-10 levels compared to constitutive expression in the same host. We have developed an effective and straightforward molecular farming platform technology that improves both the quality and the quantity of recombinant proteins produced in plant cells, particularly those whose constitutive expression has a negative impact on plant growth and development. Although we tested the platform using vIL-10 produced in BY-2 cells, it can be applied to other host/product combinations and is also useful for basic research requiring strictly controlled transgene expression.

  16. In Vivo Functional Genomic Studies of Sterol Carrier Protein-2 Gene in the Yellow Fever Mosquito

    PubMed Central

    Peng, Rong; Maklokova, Vilena I.; Chandrashekhar, Jayadevi H.; Lan, Que

    2011-01-01

    A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosaomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes. PMID:21437205

  17. Naturally Occurring Culturable Aerobic Gut Flora of Adult Phlebotomus papatasi, Vector of Leishmania major in the Old World

    PubMed Central

    Mukhopadhyay, Jaba; Braig, Henk R.; Rowton, Edgar D.; Ghosh, Kashinath

    2012-01-01

    Background Cutaneous leishmaniasis is a neglected, vector-borne parasitic disease and is responsible for persistent, often disfiguring lesions and other associated complications. Leishmania, causing zoonotic cutaneous leishmaniasis (ZCL) in the Old World are mainly transmitted by the predominant sand fly vector, Phlebotomus papatasi. To date, there is no efficient control measure or vaccine available for this widespread insect-borne infectious disease. Methodology/Principal Findings A survey was carried out to study the abundance of different natural gut flora in P. papatasi, with the long-term goal of generating a paratransgenic sand fly that can potentially block the development of Leishmania in the sand fly gut, thereby preventing transmission of leishmania in endemic disease foci. Sand flies, in particular, P. papatasi were captured from different habitats of various parts of the world. Gut microbes were cultured and identified using 16S ribosomal DNA analysis and a phylogenetic tree was constructed. We found variation in the species and abundance of gut flora in flies collected from different habitats. However, a few Gram-positive, nonpathogenic bacteria including Bacillus flexus and B. pumilus were common in most of the sites examined. Conclusion/Significance Our results indicate that there is a wide range of variation of aerobic gut flora inhabiting sand fly guts, which possibly reflect the ecological condition of the habitat where the fly breeds. Also, some species of bacteria (B. pumilus, and B. flexus) were found from most of the habitats. Important from an applied perspective of dissemination, our results support a link between oviposition induction and adult gut flora. PMID:22629302

  18. Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance.

    PubMed

    Gibson, Shannon L; Narayanan, Latha; Hegan, Denise Campisi; Buermeyer, Andrew B; Liskay, R Michael; Glazer, Peter M

    2006-12-08

    Inherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1. Here, we report that overexpression of the MutL homolog, human PMS2, can also cause a disruption of the MMR pathway in mammalian cells, resulting in hypermutability and DNA damage tolerance. A mouse fibroblast cell line carrying a recoverable lambda phage shuttle vector for mutation detection was transfected with either a vector designed to express hPMS2 or with an empty vector control. Cells overexpressing hPMS2 were found to have elevated spontaneous mutation frequencies at the cII reporter gene locus. They also showed an increase in the level of mutations induced by the alkylating agent, methynitrosourea (MNU). Clonogenic survival assays demonstrated increased survival of the PMS2-overexpressing cells following exposure to MNU, consistent with the induction of a damage tolerance phenotype. Similar results were seen in cells expressing a mutant PMS2 gene, containing a premature stop codon at position 134 and representing a variant found in an individual with familial colon cancer. These results show that dysregulation of PMS2 gene expression can disrupt MMR function in mammalian cells and establish an additional carcinogenic mechanism by which cells can develop genetic instability and acquire resistance to cytotoxic cancer therapies.

  19. Current strategies and successes in engaging women in vector control: a systematic review

    PubMed Central

    Gunn, Jayleen K L; Ernst, Kacey C; Center, Katherine E; Bischoff, Kristi; Nuñez, Annabelle V; Huynh, Megan; Okello, Amanda; Hayden, Mary H

    2018-01-01

    Introduction Vector-borne diseases (VBDs) cause significant mortality and morbidity in low-income and middle-income countries and present a risk to high-income countries. Vector control programmes may confront social and cultural norms that impede their execution. Anecdotal evidence suggests that incorporating women in the design, delivery and adoption of health interventions increases acceptance and compliance. A better understanding of programmes that have attempted to increase women’s involvement in vector control could help shape best practices. The objective of this systematic review was to assess and critically summarise evidence regarding the effectiveness of women participating in vector control. Methods Seven databases were searched from inception to 21 December 2015. Two investigators independently reviewed all titles and abstracts for relevant articles. Grey literature was searched by assessing websites that focus on international development and vector control. Results In total, 23 articles representing 17 unique studies were included in this review. Studies discussed the involvement of women in the control of vectors for malaria (n=10), dengue (n=8), human African trypanosomiasis (n=3), schistosomiasis (n=1) and a combination (malaria and schistosomiasis, n=1). Seven programmes were found in the grey literature or through personal communications. Available literature indicates that women can be successfully engaged in vector control programmes and, when given the opportunity, they can create and sustain businesses that aim to decrease the burden of VBDs in their communities. Conclusion This systematic review demonstrated that women can be successfully engaged in vector control programmes at the community level. However, rigorous comparative effectiveness studies need to be conducted. PMID:29515913

  20. Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control.

    PubMed

    Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P

    2015-10-22

    Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures are in place, synanthropic animals may be beneficial.

  1. Thrust Vector Control of an Overexpanded Supersonic Nozzle Using Pin Insertion and Rotating Airfoils

    DTIC Science & Technology

    1991-12-01

    12 THRUST VECTOR CONTROL OP AN OVEREXPANDED 3UPfRSONIC NOZZLE USING PIN INSERTION AND ROTATINO AIRFOILS THESIS Presented to the Faculty of the School...gather data that would aid in the evaluation of thrust vector control mechanisms for nozzle applications. I would like to thank my thesis advisor, Dr... Control Nozzle. MS Thesis . Air Force Institute of Technology (AU), Wright- Patterson AFB OH, December 1988. 4. Herup, Eric J. Confined Jet Thrust Vector

  2. Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries.

    PubMed

    Tsurushita, N; Fu, H; Warren, C

    1996-06-12

    New phage display vectors for in vivo recombination of immunoglobulin (Ig) heavy (VH) and light (VL) chain variable genes, to make single-chain Fv fragments (scFv), were constructed. The VH and VL genes of monoclonal antibody (mAb) EP-5C7, which binds to both human E- and P-selectin, were cloned into a pUC19-derived plasmid vector, pCW93, and a pACYC184-derived phagemid vector, pCW99, respectively. Upon induction of Cre recombinase (phage P1 recombinase), the VH and VL genes were efficiently recombined into the same plasmid via the two loxP sites (phage P1 recombination sites), one located downstream from a VH gene in pCW93 and another upstream from a VL gene in pCW99. In the resulting phagemid, the loxP sequence also encodes a polypeptide linker connecting the VH and VL domains to form a scFv of EP-5C7. Whether expressed on the phage surface or as a soluble form, the EP-5C7 scFv showed specific binding to human E- and P-selectin. This phagemid vector system provides a way to recombine VH and VL gene libraries efficiently in vivo to make extremely large Ig combinatorial libraries.

  3. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans.

    PubMed

    Parzych, Elizabeth M; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M; High, Katherine A; Levine, Matthew H; Ertl, Hildegund C J

    2013-04-01

    In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4⁺ T cells, whereas numbers of circulating CD8⁺ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.

  4. Effects of Immunosuppression on Circulating Adeno-Associated Virus Capsid-Specific T cells in Humans

    PubMed Central

    Parzych, Elizabeth M.; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M.; High, Katherine A.; Levine, Matthew H.

    2013-01-01

    Abstract In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4+ T cells, whereas numbers of circulating CD8+ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients. PMID:23461589

  5. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats.

    PubMed

    Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radošević, Katarina; Schuitemaker, Hanneke

    2015-10-05

    RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet

    PubMed Central

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-01-01

    Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction. PMID:24506649

  7. Recent advances in phlebotomine sand fly research related to leishmaniasis control.

    PubMed

    Bates, Paul A; Depaquit, Jerôme; Galati, Eunice A B; Kamhawi, Shaden; Maroli, Michele; McDowell, Mary Ann; Picado, Albert; Ready, Paul D; Salomón, O Daniel; Shaw, Jeffrey J; Traub-Csekö, Yara M; Warburg, Alon

    2015-02-27

    Phlebotomine sand flies are the subject of much research because of the role of their females as the only proven natural vectors of Leishmania species, the parasitic protozoans that are the causative agents of the neglected tropical disease leishmaniasis. Activity in this field was highlighted by the eighth International Symposium on Phlebotomine Sand flies (ISOPS) held in September 2014, which prompted this review focusing on vector control. Topics reviewed include: Taxonomy and phylogenetics, Vector competence, Genetics, genomics and transcriptomics, Eco-epidemiology, and Vector control. Research on sand flies as leishmaniasis vectors has revealed a diverse array of zoonotic and anthroponotic transmission cycles, mostly in subtropical and tropical regions of Africa, Asia and Latin America, but also in Mediterranean Europe. The challenge is to progress beyond descriptive eco-epidemiology, in order to separate vectors of biomedical importance from the sand fly species that are competent vectors but lack the vectorial capacity to cause much human disease. Transmission modelling is required to identify the vectors that are a public health priority, the ones that must be controlled as part of the integrated control of leishmaniasis. Effective modelling of transmission will require the use of entomological indices more precise than those usually reported in the leishmaniasis literature.

  8. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Gürsoy, D.; Scharfetter, H.

    2009-10-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors.

  9. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans

    PubMed Central

    Sheehy, Susanne H; Duncan, Christopher JA; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian VS; Draper, Simon J

    2012-01-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1—results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets. PMID:23089736

  10. Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2011-01-01

    Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862

  11. Induction motor speed control using varied duty cycle terminal voltage via PI controller

    NASA Astrophysics Data System (ADS)

    Azwin, A.; Ahmed, S.

    2018-03-01

    This paper deals with the PI speed controller for the three-phase induction motor using PWM technique. The PWM generated signal is utilized for voltage source inverter with an optimal duty cycle on a simplified induction motor model. A control algorithm for generating PWM control signal is developed. Obtained results shows that the steady state error and overshoot of the developed system is in the limit under different speed and load condition. The robustness of the control performance would be potential for induction motor performance improvement.

  12. Lyapunov exponent for aging process in induction motor

    NASA Astrophysics Data System (ADS)

    Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat

    2012-09-01

    Nonlinear systems like electrical circuits and systems, mechanics, optics and even incidents in nature may pass through various bifurcations and steady states like equilibrium point, periodic, quasi-periodic, chaotic states. Although chaotic phenomena are widely observed in physical systems, it can not be predicted because of the nature of the system. On the other hand, it is known that, chaos is strictly dependent on initial conditions of the system [1-3]. There are several methods in order to define the chaos. Phase portraits, Poincaré maps, Lyapunov Exponents are the most common techniques. Lyapunov Exponents are the theoretical indicator of the chaos, named after the Russian mathematician Aleksandr Lyapunov (1857-1918). Lyapunov Exponents stand for the average exponential divergence or convergence of nearby system states, meaning estimating the quantitive measure of the chaotic attractor. Negative numbers of the exponents stand for a stable system whereas zero stands for quasi-periodic systems. On the other hand, at least if one of the exponents is positive, this situation is an indicator of the chaos. For estimating the exponents, the system should be modeled by differential equation but even in that case mathematical calculation of Lyapunov Exponents are not very practical and evaluation of these values requires a long signal duration [4-7]. For experimental data sets, it is not always possible to acquire the differential equations. There are several different methods in literature for determining the Lyapunov Exponents of the system [4, 5]. Induction motors are the most important tools for many industrial processes because they are cheap, robust, efficient and reliable. In order to have healthy processes in industrial applications, the conditions of the machines should be monitored and the different working conditions should be addressed correctly. To the best of our knowledge, researches related to Lyapunov exponents and electrical motors are mostly focused on the controlling the mechanical parameters of the electrical machines. Brushless DC motor (BLDCM) and the other general purpose permanent magnet (PM) motors are the most widely examined motors [1, 8, 9]. But the researches, about Lyapunov Exponent, subjected to the induction motors are mostly focused on the control theory of the motors. Flux estimation of rotor, external load disturbances and speed tracking and vector control position system are the main research areas for induction motors [10, 11, 12-14]. For all the data sets which can be collected from an induction motor, vibration data have the key role for understanding the mechanical behaviours like aging, bearing damage and stator insulation damage [15-18]. In this paper aging of an induction motor is investigated by using the vibration signals. The signals consist of new and aged motor data. These data are examined by their 2 dimensional phase portraits and the geometric interpretation is applied for detecting the Lyapunov Exponents. These values are compared in order to define the character and state estimation of the aging processes.

  13. Efficient production of mutant phytase (phyA-7) derived from Selenomonas ruminantium using recombinant Escherichia coli in pilot scale.

    PubMed

    Chi-Wei Lan, John; Chang, Chih-Kai; Wu, Ho-Shing

    2014-09-01

    A mutant gene of rumen phytase (phyA-7) was cloned into pET23b(+) vector and expressed in the Escherichia coli BL21 under the control of the T7 promoter. The study of fermentation conditions includes the temperature impacts of mutant phytase expression, the effect of carbon supplements over induction stage, the inferences of acetic acid accumulation upon enzyme expression and the comparison of one-stage and two-stage operations in batch mode. The maximum value of phytase activity was reached 107.0 U mL(-1) at induction temperature of 30°C. Yeast extract supplement demonstrated a significant increase on both protein concentration and phytase activity. The acetic acid (2 g L(-1)) presented in the modified synthetic medium demonstrated a significant decrease on expressed phytase activity. A two-stage batch operation enhanced the level of phytase activity from 306 to 1204 U mL(-1) in the 20 L of fermentation scale. An overall 3.7-fold improvement in phytase yield (35,375.72-1,31,617.50 U g(-1) DCW) was achieved in the two-stage operation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bare, E. Ann

    1987-01-01

    The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.

  15. [Going into the 21st century: should one dream or act?].

    PubMed

    Coosemans, M

    1991-01-01

    A historical review of vector control is made. Despite the available tools, vector borne diseases are still a priority in Public Health. Magic tools, like DDT, were often misused. Adapted strategies and structures for vector control are now required. Progress will mainly result from research and evaluation done in the framework of vector control programmes. Discovery of new tools will find in these operational programmes a point of fall for their application.

  16. The Study of Residual Voltage of Induction Motor and the Influence of Various Parameters on the Residual Voltage

    NASA Astrophysics Data System (ADS)

    Zhang, Shuping; Zhao, Chen; Tan, Weipu

    2017-05-01

    The majority important load of industrial area is mainly composed of induction motor, it is more common that induction motor becomes sluggishness and even tripping due to the lose of power supply or other malfunction in the practical work. In this paper, space vector method is used to establish a reduced order model of induction motor, and then study the changes of motor electromagnetic after losing electricity. Based on motion equations of the rotor and magnetic flux conservation principle, it uses mathematical methods to deduce the expression of rotor current, rotor flux, the stator flux and the residual voltage of stator side. In addition, relying on thermal power plants, it uses the actual data of power plants, takes DIgsilent software to simulate the residual voltage of motor after losing electricity. analyses the influence on the residual voltage with the changes of the moment of inertia, load ratio, initial size of slip and the load characteristic of induction motor. By analysis of these, it has a more detailed understanding about the changes of residual voltage in practical application, in additional, it is more beneficial to put into standby power supply safely and effectively, moreover, reduce the influence of the input process to the whole system.

  17. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.

    PubMed

    Amini, Ata; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E

    2007-12-01

    Despite the increased recent use of protein-ligand and protein-protein docking in the drug discovery process due to the increases in computational power, the difficulty of accurately ranking the binding affinities of a series of ligands or a series of proteins docked to a protein receptor remains largely unsolved. This problem is of major concern in lead optimization procedures and has lead to the development of scoring functions tailored to rank the binding affinities of a series of ligands to a specific system. However, such methods can take a long time to develop and their transferability to other systems remains open to question. Here we demonstrate that given a suitable amount of background information a new approach using support vector inductive logic programming (SVILP) can be used to produce system-specific scoring functions. Inductive logic programming (ILP) learns logic-based rules for a given dataset that can be used to describe properties of each member of the set in a qualitative manner. By combining ILP with support vector machine regression, a quantitative set of rules can be obtained. SVILP has previously been used in a biological context to examine datasets containing a series of singular molecular structures and properties. Here we describe the use of SVILP to produce binding affinity predictions of a series of ligands to a particular protein. We also for the first time examine the applicability of SVILP techniques to datasets consisting of protein-ligand complexes. Our results show that SVILP performs comparably with other state-of-the-art methods on five protein-ligand systems as judged by similar cross-validated squares of their correlation coefficients. A McNemar test comparing SVILP to CoMFA and CoMSIA across the five systems indicates our method to be significantly better on one occasion. The ability to graphically display and understand the SVILP-produced rules is demonstrated and this feature of ILP can be used to derive hypothesis for future ligand design in lead optimization procedures. The approach can readily be extended to evaluate the binding affinities of a series of protein-protein complexes. (c) 2007 Wiley-Liss, Inc.

  18. Opportunities for Improved Chagas Disease Vector Control Based on Knowledge, Attitudes and Practices of Communities in the Yucatan Peninsula, Mexico

    PubMed Central

    Rosecrans, Kathryn; Cruz-Martin, Gabriela; King, Ashley; Dumonteil, Eric

    2014-01-01

    Background Chagas disease is a vector-borne parasitic disease of major public health importance. Current prevention efforts are based on triatomine vector control to reduce transmission to humans. Success of vector control interventions depends on their acceptability and value to affected communities. We aimed to identify opportunities for and barriers to improved vector control strategies in the Yucatan peninsula, Mexico. Methodology/principal findings We employed a sequence of qualitative and quantitative research methods to investigate knowledge, attitudes and practices surrounding Chagas disease, triatomines and vector control in three rural communities. Our combined data show that community members are well aware of triatomines and are knowledgeable about their habits. However, most have a limited understanding of the transmission dynamics and clinical manifestations of Chagas disease. While triatomine control is not a priority for community members, they frequently use domestic insecticide products including insecticide spray, mosquito coils and plug-in repellents. Families spend about $32 US per year on these products. Alternative methods such as yard cleaning and window screens are perceived as desirable and potentially more effective. Screens are nonetheless described as unaffordable, in spite of a cost comparable to the average annual spending on insecticide products. Conclusion/Significance Further education campaigns and possibly financing schemes may lead families to redirect their current vector control spending from insecticide products to window screens. Also, synergism with mosquito control efforts should be further explored to motivate community involvement and ensure sustainability of Chagas disease vector control. PMID:24676038

  19. Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.

    PubMed

    Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter

    2016-10-01

    Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.

  20. Creativity and Memory: Effects of an Episodic Specificity Induction on Divergent Thinking

    PubMed Central

    Madore, Kevin P.; Addis, Donna Rose; Schacter, Daniel L.

    2015-01-01

    After receiving an episodic specificity induction - brief training in recollecting details of a recent event - people produce more episodic details when imagining future events and solving means-end problems than after receiving a control induction not focused on episodic retrieval. Here we show for the first time that an episodic specificity induction also enhances divergent creative thinking. In Experiment 1, participants exhibited a selective boost on a divergent thinking task that involves generating unusual uses of common objects after a specificity induction compared with a control induction; by contrast, performance was similar on an object association task thought to involve little divergent thinking. In Experiment 2, we replicated the specificity induction effect on divergent thinking using a different control induction, and also found that participants performed similarly on a convergent thinking task following both inductions. These experiments provide novel evidence that episodic memory is involved in divergent creative thinking. PMID:26205963

  1. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control.

    PubMed

    Brand, Samuel P C; Rock, Kat S; Keeling, Matt J

    2016-04-01

    Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models.

  2. Validation of a recombinant human bactericidal/permeability-increasing protein (hBPI) expression vector using murine mammary gland tumor cells and the early development of hBPI transgenic goat embryos.

    PubMed

    Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2013-12-01

    Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  4. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  5. "We need people to collaborate together against this disease": A qualitative exploration of perceptions of dengue fever control in caregivers' of children under 5 years, in the Peruvian Amazon

    PubMed Central

    Beales, Emily R.; de Wildt, Gilles; Meza Sanchez, Graciela; Jones, Laura L.

    2017-01-01

    Background Dengue Fever presents a significant and growing burden of disease to endemic countries, where children are at particular risk. Worldwide, no effective anti-viral treatment has been identified, thus vector control is key for disease prevention, particularly in Peru where no vaccine is currently available. This qualitative study aimed to explore the perceptions of dengue control in caregivers’ of children under 5 years in Peru, to help direct future mosquito control programmes and strategy. Methods Eighteen semi-structured interviews were conducted in one health centre in Iquitos, Peru. Interviews were audio-recorded, transcribed and translated by an independent translator. Data were analysed using an inductive thematic approach. Findings Three core analytic themes were interpreted: (1) awareness of dengue and its control, (2) perceived susceptibility of children, rural riverside communities and city inhabitants, and (3) perceived responsibility of vector control. Participants were aware of dengue symptoms, transmission and larvae eradication strategies. Misconceptions about the day-time biting behaviour of the Aedes aegypti mosquito and confusion with other mosquito-borne diseases influenced preventative practice. Community-wide lack of cooperation was recognised as a key barrier. This was strengthened by attitudes that the government or health centre were responsible for dengue control and a belief that the disease cannot be prevented through individual actions. Participants felt powerless to prevent dengue due to assumed inevitability of infection and lack of faith in preventative practices. However, children and rural communities were believed to be most vulnerable. Conclusions Perceptions of dengue control amongst caregivers to under 5’s were important in shaping their likelihood to participate in preventative practices. There is a need to address the perceived lack of community cooperation through strategies creating a sense of ownership of community control and enhancing social responsibility. The belief that dengue cannot be prevented by individual actions in a community also warrants attention. Specific misconceptions about dengue should be addressed through the community health worker system and further research directed to identify the needs of certain vulnerable groups. PMID:28873408

  6. "We need people to collaborate together against this disease": A qualitative exploration of perceptions of dengue fever control in caregivers' of children under 5 years, in the Peruvian Amazon.

    PubMed

    Frank, Amy L; Beales, Emily R; de Wildt, Gilles; Meza Sanchez, Graciela; Jones, Laura L

    2017-09-01

    Dengue Fever presents a significant and growing burden of disease to endemic countries, where children are at particular risk. Worldwide, no effective anti-viral treatment has been identified, thus vector control is key for disease prevention, particularly in Peru where no vaccine is currently available. This qualitative study aimed to explore the perceptions of dengue control in caregivers' of children under 5 years in Peru, to help direct future mosquito control programmes and strategy. Eighteen semi-structured interviews were conducted in one health centre in Iquitos, Peru. Interviews were audio-recorded, transcribed and translated by an independent translator. Data were analysed using an inductive thematic approach. Three core analytic themes were interpreted: (1) awareness of dengue and its control, (2) perceived susceptibility of children, rural riverside communities and city inhabitants, and (3) perceived responsibility of vector control. Participants were aware of dengue symptoms, transmission and larvae eradication strategies. Misconceptions about the day-time biting behaviour of the Aedes aegypti mosquito and confusion with other mosquito-borne diseases influenced preventative practice. Community-wide lack of cooperation was recognised as a key barrier. This was strengthened by attitudes that the government or health centre were responsible for dengue control and a belief that the disease cannot be prevented through individual actions. Participants felt powerless to prevent dengue due to assumed inevitability of infection and lack of faith in preventative practices. However, children and rural communities were believed to be most vulnerable. Perceptions of dengue control amongst caregivers to under 5's were important in shaping their likelihood to participate in preventative practices. There is a need to address the perceived lack of community cooperation through strategies creating a sense of ownership of community control and enhancing social responsibility. The belief that dengue cannot be prevented by individual actions in a community also warrants attention. Specific misconceptions about dengue should be addressed through the community health worker system and further research directed to identify the needs of certain vulnerable groups.

  7. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector?

    PubMed

    Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul

    2014-12-01

    The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.

  8. Thrust vector control of upper stage with a gimbaled thruster during orbit transfer

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia

    2016-10-01

    In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.

  9. Creativity and Memory: Effects of an Episodic-Specificity Induction on Divergent Thinking.

    PubMed

    Madore, Kevin P; Addis, Donna Rose; Schacter, Daniel L

    2015-09-01

    People produce more episodic details when imagining future events and solving means-end problems after receiving an episodic-specificity induction-brief training in recollecting details of a recent event-than after receiving a control induction not focused on episodic retrieval. Here we show for the first time that an episodic-specificity induction also enhances divergent creative thinking. In Experiment 1, participants exhibited a selective boost on a divergent-thinking task (generating unusual uses of common objects) after a specificity induction compared with a control induction; by contrast, performance following the two inductions was similar on an object association task thought to involve little divergent thinking. In Experiment 2, we replicated the specificity-induction effect on divergent thinking using a different control induction, and also found that participants performed similarly on a convergent-thinking task following the two inductions. These experiments provide novel evidence that episodic memory is involved in divergent creative thinking. © The Author(s) 2015.

  10. [Construction of injectable tissue engineered adipose tissue with fibrin glue scaffold and human adipose-derived stem cells transfected by lentivirus vector expressing hepatocyte growth factor].

    PubMed

    Zhu, Yuanzheng; Yi, Yangyan; Yang, Shuifa; Zhang, Jing; Wu, Shu; Wang, Zhaohui

    2017-09-01

    To discuss the possibility of constructing injectable tissue engineered adipose tissue, and to provide a new approach for repairing soft tissue defects. Human adipose-derived stem cells (hADSCs) were extracted from the lipid part of human liposuction aspirate by enzymatic digestion and identified by morphological observation, flow cytometry, and adipogenic induction. The hADSCs underwent transfection by lentivirus vector expressing hepatocyte growth factor and green fluorescent protein (HGF-GFP-LVs) of different multiplicity of infection (MOI, 10, 30, 50, and 100), the transfection efficiency was calculated to determine the optimum MOI. The hADSCs transfected by HGF-GFP-LVs of optimal MOI and being adipogenic inducted were combined with injectable fibrin glue scaffold, and were injected subcutaneously into the right side of the low back of 10 T-cell deficiency BALB/c female nude mice (transfected group); non-HGF-GFP-LVs transfected hADSCs (being adipogenic inducted) combined with injectable fibrin glue scaffold were injected subcutaneously into the left side of the low back (untransfected group); and injectable fibrin glue scaffold were injected subcutaneously into the middle part of the neck (blank control group); 0.4 mL at each point. Twelve weeks later the mice were killed and the implants were taken out. Gross observation, wet weight measurement, HE staining, GFP fluorescence labeling, and immunofluorescence staining were performed to assess the in vivo adipogenic ability of the seed cells and the neovascularization of the grafts. The cultured cells were identified as hADSCs. Poor transfection efficiency was observed in MOI of 10 and 30, the transfection efficiency of MOI of 50 and 100 was more than 80%, so the optimum MOI was 50. Adipose tissue-like new-born tissues were found in the injection sites of the transfected and untransfected groups after 12 weeks of injection, and no new-born tissues was found in the blank control group. The wet-weight of new-born tissue in the transfected group [(32.30±4.06) mg] was significantly heavier than that of the untransfected group [(25.27±3.94) mg] ( t =3.929, P =0.001). The mature adipose cells in the transfected group [(126.93±5.36) cells/field] were significantly more than that in the untransfected group [(71.36±4.52) cells/field] ( t =30.700, P =0.000). Under fluorescence microscopy, some of the single cell adipocytes showed a network of green fluorescence, indicating the presence of GFP labeled exogenous hADSCs in the tissue. The vascular density of new-born tissue of the transfected group [(16.37±2.76)/field] was significantly higher than that of the untransfected group [(9.13±1.68)/field] ( t =8.678, P =0.000). The hADSCs extracted from the lipid part after liposuction can be used as seed cells. After HGF-GFP-LVs transfection and adipose induction, the hADSCs combined with injectable fibrin glue scaffold can construct mature adipose tissue in vivo , which may stimulate angiogenesis, and improve retention rate of new-born tissue.

  11. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.

    PubMed

    Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi

    2017-01-01

    CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.

  12. In vitro evaluation of a mammary gland specific expression vector encoding recombinant human lysozyme for development of transgenic dairy goat embryos.

    PubMed

    Gui, Tao; Zhang, Meiling; Chen, Jianwen; Zhang, Yuanliang; Zhou, Naru; Zhang, Yu; Tao, Jia; Sui, Liucai; Li, Yunsheng; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2012-08-01

    A vector expressing human lysozyme (pBC1-hLYZ-GFP-Neo) was evaluated for gene and protein expression following liposome-mediated transformation of C-127 mouse mammary cancer cells. Cultures of G418-resistant clones were harvested 24-72 h after induction with prolactin, insulin and hydrocortisone. Target gene expression was analyzed by RT-PCR and Western blot and recombinant human lysozyme (rhLYZ) bacteriostatic activity was also evaluated. The hLYZ gene was correctly transcribed and translated in C-127 cells and hLYZ inhibited gram-positive bacterial growth, indicating the potential of this expression vector for development of a mammary gland bioreactor in goats. Guanzhong dairy goat skin fibroblasts transfected with pBC1-hLYZ-GFP-Neo were used to construct a goat embryo transgenically expressing rhLYZ by somatic nuclear transplantation with a blastocyst rate of 9.0 ± 2.8 %. These data establish the basis for cultivation of mastitis-resistant hLYZ transgenic goats.

  13. Implementing a vector surveillance-response system for chagas disease control: a 4-year field trial in Nicaragua.

    PubMed

    Yoshioka, Kota; Tercero, Doribel; Pérez, Byron; Nakamura, Jiro; Pérez, Lenin

    2017-03-06

    Chagas disease is one of the neglected tropical diseases (NTDs). International goals for its control involve elimination of vector-borne transmission. Central American countries face challenges in establishing sustainable vector control programmes, since the main vector, Triatoma dimidiata, cannot be eliminated. In 2012, the Ministry of Health in Nicaragua started a field test of a vector surveillance-response system to control domestic vector infestation. This paper reports the main findings from this pilot study. This study was carried out from 2012 to 2015 in the Municipality of Totogalpa. The Japan International Cooperation Agency provided technical cooperation in designing and monitoring the surveillance-response system until 2014. This system involved 1) vector reports by householders to health facilities, 2) data analysis and planning of responses at the municipal health centre and 3) house visits or insecticide spraying by health personnel as a response. We registered all vector reports and responses in a digital database. The collected data were used to describe and analyse the system performance in terms of amount of vector reports as well as rates and timeliness of responses. During the study period, T. dimidiata was reported 396 times. Spatiotemporal analysis identified some high-risk clusters. All houses reported to be infested were visited by health personnel in 2013 and this response rate dropped to 39% in 2015. Rates of insecticide spraying rose above 80% in 2013 but no spraying was carried out in the following 2 years. The timeliness of house visits improved significantly after the responsibility was transferred from a vector control technician to primary health care staff. We argue that the proposed vector surveillance-response system is workable within the resource-constrained health system in Nicaragua. Integration to the primary health care services was a key to improve the system performance. Continual efforts are necessary to keep adapting the surveillance-response system to the dynamic health systems. We also discuss that the goal of eliminating vector-borne transmission remains unachievable. This paper provides lessons not only for Chagas disease control in Central America, but also for control efforts for other NTDs that need a sustainable surveillance-response system to support elimination.

  14. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  15. Reproducible and controllable induction voltage adder for scaled beam experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko

    2016-08-15

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.

  16. Development of a Recombinant Multifunctional Biomacromolecule for Targeted Gene Transfer to Prostate Cancer Cells.

    PubMed

    Hatefi, Arash; Karjoo, Zahra; Nomani, Alireza

    2017-09-11

    The objective of this study was to genetically engineer a fully functional single chain fusion peptide composed of motifs from diverse biological and synthetic origins that can perform multiple tasks including DNA condensation, cell targeting, cell transfection, particle shielding from immune system and effective gene transfer to prostate tumors. To achieve the objective, a single chain biomacromolecule (vector) consisted of four repeatative units of histone H2A peptide, fusogenic peptide GALA, short elastin-like peptide, and PC-3 cell targeting peptide was designed. To examine the functionality of each motif in the vector sequence, it was characterized in terms of size and zeta potential by Zetasizer, PC-3 cell targeting and transfection by flowcytometry, IgG induction by immunogenicity assay, and PC-3 tumor transfection by quantitative live animal imaging. Overall, the results of this study showed the possibility of using genetic engineering techniques to program various functionalities into one single chain vector and create a multifunctional nonimmunogenic biomacromolecule for targeted gene transfer to prostate cancer cells. This proof-of-concept study is a significant step forward toward creating a library of vectors for targeted gene transfer to any cancer cell type at both in vitro and in vivo levels.

  17. Electromagnetic Monitoring and Control of a Plurality of Nanosatellites

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I. (Inventor)

    2017-01-01

    A method for monitoring position of and controlling a second nanosatellite (NS) relative to a position of a first NS. Each of the first and second NSs has a rectangular or cubical configuration of independently activatable, current-carrying solenoids, each solenoid having an independent magnetic dipole moment vector, .mu.1 and .mu.2. A vector force F and a vector torque are expressed as linear or bilinear combinations of the first set and second set of magnetic moments, and a distance vector extending between the first and second NSs is estimated. Control equations are applied to estimate vectors, .mu.1 and .mu.2, required to move the NSs toward a desired NS configuration. This extends to control of N nanosatellites.

  18. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    NASA Astrophysics Data System (ADS)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo-SS-BEN) capable of intracellular release of BENSpm using thiolytically sensitive dithiobenzyl carbamate linker. Similar activity on SSAT enzyme induction by Lipo-SS-BEN compared with BENSpm free drug verified the success of this prodrug design. Biodegradability of Lipo-SS-BEN contributed to decreased toxicity compared with nondegradable control LipoBEN. However, decreased enhancement of TRAIL activity was observed for Lipo-SS-BEN when compared with BENSpm, indicating that the lipid-related toxicity diminished the synergism. In addition, compared with LipoBEN and DOTAP, decreased transfection efficiency of Lipo-SS-BEN demonstrated instability of Lipo-SS-BEN in extracellular environment. In order to design a dual delivery vector with reduced vector toxicity and improved linker stability, we employed dendritic polyglycerol (PG) as a safe carrier backbone, onto which BENSpm was conjugated through carbamate linkage (PG-BEN). Polymers with norspermine (PG-Nor) shell and amine-terminated PG (PG-NH2) were synthesized as controls. The BENSpm dual vector PG-BEN demonstrated superior gene delivery function, and showed decreased toxicity compared with the control polymers. However, compared with BENSpm, which depleted all natural polyamines, PG-BEN only down-regulated intracellular putrescine levels. In addition, no free BENSpm was detected in PG-BEN treated cells. These results suggested that in order to take full advantage of BENSpm anticancer activity, alternative linker chemistry needs to be further explored. We then incorporated bis(2-hydroxyethyl) disulfide as a self-immolative linker to synthesize polymer prodrugs of BENSpm (DSS-BEN). The proposed mechanism of BENSpm release from DSS-BEN contains two steps: disulfide bond is first cleaved in the reducing intracellular space, then the intermediate further undergoes slow intramolecular cyclization to release free BENSpm. Cell line-dependent BENSpm release after DSS-BEN treatment was observed using HPLC analysis, demonstrating the success of our linker strategy. DSS-BEN showed comparable transfection efficiency as polyethylenimine and showed decreased toxicity in several cell lines compared with the nondegradable control DCC-BEN. We further demonstrated that DSS-BEN could act synergistically with several therapeutic agents, making it a promising delivery platform for combination therapy in cancer. In all, we have successfully developed a dual delivery vector based on BENSpm, which fulfills its function as a gene delivery vector as well as a prodrug of BENSpm, and possesses synergistic potential to augment the effect of the co-delivered agents.

  19. [Physico-chemical signals involved in host localization and in the induction of mosquito bites].

    PubMed

    Torres-Estrada, José Luis; Rodríguez, Mario H

    2003-01-01

    Disease vector female mosquitoes respond to physic-chemical signals to localize vertebrate hosts for blood meals. Zoophylic mosquitoes preferentially respond to CO2 and octenol released in the breath and bodily fluids, while anthropophylic mosquitoes respond to lactic acid and a variety of sweat compounds. These compounds are modified by saprophytic microorganisms in the skin sebaceous glands. Other factors present in human dwellings contribute to the integration of microsystems with characteristic odors that have different attraction for mosquitoes, explaining the focalization of malaria transmission in few households in endemic areas. The identification of the chemical attractants and their molecular receptors could be used to complement new methods to attract mosquitoes to traps during epidemiological surveys, to increase their contact with insecticides in control interventions, and for genetic manipulation to divert mosquito bites towards other animal populations. The English version of this paper is available at:http://www.insp.mx/salud/index.html.

  20. Study and performances analysis of fuel cell assisted vector control variable speed drive system used for electric vehicles

    NASA Astrophysics Data System (ADS)

    Pachauri, Rupendra Kumar; Chauhan, Yogesh K.

    2017-02-01

    This paper is a novel attempt to combine two important aspects of fuel cell (FC). First, it presents investigations on FC technology and its applications. A description of FC operating principles is followed by the comparative analysis of the present FC technologies together with the issues concerning various fuels. Second, this paper also proposes a model for the simulation and performances evaluation of a proton exchange membrane fuel cell (PEMFC) generation system. Furthermore, a MATLAB/Simulink-based dynamic model of PEMFC is developed and parameters of FC are so adjusted to emulate a commercially available PEMFC. The system results are obtained for the PEMFC-driven adjusted speed induction motor drive (ASIMD) system, normally used in electric vehicles and analysis is carried out for different operating conditions of FC and ASIMD system. The obtained results prove the validation of system concept and modelling.

  1. Plasma Measurements in an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current sheet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster[1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). A benchtop FARAD thruster was designed following guidelines and similarity performance parameters presented in Refs. [3,4]. This design is described in detail in Ref. [5]. In this paper, we present the temporally and spatially resolved measurements of the preionized plasma and inductively-accelerated current sheet in the FARAD thruster operating with a Vector Inversion Generator (VIG) to preionize the gas and a Bernardes and Merryman circuit topology to provide inductive acceleration. The acceleration stage operates on the order of 100 J/pulse. Fast-framing photography will be used to produce a time-resolved, global view of the evolving current sheet. Local diagnostics used include a fast ionization gauge capable of mapping the gas distribution prior to plasma initiation; direct measurement of the induced magnetic field using B-dot probes, induced azimuthal current measurement using a mini-Rogowski coil, and direct probing of the number density and electron temperature using triple probes.

  2. Progress in HIV vaccine development

    PubMed Central

    Hsu, Denise C.; O'Connell, Robert J.

    2017-01-01

    ABSTRACT An HIV-1 vaccine is needed to curtail the HIV epidemic. Only one (RV144) out of the 6 HIV-1 vaccine efficacy trials performed showed efficacy. A potential mechanism of protection is the induction of functional antibodies to V1V2 region of HIV envelope. The 2 main current approaches to the generation of protective immunity are through broadly neutralizing antibodies (bnAb) and induction of functional antibodies (non-neutralizing Abs with other potential anti-viral functions). Passive immunization using bnAb has advanced into phase II clinical trials. The induction of bnAb using mimics of the natural Env trimer or B-cell lineage vaccine design is still in pre-clinical phase. An attempt at optimization of protective functional antibodies will be assessed next with the efficacy trial (HVTN702) about to start. With on-going optimization of prime/boost strategies, the development of mosaic immunogens, replication competent vectors, and emergence of new strategies designed to induce bnAb, the prospects for a preventive HIV vaccine have never been more promising. PMID:28281871

  3. Chagas disease vector control and Taylor's law

    PubMed Central

    Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.

    2017-01-01

    Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728

  4. Induction of apoptosis in MCF-7 cells by the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus Malaysian strain AF2240

    PubMed Central

    GHRICI, MOHAMED; EL ZOWALATY, MOHAMED; OMAR, ABDUL RAHMAN; IDERIS, AINI

    2013-01-01

    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications. PMID:23807159

  5. Induction of apoptosis in MCF-7 cells by the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus Malaysian strain AF2240.

    PubMed

    Ghrici, Mohamed; El Zowalaty, Mohamed; Omar, Abdul Rahman; Ideris, Aini

    2013-09-01

    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.

  6. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, N.; Ding, Q. -P.; Johnston, D. C.

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  7. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE PAGES

    Higa, N.; Ding, Q. -P.; Johnston, D. C.; ...

    2017-09-18

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  8. A Model Framework to Estimate Impact and Cost of Genetics-Based Sterile Insect Methods for Dengue Vector Control

    PubMed Central

    Alphey, Nina; Alphey, Luke; Bonsall, Michael B.

    2011-01-01

    Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US$ 2∼30 per case averted) than the direct and indirect costs of disease (mean US$ 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions. PMID:21998654

  9. Development and Application of Modern Optimal Controllers for a Membrane Structure Using Vector Second Order Form

    NASA Astrophysics Data System (ADS)

    Ferhat, Ipar

    With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.

  10. Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM) for malaria elimination.

    PubMed

    Kiware, Samson S; Chitnis, Nakul; Tatarsky, Allison; Wu, Sean; Castellanos, Héctor Manuel Sánchez; Gosling, Roly; Smith, David; Marshall, John M

    2017-01-01

    Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions. We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination. The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact of combined vector control interventions at the mosquito population level in a range of eco-epidemiological settings. The model predicts specific combinations of vector control tools to achieve local malaria elimination in a range of eco-epidemiological settings and can assist researchers and program decision-makers on the design of experimental or operational research to test vector control interventions. A corresponding graphical user interface is available for national malaria control programs and other end users.

  11. The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.

  12. Bartonella quintana Deploys Host and Vector Temperature-Specific Transcriptomes

    PubMed Central

    Previte, Domenic; Yoon, Kyong S.; Clark, J. Marshall; DeRisi, Joseph L.; Koehler, Jane E.

    2013-01-01

    The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 105 colony-forming units [CFU]/ml) and vector (more than 108 CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector. PMID:23554923

  13. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher's Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    PubMed Central

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-01-01

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837

  14. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.

    PubMed

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-07-24

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.

  15. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  16. Electro-Mechanical Actuator. DC Resonant Link Controller

    NASA Technical Reports Server (NTRS)

    Schreiner, Kenneth E.

    1996-01-01

    This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.

  17. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  18. Development of an optimized tetracycline-inducible expression system to increase the accumulation of interleukin-10 in tobacco BY-2 suspension cells

    PubMed Central

    2012-01-01

    Background Plant cell suspension cultures can be used for the production of valuable pharmaceutical and industrial proteins. When the recombinant protein is secreted into the culture medium, restricting expression to a defined growth phase can improve both the quality and quantity of the recovered product by minimizing proteolytic activity. Temporal restriction is also useful for recombinant proteins whose constitutive expression affects cell growth and viability, such as viral interleukin-10 (vIL-10). Results We have developed a novel, tetracycline-inducible system suitable for tobacco BY-2 suspension cells which increases the yields of vIL-10. The new system is based on a binary vector that is easier to handle than conventional vectors, contains an enhanced inducible promoter and 5′-UTR to improve yields, and incorporates a constitutively-expressed visible marker gene to allow the rapid and straightforward selection of the most promising transformed clones. Stable transformation of BY-2 cells with this vector, without extensive optimization of the induction conditions, led to a 3.5 fold increase in vIL-10 levels compared to constitutive expression in the same host. Conclusions We have developed an effective and straightforward molecular farming platform technology that improves both the quality and the quantity of recombinant proteins produced in plant cells, particularly those whose constitutive expression has a negative impact on plant growth and development. Although we tested the platform using vIL-10 produced in BY-2 cells, it can be applied to other host/product combinations and is also useful for basic research requiring strictly controlled transgene expression. PMID:22784336

  19. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Martin, Cameron L; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R; Mwangi, Duncan; Dominowski, Paul J; Foss, Dennis L; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2016-11-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ + ) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. The Aryl Hydrocarbon Receptor Binds to E2F1 and Inhibits E2F1-induced Apoptosis

    PubMed Central

    Marlowe, Jennifer L.; Fan, Yunxia; Chang, Xiaoqing; Peng, Li; Knudsen, Erik S.; Xia, Ying

    2008-01-01

    Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr−/− fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, γH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G0/G1 cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression. PMID:18524851

  1. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Martin, Cameron L.; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R.; Mwangi, Duncan; Dominowski, Paul J.; Foss, Dennis L.; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John

    2016-01-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ+) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. PMID:27628166

  2. Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.

    PubMed Central

    Gooding, R H

    1996-01-01

    An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462

  3. HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates

    PubMed Central

    García-Arriaza, Juan; Perdiguero, Beatriz; Heeney, Jonathan L.; Seaman, Michael S.; Montefiori, David C.; Yates, Nicole L.; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; Roederer, Mario; Self, Steven G.; Borate, Bhavesh; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, Jim; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony D.; Weiss, Deborah E.; Lee, Carter; Kibler, Karen V.; Jacobs, Bertram L.; Wagner, Ralf; Ding, Song; Pantaleo, Giuseppe

    2017-01-01

    ABSTRACT The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions. IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection. PMID:28179536

  4. Current status of genome editing in vector mosquitoes: A review.

    PubMed

    Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah

    2017-01-16

    Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.

  5. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities.

    PubMed

    Mendenhall, Ian H; Manuel, Menchie; Moorthy, Mahesh; Lee, Theodore T M; Low, Dolyce H W; Missé, Dorothée; Gubler, Duane J; Ellis, Brett R; Ooi, Eng Eong; Pompon, Julien

    2017-06-01

    Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.

  6. Armored RNA Technology for Production of Ribonuclease-Resistant Viral RNA Controls and Standards

    PubMed Central

    Pasloske, Brittan L.; Walkerpeach, Cindy R.; Obermoeller, R. Dawn; Winkler, Matthew; DuBois, Dwight B.

    1998-01-01

    The widespread use of sensitive assays for the detection of viral and cellular RNA sequences has created a need for stable, well-characterized controls and standards. We describe the development of a versatile, novel system for creating RNase-resistant RNA. “Armored RNA” is a complex of MS2 bacteriophage coat protein and RNA produced in Escherichia coli by the induction of an expression plasmid that encodes the coat protein and an RNA standard sequence. The RNA sequences are completely protected from RNase digestion within the bacteriophage-like complexes. As a prototype, a 172-base consensus sequence from a portion of the human immunodeficiency virus type 1 (HIV-1) gag gene was synthesized and cloned into the packaging vector used to produce the bacteriophage-like particles. After production and purification, the resulting HIV-1 Armored RNA particles were shown to be resistant to degradation in human plasma and produced reproducible results in the Amplicor HIV-1 Monitor assay for 180 days when stored at −20°C or for 60 days at 4°C. Additionally, Armored RNA preparations are homogeneous and noninfectious. PMID:9817878

  7. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    PubMed

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  8. Function of duck RIG-I in induction of antiviral response against IBDV and avian influenza virus on chicken cells.

    PubMed

    Shao, Qiang; Xu, Wenpin; Yan, Li; Liu, Jinhua; Rui, Lei; Xiao, Xiao; Yu, Xiaoxue; Lu, Yanan; Li, Zandong

    2014-10-13

    The avian influenza (AI) H9N2 virus and IBDV are two major problems in the poultry industry. They have been prevalent among domestic poultry in Asia for many years and have caused considerable economic losses. Retinoic-acid-induced gene I (RIG-I) is a cytoplasmic sensor of dsRNA and ssRNA. It can detect Encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV) in human cells, influenza virus in duck leads to production of IFN-β and IFN-stimulated antiviral genes and reductions in the replication of RNA virus. Chickens, which lack RIG-I, are more sensitive to influenza virus than ducks. However, little is known about the roles of duck RIG-I (dRIG-I) in the detection of IBDV and AI H9N2 in chicken cells DF-1. The purpose of this study was to examine the function of dRIG-I in the recognition of IBDV Ts strain and H9N2 A/Chicken/Shandong/ZB/2007(ZB07) and in the induction of antiviral gene expression to gain an understanding of antiviral ability of dRIG-I in chicken cells against dsRNA virus IBDV and ssRNA virus ZB07. After challenge with the IBDV Ts strain and ZB07 the expression levels of Type I IFN (IFN-β and IFN-α) and IFN-induced antiviral genes (Mx and PKR) were significantly up-regulated in dRIG-I-transfected DF-1cells compared with the empty-vector-transfected control. dRIG-I knockdown experiments further proved that dRIG-I is essential to sensing IBDV and ZB07 in duck embryo fibroblasts (DEF). Growth curves showed that dRIG-I repressed the replication of IBDV and almost blunted the growth of ZB07 in DF-1. Apoptosis analysis revealed that dRIG-I increase the number of the survival cells after IBDV Ts strain or ZB07 infection relative to the empty-vector-transfected control. These results indicate that dRIG-I can up-regulates type I IFN and reduce viral gene expression and viral replication and protect chicken cells from virus-induced apoptosis during ZB07 and IBDV infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?

    PubMed Central

    Rivero, Ana; Vézilier, Julien; Weill, Mylène; Read, Andrew F.; Gandon, Sylvain

    2010-01-01

    Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way—and there may be no simple generality—the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention. PMID:20700451

  10. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti.

    PubMed

    Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite

    2015-09-04

    Aedes aegypti is a vector of international concern because it can transmit to humans three important arboviral diseases: yellow fever, dengue and chikungunya. Epidemics that are repeated year after year in a variety of urban centers indicate that there are control failures, allowing the vector to continue expanding. To identify the most effective vector control strategies and the factors that contributed to the success or failure of each strategy, we carried out a systematic review with meta-analysis of articles published in 12 databases, from 1974 to the month of December 2013. We evaluated the association between the use of whatever chemical substance, mechanical agent, biological or integrated actions against A. aegypti and the control of the vector, as measured by 10 indicators. We found 2,791 articles, but after careful selection, only 26 studies remained for analysis related to control interventions implemented in 15 countries, with 5 biological, 5 chemical, 3 mechanical and 13 integrated strategies. The comparison among all of them, indicated that the control of A. aegypti is significantly associated with the type of strategy used, and that integrated interventions consist of the most effective method for controlling A. aegypti. The most effective control method was the integrated approach, considering the influence of eco-bio-social determinants in the virus-vector-man epidemiological chain, and community involvement, starting with community empowerment as active agents of vector control.

  11. Robust model predictive control for satellite formation keeping with eccentricity/inclination vector separation

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong

    2018-05-01

    This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.

  12. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    PubMed

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  13. The ratio of cancer cells to stroma after induction therapy in the treatment of non-small cell lung cancer.

    PubMed

    Goto, Masaki; Naito, Masahito; Saruwatari, Koichi; Hisakane, Kakeru; Kojima, Motohiro; Fujii, Satoshi; Kuwata, Takeshi; Ochiai, Atsushi; Nomura, Shogo; Aokage, Keiju; Hishida, Tomoyuki; Yoshida, Junji; Yokoi, Kohei; Tsuboi, Masahiro; Ishii, Genichiro

    2017-02-01

    Induction therapy induces degenerative changes of various degrees in both cancerous and non-cancerous cells of non-small cell lung cancer (NSCLC). The effect of induction therapy on histological characteristics, in particular the ratio of residual cancer cells to non-cancerous components, is unknown. Seventy-four NSCLC patients treated with induction therapy followed by surgery were enrolled. Residual cancer cells were identified using anti-pan-cytokeratin antibody (AE1/AE3). We analyzed and quantified the following three factors via digital image analysis; (1) the tumor area containing cancer cells and non-cancerous components (TA), (2) the total area of AE1/AE3 positive cancer cells (TACC), (3) the percentage of TACC to TA (%TACC). These factors were also analyzed in a matched control group (surgery alone, n = 80). The median TACC of the induction therapy group was significantly lower than that of the control group (p < 0.01). In addition, the median %TACC of the induction therapy group (5.9 %) was significantly lower than that of the control group (58.6 %) (p < 0.01). TACC had a strong positive correlation with TA in the control group (r = 0.93), but not in the induction therapy group. Conversely, TACC had a strong positive correlation with %TACC in the induction therapy group (r = 0.95), but not in the control group. Unlike the control group, the smaller the total area of residual cancer cells, the higher residual tumor contained non-cancerous components in the induction group, which may be the characteristic histological feature of NSCLC after induction therapy.

  14. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  15. An avian cell line designed for production of highly attenuated viruses.

    PubMed

    Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker

    2009-01-29

    Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.

  16. The contribution of inductive electric fields to particle energization in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Ilie, R.; Toth, G.; Liemohn, M. W.; Chan, A. A.

    2017-12-01

    Assessing the relative contribution of potential versus inductive electric fields at the energization of the hot ion population in the inner magnetosphere is only possible by thorough examination of the time varying magnetic field and current systems using global modeling of the entire system. We present here a method to calculate the inductive and potential components of electric field in the entire magnetosphere region. This method is based on the Helmholtz vector decomposition of the motional electric field as calculated by the BATS-R-US model, and is subject to boundary conditions. This approach removes the need to trace independent field lines and lifts the assumption that the magnetic field lines can be treated as frozen in a stationary ionosphere. In order to quantify the relative contributions of potential and inductive electric fields at driving plasma sheet ions into the inner magnetosphere, we apply this method for the March 17th, 2013 geomagnetic storm. We present here the consequences of slow continuous changes in the geomagnetic field as well as the strong tail dipolarizations on the distortion of the near-Earth magnetic field and current systems. Our findings indicate that the inductive component of the electric field is comparable, and even higher at times than the potential component, suggesting that the electric field induced by the time varying magnetic field plays a crucial role in the overall particle energization in the inner magnetosphere.

  17. Spermidine/spermine N1-acetyltransferase (SSAT) activity in human small-cell lung carcinoma cells following transfection with a genomic SSAT construct.

    PubMed

    Murray-Stewart, Tracy; Applegren, Nancy B; Devereux, Wendy; Hacker, Amy; Smith, Renee; Wang, Yanlin; Casero, Robert A

    2003-07-15

    Spermidine/spermine N (1)-acetyltransferase (SSAT) activity is typically highly inducible in non-small-cell lung carcinomas in response to treatment with anti-tumour polyamine analogues, and this induction is associated with subsequent cell death. In contrast, cells of the small-cell lung carcinoma (SCLC) phenotype generally do not respond to these compounds with an increase in SSAT activity, and usually are only moderately affected with respect to growth. The goal of the present study was to produce an SSAT-overexpressing SCLC cell line to further investigate the role of SSAT in response to these anti-tumour analogues. To accomplish this, NCI-H82 SCLC cells were stably transfected with plasmids containing either the SSAT genomic sequence or the corresponding cDNA sequence. Individual clones were selected based on their ability to show induced SSAT activity in response to exposure to a polyamine analogue, and an increase in the steady-state SSAT mRNA level. Cells transfected with the genomic sequence exhibited a significant increase in basal SSAT mRNA expression, as well as enhanced SSAT activity, intracellular polyamine pool depletion and growth inhibition following treatment with the analogue N (1), N (11)-bis(ethyl)norspermine. Cells containing the transfected cDNA also exhibited an increase in the basal SSAT mRNA level, but remained phenotypically similar to vector control cells with respect to their response to analogue exposure. These studies indicate that both the genomic SSAT sequence and polyamine analogue exposure play a role in the transcriptional and post-transcriptional regulation and subsequent induction of SSAT activity in these cells. Furthermore, this is the first production of a cell line capable of SSAT protein induction from a generally unresponsive parent line.

  18. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014.

    PubMed

    Shortus, Matthew; Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia

    2016-01-01

    The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations' effectiveness.

  19. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014

    PubMed Central

    Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia

    2016-01-01

    Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255

  20. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  1. Launching the first postgraduate diploma in medical entomology and disease vector control in Pakistan.

    PubMed

    Rathor, H R; Mnzava, A; Bile, K M; Hafeez, A; Zaman, S

    2010-01-01

    The Health Services Academy has launched a 12-month postgraduate diploma course in medical entomology and disease vector control. The objective is to create a core of experts trained to prevent and control vector-borne diseases. The course is a response to the serious health and socioeconomic burden caused by a number of vector-borne diseases in Pakistan. The persistence, emergence and re-emergence of these diseases is mainly attributed to the scarcity of trained vector-control experts. The training course attempts to fill the gap in trained manpower and thus reduce the morbidity and mortality due to these diseases, resulting in incremental gains to public health. This paper aims to outline the steps taken to establish the course and the perceived challenges to be addressed in order to sustain its future implementation.

  2. Optimization of Control Strategies for Non-Domiciliated Triatoma dimidiata, Chagas Disease Vector in the Yucatán Peninsula, Mexico

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2009-01-01

    Background Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. Methodology/Principal Findings A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m2 were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. Conclusion/Significance Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases. PMID:19365542

  3. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level

    PubMed Central

    Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael

    2015-01-01

    Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. PMID:25488698

  4. Socio-economic inequity in demand for insecticide-treated nets, in-door residual house spraying, larviciding and fogging in Sudan.

    PubMed

    Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham

    2005-12-15

    In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements.

  5. Design of inductive sensors for tongue control system for computers and assistive devices.

    PubMed

    Lontis, Eugen R; Struijk, Lotte N S A

    2010-07-01

    The paper introduces a novel design of air-core inductive sensors in printed circuit board (PCB) technology for a tongue control system. The tongue control system provides a quadriplegic person with a keyboard and a joystick type of mouse for interaction with a computer or for control of an assistive device. Activation of inductive sensors was performed with a cylindrical, soft ferromagnetic material (activation unit). Comparative analysis of inductive sensors in PCB technology with existing hand-made inductive sensors was performed with respect to inductance, resistance, and sensitivity to activation when the activation unit was placed in the center of the sensor. Optimisation of the activation unit was performed in a finite element model. PCBs with air-core inductive sensors were manufactured in a 10 layers, 100 microm and 120 microm line width technology. These sensors provided quality signals that could drive the electronics of the hand-made sensors. Furthermore, changing the geometry of the sensors allowed generation of variable signals correlated with the 2D movement of the activation unit at the sensors' surface. PCB technology for inductive sensors allows flexibility in design, automation of production and ease of possible integration with supplying electronics. The basic switch function of the inductive sensor can be extended to two-dimensional movement detection for pointing devices.

  6. Control of power to an inductively heated part

    DOEpatents

    Adkins, Douglas R.; Frost, Charles A.; Kahle, Philip M.; Kelley, J. Bruce; Stanton, Suzanne L.

    1997-01-01

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

  7. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  8. Control of power to an inductively heated part

    DOEpatents

    Adkins, D.R.; Frost, C.A.; Kahle, P.M.; Kelley, J.B.; Stanton, S.L.

    1997-05-20

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part. 6 figs.

  9. Strengthening tactical planning and operational frameworks for vector control: the roadmap for malaria elimination in Namibia.

    PubMed

    Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M

    2015-08-05

    Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.

  10. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis

    PubMed Central

    Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent

    2016-01-01

    Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936

  11. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  12. Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer.

    PubMed

    Yonemura, Yutaka; Endo, Yoshio; Tabata, Kayoko; Kawamura, Taiichi; Yun, Hyo-Yung; Bandou, Etsurou; Sasaki, Takuma; Miura, Masahiro

    2005-10-01

    The molecular mechanisms of lymphangiogenesis induced by vascular endothelial growth factor (VEGF)-C and VEGF-D in gastric cancer were studied. VEGF-C and VEGF-D gene expression vectors were transfected into the gastric cancer cell line KKLS, which did not originally express VEGF-C and VEGF-D, and stable transfectants (KKLS/VEGF-C and KKLS/VEGF-D) were established. The cell lines were inoculated into the subserosal layer of the stomach and subcutaneous tissue of nude mice. VEGF-C and VEGF-D expression in KKLS/VEGF-C and KKLS/VEGF-D cells was found by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Expression of mouse VEGF receptor (VEGFR)-2 and mouse VEGFR-3 mRNA was detected in the KKLS/VEGF-C and KKLS/VEGF-D gastric tumors. Newly formed lymphatic vessels were detected not only in the periphery but also in the center of the tumors. The intratumor lymphatic vessels connected with the preexisting lymphatic vessels in the muscularis mucosa. The average numbers of lymphatic vessels in KKLS/VEGF-C (52.0 +/- 9.5) and KKLS/VEGF-D (16.4 +/- 0.6) gastric tumors were significantly higher than that in the KKLS/control vector tumors (4.0 +/- 1.4). VEGF-C and VEGF-D may induce neoformation of lymphatic vessels in experimental gastric tumors by the induction of VEGFR-3 expression.

  13. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing.

    PubMed

    Gómez-Lechón, M José; Tolosa, Laia; Donato, M Teresa

    2017-02-01

    Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.

  14. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  15. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria.

    PubMed

    Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve

    2016-02-01

    New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and through engaging powerful policy champions to drive policy change and thereby accelerate access to new vector control tools. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  16. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection.

    PubMed

    Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi

    2010-11-01

    We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  17. A new adaptive control strategy for a class of nonlinear system using RBF neuro-sliding-mode technique: application to SEIG wind turbine control system

    NASA Astrophysics Data System (ADS)

    Kenné, Godpromesse; Fotso, Armel Simo; Lamnabhi-Lagarrigue, Françoise

    2017-04-01

    In this paper, a new hybrid method which combines radial basis function (RBF) neural network with a sliding-mode technique to take advantage of their common features is used to control a class of nonlinear systems. A real-time dynamic nonlinear learning law of the weight vector is synthesized and the closed-loop stability has been demonstrated using Lyapunov theory. The solution presented in this work does not need the knowledge of the perturbation bounds, neither the knowledge of the full state of the nonlinear system. In addition, the bounds of the nonlinear functions are assumed to be unknown and the proposed RBF structure uses reduced number of hidden units. This hybrid control strategy is applied to extract the maximum available energy from a stand-alone self-excited variable low-wind speed energy conversion system and design the dc-voltage and rotor flux controllers as well as the load-side frequency and voltage regulators assuming that the measured outputs are the rotor speed, stator currents, load-side currents and voltages despite large variation of the rotor resistance and uncertainties on the inductances. Finally, simulation results compared with those obtained using the well-known second-order sliding-mode controller are given to show the effectiveness and feasibility of the proposed approach.

  18. Implication of vector characteristics of Phlebotomus argentipes in the kala-azar elimination programme in the Indian sub-continent.

    PubMed

    Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad; Kroeger, Axel

    2016-05-01

    Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included 'sand fly bionomics', 'habitat', and 'visceral leishmaniasis/kala-azar vector control' using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC.

  19. Management of arthropod pathogen vectors in North America: Minimizing adverse effects on pollinators

    USGS Publications Warehouse

    Ginsberg, Howard; Bargar, Timothy A.; Hladik, Michelle L.; Lubelczyk, Charles

    2017-01-01

    Tick and mosquito management is important to public health protection. At the same time, growing concerns about declines of pollinator species raise the question of whether vector control practices might affect pollinator populations. We report the results of a task force of the North American Pollinator Protection Campaign (NAPPC) that examined potential effects of vector management practices on pollinators, and how these programs could be adjusted to minimize negative effects on pollinating species. The main types of vector control practices that might affect pollinators are landscape manipulation, biocontrol, and pesticide applications. Some current practices already minimize effects of vector control on pollinators (e.g., short-lived pesticides and application-targeting technologies). Nontarget effects can be further diminished by taking pollinator protection into account in the planning stages of vector management programs. Effects of vector control on pollinator species often depend on specific local conditions (e.g., proximity of locations with abundant vectors to concentrations of floral resources), so planning is most effective when it includes collaborations of local vector management professionals with local experts on pollinators. Interventions can then be designed to avoid pollinators (e.g., targeting applications to avoid blooming times and pollinator nesting habitats), while still optimizing public health protection. Research on efficient targeting of interventions, and on effects on pollinators of emerging technologies, will help mitigate potential deleterious effects on pollinators in future management programs. In particular, models that can predict effects of integrated pest management on vector-borne pathogen transmission, along with effects on pollinator populations, would be useful for collaborative decision-making.

  20. Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan.

    PubMed

    Chanda, Emmanuel; Govere, John M; Macdonald, Michael B; Lako, Richard L; Haque, Ubydul; Baba, Samson P; Mnzava, Abraham

    2013-10-25

    Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial.

  1. Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan

    PubMed Central

    2013-01-01

    Background Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. Case description A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. Discussion South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. Conclusion The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial. PMID:24156749

  2. Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research: a review.

    PubMed

    Ghosh, Srikant; Nagar, Gaurav

    2014-12-01

    Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.

  3. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  4. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  5. The Cost of Dengue Vector Control Activities in Malaysia by Different Service Providers.

    PubMed

    Packierisamy, P Raviwharmman; Ng, Chiu-Wan; Dahlui, Maznah; Venugopalan, B; Halasa, Yara A; Shepard, Donald S

    2015-11-01

    We examined variations in dengue vector control costs and resource consumption between the District Health Departments (DHDs) and Local Authorities (LAs) to assist informed decision making as to the future roles of these agencies in the delivery of dengue vector control services in Malaysia. Data were collected from the vector control units of DHDs and LAs in 8 selected districts. We captured costs and resource consumption in 2010 for premise inspection for mosquito breeding sites, fogging to destroy adult mosquitoes and larviciding of potential breeding sites. Overall, DHDs spent US$5.62 million or US$679 per case and LAs spent US$2.61 million or US$499 per case. The highest expenditure for both agencies was for fogging, 51.0% and 45.8% of costs for DHDs and LAs, respectively. The DHDs had higher resource costs for human personnel, vehicles, pesticides, and equipment. The findings provide some evidence to rationalize delivery of dengue vector control services in Malaysia. © 2015 APJPH.

  6. Sustainability of vector control strategies in the Gran Chaco Region: current challenges and possible approaches

    PubMed Central

    Gürtler, Ricardo E

    2011-01-01

    Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying) and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical. PMID:19753458

  7. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  8. An optimal control strategies using vaccination and fogging in dengue fever transmission model

    NASA Astrophysics Data System (ADS)

    Fitria, Irma; Winarni, Pancahayani, Sigit; Subchan

    2017-08-01

    This paper discussed regarding a model and an optimal control problem of dengue fever transmission. We classified the model as human and vector (mosquito) population classes. For the human population, there are three subclasses, such as susceptible, infected, and resistant classes. Then, for the vector population, we divided it into wiggler, susceptible, and infected vector classes. Thus, the model consists of six dynamic equations. To minimize the number of dengue fever cases, we designed two optimal control variables in the model, the giving of fogging and vaccination. The objective function of this optimal control problem is to minimize the number of infected human population, the number of vector, and the cost of the controlling efforts. By giving the fogging optimally, the number of vector can be minimized. In this case, we considered the giving of vaccination as a control variable because it is one of the efforts that are being developed to reduce the spreading of dengue fever. We used Pontryagin Minimum Principle to solve the optimal control problem. Furthermore, the numerical simulation results are given to show the effect of the optimal control strategies in order to minimize the epidemic of dengue fever.

  9. Will integrated surveillance systems for vectors and vector-borne diseases be the future of controlling vector-borne diseases? A practical example from China.

    PubMed

    Wu, Y; Ling, F; Hou, J; Guo, S; Wang, J; Gong, Z

    2016-07-01

    Vector-borne diseases are one of the world's major public health threats and annually responsible for 30-50% of deaths reported to the national notifiable disease system in China. To control vector-borne diseases, a unified, effective and economic surveillance system is urgently needed; all of the current surveillance systems in China waste resources and/or information. Here, we review some current surveillance systems and present a concept for an integrated surveillance system combining existing vector and vector-borne disease monitoring systems. The integrated surveillance system has been tested in pilot programmes in China and led to a 21·6% cost saving in rodent-borne disease surveillance. We share some experiences gained from these programmes.

  10. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates

    PubMed Central

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-01-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy. PMID:26022732

  11. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates.

    PubMed

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-08-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.

  12. Inductive and deductive reasoning in obsessive-compulsive disorder.

    PubMed

    Liew, Janice; Grisham, Jessica R; Hayes, Brett K

    2018-06-01

    This study examined the hypothesis that participants diagnosed with obsessive-compulsive disorder (OCD) show a selective deficit in inductive reasoning but are equivalent to controls in deductive reasoning. Twenty-five participants with OCD and 25 non-clinical controls made inductive and deductive judgments about a common set of arguments that varied in logical validity and the amount of positive evidence provided (premise sample size). A second inductive reasoning task required participants to make forced-choice decisions and rate the usefulness of diverse evidence or non-diverse evidence for evaluating arguments. No differences in deductive reasoning were found between participants diagnosed with OCD and control participants. Both groups saw that the amount of positive evidence supporting a conclusion was an important guide for evaluating inductive arguments. However, those with OCD showed less sensitivity to premise diversity in inductive reasoning than controls. The findings were similar for both emotionally neutral and OCD-relevant stimuli. The absence of a clinical control group means that it is difficult to know whether the deficit in diversity-based reasoning is specific to those with OCD. People with OCD are impaired in some forms of inductive reasoning (using diverse evidence) but not others (use of sample size). Deductive reasoning appears intact in those with OCD. Difficulties using evidence diversity when reasoning inductively may maintain OCD symptoms through reduced generalization of learned safety information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Return of epidemic dengue in the United States: implications for the public health practitioner.

    PubMed

    Bouri, Nidhi; Sell, Tara Kirk; Franco, Crystal; Adalja, Amesh A; Henderson, D A; Hynes, Noreen A

    2012-01-01

    Conditions that facilitate sustained dengue transmission exist in the United States, and outbreaks have occurred during the past decade in Texas, Hawaii, and Florida. More outbreaks can also be expected in years to come. To combat dengue, medical and public health practitioners in areas with mosquito vectors that are competent to transmit the virus must be aware of the threat of reemergent dengue, and the need for early reporting and control to reduce the impact of dengue outbreaks. Comprehensive dengue control includes human and vector surveillance, vector management programs, and community engagement efforts. Public health, medical, and vector-control communities must collaborate to prevent and control disease spread. Policy makers should understand the role of mosquito abatement and community engagement in the prevention and control of the disease.

  14. Lack of Humoral Immune Response to the Tetracycline (Tet) Activator in Rats Injected Intracranially with Tet-off rAAV Vectors

    PubMed Central

    Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.

    2010-01-01

    The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859

  15. Automated innovative diagnostic, data management and communication tool, for improving malaria vector control in endemic settings.

    PubMed

    Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael

    2016-01-01

    Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.

  16. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  17. Proof of concept demonstration for coherent beam pattern measurements of KID detectors

    NASA Astrophysics Data System (ADS)

    Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.

    2016-07-01

    Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.

  18. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    PubMed

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction

    PubMed Central

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors’ broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency. PMID:26305933

  20. Socio-economic inequity in demand for insecticide-treated nets, in-door residual house spraying, larviciding and fogging in Sudan

    PubMed Central

    Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham

    2005-01-01

    Background In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. Objectives To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Methods Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. Results IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. Conclusion People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements. PMID:16356177

  1. Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges

    PubMed Central

    Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2009-01-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346

  2. Controlling Malaria Using Livestock-Based Interventions: A One Health Approach

    PubMed Central

    Franco, Ana O.; Gomes, M. Gabriela M.; Rowland, Mark; Coleman, Paul G.

    2014-01-01

    Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with moderately zoophilic vectors, where this intervention could contribute to the integrated control of malaria and livestock diseases. PMID:25050703

  3. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities

    PubMed Central

    Manuel, Menchie; Low, Dolyce H. W.; Missé, Dorothée; Gubler, Duane J.; Ellis, Brett R.; Ooi, Eng Eong; Pompon, Julien

    2017-01-01

    Background Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. Methods We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. Results We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Conclusions Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management. PMID:28650959

  4. Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis

    PubMed Central

    Santangeloyz, K.S.; Bertoneyz, A.L.

    2011-01-01

    summary Objective To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Methods Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RTPCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2−ΔΔCT) method. Results Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P= 0.0045) or >90% (P= 0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Conclusions Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. PMID:21945742

  5. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression.

    PubMed

    Herz, Stefan; Füssl, Monika; Steiger, Sandra; Koop, Hans-Ulrich

    2005-12-01

    Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named "operon-extension" vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5'-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5'-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named "split" plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.

  6. Community Participation in Chagas Disease Vector Surveillance: Systematic Review

    PubMed Central

    Abad-Franch, Fernando; Vega, M. Celeste; Rolón, Miriam S.; Santos, Walter S.; Rojas de Arias, Antonieta

    2011-01-01

    Background Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. Methodology/Principal Findings We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. Conclusions/Significance CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies. PMID:21713022

  7. Mosquito vector biology and control in latin america-a 24th symposium.

    PubMed

    Clark, Gary G; Fernández-Salas, Ildefonso

    2014-09-01

    The 24th Annual Latin American Symposium presented by the American Mosquito Control Association (AMCA) was held as part of the 80th Annual Meeting in Seattle, WA, in February 2014. The principal objective, for the previous 23 symposia, was to promote participation in the AMCA by vector control specialists, public health workers, and academicians from Latin America. This publication includes summaries of 26 presentations that were given orally in Spanish or presented as posters by participants from Colombia, Mexico, and the USA. Topics addressed in the symposium included: surveillance, ecology, chemical control, studies of dengue viruses, and insecticide resistance associated with Aedes aegypti; Anopheles vectors of malaria; essential oils; and ethnic groups and vector-borne diseases.

  8. Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil

    PubMed Central

    Caprara, Andrea; De Oliveira Lima, José Wellington; Rocha Peixoto, Ana Carolina; Vasconcelos Motta, Cyntia Monteiro; Soares Nobre, Joana Mary; Sommerfeld, Johannes; Kroeger, Axel

    2015-01-01

    Background This study intended to implement a novel intervention strategy, in Brazil, using an ecohealth approach and analyse its effectiveness and costs in reducing Aedes aegypti vector density as well as its acceptance, feasibility and sustainability. The intervention was conducted from 2012 to 2013 in the municipality of Fortaleza, northeast Brazil. Methodology A cluster randomized controlled trial was designed by comparing ten intervention clusters with ten control clusters where routine vector control activities were conducted. The intervention included: community workshops; community involvement in clean-up campaigns; covering the elevated containers and in-house rubbish disposal without larviciding; mobilization of schoolchildren and senior inhabitants; and distribution of information, education and communication (IEC) materials in the community. Results Differences in terms of social participation, commitment and leadership were present in the clusters. The results showed the effectiveness of the intervention package in comparison with the routine control programme. Differences regarding the costs of the intervention were reasonable and could be adopted by public health services. Conclusions Embedding social participation and environmental management for improved dengue vector control was feasible and significantly reduced vector densities. Such a participatory ecohealth approach offers a promising alternative to routine vector control measures. PMID:25604760

  9. Disruptive technology for vector control: the Innovative Vector Control Consortium and the US Military join forces to explore transformative insecticide application technology for mosquito control programmes.

    PubMed

    Knapp, Jennifer; Macdonald, Michael; Malone, David; Hamon, Nicholas; Richardson, Jason H

    2015-09-26

    Malaria vector control technology has remained largely static for decades and there is a pressing need for innovative control tools and methodology to radically improve the quality and efficiency of current vector control practices. This report summarizes a workshop jointly organized by the Innovative Vector Control Consortium (IVCC) and the Armed Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main topics were discussed: the limitations with current tools and techniques used for indoor residual spraying (IRS), technology innovation to improve efficacy of IRS programmes, and truly disruptive application technology beyond IRS. The group identified several opportunities to improve application technology to include: insuring all IRS programmes are using constant flow valves and erosion resistant tips; introducing compression sprayer improvements that help minimize pesticide waste and human error; and moving beyond IRS by embracing the potential for new larval source management techniques and next generation technology such as unmanned "smart" spray systems. The meeting served to lay the foundation for broader collaboration between the IVCC and AFPMB and partners in industry, the World Health Organization, the Bill and Melinda Gates Foundation and others.

  10. Electromagnetic Induction Spectroscopy for the Detection of Subsurface Targets

    DTIC Science & Technology

    2012-12-01

    curves of the proposed method and that of Fails et al.. For the kNN ROC curve, k = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81...et al. [6] and Ramachandran et al. [7] both demonstrated success in detecting mines using the k-nearest-neighbor ( kNN ) algorithm based on the EMI...error is also included in the feature vector. The kNN labels an unknown target based on the closest targets in a training set. Collins et al. [2] and

  11. Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.

    PubMed

    Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E

    2010-09-17

    Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Malaria Vector Control Still Matters despite Insecticide Resistance.

    PubMed

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cravity modulation of the moss Tortula modica branching

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, Yaroslava; Kit, Nadja

    Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle 45-50 (o) to orthotropic stolon axes, and later it decreased negatively gravitropically. The bending of lateral branches of gravitropic protonemata is carried out in two stages: the light induction makes cells metabolically active, but not sensitive to gravitation, while the wall of daughter cell grows perpendicularly to the axes of mother cell and only after that the branches growth direction acquires dependent on gravitation fixed space orientation. Protonemata on light was branched under the angle 45-50 (o) to the axes of the main stolon, that caused similar phenotype of protonemata turf in many moss species. The growth of lateral branches and the set-point angle from the point of view of growth as physical process, is, perhaps, balanced by the action of gravitation and light, and is controlled endogenously by autotropic growth.

  14. Wolbachia: A biological control strategy against arboviral diseases.

    PubMed

    Mohanty, Ipsita; Rath, Animesha; Mahapatra, Namita; Hazra, Rupenangshu K

    2016-01-01

    Vector-borne diseases particularly those transmitted by mosquitoes like Dengue are among the leading causes of mortality and morbidity in human population. There are no effective vaccines or treatment against dengue fever till date and the control methods are limited. So, new approaches are urgently in need to reverse these trends. Vector control is currently the primary intervention tool. Strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. Wolbachia an endosymbiont of arthropod vectors is being explored as a novel ecofriendly control strategy. Studies in Drosophila have shown that Wolbachia can confer resistance to diverse RNA viruses and protect flies from virus-induced mortality. This review was focused on biology of the Wolbachia and its implication as a control measure for arboviral diseases mainly Dengue and Chikungunya.

  15. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    EPA Science Inventory

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  16. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants.

    PubMed

    Nizampatnam, Narasimha Rao; Doodhi, Harinath; Kalinati Narasimhan, Yamini; Mulpuri, Sujatha; Viswanathaswamy, Dinesh Kumar

    2009-03-01

    Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility.

  17. Tailless Vectored Fighters Theory. Laboratory and Flight Tests, Including Vectorable Inlets/Nozzles and Tailless Flying Models vs. Pilot’s Tolerances Affecting Maximum Post-Stall Vectoring Agility.

    DTIC Science & Technology

    1991-07-01

    nose bodyj Top view of velocity probe PropllerRotating shaft ’V Generator Aerodynamic shape like a small elevator RPV’s attitude Irrespctiveduring...28 Part It: Maximizing Thrust-Vectoring Control Power and Agility Metrics ............ 29 Laboratory & Flight...8217Ideal Standards’ - Ba- ror maximizing PST-TV-aglilty/rIlght-control power , iI - Extracting new TV-potentials to further reduce any righter’s optical

  18. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.

    PubMed

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I

    2015-02-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.

  19. Improvement in vehicle agility and stability by G-Vectoring control

    NASA Astrophysics Data System (ADS)

    Yamakado, Makoto; Takahashi, Jyunya; Saito, Shinjiro; Yokoyama, Atsushi; Abe, Masato

    2010-12-01

    We extracted a trade-off strategy between longitudinal traction/braking force and cornering force by using jerk information through observing an expert driver's voluntary braking and turning action. Using the expert driver's strategy, we developed a new control concept, called 'G-Vectoring control', which is an automatic longitudinal acceleration control (No DYC) in accordance with the vehicle's lateral jerk caused by the driver's steering manoeuvres. With the control, the direction of synthetic acceleration (G) changes seamlessly (i.e. vectoring). The improvements in vehicle agility and stability were evaluated by theoretical analysis and through computer simulation. We then introduced a 'G-Vectoring' equipped test vehicle realised by brake-by-wire technology and executed a detailed examination on a test track. We have confirmed that the vehicle motion in view of both handling and ride quality has improved dramatically.

  20. Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.

    PubMed

    Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian

    2015-06-03

    Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.

  1. Induction of protective immune responses against challenge of Actinobacillus pleuropneumoniae by oral administration with Saccharomyces cerevisiae expressing Apx toxins in pigs.

    PubMed

    Shin, Min-Kyoung; Kang, Mi Lan; Jung, Myung Hwan; Cha, Seung-Bin; Lee, Won-Jung; Kim, Jung-Mi; Kim, Dae-Hyuk; Yoo, Han Sang

    2013-01-15

    Actinobacillus pleuropneumoniae is a causative agent of porcine pleuropneumonia, a highly contagious endemic disease of pigs worldwide, inducing significant economic losses worldwide. Apx toxins, which are correlated with the virulence of A. pleuropneumoniae, were expressed in Saccharomyces cerevisiae and its possible use as an oral vaccine has been confirmed in our previous studies using a murine model. The present study was undertaken to test the hypothesis that oral immunization using S. cerevisiae expressing either ApxI or ApxII could protect pigs against A. pleuropneumoniae as an effective way of inducing both mucosal and systemic immune responses. The surface-displayed ApxIIA#5 expressing S. cerevisiae was selected as an oral vaccine candidate by finding on induction of higher immune responses in mice after oral vaccination. The surface-displayed ApxIIA#5 expressing S. cerevisiae and the ApxIA expressing S. cerevisiae were developed to serve as an oral vaccine in pigs. The vaccinated pigs showed higher specific IgG- and IgA-related antibody activities than the non-treated control and vector control pigs. Additionally, the induced immune responses were found to protect pigs infected with A. pleuropneumoniae according to the analysis of clinical signs and the gross and microscopic pulmonary lesions. These results suggested that the surface-displayed ApxIIA#5 and ApxIA in S. cerevisiae might be a potential oral vaccine to protect pigs against porcine pleuropneumonia. Thus the present study is expected to contribute to the development of a live oral vaccine against porcine pleuropneumonia as an alternative to current conventional vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mood state dependency of dysfunctional attitudes in bipolar affective disorder.

    PubMed

    Babakhani, Anet; Startup, Mike

    2012-01-01

    Studies of cognitive styles among euthymic people with bipolar affective disorder (BAD) without use of mood induction techniques to access those cognitive styles give misleading impressions of normality of those cognitions. The aim of this study was to assess dysfunctional attitudes of participants with BAD, and control participants with no previous psychiatric histories, after mood inductions. Sad and happy moods were induced within 49 BAD and 37 controls. Dysfunctional attitudes were measured following mood inductions using the Dysfunctional Attitude Scale-short form (DAS-24), which has three subscales of achievement, interpersonal, and goal attainment. It was hypothesised that within BAD the sad mood induction would help in accessing dysfunctional attitudes in all three domains relative to the happy mood induction. This was supported. It was also hypothesised that the mood inductions would not affect dysfunctional attitudes within controls. This was supported. When diagnosis was entered as a between group variable, achievement dysfunctional attitudes were significantly higher in BAD compared to controls after a happy induction. Both sad and happy moods provoked higher levels of dysfunctional attitudes within BAD. Euphoria may be related to elevated achievement dysfunctional attitudes, raising risk for mania.

  3. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  4. Variable Speed CMG Control of a Dual-Spin Stabilized Unconventional VTOL Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Moerder, Daniel D.; Shin, J-Y.

    2004-01-01

    This paper describes an approach based on using both bias momentum and multiple control moment gyros for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The stabilization approach described in this paper uses these internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other outer loop control functions, including CMG stabilization/ desaturation under persistent external disturbances. Simulation results show the feasibility of (1) improved vehicle performance beyond bias momentum assisted vector thrusting control, and (2) using control moment gyros to significantly reduce the external torque required from the vector thrusting machinery.

  5. Application of three controls optimally in a vector-borne disease - a mathematical study

    NASA Astrophysics Data System (ADS)

    Kar, T. K.; Jana, Soovoojeet

    2013-10-01

    We have proposed and analyzed a vector-borne disease model with three types of controls for the eradication of the disease. Four different classes for the human population namely susceptible, infected, recovered and vaccinated and two different classes for the vector populations namely susceptible and infected are considered. In the first part of our analysis the disease dynamics are described for fixed controls and some inferences have been drawn regarding the spread of the disease. Next the optimal control problem is formulated and solved considering control parameters as time dependent. Different possible combination of controls are used and their effectiveness are compared by numerical simulation.

  6. Implication of vector characteristics of Phlebotomus argentipes in the kala-azar elimination programme in the Indian sub-continent

    PubMed Central

    Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad

    2016-01-01

    Background Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. Methods In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included ‘sand fly bionomics’, ‘habitat’, and ‘visceral leishmaniasis/kala-azar vector control’ using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Results Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Conclusion Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC. PMID:27376500

  7. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area

    PubMed Central

    Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D’Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2016-01-01

    Background Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Methodology/Principal findings Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Conclusion/Significance Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species. PMID:27906987

  8. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area.

    PubMed

    Elanga Ndille, Emmanuel; Doucoure, Souleymane; Poinsignon, Anne; Mouchet, François; Cornelie, Sylvie; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2016-12-01

    Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species.

  9. 78 FR 732 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... announced below concerns Identification, Surveillance, and Control of Vector-Borne and Zoonotic Infectious... in response to ``Identification, Surveillance, and Control of Vector- Borne and Zoonotic Infectious... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease...

  10. Thrust vectoring of broad ion beams for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Collett, C. R.; King, H. J.

    1973-01-01

    Thrust vectoring is shown to increase the attractiveness of ion thrusters for satellite control applications. Incorporating beam deflection into ion thrusters makes it possible to achieve attitude control without adding any thrusters. Two beam vectoring systems are described that can provide up to 10-deg beam deflection in any azimuth. Both systems have been subjected to extended life tests on a 5-cm thruster which resulted in projected life times of from 7500 to 20,000 hours.

  11. Family leader empowerment program using participatory learning process for dengue vector control.

    PubMed

    Pengvanich, Veerapong

    2011-02-01

    Assess the performance of the empowerment program using participatory learning process for the control of Dengue vector The program focuses on using the leaders of families as the main executer of the vector control protocol. This quasi-experimental research utilized the two-group pretest-posttest design. The sample group consisted of 120 family leaders from two communities in Mueang Municipality, Chachoengsao Province. The research was conducted during an 8-week period between April and June 2010. The data were collected and analyzed based on frequency, percentage, mean, paired t-test, and independent t-test. The result was evaluated by comparing the difference between the mean prevalence index of mosquito larvae before and after the process implementation in terms of the container index (CI) and the house index (HI). After spending eight weeks in the empowerment program, the family leader's behavior in the aspect of Dengue vector control has improved. The Container Index and the House Index were found to decrease with p = 0.05 statistical significance. The reduction of CI and HI suggested that the program worked well in the selected communities. The success of the Dengue vector control program depended on cooperation and participation of many groups, especially the families in the community When the family leaders have good attitude and are capable of carrying out the vector control protocol, the risk factor leading to the incidence of Dengue rims infection can be reduced.

  12. Viruses vector control proposal: genus Aedes emphasis.

    PubMed

    Reis, Nelson Nogueira; Silva, Alcino Lázaro da; Reis, Elma Pereira Guedes; Silva, Flávia Chaves E; Reis, Igor Guedes Nogueira

    The dengue fever is a major public health problem in the world. In Brazil, in 2015, there were 1,534,932 cases, being 20,320 cases of severe form, and 811 deaths related to this disease. The distribution of Aedes aegypti, the vector, is extensive. Recently, Zika and Chikungunya viruses had arisen, sharing the same vector as dengue and became a huge public health issue. Without specific treatment, it is urgently required as an effective vector control. This article is focused on reviewing vector control strategies, their effectiveness, viability and economical impact. Among all, the Sterile Insect Technique is highlighted as the best option to be adopted in Brazil, once it is largely effectively used in the USA and Mexico for plagues related to agribusiness. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya.

    PubMed

    Njoroge, Margaret M; Tirados, Inaki; Lindsay, Steven W; Vale, Glyn A; Torr, Stephen J; Fillinger, Ulrike

    2017-01-10

    Malaria vector mosquitoes with exophilic and zoophilic tendencies, or with a high acceptance of alternative blood meal sources when preferred human blood-hosts are unavailable, may help maintain low but constant malaria transmission in areas where indoor vector control has been scaled up. This residual transmission might be addressed by targeting vectors outside the house. Here we investigated the potential of insecticide-treated cattle, as routinely used for control of tsetse and ticks in East Africa, for mosquito control. The malaria vector population in the study area was investigated weekly for 8 months using two different trapping tools: light traps indoors and cattle-baited traps (CBTs) outdoors. The effect of the application of the insecticide deltamethrin and the acaricide amitraz on cattle on host-seeking Anopheles arabiensis was tested experimentally in field-cages and the impact of deltamethrin-treated cattle explored under field conditions on mosquito densities on household level. CBTs collected on average 2.8 (95% CI: 1.8-4.2) primary [Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.)] and 6.3 (95% CI: 3.6-11.3) secondary malaria vectors [An. ivulorum and An. coustani (s.l.)] per trap night and revealed a distinct, complementary seasonality. At the same time on average only 1.4 (95% CI: 0.8-2.3) primary and 1.1 (95% CI: 0.6-2.0) secondary malaria vectors were collected per trap night with light traps indoors. Amitraz had no effect on survival of host-seeking An. arabiensis under experimental conditions but deltamethrin increased mosquito mortality (OR 19, 95% CI: 7-50), but only for 1 week. In the field, vector mortality in association with deltamethrin treatment was detected only with CBTs and only immediately after the treatment (OR 0.25, 95% CI: 0.13-0.52). Entomological sampling with CBTs highlights that targeting cattle for mosquito control has potential since it would not only target naturally zoophilic malaria vectors but also opportunistic feeders that lack access to human hosts as is expected in residual malaria transmission settings. However, the deltamethrin formulation tested here although used widely to treat cattle for tsetse and tick control, is not suitable for the control of malaria vectors since it causes only moderate initial mortality and has little residual activity.

  14. Construction, expression and in vitro biological behaviors of Ig scFv fragment in patients with chronic B cell leukemia.

    PubMed

    Zhu, Lijuan; Liao, Wenjun; Zhu, Huifen; Lei, Ping; Wang, Zhihua; Shao, Jingfang; Zhang, Yue; Shen, Guanxin

    2006-01-01

    The expression vector of SmIg scFv fragment was constructed in patient with B cell chronic lymphocyte leukemia (B-CLL) and expressed in E. coli to obtain scFv fragment, and the effect of the protein on the proliferation of stimulated peripheral blood mononuclear cells (PBMC) was investigated in vitro. Two pairs of primers were designed, and variable region genes of light chain and heavy chain were amplified by PCR respectively from the pGEM-T vectors previously constructed in our laboratory which containing light chain gene or Fd fragment of heavy chain gene. The PCR product was digested, purified and inserted into pHEN2 vector to construct the soluble expression vector pHEN2-scFv. After the induction by IPTG, the scFv protein was identified by SDS-PAGE electrophoresis and purified by Ni-NTA-Chromatography. MTT was used to determine the effect of purified protein on the proliferation of stimulated PBMC in vitro. Plasmid PCR and restriction enzyme digestion of pHEN2-scFv revealed the pHEN2-scFv vector was constructed successfully. Id-scFv protein was expressed in positive clone after induced by IPTG. SDS-PAGE analysis showed that the relative molecular weight of fusion protein was about 30 kD (1 kD= 0.9921 ku), which was consistent with the theoretically predicted value. Proliferation of PBMC could be induced by purified Id-scFv. It was suggested that the expression vector of SmIg scFv fragment was constructed successfully, and scFv protein was expressed and secreted from E. coli, which could induce proliferation of PBMC. This may lay an experimental foundation for further research of Id-HSP complex vaccine for B-CLL.

  15. Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control.

    PubMed

    Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M

    2016-10-01

    The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.

  16. XRF inductive bead fusion and PLC based control system

    NASA Astrophysics Data System (ADS)

    Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi

    2009-03-01

    In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.

  17. Temporo-spatial distribution of insecticide-resistance in Indian malaria vectors in the last quarter-century: Need for regular resistance monitoring and management.

    PubMed

    Raghavendra, Kamaraju; Velamuri, Poonam Sharma; Verma, Vaishali; Elamathi, Natarajan; Barik, Tapan Kumar; Bhatt, Rajendra Mohan; Dash, Aditya Prasad

    2017-01-01

    The Indian vector control programme similar to other programmes in the world is still reliant on chemical insecticides. Anopheles culicifacies is the major vector out of six primary malaria vectors in India and alone contributes about 2/3 malaria cases annually; and per se its control is actually control of malaria in India. For effective management of vectors, current information on their susceptibility status to different insecticides is essential. In this review, an attempt was made to compile and present the available data on the susceptibility status of different malaria vector species in India from the last 2.5 decades. Literature search was conducted by different means mainly web and library search; susceptibility data was collated from 62 sources for the nine malaria vector species from 145 districts in 21 states and two union territories between 1991 and 2016. Interpretation of the susceptibility/resistance status was made on basis of the recent WHO criteria. Comprehensive analysis of the data indicated that An. culicifacies, a major vector species was resistant to at least one insecticide in 70% (101/145) of the districts. It was reported mostly resistant to DDT and malathion whereas, its resistant status against deltamethrin varied across the districts. The major threat for the malaria control programmes is multiple-insecticide-resistance in An. culicifacies which needs immediate attention for resistance management in order to sustain the gains achieved so far, as the programmes have targeted malaria elimination by 2030.

  18. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach.

    PubMed

    Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-02-03

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  19. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    PubMed Central

    Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-01-01

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670

  20. Vector Blood Meals Are an Early Indicator of the Effectiveness of the Ecohealth Approach in Halting Chagas Transmission in Guatemala

    PubMed Central

    Pellecer, Mariele J.; Dorn, Patricia L.; Bustamante, Dulce M.; Rodas, Antonieta; Monroy, M. Carlota

    2013-01-01

    A novel method using vector blood meal sources to assess the impact of control efforts on the risk of transmission of Chagas disease was tested in the village of El Tule, Jutiapa, Guatemala. Control used Ecohealth interventions, where villagers ameliorated the factors identified as most important for transmission. First, after an initial insecticide application, house walls were plastered. Later, bedroom floors were improved and domestic animals were moved outdoors. Only vector blood meal sources revealed the success of the first interventions: human blood meals declined from 38% to 3% after insecticide application and wall plastering. Following all interventions both vector blood meal sources and entomological indices revealed the reduction in transmission risk. These results indicate that vector blood meals may reveal effects of control efforts early on, effects that may not be apparent using traditional entomological indices, and provide further support for the Ecohealth approach to Chagas control in Guatemala. PMID:23382165

  1. Electric Machine with Boosted Inductance to Stabilize Current Control

    NASA Technical Reports Server (NTRS)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  2. Sowing the seeds of economic entomology: houseflies and the emergence of medical entomology in Britain.

    PubMed

    Clark, J F M

    2008-12-01

    The golden age of medical entomology, 1870-1920, is often celebrated for the elucidation of the aetiology of vector-borne diseases within the rubric of the emergent discipline of tropical medicine. Within these triumphal accounts, the origins of vector control science and technology remain curiously underexplored; yet vector control and eradication constituted the basis of the entomologists' expertise within the emergent specialism of medical entomology. New imperial historians have been sensitive to the ideological implications of vector control policies in the colonies and protectorates, but the reciprocal transfer of vector-control knowledge, practices and policies between periphery and core have received little attention. This paper argues that medical entomology arose in Britain as an amalgam of tropical medicine and agricultural entomology under the umbrella of "economic entomology". An examination of early twentieth-century anti-housefly campaigns sheds light on the relative importance of medical entomology as an imperial science for the careers, practices, and policies of economic entomologists working in Britain. Moreover, their sensitivity to vector ecology provides insight into late nineteenth- and early twentieth-century urban environments and environmental conditions of front-line war.

  3. Eco-bio-social determinants for house infestation by non-domiciliated Triatoma dimidiata in the Yucatan Peninsula, Mexico.

    PubMed

    Dumonteil, Eric; Nouvellet, Pierre; Rosecrans, Kathryn; Ramirez-Sierra, Maria Jesus; Gamboa-León, Rubi; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Gourbière, Sébastien

    2013-01-01

    Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control.

  4. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

    PubMed

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang

    2017-07-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

  5. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China

    PubMed Central

    Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun

    2017-01-01

    In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562

  6. Sustainable dengue prevention and control through a comprehensive integrated approach: the Sri Lankan perspective.

    PubMed

    Tissera, Hasitha; Pannila-Hetti, Nimalka; Samaraweera, Preshila; Weeraman, Jayantha; Palihawadana, Paba; Amarasinghe, Ananda

    2016-09-01

    Dengue is a leading public health problem in Sri Lanka. All 26 districts and all age groups are affected, with high disease transmission; the estimated average annual incidence is 175/100 000 population. Harnessing the World Health Organization Global strategy for dengue prevention and control, 2012-2020, Sri Lanka has pledged in its National Strategic Framework to achieve a mortality from dengue below 0.1% and to reduce morbidity by 50% (from the average of the last 5 years) by 2020. Turning points in the country's dengue-control programme have been the restructuring and restrategizing of the core functions; this has involved establishment of a separate dengue-control unit to coordinate integrated vector management, and creation of a presidential task force. There has been great progress in disease surveillance, clinical management and vector control. Enhanced real-time surveillance for early warning allows ample preparedness for an outbreak. National guidelines with enhanced diagnostics have significantly improved clinical management of dengue, reducing the case-fatality rate to 0.2%. Proactive integrated vector management, with multisector partnership, has created a positive vector-control environment; however, sustaining this momentum is a challenge. Robust surveillance, evidence-based clinical management, sustainable vector control and effective communication are key strategies that will be implemented to achieve set targets. Improved early detection and a standardized treatment protocol with enhanced diagnostics at all medical care institutions will lead to further reduction in mortality. Making the maximum effort to minimize outbreaks through sustainable vector control in the three dimensions of risk mapping, innovation and risk modification will enable a reduction in morbidity.

  7. Intramyocardial injection of SERCA2a-expressing lentivirus improves myocardial function in doxorubicin-induced heart failure.

    PubMed

    Mattila, Minttu; Koskenvuo, Juha; Söderström, Mirva; Eerola, Kim; Savontaus, Mikko

    2016-07-01

    Doxorubicin is an effective anticancer drug. The major limitation to its use is the induction of dose-dependent cardiomyopathy. No specific treatment exists for doxorubicin-induced cardiomyopathy and treatments used for other forms of heart failure have only limited beneficial effects. The contraction-relaxation cycle of the heart is controlled by cytosolic calcium concentrations, which, in turn, are critically regulated by the activity of the sarcoplasmic reticulum Ca(2) (+) ATPase (SERCA2a) pump. We hypothesized that SERCA2a gene transfer would ameliorate doxorubicin-induced cardiomyopathy. Lentiviral vectors LV-SERCA2a-GFP and LV-GFP were constructed and in vitro gene transfer of LV-SERCA2a-GFP confirmed SERCA2a expression by western blot analysis. Heart failure was induced by giving a single intraperitoneal injection of doxorubicin. LV-SERCA2a-GFP, LV-GFP vectors and phosphate-buffered saline (PBS) were injected under echocardiographic control to the anterior wall of the left ventricle. Echocardiography analyses were performed on the injection day and 28 days postinjection. On the injection day, there were no significant differences in the average ejection fractions (EFs) among SERCA2a (40.0%), GFP (41.1%) and PBS (39.4%) injected animals. On day 28, EF in the SERCA2a group had increased by 16.6 ± 6.7% to 46.4 ± 2.1%. By contrast, EFs in the GFP (40.2 ± 1.3%) and PBS (40.6 ± 1.4%) groups remained at pre-injection levels. In addition, end systolic and end diastolic left ventricle volumes were significantly smaller in the SERCA2a group compared to controls. SERCA2a gene transfer significantly improves left ventricle function and dimensions in doxorubicin-induced cardiomyopathy, thus making LV-SERCA2a gene transfer an attractive treatment modality for doxorubicin-induced heart failure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Detection of Wolbachia endobacteria in Culex quinquefasciatus by Gimenez staining and confirmation by PCR.

    PubMed

    Muniaraj, M; Paramasivan, R; Sunish, I P; Arunachalam, N; Mariappan, T; Jerald Leo, S Victor; Dhananjeyan, K J

    2012-12-01

    Wolbachia are common intracellular bacteria that are found in arthropods and nematodes. These endosymbionts are transmitted vertically through host eggs and alter host biology in diverse ways, including the induction of reproductive manipulations, such as feminization, parthenogenesis, male killing and sperm-egg incompatibility. Since they can also move horizontally across species boundaries, Wolbachia is gaining importance in recent days as it could be used as a biological control agent to control vector mosquitoes or for paratransgenic approaches. However, the study of Wolbachia requires sophisticated techniques such as PCR and cell culture facilities which cannot be affordable for many laboratories where the diseases transmitted by arthropod vectors are common. Hence, it would be beneficial to develop a simple method to detect the presence of Wolbachia in arthropods. In this study, we described a method of staining Wolbachia endobacteria, present in the reproductive tissues of mosquitoes. The reliability of this method was compared with Gram staining and PCR based detection. The microscopic observation of the Gimenez stained smear prepared from the teased ovary of wild caught and Wolbachia (+) Cx. quinquefasciatus revealed the presence of pink coloured pleomorphic cells of Wolbachia ranging from cocci, comma shaped cells to bacillus and chain forms. The ovaries of Wolbachia (-) cured mosquito did not show any cell. Although Gram's staining is a reliable differential staining for the other bacteria, the bacterial cells in the smears from the ovaries of wild caught mosquitoes did not take the stain properly and the cells were not clearly visible. The PCR amplified product from the pooled remains of wild caught and Wolbachia (+) Cx. quinquefasciatus showed clear banding, whereas, no banding was observed for the negative control (distilled water) and Wolbachia (-) Cx. quinquefasciatus. The Gimenez staining technique applied, could be used to detect the members of the endobacteria Wolbachia easily, even in a simple laboratory without any special facilities or even in the field condition and for handling large number of samples in a shorter duration.

  9. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.

    PubMed

    Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro

    2010-08-01

    In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory

    NASA Technical Reports Server (NTRS)

    Koppang, Paul; Leland, Robert

    1996-01-01

    Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.

  11. "Just looking at food makes me gain weight": experimental induction of thought-shape fusion in eating-disordered and non-eating-disordered women.

    PubMed

    Coelho, Jennifer S; Carter, Jacqueline C; McFarlane, Traci; Polivy, Janet

    2008-02-01

    Thought-shape fusion (TSF) is a cognitive distortion that can be induced experimentally and is associated with eating pathology. The current study was conducted in order to elucidate the effects of TSF induction in females with eating disorders (n=35), as well as in restrained eaters (n=38) and unrestrained eaters (n=39). It was hypothesized that TSF induction would result in anxiety, guilt, increased feelings of fatness, perceived weight gain and feelings of moral wrong-doing relative to an anxiety and control induction. It was further hypothesized that restrained eaters and individuals with eating disorders would exhibit a stronger reaction to a TSF induction than would unrestrained eaters. The results indicated that, as predicted, TSF can be induced in individuals both with and without eating disorders, and individuals with eating disorders reported the highest levels of "state" TSF after the induction relative to the non-clinical controls. However, contrary to expectations, restrained eaters reported higher levels of perceived weight gain and moral wrong-doing after the anxiety induction (but not the TSF induction) relative to the control induction. Potential mechanisms for this pattern of results are discussed, and the clinical implications of research on TSF are also considered.

  12. An agent-vector-host-environment model for controlling small arms and light weapons.

    PubMed

    Pinto, Andrew D; Sharma, Malika; Muggah, Robert

    2011-05-01

    Armed violence is a significant public health problem. It results in fatal and non-fatal injuries and disrupts social and economic processes that are essential to the health of individuals and communities. We argue that an agent-vector-host-environment model can be helpful in understanding and describing the availability and misuse of small arms and light weapons. Moreover, such a model can assist in identifying potential control points and in developing mitigation strategies. These concepts have been developed from analogous vector control programs and are applied to controlling arms to reduce their misuse. So-called 'denormalization' and 'de-legitimization' campaigns that focus on the vector - including the industry producing these commodities - can be based on the experience of public health in controlling tobacco use and exposure. This model can assist health professionals, civil society and governments in developing comprehensive strategies to limit the production, distribution and misuse of small arms and light weapons.

  13. Dengue: Vector Biology, Transmission and Control Options in Mexico (El Dengue: Binomia Del Vector, Transmision y Opciones Para su Control en Mexico)

    DTIC Science & Technology

    1990-01-01

    on August 2, 1989. Filiberto Reyes Villanueva, M.S., studied biology at the School of Biological Sciences of the Autonomous Universi- ty of Nueva Le6n...experts (1987), are the entomopathogenic bacteria Bacillus thuringiensis, serotype H-14 and B. sphaericus. These microorgan- isms can operate only...the country, as is the case with A. aegypti. These bacteria offer a potential for the control of those vectors which have already developed a

  14. Recent Developments In Theory Of Balanced Linear Systems

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek

    1994-01-01

    Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.

  15. A Critical Assessment of Vector Control for Dengue Prevention

    PubMed Central

    Achee, Nicole L.; Gould, Fred; Perkins, T. Alex; Reiner, Robert C.; Morrison, Amy C.; Ritchie, Scott A.; Gubler, Duane J.; Teyssou, Remy; Scott, Thomas W.

    2015-01-01

    Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations. PMID:25951103

  16. Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis.

    PubMed

    Santangelo, K S; Bertone, A L

    2011-12-01

    To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2(-ΔΔCT)) method. Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P=0.0045) or >90% (P=0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Response to Blood Meal in the Fat Body of Anopheles stephensi Using Quantitative Proteomics: Toward New Vector Control Strategies Against Malaria.

    PubMed

    Kumar, Manish; Mohanty, Ajeet Kumar; Sreenivasamurthy, Sreelakshmi K; Dey, Gourav; Advani, Jayshree; Pinto, Sneha M; Kumar, Ashwani; Prasad, Thottethodi Subrahmanya Keshava

    2017-09-01

    Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.

  18. wFlu: Characterization and Evaluation of a Native Wolbachia from the Mosquito Aedes fluviatilis as a Potential Vector Control Agent

    PubMed Central

    Gonçalves, Daniela da Silva; Moreira, Luciano Andrade

    2013-01-01

    There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility), as well as vector competence (susceptibility) for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen interference when artificially-transfected to the novel mosquito hosts that are the vectors of human pathogens. PMID:23555728

  19. International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil.

    PubMed

    Corbel, Vincent; Fonseca, Dina M; Weetman, David; Pinto, João; Achee, Nicole L; Chandre, Fabrice; Coulibaly, Mamadou B; Dusfour, Isabelle; Grieco, John; Juntarajumnong, Waraporn; Lenhart, Audrey; Martins, Ademir J; Moyes, Catherine; Ng, Lee Ching; Raghavendra, Kamaraju; Vatandoost, Hassan; Vontas, John; Muller, Pie; Kasai, Shinji; Fouque, Florence; Velayudhan, Raman; Durot, Claire; David, Jean-Philippe

    2017-06-02

    Vector-borne diseases transmitted by insect vectors such as mosquitoes occur in over 100 countries and affect almost half of the world's population. Dengue is currently the most prevalent arboviral disease but chikungunya, Zika and yellow fever show increasing prevalence and severity. Vector control, mainly by the use of insecticides, play a key role in disease prevention but the use of the same chemicals for more than 40 years, together with the dissemination of mosquitoes by trade and environmental changes, resulted in the global spread of insecticide resistance. In this context, innovative tools and strategies for vector control, including the management of resistance, are urgently needed. This report summarizes the main outputs of the first international workshop on Insecticide resistance in vectors of arboviruses held in Rio de Janeiro, Brazil, 5-8 December 2016. The primary aims of this workshop were to identify strategies for the development and implementation of standardized insecticide resistance management, also to allow comparisons across nations and across time, and to define research priorities for control of vectors of arboviruses. The workshop brought together 163 participants from 28 nationalities and was accessible, live, through the web (> 70,000 web-accesses over 3 days).

  20. Retinoic acid-induced differentiation of retrovirus-infected HL-60 cells is associated with enhanced transcription from the viral long terminal repeat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S.J.

    1988-11-01

    The author infected different human leukemic cell lines with an amphotropic retrovirus vector (designated PA317/N2) which confers G418 resistance and contains the Moloney murine leukemia virus long terminal repeat. In retrovirus-infected G418-resistant HL-60 cells, induction of granulocyte differentiation by retinoic acid was invariably accompanied by a marked increase (5- to 10-fold) in the transcriptional activity of the integrated retroviral long terminal repeat.

  1. Acquisition and transmission of Hepatozoon canis (Apicomplexa: Hepatozoidae) by the tick Amblyomma ovale (Acari: Ixodidae).

    PubMed

    Rubini, A S; Paduan, K S; Martins, T F; Labruna, M B; O'Dwyer, L H

    2009-10-14

    The present study aimed to evaluate under controlled conditions the acquisition of Hepatozoon canis by Amblyomma ovale after feeding on infected dogs, and the subsequent induction of infection in uninfected dogs that ingested the experimentally infected ticks. Two H. canis naturally infected dogs were infested with A. ovale adult ticks derived from an uninfected laboratory tick colony. After feeding, two A. ovale females presented H. canis oocysts in the hemolymph at the first and fourth days after removal of ticks from dogs. The oocysts had an average size of 244.34 microm x 255.46 microm. Three uninfected dogs were fed with ticks previously fed on the infected dogs. Only one dog became infected 32 days after oral inoculation, presenting circulating gametocytes, parasitemia less than 1%, and positive PCR confirmed to be H. canis by DNA sequencing. The results obtained indicated A. ovale ticks as potential vector of H. canis in rural areas of Brazil.

  2. Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.

    PubMed

    Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo

    2003-02-13

    Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.

  3. Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures.

    PubMed

    Zhang, Xiuren; Mason, Hugh

    2006-02-05

    A novel stable transgenic plant expression system was developed using elements of the replication machinery of Bean Yellow Dwarf Virus (BeYDV). The system contains two transgenes: 1) The BeYDV replicon vector with an expression cassette flanked by cis-acting DNA elements of BeYDV, and 2) The viral replication initiator protein (Rep) controlled by an alcohol-inducible promoter. When Rep expression was triggered by treatment with ethanol, it induced release of the BeYDV replicon from stably integrated T-DNA and episomal replication to high copy number. Replicon amplification resulted in substantially increased transgene mRNA levels (up to 80-fold) and translation products (up to 10-fold) after induction of Rep expression by ethanol treatment in tobacco NT1 cells and leaves of whole potato plants. Thus, the BeYDV stable transformant replicon system is a powerful tool for plant-based production of recombinant proteins. (c) 2005 Wiley Periodicals, Inc.

  4. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    PubMed

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  5. Eco-bio-social research on community-based approaches for Chagas disease vector control in Latin America.

    PubMed

    Gürtler, Ricardo E; Yadon, Zaida E

    2015-02-01

    This article provides an overview of three research projects which designed and implemented innovative interventions for Chagas disease vector control in Bolivia, Guatemala and Mexico. The research initiative was based on sound principles of community-based ecosystem management (ecohealth), integrated vector management, and interdisciplinary analysis. The initial situational analysis achieved a better understanding of ecological, biological and social determinants of domestic infestation. The key factors identified included: housing quality; type of peridomestic habitats; presence and abundance of domestic dogs, chickens and synanthropic rodents; proximity to public lights; location in the periphery of the village. In Bolivia, plastering of mud walls with appropriate local materials and regular cleaning of beds and of clothes next to the walls, substantially decreased domestic infestation and abundance of the insect vector Triatoma infestans. The Guatemalan project revealed close links between house infestation by rodents and Triatoma dimidiata, and vector infection with Trypanosoma cruzi. A novel community-operated rodent control program significantly reduced rodent infestation and bug infection. In Mexico, large-scale implementation of window screens translated into promising reductions in domestic infestation. A multi-pronged approach including community mobilisation and empowerment, intersectoral cooperation and adhesion to integrated vector management principles may be the key to sustainable vector and disease control in the affected regions. © World Health Organization 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  6. Alpha Alumina Nanoparticle Conjugation to Cysteine Peptidase A and B: An Efficient Method for Autophagy Induction

    PubMed Central

    Beyzay, Fatemeh; Zavaran Hosseini, Ahmad; Soudi, Sara

    2017-01-01

    Background: Autophagy as a cellular pathway facilitates several immune responses against infection. It also eliminates invading pathogens through transferring content between the cytosol and the lysosomal vesicles and contributes to the cross-presentation of exogenous antigens to T lymphocytes via MHC class I pathway. Autophagy induction is one of the main targets for new drugs and future vaccine formulations. Nanoparticles are one of the candidates for autophagy induction. Cysteine Peptidase A (CPA) and Cysteine Peptidase B (CPB) are two members of papain family (Clan CA, family C1) enzyme that have been considered as a virulence factor of Leishmania (L.) major, making them suitable vaccine candidates. In this research, Leishmania major cysteine peptidase A and B (CPA and CPB) conjugation to alpha alumina nanoparticle was the main focus and their entrance efficacy to macrophages was assessed. Methods: For this purpose, CPA and CPB genes were cloned in expression vectors. Related proteins were extracted from transformed Escherichia coli (E. coli) and purified using Ni affinity column. Alpha alumina nanoparticles were conjugated to CPA/CPB proteins using Aldehyde/Hydrazine Reaction. Autophagy induction in macrophages was assessed using acridine orange staining. Results: CPA/CPB protein loading to nanoparticles was confirmed by Fourier Transform Infrared Spectroscopy. α-alumina conjugated CPA/CPB antigen uptake by macrophages at different concentrations was confirmed using fluorescence microscope and flowcytometry. Highly efficient CPA/CPB protein loading to α-alumina nanoparticles and rapid internalization to macrophages introduced these nanocarriers as a delivery tool. Acridine orange staining demonstrated higher autophagy induction in CPA/CPB protein conjugated with α-alumina nanoparticles. Conclusion: α-alumina nanoparticles may be a promising adjuvant in the development of therapeutic leishmania vaccines through antigen delivery to intracellular compartments, induction of autophagy and cross presentation to CD8 lymphocytes. PMID:28496946

  7. Puromycin-resistant lentiviral control shRNA vector, pLKO.1 induces unexpected cellular differentiation of P19 embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanungo, Jyotshna

    RNA silencing is used as a common method for investigating loss-of-function effects of genes of interest. In mammalian cells, RNA interference (RNAi) or RNA silencing can be achieved by transient siRNA (small or short interfering RNA) transfection or by stable shRNA (short hairpin RNA) systems. Various vectors are used for efficient delivery of shRNA. Lentiviral vectors offer an efficient delivery system for stable and long-term expression of the shRNA in mammalian cells. The widely used lentiviral pLKO.1 plasmid vector is very popular in RNAi studies. A large RNAi database, a TRC (the RNAi Consortium) library, was established based on themore » pLKO.1-TRC plasmid vector. This plasmid (also called pLKO.1-puro) has a puromycin-resistant gene for selection in mammalian cells along with designs for generating lentiviral particles as well for RNA silencing. While using the pLKO.1-puro TRC control shRNA plasmid for transfection in murine P19 embryonic stem (ES) cells, it was unexpectedly discovered that this plasmid vector induced robust endodermal differentiation. Since P19 ES cells are pluripotent and respond to external stimuli that have the potential to alter the phenotype and thus its stemness, other cell types used in RNA silencing studies do not display the obvious effect and therefore, may affect experiments in subtle ways that would go undetected. This study for the first time provides evidence that raises concern and warrants extreme caution while using the pLKO.1-puro control shRNA vector because of its unexpected non-specific effects on cellular integrity. - Highlights: • In P19 ES cells the pLKO.1-puro lentiviral control shRNA vector induced endodermal differentiation. • P19 ES cells harboring the pCDNA3 plasmid vector retained their stem-ness as opposed to those harboring the pLKO.1-puro vector. • P19 ES cells can serve as a sensor to determine vector safety. • Extreme caution is warranted while using the widely used pLKO.1-puro lentiviral vector for experimental and therapeutic designs.« less

  8. Loa loa vectors Chrysops spp.: perspectives on research, distribution, bionomics, and implications for elimination of lymphatic filariasis and onchocerciasis.

    PubMed

    Kelly-Hope, Louise; Paulo, Rossely; Thomas, Brent; Brito, Miguel; Unnasch, Thomas R; Molyneux, David

    2017-04-05

    Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research. We identified 89 primary published documents on the two main L. loa vectors C. silacea and C dimidiata. These were collated into a database summarising the publication, field and laboratory procedures, species distributions, ecology, habitats and methods of vector control. The majority of articles were from the 1950-1960s. Field studies conducted in Cameroon, Democratic Republic of Congo, Equatorial Guinea, Nigeria and Sudan highlighted that C. silacea is the most important and widespread vector. This species breeds in muddy streams or swampy areas of forests or plantations, descends from forest canopies to feed on humans during the day, is more readily adapted to human dwellings and attracted to wood fires. Main vector targeted measures proposed to impact on L. loa transmission included personal repellents, household screening, indoor residual spraying, community-based environmental management, adulticiding and larviciding. This is the first comprehensive review of the major L. loa vectors for several decades. It highlights key vector transmission characteristics that may be targeted for vector control providing insights into the potential for integrated vector management, with multiple diseases being targeted simultaneously, with shared human and financial resources and multiple impact. Integrated vector management programmes for filarial infections, especially in low transmission areas of onchocerciasis, require innovative approaches and alternative strategies if the elimination targets established by the World Health Organization are to be achieved.

  9. Streamed video clips to reduce anxiety in children during inhaled induction of anesthesia.

    PubMed

    Mifflin, Katherine A; Hackmann, Thomas; Chorney, Jill Maclaren

    2012-11-01

    Anesthesia induction in children is frequently achieved by inhalation of nitrous oxide and sevoflurane. Pediatric anesthesiologists commonly use distraction techniques such as humor or nonprocedural talk to reduce anxiety and facilitate a smooth transition at this critical phase. There is a large body of successful distraction research that explores the use of video and television distraction methods for minor medical and dental procedures, but little research on the use of this method for ambulatory surgery. In this randomized control trial study we examined whether video distraction is effective in reducing the anxiety of children undergoing inhaled induction before ambulatory surgery. Children (control = 47, video = 42) between 2 and 10 years old undergoing ambulatory surgery were randomly assigned to a video distraction or control group. In the video distraction group a video clip of the child's preference was played during induction, and the control group received traditional distraction methods during induction. The modified Yale Preoperative Anxiety Scale was used to assess the children's anxiety before and during the process of receiving inhalation anesthetics. All subjects were similar in their age and anxiety scores before entering the operating rooms. Children in the video distraction group were significantly less anxious at induction and showed a significantly smaller change in anxiety from holding to induction than did children in the control group. Playing video clips during the inhaled induction of children undergoing ambulatory surgery is an effective method of reducing anxiety. Therefore, pediatric anesthesiologists may consider using video distraction as a useful, valid, alternative strategy for achieving a smooth transition to the anesthetized state.

  10. Density-dependent host choice by disease vectors: epidemiological implications of the ideal free distribution.

    PubMed

    Basáñez, María-Gloria; Razali, Karina; Renz, Alfons; Kelly, David

    2007-03-01

    The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.

  11. Targeted Screening Strategies to Detect Trypanosoma cruzi Infection in Children

    PubMed Central

    Levy, Michael Z.; Kawai, Vivian; Bowman, Natalie M.; Waller, Lance A.; Cabrera, Lilia; Pinedo-Cancino, Viviana V.; Seitz, Amy E.; Steurer, Frank J.; Cornejo del Carpio, Juan G.; Cordova-Benzaquen, Eleazar; Maguire, James H.; Gilman, Robert H.; Bern, Caryn

    2007-01-01

    Background Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy. Methods and Findings We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children. Conclusions We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings. PMID:18160979

  12. UDE-based control of variable-speed wind turbine systems

    NASA Astrophysics Data System (ADS)

    Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang

    2017-01-01

    In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.

  13. Twenty-Five year (1982-2007) history of lodgepole pine dwarf mistletoe animal vectors and ethephon control on the Fraser Experimental Forest in Colorado

    Treesearch

    Thomas Nicholls

    2009-01-01

    This is a summary of the 25-year history of studies of mammal and bird vectors of lodgepole pine dwarf mistletoe (Arceuthobium americanum), ethephon control of dwarf mistletoe, and the ecology of the most important dwarf mistletoe vector, the gray jay (Persisoreus canadensis), on the USDA Forest Service, Fraser Experimental Forest...

  14. 76 FR 13619 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector... Malaria Prevention and Control in the Republic of Uganda as Part of the President's Malaria Initiative... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector...

  15. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; hide

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  16. Elliptic-symmetry vector optical fields.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  17. Gold nanoparticles - against parasites and insect vectors.

    PubMed

    Benelli, Giovanni

    2018-02-01

    Nanomaterials are currently considered for many biological, biomedical and environmental purposes, due to their outstanding physical and chemical properties. The synthesis of gold nanoparticles (Au NPs) is of high interest for research in parasitology and entomology, since these nanomaterials showed promising applications, ranging from detection techniques to drug development, against a rather wide range of parasites of public health relevance, as well as on insect vectors. Here, I reviewed current knowledge about the bioactivity of Au NPs on selected insect species of public health relevance, including major mosquito vectors, such as Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The toxicity of Au NPs against helminths was reviewed, covering Schistosoma mansoni trematodes as well as Raillietina cestodes. Furthermore, I summarized the information available on the antiparasitic role of Au NPs in the fight against malaria, leishmaniosis, toxoplasmosis, trypanosomiasis, cryptosporidiosis, and microsporidian parasites affecting human and animals health. Besides, I examined the employ of Au NPs as biomarkers, tools for diagnostics and adjuvants for the induction of transmission blocking immunity in malaria vaccine research. In the final section, major challenges and future outlooks for further research are discussed, with special reference to the pressing need of further knowledge about the effect of Au NPs on other arthropod vectors, such as ticks, tsetse flies, tabanids, sandflies and blackflies, and related ecotoxicology assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An MHD Simulation of Solar Active Region 11158 Driven with a Time-dependent Electric Field Determined from HMI Vector Magnetic Field Measurement Data

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei

    2018-03-01

    For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.

  19. Evaluation of chemical spraying and environmental management efficacy in areas with minor previous application of integrated control actions for visceral leishmaniasis in Brazil.

    PubMed

    Lara-Silva, Fabiana de Oliveira; Michalsky, Érika Monteiro; Fortes-Dias, Consuelo Latorre; Fiuza, Vanessa de Oliveira Pires; Dias, Edelberto Santos

    2017-12-01

    Leishmaniases are vector-borne diseases that are transmitted to humans through the bite of Leishmania-infected phlebotomine sand flies (Diptera:Psychodidae). The main proved vector of visceral leishmaniais (VL) in the New World - Lutzomyia longipalpis - is well-adapted to urban areas and has extensive distribution within the five geographical regions of Brazil. Integrated public health actions directed for the vector, domestic reservoir and humans for the control of VL are preferentially applied in municipalities with higher epidemiological risk of transmission. In this study, we evaluated the individual impact of two main vector control actions - chemical spraying and environmental management - in two districts with no reported cases of human VL. Although belonging to an endemic municipality for VL in Brazil, the integrated control actions have not been applied in these districts due to the absence of human cases. The number of L. longipalpis captured in a two-year period was used as indicator of the population density of the vector. After chemical spraying a tendency of reduction in L. longipalpis was observed but with no statistical significance compared to the control. Environmental management was effective in that reduction and it may help in the control of VL by reducing the population density of the vector in a preventive and more permanent action, perhaps associated with chemical spraying. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    PubMed

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  1. The Effects of City Streets on an Urban Disease Vector

    PubMed Central

    Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.

    2013-01-01

    With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756

  2. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants.

    PubMed

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.

  3. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    PubMed Central

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362

  4. Vector control in developed countries

    PubMed Central

    Peters, Richard F.

    1963-01-01

    The recent rapid growth of California's population, leading to competition for space between residential, industrial and agricultural interests, the development of its water resources and increasing water pollution provide the basic ingredients of its present vector problems. Within the past half-century, the original mosquito habitats provided by nature have gradually given place to even more numerous and productive habitats of man-made character. At the same time, emphasis in mosquito control has shifted from physical to chemical, with the more recent extension to biological approaches as well. The growing domestic fly problem, continuing despite the virtual disappearance of the horse, is attributable to an increasing amount of organic by-products, stemming from growing communities, expanding industries and changing agriculture. The programme for the control of disease vectors and pest insects and animals directs its major effort to the following broad areas: (1) water management (including land preparation), (2) solid organic wastes management (emphasizing utilization), (3) community management (including design, layout, and storage practices of buildings and grounds), and (4) recreational area management (related to wildlife management). It is apparent that vector control can often employ economics as an ally in securing its objectives. Effective organization of the environment to produce maximum economic benefits to industry, agriculture, and the community results generally in conditions unfavourable to the survival of vector and noxious animal species. Hence, vector prevention or suppression is preferable to control as a programme objective. PMID:20604166

  5. Leishmaniasis sand fly vector density reduction is less marked in destitute housing after insecticide thermal fogging.

    PubMed

    Chaves, Luis Fernando; Calzada, Jose E; Rigg, Chystrie; Valderrama, Anayansi; Gottdenker, Nicole L; Saldaña, Azael

    2013-06-06

    Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency.

  6. Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs.

    PubMed

    Busquets, Núria; Lorenzo, Gema; López-Gil, Elena; Rivas, Raquel; Solanes, David; Galindo-Cardiel, Iván; Abad, F Xavier; Rodríguez, Fernando; Bensaid, Albert; Warimwe, George; Gilbert, Sarah C; Domingo, Mariano; Brun, Alejandro

    2014-08-01

    The present study has evaluated the protection conferred by a single subcutaneous dose of a modified vaccinia virus Ankara (MVA) vectored vaccine encoding the Rift Valley Fever virus (RVFV) glycoproteins Gn and Gc in lambs. Three groups of six to seven lambs were immunized as follows: one group received the vaccine (termed rMVA-GnGc), a second group received an MVA vector (vector control) and a third group received saline solution (non-vaccinated control). Fourteen days later, all animals were subcutaneously challenged with 10(5) TCID50 of the virulent RVFV isolate 56/74 and vaccine efficacy assessed using standard endpoints. Two lambs (one from the vaccine group and one from the vector control group) succumbed to RVFV challenge, showing characteristic liver lesions. Lambs from both the vector control and non-vaccinated groups were febrile from days 2 to 5 post challenge (pc) while those in the rMVA-GnGc group showed a single peak of pyrexia at day 3 pc. RVFV RNA was detected in both nasal and oral swabs from days 3 to 7 pc in some lambs from the vector control and non-vaccinated groups, but no viral shedding could be detected in the surviving lambs vaccinated with rMVA-GnGc. Together, the data suggest that a single dose of the rMVA-GnGc vaccine may be sufficient to reduce RVFV shedding and duration of viremia but does not provide sterile immunity nor protection from disease. Further optimization of this vaccine approach in lambs is warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    PubMed

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes to improve disease control efficacy amidst surging urbanization and changing climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids.

    PubMed Central

    Alvarez, R; Checa, M; Brun, S; Viñas, O; Mampel, T; Iglesias, R; Giralt, M; Villarroya, F

    2000-01-01

    The intracellular pathways and receptors mediating the effects of retinoic acid (RA) on the brown-fat-uncoupling-protein-1 gene (ucp-1) have been analysed. RA activates transcription of ucp-1 and the RA receptor (RAR) is known to be involved in this effect. However, co-transfection of an expression vector for retinoid-X receptor (RXR) increases the action of 9-cis RA but not the effects of all-trans RA on the ucp-1 promoter in brown adipocytes. Either RAR-specific ¿p-[(E)-2-(5,6,7,8,-tetrahydro-5,5,8, 8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid¿ or RXR-specific [isopropyl-(E,E)-(R,S)-11-methoxy-3,7, 11-trimethyldodeca-2,4-dienoate, or methoprene] synthetic compounds increase the expression of UCP-1 mRNA and the activity of chloramphenicol acetyltransferase expression vectors driven by the ucp-1 promoter. The RXR-mediated action of 9-cis RA requires the upstream enhancer region at -2469/-2318 in ucp-1. During brown-adipocyte differentiation RXRalpha and RXRgamma mRNA expression is induced in parallel with UCP-1 mRNA, whereas the mRNA for the three RAR subtypes, alpha, beta and gamma, decreases. Co-transfection of murine expression vectors for the different RAR and RXR subtypes indicates that RARalpha and RARbeta as well as RXRalpha are the major retinoid-receptor subtypes capable of mediating the responsiveness of ucp-1 to retinoids. It is concluded that the effects of retinoids on ucp-1 transcription involve both RAR- and RXR-dependent signalling pathways. The responsiveness of brown adipose tissue to retinoids in vivo relies on a complex combination of the capacity of RAR and RXR subtypes to mediate ucp-1 induction and their distinct expression in the differentiated brown adipocyte. PMID:10600643

  9. Genetics and evolution of triatomines: from phylogeny to vector control

    PubMed Central

    Gourbière, S; Dorn, P; Tripet, F; Dumonteil, E

    2012-01-01

    Triatomines are hemipteran bugs acting as vectors of the protozoan parasite Trypanosoma cruzi. This parasite causes Chagas disease, one of the major parasitic diseases in the Americas. Studies of triatomine genetics and evolution have been particularly useful in the design of rational vector control strategies, and are reviewed here. The phylogeography of several triatomine species is now slowly emerging, and the struggle to reconcile the phenotypic, phylogenetic, ecological and epidemiological species concepts makes for a very dynamic field. Population genetic studies using different markers indicate a wide range of population structures, depending on the triatomine species, ranging from highly fragmented to mobile, interbreeding populations. Triatomines transmit T. cruzi in the context of complex interactions between the insect vectors, their bacterial symbionts and the parasites; however, an integrated view of the significance of these interactions in triatomine biology, evolution and in disease transmission is still lacking. The development of novel genetic markers, together with the ongoing sequencing of the Rhodnius prolixus genome and more integrative studies, will provide key tools to expanding our understanding of these important insect vectors and allow the design of improved vector control strategies. PMID:21897436

  10. Modeling and Demonstrating Regenerative Braking of a Squirrel Cage Induction Motor with Various Deceleration Rates Using V by F Control

    DTIC Science & Technology

    2010-06-01

    DEMONSTRATING REGENERATIVE BRAKING OF A SQUIRREL CAGE INDUCTION MOTOR WITH VARIOUS DECELERATION RATES USING V BY F CONTROL by Billy J. Nytko...Regenerative Braking of a Squirrel Cage Induction Motor with Various Deceleration Rates Using V by F Control 6. AUTHOR(S) Billy J. Nytko 5. FUNDING...Naval Postgraduate School (NPS) to model regenerative braking to support energy conservation technologies and to improve the efficiencies within the

  11. Thrust vectoring for lateral-directional stability

    NASA Technical Reports Server (NTRS)

    Peron, Lee R.; Carpenter, Thomas

    1992-01-01

    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

  12. Predictive control strategies for wind turbine system based on permanent magnet synchronous generator.

    PubMed

    Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba

    2016-05-01

    In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease

    PubMed Central

    Waleckx, Etienne; Gourbière, Sébastien; Dumonteil, Eric

    2015-01-01

    Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions. PMID:25993504

  14. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    PubMed

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina Faso between 2008 and 2010 under the Corus 6015 research program. This review aims to show: (i) the insecticide resistance in B. tabaci as well as in An. gambiae; and (ii) due to this, the impact of selection of resistant populations on malaria vector control strategies. Some measures that could be beneficial for crop protection and vector control strategies in West Africa are proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  16. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common-mode voltage suppression at the load end, 3) High quality output voltage waveform (comparable to conventional space vector PWM modulated two level inverter) and 4) Minimization of output voltage loss, common-mode voltage switching and distortion of the load current waveform due to leakage inductance commutation. All of the proposed topologies along with the proposed control schemes have been analyzed and simulated in MATLABSimulink. A hardware prototype has been fabricated and tested. The simulation and experimental results verify the operation and advantages of the proposed topologies and their control.

  17. An endogenous microRNA (miRNA1166.1) can regulate photobio-H2 production in eukaryotic green alga Chlamydomonas reinhardtii.

    PubMed

    Wang, Yuting; Zhuang, Xiaoshan; Chen, Meirong; Zeng, Zhiyong; Cai, Xiaoqi; Li, Hui; Hu, Zhangli

    2018-01-01

    Hydrogen photoproduction from green microalgae is regarded as a promising alternative solution for energy problems. However, the simultaneous oxygen evolution from microalgae can prevent continuous hydrogen production due to the hypersensitivity of hydrogenases to oxygen. Sulfur deprivation can extend the duration of algal hydrogen production, but it is uneconomical to alternately culture algal cells in sulfur-sufficient and sulfur-deprived media. In this study, we developed a novel way to simulate sulfur-deprivation treatment while constantly maintaining microalgal cells in sulfur-sufficient culture medium by overexpressing an endogenous microRNA (miR1166.1). Based on our previous RNA-seq analysis in the model green alga Chlamydomonas reinhardtii , three endogenous miRNAs responsive to sulfur deprivation (cre-miR1166.1, cre-miR1150.3, and cre-miR1158) were selected. Heat-inducible expression vectors containing the selected miRNAs were constructed and transformed into C. reinhardtii . Comparison of H 2 production following heat induction in the three transgenic strains and untransformed control group identified miR1166.1 as the best candidate for H 2 production regulation. Moreover, enhanced photobio-H 2 production was observed with repeated induction of miR1166.1 expression. This study is the first to identify a physiological function of endogenous miR1166.1 and to show that a natural miRNA can regulate hydrogen photoproduction in the unicellular model organism C. reinhardtii .

  18. Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction.

    PubMed

    Madore, Kevin P; Jing, Helen G; Schacter, Daniel L

    2016-08-01

    Recent research has suggested that an episodic specificity induction-brief training in recollecting the details of a past experience-enhances divergent creative thinking on the alternate uses task (AUT) in young adults, without affecting performance on tasks thought to involve little divergent thinking; however, the generalizability of these results to other populations and tasks is unknown. In the present experiments, we examined whether the effects of an episodic specificity induction would extend to older adults and a different index of divergent thinking, the consequences task. In Experiment 1, the specificity induction significantly enhanced divergent thinking on the AUT in both young and older adults, as compared with a control induction not requiring specific episodic retrieval; performance on a task involving little divergent thinking (generating associates for common objects) did not vary as a function of induction. No overall age-related differences were observed on either task. In Experiment 2, the specificity induction significantly enhanced divergent thinking (in terms of generating consequences of novel scenarios) in young adults, relative to another control induction not requiring episodic retrieval. To examine the types of creative ideas affected by the induction, the participants in both experiments also labeled each of their divergent-thinking responses as an "old idea" from memory or a "new idea" from imagination. New, and to some extent old, ideas were significantly boosted following the specificity induction relative to the control. These experiments provide novel evidence that an episodic specificity induction can boost divergent thinking in young and older adults, and indicate that episodic memory is involved in multiple divergent-thinking tasks.

  19. Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction

    PubMed Central

    Madore, Kevin P.; Jing, Helen G.; Schacter, Daniel L.

    2016-01-01

    Recent research has suggested that an episodic specificity induction- brief training in recollecting the details of a past experience- enhances divergent creative thinking on the Alternate Uses Task (AUT) in young adults without affecting performance on tasks thought to involve little divergent thinking, but the generalizability of these results to other populations and tasks is unknown. The present experiments examined whether effects of an episodic specificity induction extend to older adults and a different index of divergent thinking, the Consequences Task. In Experiment 1, the specificity induction significantly enhanced divergent thinking on the AUT in both young and older adults compared with a control induction not requiring specific episodic retrieval; performance on a task involving little divergent thinking did not vary as a function of induction (generating associates for common objects). No overall age-related differences were observed on either task. In Experiment 2, the specificity induction significantly enhanced divergent thinking (generating consequences of novel scenarios) in young adults compared with another control induction not requiring episodic retrieval. To examine the types of creative ideas affected by the induction, participants in both experiments also labeled each of their divergent thinking responses as an old idea from memory or new idea from imagination. New and to some extent old ideas were significantly boosted following the specificity induction compared with the control. These experiments provide novel evidence that an episodic specificity induction can boost divergent thinking in young and older adults, and indicate that episodic memory is involved in multiple divergent thinking tasks. PMID:27001170

  20. Humanlike agents with posture planning ability

    NASA Astrophysics Data System (ADS)

    Jung, Moon R.; Badler, Norman I.

    1992-11-01

    Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend versus squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of `lumped' control parameters, that is, control points and vectors.

  1. Human-like agents with posture planning ability

    NASA Technical Reports Server (NTRS)

    Jung, Moon R.; Badler, Norman

    1992-01-01

    Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend vs. squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of 'lumped' control parameters, that is, control points and vectors.

  2. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  3. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  4. Induction of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  5. Design optimization of high frequency transformer with controlled leakage inductance for current fed dual active bridge converter

    NASA Astrophysics Data System (ADS)

    Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung

    2018-05-01

    Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.

  6. Eco-Bio-Social Determinants for House Infestation by Non-domiciliated Triatoma dimidiata in the Yucatan Peninsula, Mexico

    PubMed Central

    Dumonteil, Eric; Nouvellet, Pierre; Rosecrans, Kathryn; Ramirez-Sierra, Maria Jesus; Gamboa-León, Rubi; Cruz-Chan, Vladimir; Rosado-Vallado, Miguel; Gourbière, Sébastien

    2013-01-01

    Background Chagas disease is a vector-borne disease of major importance in the Americas. Disease prevention is mostly limited to vector control. Integrated interventions targeting ecological, biological and social determinants of vector-borne diseases are increasingly used for improved control. Methodology/principal findings We investigated key factors associated with transient house infestation by T. dimidiata in rural villages in Yucatan, Mexico, using a mixed modeling approach based on initial null-hypothesis testing followed by multimodel inference and averaging on data from 308 houses from three villages. We found that the presence of dogs, chickens and potential refuges, such as rock piles, in the peridomicile as well as the proximity of houses to vegetation at the periphery of the village and to public light sources are major risk factors for infestation. These factors explain most of the intra-village variations in infestation. Conclusions/significance These results underline a process of infestation distinct from that of domiciliated triatomines and may be used for risk stratification of houses for both vector surveillance and control. Combined integrated vector interventions, informed by an Ecohealth perspective, should aim at targeting several of these factors to effectively reduce infestation and provide sustainable vector control. PMID:24086790

  7. Age- and bite-structured models for vector-borne diseases.

    PubMed

    Rock, K S; Wood, D A; Keeling, M J

    2015-09-01

    The biology and behaviour of biting insects is a vitally important aspect in the spread of vector-borne diseases. This paper aims to determine, through the use of mathematical models, what effect incorporating vector senescence and realistic feeding patterns has on disease. A novel model is developed to enable the effects of age- and bite-structure to be examined in detail. This original PDE framework extends previous age-structured models into a further dimension to give a new insight into the role of vector biting and its interaction with vector mortality and spread of disease. Through the PDE model, the roles of the vector death and bite rates are examined in a way which is impossible under the traditional ODE formulation. It is demonstrated that incorporating more realistic functions for vector biting and mortality in a model may give rise to different dynamics than those seen under a more simple ODE formulation. The numerical results indicate that the efficacy of control methods that increase vector mortality may not be as great as predicted under a standard host-vector model, whereas other controls including treatment of humans may be more effective than previously thought. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming.

    PubMed

    Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph

    2015-05-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed.

  9. Confirming the Multidimensionality of Psychologically Controlling Parenting among Chinese-American Mothers: Love Withdrawal, Guilt Induction, and Shaming

    PubMed Central

    Cheah, Charissa; Yu, Jing; Hart, Craig; Sun, Shuyan; Olsen, Joseph

    2014-01-01

    Despite the theoretical conceptualization of parental psychological control as a multidimensional construct, the majority of previous studies have examined psychological control as a unidimensional scale. Moreover, the conceptualization of shaming and its associations with love withdrawal and guilt induction are unclear. The current study aimed to fill these gaps by evaluating the latent factor structure underlying 18 items from Olsen et al. (2002) that were conceptually relevant to love withdrawal, guilt induction, and shaming practices in a sample of 169 mothers of Chinese-American preschoolers. A multidimensional three-factor model and bi-factor model were specified based on our formulated operational definitions for the three dimensions of psychological control. Both models were found to be superior to the unidimensional model. In addition, results from the bi-factor model and an additional second-order factor model indicated that psychological control is essentially empirically isomorphic with guilt induction. Although love withdrawal and shaming factors were also fairly strong indicators of psychological control, each exhibited important additional unique variability and mutual distinctiveness. Implications for the conceptualization of love withdrawal, guilt induction, and shaming as well as directions for future studies are discussed. PMID:26052168

  10. Expanding integrated vector management to promote healthy environments

    PubMed Central

    Lizzi, Karina M.; Qualls, Whitney A.; Brown, Scott C.; Beier, John C.

    2014-01-01

    Integrated Vector Management (IVM) strategies are intended to protect communities from pathogen transmission by arthropods. These strategies target multiple vectors and different ecological and socioeconomic settings, but the aggregate benefits of IVM are limited by the narrow focus of its approach; IVM strategies only aim to control arthropod vectors. We argue that IVM should encompass environmental modifications at early stages, for instance, infrastructural development and sanitation services, to regulate not only vectors but also nuisance-biting arthropods. An additional focus on nuisance-biting arthropods will improve public health, quality of life, and minimize social disparity issues fostered by pests. Optimally, IVM could incorporate environmental awareness and promotion of control methods in order to proactively reduce threats of serious pest situations. PMID:25028090

  11. Preclinical Development of New Therapy for Glycogen Storage Diseases

    PubMed Central

    Sun, Baodong; Brooks, Elizabeth D.; Koeberl, Dwight D.

    2015-01-01

    Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available. PMID:26122079

  12. Chemoselective ligation and antigen vectorization.

    PubMed

    Gras-Masse, H

    2001-01-01

    The interest in cocktail-lipopeptide vaccines has now been confirmed by phase I clinical trials: highly diversified B-, T-helper or cytotoxic T-cell epitopes can be combined with a lipophilic vector for the induction of B- and T-cell responses of predetermined specificity. With the goal of producing an improved vaccine that should ideally induce a multispecific response in non-selected populations, increasing the diversity of the immunizing mixture represents one of the most obvious strategies.The selective delivery of antigens to professional antigen-presenting cells represents another promising approach for the improvement of vaccine efficacy. In this context, the mannose-receptor represents an attractive entry point for the targeting to dendritic cells of antigens linked to clustered glycosides or glycomimetics. In all cases, highly complex but fully characterized molecules must be produced. To develop a modular and flexible strategy which could be generally applicable to a large set of peptide antigens, we elected to explore the potentialities of chemoselective ligation methods. The hydrazone bond was found particularly reliable and fully compatible with sulphide ligation. Hydrazone/thioether orthogonal ligation systems could be developed to account for the nature of the antigens and the solubility of the vector systems. Copyright 2001 The International Association for Biologicals.

  13. Spray characterization of ULV sprayers typically used in vector control

    USDA-ARS?s Scientific Manuscript database

    Numerous spray machines are used to apply products for the control of human disease vectors, such as mosquitoes and flies. However, the selection and setup of these machines significantly affect the level of control achieved during an application. The droplet spectra produced by nine different ULV...

  14. In vivo imaging of induction of heat-shock protein-70 gene expression with fluorescence reflectance imaging and intravital confocal microscopy following brain ischaemia in reporter mice.

    PubMed

    de la Rosa, Xavier; Santalucía, Tomàs; Fortin, Pierre-Yves; Purroy, Jesús; Calvo, Maria; Salas-Perdomo, Angélica; Justicia, Carles; Couillaud, Franck; Planas, Anna M

    2013-02-01

    Stroke induces strong expression of the 72-kDa heat-shock protein (HSP-70) in the ischaemic brain, and neuronal expression of HSP-70 is associated with the ischaemic penumbra. The aim of this study was to image induction of Hsp-70 gene expression in vivo after brain ischaemia using reporter mice. A genomic DNA sequence of the Hspa1b promoter was used to generate an Hsp70-mPlum far-red fluorescence reporter vector. The construct was tested in cellular systems (NIH3T3 mouse fibroblast cell line) by transient transfection and examining mPlum and Hsp-70 induction under a challenge. After construct validation, mPlum transgenic mice were generated. Focal brain ischaemia was induced by transient intraluminal occlusion of the middle cerebral artery and the mice were imaged in vivo with fluorescence reflectance imaging (FRI) with an intact skull, and with confocal microscopy after opening a cranial window. Cells transfected with the Hsp70-mPlum construct showed mPlum fluorescence after stimulation. One day after induction of ischaemia, reporter mice showed a FRI signal located in the HSP-70-positive zone within the ipsilateral hemisphere, as validated by immunohistochemistry. Live confocal microscopy allowed brain tissue to be visualized at the cellular level. mPlum fluorescence was observed in vivo in the ipsilateral cortex 1 day after induction of ischaemia in neurons, where it is compatible with penumbra and neuronal viability, and in blood vessels in the core of the infarction. This study showed in vivo induction of Hsp-70 gene expression in ischaemic brain using reporter mice. The fluorescence signal showed in vivo the induction of Hsp-70 in penumbra neurons and in the vasculature within the ischaemic core.

  15. Design of an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance improvement gain realiz ed when an applied field is present.

  16. Modeling Dengue Vector Dynamics under Imperfect Detection: Three Years of Site-Occupancy by Aedes aegypti and Aedes albopictus in Urban Amazonia

    PubMed Central

    Padilla-Torres, Samael D.; Ferraz, Gonçalo; Luz, Sergio L. B.; Zamora-Perea, Elvira; Abad-Franch, Fernando

    2013-01-01

    Aedes aegypti and Ae. albopictus are the vectors of dengue, the most important arboviral disease of humans. To date, Aedes ecology studies have assumed that the vectors are truly absent from sites where they are not detected; since no perfect detection method exists, this assumption is questionable. Imperfect detection may bias estimates of key vector surveillance/control parameters, including site-occupancy (infestation) rates and control intervention effects. We used a modeling approach that explicitly accounts for imperfect detection and a 38-month, 55-site detection/non-detection dataset to quantify the effects of municipality/state control interventions on Aedes site-occupancy dynamics, considering meteorological and dwelling-level covariates. Ae. aegypti site-occupancy estimates (mean 0.91; range 0.79–0.97) were much higher than reported by routine surveillance based on ‘rapid larval surveys’ (0.03; 0.02–0.11) and moderately higher than directly ascertained with oviposition traps (0.68; 0.50–0.91). Regular control campaigns based on breeding-site elimination had no measurable effects on the probabilities of dwelling infestation by dengue vectors. Site-occupancy fluctuated seasonally, mainly due to the negative effects of high maximum (Ae. aegypti) and minimum (Ae. albopictus) summer temperatures (June-September). Rainfall and dwelling-level covariates were poor predictors of occupancy. The marked contrast between our estimates of adult vector presence and the results from ‘rapid larval surveys’ suggests, together with the lack of effect of local control campaigns on infestation, that many Aedes breeding sites were overlooked by vector control agents in our study setting. Better sampling strategies are urgently needed, particularly for the reliable assessment of infestation rates in the context of control program management. The approach we present here, combining oviposition traps and site-occupancy models, could greatly contribute to that crucial aim. PMID:23472194

  17. Public Health Interventions for Aedes Control in the Time of Zikavirus– A Meta-Review on Effectiveness of Vector Control Strategies

    PubMed Central

    Bouzid, Maha; Brainard, Julii; Hooper, Lee; Hunter, Paul R.

    2016-01-01

    Background There is renewed interest in effective measures to control Zika and dengue vectors. A synthesis of published literature with a focus on the quality of evidence is warranted to determine the effectiveness of vector control strategies. Methodology We conducted a meta-review assessing the effectiveness of any Aedes control measure. We searched Scopus and Medline for relevant reviews through to May 2016. Titles, abstracts and full texts were assessed independently for inclusion by two authors. Data extraction was performed in duplicate and validity of the evidence was assessed using GRADE criteria. Findings 13 systematic reviews that investigated the effect of control measures on entomological parameters or disease incidence were included. Biological controls seem to achieve better reduction of entomological indices than chemical controls, while educational campaigns can reduce breeding habitats. Integrated vector control strategies may not always increase effectiveness. The efficacy of any control programme is dependent on local settings, intervention type, resources and study duration, which may partly explain the varying degree of success between studies. Nevertheless, the quality of evidence was mostly low to very low due to poor reporting of study design, observational methodologies, heterogeneity, and indirect outcomes, thus hindering an evidence-based recommendation. Conclusions The evidence for the effectiveness of Aedes control measures is mixed. Chemical control, which is commonly used, does not appear to be associated with sustainable reductions of mosquito populations over time. Indeed, by contributing to a false sense of security, chemical control may reduce the effectiveness of educational interventions aimed at encouraging local people to remove mosquito breeding sites. Better quality studies of the impact of vector control interventions on the incidence of human infections with Dengue or Zika are still needed. PMID:27926934

  18. Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México

    PubMed Central

    Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén

    2017-01-01

    Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups (n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence. PMID:28786919

  19. Cost-Effectiveness of the Strategies to Reduce the Incidence of Dengue in Colima, México.

    PubMed

    Mendoza-Cano, Oliver; Hernandez-Suarez, Carlos Moisés; Trujillo, Xochitl; Ochoa Diaz-Lopez, Héctor; Lugo-Radillo, Agustin; Espinoza-Gomez, Francisco; de la Cruz-Ruiz, Miriam; Sánchez-Piña, Ramón Alberto; Murillo-Zamora, Efrén

    2017-08-08

    Dengue fever is considered to be one of the most important arboviral diseases globally. Unsuccessful vector-control strategies might be due to the lack of sustainable community participation. The state of Colima, located in the Western region of Mexico, is a dengue-endemic area despite vector-control activities implemented, which may be due to an insufficient health economic analysis of these interventions. A randomized controlled community trial took place in five urban municipalities where 24 clusters were included. The study groups ( n = 4) included an intervention to improve the community participation in vector control (A), ultra-low volume (ULV) spraying (B), both interventions (AB), and a control group. The main outcomes investigated were dengue cumulative incidence, disability-adjusted life years (DALYs), and the direct costs per intervention. The cumulative incidence of dengue was 17.4%, A; 14.3%, B; 14.4%, AB; and 30.2% in the control group. The highest efficiency and effectiveness were observed in group B (0.526 and 6.97, respectively) and intervention A was more likely to be cost-effective ($3952.84 per DALY avoided) followed by intervention B ($4472.09 per DALY avoided). Our findings suggest that efforts to improve community participation in vector control and ULV-spraying alone are cost-effective and may be useful to reduce the vector density and dengue incidence.

  20. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    DOEpatents

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

Top