Sample records for vector field dvf

  1. Iterative inversion of deformation vector fields with feedback control.

    PubMed

    Dubey, Abhishek; Iliopoulos, Alexandros-Stavros; Sun, Xiaobai; Yin, Fang-Fang; Ren, Lei

    2018-05-14

    Often, the inverse deformation vector field (DVF) is needed together with the corresponding forward DVF in four-dimesional (4D) reconstruction and dose calculation, adaptive radiation therapy, and simultaneous deformable registration. This study aims at improving both accuracy and efficiency of iterative algorithms for DVF inversion, and advancing our understanding of divergence and latency conditions. We introduce a framework of fixed-point iteration algorithms with active feedback control for DVF inversion. Based on rigorous convergence analysis, we design control mechanisms for modulating the inverse consistency (IC) residual of the current iterate, to be used as feedback into the next iterate. The control is designed adaptively to the input DVF with the objective to enlarge the convergence area and expedite convergence. Three particular settings of feedback control are introduced: constant value over the domain throughout the iteration; alternating values between iteration steps; and spatially variant values. We also introduce three spectral measures of the displacement Jacobian for characterizing a DVF. These measures reveal the critical role of what we term the nontranslational displacement component (NTDC) of the DVF. We carry out inversion experiments with an analytical DVF pair, and with DVFs associated with thoracic CT images of six patients at end of expiration and end of inspiration. The NTDC-adaptive iterations are shown to attain a larger convergence region at a faster pace compared to previous nonadaptive DVF inversion iteration algorithms. By our numerical experiments, alternating control yields smaller IC residuals and inversion errors than constant control. Spatially variant control renders smaller residuals and errors by at least an order of magnitude, compared to other schemes, in no more than 10 steps. Inversion results also show remarkable quantitative agreement with analysis-based predictions. Our analysis captures properties of DVF data associated with clinical CT images, and provides new understanding of iterative DVF inversion algorithms with a simple residual feedback control. Adaptive control is necessary and highly effective in the presence of nonsmall NTDCs. The adaptive iterations or the spectral measures, or both, may potentially be incorporated into deformable image registration methods. © 2018 American Association of Physicists in Medicine.

  2. An adaptive radiotherapy planning strategy for bladder cancer using deformation vector fields.

    PubMed

    Vestergaard, Anne; Kallehauge, Jesper Folsted; Petersen, Jørgen Breede Baltzer; Høyer, Morten; Søndergaard, Jimmi; Muren, Ludvig Paul

    2014-09-01

    Adaptive radiotherapy (ART) has considerable potential in treatment of bladder cancer due to large inter-fractional changes in shape and size of the target. The aim of this study was to compare our clinically applied method for plan library creation that involves manual bladder delineations (Clin-ART) with a method using the deformation vector fields (DVFs) resulting from intensity-based deformable image registrations (DVF-based ART). The study included thirteen patients with urinary bladder cancer who had daily cone beam CTs (CBCTs) acquired for set-up. In both ART strategies investigated, three plan selection volumes were generated using the CBCTs from the first four fractions; in Clin-ART boolean combinations of delineated bladders were used, while the DVF-based strategy applied combinations of the mean and standard deviation of patient-specific DVFs. The volume ratios (VRs) of the course-averaged PTV for the two ART strategies relative the non-adaptive PTV were calculated. Both Clin-ART and DVF-based ART considerably reduced the course-averaged PTV, compared to non-adaptive RT. The VR for DVF-based ART was lower than for Clin-ART (0.65 vs. 0.73; p<0.01). DVF-based ART for bladder irradiation has a considerable normal tissue sparing potential surpassing our already highly conformal clinically applied ART strategy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. SU-F-J-77: Variations in the Displacement Vector Fields Calculated by Different Deformable Image Registration Algorithms Used in Helical, Axial and Cone-Beam CT Images of a Mobile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Jaskowiak, J; Ahmad, S

    Purpose: To investigate quantitatively the displacement-vector-fields (DVF) obtained from different deformable image registration algorithms (DIR) in helical (HCT), axial (ACT) and cone-beam CT (CBCT) to register CT images of a mobile phantom and its correlation with motion amplitudes and frequencies. Methods: HCT, ACT and CBCT are used to image a mobile phantom which includes three targets with different sizes that are manufactured from water-equivalent material and embedded in low density foam. The phantom is moved with controlled motion patterns where a range of motion amplitudes (0–40mm) and frequencies (0.125–0.5Hz) are used. The CT images obtained from scanning of the mobilemore » phantom are registered with the stationary CT-images using four deformable image registration algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from DIRART software. Results: The DVF calculated by the different algorithms correlate well with the motion amplitudes that are applied on the mobile phantom where maximal DVF increase linearly with the motion amplitudes of the mobile phantom in CBCT. Similarly in HCT, DVF increase linearly with motion amplitude, however, its correlation is weaker than CBCT. In ACT, the DVF’s do not correlate well with the motion amplitudes where motion induces strong image artifacts and DIR algorithms are not able to deform the ACT image of the mobile targets to the stationary targets. Three DIR-algorithms produce comparable values and patterns of the DVF for certain CT imaging modality. However, DVF from fast-demons deviated strongly from other algorithms at large motion amplitudes. Conclusion: In CBCT and HCT, the DVF correlate well with the motion amplitude of the mobile phantom. However, in ACT, DVF do not correlate with motion amplitudes. Correlations of DVF with motion amplitude as in CBCT and HCT imaging techniques can provide information about unknown motion parameters of the mobile organs in real patients as demonstrated in this phantom visibility study.« less

  4. Estimation of Discontinuous Displacement Vector Fields with the Minimum Description Length Criterion.

    DTIC Science & Technology

    1990-10-01

    type of approach for finding a dense displacement vector field has a time complexity that allows a real - time implementation when an appropriate control...hardly vector fields as they appear in Stereo or motion. The reason for this is the fact that local displacement vector field ( DVF ) esti- mates bave...2 objects’ motion, but that the quantitative optical flow is not a reliable measure of the real motion [VP87, SU87]. This applies even more to the

  5. Application of motion analysis in the study of the effect of botulinum toxin to rat vocal folds

    NASA Astrophysics Data System (ADS)

    Saadah, Abdul K.; Galatsanos, Nikolas P.; Inagi, K.; Bless, D.

    1997-05-01

    In the past we have proposed a system that measures the deformations of the vocal folds from videostroboscopic images of the larynx, in that system: (1) we extract the boundaries of the vocal folds, (2) we register elastically the vocal fold boundaries in successive frames. This yields the displacement vector field (DVF) between adjacent frames, and (3) we fit using a least-squares approach an affine transformation model to succinctly describe the deformations between adjacent frames. In this paper, we present as an example of the capabilities of this system, an initial study of the deformation changes in rat vocal folds pre and post injection with Botulinum toxin. For this application the generated DVF was segmented into right DVF and left DVF and the deformation of each segment is studied separately.

  6. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  7. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskowiak, J; Ahmad, S; Ali, I

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.« less

  8. MO-AB-BRA-09: Development and Evaluation of a Biomechanical Modeling-Assisted CBCT Reconstruction Technique (Bio-Recon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Nasehi Tehrani, J; Wang, J

    Purpose: To develop a Bio-recon technique by incorporating the biomechanical properties of anatomical structures into the deformation-based CBCT reconstruction process. Methods: Bio-recon reconstructs the CBCT by deforming a prior high-quality CT/CBCT using a deformation-vector-field (DVF). The DVF is solved through two alternating steps: 2D–3D deformation and finite-element-analysis based biomechanical modeling. 2D–3D deformation optimizes the DVF through an ‘intensity-driven’ approach, which updates the DVF to minimize intensity mismatches between the acquired projections and the simulated projections from the deformed CBCT. In contrast, biomechanical modeling optimizes the DVF through a ‘biomechanical-feature-driven’ approach, which updates the DVF based on the biophysical properties ofmore » anatomical structures. In general, Biorecon extracts the 2D–3D deformation-optimized DVF at high-contrast structure boundaries, and uses it as the boundary condition to drive biomechanical modeling to optimize the overall DVF, especially at low-contrast regions. The optimized DVF is fed back into the 2D–3D deformation for further optimization, which forms an iterative loop. The efficacy of Bio-recon was evaluated on 11 lung patient cases, each with a prior CT and a new CT. Cone-beam projections were generated from the new CTs to reconstruct CBCTs, which were compared with the original new CTs for evaluation. 872 anatomical landmarks were also manually identified by a clinician on both the prior and new CTs to track the lung motion, which was used to evaluate the DVF accuracy. Results: Using 10 projections for reconstruction, the average (± s.d.) relative errors of reconstructed CBCTs by the clinical FDK technique, the 2D–3D deformation-only technique and Bio-recon were 46.5±5.9%, 12.0±2.3% and 10.4±1.3%, respectively. The average residual errors of DVF-tracked landmark motion by the 2D–3D deformation-only technique and Bio-recon were 5.6±4.3mm and 3.1±2.4mm, respectively. Conclusion: Bio-recon improved accuracy for both the reconstructed CBCT and the DVF. The accurate DVF can benefit multiple clinical practices, such as image-guided adaptive radiotherapy. We acknowledge funding support from the American Cancer Society (RSG-13-326-01-CCE), from the US National Institutes of Health (R01 EB020366), and from the Cancer Prevention and Research Institute of Texas (RP130109).« less

  9. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  10. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images.

    PubMed

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-07

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, W.T.; Siebers, J.V.; Bzdusek, K.

    Purpose: To introduce methods to analyze Deformable Image Registration (DIR) and identify regions of potential DIR errors. Methods: DIR Deformable Vector Fields (DVFs) quantifying patient anatomic changes were evaluated using the Jacobian determinant and the magnitude of DVF curl as functions of tissue density and tissue type. These quantities represent local relative deformation and rotation, respectively. Large values in dense tissues can potentially identify non-physical DVF errors. For multiple DVFs per patient, histograms and visualization of DVF differences were also considered. To demonstrate the capabilities of methods, we computed multiple DVFs for each of five Head and Neck (H'N) patientsmore » (P1–P5) via a Fast-symmetric Demons (FSD) algorithm and via a Diffeomorphic Demons (DFD) algorithm, and show the potential to identify DVF errors. Results: Quantitative comparisons of the FSD and DFD registrations revealed <0.3 cm DVF differences in >99% of all voxels for P1, >96% for P2, and >90% of voxels for P3. While the FSD and DFD registrations were very similar for these patients, the Jacobian determinant was >50% in 9–15% of soft tissue and in 3–17% of bony tissue in each of these cases. The volumes of large soft tissue deformation were consistent for all five patients using the FSD algorithm (mean 15%±4% volume), whereas DFD reduced regions of large deformation by 10% volume (785 cm{sup 3}) for P4 and by 14% volume (1775 cm{sup 3}) for P5. The DFD registrations resulted in fewer regions of large DVF-curl; 50% rotations in FSD registrations averaged 209±136 cm{sup 3} in soft tissue and 10±11 cm{sup 3} in bony tissue, but using DFD these values were reduced to 42±53 cm{sup 3} and 1.1±1.5 cm{sup 3}, respectively. Conclusion: Analysis of Jacobian determinant and curl as functions of tissue density can identify regions of potential DVF errors by identifying non-physical deformations and rotations. Collaboration with Phillips Healthcare, as indicated in authorship.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, L; Yin, F; Cai, J

    Purpose: To develop a methodology of constructing physiological-based virtual thorax phantom based on hyperpolarized (HP) gas tagging MRI for evaluating deformable image registration (DIR). Methods: Three healthy subjects were imaged at both the end-of-inhalation (EOI) and the end-of-exhalation (EOE) phases using a high-resolution (2.5mm isovoxel) 3D proton MRI, as well as a hybrid MRI which combines HP gas tagging MRI and a low-resolution (4.5mm isovoxel) proton MRI. A sparse tagging displacement vector field (tDVF) was derived from the HP gas tagging MRI by tracking the displacement of tagging grids between EOI and EOE. Using the tDVF and the high-resolution MRmore » images, we determined the motion model of the entire thorax in the following two steps: 1) the DVF inside of lungs was estimated based on the sparse tDVF using a novel multi-step natural neighbor interpolation method; 2) the DVF outside of lungs was estimated from the DIR between the EOI and EOE images (Velocity AI). The derived motion model was then applied to the high-resolution EOI image to create a deformed EOE image, forming the virtual phantom where the motion model provides the ground truth of deformation. Five DIR methods were evaluated using the developed virtual phantom. Errors in DVF magnitude (Em) and angle (Ea) were determined and compared for each DIR method. Results: Among the five DIR methods, free form deformation produced DVF results that are most closely resembling the ground truth (Em=1.04mm, Ea=6.63°). The two DIR methods based on B-spline produced comparable results (Em=2.04mm, Ea=13.66°; and Em =2.62mm, Ea=17.67°), and the two optical-flow methods produced least accurate results (Em=7.8mm; Ea=53.04°; Em=4.45mm, Ea=31.02°). Conclusion: A methodology for constructing physiological-based virtual thorax phantom based on HP gas tagging MRI has been developed. Initial evaluation demonstrated its potential as an effective tool for robust evaluation of DIR in the lung.« less

  13. A pseudoinverse deformation vector field generator and its applications

    PubMed Central

    Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.

    2010-01-01

    Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247

  14. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, Y; Liu, Y

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE.more » Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different DIR methods was also observed.« less

  15. MO-C-17A-13: Uncertainty Evaluation of CT Image Deformable Registration for H and N Cancer Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, A; Yan, D

    2014-06-15

    Purpose: To evaluate uncertainties of organ specific Deformable Image Registration (DIR) for H and N cancer Adaptive Radiation Therapy (ART). Methods: A commercial DIR evaluation tool, which includes a digital phantom library of 8 patients, and the corresponding “Ground truth Deformable Vector Field” (GT-DVF), was used in the study. Each patient in the phantom library includes the GT-DVF created from a pair of CT images acquired prior to and at the end of the treatment course. Five DIR tools, including 2 commercial tools (CMT1, CMT2), 2 in-house (IH-FFD1, IH-FFD2), and a classic DEMON algorithms, were applied on the patient images.more » The resulting DVF was compared to the GT-DVF voxel by voxel. Organ specific DVF uncertainty was calculated for 10 ROIs: Whole Body, Brain, Brain Stem, Cord, Lips, Mandible, Parotid, Esophagus and Submandibular Gland. Registration error-volume histogram was constructed for comparison. Results: The uncertainty is relatively small for brain stem, cord and lips, while large in parotid and submandibular gland. CMT1 achieved best overall accuracy (on whole body, mean vector error of 8 patients: 0.98±0.29 mm). For brain, mandible, parotid right, parotid left and submandibular glad, the classic Demon algorithm got the lowest uncertainty (0.49±0.09, 0.51±0.16, 0.46±0.11, 0.50±0.11 and 0.69±0.47 mm respectively). For brain stem, cord and lips, the DVF from CMT1 has the best accuracy (0.28±0.07, 0.22±0.08 and 0.27±0.12 mm respectively). All algorithms have largest right parotid uncertainty on patient #7, which has image artifact caused by tooth implantation. Conclusion: Uncertainty of deformable CT image registration highly depends on the registration algorithm, and organ specific. Large uncertainty most likely appears at the location of soft-tissue organs far from the bony structures. Among all 5 DIR methods, the classic DEMON and CMT1 seem to be the best to limit the uncertainty within 2mm for all OARs. Partially supported by research grant from Elekta.« less

  16. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  17. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-07

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  18. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    PubMed Central

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-01-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp–Davis–Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496

  19. Voxel-based statistical analysis of uncertainties associated with deformable image registration

    NASA Astrophysics Data System (ADS)

    Li, Shunshan; Glide-Hurst, Carri; Lu, Mei; Kim, Jinkoo; Wen, Ning; Adams, Jeffrey N.; Gordon, James; Chetty, Indrin J.; Zhong, Hualiang

    2013-09-01

    Deformable image registration (DIR) algorithms have inherent uncertainties in their displacement vector fields (DVFs).The purpose of this study is to develop an optimal metric to estimate DIR uncertainties. Six computational phantoms have been developed from the CT images of lung cancer patients using a finite element method (FEM). The FEM generated DVFs were used as a standard for registrations performed on each of these phantoms. A mechanics-based metric, unbalanced energy (UE), was developed to evaluate these registration DVFs. The potential correlation between UE and DIR errors was explored using multivariate analysis, and the results were validated by landmark approach and compared with two other error metrics: DVF inverse consistency (IC) and image intensity difference (ID). Landmark-based validation was performed using the POPI-model. The results show that the Pearson correlation coefficient between UE and DIR error is rUE-error = 0.50. This is higher than rIC-error = 0.29 for IC and DIR error and rID-error = 0.37 for ID and DIR error. The Pearson correlation coefficient between UE and the product of the DIR displacements and errors is rUE-error × DVF = 0.62 for the six patients and rUE-error × DVF = 0.73 for the POPI-model data. It has been demonstrated that UE has a strong correlation with DIR errors, and the UE metric outperforms the IC and ID metrics in estimating DIR uncertainties. The quantified UE metric can be a useful tool for adaptive treatment strategies, including probability-based adaptive treatment planning.

  20. SU-F-J-138: An Extension of PCA-Based Respiratory Deformation Modeling Via Multi-Linear Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Pitsianis, N

    Purpose: To address and lift the limited degree of freedom (DoF) of globally bilinear motion components such as those based on principal components analysis (PCA), for encoding and modeling volumetric deformation motion. Methods: We provide a systematic approach to obtaining a multi-linear decomposition (MLD) and associated motion model from deformation vector field (DVF) data. We had previously introduced MLD for capturing multi-way relationships between DVF variables, without being restricted by the bilinear component format of PCA-based models. PCA-based modeling is commonly used for encoding patient-specific deformation as per planning 4D-CT images, and aiding on-board motion estimation during radiotherapy. However, themore » bilinear space-time decomposition inherently limits the DoF of such models by the small number of respiratory phases. While this limit is not reached in model studies using analytical or digital phantoms with low-rank motion, it compromises modeling power in the presence of relative motion, asymmetries and hysteresis, etc, which are often observed in patient data. Specifically, a low-DoF model will spuriously couple incoherent motion components, compromising its adaptability to on-board deformation changes. By the multi-linear format of extracted motion components, MLD-based models can encode higher-DoF deformation structure. Results: We conduct mathematical and experimental comparisons between PCA- and MLD-based models. A set of temporally-sampled analytical trajectories provides a synthetic, high-rank DVF; trajectories correspond to respiratory and cardiac motion factors, including different relative frequencies and spatial variations. Additionally, a digital XCAT phantom is used to simulate a lung lesion deforming incoherently with respect to the body, which adheres to a simple respiratory trend. In both cases, coupling of incoherent motion components due to a low model DoF is clearly demonstrated. Conclusion: Multi-linear decomposition can enable decoupling of distinct motion factors in high-rank DVF measurements. This may improve motion model expressiveness and adaptability to on-board deformation, aiding model-based image reconstruction for target verification. NIH Grant No. R01-184173.« less

  1. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Strasser, M. P.

    2017-12-01

    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine the exposed shoreface of Stampede Reservoir near the dam, and exposures of steeply dipping strike-slip faults were found.

  2. SU-F-BRB-01: How Effective Is Abdominal Compression at Reducing Lung Motion? An Analysis Using Deformable Image Registration Within Different Sub-Regions of the Lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paradiso, D; Pearce, A; Leszczynski, K

    2015-06-15

    Purpose: To investigate the effectiveness of employing abdominal compression (AC) in reducing motion for the target region and sub-regions of the lung as part of the planning process for radiation therapy. Methods: Fourteen patients with early lung cancer were scanned with 4DCT and it was determined that target motion exceeded our institutional limit of > 8 mm motion and received a repeat 4DCT with AC. For each 4DCT, deformable image registration (DIR) was used to map the max inhale to the max exhale phase to determine the deformation vector fields (DVF). DIR was performed with Morphons and Demons algorithms. Themore » mean DVF was used to represent that sub-region for each patient. The magnitudes of the mean DVF were quantified for the target and 12 sub-regions in the AP, LR SI directions. The sub-regions were contoured on each lung as (add prefix R or L for lung): Upper-Anterior (UA), Upper-Posterior (UP), Mid-Anterior (MA), Mid-Posterior (MP), Lower-Anterior (LA) and Lower-Posterior (LP). Results: The min/max SI motion for the target on the uncompressed 4DCT was 8mm/24.5 mm. The magnitude of decrease in SI was greatest in the RLP region (3.7±4.0mm) followed by target region (3.3±2.2mm) and finally the LLP region (3.0±3.5mm). The magnitude of decrease in 3D vector followed the same trend; RLP (3.5±2.2mm) then GTV (3.5±2.6mm) then LLP (2.7±3.8mm). 79% of the cases had a SI decrease of >12.5%, 43% had a SI decrease of >25% and 21% had a SI decrease of >50% as compared to the motion on the uncompressed 4DCT. Conclusion: AC is useful in reducing motion with the largest decreases observed in the lower posterior regions of the lungs. However, it should be noted that AC will not greatly decrease motion for all cases as 21% of cases did not reduce SI motion more than 12.5% of initial motion.« less

  3. SU-E-J-119: Head-And-Neck Digital Phantoms for Geometric and Dosimetric Uncertainty Evaluation of CT-CBCT Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Z; Koyfman, S; Xia, P

    2015-06-15

    Purpose: To evaluate geometric and dosimetric uncertainties of CT-CBCT deformable image registration (DIR) algorithms using digital phantoms generated from real patients. Methods: We selected ten H&N cancer patients with adaptive IMRT. For each patient, a planning CT (CT1), a replanning CT (CT2), and a pretreatment CBCT (CBCT1) were used as the basis for digital phantom creation. Manually adjusted meshes were created for selected ROIs (e.g. PTVs, brainstem, spinal cord, mandible, and parotids) on CT1 and CT2. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was applied tomore » CBCT1 to create a simulated mid-treatment CBCT (CBCT2). The CT-CBCT digital phantom consisted of CT1 and CBCT2, which were linked by the reference DVF. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten digital phantoms. The images, ROIs, and volumetric doses were mapped from CT1 to CBCT2 using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.83 to 0.94 for Demons, from 0.82 to 0.95 for B-Spline, and from 0.67 to 0.89 for intensity-based DIR. The average Hausdorff distances for selected ROIs were from 2.4 to 6.2 mm for Demons, from 1.8 to 5.9 mm for B-Spline, and from 2.8 to 11.2 mm for intensity-based DIR. The average absolute dose errors for selected ROIs were from 0.7 to 2.1 Gy for Demons, from 0.7 to 2.9 Gy for B- Spline, and from 1.3 to 4.5 Gy for intensity-based DIR. Conclusion: Using clinically realistic CT-CBCT digital phantoms, Demons and B-Spline were shown to have similar geometric and dosimetric uncertainties while intensity-based DIR had the worst uncertainties. CT-CBCT DIR has the potential to provide accurate CBCT-based dose verification for H&N adaptive radiotherapy. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; S Koyfman: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less

  4. SU-F-P-54: Guidelines to Check Image Registration QA of a Clinical Deformation Registration Software: A Single Institution Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, G; Souri, S; Rea, A

    Purpose: The objective of this study is to verify and analyze the accuracy of a clinical deformable image registration (DIR) software. Methods: To test clinical DIR software qualitatively and quantitatively, we focused on lung radiotherapy and analyzed a single (Lung) patient CT scan. Artificial anatomical changes were applied to account for daily variations during the course of treatment including the planning target volume (PTV) and organs at risk (OAR). The primary CT (pCT) and the structure set (pST) was deformed with commercial tool (ImSimQA-Oncology Systems Limited) and after artificial deformation (dCT and dST) sent to another commercial tool (VelocityAI-Varian Medicalmore » Systems). In Velocity, the deformed CT and structures (dCT and dST) were inversely deformed back to original primary CT (dbpCT and dbpST). We compared the dbpST and pST structure sets using similarity metrics. Furthermore, a binary deformation field vector (BDF) was created and sent to ImSimQA software for comparison with known “ground truth” deformation vector fields (DVF). Results: An image similarity comparison was made by using “ground truth” DVF and “deformed output” BDF with an output of normalized “cross correlation (CC)” and “mutual information (MI)” in ImSimQA software. Results for the lung case were MI=0.66 and CC=0.99. The artificial structure deformation in both pST and dbpST was analyzed using DICE coefficient, mean distance to conformity (MDC) and deformation field error volume histogram (DFEVH) by comparing them before and after inverse deformation. We have noticed inadequate structure match for CTV, ITV and PTV due to close proximity of heart and overall affected by lung expansion. Conclusion: We have seen similarity between pCT and dbpCT but not so well between pST and dbpST, because of inadequate structure deformation in clinical DIR system. This system based quality assurance test will prepare us for adopting the guidelines of upcoming AAPM task group 132 protocol.« less

  5. WE-AB-BRA-08: Results of a Multi-Institutional Study for the Evaluation of Deformable Image Registration Algorithms for Structure Delineation Via Computational Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loi, G; Fusella, M; Fiandra, C

    2015-06-15

    Purpose: To investigate the accuracy of various algorithms for deformable image registration (DIR), to propagate regions of interest (ROIs) in computational phantoms based on patient images using different commercial systems. This work is part of an Italian multi-institutional study to test on common datasets the accuracy, reproducibility and safety of DIR applications in Adaptive Radiotherapy. Methods: Eleven institutions with three available commercial solutions provided data to assess the agreement of DIR-propagated ROIs with automatically drown ROIs considered as ground-truth for the comparison. The DIR algorithms were tested on real patient data from three different anatomical districts: head and neck, thoraxmore » and pelvis. For every dataset two specific Deformation Vector Fields (DVFs) provided by ImSimQA software were applied to the reference data set. Three different commercial software were used in this study: RayStation, Velocity and Mirada. The DIR-mapped ROIs were then compared with the reference ROIs using the Jaccard Conformity Index (JCI). Results: More than 600 DIR-mapped ROIs were analyzed. Putting together all JCI data of all institutions for the first DVF, the mean JCI was 0.87 ± 0.7 (1 SD) while for the second DVF JCI was 0.8 ± 0.13 (1 SD). Several considerations on different structures are available from collected data: the standard deviation among different institutions on specific structure raise as the larger is the applied DVF. The higher value is 10% for bladder. Conclusion: Although the complexity of deformation of human body is very difficult to model, this work illustrates some clinical scenarios with well-known DVFs provided by specific software. CI parameter gives the inter-user variability and may put in evidence the need of improving the working protocol in order to reduce the inter-institution JCI variability.« less

  6. Examining lateralized semantic access using pictures.

    PubMed

    Lovseth, Kyle; Atchley, Ruth Ann

    2010-03-01

    A divided visual field (DVF) experiment examined the semantic processing strategies employed by the cerebral hemispheres to determine if strategies observed with written word stimuli generalize to other media for communicating semantic information. We employed picture stimuli and vary the degree of semantic relatedness between the picture pairs. Participants made an on-line semantic relatedness judgment in response to sequentially presented pictures. We found that when pictures are presented to the right hemisphere responses are generally more accurate than the left hemisphere for semantic relatedness judgments for picture pairs. Furthermore, consistent with earlier DVF studies employing words, we conclude that the RH is better at accessing or maintaining access to information that has a weak or more remote semantic relationship. We also found evidence of faster access for pictures presented to the LH in the strongly-related condition. Overall, these results are consistent with earlier DVF word studies that argue that the cerebral hemispheres each play an important and separable role during semantic retrieval. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Modulation of the inter-hemispheric processing of semantic information during normal aging. A divided visual field experiment.

    PubMed

    Hoyau, E; Cousin, E; Jaillard, A; Baciu, M

    2016-12-01

    We evaluated the effect of normal aging on the inter-hemispheric processing of semantic information by using the divided visual field (DVF) method, with words and pictures. Two main theoretical models have been considered, (a) the HAROLD model which posits that aging is associated with supplementary recruitment of the right hemisphere (RH) and decreased hemispheric specialization, and (b) the RH decline theory, which assumes that the RH becomes less efficient with aging, associated with increased LH specialization. Two groups of subjects were examined, a Young Group (YG) and an Old Group (OG), while participants performed a semantic categorization task (living vs. non-living) in words and pictures. The DVF was realized in two steps: (a) unilateral DVF presentation with stimuli presented separately in each visual field, left or right, allowing for their initial processing by only one hemisphere, right or left, respectively; (b) bilateral DVF presentation (BVF) with stimuli presented simultaneously in both visual fields, followed by their processing by both hemispheres. These two types of presentation permitted the evaluation of two main characteristics of the inter-hemispheric processing of information, the hemispheric specialization (HS) and the inter-hemispheric cooperation (IHC). Moreover, the BVF allowed determining the driver-hemisphere for processing information presented in BVF. Results obtained in OG indicated that: (a) semantic categorization was performed as accurately as YG, even if more slowly, (b) a non-semantic RH decline was observed, and (c) the LH controls the semantic processing during the BVF, suggesting an increased role of the LH in aging. However, despite the stronger involvement of the LH in OG, the RH is not completely devoid of semantic abilities. As discussed in the paper, neither the HAROLD nor the RH decline does fully explain this pattern of results. We rather suggest that the effect of aging on the hemispheric specialization and inter-hemispheric cooperation during semantic processing is explained not by only one model, but by an interaction between several complementary mechanisms and models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. MO-C-17A-08: Evaluation of Lung Deformation Using Three Dimensional Strain Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, T; Huang, Q; Miller, W

    2014-06-15

    Purpose: To develop a systematic approach to generate three dimensional (3D) strain maps of lung using the displacement vector field (DVF) during the respiratory deformation, and to demonstrate its application in evaluating deformable image registration (DIR). Methods: A DVF based strain tensor at each voxel of interest (VOI) was calculated from the relative displacements between the VOI and each of the six nearest neighbors. The maximum and minimum stretches of a VOI can be determined by the principal strains (E{sub 1}, E{sub 2} and E{sub 3}), which are the eigenvalues and the corresponding strain tensors. Two healthy volunteers enrolled inmore » this study under IRB-approved protocol, each was scanned using 3D Hyperpolarized He-3 tagging-MRI and 3D proton-MRI with TrueFISP sequence at the endof- inhalation (EOI) and the end-of-exhalation (EOE) phases. 3D DVFs of tagging- and proton-MRI were obtained by the direct measurements of the tagging grid trajectory and by the DIR method implemented in commercial software. Results: 3D strain maps were successfully generated for all DVFs. The principal strain E1s were calculated as 0.43±0.05 and 0.17±0.25 for tagging-MRI and proton-MRI, respectively. The large values of E{sub 1} indicate the predominant lung motion in the superior-inferior (SI) direction. Given that the DVFs from the tagging images are considered as the ground truth, the discrepancies in the DIR-based strain maps suggest the inaccuracy of the DIR algorithm. In the E{sub 1} maps of tagging-MRI for subject 1, the fissures were distinguishable by the larger values (0.49±0.02) from the adjacent tissues (0.41±0.03) due to the larger relative displacement between the lung lobes. Conclusion: We have successfully developed a methodology to generate DVF-based 3D strain maps of lung. It can potentially enable us to better understand the pulmonary biomechanics and to evaluate and improve the DIR algorithms for the lung deformation. We are currently studying more subjects to evaluate this tool.« less

  9. On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Edward T.; Hardcastle, Nicholas; Tome, Wolfgang A.

    2012-01-15

    Purpose: Deformable image registration (DIR) is necessary for accurate dose accumulation between multiple radiotherapy image sets. DIR algorithms can suffer from inverse and transitivity inconsistencies. When using deformation vector fields (DVFs) that exhibit inverse-inconsistency and are nontransitive, dose accumulation on a given image set via different image pathways will lead to different accumulated doses. The purpose of this study was to investigate the dosimetric effect of and propose a postprocessing solution to reduce inverse consistency and transitivity errors. Methods: Four MVCT images and four phases of a lung 4DCT, each with an associated calculated dose, were selected for analysis. DVFsmore » between all four images in each data set were created using the Fast Symmetric Demons algorithm. Dose was accumulated on the fourth image in each set using DIR via two different image pathways. The two accumulated doses on the fourth image were compared. The inverse consistency and transitivity errors in the DVFs were then reduced. The dose accumulation was repeated using the processed DVFs, the results of which were compared with the accumulated dose from the original DVFs. To evaluate the influence of the postprocessing technique on DVF accuracy, the original and processed DVF accuracy was evaluated on the lung 4DCT data on which anatomical landmarks had been identified by an expert. Results: Dose accumulation to the same image via different image pathways resulted in two different accumulated dose results. After the inverse consistency errors were reduced, the difference between the accumulated doses diminished. The difference was further reduced after reducing the transitivity errors. The postprocessing technique had minimal effect on the accuracy of the DVF for the lung 4DCT images. Conclusions: This study shows that inverse consistency and transitivity errors in DIR have a significant dosimetric effect in dose accumulation; Depending on the image pathway taken to accumulate the dose, different results may be obtained. A postprocessing technique that reduces inverse consistency and transitivity error is presented, which allows for consistent dose accumulation regardless of the image pathway followed.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Z; Greskovich, J; Xia, P

    Purpose: To generate virtual phantoms with clinically relevant deformation and use them to objectively evaluate geometric and dosimetric uncertainties of deformable image registration (DIR) algorithms. Methods: Ten lung cancer patients undergoing adaptive 3DCRT planning were selected. For each patient, a pair of planning CT (pCT) and replanning CT (rCT) were used as the basis for virtual phantom generation. Manually adjusted meshes were created for selected ROIs (e.g. PTV, lungs, spinal cord, esophagus, and heart) on pCT and rCT. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF wasmore » used to deform pCT to generate a simulated replanning CT (srCT) that was closely matched to rCT. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten virtual phantoms. The images, ROIs, and doses were mapped from pCT to srCT using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.85 to 0.96 for Demons, from 0.86 to 0.97 for intensity-based, and from 0.76 to 0.95 for B-Spline. The average Hausdorff distances for selected ROIs were from 2.2 to 5.4 mm for Demons, from 2.3 to 6.8 mm for intensity-based, and from 2.4 to 11.4 mm for B-Spline. The average absolute dose errors for selected ROIs were from 0.2 to 0.6 Gy for Demons, from 0.1 to 0.5 Gy for intensity-based, and from 0.5 to 1.5 Gy for B-Spline. Conclusion: Virtual phantoms were modeled after patients with lung cancer and were clinically relevant for adaptive radiotherapy treatment replanning. Virtual phantoms with known DVFs serve as references and can provide a fair comparison when evaluating different DIRs. Demons and intensity-based DIRs were shown to have smaller geometric and dosimetric uncertainties than B-Spline. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; J Greskovich: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less

  11. Using SLAM to Look For the Dog Valley Fault, Truckee Area, California

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Ashburn, J. A.; Sverdrup, K. A.

    2014-12-01

    The Truckee earthquake (9/12/1966, ML6.0) was a left-lateral event on a previously unrecognized NW-trending fault. The Prosser Creek and Boca Dams sustained damage, and the trace of the suspected causative fault passes near or through the site of the then-incomplete Stampede Dam. Another M6 earthquake occurred along the same general trend in 1948 with an epicenter in Dog Valley ~14 km to the NW of the 1966 epicenter. This trend is called the Dog Valley Fault (DVF), and its location on the ground surface is suggested by a prominent but broad zone of geomorphic lineaments near the cloud of aftershock epicenters determined for the 1966 event. Various ground effects of the 1966 event described by Kachadoorian et al. (1967) were located within this broad zone. The upper shoreface of reservoirs in the Truckee-Prosser-Martis basin are now exposed due to persistent drought. We have examined fault strands in a roadcut and exposed upper shoreface adjacent to the NE abutment of Stampede Dam. These are interpreted to be small-displacement splays associated with the DVF -- perhaps elements of the DVF damage zone. We have used the Seismo-Lineament Analysis Method (SLAM) to help us constrain the location of the DVF, based on earthquake focal mechanisms. Seismo-lineaments were computed, using recent revisions in the SLAM code (bearspace.baylor.edu/Vince_Cronin/www/SLAM/), for the 1966 main earthquake and for the better-recorded earthquakes of 7/3/1983 (M4) and 8/30/1992 (M3.2) that are inferred to have occurred along the DVF. Associated geomorphic analysis and some field reconnaissance identified a trend that might be associated with a fault, extending from the NW end of Prosser Creek Reservoir ~32° toward the Stampede Dam area. Triangle-strain analysis using horizontal velocities of local Plate Boundary Observatory GPS sites P146, P149, P150 and SLID indicates that the area rotates clockwise ~1-2°/Myr relative to the stable craton, as might be expected because the study area is within the Walker Lane transition zone between the Basin and Range and the Sierra Nevada-Great Valley Block. If the current seismogenic trace of the DVF is along the ~32° trend, perhaps the more prominent geomorphic lineaments traditionally associated with the DVF are inactive older features that are more strongly expressed on the landscape and that have rotated.

  12. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.

    PubMed

    Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei

    2014-04-27

    In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the motion along the non-preferred directions, the target deformation is tracked actively. The proposed DVF for an admittance-type manipulator is capable of assisting the operator to deal with skilled operations in a deforming environment.

  13. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less

  14. TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Wen, N; Gordon, J

    2014-06-15

    Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocitymore » generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.« less

  15. A Biomechanical Modeling Guided CBCT Estimation Technique

    PubMed Central

    Zhang, You; Tehrani, Joubin Nasehi; Wang, Jing

    2017-01-01

    Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks. PMID:27831866

  16. Examining Lateralized Semantic Access Using Pictures

    ERIC Educational Resources Information Center

    Lovseth, Kyle; Atchley, Ruth Ann

    2010-01-01

    A divided visual field (DVF) experiment examined the semantic processing strategies employed by the cerebral hemispheres to determine if strategies observed with written word stimuli generalize to other media for communicating semantic information. We employed picture stimuli and vary the degree of semantic relatedness between the picture pairs.…

  17. Whole mount microscopic sections reveal that Denonvilliers' fascia is one entity and adherent to the mesorectal fascia; implications for the anterior plane in total mesorectal excision?

    PubMed

    Kraima, A C; West, N P; Treanor, D; Magee, D R; Rutten, H J; Quirke, P; DeRuiter, M C; van de Velde, C J H

    2015-06-01

    Excellent anatomical knowledge of the rectum and surrounding structures is essential for total mesorectal excision (TME). Denonviliers' fascia (DVF) has been frequently studied, though the optimal anterior plane in TME is still disputed. The relationship of the lateral edges of DVF to the autonomic nerves and mesorectal fascia is unclear. We studied whole mout microscopic sections of en-bloc cadaveric pelvic exenteration and describe implications for TME. Four donated human adult cadaveric specimens (two males, two females) were obtained from the Leeds GIFT Research Tissue Programme. Paraffin-embedded mega blocks were produced and serially sectioned at 50 and 250 μm intervals. Sections were stained with haematoxylin & eosin, Masson's trichrome and Millers' elastin. Additionally, a series of eleven human fetal specimens (embryonic age of 9-20 weeks) were studied. DVF consisted of multiple fascial condensations of collagen and smooth muscle fibres and was indistinguishable from the anterior mesorectal fascia and the prostatic fascia or posterior vaginal wall. The lateral edges of DVF appeared fan-shaped and the most posterior part was continuous with the mesorectal fascia. Fasciae were not identified in fetal specimens. DVF is adherent to and continuous with the mesorectal fascia. Optimal surgical dissection during TME should be carried out anterior to DVF to ensure radical removal, particularly for anterior tumours. Autonomic nerves are at risk, but can be preserved by closely following the mesorectal fascia along the anterolateral mesorectum. The lack of evident fasciae in fetal specimens suggested that these might be formed in later developmental stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The impact of persistent visually disabling vitreous floaters on health status utility values.

    PubMed

    Zou, Haidong; Liu, Haiyun; Xu, Xun; Zhang, Xi

    2013-08-01

    To assess the time trade-off (TTO) utility values in patients with persistent visually disabling vitreous floaters (DVF) and to determine the reliability and validity of TTO methods in DVF patients. Prospective cross-sectional questionnaire survey: Eligible patients with persistent DVF referred to the Shanghai First People's Hospital outpatient service between January 2006 and February 2010, and randomly selected normal vision general population residents, were enrolled. All participants underwent TTO utility value evaluation. After 4-5 weeks, the patients were asked to undergo second TTO utility value evaluation during the follow-up interview. The mean initial utility values of the 107 persistent DVF patients were 0.904 ± 0.054. Regression analyses revealed that length of education, visual acuity in the poorer-vision eye and employment status were associated with utility values (all P < 0.01). All patients took part in the follow-up interview; the intra-class correlation coefficient for TTO utility values at the initial and follow-up interviews was 0.855. In the 91 general population residents, the mean utility value was 0.923 ± 0.032, which was statistically higher than that of active study patients (t = 3.01, P < 0.01). Persistent DVF can substantially diminish the patients' perception of their life, and can be measured by TTO utility values with high reliability and construct validity.

  19. Torsional ARC Effectively Expands the Visual Field in Hemianopia

    PubMed Central

    Satgunam, PremNandhini; Peli, Eli

    2012-01-01

    Purpose Exotropia in congenital homonymous hemianopia has been reported to provide field expansion that is more useful when accompanied with harmonios anomalous retinal correspondence (HARC). Torsional strabismus with HARC provides a similar functional advantage. In a subject with hemianopia demonstrating a field expansion consistent with torsion we documented torsional strabismus and torsional HARC. Methods Monocular visual fields under binocular fixation conditions were plotted using a custom dichoptic visual field perimeter (DVF). The DVF was also modified to measure perceived visual directions under dissociated and associated conditions across the central 50° diameter field. The field expansion and retinal correspondence of a subject with torsional strabismus (along with exotropia and right hypertropia) with congenital homonymous hemianopia was compared to that of another exotropic subject with acquired homonymous hemianopia without torsion and to a control subject with minimal phoria. Torsional rotations of the eyes were calculated from fundus photographs and perimetry. Results Torsional ARC documented in the subject with congenital homonymous hemianopia provided a functional binocular field expansion up to 18°. Normal retinal correspondence was mapped for the full 50° visual field in the control subject and for the seeing field of the acquired homonymous hemianopia subject, limiting the functional field expansion benefit. Conclusions Torsional strabismus with ARC, when occurring with homonymous hemianopia provides useful field expansion in the lower and upper fields. Dichoptic perimetry permits documentation of ocular alignment (lateral, vertical and torsional) and perceived visual direction under binocular and monocular viewing conditions. Evaluating patients with congenital or early strabismus for HARC is useful when considering surgical correction, particularly in the presence of congenital homonymous hemianopia. PMID:22885782

  20. WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, V; Gu, X; Chen, S

    2014-06-15

    Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints inmore » the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.« less

  1. A virtual phantom library for the quantification of deformable image registration uncertainties in patients with cancers of the head and neck.

    PubMed

    Pukala, Jason; Meeks, Sanford L; Staton, Robert J; Bova, Frank J; Mañon, Rafael R; Langen, Katja M

    2013-11-01

    Deformable image registration (DIR) is being used increasingly in various clinical applications. However, the underlying uncertainties of DIR are not well-understood and a comprehensive methodology has not been developed for assessing a range of interfraction anatomic changes during head and neck cancer radiotherapy. This study describes the development of a library of clinically relevant virtual phantoms for the purpose of aiding clinicians in the QA of DIR software. These phantoms will also be available to the community for the independent study and comparison of other DIR algorithms and processes. Each phantom was derived from a pair of kVCT volumetric image sets. The first images were acquired of head and neck cancer patients prior to the start-of-treatment and the second were acquired near the end-of-treatment. A research algorithm was used to autosegment and deform the start-of-treatment (SOT) images according to a biomechanical model. This algorithm allowed the user to adjust the head position, mandible position, and weight loss in the neck region of the SOT images to resemble the end-of-treatment (EOT) images. A human-guided thin-plate splines algorithm was then used to iteratively apply further deformations to the images with the objective of matching the EOT anatomy as closely as possible. The deformations from each algorithm were combined into a single deformation vector field (DVF) and a simulated end-of-treatment (SEOT) image dataset was generated from that DVF. Artificial noise was added to the SEOT images and these images, along with the original SOT images, created a virtual phantom where the underlying "ground-truth" DVF is known. Images from ten patients were deformed in this fashion to create ten clinically relevant virtual phantoms. The virtual phantoms were evaluated to identify unrealistic DVFs using the normalized cross correlation (NCC) and the determinant of the Jacobian matrix. A commercial deformation algorithm was applied to the virtual phantoms to show how they may be used to generate estimates of DIR uncertainty. The NCC showed that the simulated phantom images had greater similarity to the actual EOT images than the images from which they were derived, supporting the clinical relevance of the synthetic deformation maps. Calculation of the Jacobian of the "ground-truth" DVFs resulted in only positive values. As an example, mean error statistics are presented for all phantoms for the brainstem, cord, mandible, left parotid, and right parotid. It is essential that DIR algorithms be evaluated using a range of possible clinical scenarios for each treatment site. This work introduces a library of virtual phantoms intended to resemble real cases for interfraction head and neck DIR that may be used to estimate and compare the uncertainty of any DIR algorithm.

  2. SU-E-J-77: Dose Tracking On An MR-Linac for Online QA and Plan Adaptation in Abdominal Organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glitzner, M; Crijns, S; Kontaxis, C

    2015-06-15

    Recent developments made MRI-guided radiotherapy feasible. Simultaneously performed imaging during dose delivery reveals the influence of changes in anatomy not yet known at the planning stage. When targeting highly motile abdominal organs, respiratory gating is commonly employed in MRI and investigated in external beam radiotherapy to mitigate malicious motion effects. The purpose of the presented work is to investigate anatomy-adaptive dose reconstruction in the treatment of abdominalorgans using concurrent (duplex) gating of an integrated MRlinac modality.Using navigators, 3D-MR images were sampled during exhale phase, requiring 3s per axial volume (360×260×100mm{sup 3}, waterselective T1w-FFE). Deformation vector fields (DVF) were calculated formore » all imaging dynamics with respect to initial anatomy, yielding an estimation of anatomy changes over the time of a fraction. A pseudo-CT was generated from the outline of a reference MR image, assuming a water-filled body. Consecutively, a treatment was planned on a fictional kidney lesion and optimized simulating a 6MV linac in a 1.5T magnetic field. After delivery, using the DVF, the pseudo-CT was deformed and dose accumulated for every individual gating interval yielding the true accumulated dose on the dynamic anatomy during beam-on.Dose-volume parameters on the PTV show only moderate changes when incorporating motion, i.e. ΔD{sub 99} (GTV)=0.3Gy with D{sub 99} (GTV)=20Gy constraints. However, local differences in the PTV region showed underdosages as high as 2.7Gy and overdosages up to 1.4Gy as compared to the optimized dose on static anatomy.A dose reconstruction toolchain was successfully implemented and proved its potential in the duplex gated treatment of abdominal organs by means of an MR-linac modality. While primary dose constraints were not violated on the fictional test data, large deviations could be found locally, which are left unaccounted for in conventional treatments. Dose-tracking of both target structures and organs at risk using 3D MRI during treatment enables truly adaptive hypofractionated radiotherapy. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less

  3. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang

    2014-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PMID:24257278

  4. Using patient‐specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide‐Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J

    2013-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B‐spline‐based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast‐Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM‐DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0~3.1mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B‐spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient‐specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient‐dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PACS numbers: 87.10.Kn, 87.55.km, 87.55.Qr, 87.57.nj

  5. TU-AB-202-05: GPU-Based 4D Deformable Image Registration Using Adaptive Tetrahedral Mesh Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z; Zhuang, L; Gu, X

    Purpose: Deformable image registration (DIR) has been employed today as an automated and effective segmentation method to transfer tumor or organ contours from the planning image to daily images, instead of manual segmentation. However, the computational time and accuracy of current DIR approaches are still insufficient for online adaptive radiation therapy (ART), which requires real-time and high-quality image segmentation, especially in a large datasets of 4D-CT images. The objective of this work is to propose a new DIR algorithm, with fast computational speed and high accuracy, by using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step ismore » to generate the adaptive tetrahedral mesh based on the image features of a reference phase of 4D-CT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. Subsequently, the deformation vector fields (DVF) and other phases of 4D-CT can be obtained by matching each phase of the target 4D-CT images with the corresponding deformed reference phase. The proposed 4D DIR method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its parallel computing ability. Results: A 4D NCAT digital phantom was used to test the efficiency and accuracy of our method. Both the image and DVF results show that the fine structures and shapes of lung are well preserved, and the tumor position is well captured, i.e., 3D distance error is 1.14 mm. Compared to the previous voxel-based CPU implementation of DIR, such as demons, the proposed method is about 160x faster for registering a 10-phase 4D-CT with a phase dimension of 256×256×150. Conclusion: The proposed 4D DIR method uses feature-based mesh and GPU-based parallelism, which demonstrates the capability to compute both high-quality image and motion results, with significant improvement on the computational speed.« less

  6. Model identification of terfenol-D magnetostrictive actuator for precise positioning control

    NASA Astrophysics Data System (ADS)

    Saleem, Ashraf; Ghodsi, Mojtaba; Mesbah, Mostefa; Ozer, Abdullah

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  7. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    NASA Astrophysics Data System (ADS)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  8. Technical Note: The impact of deformable image registration methods on dose warping.

    PubMed

    Qin, An; Liang, Jian; Han, Xiao; O'Connell, Nicolette; Yan, Di

    2018-03-01

    The purpose of this study was to investigate the clinical-relevant discrepancy between doses warped by pure image based deformable image registration (IM-DIR) and by biomechanical model based DIR (BM-DIR) on intensity-homogeneous organs. Ten patients (5Head&Neck, 5Prostate) were included. A research DIR tool (ADMRIE_v1.12) was utilized for IM-DIR. After IM-DIR, BM-DIR was carried out for organs (parotids, bladder, and rectum) which often encompass sharp dose gradient. Briefly, high-quality tetrahedron meshes were generated and deformable vector fields (DVF) from IM-DIR were interpolated to the surface nodes of the volume meshes as boundary condition. Then, a FEM solver (ABAQUS_v6.14) was used to simulate the displacement of internal nodes, which were then interpolated to image-voxel grids to get the more physically plausible DVF. Both geometrical and subsequent dose warping discrepancies were quantified between the two DIR methods. Target registration discrepancy(TRD) was evaluated to show the geometry difference. The re-calculated doses on second CT were warped to the pre-treatment CT via two DIR. Clinical-relevant dose parameters and γ passing rate were compared between two types of warped dose. The correlation was evaluated between parotid shrinkage and TRD/dose discrepancy. The parotid shrunk to 75.7% ± 9% of its pre-treatment volume and the percentage of volume with TRD>1.5 mm) was 6.5% ± 4.7%. The normalized mean-dose difference (NMDD) of IM-DIR and BM-DIR was -0.8% ± 1.5%, with range (-4.7% to 1.5%). 2 mm/2% passing rate was 99.0% ± 1.4%. A moderate correlation was found between parotid shrinkage and TRD and NMDD. The bladder had a NMDD of -9.9% ± 9.7%, with BM-DIR warped dose systematically higher. Only minor deviation was observed for rectum NMDD (0.5% ± 1.1%). Impact of DIR method on treatment dose warping is patient and organ-specific. Generally, intensity-homogeneous organs, which undergo larger deformation/shrinkage during treatment and encompass sharp dose gradient, will have greater dose warping uncertainty. For these organs, BM-DIR could be beneficial to the evaluation of DIR/dose-warping uncertainty. © 2018 American Association of Physicists in Medicine.

  9. MO-C-17A-11: A Segmentation and Point Matching Enhanced Deformable Image Registration Method for Dose Accumulation Between HDR CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, X; Chen, H; Zhou, L

    2014-06-15

    Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the randommore » walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less

  10. Auto-tracking system for human lumbar motion analysis.

    PubMed

    Sui, Fuge; Zhang, Da; Lam, Shing Chun Benny; Zhao, Lifeng; Wang, Dongjun; Bi, Zhenggang; Hu, Yong

    2011-01-01

    Previous lumbar motion analyses suggest the usefulness of quantitatively characterizing spine motion. However, the application of such measurements is still limited by the lack of user-friendly automatic spine motion analysis systems. This paper describes an automatic analysis system to measure lumbar spine disorders that consists of a spine motion guidance device, an X-ray imaging modality to acquire digitized video fluoroscopy (DVF) sequences and an automated tracking module with a graphical user interface (GUI). DVF sequences of the lumbar spine are recorded during flexion-extension under a guidance device. The automatic tracking software utilizing a particle filter locates the vertebra-of-interest in every frame of the sequence, and the tracking result is displayed on the GUI. Kinematic parameters are also extracted from the tracking results for motion analysis. We observed that, in a bone model test, the maximum fiducial error was 3.7%, and the maximum repeatability error in translation and rotation was 1.2% and 2.6%, respectively. In our simulated DVF sequence study, the automatic tracking was not successful when the noise intensity was greater than 0.50. In a noisy situation, the maximal difference was 1.3 mm in translation and 1° in the rotation angle. The errors were calculated in translation (fiducial error: 2.4%, repeatability error: 0.5%) and in the rotation angle (fiducial error: 1.0%, repeatability error: 0.7%). However, the automatic tracking software could successfully track simulated sequences contaminated by noise at a density ≤ 0.5 with very high accuracy, providing good reliability and robustness. A clinical trial with 10 healthy subjects and 2 lumbar spondylolisthesis patients were enrolled in this study. The measurement with auto-tacking of DVF provided some information not seen in the conventional X-ray. The results proposed the potential use of the proposed system for clinical applications.

  11. Selecting electrode configurations for image-guided cochlear implant programming using template matching

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H.; Dawant, Benoit M.

    2017-03-01

    Cochlear implants (CIs) are used to treat patients with severe-to-profound hearing loss. In surgery, an electrode array is implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). In the recent past, we have proposed a system to assist the audiologist in programming the CI that we call Image-Guided CI Programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend which subset of electrodes should be active to avoid NSO. In an ongoing clinical study, we have shown that IGCIP leads to significant improvement in hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires expert intervention. With expertise, Distance-Vs-Frequency (DVF) curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. In this work, we propose an automated technique for electrode configuration selection. It relies on matching new patients' DVF curves to a library of DVF curves for which electrode configurations are known. We compare this approach to one we have previously proposed. We show that, generally, our new method produces results that are as good as those obtained with our previous one while being generic and requiring fewer parameters.

  12. The Advanced Glaucoma Intervention Study (AGIS): 9. Comparison of glaucoma outcomes in black and white patients within treatment groups.

    PubMed

    2001-09-01

    To compare in eyes of black and white patients the progression of glaucoma after failure of medical therapy and upon start of surgical intervention. Cohort study analysis of data from a randomized clinical trial. This multicenter study included open-angle glaucoma patients who had failed medical therapy: 451 eyes of 332 black patients, 325 eyes of 249 white patients. Eyes were randomly assigned to an argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy (ATT) sequence or a trabeculectomy-ALT-trabeculectomy (TAT) sequence; they had been followed for 7 to 11 years at database closure. Main outcome measures were decrease of visual field (DVF), sustained decrease of visual field (SDVF), decrease of visual acuity (DVA), sustained decrease of visual acuity (SDVA), and failure of first surgical glaucoma intervention. Statistical methods included logistic regression to obtain average adjusted black-white odds ratios for binary outcomes, and Cox regression to estimate adjusted black-white risk ratios for time-to-event outcomes. In the ATT sequence blacks were at lower risk than whites of failure of first intervention (ALT, RR = 0.68, P = 0.040). In the TAT sequence blacks were at higher risk than whites of failure of the first intervention (trabeculectomy, RR = 1.79, P = 0.033), of intraocular pressure > or =18 mm Hg (average OR = 1.41, P = 0.026), and of DVF (average OR = 1.78, P = 0.007). In both treatment sequences, the average number of prescribed medications was greater for blacks than whites (P < or = 0.002). The results support the hypothesis that after failure of medical therapy and upon initiation of surgical intervention, an initial intervention with trabeculectomy retards the progression of glaucoma more effectively in white than in black patients. The data provide a weak suggestion that an initial surgical intervention with ALT retards the progression of glaucoma more effectively in black than in white patients.

  13. A method to map errors in the deformable registration of 4DCT images1

    PubMed Central

    Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.

    2010-01-01

    Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288

  14. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  15. 4D Cone-beam CT reconstruction using a motion model based on principal component analysis

    PubMed Central

    Staub, David; Docef, Alen; Brock, Robert S.; Vaman, Constantin; Murphy, Martin J.

    2011-01-01

    Purpose: To provide a proof of concept validation of a novel 4D cone-beam CT (4DCBCT) reconstruction algorithm and to determine the best methods to train and optimize the algorithm. Methods: The algorithm animates a patient fan-beam CT (FBCT) with a patient specific parametric motion model in order to generate a time series of deformed CTs (the reconstructed 4DCBCT) that track the motion of the patient anatomy on a voxel by voxel scale. The motion model is constrained by requiring that projections cast through the deformed CT time series match the projections of the raw patient 4DCBCT. The motion model uses a basis of eigenvectors that are generated via principal component analysis (PCA) of a training set of displacement vector fields (DVFs) that approximate patient motion. The eigenvectors are weighted by a parameterized function of the patient breathing trace recorded during 4DCBCT. The algorithm is demonstrated and tested via numerical simulation. Results: The algorithm is shown to produce accurate reconstruction results for the most complicated simulated motion, in which voxels move with a pseudo-periodic pattern and relative phase shifts exist between voxels. The tests show that principal component eigenvectors trained on DVFs from a novel 2D/3D registration method give substantially better results than eigenvectors trained on DVFs obtained by conventionally registering 4DCBCT phases reconstructed via filtered backprojection. Conclusions: Proof of concept testing has validated the 4DCBCT reconstruction approach for the types of simulated data considered. In addition, the authors found the 2D/3D registration approach to be our best choice for generating the DVF training set, and the Nelder-Mead simplex algorithm the most robust optimization routine. PMID:22149852

  16. The Advanced Glaucoma Intervention Study (AGIS): 4. Comparison of treatment outcomes within race. Seven-year results.

    PubMed

    1998-07-01

    The purpose of this report is to present separately for black and white patients with advanced glaucoma 7-year results of two alternative surgical intervention sequences. A randomized controlled trial. A total of 332 black patients (451 eyes), 249 white patients (325 eyes), and 10 patients of other races (13 eyes) participated. Potential follow-up ranged from 4 to 7 years. Eyes were randomly assigned to either an argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy (ATT) sequence or a trabeculectomy-ALT-trabeculectomy (TAT) sequence. The second and third interventions were offered after failure of the first and second interventions, respectively. Average percent of eyes with decrease of visual field (APDVF), average percent of eyes with decrease of visual acuity (APDVA), and average percent of eyes with decrease of vision (APDV) are the outcome measures. Decrease of visual field (DVF) is an increase from baseline of at least 4 points on a glaucoma visual field defect scale ranging from 0 to 20, decrease of visual acuity (DVA) is a decrease from baseline of at least 15 letters (3 lines), and decrease of vision (DV) is the occurrence of either DVF or DVA. The averages are of percent decreases observed at 6-month intervals from the first 6-month visit to the end of the specified observation period. In both black and white patients throughout 7-year follow-up, the mean decrease in intraocular pressure was greater in eyes assigned to TAT, and the cumulative probability of failure of the first intervention was greater in eyes assigned to ATT. In black patients, APDVF, APDVA, and APDV are less for the ATT sequence than for the TAT sequence throughout the 7 years. In white patients, APDVF also favors the ATT sequence but only for the first year, after which it favors the TAT sequence through the seventh year; APDVA also favors the ATT sequence, but the ATT-TAT difference progressively diminishes over 7 years; and APDV favors ATT over TAT initially, but after 4 years, the advantage switches to and remains with TAT. These data support use of the ATT sequence for all black patients. For white patients without life-threatening health problems, the data support use of the TAT sequence.

  17. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; OBrien, R; Shieh, C

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less

  18. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern. PMID:26127043

  19. 3D delivered dose assessment using a 4DCT-based motion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basismore » DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern.« less

  20. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration.

    PubMed

    Wolthaus, J W H; Sonke, J J; van Herk, M; Damen, E M F

    2008-09-01

    lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods < 0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of "shape differences" was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.

  1. Deceptive Tactics for Protecting Cities Against Vehicle Borne Improvised Explosive Devices

    DTIC Science & Technology

    2008-03-01

    burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching...INTENTIONALLY LEFT BLANK xiii LIST OF ABBREVIATIONS ABS Agent Based Simulation ANA Agent Network Attack DVF Detection Value Function GIS Geographic...any other behavior (than perceptive) may be advantageous to the attacker. - A communicative behavior proves particularly effective over time for the

  2. A novel approach for evaluation of prostate deformation and associated dosimetric implications in IGRT of the prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayyas, Essa, E-mail: emayyas1@hfhs.org, E-mail: ortonc@comcast.net; Kim, Jinkoo; Kumar, Sanath

    2014-09-15

    Purpose: Prostate deformation is assumed to be a secondary correction and is typically ignored in the planning target volume (PTV) margin calculations. This assumption needs to be tested, especially when planning margins are reduced with daily image-guidance. In this study, deformation characteristics of the prostate and seminal vesicles were determined, and the dosimetric impact on treatment plans with different PTV margins was investigated. Methods: Ten prostate cancer patients were retrospectively selected for the study, each with three fiducial markers implanted in the prostate. Two hundred CBCT images were registered to respective planning CT images using a B-spline-based deformable image registrationmore » (DIR) software. A manual bony anatomy-based match was first applied based on the alignment of the pelvic bones and fiducial landmarks. DIR was then performed. For each registration, deformation vector fields (DVFs) of the prostate and seminal vesicles (SVs) were quantified using deformation-volume histograms. In addition, prostate rotation was evaluated and compared with prostate deformation. For a patient demonstrating small and large prostate deformations, target coverage degradation was analyzed in each of three treatment plans with PTV margins of 10 mm (6 mm at the prostate/rectum interface), as well as 5, and 3 mm uniformly. Results: Deformation of the prostate was most significant in the anterior direction. Maximum prostate deformation of greater than 10, 5, and 3 mm occurred in 1%, 17%, and 76% of the cases, respectively. Based on DVF-histograms, DVF magnitudes greater than 5 and 3 mm occurred in 2% and 27% of the cases, respectively. Deformation of the SVs was most significant in the posterior direction, and it was greater than 5 and 3 mm in 7.5% and 44.9% of the cases, respectively. Prostate deformation was found to be poorly correlated with rotation. Fifty percent of the cases showed rotation with negligible deformation and 7% of the cases showed significant deformation with minimal rotation (<3°). Average differences in the D{sub 95} dose to the prostate + SVs between the planning CT and CBCT images was 0.4% ± 0.5%, 3.0% ± 2.8%, and 6.6% ± 6.1%, respectively, for the plans with 10/6, 5, and 3 mm margins. For the case with both a large degree of prostate deformation (≈10% of the prostate volume) and rotation (≈8°), D{sub 95} was reduced by 0.5% ± 0.1%, 6.8% ± 0.6%, and 20.9% ± 1.6% for 10/6, 5, and 3 mm margin plans, respectively. For the case with large prostate deformation but negligible rotation (<1°), D{sub 95} was reduced by 0.4 ± 0.3, 3.9 ± 1.0, and 11.5 ± 2.5 for 10/6, 5, and 3 mm margin plans, respectively. Conclusions: Prostate deformation over a course of fractionated prostate radiotherapy may not be insignificant and may need to be accounted for in the planning margin design. A consequence of these results is that use of highly reduced planning margins must be viewed with caution.« less

  3. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.

    PubMed

    Abbas, Qaisar; Fondon, Irene; Sarmiento, Auxiliadora; Jiménez, Soledad; Alemany, Pedro

    2017-11-01

    Diabetic retinopathy (DR) is leading cause of blindness among diabetic patients. Recognition of severity level is required by ophthalmologists to early detect and diagnose the DR. However, it is a challenging task for both medical experts and computer-aided diagnosis systems due to requiring extensive domain expert knowledge. In this article, a novel automatic recognition system for the five severity level of diabetic retinopathy (SLDR) is developed without performing any pre- and post-processing steps on retinal fundus images through learning of deep visual features (DVFs). These DVF features are extracted from each image by using color dense in scale-invariant and gradient location-orientation histogram techniques. To learn these DVF features, a semi-supervised multilayer deep-learning algorithm is utilized along with a new compressed layer and fine-tuning steps. This SLDR system was evaluated and compared with state-of-the-art techniques using the measures of sensitivity (SE), specificity (SP) and area under the receiving operating curves (AUC). On 750 fundus images (150 per category), the SE of 92.18%, SP of 94.50% and AUC of 0.924 values were obtained on average. These results demonstrate that the SLDR system is appropriate for early detection of DR and provide an effective treatment for prediction type of diabetes.

  4. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    PubMed

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  5. WE-AB-204-09: Respiratory Motion Correction in 4D-PET by Simultaneous Motion Estimation and Image Reconstruction (SMEIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalantari, F; Wang, J; Li, T

    2015-06-15

    Purpose: In conventional 4D-PET, images from different frames are reconstructed individually and aligned by registration methods. Two issues with these approaches are: 1) Reconstruction algorithms do not make full use of all projections statistics; and 2) Image registration between noisy images can Result in poor alignment. In this study we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) method for cone beam CT for motion estimation/correction in 4D-PET. Methods: Modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM- TV) is used to obtain a primary motion-compensated PET (pmc-PET) from all projection data using Demons derivedmore » deformation vector fields (DVFs) as initial. Motion model update is done to obtain an optimal set of DVFs between the pmc-PET and other phases by matching the forward projection of the deformed pmc-PET and measured projections of other phases. Using updated DVFs, OSEM- TV image reconstruction is repeated and new DVFs are estimated based on updated images. 4D XCAT phantom with typical FDG biodistribution and a 10mm diameter tumor was used to evaluate the performance of the SMEIR algorithm. Results: Image quality of 4D-PET is greatly improved by the SMEIR algorithm. When all projections are used to reconstruct a 3D-PET, motion blurring artifacts are present, leading to a more than 5 times overestimation of the tumor size and 54% tumor to lung contrast ratio underestimation. This error reduced to 37% and 20% for post reconstruction registration methods and SMEIR respectively. Conclusion: SMEIR method can be used for motion estimation/correction in 4D-PET. The statistics is greatly improved since all projection data are combined together to update the image. The performance of the SMEIR algorithm for 4D-PET is sensitive to smoothness control parameters in the DVF estimation step.« less

  6. TH-CD-202-06: A Method for Characterizing and Validating Dynamic Lung Density Change During Quiet Respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, T; Ruan, D; Heinrich, M

    2016-06-15

    Purpose: To obtain a functional relationship that calibrates the lung tissue density change under free breathing conditions through correlating Jacobian values to the Hounsfield units. Methods: Free-breathing lung computed tomography images were acquired using a fast helical CT protocol, where 25 scans were acquired per patient. Using a state-of-the-art deformable registration algorithm, a set of the deformation vector fields (DVF) was generated to provide spatial mapping from the reference image geometry to the other free-breathing scans. These DVFs were used to generate Jacobian maps, which estimate voxelwise volume change. Subsequently, the set of 25 corresponding Jacobian and voxel intensity inmore » Hounsfield units (HU) were collected and linear regression was performed based on the mass conservation relationship to correlate the volume change to density change. Based on the resulting fitting coefficients, the tissues were classified into parenchymal (Type I), vascular (Type II), and soft tissue (Type III) types. These coefficients modeled the voxelwise density variation during quiet breathing. The accuracy of the proposed method was assessed using mean absolute difference in HU between the CT scan intensities and the model predicted values. In addition, validation experiments employing a leave-five-out method were performed to evaluate the model accuracy. Results: The computed mean model errors were 23.30±9.54 HU, 29.31±10.67 HU, and 35.56±20.56 HU, respectively, for regions I, II, and III, respectively. The cross validation experiments averaged over 100 trials had mean errors of 30.02 ± 1.67 HU over the entire lung. These mean values were comparable with the estimated CT image background noise. Conclusion: The reported validation experiment statistics confirmed the lung density modeling during free breathing. The proposed technique was general and could be applied to a wide range of problem scenarios where accurate dynamic lung density information is needed. This work was supported in part by NIH R01 CA0096679.« less

  7. Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne

    2016-10-15

    Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and syntheticmore » CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in a treatment course, or based on population models.« less

  8. SIS epidemiological model for adaptive RT: Forecasting the parotid glands shrinkage during tomotherapy treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, Nicola; Guidi, Gabriele, E-mail: guidi.gab

    Purpose: A susceptible-infected-susceptible (SIS) epidemic model was applied to radiation therapy (RT) treatments to predict morphological variations in head and neck (H&N) anatomy. Methods: 360 daily MVCT images of 12 H&N patients treated by tomotherapy were analyzed in this retrospective study. Deformable image registration (DIR) algorithms, mesh grids, and structure recontouring, implemented in the RayStation treatment planning system (TPS), were applied to assess the daily organ warping. The parotid’s warping was evaluated using the epidemiological approach considering each vertex as a single subject and its deformed vector field (DVF) as an infection. Dedicated IronPython scripts were developed to export dailymore » coordinates and displacements of the region of interest (ROI) from the TPS. MATLAB tools were implemented to simulate the SIS modeling. Finally, the fully trained model was applied to a new patient. Results: A QUASAR phantom was used to validate the model. The patients’ validation was obtained setting 0.4 cm of vertex displacement as threshold and splitting susceptible (S) and infectious (I) cases. The correlation between the epidemiological model and the parotids’ trend for further optimization of alpha and beta was carried out by Euclidean and dynamic time warping (DTW) distances. The best fit with experimental conditions across all patients (Euclidean distance of 4.09 ± 1.12 and DTW distance of 2.39 ± 0.66) was obtained setting the contact rate at 7.55 ± 0.69 and the recovery rate at 2.45 ± 0.26; birth rate was disregarded in this constant population. Conclusions: Combining an epidemiological model with adaptive RT (ART), the authors’ novel approach could support image-guided radiation therapy (IGRT) to validate daily setup and to forecast anatomical variations. The SIS-ART model developed could support clinical decisions in order to optimize timing of replanning achieving personalized treatments.« less

  9. Elliptic-symmetry vector optical fields.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  10. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    PubMed

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  11. Ocean Simulation Model. Version 2. First Order Frontal Simulation

    DTIC Science & Technology

    1991-05-01

    REAL DEP(NXVS),TEMP(MXVS),SAL(MXVS),SIG(MXVS), DVF (MXVS), * DEP2(MXVS),TEMP2(MXVS),SAL2(MXVS),SIG2CMXVS),BVF2(MXVS), * DEPO(MXVS), TEMPO(MX)VS),SALO...processing parameters to desired values. Generating the Front Position Directive FRNT uses the current clock time as initial seed to call the intrinsic...potentially be very time consuming if the parameter ITER is set to a large number. Directive RES was designed to allow the user to resume the HELM

  12. Experimental and Analytical Studies of Shielding Concepts for Point Sources and Jet Noise.

    DTIC Science & Technology

    1983-05-01

    proximnity of the turbulent jet flow to the The Spectral Dynamics DSP 360 is a two channel real time analyzer incor- shielding surface, the edge will interact...However, this is achieved with a very long shield length equal to 190 unorthodox configurations. The emphasis is placed on the concept, times the slit...16 dB/dec. .Vn With this solid-gaseous combination, a 10 0 diameter shield of length 14 DVf =- sin 0 with a burner attached to the trailing edge

  13. A link between torse-forming vector fields and rotational hypersurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Bang-Yen; Verstraelen, Leopold

    Torse-forming vector fields introduced by Yano [On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944) 340-346] are natural extension of concurrent and concircular vector fields. Such vector fields have many nice applications to geometry and mathematical physics. In this paper, we establish a link between rotational hypersurfaces and torse-forming vector fields. More precisely, our main result states that, for a hypersurface M of 𝔼n+1 with n ≥ 3, the tangential component xT of the position vector field of M is a proper torse-forming vector field on M if and only if M is contained in a rotational hypersurface whose axis of rotation contains the origin.

  14. A diagram for evaluating multiple aspects of model performance in simulating vector fields

    NASA Astrophysics Data System (ADS)

    Xu, Zhongfeng; Hou, Zhaolu; Han, Ying; Guo, Weidong

    2016-12-01

    Vector quantities, e.g., vector winds, play an extremely important role in climate systems. The energy and water exchanges between different regions are strongly dominated by wind, which in turn shapes the regional climate. Thus, how well climate models can simulate vector fields directly affects model performance in reproducing the nature of a regional climate. This paper devises a new diagram, termed the vector field evaluation (VFE) diagram, which is a generalized Taylor diagram and able to provide a concise evaluation of model performance in simulating vector fields. The diagram can measure how well two vector fields match each other in terms of three statistical variables, i.e., the vector similarity coefficient, root mean square length (RMSL), and root mean square vector difference (RMSVD). Similar to the Taylor diagram, the VFE diagram is especially useful for evaluating climate models. The pattern similarity of two vector fields is measured by a vector similarity coefficient (VSC) that is defined by the arithmetic mean of the inner product of normalized vector pairs. Examples are provided, showing that VSC can identify how close one vector field resembles another. Note that VSC can only describe the pattern similarity, and it does not reflect the systematic difference in the mean vector length between two vector fields. To measure the vector length, RMSL is included in the diagram. The third variable, RMSVD, is used to identify the magnitude of the overall difference between two vector fields. Examples show that the VFE diagram can clearly illustrate the extent to which the overall RMSVD is attributed to the systematic difference in RMSL and how much is due to the poor pattern similarity.

  15. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    PubMed

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  16. Design of 2D time-varying vector fields.

    PubMed

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

  17. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  18. Rotation invariants of vector fields from orthogonal moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Kostková, Jitka; Flusser, Jan

    Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less

  19. Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.

    PubMed

    Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho

    2018-04-16

    We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.

  20. Rotation invariants of vector fields from orthogonal moments

    DOE PAGES

    Yang, Bo; Kostková, Jitka; Flusser, Jan; ...

    2017-09-11

    Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less

  1. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.

  2. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    PubMed

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  3. A note on φ-analytic conformal vector fields

    NASA Astrophysics Data System (ADS)

    Deshmukh, Sharief; Bin Turki, Nasser

    2017-09-01

    Taking clue from the analytic vector fields on a complex manifold, φ-analytic conformal vector fields are defined on a Riemannian manifold (Deshmukh and Al-Solamy in Colloq. Math. 112(1):157-161, 2008). In this paper, we use φ-analytic conformal vector fields to find new characterizations of the n-sphere Sn(c) and the Euclidean space (Rn,<,> ).

  4. Mapping the magnetic field vector in a fountain clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertsvolf, Marina; Marmet, Louis

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  5. Visualizing vector field topology in fluid flows

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  6. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    PubMed

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  7. Different Relative Orientation of Static and Alternative Magnetic Fields and Cress Roots Direction of Growth Changes Their Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadiia; Bogatina, Nina

    The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.

  8. Weaving Knotted Vector Fields with Tunable Helicity.

    PubMed

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  9. Student difficulties regarding symbolic and graphical representations of vector fields

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke

    2017-12-01

    The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing, and switching between representations of vector fields, using both qualitative and quantitative methods. We first identified to what extent students are fluent with the use of field vector plots, field line diagrams, and symbolic expressions of vector fields by conducting individual student interviews and analyzing in-class student activities. Based on those findings, we designed the Vector Field Representations test, a free response assessment tool that has been given to 196 second- and third-year physics, mathematics, and engineering students from four different universities. From the obtained results we gained a comprehensive overview of typical errors that students make when switching between vector field representations. In addition, the study allowed us to determine the relative prevalence of the observed difficulties. Although the results varied greatly between institutions, a general trend revealed that many students struggle with vector addition, fail to recognize the field line density as an indication of the magnitude of the field, confuse characteristics of field lines and equipotential lines, and do not choose the appropriate coordinate system when writing out mathematical expressions of vector fields.

  10. Discovering and understanding the vector field using simulation in android app

    NASA Astrophysics Data System (ADS)

    Budi, A.; Muliyati, D.

    2018-05-01

    An understanding of vector field’s concepts are fundamental parts of the electrodynamics course. In this paper, we use a simple simulation that can be used to show qualitative imaging results as a variation of the vector field. Android application packages the simulation with consideration of the efficiency of use during the lecture. In addition, this simulation also trying to cover the divergences and curl concepts from the same conditions that students have a complete understanding and can distinguish concepts that have been described only mathematically. This simulation is designed to show the relationship between the field magnitude and its potential. This application can show vector field simulations in various conditions that help to improve students’ understanding of vector field concepts and their relation to particle existence around the field vector.

  11. Killing vector fields in three dimensions: a method to solve massive gravity field equations

    NASA Astrophysics Data System (ADS)

    Gürses, Metin

    2010-10-01

    Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.

  12. Proper projective symmetry in LRS Bianchi type V spacetimes

    NASA Astrophysics Data System (ADS)

    Shabbir, Ghulam; Mahomed, K. S.; Mahomed, F. M.; Moitsheki, R. J.

    2018-04-01

    In this paper, we investigate proper projective vector fields of locally rotationally symmetric (LRS) Bianchi type V spacetimes using direct integration and algebraic techniques. Despite the non-degeneracy in the Riemann tensor eigenvalues, we classify proper Bianchi type V spacetimes and show that the above spacetimes do not admit proper projective vector fields. Here, in all the cases projective vector fields are Killing vector fields.

  13. Video-rate terahertz electric-field vector imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu

    We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less

  14. Segmentation of discrete vector fields.

    PubMed

    Li, Hongyu; Chen, Wenbin; Shen, I-Fan

    2006-01-01

    In this paper, we propose an approach for 2D discrete vector field segmentation based on the Green function and normalized cut. The method is inspired by discrete Hodge Decomposition such that a discrete vector field can be broken down into three simpler components, namely, curl-free, divergence-free, and harmonic components. We show that the Green Function Method (GFM) can be used to approximate the curl-free and the divergence-free components to achieve our goal of the vector field segmentation. The final segmentation curves that represent the boundaries of the influence region of singularities are obtained from the optimal vector field segmentations. These curves are composed of piecewise smooth contours or streamlines. Our method is applicable to both linear and nonlinear discrete vector fields. Experiments show that the segmentations obtained using our approach essentially agree with human perceptual judgement.

  15. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  16. Vector optical fields with bipolar symmetry of linear polarization.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian

    2013-09-15

    We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.

  17. Principal fiber bundle description of number scaling for scalars and vectors: application to gauge theory

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2015-05-01

    The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as just one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex number structures and vector space structures. The structures are parameterized by a real or complex scaling factor, s. A vector space at a fiber level, s, has, as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector valued fields gives the same vector fields. The derivation shows that the complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.

  18. Optimum Design of Millimeter-Wave Impatt Diode Oscillators.

    DTIC Science & Technology

    1983-10-01

    assumed to be a quasi-sinusoid of the form v(t) a Vej"t (2.1) where V = V(t) and w = w(t) are real slowly varying functions of time . Slowly varying can be...are used: i dVF = 1 HF (3.12) RF dt 4 and 6 = w- i. (3.13) Therefore, the RF voltage and phase at different times can be calculated: VRF(t + dt ) = VF...15 2.2.2 The Circuit Model 18 2.2.3 Thermal Resistance 21 2.2.4 Thermal- Time Constant 23 2.3 Usefulness and Limitations of the Oscillator Model 26

  19. Integrated Information Support System (IISS). Volume 8. User Interface Subsystem. Part 14. Virtual Terminal Unit Test Plan

    DTIC Science & Technology

    1990-09-30

    Dynamics Research Corporation: Jones, L.. Glandorf, F. 3a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Yr.,Mo..Day) 15. PAGE COUNT Final...specific software modules written for each type of real terminal supported. Virtual Terminal Interface: the callable interface to the Virtual Terminal...2000;60000;2;0;100;100;5000;0;0;0;0;0;10 "v-Testing2- DVF - View Fill Area: <ESC>[5;1;2000;50000;20000;30000;20000;50000; 2000;30000&v DVM - View Markers: <ESC

  20. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector

    NASA Astrophysics Data System (ADS)

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.

  1. Vector curvaton with varying kinetic function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Wagstaff, Jacques M.

    2010-01-15

    A new model realization of the vector curvaton paradigm is presented and analyzed. The model consists of a single massive Abelian vector field, with a Maxwell-type kinetic term. By assuming that the kinetic function and the mass of the vector field are appropriately varying during inflation, it is shown that a scale-invariant spectrum of superhorizon perturbations can be generated. These perturbations can contribute to the curvature perturbation of the Universe. If the vector field remains light at the end of inflation it is found that it can generate substantial statistical anisotropy in the spectrum and bispectrum of the curvature perturbation.more » In this case the non-Gaussianity in the curvature perturbation is predominantly anisotropic, which will be a testable prediction in the near future. If, on the other hand, the vector field is heavy at the end of inflation then it is demonstrated that particle production is approximately isotropic and the vector field alone can give rise to the curvature perturbation, without directly involving any fundamental scalar field. The parameter space for both possibilities is shown to be substantial. Finally, toy models are presented which show that the desired variation of the mass and kinetic function of the vector field can be realistically obtained, without unnatural tunings, in the context of supergravity or superstrings.« less

  2. Killing spinors are Killing vector fields in Riemannian supergeometry

    NASA Astrophysics Data System (ADS)

    Alekseevsky, D. V.; Cortés, V.; Devchand, C.; Semmelmann, U.

    1998-06-01

    A supermanifold M is canonically associated to any pseudo-Riemannian spin manifold ( M0, g0). Extending the metric g0 to a field g of bilinear forms g( p) on TpM, pɛM0, the pseudo-Riemannian supergeometry of ( M, g) is formulated as G-structure on M, where G is a supergroup with even part G 0 ≊ Spin(k, l); (k, l) the signature of ( M0, go). Killing vector fields on ( M, g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field Xs on M. Our main result is that Xs is a Killing vector field on ( M, g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field Xs.

  3. Vector optical fields with polarization distributions similar to electric and magnetic field lines.

    PubMed

    Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

    2013-07-01

    We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.

  4. Electromagnetic potential vectors and the Lagrangian of a charged particle

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.

  5. Study of Equatorial Ionospheric irregularities and Mapping of Electron Density Profiles and Ionograms

    DTIC Science & Technology

    2012-03-09

    equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the...wave function arguments from complex scalars to complex vectors . This conversion allows us to separate the electric field vector and the imaginary...magnetic field vector , because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while ex- ponentials of imaginary

  6. Reconstruction of Vectorial Acoustic Sources in Time-Domain Tomography

    PubMed Central

    Xia, Rongmin; Li, Xu; He, Bin

    2009-01-01

    A new theory is proposed for the reconstruction of curl-free vector field, whose divergence serves as acoustic source. The theory is applied to reconstruct vector acoustic sources from the scalar acoustic signals measured on a surface enclosing the source area. It is shown that, under certain conditions, the scalar acoustic measurements can be vectorized according to the known measurement geometry and subsequently be used to reconstruct the original vector field. Theoretically, this method extends the application domain of the existing acoustic reciprocity principle from a scalar field to a vector field, indicating that the stimulating vectorial source and the transmitted acoustic pressure vector (acoustic pressure vectorized according to certain measurement geometry) are interchangeable. Computer simulation studies were conducted to evaluate the proposed theory, and the numerical results suggest that reconstruction of a vector field using the proposed theory is not sensitive to variation in the detecting distance. The present theory may be applied to magnetoacoustic tomography with magnetic induction (MAT-MI) for reconstructing current distribution from acoustic measurements. A simulation on MAT-MI shows that, compared to existing methods, the present method can give an accurate estimation on the source current distribution and a better conductivity reconstruction. PMID:19211344

  7. Measuring magnetic field vector by stimulated Raman transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda

    2016-03-21

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less

  8. Transformation of vector magnetograms and the problems associated with the effects of perspective and the azimuthal ambiguity

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Hagyard, M. J.

    1990-01-01

    Off-center vector magnetograms which use all three components of the measured field provide the maximum information content from the photospheric field and can provide the most consistent potential field independent of the viewing angle by defining the normal component of the field. The required transformations of the magnetic field vector and the geometric mapping of the observed field in the image plane into the heliographic plane have been described. Here we discuss the total transformation of specific vector magnetograms to detail the problems and procedures that one should be aware of in analyzing observational magnetograms. The effect of the 180-deg ambiguity of the observed transverse field is considered as well as the effect of curvature of the photosphere. Specific results for active regions AR 2684 (September 23, 1980) and AR 4474 (April 26, 1984) from the Marshall Space Flight Center Vector magnetograph are described which point to the need for the heliographic projection in determining the field structure of an active region.

  9. Vector-beam solutions of Maxwell's wave equation.

    PubMed

    Hall, D G

    1996-01-01

    The Hermite-Gauss and Laguerre-Gauss modes are well-known beam solutions of the scalar Helmholtz equation in the paraxial limit. As such, they describe linearly polarized fields or single Cartesian components of vector fields. The vector wave equation admits, in the paraxial limit, of a family of localized Bessel-Gauss beam solutions that can describe the entire transverse electric field. Two recently reported solutions are members of this family of vector Bessel-Gauss beam modes.

  10. Correlation between topological structure and its properties in dynamic singular vector fields.

    PubMed

    Vasilev, Vasyl; Soskin, Marat

    2016-04-20

    A new technique for establishment of topology measurements for static and dynamic singular vector fields is elaborated. It is based on precise measurement of the 3D landscape of ellipticity distribution for a checked singular optical field with C points on the tops of ellipticity hills. Vector fields possess three-component topology: areas with right-hand (RH) and left-hand (LH) ellipses, and delimiting those L lines as the singularities of handedness. The azimuth map of polarization ellipses is common for both RH and LH ellipses of vector fields and do not feel L lines. The strict rules were confirmed experimentally, which define the connection between the sign of underlying optical vortices and morphological parameters of upper-lying C points. Percolation phenomena explain their realization in-between singular vector fields and long duration of their chains of 103  s order.

  11. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    PubMed

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berres, Anne Sabine

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  13. Origin and structures of solar eruptions II: Magnetic modeling

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Cheng, Xin; Ding, MingDe

    2017-07-01

    The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

  14. Gaugeon formalism for the second-rank antisymmetric tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Aochi, Masataka; Endo, Ryusuke; Miura, Hikaru

    2018-02-01

    We present a BRST symmetric gaugeon formalism for the second-rank antisymmetric tensor gauge fields. A set of vector gaugeon fields is introduced as a quantum gauge freedom. One of the gaugeon fields satisfies a higher-derivative field equation; this property is necessary to change the gauge-fixing parameter of the antisymmetric tensor gauge field. A naive Lagrangian for the vector gaugeon fields is itself invariant under a gauge transformation for the vector gaugeon field. The Lagrangian of our theory includes the gauge-fixing terms for the gaugeon fields and corresponding Faddeev-Popov ghost terms.

  15. Microchip solid-state cylindrical vector lasers with orthogonally polarized dual laser-diode end pumping.

    PubMed

    Otsuka, Kenju; Chu, Shu-Chun

    2013-05-01

    We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.

  16. Inflation with a massive vector field nonminimally coupled to gravity

    NASA Astrophysics Data System (ADS)

    Páramos, J.

    2018-01-01

    The possibility that inflation is driven by a massive vector field with SO(3) global symmetry nonminimally coupled to gravity is presented. Through an appropriate Ansatz for the vector field, the behaviour of the equations of motion is studied through the ensuing dynamical system, focusing on the characterisation of the ensuing fixed points.

  17. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    PubMed

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  18. Scalar/Vector potential formulation for compressible viscous unsteady flows

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1985-01-01

    A scalar/vector potential formulation for unsteady viscous compressible flows is presented. The scalar/vector potential formulation is based on the classical Helmholtz decomposition of any vector field into the sum of an irrotational and a solenoidal field. The formulation is derived from fundamental principles of mechanics and thermodynamics. The governing equations for the scalar potential and vector potential are obtained, without restrictive assumptions on either the equation of state or the constitutive relations or the stress tensor and the heat flux vector.

  19. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  20. Accelerating 4D flow MRI by exploiting vector field divergence regularization.

    PubMed

    Santelli, Claudio; Loecher, Michael; Busch, Julia; Wieben, Oliver; Schaeffter, Tobias; Kozerke, Sebastian

    2016-01-01

    To improve velocity vector field reconstruction from undersampled four-dimensional (4D) flow MRI by penalizing divergence of the measured flow field. Iterative image reconstruction in which magnitude and phase are regularized separately in alternating iterations was implemented. The approach allows incorporating prior knowledge of the flow field being imaged. In the present work, velocity data were regularized to reduce divergence, using either divergence-free wavelets (DFW) or a finite difference (FD) method using the ℓ1-norm of divergence and curl. The reconstruction methods were tested on a numerical phantom and in vivo data. Results of the DFW and FD approaches were compared with data obtained with standard compressed sensing (CS) reconstruction. Relative to standard CS, directional errors of vector fields and divergence were reduced by 55-60% and 38-48% for three- and six-fold undersampled data with the DFW and FD methods. Velocity vector displays of the numerical phantom and in vivo data were found to be improved upon DFW or FD reconstruction. Regularization of vector field divergence in image reconstruction from undersampled 4D flow data is a valuable approach to improve reconstruction accuracy of velocity vector fields. © 2014 Wiley Periodicals, Inc.

  1. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  2. Polarization ellipse and Stokes parameters in geometric algebra.

    PubMed

    Santos, Adler G; Sugon, Quirino M; McNamara, Daniel J

    2012-01-01

    In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.

  3. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    PubMed

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  4. Creating orbiting vorticity vectors in magnetic particle suspensions through field symmetry transitions–a route to multi-axis mixing

    DOE PAGES

    Martin, James E.; Solis, Kyle Jameson

    2015-11-09

    It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less

  5. The Curl of a Vector Field: Beyond the Formula

    ERIC Educational Resources Information Center

    Burch, Kimberly Jordan; Choi, Youngna

    2006-01-01

    It has been widely acknowledged that there is some discrepancy in the teaching of vector calculus in mathematics courses and other applied fields. The curl of a vector field is one topic many students can calculate without understanding its significance. In this paper, we explain the origin of the curl after presenting the standard mathematical…

  6. A comparison of in situ measurements of vector-E and - vector-V x vector-B from Dynamics Explorer 2

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Coley, W. R.; Heelis, R. A.; Maynard, N. C.; Aggson, T. L.

    1993-01-01

    Dynamics Explorer-2 provided the first opportunity to make a direct comparison of in situ measurements of the high-latitude convection electric field by two distinctly different techniques. The vector electric field instrument (VEFI) used antennae to measure the intrinsic electric fields and the ion drift meter (IDM) and retarding potential analyzer (RPA) measured the ion drift velocity vector, from which the convection electric field can be deduced. The data from three orbits having large electric fields at high latitude are presented, one at high, one at medium, and one at low altitudes. The general agreement between the two measurements of electric field is very good, with typical differences at high latitudes of the order of a few millivolts per meter, but there are some regions where the particle fluxes are extremely large (e.g., the cusp) and the disagreement is worse, probably because of IDM difficulties. The auroral zone potential patterns derived from the two devices are in excellent agreement for two of the cases, but not in the third, where bad attitude data may be the problem. At low latitudes there are persistent differences in the measurements of a few millivolts per meter, though these differences are quite constant from orbit to orbit. This problem seems to arise from some shortcoming in the VEFI measurments. Overall, however, these measurements confirm the concept of `frozen-in' plasma that drifts with velocity vector-E x vector-B/B(exp 2) within the measurement errors of the two techniques.

  7. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    PubMed

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  8. Understanding Vector Fields.

    ERIC Educational Resources Information Center

    Curjel, C. R.

    1990-01-01

    Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)

  9. The hopf algebra of vector fields on complex quantum groups

    NASA Astrophysics Data System (ADS)

    Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno

    1992-10-01

    We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.

  10. On Finsler spacetimes with a timelike Killing vector field

    NASA Astrophysics Data System (ADS)

    Caponio, Erasmo; Stancarone, Giuseppe

    2018-04-01

    We study Finsler spacetimes and Killing vector fields taking care of the fact that the generalised metric tensor associated to the Lorentz–Finsler function L is in general well defined only on a subset of the slit tangent bundle. We then introduce a new class of Finsler spacetimes endowed with a timelike Killing vector field that we call stationary splitting Finsler spacetimes. We characterize when a Finsler spacetime with a timelike Killing vector field is locally a stationary splitting. Finally, we show that the causal structure of a stationary splitting is the same of one of two Finslerian static spacetimes naturally associated to the stationary splitting.

  11. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skraba, Primoz; Rosen, Paul; Wang, Bei

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with amore » guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. Here, we apply our method to synthetic and simulation datasets to demonstrate its effectiveness.« less

  12. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.

    PubMed

    Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio

    2016-02-29

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.

  13. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion

    DOE PAGES

    Skraba, Primoz; Rosen, Paul; Wang, Bei; ...

    2016-02-29

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with amore » guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. Here, we apply our method to synthetic and simulation datasets to demonstrate its effectiveness.« less

  14. Statistics of partially-polarized fields: beyond the Stokes vector and coherence matrix

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail

    2017-08-01

    Traditionally, the partially-polarized light is characterized by the four Stokes parameters. Equivalent description is also provided by correlation tensor of the optical field. These statistics specify only the second moments of the complex amplitudes of the narrow-band two-dimensional electric field of the optical wave. Electric field vector of the random quasi monochromatic wave is a nonstationary oscillating two-dimensional real random variable. We introduce a novel statistical description of these partially polarized waves: the Period-Averaged Probability Density Function (PA-PDF) of the field. PA-PDF contains more information on the polarization state of the field than the Stokes vector. In particular, in addition to the conventional distinction between the polarized and depolarized components of the field PA-PDF allows to separate the coherent and fluctuating components of the field. We present several model examples of the fields with identical Stokes vectors and very distinct shapes of PA-PDF. In the simplest case of the nonstationary, oscillating normal 2-D probability distribution of the real electrical field and stationary 4-D probability distribution of the complex amplitudes, the newly-introduced PA-PDF is determined by 13 parameters that include the first moments and covariance matrix of the quadrature components of the oscillating vector field.

  15. Spin polarized phases in strongly interacting matter: Interplay between axial-vector and tensor mean fields

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Nakano, Eiji; Yanase, Kota; Yoshinaga, Naotaka

    2018-06-01

    The spontaneous spin polarization of strongly interacting matter due to axial-vector- and tensor-type interactions is studied at zero temperature and high baryon-number densities. We start with the mean-field Lagrangian for the axial-vector and tensor interaction channels and find in the chiral limit that the spin polarization due to the tensor mean field (U ) takes place first as the density increases for sufficiently strong coupling constants, and then the spin polarization due to the axial-vector mean field (A ) emerges in the region of the finite tensor mean field. This can be understood as making the axial-vector mean-field finite requires a broken chiral symmetry somehow, which is achieved by the finite tensor mean field in the present case. It is also found from the symmetry argument that there appear the type I (II) Nambu-Goldstone modes with a linear (quadratic) dispersion in the spin polarized phase with U ≠0 and A =0 (U ≠0 and A ≠0 ), although these two phases exhibit the same symmetry breaking pattern.

  16. Lefschetz thimbles in fermionic effective models with repulsive vector-field

    NASA Astrophysics Data System (ADS)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2018-06-01

    We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.

  17. Characteristic classes of gauge systems

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2004-12-01

    We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.

  18. Statistical modeling of interfractional tissue deformation and its application in radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Vile, Douglas J.

    In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model's ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author's knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup subtrial, the PCA PTV significantly (p<0.05) reduced D30, D20, and D5 to bladder and D50 to rectum, while increasing rectal D20 and D5. For the centroid-aligned setup, the PCA PTV significantly reduced all bladder DVH metrics and trended to lower rectal toxicity metrics. All PTVs covered the prostate with the prescription dose.

  19. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  20. A Search for Vector Magnetic Field Variations Associated with the M-Class Flares of 1991 June 10 in AR 6659

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.; Stark, B. A.; Venkatakrishnan, P.

    1998-01-01

    A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region.

  1. The optical analogy for vector fields

    NASA Technical Reports Server (NTRS)

    Parker, E. N. (Editor)

    1991-01-01

    This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.

  2. The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures

    NASA Astrophysics Data System (ADS)

    Wang, Hongmei; Zhang, Yafei; Xu, Huaizhe

    2007-01-01

    The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures, which is significant but has been frequently omitted in previous theoretical methods, has been reported in this paper. The analytical expressions of the longitudinal energies of quasibound levels (LEQBL) and the lifetimes of quasibound levels (LQBL) in symmetrical double-barrier (SDB) structures have been derived as a function of transverse wave vector and longitudinal magnetic fields perpendicular to interfaces. Based on our derived analytical expressions, the LEQBL and LQBL dependence upon transverse wave vector and longitudinal magnetic fields has been explored numerically for a SDB structure. Model calculations show that the LEQBL decrease monotonically and the LQBL shorten with increasing transverse wave vector, and each original LEQBL splits to a series of sub-LEQBL which shift nearly linearly toward the well bottom and the lifetimes of quasibound level series (LQBLS) shorten with increasing Landau-level indices and magnetic fields.

  3. Field Worker Evaluation of Dengue Vector Surveillance Methods: Factors That Determine Perceived Ease, Difficulty, Value, and Time Effectiveness in Australia and Malaysia.

    PubMed

    Azil, Aishah H; Ritchie, Scott A; Williams, Craig R

    2015-10-01

    This qualitative study aimed to describe field worker perceptions, evaluations of worth, and time costs of routine dengue vector surveillance methods in Cairns (Australia), Kuala Lumpur and Petaling District (Malaysia). In Cairns, the BG-Sentinel trap is a favored method for field workers because of its user-friendliness, but is not as cost-efficient as the sticky ovitrap. In Kuala Lumpur, the Mosquito Larvae Trapping Device is perceived as a solution for the inaccessibility of premises to larval surveys. Nonetheless, the larval survey method is retained in Malaysia for prompt detection of dengue vectors. For dengue vector surveillance to be successful, there needs to be not only technical, quantitative evaluations of method performance but also an appreciation of how amenable field workers are to using particular methods. Here, we report novel field worker perceptions of dengue vector surveillance methods in addition to time analysis for each method. © 2014 APJPH.

  4. Linear and angular coherence momenta in the classical second-order coherence theory of vector electromagnetic fields.

    PubMed

    Wang, Wei; Takeda, Mitsuo

    2006-09-01

    A new concept of vector and tensor densities is introduced into the general coherence theory of vector electromagnetic fields that is based on energy and energy-flow coherence tensors. Related coherence conservation laws are presented in the form of continuity equations that provide new insights into the propagation of second-order correlation tensors associated with stationary random classical electromagnetic fields.

  5. Visualization of Morse connection graphs for topologically rich 2D vector fields.

    PubMed

    Szymczak, Andrzej; Sipeki, Levente

    2013-12-01

    Recent advances in vector field topologymake it possible to compute its multi-scale graph representations for autonomous 2D vector fields in a robust and efficient manner. One of these representations is a Morse Connection Graph (MCG), a directed graph whose nodes correspond to Morse sets, generalizing stationary points and periodic trajectories, and arcs - to trajectories connecting them. While being useful for simple vector fields, the MCG can be hard to comprehend for topologically rich vector fields, containing a large number of features. This paper describes a visual representation of the MCG, inspired by previous work on graph visualization. Our approach aims to preserve the spatial relationships between the MCG arcs and nodes and highlight the coherent behavior of connecting trajectories. Using simulations of ocean flow, we show that it can provide useful information on the flow structure. This paper focuses specifically on MCGs computed for piecewise constant (PC) vector fields. In particular, we describe extensions of the PC framework that make it more flexible and better suited for analysis of data on complex shaped domains with a boundary. We also describe a topology simplification scheme that makes our MCG visualizations less ambiguous. Despite the focus on the PC framework, our approach could also be applied to graph representations or topological skeletons computed using different methods.

  6. Vector boson star solutions with a quartic order self-interaction

    NASA Astrophysics Data System (ADS)

    Minamitsuji, Masato

    2018-05-01

    We investigate boson star (BS) solutions in the Einstein-Proca theory with the quartic order self-interaction of the vector field λ (AμA¯ μ)2/4 and the mass term μ A¯ μAμ/2 , where Aμ is the complex vector field and A¯μ is the complex conjugate of Aμ, and λ and μ are the coupling constant and the mass of the vector field, respectively. The vector BSs are characterized by the two conserved quantities, the Arnowitt-Deser-Misner (ADM) mass and the Noether charge associated with the global U (1 ) symmetry. We show that in comparison with the case without the self-interaction λ =0 , the maximal ADM mass and Noether charge increase for λ >0 and decrease for λ <0 . We also show that there exists the critical central amplitude of the temporal component of the vector field above which there is no vector BS solution, and for λ >0 it can be expressed by the simple analytic expression. For a sufficiently large positive coupling Λ ≔Mpl2λ /(8 π μ2)≫1 , the maximal ADM mass and Noether charge of the vector BSs are obtained from the critical central amplitude and of O [√{λ }Mpl3/μ2ln (λ Mpl2/μ2)] , which is different from that of the scalar BSs, O (√{λϕ }Mpl3/μϕ2) , where λϕ and μϕ are the coupling constant and the mass of the complex scalar field.

  7. Representation and display of vector field topology in fluid flow data sets

    NASA Technical Reports Server (NTRS)

    Helman, James; Hesselink, Lambertus

    1989-01-01

    The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field that is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.

  8. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  9. Magnetic Field-Vector Measurements in Quiescent Prominences via the Hanle Effect: Analysis of Prominences Observed at Pic-Du-Midi and at Sacramento Peak

    NASA Technical Reports Server (NTRS)

    Bommier, V.; Leroy, J. L.; Sahal-Brechot, S.

    1985-01-01

    The Hanle effect method for magnetic field vector diagnostics has now provided results on the magnetic field strength and direction in quiescent prominences, from linear polarization measurements in the He I E sub 3 line, performed at the Pic-du-Midi and at Sacramento Peak. However, there is an inescapable ambiguity in the field vector determination: each polarization measurement provides two field vector solutions symmetrical with respect to the line-of-sight. A statistical analysis capable of solving this ambiguity was applied to the large sample of prominences observed at the Pic-du-Midi (Leroy, et al., 1984); the same method of analysis applied to the prominences observed at Sacramento Peak (Athay, et al., 1983) provides results in agreement on the most probable magnetic structure of prominences; these results are detailed. The statistical results were confirmed on favorable individual cases: for 15 prominences observed at Pic-du-Midi, the two-field vectors are pointing on the same side of the prominence, and the alpha angles are large enough with respect to the measurements and interpretation inaccuracies, so that the field polarity is derived without any ambiguity.

  10. Reviving the shear-free perfect fluid conjecture in general relativity

    NASA Astrophysics Data System (ADS)

    Sikhonde, Muzikayise E.; Dunsby, Peter K. S.

    2017-12-01

    Employing a Mathematica symbolic computer algebra package called xTensor, we present (1+3) -covariant special case proofs of the shear-free perfect fluid conjecture in general relativity. We first present the case where the pressure is constant, and where the acceleration is parallel to the vorticity vector. These cases were first presented in their covariant form by Senovilla et al. We then provide a covariant proof for the case where the acceleration and vorticity vectors are orthogonal, which leads to the existence of a Killing vector along the vorticity. This Killing vector satisfies the new constraint equations resulting from the vanishing of the shear. Furthermore, it is shown that in order for the conjecture to be true, this Killing vector must have a vanishing spatially projected directional covariant derivative along the velocity vector field. This in turn implies the existence of another basic vector field along the direction of the vorticity for the conjecture to hold. Finally, we show that in general, there exists a basic vector field parallel to the acceleration for which the conjecture is true.

  11. Managing focal fields of vector beams with multiple polarization singularities.

    PubMed

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  12. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  13. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  14. Quantum corrections to the generalized Proca theory via a matter field

    NASA Astrophysics Data System (ADS)

    Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab

    2017-09-01

    We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.

  15. The synoptic maps of Br from HMI observations

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Hoeksema, J. Todd; Liu, Sun; Yang, Xudong; Centeno, Rebecca; Leka, K. D.; Barnes, Graham

    2012-03-01

    The vector magnetic field measurement can, in principal, give the "true" radial component of the magnetic field. We prepare 4 types of synoptic maps of the radial photospheric magnetic field, from the vector magnetic field data disambiguated by means of the minimum energy method developed at NWRA/CoRA, the vector data determined under the potential-field acute assumption, and the vector data determined under the radial-acute assumption, and the standard line-of-sight magnetogram. The models of the global corona, the MHD and the PFSS, are applied to different types of maps. Although the three-dimensional structures of the global coronal magnetic field with different maps are similar and overall agreeing well the AIA full-disk images, noticeable differences among the model outputs are found especially in the high latitude regions. We will show details of these test maps and discuss the issues in determining the radial component of the photospheric magnetic field near the poles and limb.

  16. Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains

    NASA Astrophysics Data System (ADS)

    Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville

    2017-01-01

    In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.

  17. Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike

    In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less

  18. Stable solutions of inflation driven by vector fields

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li

    2017-03-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  19. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE PAGES

    Fishman, Randy S.

    2018-01-03

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  20. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    NASA Astrophysics Data System (ADS)

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  1. Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, Randy S.

    Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less

  2. USSR and Eastern Europe Scientific Abstracts- Physics - Number 45

    DTIC Science & Technology

    1978-10-02

    compound, a function of the angle between the electrical vector of the ’ light wave and the optical c-axis of the crystal. Heterodiodes have first...of naturally radioactive U, Th and K in a 1-liter sample. USSR A VECTOR MESON IN A QUANTUM ELECTROMAGNETIC FIELD Moscow TEORETICHESKAYA I...arbitrary spin in a classical plane electromagnetic field are used to find the exact wave function of a vector meson in the quantum field of a linearly

  3. The magnetic field investigation on Cluster

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  4. Improvement of cardiac CT reconstruction using local motion vector fields.

    PubMed

    Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael

    2009-03-01

    The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.

  5. Detection of a sudden change of the field time series based on the Lorenz system.

    PubMed

    Da, ChaoJiu; Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan

    2017-01-01

    We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series.

  6. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Sun, Xudong; Schou, Jesper; Couvidat, Sebastien; Norton, Aimee; Bobra, Monica; Centeno, Rebecca; Leka, K. D.; Barnes, Graham; Turmon, Michael

    2014-09-01

    The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180∘ azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.

  7. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    NASA Astrophysics Data System (ADS)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  8. Circular Conditional Autoregressive Modeling of Vector Fields.

    PubMed

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2012-02-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.

  9. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  10. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.

    PubMed

    Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M

    2017-09-21

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  11. Circular Conditional Autoregressive Modeling of Vector Fields*

    PubMed Central

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2013-01-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452

  12. Spatial Distribution of Phase Singularities in Optical Random Vector Waves.

    PubMed

    De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L

    2016-08-26

    Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.

  13. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  14. Analyzing neural responses with vector fields.

    PubMed

    Buneo, Christopher A

    2011-04-15

    Analyzing changes in the shape and scale of single cell response fields is a key component of many neurophysiological studies. Typical analyses of shape change involve correlating firing rates between experimental conditions or "cross-correlating" single cell tuning curves by shifting them with respect to one another and correlating the overlapping data. Such shifting results in a loss of data, making interpretation of the resulting correlation coefficients problematic. The problem is particularly acute for two dimensional response fields, which require shifting along two axes. Here, an alternative method for quantifying response field shape and scale based on correlation of vector field representations is introduced. The merits and limitations of the methods are illustrated using both simulated and experimental data. It is shown that vector correlation provides more information on response field changes than scalar correlation without requiring field shifting and concomitant data loss. An extension of this vector field approach is also demonstrated which can be used to identify the manner in which experimental variables are encoded in studies of neural reference frames. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. IIB supergravity and the E 6(6) covariant vector-tensor hierarchy

    DOE PAGES

    Ciceri, Franz; de Wit, Bernard; Varela, Oscar

    2015-04-20

    IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the 27 two-form fields that are required by the vector-tensor hierarchy of the five-dimensional theory. The missing 5 two-form fields must transform in the same representation as a descendant of the ten-dimensional ‘dual graviton’. The invariant E 6(6) symmetric tensor that appears in the vector-tensor hierarchy is reproduced. Generalized vielbeine are derived from the supersymmetry transformations of the vector fields, as well as consistent expressions formore » the USp(8) covariant fermion fields. Implications are further discussed for the consistency of the truncation of IIB supergravity compactified on the five-sphere to maximal gauged supergravity in five space-time dimensions with an SO(6) gauge group.« less

  16. Attitude Estimation for Large Field-of-View Sensors

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Crassidis, John L.; Markley, F. Landis

    2005-01-01

    The QUEST measurement noise model for unit vector observations has been widely used in spacecraft attitude estimation for more than twenty years. It was derived under the approximation that the noise lies in the tangent plane of the respective unit vector and is axially symmetrically distributed about the vector. For large field-of-view sensors, however, this approximation may be poor, especially when the measurement falls near the edge of the field of view. In this paper a new measurement noise model is derived based on a realistic noise distribution in the focal-plane of a large field-of-view sensor, which shows significant differences from the QUEST model for unit vector observations far away from the sensor boresight. An extended Kalman filter for attitude estimation is then designed with the new measurement noise model. Simulation results show that with the new measurement model the extended Kalman filter achieves better estimation performance using large field-of-view sensor observations.

  17. Diffeomorphism invariance and black hole entropy

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning

    2003-11-01

    The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.

  18. An improved exact inversion formula for solenoidal fields in cone beam vector tomography

    NASA Astrophysics Data System (ADS)

    Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas

    2017-06-01

    In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.

  19. Black holes in vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic andmore » quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.« less

  20. Constraints on primordial magnetic fields from inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less

  1. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations.

    PubMed

    Madsen, Kristoffer H; Ewald, Lars; Siebner, Hartwig R; Thielscher, Axel

    2015-01-01

    Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector potential of the TMS coils. To develop an approach to reconstruct the magnetic vector potential based on automated measurements. We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel approach to determine the magnetic vector potential via volume integration of the measured field. The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well with that calculated using a model reconstructed from x-ray images. The setup can supply validated models for existing and newly appearing TMS coils. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. New Materials, Techniques and Device Concepts for Organic NLO Chromophore-based Electrooptic Devices. Part 1

    DTIC Science & Technology

    2006-08-23

    polarization the electric field vector is parallel to the substrate, for TM polarization the magnetic field vector is parallel to the substrate. Figure...section can be obtained for the case of the two electromagnetic field polarization vectors λ and µ describing the two photons being absorbed (of the same or... polarization effects on two-photon absorption as investigated by the technique of thermal lensing detected absorption of a mode- locked laser beam. This

  3. Electromagnetic Fields of a Uniform Sphere in a Uniform Conducting Medium with Application to Dipole Sources

    DTIC Science & Technology

    1991-09-01

    12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Vector spherical harmonic expansions are...electric and magnetic field vectors from E rand B - r alone. Genural expressions are given relating the scattered field expansion coefficients to the source...Prescnbed by ANSI Std. Z39-18 29W-102 NCSC TR 426-90 CONTENTS Pag o INTRODUCTION 1 BACKGROUND 1 ANGULAR MOMENTUM OPERATOR AND VECTOR SPHERICAL

  4. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    NASA Technical Reports Server (NTRS)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  5. Electric control of wave vector filtering in a hybrid magnetic-electric-barrier nanostructure

    NASA Astrophysics Data System (ADS)

    Kong, Yong-Hong; Lu, Ke-Yu; He, Ya-Ping; Liu, Xu-Hui; Fu, Xi; Li, Ai-Hua

    2018-06-01

    We theoretically investigate how to manipulate the wave vector filtering effect by a traverse electric field for electrons across a hybrid magnetic-electric-barrier nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe and a Schottky-metal stripe on top and bottom of a GaAs/Al x Ga1- x As heterostructure, respectively. The wave vector filtering effect is found to be related closely to the applied electric field. Moreover, the wave vector filtering efficiency can be manipulated by changing direction or adjusting strength of the traverse electric field. Therefore, such a nanostructure can be employed as an electrically controllable electron-momentum filter for nanoelectronics applications.

  6. Development of an Interactive Computer Program to Produce Body Description Data

    DTIC Science & Technology

    1983-07-01

    arbitrary and has varied over the time that the CVS Program and the ATB Model have been in existence. Program GOOD produces data describing an upper torso...N NN NfU NJ JANNJ NN N5~SA NJN N a~mn ain itn ft atK 0 ,0 9a fK C ca I n k0 rC 91 01 tol s 6, -Inb v v P w Dvf 4oa 0 0 0 IS t. faa 0 o In - v - allT...NAMES/ SUSTYP(4),-SEGLAB(1 5)*J.JTLA9C¶14),PLTSY4!(29), 014NIN(-1 :31 )PTTLEPUNlITS( 3,-1:1) REAL MEAN(C:lp2:3)p STDEVCO:lp2: 3) CHARACTER SU83TYP*20

  7. Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement.

    PubMed

    Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun

    2014-10-20

    In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.

  8. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  9. Vector fields in a tight laser focus: comparison of models.

    PubMed

    Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael

    2017-06-26

    We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.

  10. The significance of vector magnetic field measurements

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.

    1990-01-01

    Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.

  11. Combinatorial vector fields and the valley structure of fitness landscapes.

    PubMed

    Stadler, Bärbel M R; Stadler, Peter F

    2010-12-01

    Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.

  12. Detection of a sudden change of the field time series based on the Lorenz system

    PubMed Central

    Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan

    2017-01-01

    We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series. PMID:28141832

  13. Introduction to Electrodynamics

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.

    2017-06-01

    1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.

  14. Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    den Otter, W. K.

    2000-05-01

    A generalized formulation of the thermodynamic integration (TI) method for calculating the free energy along a reaction coordinate is derived. Molecular dynamics simulations with a constrained reaction coordinate are used to sample conformations. These are then projected onto conformations with a higher value of the reaction coordinate by means of a vector field. The accompanying change in potential energy plus the divergence of the vector field constitute the derivative of the free energy. Any vector field meeting some simple requirements can be used as the basis of this TI expression. Two classes of vector fields are of particular interest here. The first recovers the conventional TI expression, with its cumbersome dependence on a full set of generalized coordinates. As the free energy is a function of the reaction coordinate only, it should in principle be possible to derive an expression depending exclusively on the definition of the reaction coordinate. This objective is met by the second class of vector fields to be discussed. The potential of mean constraint force (PMCF) method, after averaging over the unconstrained momenta, falls in this second class. The new method is illustrated by calculations on the isomerization of n-butane, and is compared with existing methods.

  15. [Factors for Degaussing of a Cochlear Implant Magnet in the MR Scanner].

    PubMed

    Koganezawa, Takumi; Uchiyama, Naoko; Teshigawara, Mai; Ogura, Akio

    This study examined the conditions influencing degauss of the magnet using magnetic resonance imaging (MRI). Poly methyl methacrylate (PMMA) was used to fix the measurement magnets to the MRI bed at angles from 0° to 180° for the magnetic flux vector of static magnetic field. The PMMA was moved in the MRI magnetic field. Magnetic flux density was measured before and after bed movement, and the rate of degauss was calculated. The contents examined are as follows: (1) the angle of the magnetic flux vector of the measurement magnets for the magnetic flux vector of the static magnetic field, (2) the number of movements, (3) moving velocity, and (4) the movement on the spatial gradient of magnetic field. Mann-Whitney U test was used for statistical analysis of the data. In conclusion, the effect of the angle of the magnetic flux vector of the implant magnet was high under the conditions of degauss in this study. Therefore, during the MRI examination of a patient with a cochlear implant magnet, the operators identified the directions of the magnetic flux vector and static magnetic field of the implant magnet.

  16. The history of polarisation measurements: their role in studies of magnetic fields

    NASA Astrophysics Data System (ADS)

    Wielebinski, R.

    2015-03-01

    Radio astronomy gave us new methods to study magnetic fields. Synchrotron radiation, the main cause of comic radio waves, is highly linearly polarised with the `E' vector normal to the magnetic field. The Faraday Effect rotates the `E' vector in thermal regions by the magnetic field in the line of sight. Also the radio Zeeman Effect has been observed.

  17. Electron Beam Propagation Through a Magnetic Wiggler with Random Field Errors

    DTIC Science & Technology

    1989-08-21

    Another quantity of interest is the vector potential 6.A,.(:) associated with the field error 6B,,,(:). Defining the normalized vector potentials ba = ebA...then follows that the correlation of the normalized vector potential errors is given by 1 . 12 (-a.(zj)a.,(z2)) = a,k,, dz’ , dz" (bBE(z’)bB , (z")) a2...Throughout the following, terms of order O(z:/z) will be neglected. Similarly, for the y-component of the normalized vector potential errors, one

  18. High-quality and interactive animations of 3D time-varying vector fields.

    PubMed

    Helgeland, Anders; Elboth, Thomas

    2006-01-01

    In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.

  19. Aircraft attitude measurement using a vector magnetometer

    NASA Technical Reports Server (NTRS)

    Peitila, R.; Dunn, W. R., Jr.

    1977-01-01

    The feasibility of a vector magnetometer system was investigated by developing a technique to determine attitude given magnetic field components. Sample calculations are then made using the earth's magnetic field data acquired during actual flight conditions. Results of these calculations are compared graphically with measured attitude data acquired simultaneously with the magnetic data. The role and possible implementation of various reference angles are discussed along with other pertinent considerations. Finally, it is concluded that the earth's magnetic field as measured by modern vector magnetometers can play a significant role in attitude control systems.

  20. Vector models and generalized SYK models

    DOE PAGES

    Peng, Cheng

    2017-05-23

    Here, we consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. Furthermore, a chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.

  1. Comment on "Chiral gauge field and axial anomaly in a Weyl semimetal"

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Erhu; Zhang, Shengli

    2017-12-01

    In Liu et al. [Phys. Rev. B 87, 235306 (2013), 10.1103/PhysRevB.87.235306], the authors obtain that the cross coupling between vector gauge field and chiral gauge field can lead to the anomaly of vector current. We demonstrate that this anomaly is not a physical effect. On one hand, it can be regulated out by the proper regulation. On the other hand, it leads to unjustifiable results, the breaking of the vector gauge symmetry and the ambiguous boundary current. Moreover, the effects associated with anomaly of vector current are understood by random phase approximation (RPA) in the paper we comment on. We point out that the RPA cannot describe the effects resulting from the quantum anomaly.

  2. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    PubMed

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  3. A model for predicting field-directed particle transport in the magnetofection process.

    PubMed

    Furlani, Edward P; Xue, Xiaozheng

    2012-05-01

    To analyze the magnetofection process in which magnetic carrier particles with surface-bound gene vectors are attracted to target cells for transfection using an external magnetic field and to obtain a fundamental understanding of the impact of key factors such as particle size and field strength on the gene delivery process. A numerical model is used to study the field-directed transport of the carrier particle-gene vector complex to target cells in a conventional multiwell culture plate system. The model predicts the transport dynamics and the distribution of particle accumulation at the target cells. The impact of several factors that strongly influence gene vector delivery is assessed including the properties of the carrier particles, the strength of the field source, and its extent and proximity relative to the target cells. The study demonstrates that modeling can be used to predict and optimize gene vector delivery in the magnetofection process for novel and conventional in vitro systems.

  4. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  5. A new method for distortion magnetic field compensation of a geomagnetic vector measurement system

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyan; Pan, Mengchun; Tang, Ying; Zhang, Qi; Geng, Yunling; Wan, Chengbiao; Chen, Dixiang; Tian, Wugang

    2016-12-01

    The geomagnetic vector measurement system mainly consists of three-axis magnetometer and an INS (inertial navigation system), which have many ferromagnetic parts on them. The magnetometer is always distorted by ferromagnetic parts and other electric equipments such as INS and power circuit module within the system, which can lead to geomagnetic vector measurement error of thousands of nT. Thus, the geomagnetic vector measurement system has to be compensated in order to guarantee the measurement accuracy. In this paper, a new distortion magnetic field compensation method is proposed, in which a permanent magnet with different relative positions is used to change the ambient magnetic field to construct equations of the error model parameters, and the parameters can be accurately estimated by solving linear equations. In order to verify effectiveness of the proposed method, the experiment is conducted, and the results demonstrate that, after compensation, the components errors of measured geomagnetic field are reduced significantly. It demonstrates that the proposed method can effectively improve the accuracy of the geomagnetic vector measurement system.

  6. On classical mechanical systems with non-linear constraints

    NASA Astrophysics Data System (ADS)

    Terra, Gláucio; Kobayashi, Marcelo H.

    2004-03-01

    In the present work, we analyze classical mechanical systems with non-linear constraints in the velocities. We prove that the d'Alembert-Chetaev trajectories of a constrained mechanical system satisfy both Gauss' principle of least constraint and Hölder's principle. In the case of a free mechanics, they also satisfy Hertz's principle of least curvature if the constraint manifold is a cone. We show that the Gibbs-Maggi-Appell (GMA) vector field (i.e. the second-order vector field which defines the d'Alembert-Chetaev trajectories) conserves energy for any potential energy if, and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint manifold). We introduce the Jacobi-Carathéodory metric tensor and prove Jacobi-Carathéodory's theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville's theorem on the conservation of volume for the flow of the GMA vector field.

  7. Derivation of the Lorentz force law, the magnetic field concept and the Faraday Lenz and magnetic Gauss laws using an invariant formulation of the Lorentz transformation

    NASA Astrophysics Data System (ADS)

    Field, J. H.

    2006-06-01

    It is demonstrated how the right-hand sides of the Lorentz transformation equations may be written, in a Lorentz-invariant manner, as 4-vector scalar products. This implies the existence of invariant length intervals analogous to invariant proper time intervals. An important distinction between the physical meanings of the space time and energy momentum 4-vectors is pointed out. The formalism is shown to provide a short derivation of the Lorentz force law of classical electrodynamics, and the conventional definition of the magnetic field, in terms of spatial derivatives of the 4-vector potential, as well as the Faraday Lenz law and the Gauss law for magnetic fields. The connection between the Gauss law for the electric field and the electrodynamic Ampère law, due to the 4-vector character of the electromagnetic potential, is also pointed out.

  8. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    PubMed

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-17

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  9. Extended vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp

    Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Procamore » theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.« less

  10. A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1991-01-01

    A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.

  11. Students' difficulties with vector calculus in electrodynamics

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-12-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.

  12. Interplanetary medium data book, appendix

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.

  13. Rotational polarities of sudden impulses in the magnetotail lobe

    NASA Technical Reports Server (NTRS)

    Kawano, H.; Yamamoto, T.; Kokubun, S.; Lepping, R. P.

    1992-01-01

    A sudden impulse (SI) is a sudden change in the magnetic field strength which is caused by a change in the solar wind pressure and is observed throughout the magnetosphere. In this report we have examined the rotations of the magnetic field vectors at times of SIs in the magnetotail lobe, by using IMP 6, 7, and 8 magnetometer data. The following properties have been found: (1) at the time of SI the arrowhead of the magnetic vector tends to rotate in one plane; (2) the plane of rotation tends to include the unperturbed magnetic field vector; (3) the plane of rotation tends to be aligned with the radial direction from the magnetotail axis; and (4) the magnetic vectors have a particular rotational polarity: when the plane of rotation is viewed so that the Sun is to the right of the viewed plane and the magnetotail axis is to the bottom, the arrowhead of the vector tends to rotate counterclockwise in this plane. These magnetic vector properties are consistent with those expected when part of an increase in solar wind lateral pressure squeezes the magnetotail axisymmetrically while moving tailward.

  14. Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel

    2012-01-01

    Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?

  15. [Sendai virus vector: vector development and its application to health care and biotechnology].

    PubMed

    Iida, Akihiro

    2007-06-01

    Sendai virus (SeV) is an enveloped virus with a nonsegmented negative-strand RNA genome and a member of the paramyxovirus family. We have developed SeV vector which has shown a high efficiently of gene transfer and expression of foreign genes to a wide range of dividing and non-dividing mammalian cells and tissues. One of the characteristics of the vector is that the genome is located exclusively in the cytoplasm of infected cells and does not go through a DNA phase; thus there is no concern about unwanted integration of foreign sequences into chromosomal DNA. Therefore, this new class of "cytoplasmic RNA vector", an RNA vector with cytoplasmic expression, is expected to be a safer and more efficient viral vector than existing vectors for application to human therapy in various fields including gene therapy and vaccination. In this review, I describe development of Sendai virus vector, its application in the field of biotechnology and clinical application aiming to treat for a large number of diseases including cancer, cardiovascular disease, infectious diseases and neurologic disorders.

  16. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramar, M.; Lin, H.; Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, wemore » compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.« less

  17. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a databasemore » of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.« less

  18. Achievement of needle-like focus by engineering radial-variant vector fields.

    PubMed

    Gu, Bing; Wu, Jia-Lu; Pan, Yang; Cui, Yiping

    2013-12-16

    We present and demonstrate a novel method for engineering the radial-variant polarization on the incident field to achieve a needle of transversally polarized field without any pupil filters. We generate a new kind of localized linearly-polarized vector fields with distributions of states of polarization (SoPs) describing by the radius to the power p and explore its tight focusing, nonparaxial focusing, and paraxial focusing properties. By tuning the power p, we obtain the needle-like focal field with hybrid SoPs and give the formula for describing the length of the needle. Experimentally, we systematically investigate both the intensity distributions and the polarization evolution of the optical needle by paraxial focusing the generated vector field. Such an optical needle, which enhances the light-matter interaction, has intriguing applications in optical microma-chining and nonlinear optics.

  19. Computation of Surface Integrals of Curl Vector Fields

    ERIC Educational Resources Information Center

    Hu, Chenglie

    2007-01-01

    This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…

  20. Vector calculus in non-integer dimensional space and its applications to fractal media

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  1. Jupiter Environment Tool

    NASA Technical Reports Server (NTRS)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  2. On the origin of Poincaré gauge gravity

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2017-06-01

    We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij) and vector (eμi) representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, Aμij Aijμ = ±MA2 and eμi eiμ = ±Me2 , that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales). It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  3. Selection of optimum median-filter-based ambiguity removal algorithm parameters for NSCAT. [NASA scatterometer

    NASA Technical Reports Server (NTRS)

    Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.

    1989-01-01

    The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.

  4. Supermodes in Coupled Multi-Core Waveguide Structures

    DTIC Science & Technology

    2016-04-01

    and therefore can be treated as linear polarization (LP) modes. In essence, the LP modes are scalar approximations of the vector mode fields and contain...field, including the discovery of optical discrete solitons , Bragg and vector solitons in fibers, nonlinear surface waves, and the discovery of self...increased for an isolated core, it can guide high-order modes. For optical fibers with low re- fractive index contrast, the vector modes are weakly guided

  5. Dual and mixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamics with second sound effect

    NASA Astrophysics Data System (ADS)

    Tóth, Balázs

    2018-03-01

    Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.

  6. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  7. Low-Angle Radar Tracking

    DTIC Science & Technology

    1976-02-01

    Transition from Specular Reflection to Diffuse Scattering. . . 10 Composition of the Electric-Field Vector as Seen at the Radar...r t (16) R • FIGURE P COMPOSITION OF THE ELECTRIC-FIELD VECTOR AS SEEN AT THE RADAR, R, IN FIG. 2. The electric field at the radar, E, is the sum...wavelengths in the VHP and UHF ranges even subsurface characteristics can be important. So in a field experiment one must be careful to measure

  8. Electromagnetically induced transparency in the case of elliptic polarization of interacting fields

    NASA Astrophysics Data System (ADS)

    Parshkov, Oleg M.

    2018-04-01

    The theoretical investigation results of disintegration effect of elliptic polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed elliptic polarized control field and in weak probe field approximation are presented. It is shown that this disintegration occurs because the probe field in the medium is the sum of two normal modes, which correspond to elliptic polarized pulses with different speeds of propagation. The polarization ellipses of normal modes have equal eccentricities and mutually perpendicular major axes. Major axis of polarization ellipse of one normal mode is parallel to polarization ellipse major axis of control field, and electric vector of this mode rotates in the opposite direction, than electric vector of the control field. The electric vector other normal mode rotates in the same direction that the control field electric vector. The normal mode speed of the first type aforementioned is less than that of the second type. The polarization characteristics of the normal mode depend uniquely on the polarization characteristics of elliptic polarized control field and remain changeless in the propagation process. The theoretical investigation is performed for Λ-scheme of degenerated quantum transitions between 3P0, 3P10 and 3P2 energy levels of 208Pb isotope.

  9. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    PubMed Central

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-01-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers. PMID:27009383

  10. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    NASA Astrophysics Data System (ADS)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  11. Electric fields and vector potentials of thin cylindrical antennas

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1990-09-01

    The vector potential and electric field generated by the current in a center-driven or parasitic dipole antenna that extends from z = -h to z = h are investigated for each of the several components of the current. These include sin k(h - absolute value of z), sin k (absolute value of z) - sin kh, cos kz - cos kh, and cos kz/2 - cos kh/2. Of special interest are the interactions among the variously spaced elements in parallel nonstaggered arrays. These depend on the mutual vector potentials. It is shown that at a radial distance rho approximately = h and in the range z = -h to h, the vector potentials due to all four components become alike and have an approximately plane-wave form. Simple approximate formulas for the electric fields and vector potentials generated by each of the four distributions are derived and compared with the exact results. The application of the new formulas to large arrays is discussed.

  12. Macroscopic theory of dark sector

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).

  13. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields

    PubMed Central

    Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian

    2017-01-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469

  14. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields.

    PubMed

    Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen

    2017-06-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.

  15. Thermofield duality for higher spin Rindler Gravity

    DOE PAGES

    Jevicki, Antal; Suzuki, Kenta

    2016-02-15

    In this paper, we study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and O(N) vector theory. The CFT represents a decoupled pair of free O(N) vector field theories. It is shown how this decoupled domain CFT is capable of generating the connected Rindler-AdS background with the full set of Higher Spin fields.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogh, Ellen; Toft-Petersen, Rasmus; Ressouche, Eric

    Here, the magnetic phase diagram of magnetoelectric LiCoPO 4 is established using neutron diffraction and magnetometry in fields up to 25.9T applied along the crystallographic b axis. For fields greater than 11.9T, the magnetic unit cell triples in size with propagation vector Q = (0,1/3,0). A magnetized elliptic cycloid is formed with spins in the (b,c) plane and the major axis oriented along b. Such a structure allows for the magnetoelectric effect with an electric polarization along c induced by magnetic fields applied along b. Intriguingly, additional ordering vectors Q ≈ (0,1/4,0) and Q ≈ (0,1/2,0) appear for increasing fieldsmore » in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5–21.0T, the propagation vector Q = (0,1/3,0) remains but the spins orient differently compared to the cycloid phase. Furthermore, above 21.0T and up until saturation, a commensurate magnetic structure exists with a ferromagnetic component along b and an antiferromagnetic component along« less

  17. An MHD Simulation of Solar Active Region 11158 Driven with a Time-dependent Electric Field Determined from HMI Vector Magnetic Field Measurement Data

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei

    2018-03-01

    For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.

  18. Long-term vacuum tests of single-mode vertical cavity surface emitting laser diodes used for a scalar magnetometer

    NASA Astrophysics Data System (ADS)

    Hagen, C.; Ellmeier, M.; Piris, J.; Lammegger, R.; Jernej, I.; Magnes, W.; Murphy, E.; Pollinger, A.; Erd, C.; Baumjohann, W.

    2017-11-01

    Scalar magnetometers measure the magnitude of the magnetic field, while vector magnetometers (mostly fluxgate magnetometers) produce three-component outputs proportional to the magnitude and the direction of the magnetic field. While scalar magnetometers have a high accuracy, vector magnetometers suffer from parameter drifts and need to be calibrated during flight. In some cases, full science return can only be achieved by a combination of vector and scalar magnetometers.

  19. Analysis of the vector magnetic fields of complex sunspots

    NASA Technical Reports Server (NTRS)

    Patty, S. R.

    1981-01-01

    An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.

  20. Evolution of vector magnetic fields and the August 27 1990 X-3 flare

    NASA Technical Reports Server (NTRS)

    Wang, Haimin

    1992-01-01

    Vector magnetic fields in an active region of the sun are studied by means of continuous observations of magnetic-field evolution emphasizing magnetic shear build-up. The vector magnetograms are shown to measure magnetic fields correctly based on concurrent observations and a comparison of the transverse field with the H alpha fibril structure. The morphology and velocity pattern are examined, and these data and the shear build-up suggest that the active region's two major footprints are separated by a region with flows, new flux emergence, and several neutral lines. The magnetic shear appears to be caused by the collision and shear motion of two poles of opposite polarities. The transverse field is shown to turn from potential to sheared during the process of flux cancellation, and this effect can be incorporated into existing models of magnetic flux cancellation.

  1. Inhomogeneity and velocity fields effects on scattering polarization in solar prominences

    NASA Astrophysics Data System (ADS)

    Milić, I.; Faurobert, M.

    2015-10-01

    One of the methods for diagnosing vector magnetic fields in solar prominences is the so called "inversion" of observed polarized spectral lines. This inversion usually assumes a fairly simple generative model and in this contribution we aim to study the possible systematic errors that are introduced by this assumption. On two-dimensional toy model of a prominence, we first demonstrate importance of multidimensional radiative transfer and horizontal inhomogeneities. These are able to induce a significant level of polarization in Stokes U, without the need for the magnetic field. We then compute emergent Stokes spectrum from a prominence which is pervaded by the vector magnetic field and use a simple, one-dimensional model to interpret these synthetic observations. We find that inferred values for the magnetic field vector generally differ from the original ones. Most importantly, the magnetic field might seem more inclined than it really is.

  2. Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Lesur, V.; Wang, L.

    2014-12-01

    General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees and orders, are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the higher-order partial derivatives of the magnetic field in local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (version 0.0) and the main magnetic field model of IGRF11. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the potential field.

  3. Comparative field trial of alternative vector control strategies for non-domiciliated Triatoma dimidiata.

    PubMed

    Ferral, Jhibran; Chavez-Nuñez, Leysi; Euan-Garcia, Maria; Ramirez-Sierra, Maria Jesus; Najera-Vazquez, M Rosario; Dumonteil, Eric

    2010-01-01

    Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.

  4. Cosmology for quadratic gravity in generalized Weyl geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, Jose Beltrán; Heisenberg, Lavinia; Koivisto, Tomi S.

    A class of vector-tensor theories arises naturally in the framework of quadratic gravity in spacetimes with linear vector distortion. Requiring the absence of ghosts for the vector field imposes an interesting condition on the allowed connections with vector distortion: the resulting one-parameter family of connections generalises the usual Weyl geometry with polar torsion. The cosmology of this class of theories is studied, focusing on isotropic solutions wherein the vector field is dominated by the temporal component. De Sitter attractors are found and inhomogeneous perturbations around such backgrounds are analysed. In particular, further constraints on the models are imposed by excludingmore » pathologies in the scalar, vector and tensor fluctuations. Various exact background solutions are presented, describing a constant and an evolving dark energy, a bounce and a self-tuning de Sitter phase. However, the latter two scenarios are not viable under a closer scrutiny.« less

  5. Vector disformal transformation of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Vassilis; Zarei, Moslem; Firouzjahi, Hassan; Mukohyama, Shinji

    2018-03-01

    We study disformal transformations of cosmological perturbations by vector fields in theories invariant under U (1 ) gauge transformations. Three types of vector disformal transformations are considered: (i) disformal transformations by a single timelike vector; (ii) disformal transformations by a single spacelike vector; and (iii) disformal transformations by three spacelike vectors. We show that transformations of type (i) do not change either curvature perturbation or gravitational waves; that those of type (ii) do not change curvature perturbation but change gravitational waves; and that those of type (iii) change both curvature perturbation and gravitational waves. Therefore, coupling matter fields to the metric after disformal transformations of type (ii) or (iii) in principle have observable consequences. While the recent multi-messenger observation of binary neutron stars has singled out a proper disformal frame at the present epoch with a high precision, the result of the present paper may thus help distinguishing disformal frames in the early universe.

  6. Particle production of vector fields: Scale invariance is attractive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, Jacques M.; Dimopoulos, Konstantinos

    2011-01-15

    In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of perturbations for the components of a vector field, massive or not, whose kinetic function (and mass) is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation weakly anisotropic. The above two characteristics of the attractor solution can source (independently or combined together) significant statisticalmore » anisotropy in the curvature perturbation, which may well be observable in the near future.« less

  7. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  8. Index formulas for higher order Loewner vector fields

    NASA Astrophysics Data System (ADS)

    Broad, Steven

    Let ∂ be the Cauchy-Riemann operator and f be a C real-valued function in a neighborhood of 0 in R in which ∂z¯nf≠0 for all z≠0. In such cases, ∂z¯nf is known as a Loewner vector field due to its connection with Loewner's conjecture that the index of such a vector field is bounded above by n. The n=2 case of Loewner's conjecture implies Carathéodory's conjecture that any C-immersion of S into R must have at least two umbilics. Recent work of F. Xavier produced a formula for computing the index of Loewner vector fields when n=2 using data about the Hessian of f. In this paper, we extend this result and establish an index formula for ∂z¯nf for all n⩾2. Structurally, our index formula provides a defect term, which contains geometric data extracted from Hessian-like objects associated with higher order derivatives of f.

  9. Lie-Hamilton systems on the plane: Properties, classification and applications

    NASA Astrophysics Data System (ADS)

    Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.

    2015-04-01

    We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.

  10. Spatial attenuation of different sound field components in a water layer and shallow-water sediments

    NASA Astrophysics Data System (ADS)

    Belov, A. I.; Kuznetsov, G. N.

    2017-11-01

    The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.

  11. Black holes with halos

    NASA Astrophysics Data System (ADS)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  12. Development of software for the MSFC solar vector magnetograph

    NASA Technical Reports Server (NTRS)

    Kineke, Jack

    1996-01-01

    The Marshall Space Flight Center Solar Vector Magnetograph is a special purpose telescope used to measure the vector magnetic field in active areas on the surface of the sun. This instrument measures the linear and circular polarization intensities (the Stokes vectors Q, U and V) produced by the Zeeman effect on a specific spectral line due to the solar magnetic field from which the longitudinal and transverse components of the magnetic field may be determined. Beginning in 1990 as a Summer Faculty Fellow in project JOVE and continuing under NASA Grant NAG8-1042, the author has been developing computer software to perform these computations, first using a DEC MicroVAX system equipped with a high speed array processor, and more recently using a DEC AXP/OSF system. This summer's work is a continuation of this development.

  13. Evolutionary programming-based univector field navigation method for past mobile robots.

    PubMed

    Kim, Y J; Kim, J H; Kwon, D S

    2001-01-01

    Most of navigation techniques with obstacle avoidance do not consider the robot orientation at the target position. These techniques deal with the robot position only and are independent of its orientation and velocity. To solve these problems this paper proposes a novel univector field method for fast mobile robot navigation which introduces a normalized two dimensional vector field. The method provides fast moving robots with the desired posture at the target position and obstacle avoidance. To obtain the sub-optimal vector field, a function approximator is used and trained by evolutionary programming. Two kinds of vector fields are trained, one for the final posture acquisition and the other for obstacle avoidance. Computer simulations and real experiments are carried out for a fast moving mobile robot to demonstrate the effectiveness of the proposed scheme.

  14. Cryogenic STM in 3D vector magnetic fields realized through a rotatable insert.

    PubMed

    Trainer, C; Yim, C M; McLaren, M; Wahl, P

    2017-09-01

    Spin-polarized scanning tunneling microscopy (SP-STM) performed in vector magnetic fields promises atomic scale imaging of magnetic structure, providing complete information on the local spin texture of a sample in three dimensions. Here, we have designed and constructed a turntable system for a low temperature STM which in combination with a 2D vector magnet provides magnetic fields of up to 5 T in any direction relative to the tip-sample geometry. This enables STM imaging and spectroscopy to be performed at the same atomic-scale location and field-of-view on the sample, and most importantly, without experiencing any change on the tip apex before and after field switching. Combined with a ferromagnetic tip, this enables us to study the magnetization of complex magnetic orders in all three spatial directions.

  15. Which Way Is the Flow?

    NASA Technical Reports Server (NTRS)

    Kao, David

    1999-01-01

    The line integral convolution (LIC) technique has been known to be an effective tool for depicting flow patterns in a given vector field. There have been many extensions to make it run faster and reveal useful flow information such as velocity magnitude, motion, and direction. There are also extensions to unsteady flows and 3D vector fields. Surprisingly, none of these extensions automatically highlight flow features, which often represent the most important and interesting physical flow phenomena. In this sketch, a method for highlighting flow direction in LIC images is presented. The method gives an intuitive impression of flow direction in the given vector field and automatically reveals saddle points in the flow.

  16. Transverse spin and transverse momentum in scattering of plane waves.

    PubMed

    Saha, Sudipta; Singh, Ankit K; Ray, Subir K; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-10-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demonstrated that the interference of the transverse electric and transverse magnetic scattering modes enhances both the magnitudes and the spatial extent of the transverse SAM and the transverse momentum components.

  17. Vector Potential Generation for Numerical Relativity Simulations

    NASA Astrophysics Data System (ADS)

    Silberman, Zachary; Faber, Joshua; Adams, Thomas; Etienne, Zachariah; Ruchlin, Ian

    2017-01-01

    Many different numerical codes are employed in studies of highly relativistic magnetized accretion flows around black holes. Based on the formalisms each uses, some codes evolve the magnetic field vector B, while others evolve the magnetic vector potential A, the two being related by the curl: B=curl(A). Here, we discuss how to generate vector potentials corresponding to specified magnetic fields on staggered grids, a surprisingly difficult task on finite cubic domains. The code we have developed solves this problem in two ways: a brute-force method, whose scaling is nearly linear in the number of grid cells, and a direct linear algebra approach. We discuss the success both algorithms have in generating smooth vector potential configurations and how both may be extended to more complicated cases involving multiple mesh-refinement levels. NSF ACI-1550436

  18. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach.

    PubMed

    Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-02-03

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  19. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    PubMed Central

    Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-01-01

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670

  20. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants

    PubMed Central

    Perilla-Henao, Laura M.; Casteel, Clare L.

    2016-01-01

    Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions. PMID:27555855

  1. Absolute Geostrophic Velocity Inverted from World Ocean Atlas 2013 (WOAV13) with the P-Vector Method

    DTIC Science & Technology

    2015-11-01

    The WOAV13 dataset comprises 3D global gridded climatological fields of absolute geostrophic velocity inverted...from World Ocean Atlas-2013 (WOA13) temperature and salinity fields using the P-vector method. It provides a climatological velocity field that is... climatology Dataset Identifier: gov.noaa.nodc:0121576 Creator: NOAP Lab, Department of Oceanography, Naval Postgraduate School, Monterey, CA Title

  2. A rapid field detection system for citrus huanglongbing associated ‘Candidatus Liberibacter asiaticus’ from the psyllid vector, diaphorina citri kuwayama and its implications in disease management

    USDA-ARS?s Scientific Manuscript database

    We report the development of an affordable detection kit for the detection of ‘Candidatus Liberibacter asiaticus’ (Las) from the psyllid vector, Diaphorina citri, which can provide real time test results in the field or field laboratory within 30-40 minutes without the need for expensive laboratory ...

  3. A median filter approach for correcting errors in a vector field

    NASA Technical Reports Server (NTRS)

    Schultz, H.

    1985-01-01

    Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.

  4. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  5. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Reconstruction of vector physical fields by optical tomography

    NASA Astrophysics Data System (ADS)

    Kulchin, Yurii N.; Vitrik, O. B.; Kamenev, O. T.; Kirichenko, O. V.; Petrov, Yu S.

    1995-10-01

    Reconstruction of vector physical fields by optical tomography, with the aid of a system of fibre-optic measuring lines, is considered. The reported experimental results are used to reconstruct the distribution of the square of the gradient of transverse displacements of a flat membrane.

  6. Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.

    2001-05-01

    The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.

  7. Preliminary calibration plan for the Advanced Particles and Field Observatory (APAFO) magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.; Langel, R. A.; Slavin, J.; Lancaster, E. R.; Jones, S.

    1991-01-01

    Prelaunch and postlaunch calibration plans for the APAFO magnetometer experiment are presented. A study of tradeoffs between boom length and spacecraft field is described; the results are summarized. The prelaunch plan includes: calibration of the Vector Fluxgate Magnetometer (VFM), Star Sensors, and Scalar Helium Magnetometer (SHM); optical bench integration; and acquisition of basic spacecraft field data. Postlaunch calibration has two phases. In phase one, SHM data are used to calibrate the VFM, total vector magnetic field data are used to calibrate a physical model of the spacecraft field, and both calibrations are refined by iteration. In phase two, corrected vector data are transformed into geocentric coordinates, previously undetected spacecraft fields are isolated, and initial geomagnetic field models are computed. Provided the SHM is accurate to the required 1.0 nT and can be used to calibrate the VFM to the required 3.0- nT accuracy, the tradeoff study indicates that a 12 m boom and a spacecraft field model uncertainty of 5 percent together allow the 1.0 nT spacecraft field error requirement to be met.

  8. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms.

    PubMed

    Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M

    2015-05-01

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  9. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less

  10. On the Lamb vector divergence as a momentum field diagnostic employed in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Hamman, Curtis W.; Kirby, Robert M.; Klewicki, Joseph C.

    2006-11-01

    Vorticity, enstrophy, helicity, and other derived field variables provide invaluable information about the kinematics and dynamics of fluids. However, whether or not derived field variables exist that intrinsically identify spatially localized motions having a distinct capacity to affect a time rate of change of linear momentum is seldom addressed in the literature. The purpose of the present study is to illustrate the unique attributes of the divergence of the Lamb vector in order to qualify its potential for characterizing such spatially localized motions. Toward this aim, we describe the mathematical properties, near-wall behavior, and scaling characteristics of the divergence of the Lamb vector for turbulent channel flow. When scaled by inner variables, the mean divergence of the Lamb vector merges to a single curve in the inner layer, and the fluctuating quantities exhibit a strong correlation with the Bernoulli function throughout much of the inner layer.

  11. Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano

    2013-09-01

    The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.

  12. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation

    NASA Astrophysics Data System (ADS)

    Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.

    2015-08-01

    Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new understanding of the factors by which TMS induces cortical activation necessary for predictive and repeatable use of this noninvasive stimulation modality.

  13. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    PubMed

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  14. Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

    NASA Astrophysics Data System (ADS)

    Cheng, C. H. Arthur; Shkoller, Steve

    2017-09-01

    We provide a self-contained proof of the solvability and regularity of a Hodge-type elliptic system, wherein the divergence and curl of a vector field u are prescribed in an open, bounded, Sobolev-class domain {Ω \\subseteq R^n}, and either the normal component {{u} \\cdot {N}} or the tangential components of the vector field {{u} × {N}} are prescribed on the boundary {partial Ω}. For {k > n/2}, we prove that u is in the Sobolev space {H^k+1(Ω)} if {Ω} is an {H^k+1}-domain, and the divergence, curl, and either the normal or tangential trace of u has sufficient regularity. The proof is based on a regularity theory for vector elliptic equations set on Sobolev-class domains and with Sobolev-class coefficients, and with a rather general set of Dirichlet and Neumann boundary conditions. The resulting regularity theory for the vector u is fundamental in the analysis of free-boundary and moving interface problems in fluid dynamics.

  15. Autorotation

    NASA Astrophysics Data System (ADS)

    Bohr, Jakob; Markvorsen, Steen

    2016-02-01

    A continuous autorotation vector field along a framed space curve is defined, which describes the rotational progression of the frame. We obtain an exact integral for the length of the autorotation vector. This invokes the infinitesimal rotation vector of the frame progression and the unit vector field for the corresponding autorotation vector field. For closed curves we define an autorotation number whose integer value depends on the starting point of the curve. Upon curve deformations, the autorotation number is either constant, or can make a jump of (multiples of) plus-minus two, which corresponds to a change in rotation of multiples of 4π. The autorotation number is therefore not topologically conserved under all transformations. We discuss this within the context of generalised inflection points and of frame revisit points. The results may be applicable to physical systems such as polymers, proteins, and DNA. Finally, turbulence is discussed in the light of autorotation, as is the Philippine wine dance, the Dirac belt trick, and the 4π cycle of the flying snake. This paper is dedicated to Ian K Robinson on the occasion of Ian receiving the Gregori Aminoff Prize 2015.

  16. Vector-based genetically modified vaccines: Exploiting Jenner's legacy.

    PubMed

    Ramezanpour, Bahar; Haan, Ingrid; Osterhaus, Ab; Claassen, Eric

    2016-12-07

    The global vaccine market is diverse while facing a plethora of novel developments. Genetic modification (GM) techniques facilitate the design of 'smarter' vaccines. For many of the major infectious diseases of humans, like AIDS and malaria, but also for most human neoplastic disorders, still no vaccines are available. It may be speculated that novel GM technologies will significantly contribute to their development. While a promising number of studies is conducted on GM vaccines and GM vaccine technologies, the contribution of GM technology to newly introduced vaccines on the market is disappointingly limited. In this study, the field of vector-based GM vaccines is explored. Data on currently available, actually applied, and newly developed vectors is retrieved from various sources, synthesised and analysed, in order to provide an overview on the use of vector-based technology in the field of GM vaccine development. While still there are only two vector-based vaccines on the human vaccine market, there is ample activity in the fields of patenting, preclinical research, and different stages of clinical research. Results of this study revealed that vector-based vaccines comprise a significant part of all GM vaccines in the pipeline. This study further highlights that poxviruses and adenoviruses are among the most prominent vectors in GM vaccine development. After the approval of the first vectored human vaccine, based on a flavivirus vector, vaccine vector technology, especially based on poxviruses and adenoviruses, holds great promise for future vaccine development. It may lead to cheaper methods for the production of safe vaccines against diseases for which no or less perfect vaccines exist today, thus catering for an unmet medical need. After the introduction of Jenner's vaccinia virus as the first vaccine more than two centuries ago, which eventually led to the recent eradication of smallpox, this and other viruses may now be the basis for constructing vectors that may help us control other major scourges of mankind. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Determination of coronal magnetic fields from vector magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1993-01-01

    This report covers technical progress during the second year of the contract entitled 'Determination of Coronal Magnetic Fields from Vector Magnetograms,' NASW-4728, between NASA and Science Applications International Corporation, and covers the period January 1, 1993 to December 31, 1993. Under this contract SAIC has conducted research into the determination of coronal magnetic fields from vector magnetograms, including the development and application of algorithms to determine force-free coronal fields above selected observations of active regions. The contract began on June 30, 1992 and has a completion date of December 31, 1994. This contract is a continuation of work started in a previous contract, NASW-4571, which covered the period November 15, 1990 to December 14, 1991. During this second year we have concentrated on studying additional active regions and in using the estimated coronal magnetic fields to compare to coronal features inferred from observations.

  18. Vector Galileon and inflationary magnetogenesis

    NASA Astrophysics Data System (ADS)

    Nandi, Debottam; Shankaranarayanan, S.

    2018-01-01

    Cosmological inflation provides the initial conditions for the structure formation. However, the origin of large-scale magnetic fields can not be addressed in this framework. The key issue for this long-standing problem is the conformal invariance of the electromagnetic (EM) field in 4-D. While many approaches have been proposed in the literature for breaking conformal invariance of the EM action, here, we provide a completely new way of looking at the modifications to the EM action and generation of primordial magnetic fields during inflation. We explicitly construct a higher derivative EM action that breaks conformal invariance by demanding three conditions—theory be described by vector potential Aμ and its derivatives, Gauge invariance be satisfied, and equations of motion be linear in second derivatives of vector potential. The unique feature of our model is that appreciable magnetic fields are generated at small wavelengths while tiny magnetic fields are generated at large wavelengths that are consistent with current observations.

  19. Method and means for measuring the anisotropy of a plasma in a magnetic field

    DOEpatents

    Shohet, J.L.; Greene, D.G.S.

    1973-10-23

    Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)

  20. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization.

    PubMed

    Lerman, Gilad M; Levy, Uriel

    2007-08-01

    We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.

  1. Field Computation and Nonpropositional Knowledge.

    DTIC Science & Technology

    1987-09-01

    field computer It is based on xeneralization of Taylor’s theorem to continuous dimensional vector spaces. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21...generalization of Taylor’s theorem to continuous dimensional vector -5paces A number of field computations are illustrated, including several Lransforma...paradigm. The "old" Al has been quite successful in performing a number of difficult tasks, such as theorem prov- ing, chess playing, medical diagnosis and

  2. Interaction of non-Abelian tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Savvidy, George

    2018-01-01

    The non-Abelian tensor gauge fields take value in extended Poincaré algebra. In order to define the invariant Lagrangian we introduce a vector variable in two alternative ways: through the transversal representation of the extended Poincaré algebra and through the path integral over the auxiliary vector field with the U(1) Abelian action. We demonstrate that this allows to fix the unitary gauge and derive scattering amplitudes in spinor representation.

  3. Qualitative investigation into students' use of divergence and curl in electromagnetism

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; Baily, Charles; De Cock, Mieke

    2016-12-01

    Many students struggle with the use of mathematics in physics courses. Although typically well trained in rote mathematical calculation, they often lack the ability to apply their acquired skills to physical contexts. Such student difficulties are particularly apparent in undergraduate electrodynamics, which relies heavily on the use of vector calculus. To gain insight into student reasoning when solving problems involving divergence and curl, we conducted eight semistructured individual student interviews. During these interviews, students discussed the divergence and curl of electromagnetic fields using graphical representations, mathematical calculations, and the differential form of Maxwell's equations. We observed that while many students attempt to clarify the problem by making a sketch of the electromagnetic field, they struggle to interpret graphical representations of vector fields in terms of divergence and curl. In addition, some students confuse the characteristics of field line diagrams and field vector plots. By interpreting our results within the conceptual blending framework, we show how a lack of conceptual understanding of the vector operators and difficulties with graphical representations can account for an improper understanding of Maxwell's equations in differential form. Consequently, specific learning materials based on a multiple representation approach are required to clarify Maxwell's equations.

  4. Sine Rotation Vector Method for Attitude Estimation of an Underwater Robot

    PubMed Central

    Ko, Nak Yong; Jeong, Seokki; Bae, Youngchul

    2016-01-01

    This paper describes a method for estimating the attitude of an underwater robot. The method employs a new concept of sine rotation vector and uses both an attitude heading and reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First, the acceleration and magnetic-field measurements are transformed into sine rotation vectors and combined. The combined sine rotation vector is then transformed into the differences between the Euler angles of the measured attitude and the predicted attitude; the differences are used to correct the predicted attitude. The method was evaluated according to field-test data and simulation data and compared to existing methods that calculate angular differences directly without a preceding sine rotation vector transformation. The comparison verifies that the proposed method improves the attitude estimation performance. PMID:27490549

  5. A vector autopilot system. [aircraft attitude determination with three-axis magnetometer

    NASA Technical Reports Server (NTRS)

    Pietila, R.; Dunn, W. R., Jr.

    1976-01-01

    Current technology has evolved low cost, highly reliable solid state vector magnetometers with excellent angular resolution. This paper discusses the role of a three-axis magnetometer as a new instrument for aircraft attitude determination. Using flight data acquired by an instrumented aircraft, attitude is calculated using the earth's magnetic field vector and compared to measured attitudes. The magnetic field alone is not adequate to resolve all attitude variations and the need for a second reference angle or vector is discussed. A system combining the functions of heading determination and attitude measurement is presented to show that both functions can be implemented with essentially the same component count required to measure heading alone. It is concluded that with the correlation achieved in calculated and measured attitude there is a potential application of vector magnetometry in attitude measurement systems.

  6. Magnetic order, hysteresis, and phase coexistence in magnetoelectric LiCoPO 4

    DOE PAGES

    Fogh, Ellen; Toft-Petersen, Rasmus; Ressouche, Eric; ...

    2017-09-15

    Here, the magnetic phase diagram of magnetoelectric LiCoPO 4 is established using neutron diffraction and magnetometry in fields up to 25.9T applied along the crystallographic b axis. For fields greater than 11.9T, the magnetic unit cell triples in size with propagation vector Q = (0,1/3,0). A magnetized elliptic cycloid is formed with spins in the (b,c) plane and the major axis oriented along b. Such a structure allows for the magnetoelectric effect with an electric polarization along c induced by magnetic fields applied along b. Intriguingly, additional ordering vectors Q ≈ (0,1/4,0) and Q ≈ (0,1/2,0) appear for increasing fieldsmore » in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5–21.0T, the propagation vector Q = (0,1/3,0) remains but the spins orient differently compared to the cycloid phase. Furthermore, above 21.0T and up until saturation, a commensurate magnetic structure exists with a ferromagnetic component along b and an antiferromagnetic component along« less

  7. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  8. Impact of Vector Dispersal and Host-Plant Fidelity on the Dissemination of an Emerging Plant Pathogen

    PubMed Central

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774

  9. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    PubMed

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  10. Method for multi-axis, non-contact mixing of magnetic particle suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, James E.; Solis, Kyle J.

    Continuous, three-dimensional control of the vorticity vector is possible by progressively transitioning the field symmetry by applying or removing a dc bias along one of the principal axes of mutually orthogonal alternating fields. By exploiting this transition, the vorticity vector can be oriented in a wide range of directions that comprise all three spatial dimensions. Detuning one or more field components to create phase modulation causes the vorticity vector to trace out complex orbits of a wide variety, creating very robust multiaxial stirring. This multiaxial, non-contact stirring is particularly attractive for applications where the fluid volume has complex boundaries, ormore » is congested.« less

  11. Magsat vector magnetometer calibration using Magsat geomagnetic field measurements

    NASA Technical Reports Server (NTRS)

    Lancaster, E. R.; Jennings, T.; Morrissey, M.; Langel, R. A.

    1980-01-01

    From the time of its launch on Oct. 30, 1979 into a nearly polar, Sun synchronous orbit, until it reentered the Earth's atmosphere on June 11, 1980, Magsat measured and transmitted more than three complete sets of global magnetic field data. The data obtained from the mission will be used primarily to compute a currently accurate model of the Earth's main magnetic field, to update and refine world and regional magnetic charts, and to develop a global scalar and vector crustal magnetic anomaly map. The in-flight calibration procecure used for 39 vector magnetometer system parameters is described as well as results obtained from some data sets and the numerical studies designed to evaluate the results.

  12. Custodial vector model

    NASA Astrophysics Data System (ADS)

    Becciolini, Diego; Franzosi, Diogo Buarque; Foadi, Roshan; Frandsen, Mads T.; Hapola, Tuomas; Sannino, Francesco

    2015-07-01

    We analyze the Large Hadron Collider (LHC) phenomenology of heavy vector resonances with a S U (2 )L×S U (2 )R spectral global symmetry. This symmetry partially protects the electroweak S parameter from large contributions of the vector resonances. The resulting custodial vector model spectrum and interactions with the standard model fields lead to distinct signatures at the LHC in the diboson, dilepton, and associated Higgs channels.

  13. Electro-gravity via geometric chrononfield

    NASA Astrophysics Data System (ADS)

    Suchard, Eytan H.

    2017-05-01

    In De Sitter / Anti De Sitter space-time and in other geometries, reference sub-manifolds from which proper time is measured along integral curves, are described as events. We introduce here a foliation with the help of a scalar field. The scalar field need not be unique but from the gradient of the scalar field, an intrinsic Reeb vector of the foliations perpendicular to the gradient vector is calculated. The Reeb vector describes the acceleration of a physical particle that moves along the integral curves that are formed by the gradient of the scalar field. The Reeb vector appears as a component of an anti-symmetric matrix which is a part of a rank-2, 2-Form. The 2-form is extended into a non-degenerate 4-form and into rank-4 matrix of a 2-form, which when multiplied by a velocity of a particle, becomes the acceleration of the particle. The matrix has one U(1) degree of freedom and an additional SU(2) degrees of freedom in two vectors that span the plane perpendicular to the gradient of the scalar field and to the Reeb vector. In total, there are U(1) x SU(2) degrees of freedom. SU(3) degrees of freedom arise from three dimensional foliations but require an additional symmetry to exist in order to have a valid covariant meaning. Matter in the Einstein Grossmann equation is replaced by the action of the acceleration field, i.e. by a geometric action which is not anticipated by the metric alone. This idea leads to a new formalism that replaces the conventional stress-energy-momentum-tensor. The formalism will be mainly developed for classical physics but will also be discussed for quantized physics based on events instead of particles. The result is that a positive charge manifests small attracting gravity and a stronger but small repelling acceleration field that repels even uncharged particles that have a rest mass. Negative charge manifests a repelling anti-gravity but also a stronger acceleration field that attracts even uncharged particles that have rest mass. Preliminary version: http://sciencedomain.org/abstract/9858

  14. Einstein-aether theory with a Maxwell field: General formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, Alexander B., E-mail: Alexander.Balakin@kpfu.ru; Lemos, José P.S., E-mail: joselemos@ist.utl.pt

    We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shearmore » and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Harsh

    This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thusmore » creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty visualization of unavoidable discretization errors. Together, the two main contributions of this dissertation address two important concerns regarding feature extraction from scientific data: correctness and precision. The work presented here also opens new avenues for further research by exploring more-general reference frames and more-sophisticated domain discretizations.« less

  16. Quantum detectors of vector potential and their modeling

    NASA Astrophysics Data System (ADS)

    Gulian, Armen; Melkonyan, Gurgen; Gulian, Ellen

    Proportionality of current to vector potential is a feature not allowed in classical physics, but is one of the pillars in quantum theory. For superconductors, in particular, it allows us to describe the Meissner effect. Since the phase of the quantum wave function couples with the vector-potential, the related expressions are gauge-invariant. Is it possible to measure this gauge-invariant quantity locally? The answer is definitely ``yes'', as soon as the current is involved. Indeed, the electric current generates a magnetic field which can be measured straightforwardly. However, one can consider situations like the Aharonov-Bohm effect where the classical magnetic field is locally absent in the area occupied by the quantum object (i.e., superconductor in our case). Despite the local absence of the magnetic field, current is, nevertheless, building up. From what source is it acquiring its energy? Locally, only a vector potential is present. Is the current formation a result of a truly non-local quantum action, or does the local action of the vector potential have experimental consequences on the quantum system, which then can be considered as a detector of the vector potential? We discuss possible experimental schemes on the level of COMSOL modeling. This research is supported in part by the ONR Grant N000141612269.

  17. The Classical Version of Stokes' Theorem Revisited

    ERIC Educational Resources Information Center

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  18. Optical cage generated by azimuthal- and radial-variant vector beams.

    PubMed

    Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui

    2018-05-01

    We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.

  19. Initial geomagnetic field model from Magsat vector data

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Mead, G. D.; Lancaster, E. R.; Estes, R. H.; Fabiano, E. B.

    1980-01-01

    Magsat data from the magnetically quiet days of November 5-6, 1979, were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(6/80). The model utilized both scalar and high-accuracy vector data and fit that data with root-mean-square deviations of 8.2, 6.9, 7.6 and 7.4 nT for the scalar magnitude, B(r), B(theta), and B(phi), respectively. The model includes the three first-order coefficients of the external field. Comparison with averaged Dst indicates that zero Dst corresponds with 25 nT of horizontal field from external sources. When compared with earlier models, the earth's dipole moment continues to decrease at a rate of about 26 nT/yr. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the WC80, AWC/75 and IGS/75 are better for predicting vector fields.

  20. Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Lesur, V.; Wang, L.

    2015-07-01

    General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees/orders are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the third-order partial derivatives of the magnetic potential field in the local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (GFZ Reference Internal Magnetic Model, version 0.0) with spherical harmonic degrees 16-90. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the magnetic potential field.

  1. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.; Amm, O.; Viljanen, A.

    2006-10-01

    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  2. Reducing vector-borne disease by empowering farmers in integrated vector management.

    PubMed

    van den Berg, Henk; von Hildebrand, Alexander; Ragunathan, Vaithilingam; Das, Pradeep K

    2007-07-01

    Irrigated agriculture exposes rural people to health risks associated with vector-borne diseases and pesticides used in agriculture and for public health protection. Most developing countries lack collaboration between the agricultural and health sectors to jointly address these problems. We present an evaluation of a project that uses the "farmer field school" method to teach farmers how to manage vector-borne diseases and how to improve rice yields. Teaching farmers about these two concepts together is known as "integrated pest and vector management". An intersectoral project targeting rice irrigation systems in Sri Lanka. Project partners developed a new curriculum for the field school that included a component on vector-borne diseases. Rice farmers in intervention villages who graduated from the field school took vector-control actions as well as improving environmental sanitation and their personal protection measures against disease transmission. They also reduced their use of agricultural pesticides, especially insecticides. The intervention motivated and enabled rural people to take part in vector-management activities and to reduce several environmental health risks. There is scope for expanding the curriculum to include information on the harmful effects of pesticides on human health and to address other public health concerns. Benefits of this approach for community-based health programmes have not yet been optimally assessed. Also, the institutional basis of the integrated management approach needs to be broadened so that people from a wider range of organizations take part. A monitoring and evaluation system needs to be established to measure the performance of integrated management initiatives.

  3. The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models

    PubMed Central

    Noid, W. G.; Liu, Pu; Wang, Yanting; Chu, Jhih-Wei; Ayton, Gary S.; Izvekov, Sergei; Andersen, Hans C.; Voth, Gregory A.

    2008-01-01

    The multiscale coarse-graining (MS-CG) method [S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 2469 (2005);J. Chem. Phys. 123, 134105 (2005)] employs a variational principle to determine an interaction potential for a CG model from simulations of an atomically detailed model of the same system. The companion paper proved that, if no restrictions regarding the form of the CG interaction potential are introduced and if the equilibrium distribution of the atomistic model has been adequately sampled, then the MS-CG variational principle determines the exact many-body potential of mean force (PMF) governing the equilibrium distribution of CG sites generated by the atomistic model. In practice, though, CG force fields are not completely flexible, but only include particular types of interactions between CG sites, e.g., nonbonded forces between pairs of sites. If the CG force field depends linearly on the force field parameters, then the vector valued functions that relate the CG forces to these parameters determine a set of basis vectors that span a vector subspace of CG force fields. The companion paper introduced a distance metric for the vector space of CG force fields and proved that the MS-CG variational principle determines the CG force force field that is within that vector subspace and that is closest to the force field determined by the many-body PMF. The present paper applies the MS-CG variational principle for parametrizing molecular CG force fields and derives a linear least squares problem for the parameter set determining the optimal approximation to this many-body PMF. Linear systems of equations for these CG force field parameters are derived and analyzed in terms of equilibrium structural correlation functions. Numerical calculations for a one-site CG model of methanol and a molecular CG model of the EMIM+∕NO3− ionic liquid are provided to illustrate the method. PMID:18601325

  4. Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV

    NASA Astrophysics Data System (ADS)

    Isezaki, N.; Matsuo, J.; Sayanagi, K.

    2012-04-01

    The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ɛT= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises around the magnetometer sensors. The method of Isezaki(1984) works good to eliminate these noises. 4.We got the very precise magnetization structure in the Bayonnaise submarine caldera area at the southern end of Izu island arc. We used the prism model which forms the shape of magnetized source body whose top is the sea-floor. The total number od prisms is 1500 making the 3 layers (0-80m, 80-160m, 160- 240m below the sea-floor, 25x20=500 prisms in 1 layer). The 4500 unknowns(3 unknowns, Mx,My,Mz in each prosm) are obtained from 12000 observed vector magnetic anomaly fields by inversion method. 5. The tentative result shows that the 1st and 2nd layers have smaller intensity of magnetization compared to the 3rd layer. The 2nd layer has the smallest of three layers. However the Hakurei deposit area in the 2nd layer has the a little bit greater magnetization than surrounding area which suggests that the Hakurei deposit includes some magnetic minerals. 6.We strongly recommend to carry out the magnetic survey using a three component magnetometer to get TF and TA which have many advantages for magnetic analyses (magnetization, upward continuation etc.) which cannot be done using scalar TIA.

  5. Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Kazuo

    2014-03-15

    We study the three-dimensional magnetohydrodynamics system and obtain its regularity criteria in terms of only two velocity vector field components eliminating the condition on the third component completely. The proof consists of a new decomposition of the four nonlinear terms of the system and estimating a component of the magnetic vector field in terms of the same component of the velocity vector field. This result may be seen as a component reduction result of many previous works [C. He and Z. Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations,” J. Differ. Equ. 213(2), 234–254 (2005); Y. Zhou,more » “Remarks on regularities for the 3D MHD equations,” Discrete Contin. Dyn. Syst. 12(5), 881–886 (2005)].« less

  6. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    NASA Technical Reports Server (NTRS)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  7. The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1975-01-01

    The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.

  8. O Electromagnetic Power Waves and Power Density Components.

    NASA Astrophysics Data System (ADS)

    Petzold, Donald Wayne

    1980-12-01

    On January 10, 1884 Lord Rayleigh presented a paper entitled "On the Transfer of Energy in the Electromagnetic Field" to the Royal Society of London. This paper had been authored by the late Fellow of Trinity College, Cambridge, Professor J. H. Poynting and in it he claimed that there was a general law for the transfer of electromagnetic energy. He argued that associated with each point in space is a quantity, that has since been called the Poynting vector, that is a measure of the rate of energy flow per unit area. His analysis was concerned with the integration of this power density vector at all points over an enclosing surface of a specific volume. The interpretation of this Poynting vector as a true measure of the local power density was viewed with great skepticism unless the vector was integrated over a closed surface, as the development of the concept required. However, within the last decade or so Shadowitz indicates that a number of prominent authors have argued that the criticism of the interpretation of Poynting's vector as a local power density vector is unjustified. The present paper is not concerned with these arguments but instead is concerned with a decomposition of Poynting's power density vector into two and only two components: one vector which has the same direction as Poynting's vector and which is called the forward power density vector, and another vector, directed opposite to the Poynting vector and called the reverse power density vector. These new local forward and reverse power density vectors will be shown to be dependent upon forward and reverse power wave vectors and these vectors in turn will be related to newly defined forward and reverse components of the electric and magnetic fields. The sum of these forward and reverse power density vectors, which is simply the original Poynting vector, is associated with the total electromagnetic energy traveling past the local point. Another vector which is the difference between the forward and reverse power density vectors and which will be shown to be associated with the total electric and magnetic field energy densities existing at a local point will also be introduced. These local forward and reverse power density vectors may be integrated over a surface to determine the forward and reverse powers and from these results problems related to maximum power transfer or efficiency of electromagnetic energy transmission in space may be studied in a manner similar to that presently being done with transmission lines, wave guides, and more recently with two port multiport lumped parameter systems. These new forward and reverse power density vectors at a point in space are analogous to the forward and revoltages or currents and power waves as used with the transmission line, waveguide, or port. These power wave vectors in space are a generalization of the power waves as developed by Penfield, Youla, and Kurokawa and used with the scattering parameters associated with transmission lines, waveguides and ports.

  9. Acoustic vector tomography and its application to magnetoacoustic tomography with magnetic induction (MAT-MI).

    PubMed

    Li, Xu; Xia, Rongmin; He, Bin

    2008-01-01

    A new tomographic algorithm for reconstructing a curl-free vector field, whose divergence serves as acoustic source is proposed. It is shown that under certain conditions, the scalar acoustic measurements obtained from a surface enclosing the source area can be vectorized according to the known measurement geometry and then be used to reconstruct the vector field. The proposed method is validated by numerical experiments. This method can be easily applied to magnetoacoustic tomography with magnetic induction (MAT-MI). A simulation study of applying this method to MAT-MI shows that compared to existing methods, the proposed method can give an accurate estimation of the induced current distribution and a better reconstruction of electrical conductivity within an object.

  10. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  11. Determination of coronal magnetic fields from vector magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1992-01-01

    The determination of coronal magnetic fields from vector magnetograms, including the development and application of algorithms to determine force-free coronal fields above selected observations of active regions is studied. Two additional active regions were selected and analyzed. The restriction of periodicity in the 3-D code which is used to determine the coronal field was removed giving the new code variable mesh spacing and is thus able to provide a more realistic description of coronal fields. The NOAA active region AR5747 of 20 Oct. 1989 was studied. A brief account of progress during the research performed is reported.

  12. The Vector Electric Field Instrument on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.

  13. Reflections on the early development of poxvirus vectors.

    PubMed

    Moss, Bernard

    2013-09-06

    Poxvirus expression vectors were described in 1982 and quickly became widely used for vaccine development as well as research in numerous fields. Advantages of the vectors include simple construction, ability to accommodate large amounts of foreign DNA and high expression levels. Numerous poxvirus-based veterinary vaccines are currently in use and many others are in human clinical trials. The early reports of poxvirus vectors paved the way for and stimulated the development of other viral vectors and recombinant DNA vaccines. Published by Elsevier Ltd.

  14. Einstein-aether theory: dynamics of relativistic particles with spin or polarization in a Gödel-type universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru

    In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupledmore » to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.« less

  15. Hill Ciphers over Near-Fields

    ERIC Educational Resources Information Center

    Farag, Mark

    2007-01-01

    Hill ciphers are linear codes that use as input a "plaintext" vector [p-right arrow above] of size n, which is encrypted with an invertible n x n matrix E to produce a "ciphertext" vector [c-right arrow above] = E [middle dot] [p-right arrow above]. Informally, a near-field is a triple [left angle bracket]N; +, *[right angle bracket] that…

  16. Acquisition and Reduction Procedures for MOF Doppler-Magnetograms. [solar observation

    NASA Technical Reports Server (NTRS)

    Cacciani, Alessandro; Ricci, D.; Rosati, P.; Rhodes, Edward J., Jr.; Smith, E.; Tomczyk, Steven; Ulrich, Roger K.

    1988-01-01

    Defects in the first magneto-optical filter (MOF) magnetograms, particularly the problem of the apparent contamination between velocity and magnetic fields, are discussed. It is found that a correct acquisition and reduction procedure gives cleaner results. A vector magnetograph is suggested. The vector field at coronal levels is calculated, using one MOF longitudinal magnetogram.

  17. Double gauge invariance and covariantly-constant vector fields in Weyl geometry

    NASA Astrophysics Data System (ADS)

    Kassandrov, Vladimir V.; Rizcallah, Joseph A.

    2014-08-01

    The wave equation and equations of covariantly-constant vector fields (CCVF) in spaces with Weyl nonmetricity turn out to possess, in addition to the canonical conformal-gauge, a gauge invariance of another type. On a Minkowski metric background, the CCVF system alone allows us to pin down the Weyl 4-metricity vector, identified herein with the electromagnetic potential. The fundamental solution is given by the ordinary Lienard-Wiechert field, in particular, by the Coulomb distribution for a charge at rest. Unlike the latter, however, the magnitude of charge is necessarily unity, "elementary", and charges of opposite signs correspond to retarded and advanced potentials respectively, thus establishing a direct connection between the particle/antiparticle asymmetry and the "arrow of time".

  18. Is there a role for symbiotic bacteria in plant virus transmission?

    USDA-ARS?s Scientific Manuscript database

    During the process of circulative plant virus transmission by insect vectors, viruses interact with different insect vector tissues prior to transmission to a new host plant. An area of intense debate in the field is whether bacterial symbionts of insect vectors are involved in the virus transmissi...

  19. Dynamical polarizability of atoms in arbitrary light fields: general theory and application to cesium

    NASA Astrophysics Data System (ADS)

    Le Kien, Fam; Schneeweiss, Philipp; Rauschenbeutel, Arno

    2013-05-01

    We present a systematic derivation of the dynamical polarizability and the ac Stark shift of the ground and excited states of atoms interacting with a far-off-resonance light field of arbitrary polarization. We calculate the scalar, vector, and tensor polarizabilities of atomic cesium using resonance wavelengths and reduced matrix elements for a large number of transitions. We analyze the properties of the fictitious magnetic field produced by the vector polarizability in conjunction with the ellipticity of the polarization of the light field.

  20. A Geometric Interpretation of the Effective Uniaxial Anisotropy Field in Magnetic Films

    NASA Astrophysics Data System (ADS)

    Kozlov, V. I.

    2018-01-01

    It is shown that the effective uniaxial anisotropy field that is usually applied in thin magnetic films (TMFs), which is noncollinear to the magnetization vector, is insufficient for deeper understanding of these processes, although it explains many physical processes in films. The analysis of the magnetization discontinuity in films under certain conditions yields the component of the effective uniaxial anisotropy field collinear to the magnetization vector. This component explains the magnetization discontinuity and allows one to speak of the total effective uniaxial anisotropy field in TMFs.

  1. Magnetic field configuration associated with solar gamma ray flares in June, 1991

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; West, E. A.; Smith, J. E.; Trussart, F.-M.; Kenney, E. G.

    1992-01-01

    The vector magnetic field configuration of the solar active region AR 6659 that produced very high levels of flare activity in Jun. 1991 is described. The morphology and evolution of the photospheric fields are described for the period 7-10 Jun., and the flares taking place around these dates and their locations relative to the photospheric fields are indicated. By comparing the observed vector field with the potential field calculated from the observed line-of-sight flux, we identify the nonpotential characteristics of the fields along the magnetic neutral lines where the flares were observed. These results are compared with those from the earlier study of gamma-ray flares.

  2. Pixel-By Estimation of Scene Motion in Video

    NASA Astrophysics Data System (ADS)

    Tashlinskii, A. G.; Smirnov, P. V.; Tsaryov, M. G.

    2017-05-01

    The paper considers the effectiveness of motion estimation in video using pixel-by-pixel recurrent algorithms. The algorithms use stochastic gradient decent to find inter-frame shifts of all pixels of a frame. These vectors form shift vectors' field. As estimated parameters of the vectors the paper studies their projections and polar parameters. It considers two methods for estimating shift vectors' field. The first method uses stochastic gradient descent algorithm to sequentially process all nodes of the image row-by-row. It processes each row bidirectionally i.e. from the left to the right and from the right to the left. Subsequent joint processing of the results allows compensating inertia of the recursive estimation. The second method uses correlation between rows to increase processing efficiency. It processes rows one after the other with the change in direction after each row and uses obtained values to form resulting estimate. The paper studies two criteria of its formation: gradient estimation minimum and correlation coefficient maximum. The paper gives examples of experimental results of pixel-by-pixel estimation for a video with a moving object and estimation of a moving object trajectory using shift vectors' field.

  3. Crosstalk in solar polarization measurements

    NASA Technical Reports Server (NTRS)

    West, E. A.; Balasubramaniam, K. S.

    1992-01-01

    The instrumental crosstalk associated with the Marshall Space Flight Center Vector Magnetograph and the solar crosstalk created by the magnetic field are described and their impact on the reconstruction of the solar vector magnetic field is analyzed. It is pointed out that identifying and correcting the crosstalk is important in the development of realistic models describing the solar atmosphere. Solar crosstalk is spatially dependent on the structure of the magnetic field while instrumental crosstalk is dependent on the position of the analyzer.

  4. Poincaré gauge gravity: An emergent scenario

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2017-04-01

    The Poincaré gauge gravity (PGG) with the underlying vector fields of tetrads and spin-connections is perhaps the best theory candidate for gravitation to be unified with the other three elementary forces of nature. There is a clear analogy between the local frame in PGG and the local internal symmetry space in the Standard Model. As a result, the spin-connection fields, gauging the local frame Lorentz symmetry group S O (1 ,3 )LF , appear in PGG much as photons and gluons appear in SM. We propose that such an analogy may follow from their common emergent nature allowing us to derive PGG in the same way as conventional gauge theories. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are proposed to belong, respectively, to the adjoint (Aμi j) and vector (eμi) representations of the starting global Lorentz symmetry. We show that if these prototype vector fields are covariantly constrained, Aμi jAij μ=±MA2 and eμieiμ=±Me2 , thus causing a spontaneous violation of the accompanying global symmetries (MA ,e are their proposed violation scales), then the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  5. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences

    NASA Astrophysics Data System (ADS)

    Schwalbe, Ellen; Maas, Hans-Gerd

    2017-12-01

    This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.

  6. Vector magnetic field and vector current density in and around the δ-spot NOAA 10808†

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique; Landi Degl'Innocenti, Egidio; Schmieder, Brigitte; Gelly, Bernard

    2011-08-01

    The context is that of the so-called ``fundamental ambiguity'' (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the ``simulated annealing'' algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line (Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).

  7. Assessing transmission of crop diseases by insect vectors in a landscape context.

    PubMed

    Carrière, Y; Degain, B; Hartfield, K A; Nolte, K D; Marsh, S E; Ellers-Kirk, C; Van Leeuwen, W J D; Liesner, L; Dutilleul, P; Palumbo, J C

    2014-02-01

    Theory indicates that landscape composition affects transmission of vector-borne crop diseases, but few empirical studies have investigated how landscape composition affects plant disease epidemiology. Since 2006, Bemisia tabaci (Gennadius) has vectored the cucurbit yellow stunting disorder virus (CYSDV) to cantaloupe and honeydew melons (Cucumis melo L.) in the southwestern United States and northern Mexico, causing significant reductions in yield of fall melons and increased use of insecticides. Here, we show that a landscape-based approach allowing simultaneous assessment of impacts of local (i.e., planting date) and regional (i.e., landscape composition) factors provides valuable insights on how to reduce crop disease risks. Specifically, we found that planting fall melon fields early in the growing season, eliminating plants germinating from seeds produced by spring melons after harvest, and planting fall melon fields away from cotton and spring melon fields may significantly reduce the incidence of CYSDV infection in fall melons. Because the largest scale of significance of the positive association between abundance of cotton and spring melon fields and CYSDV incidence was 1,750 and 3,000 m, respectively, reducing areas of cotton and spring melon fields within these distances from fall melon fields may decrease CYSDV incidence. Our results indicate that landscape-based studies will be fruitful to alleviate limitations imposed on crop production by vector-borne diseases.

  8. THE EFFECT OF GRAVITATION ON THE POLARIZATION STATE OF A LIGHT RAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tanay; Sen, A. K.

    In the present work, detailed calculations have been carried out on the rotation of the polarization vector of an electromagnetic wave due to the presence of a gravitational field of a rotating body. This has been done using the general expression of Maxwell’s equation in curved spacetime. Considering the far-field approximation (i.e., the impact parameter is greater than the Schwarzschild radius and rotation parameter), the amount of rotation of the polarization vector as a function of impact parameter has been obtained for a rotating body (considering Kerr geometry). The present work shows that the rotation of the polarization vector cannotmore » be observed in the case of Schwarzschild geometry. This work also calculates the rotational effect when considering prograde and retrograde orbits for the light ray. Although the present work demonstrates the effect of rotation of the polarization vector, it confirms that there would be no net polarization of an electromagnetic wave due to the curved spacetime geometry in a Kerr field.« less

  9. On the angular error of intensity vector based direction of arrival estimation in reverberant sound fields.

    PubMed

    Levin, Dovid; Habets, Emanuël A P; Gannot, Sharon

    2010-10-01

    An acoustic vector sensor provides measurements of both the pressure and particle velocity of a sound field in which it is placed. These measurements are vectorial in nature and can be used for the purpose of source localization. A straightforward approach towards determining the direction of arrival (DOA) utilizes the acoustic intensity vector, which is the product of pressure and particle velocity. The accuracy of an intensity vector based DOA estimator in the presence of noise has been analyzed previously. In this paper, the effects of reverberation upon the accuracy of such a DOA estimator are examined. It is shown that particular realizations of reverberation differ from an ideal isotropically diffuse field, and induce an estimation bias which is dependent upon the room impulse responses (RIRs). The limited knowledge available pertaining the RIRs is expressed statistically by employing the diffuse qualities of reverberation to extend Polack's statistical RIR model. Expressions for evaluating the typical bias magnitude as well as its probability distribution are derived.

  10. Fast higher-order MR image reconstruction using singular-vector separation.

    PubMed

    Wilm, Bertram J; Barmet, Christoph; Pruessmann, Klaas P

    2012-07-01

    Medical resonance imaging (MRI) conventionally relies on spatially linear gradient fields for image encoding. However, in practice various sources of nonlinear fields can perturb the encoding process and give rise to artifacts unless they are suitably addressed at the reconstruction level. Accounting for field perturbations that are neither linear in space nor constant over time, i.e., dynamic higher-order fields, is particularly challenging. It was previously shown to be feasible with conjugate-gradient iteration. However, so far this approach has been relatively slow due to the need to carry out explicit matrix-vector multiplications in each cycle. In this work, it is proposed to accelerate higher-order reconstruction by expanding the encoding matrix such that fast Fourier transform can be employed for more efficient matrix-vector computation. The underlying principle is to represent the perturbing terms as sums of separable functions of space and time. Compact representations with this property are found by singular-vector analysis of the perturbing matrix. Guidelines for balancing the accuracy and speed of the resulting algorithm are derived by error propagation analysis. The proposed technique is demonstrated for the case of higher-order field perturbations due to eddy currents caused by diffusion weighting. In this example, image reconstruction was accelerated by two orders of magnitude.

  11. Intercomparison of Registration Techniques and Interactive 3D Visualization of Differential LiDAR from the 2010 El Mayor-Cucapah Earthquake

    NASA Astrophysics Data System (ADS)

    Banesh, D.; Oskin, M. E.; Mu, A.; Vu, C.; Westerteiger, R.; Krishnan, A.; Hamann, B.; Glennie, C. L.; Hinojosa, A.; Borsa, A. A.

    2013-12-01

    Differential LiDAR provides unprecedented images of the near-field ground deformation and fault slip due to earthquakes. Here we examine the performance of the Iterative Closest Point (ICP) technique for data registration between pre- and post-earthquake LiDAR point clouds of varying density. We use the 2010 El Mayor-Cucapah data set as our region of interest since this earthquake produced different types of surface ruptures, yielding a variety of deformation styles for analysis. We also test a more simplistic, Chi-Squared minimization approach and find that it produces good results when compared to ICP. We present different techniques for visualizing large vector fields, and show how each method highlights a unique feature in the data set. Dense vector fields are useful when analyzing smaller deformations in the surface. A sparse, averaged vector field analyzes the bigger, overall shifts without interference caused by small details. Flow-based visualizations like Line Integral Convolution (LIC) graphs, provide insight into particular artifacts of data collection, such as distortions due to uncorrected pitch and yaw of the aircraft during the survey. Animations of the vector field establish the direction of movement in the landscape, quickly highlighting areas of interest.

  12. Magnetic concentration of a retroviral vector using magnetite cationic liposomes.

    PubMed

    Ito, Akira; Takahashi, Tetsuya; Kameyama, Yujiro; Kawabe, Yoshinori; Kamihira, Masamichi

    2009-03-01

    For tissue engineering purposes, retroviral vectors represent an efficient method of delivering exogenous genes such as growth factors to injured tissues because gene-transduced cells can produce stable and constant levels of the gene product. However, retroviral vector technology suffers from low yields. In the present study, we used magnetite nanoparticles and magnetic force to concentrate the retroviral vectors to enhance the transduction efficiency and to enable their magnetic manipulation. Magnetite nanoparticles modified with cationic liposomes were added to a solution containing a retroviral vector pseudotyped with vesicular stomatitis virus glycoprotein. The magnetic particles that captured the viral vectors were collected using a magnetic force and seeded into mouse neuroblastoma Neuro2a cells. The viral titer was up to 55 times greater (up to 3 x 10(8) infectious units/mL). Additionally, the magnetically labeled retroviral vectors can be directed to the desired regions for infection by applying magnetic fields, and micro-patterns of gene-transduced cell regions could be created on a cellular monolayer using micro-patterned magnetic concentrators. These results suggest that this technique provides a promising approach to capturing and concentrating viral vectors, thus achieving high transduction efficiency and the ability to deliver genes to a specific injured site by applying a magnetic field.

  13. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    PubMed

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He i 10 830 Å triplet

    NASA Astrophysics Data System (ADS)

    Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.

    2014-06-01

    Context. Determining the magnetic field vector in quiescent solar prominences is possible by interpreting the Hanle and Zeeman effects in spectral lines. However, observational measurements are scarce and lack high spatial resolution. Aims: We determine the magnetic field vector configuration along a quiescent solar prominence by interpreting spectropolarimetric measurements in the He i 1083.0 nm triplet obtained with the Tenerife Infrared Polarimeter installed at the German Vacuum Tower Telescope of the Observatorio del Teide. Methods: The He i 1083.0 nm triplet Stokes profiles were analyzed with an inversion code that takes the physics responsible for the polarization signals in this triplet into account. The results are put into a solar context with the help of extreme ultraviolet observations taken with the Solar Dynamic Observatory and the Solar Terrestrial Relations Observatory satellites. Results: For the most probable magnetic field vector configuration, the analysis depicts a mean field strength of 7 gauss. We do not find local variations in the field strength except that the field is, on average, lower in the prominence body than in the prominence feet, where the field strength reaches ~25 gauss. The averaged magnetic field inclination with respect to the local vertical is ~77°. The acute angle of the magnetic field vector with the prominence main axis is 24° for the sinistral chirality case and 58° for the dextral chirality. These inferences are in rough agreement with previous results obtained from the analysis of data acquired with lower spatial resolutions. A movie is available in electronic form at http://www.aanda.org

  15. Sound intensity probe for ultrasonic field in water using light-emitting diodes and piezoelectric elements

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Mizuno, Yosuke; Nakamura, Kentaro

    2017-12-01

    The sound intensity vector provides useful information on the state of an ultrasonic field in water, since sound intensity is a vector quantity expressing the direction and magnitude of the sound field. In the previous studies on sound intensity measurement in water, conventional piezoelectric sensors and metal cables were used, and the transmission distance was limited. A new configuration of a sound intensity probe suitable for ultrasonic measurement in water is proposed and constructed for trial in this study. The probe consists of light-emitting diodes and piezoelectric elements, and the output signals are transmitted through fiber optic cables as intensity-modulated light. Sound intensity measurements of a 26 kHz ultrasonic field in water are demonstrated. The difference in the intensity vector state between the water tank with and without sound-absorbing material on its walls was successfully observed.

  16. Extrema of mass, first law of black hole mechanics, and a staticity theorem in Einstein-Maxwell-axion-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    1998-08-01

    Using the ADM formulation of the Einstein-Maxwell axion-dilaton gravity we derive the formulas for the variation of mass and other asymptotic conserved quantities in the theory under consideration. Generalizing this kind of reasoning to the initial data for the manifold with an interior boundary we get the generalized first law of black hole mechanics. We consider an asymptotically flat solution to the Einstein-Maxwell axion-dilaton gravity describing a black hole with a Killing vector field timelike at infinity, the horizon of which comprises a bifurcate Killing horizon with a bifurcate surface. Supposing that the Killing vector field is asymptotically orthogonal to the static hypersurface with boundary S and a compact interior, we find that the solution is static in the exterior world, when the timelike vector field is normal to the horizon and has vanishing electric and axion-electric fields on static slices.

  17. Holographic P -wave superconductors in 1 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Alkac, Gokhan; Chakrabortty, Shankhadeep; Chaturvedi, Pankaj

    2017-10-01

    We study (1 +1 )-dimensional P -wave holographic superconductors described by three- dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of AdS3/CFT2 correspondence. In the probe limit, where the backreaction of matter fields is neglected, we show that there is a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled (1 +1 )-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate which breaks spontaneously both the U (1 ) and S O (1 ,1 ) symmetries. We numerically compute both the free energy and the ac conductivity for the superconducting phase of the boundary field theory. Our numerical computations clearly establish that the superconducting phase of the boundary theory is favorable to the normal phase, and the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.

  18. Stability of Horndeski vector-tensor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, Jose Beltrán; Durrer, Ruth; Heisenberg, Lavinia

    2013-10-01

    We study the Horndeski vector-tensor theory that leads to second order equations of motion and contains a non-minimally coupled abelian gauge vector field. This theory is remarkably simple and consists of only 2 terms for the vector field, namely: the standard Maxwell kinetic term and a coupling to the dual Riemann tensor. Furthermore, the vector sector respects the U(1) gauge symmetry and the theory contains only one free parameter, M{sup 2}, that controls the strength of the non-minimal coupling. We explore the theory in a de Sitter spacetime and study the presence of instabilities and show that it corresponds tomore » an attractor solution in the presence of the vector field. We also investigate the cosmological evolution and stability of perturbations in a general FLRW spacetime. We find that a sufficient condition for the absence of ghosts is M{sup 2} > 0. Moreover, we study further constraints coming from imposing the absence of Laplacian instabilities. Finally, we study the stability of the theory in static and spherically symmetric backgrounds (in particular, Schwarzschild and Reissner-Nordström-de Sitter). We find that the theory, quite generally, do have ghosts or Laplacian instabilities in regions of spacetime where the non-minimal interaction dominates over the Maxwell term. We also calculate the propagation speed in these spacetimes and show that superluminality is a quite generic phenomenon in this theory.« less

  19. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.

    PubMed

    Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele

    2011-02-01

    We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.

  20. The calculation of electromagnetic fields in the Fresnel and Fraunhofer regions using numerical integration methods

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1971-01-01

    Some results obtained with a digital computer program written at Goddard Space Flight Center to obtain electromagnetic fields scattered by perfectly reflecting surfaces are presented. For purposes of illustration a paraboloidal reflector was illuminated at radio frequencies in the simulation for both receiving and transmitting modes of operation. Fields were computed in the Fresnel and Fraunhofer regions. A dual-reflector system (Cassegrain) was also simulated for the transmitting case, and fields were computed in the Fraunhofer region. Appended results include derivations which show that the vector Kirchhoff-Kottler formulation has an equivalent form requiring only incident magnetic fields as a driving function. Satisfaction of the radiation conditions at infinity by the equivalent form is demonstrated by a conversion from Cartesian to spherical vector operators. A subsequent development presents the formulation by which Fresnel or Fraunhofer patterns are obtainable for dual-reflector systems. A discussion of the time-average Poynting vector is also appended.

  1. Antisymmetric tensor generalizations of affine vector fields.

    PubMed

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  2. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    NASA Astrophysics Data System (ADS)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  3. Estimating high mosquito-producing rice fields using spectral and spatial data

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Beck, L. R.; Washino, R. K.; Hibbard, K. A.; Salute, J. S.

    1992-01-01

    The cultivation of irrigated rice provides ideal larval habitat for a number of anopheline vectors of malaria throughout the world. Anopheles freeborni, a potential vector of human malaria, is associated with the nearly 240,000 hectares of irrigated rice grown annually in Northern and Central California; therefore, this species can serve as a model for the study of rice field anopheline population dynamics. Analysis of field data revealed that rice fields with early season canopy development, that are located near bloodmeal sources (i.e., pastures with livestock) were more likely to produce anopheline larvae than fields with less developed canopies located further from pastures. Remote sensing reflectance measurements of early-season canopy development and geographic information system (GIS) measurements of distanes between rice fields and pastures with livestock were combined to distinguish between high and low mosquito-producing rice fields. Using spectral and distance measures in either a discriminant or Bayesian analysis, the identification of high mosquito-producing fields was made with 85 percent accuracy nearly two months before anopheline larval populations peaked. Since omission errors were also minimized by these approaches, they could provide a new basis for directing abatement techniques for the control of malaria vectors.

  4. Current Advances and Future Challenges in Adenoviral Vector Biology and Targeting

    PubMed Central

    Campos, Samuel K.; Barry, Michael A.

    2008-01-01

    Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting. PMID:17584037

  5. Efficient morse decompositions of vector fields.

    PubMed

    Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Zhang, Eugene

    2008-01-01

    Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually results in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets.

  6. Instruction-Based Clinical Eye-Tracking Study on the Visual Interpretation of Divergence: How Do Students Look at Vector Field Plots?

    ERIC Educational Resources Information Center

    Klein, P.; Viiri, J.; Mozaffari, S.; Dengel, A.; Kuhn, J.

    2018-01-01

    Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux…

  7. New trend in electron holography

    NASA Astrophysics Data System (ADS)

    Tanigaki, Toshiaki; Harada, Ken; Murakami, Yasukazu; Niitsu, Kodai; Akashi, Tetsuya; Takahashi, Yoshio; Sugawara, Akira; Shindo, Daisuke

    2016-06-01

    Electron holography using a coherent electron wave is a promising technique for high-resolution visualization of electromagnetic fields in and around objects. The capability of electron holography has been enhanced by the development of new technologies and has thus become an even more powerful tool for exploring scientific frontiers. This review introduces these technologies including split-illumination electron holography and vector-field electron tomography. Split-illumination electron holography, which uses separated coherent waves, overcomes the limits imposed by the lateral coherence requirement for electron waves in electron holography. Areas that are difficult to observe using conventional electron holography are now observable. Exemplified applications include observing a singular magnetic domain wall in electrical steel sheets, local magnetizations at anti-phase boundaries, and electrostatic potentials in metal-oxide-semiconductor field-effect transistors. Vector-field electron tomography can be used to visualize magnetic vectors in three dimensions. Two components of the vectors are reconstructed using dual-axis tomography, and the remaining one is calculated using div B   =  0. A high-voltage electron microscope can be used to achieve precise magnetic reconstruction. For example, magnetic vortices have been visualized using a 1 MV holography electron microscope.

  8. An imaging vector magnetograph for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Mickey, Donald L.

    1988-01-01

    Measurements of the vector magnetic field in the solar atmosphere with high spatial and temporal resolution over a large field of view are critical to understanding the nature and evolution of currents in active regions. Such measurements, when combined with the thermal and nonthermal X-ray images from the upcoming Solar-A mission, will reveal the large-scale relationship between these currents and sites of heating and particle acceleration in flaring coronal magnetic flux tubes. The conceptual design of an imaging vector magnetograph that combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and a rapid digital tape recorder are described. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (4 x 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectra range (5000 to 8000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically dominated chromosphere, as well as effective co-alignment with Solar-A's X-ray images.

  9. Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields.

    PubMed

    Skraba, Primoz; Bei Wang; Guoning Chen; Rosen, Paul

    2015-08-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

  10. Estimation of vector static magnetic field by a nitrogen-vacancy center with a single first-shell 13C nuclear (NV–13C) spin in diamond

    NASA Astrophysics Data System (ADS)

    Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Huang, Zhi-Yong; Lv, Hai-Jiang

    2018-05-01

    We suggest an experimental scheme that a single nitrogen-vacancy (NV) center coupled to a nearest neighbor 13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical detection magnetic resonance (ODMR) technique, both the strength and the direction of the vector field could be determined by relevant resonance frequencies of continuous wave (CW) and Ramsey spectrums. In addition, we give a method that determines the unique one of eight possible hyperfine tensors for an (NV–13C) system. Finally, we propose an unambiguous method to exclude the symmetrical solution from eight possible vector fields, which correspond to nearly identical resonance frequencies due to their mirror symmetry about 14N–Vacancy–13C (14N–V–13C) plane. Protect supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models,more » we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.« less

  12. Conserved quantities in non-Abelian monopole fields

    NASA Astrophysics Data System (ADS)

    Horváthy, P. A.; Ngome, J.-P.

    2009-06-01

    Van Holten’s covariant Hamiltonian framework is used to find conserved quantities for an isospin-carrying particle in a non-Abelian monopolelike field. For a Wu-Yang monopole we find the most general scalar potential such that the combined system admits a conserved Runge-Lenz vector. In the effective non-Abelian field for nuclear motion in a diatomic molecule due to Moody, Shapere, and Wilczek, a conserved angular momentum is constructed, despite the nonconservation of the electric charge. No Runge-Lenz vector has been found.

  13. Internal and external potential-field estimation from regional vector data at varying satellite altitude

    NASA Astrophysics Data System (ADS)

    Plattner, Alain; Simons, Frederik J.

    2017-10-01

    When modelling satellite data to recover a global planetary magnetic or gravitational potential field, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the source) while balancing the conflicting demands for spatial concentration and spectral limitation. The `altitude-cognizant' gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance under downward continuation that is much improved relative to the `classical' gradient vector Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction. Furthermore, venturing beyond the realm of their first application, published in a preceding paper, in the present article we extend the theory to being able to handle both internal and external potential-field estimation. Solving simultaneously for internal and external fields under the limitation of regional data availability reduces internal-field artefacts introduced by downward-continuing unmodelled external fields, as we show with numerical examples. We explain our solution strategies on the basis of analytic expressions for the behaviour of the estimation bias and variance of models for which signal and noise are uncorrelated, (essentially) space- and band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations of vector spherical harmonics. Their construction is not altogether very computationally demanding when the concentration domains (the regions of spatial concentration) have circular symmetry, for example, on spherical caps or rings—even when the spherical-harmonic bandwidth is large. Data inversion proceeds by solving for the expansion coefficients of truncated function sequences, by least-squares analysis in a reduced-dimensional space. Hence, our method brings high-resolution regional potential-field modelling from incomplete and noisy vector-valued satellite data within reach of contemporary desktop machines.

  14. Tailored vectorial light fields: flower, spider web and hybrid structures

    NASA Astrophysics Data System (ADS)

    Otte, Eileen; Alpmann, Christina; Denz, Cornelia

    2017-04-01

    We present the realization and analysis of tailored vector fields including polarization singularities. The fields are generated by a holographic method based on an advanced system including a spatial light modulator. We demonstrate our systems capabilities realizing specifically customized vector fields including stationary points of defined polarization in its transverse plane. Subsequently, vectorial flowers and spider webs as well as unique hybrid structures of these are introduced, and embedded singular points are characterized. These sophisticated light fields reveal attractive properties that pave the way to advanced application in e.g. optical micromanipulation. Beyond particle manipulation, they contribute essentially to actual questions in singular optics.

  15. Off disk-center potential field calculations using vector magnetograms

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, P.; Gary, G. Allen

    1989-01-01

    A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.

  16. Deformation structure analysis of material at fatigue on the basis of the vector field

    NASA Astrophysics Data System (ADS)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2017-12-01

    In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.

  17. Concircular vector fields on Lorentzian manifold of Bianchi type-I spacetimes

    NASA Astrophysics Data System (ADS)

    Mahmood, Amjad; Ali, Ahmad T.; Khan, Suhail

    2018-04-01

    Our aim in this paper is to obtain concircular vector fields (CVFs) on the Lorentzian manifold of Bianchi type-I spacetimes. For this purpose, two different sets of coupled partial differential equations comprising ten equations each are obtained. The first ten equations, known as conformal Killing equations are solved completely and components of conformal Killing vector fields (CKVFs) are obtained in different possible cases. These CKVFs are then substituted into second set of ten differential equations to obtain CVFs. It comes out that Bianchi type-I spacetimes admit four-, five-, six-, seven- or 15-dimensional CVFs for particular choices of the metric functions. In many cases, the CKVFs of a particular metric are same as CVFs while there exists few cases where proper CKVFs are not CVFs.

  18. Clouding tracing: Visualization of the mixing of fluid elements in convection-diffusion systems

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Smith, Philip J.

    1993-01-01

    This paper describes a highly interactive method for computer visualization of the basic physical process of dispersion and mixing of fluid elements in convection-diffusion systems. It is based on transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Fluid elements are traced through the vector field for the mean path as well as the statistical dispersion of the fluid elements about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of fluid elements are traced and are not just mean paths. We have used this method to visualize the simulation of an industrial incinerator to help identify mechanisms for poor mixing.

  19. Covariant kaon dynamics and kaon flow in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Zheng, Yu-Ming; Fuchs, C.; Faessler, Amand; Shekhter, K.; Yan, Yu-Peng; Kobdaj, Chinorat

    2004-03-01

    The influence of the chiral mean field on the K+ transverse flow in heavy ion collisions at SIS energy is investigated within covariant kaon dynamics. For the kaon mesons inside the nuclear medium a quasiparticle picture including scalar and vector fields is adopted and compared to the standard treatment with a static potential. It is confirmed that a Lorentz force from spatial component of the vector field provides an important contribution to the in-medium kaon dynamics and strongly counterbalances the influence of the vector potential on the K+ in-plane flow. The FOPI data can be reasonably described using in-medium kaon potentials based on effective chiral models. The information on the in-medium K+ potential extracted from kaon flow is consistent with the knowledge from other sources.

  20. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    PubMed

    Van Roey, Karel; Sokny, Mao; Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-12-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases.

  1. Field Evaluation of Picaridin Repellents Reveals Differences in Repellent Sensitivity between Southeast Asian Vectors of Malaria and Arboviruses

    PubMed Central

    Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-01-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1–97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases. PMID:25522134

  2. Attenuation correction in 4D-PET using a single-phase attenuation map and rigidity-adaptive deformable registration

    PubMed Central

    Kalantari, Faraz; Wang, Jing

    2017-01-01

    Purpose Four-dimensional positron emission tomography (4D-PET) imaging is a potential solution to the respiratory motion effect in the thoracic region. Computed tomography (CT)-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference between 4D-PET and a single attenuation map from CT, typically available in routine clinical scanning, motion artifacts are observed in the attenuation-corrected PET images, leading to errors in tumor shape and uptake. We introduced a practical method to align single-phase CT with all other 4D-PET phases for AC. Methods A penalized non-rigid Demons registration between individual 4D-PET frames without AC provides the motion vectors to be used for warping single-phase attenuation map. The non-rigid Demons registration was used to derive deformation vector fields (DVFs) between PET matched with the CT phase and other 4D-PET images. While attenuated PET images provide useful data for organ borders such as those of the lung and the liver, tumors cannot be distinguished from the background due to loss of contrast. To preserve the tumor shape in different phases, an ROI-covering tumor was excluded from non-rigid transformation. Instead the mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of the tumor along with a non-rigid transformation of other organs. A 4D-XCAT phantom with spherical lung tumors, with diameters ranging from 10 to 40 mm, was used to evaluate the algorithm. The performance of the proposed hybrid method for attenuation map estimation was compared to 1) the Demons non-rigid registration only and 2) a single attenuation map based on quantitative parameters in individual PET frames. Results Motion-related artifacts were significantly reduced in the attenuation-corrected 4D-PET images. When a single attenuation map was used for all individual PET frames, the normalized root mean square error (NRMSE) values in tumor region were 49.3% (STD: 8.3%), 50.5% (STD: 9.3%), 51.8% (STD: 10.8%) and 51.5% (STD: 12.1%) for 10-mm, 20-mm, 30-mm and 40-mm tumors respectively. These errors were reduced to 11.9% (STD: 2.9%), 13.6% (STD: 3.9%), 13.8% (STD: 4.8%), and 16.7% (STD: 9.3%) by our proposed method for deforming the attenuation map. The relative errors in total lesion glycolysis (TLG) values were −0.25% (STD: 2.87%) and 3.19% (STD: 2.35%) for 30-mm and 40-mm tumors respectively in proposed method. The corresponding values for Demons method were 25.22% (STD: 14.79%) and 18.42% (STD: 7.06%). Our proposed hybrid method outperforms the Demons method especially for larger tumors. For tumors smaller than 20 mm, non-rigid transformation could also provide quantitative results. Conclusion Although non-AC 4D-PET frames include insignificant anatomical information, they are still useful to estimate the DVFs to align the attenuation map for accurate AC. The proposed hybrid method can recover the AC-related artifacts and provide quantitative AC-PET images. PMID:27987223

  3. Field-induced metastability of the modulation wave vector in a magnetic soliton lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, M.; Peng, J.; Hong, T.

    We present magnetic-field-induced metastability of the magnetic soliton lattice in a bilayer ruthenate Ca 3(Ru 1–xFe x) 2O 7(x=0.05) through single-crystal neutron diffraction study. We show that the incommensurability of the modulation wave vector at zero field strongly depends on the history of magnetic field at low temperature, and that the equilibrium ground state can be achieved by warming above a characteristic temperature T g~37K. Lastly, we suggest that such metastability might be associated with the domain wall pinning by the magnetic Fe dopants.

  4. Field-induced metastability of the modulation wave vector in a magnetic soliton lattice

    DOE PAGES

    Zhu, M.; Peng, J.; Hong, T.; ...

    2017-04-19

    We present magnetic-field-induced metastability of the magnetic soliton lattice in a bilayer ruthenate Ca 3(Ru 1–xFe x) 2O 7(x=0.05) through single-crystal neutron diffraction study. We show that the incommensurability of the modulation wave vector at zero field strongly depends on the history of magnetic field at low temperature, and that the equilibrium ground state can be achieved by warming above a characteristic temperature T g~37K. Lastly, we suggest that such metastability might be associated with the domain wall pinning by the magnetic Fe dopants.

  5. An application of the Braunbeck method to the Maggi-Rubinowicz field representation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1982-01-01

    The Braunbek method is applied to the generalized vector potential associated with the Maggi-rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector potential is obtained. For observation points away from caustics or shadow boundaries, the field derived from this quantity is the same as that determined from the geometrical theory of diffraction on a singly diffracted edge ray. An evaluation of the field for the simple case of a plane wave normally incident on a circular aperture is presented showing that the field predicted by the Maggi-Rubinowicz theory is continuous across the shadow boundary.

  6. An application of the Braunbeck method to the Maggi-Rubinowicz field representation

    NASA Astrophysics Data System (ADS)

    Meneghini, R.

    1982-06-01

    The Braunbek method is applied to the generalized vector potential associated with the Maggi-rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector potential is obtained. For observation points away from caustics or shadow boundaries, the field derived from this quantity is the same as that determined from the geometrical theory of diffraction on a singly diffracted edge ray. An evaluation of the field for the simple case of a plane wave normally incident on a circular aperture is presented showing that the field predicted by the Maggi-Rubinowicz theory is continuous across the shadow boundary.

  7. Relativistic many-body bound systems: electromagnetic properties. Monograph report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danos, M.; Gillet, V.

    1977-04-01

    The formulae for the calculation of the electron scattering form factors, and of the static magnetic dipole and electric quadrupole moments, of relativistic many-body bound systems are derived. The framework, given in NBS Monograph 147, is relativistic quantum field theory in the Schrodinger picture; the physical particles, i.e., the solutions of the interacting fields, are given as linear combinations of the solutions of the free fields, called the parton fields. The parton--photon interaction is taken as given by minimal coupling. In addition, the contribution of the photon--vector meson vertex of the vector dominance model is derived.

  8. A Statistical Comparison between Photospheric Vector Magnetograms Obtained by SDO/HMI and Hinode/SP

    NASA Astrophysics Data System (ADS)

    Sainz Dalda, Alberto

    2017-12-01

    Since 2010 May 1, we have been able to study (almost) continuously the vector magnetic field in the Sun, thanks to two space-based observatories: the Solar Dynamics Observatory (SDO) and Hinode. Both are equipped with instruments able to measure the Stokes parameters of Zeeman-induced polarization of photospheric line radiation. But the observation modes; the spectral lines; the spatial, spectral, and temporal sampling; and even the inversion codes used to recover magnetic and thermodynamic information from the Stokes profiles are different. We compare the vector magnetic fields derived from observations with the HMI instrument on board SDO with those observed by the SP instrument on Hinode. We have obtained relationships between components of magnetic vectors in the umbra, penumbra, and plage observed in 14 maps of NOAA Active Region 11084. Importantly, we have transformed SP data into observables comparable to those of HMI, to explore possible influences of the different modes of operation of the two instruments and the inversion schemes used to infer the magnetic fields. The assumed filling factor (fraction of each pixel containing a Zeeman signature) produces the most significant differences in derived magnetic properties, especially in the plage. The spectral and angular samplings have the next-largest effects. We suggest to treat the disambiguation in the same way in the data provided by HMI and SP. That would make the relationship between the vector magnetic field recovered from these data stronger, which would favor the simultaneous or complementary use of both instruments.

  9. Influence of a repulsive vector coupling in magnetized quark matter

    NASA Astrophysics Data System (ADS)

    Denke, Robson Z.; Pinto, Marcus Benghi

    2013-09-01

    We consider two flavor magnetized quark matter in the presence of a repulsive vector coupling (GV) devoting special attention to the low temperature region of the phase diagram to show how this type of interaction counterbalances the effects produced by a strong magnetic field. The most important effects occur at intermediate and low temperatures affecting the location of the critical end point as well as the region of first order chiral transitions. When GV=0 the presence of high magnetic fields (eB≥10mπ2) increases the density coexistence region with respect to the case when B and GV are absent while a decrease of this region is observed at high GV values and vanishing magnetic fields. Another interesting aspect observed at the low temperature region is that the usual decrease of the coexistence chemical value (inverse magnetic catalysis) at GV=0 is highly affected by the presence of the vector interaction which acts in the opposite way. Our investigation also shows that the presence of a repulsive vector interaction enhances the de Haas-van Alphen oscillations which, for very low temperatures, take place at eB≲6mπ2. We observe that the presence of a magnetic field, together with a repulsive vector interaction, gives rise to a complex transition pattern since B favors the appearance of multiple solutions to the gap equation whereas GV turns some metastable solutions into stable ones allowing for a cascade of transitions to occur.

  10. 3D reconstruction of the magnetic vector potential using model based iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat, K. C.; Aditya Mohan, K.; Phatak, Charudatta

    Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. Here, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less

  11. Topological features of vector vortex beams perturbed with uniformly polarized light

    PubMed Central

    D’Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-01

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams. PMID:28079134

  12. Topological features of vector vortex beams perturbed with uniformly polarized light

    NASA Astrophysics Data System (ADS)

    D'Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-01

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell’s equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.

  13. Topological features of vector vortex beams perturbed with uniformly polarized light.

    PubMed

    D'Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-12

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell's equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.

  14. Black holes in vector-tensor theories and their thermodynamics

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2018-01-01

    In this paper, we study Einstein gravity either minimally or non-minimally coupled to a vector field which breaks the gauge symmetry explicitly in general dimensions. We first consider a minimal theory which is simply the Einstein-Proca theory extended with a quartic self-interaction term for the vector field. We obtain its general static maximally symmetric black hole solution and study the thermodynamics using Wald formalism. The aspects of the solution are much like a Reissner-Nordstrøm black hole in spite of that a global charge cannot be defined for the vector. For non-minimal theories, we obtain a lot of exact black hole solutions, depending on the parameters of the theories. In particular, many of the solutions are general static and have maximal symmetry. However, there are some subtleties and ambiguities in the derivation of the first laws because the existence of an algebraic degree of freedom of the vector in general invalids the Wald entropy formula. The thermodynamics of these solutions deserves further studies.

  15. MHD thrust vectoring of a rocket engine

    NASA Astrophysics Data System (ADS)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  16. Magnetofection™ of NMDA Receptor Subunits GluN1 and GluN2A Expression Vectors in Non-Neuronal Host Cells.

    PubMed

    Bruneau, Nadine; Szepetowski, Pierre

    2017-01-01

    The functional study of reconstituted NMDA receptors (NMDARs) in host cells requires that the corresponding vectors for the expression of the NMDAR subunits are co-transfected with high efficiency. Magnetofection™ is a technology used to deliver nucleic acids to cells. It is driven and site-specifically guided by the attractive forces of magnetic fields acting on magnetic nanoparticles that are associated with nucleic acid vectors. In magnetofection™, cationic lipids form self-assembled complexes with the nucleic acid vectors of interest. Those complexes are then associated with magnetic nanoparticles that are concentrated at the surface of cultured cells by applying a permanent magnetic field. Magnetofection™ is a simple method to transfect cultured cells with high transfection rates. Satisfactory expression levels are obtained with very low amounts of nucleic acid vector. Moreover, incubation time with host cells is less than 1 h, as compared with the several hours needed with standard transfection assays.

  17. 3D reconstruction of the magnetic vector potential using model based iterative reconstruction.

    PubMed

    Prabhat, K C; Aditya Mohan, K; Phatak, Charudatta; Bouman, Charles; De Graef, Marc

    2017-11-01

    Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model for image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. A comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 3D reconstruction of the magnetic vector potential using model based iterative reconstruction

    DOE PAGES

    Prabhat, K. C.; Aditya Mohan, K.; Phatak, Charudatta; ...

    2017-07-03

    Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. Here, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less

  19. Direction-of-arrival estimation for a uniform circular acoustic vector-sensor array mounted around a cylindrical baffle

    NASA Astrophysics Data System (ADS)

    Yang, DeSen; Zhu, ZhongRui

    2012-12-01

    This work investigates the direction-of-arrival (DOA) estimation for a uniform circular acoustic Vector-Sensor Array (UCAVSA) mounted around a cylindrical baffle. The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform. Then the so-called modal vector-sensor array signal processing algorithm, which is based on the decomposed wavefield representations, for the UCAVSA mounted around the cylindrical baffle is proposed. Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array (UCPSA). It is pointed out that the acoustic Vector-Sensor (AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.

  20. Rippled graphene in an in-plane magnetic field: effects of a random vector potential.

    PubMed

    Lundeberg, Mark B; Folk, Joshua A

    2010-10-01

    We report measurements of the effects of a random vector potential generated by applying an in-plane magnetic field to a graphene flake. Magnetic flux through the ripples cause orbital effects: Phase-coherent weak localization is suppressed, while quasirandom Lorentz forces lead to anisotropic magnetoresistance. Distinct signatures of these two effects enable the ripple size to be characterized.

  1. On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields

    NASA Technical Reports Server (NTRS)

    Debergh, Nathalie; Beckers, Jules

    1995-01-01

    Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.

  2. Diagnostics of vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Stenflo, J. O.

    1985-01-01

    It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.

  3. A Visualization Case Study of Feature Vector and Stemmer Effects on TREC Topic-document Subsets.

    ERIC Educational Resources Information Center

    Rorvig, Mark T.; Sullivan, Terry; Oyarce, Guillermo

    1998-01-01

    Demonstrates a method of visual analysis which takes advantage of the pooling technique of topic-document set creation in the TREC collection. Describes the procedures used to create the initial visual fields, and their respective treatments as vectors without stemming and vectors with stemming; discusses results of these treatments and…

  4. Three-dimensional Hybrid Simulation Study of Anisotropic Turbulence in the Proton Kinetic Regime

    NASA Astrophysics Data System (ADS)

    Vasquez, Bernard J.; Markovskii, Sergei A.; Chandran, Benjamin D. G.

    2014-06-01

    Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing fluid electrons are conducted for a freely decaying turbulence that is anisotropic with respect to the background magnetic field. The turbulence evolution is determined by both the combined root-mean-square (rms) amplitude for fluctuating proton bulk velocity and magnetic field and by the ratio of perpendicular to parallel wavenumbers. This kind of relationship had been considered in the past with regard to interplanetary turbulence. The fluctuations nonlinearly evolve to a turbulent phase whose net wave vector anisotropy is usually more perpendicular than the initial one, irrespective of the initial ratio of perpendicular to parallel wavenumbers. Self-similar anisotropy evolution is found as a function of the rms amplitude and parallel wavenumber. Proton heating rates in the turbulent phase vary strongly with the rms amplitude but only weakly with the initial wave vector anisotropy. Even in the limit where wave vectors are confined to the plane perpendicular to the background magnetic field, the heating rate remains close to the corresponding case with finite parallel wave vector components. Simulation results obtained as a function of proton plasma to background magnetic pressure ratio β p in the range 0.1-0.5 show that the wave vector anisotropy also weakly depends on β p .

  5. Determination of key parameters of vector multifractal vector fields

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2017-12-01

    For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).

  6. Logarithmic violation of scaling in strongly anisotropic turbulent transfer of a passive vector field

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2015-01-01

    Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t') /k⊥d -1 +ξ , where k⊥=|k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")—the d -dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990), 10.1007/BF02161420]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L . The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order.

  7. Near-field vector intensity measurements of a small solid rocket motor.

    PubMed

    Gee, Kent L; Giraud, Jarom H; Blotter, Jonathan D; Sommerfeldt, Scott D

    2010-08-01

    Near-field vector intensity measurements have been made of a 12.7-cm diameter nozzle solid rocket motor. The measurements utilized a test rig comprised of four probes each with four low-sensitivity 6.35-mm pressure microphones in a tetrahedral arrangement. Measurements were made with the rig at nine positions (36 probe locations) within six nozzle diameters of the plume shear layer. Overall levels at these locations range from 135 to 157 dB re 20 microPa. Vector intensity maps reveal that, as frequency increases, the dominant source region contracts and moves upstream with peak directivity at greater angles from the plume axis.

  8. Visualization of the energy flow for guided forward and backward waves in and around a fluid-loaded elastic cylindrical shell via the Poynting vector field

    NASA Astrophysics Data System (ADS)

    Dean, Cleon E.; Braselton, James P.

    2004-05-01

    Color-coded and vector-arrow grid representations of the Poynting vector field are used to show the energy flow in and around a fluid-loaded elastic cylindrical shell for both forward- and backward-propagating waves. The present work uses a method adapted from a simpler technique due to Kaduchak and Marston [G. Kaduchak and P. L. Marston, ``Traveling-wave decomposition of surface displacements associated with scattering by a cylindrical shell: Numerical evaluation displaying guided forward and backward wave properties,'' J. Acoust. Soc. Am. 98, 3501-3507 (1995)] to isolate unidirectional energy flows.

  9. Black hole perturbations in vector-tensor theories: the odd-mode analysis

    NASA Astrophysics Data System (ADS)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji; Zhang, Ying-li

    2018-02-01

    In generalized Proca theories with vector-field derivative couplings, a bunch of hairy black hole solutions have been derived on a static and spherically symmetric background. In this paper, we formulate the odd-parity black hole perturbations in generalized Proca theories by expanding the corresponding action up to second order and investigate whether or not black holes with vector hair suffer ghost or Laplacian instabilities. We show that the models with cubic couplings G3(X), where X=‑AμAμ/2 with a vector field Aμ, do not provide any additional stability condition as in General Relativity. On the other hand, the exact charged stealth Schwarzschild solution with a nonvanishing longitudinal vector component A1, which originates from the coupling to the Einstein tensor GμνAμ Aν equivalent to the quartic coupling G4(X) containing a linear function of X, is unstable in the vicinity of the event horizon. The same instability problem also persists for hairy black holes arising from general quartic power-law couplings G4(X) ⊃ β4 Xn with the nonvanishing A1, while the other branch with A1=0 can be consistent with conditions for the absence of ghost and Laplacian instabilities. We also discuss the case of other exact and numerical black hole solutions associated with intrinsic vector-field derivative couplings and show that there exists a wide range of parameter spaces in which the solutions suffer neither ghost nor Laplacian instabilities against odd-parity perturbations.

  10. Fast Quaternion Attitude Estimation from Two Vector Measurements

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two stars tracked by two star trackers for fine attitude determination. Existing closed-form attitude estimates based on Wahba's optimality criterion for two arbitrarily weighted observations are somewhat slow to evaluate. This paper presents two new fast quaternion attitude estimation algorithms using two vector observations, one optimal and one suboptimal. The suboptimal method gives the same estimate as the TRIAD algorithm, at reduced computational cost. Simulations show that the TRIAD estimate is almost as accurate as the optimal estimate in representative test scenarios.

  11. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-12-15

    We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), andmore » (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.« less

  12. Mosquitoes meet microfluidics: High-throughput microfluidic tools for insect-parasite ecology in field conditions

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Mukundarajan, Haripriya

    2013-11-01

    A simple bite from an insect is the transmission mechanism for many deadly diseases worldwide--including malaria, yellow fever, west nile and dengue. Very little is known about how populations of numerous insect species and disease-causing parasites interact in their natural habitats due to a lack of measurement techniques. At present, vector surveillance techniques involve manual capture by using humans as live bait, which is hard to justify on ethical grounds. Individual mosquitoes are manually dissected to isolate salivary glands to detect sporozites. With typical vector infection rates being very low even in endemic areas, it is almost impossible to get an accurate picture of disease distribution, in both space and time. Here we present novel high-throughput microfluidic tools for vector surveillance, specifically mosquitoes. A two-dimensional high density array with baits provide an integrated platform for multiplex PCR for detection of both vector and parasite species. Combining techniques from engineering and field ecology, methods and tools developed here will enable high-throughput measurement of infection rates for a number of diseases in mosquito populations in field conditions. Pew Foundation.

  13. Full-field drift Hamiltonian particle orbits in 3D geometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu

    2011-02-01

    A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.

  14. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    PubMed

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  15. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  16. The vector structure of active magnetic fields

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1985-01-01

    Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.

  17. Geomagnetic main field modeling with DMSP

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.; Lühr, H.; Redmon, R. J.; Rich, F.; Bowman, B.; O'Malley, S. M.

    2014-05-01

    The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Ørsted, and SAC-C. With the completion of the CHAMP mission in 2010, there has been a multiyear gap in satellite-based vector magnetic field measurements available for main field modeling. In this study, we calibrate the special sensor magnetometer instrument on board DMSP to create a data set suitable for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and nonorthogonality angles of the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 15 main field model to the data set and compare with the World Magnetic Model and Ørsted scalar measurements. We call this model DMSP-MAG-1, and its coefficients and software are available for download at http://geomag.org/models/dmsp.html. Our results indicate that the DMSP data set will be a valuable source for main field modeling for the years between CHAMP and the recently launched Swarm mission.

  18. The BGS magnetic field candidate models for the 12th generation IGRF

    NASA Astrophysics Data System (ADS)

    Hamilton, Brian; Ridley, Victoria A.; Beggan, Ciarán D.; Macmillan, Susan

    2015-05-01

    We describe the candidate models submitted by the British Geological Survey for the 12th generation International Geomagnetic Reference Field. These models are extracted from a spherical harmonic `parent model' derived from vector and scalar magnetic field data from satellite and observatory sources. These data cover the period 2009.0 to 2014.7 and include measurements from the recently launched European Space Agency (ESA) Swarm satellite constellation. The parent model's internal field time dependence for degrees 1 to 13 is represented by order 6 B-splines with knots at yearly intervals. The parent model's degree 1 external field time dependence is described by periodic functions for the annual and semi-annual signals and by dependence on the 20-min Vector Magnetic Disturbance index. Signals induced by these external fields are also parameterized. Satellite data are weighted by spatial density and by two different noise estimators: (a) by standard deviation along segments of the satellite track and (b) a larger-scale noise estimator defined in terms of a measure of vector activity at the geographically closest magnetic observatories to the sample point. Forecasting of the magnetic field secular variation beyond the span of data is by advection of the main field using core surface flows.

  19. Symbolic computer vector analysis

    NASA Technical Reports Server (NTRS)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Cheng

    Here, we consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. Furthermore, a chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.

  1. Topological events on the lines of circular polarization in nonparaxial vector optical fields.

    PubMed

    Freund, Isaac

    2017-02-01

    In nonparaxial vector optical fields, the following topological events are shown to occur in apparent violation of charge conservation: as one translates the observation plane along a line of circular polarization (a C line), the points on the line (C points) are seen to change not only the signs of their topological charges, but also their handedness, and, at turning points on the line, paired C points with the same topological charge and opposite handedness are seen to nucleate. These counter-intuitive events cannot occur in paraxial fields.

  2. Large Solar Flares and Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad

    2001-01-01

    This Comment gives additional information about the nature of flaring locations on the Sun described in the article "Sun unleashes Halloween storm", by R. E. Lopez, et al. What causes the large explosions from solar active regions that unleash huge magnetic storms and adverse space weather? It is now beyond doubt that the magnetic field in solar active regions harbors free energy that is released during these events. Direct measurements of the longitudinal and transverse components of active region magnetic fields with the vector magnetograph at NASA Marshall Space Flight Center (MSFC), taken on a regular basis for the last 30 years, have found key signatures of the locations of powerful flares. A vector magnetograph detects and measures the magnetic shear, which is the deviation of the observed transverse magnetic field direction from the potential field. The sheared locations possess abundant free magnetic energy for solar flares. In addition to active region NOAA 10486, the one that produced the largest flares last October, the NASA/MSFC vector magnetograph has observed several other such complex super active regions, including NOAA 6555 and 6659.

  3. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface

    PubMed Central

    Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine

    2012-01-01

    The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082

  4. Vector magnetometer design study: Analysis of a triaxial fluxgate sensor design demonstrates that all MAGSAT Vector Magnetometer specifications can be met

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Hartmann, U. G.; Lazarow, L. L.; Maloy, J. O.; Mohler, G. W.

    1976-01-01

    The design of the vector magnetometer selected for analysis is capable of exceeding the required accuracy of 5 gamma per vector field component. The principal elements that assure this performance level are very low power dissipation triaxial feedback coils surrounding ring core flux-gates and temperature control of the critical components of two-loop feedback electronics. An analysis of the calibration problem points to the need for improved test facilities.

  5. Singular vectors for the WN algebras

    NASA Astrophysics Data System (ADS)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  6. Vector and axial-vector decomposition of Einstein's gravitational action

    NASA Astrophysics Data System (ADS)

    Soh, Kwang S.

    1991-08-01

    Vector and axial-vector gravitational fields are introduced to express the Einstein action in the manner of electromagnetism. Their conformal scaling properties are examined, and the resemblance between the general coordinate and electromagnetic gauge transformation is elucidated. The chiral formulation of the gravitational action is constructed. I am deeply grateful to Professor S. Hawking, and Professor G. Lloyd for warm hospitality at DAMTP, and Darwin College, University of Cambridge, respectively. I also appreciate much help received from Dr. Q.-H. Park.

  7. Rutherford's Scattering Formula via the Runge-Lenz Vector.

    ERIC Educational Resources Information Center

    Basano, L.; Bianchi, A.

    1980-01-01

    Discusses how the Runge-Lenz vector provides a way to derive the relation between deflection angle and impact parameter for Coulomb- and Kepler-fields in a very simple and a straightforward way. (Author/HM)

  8. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.

    PubMed

    Man, Zhongsheng; Bai, Zhidong; Zhang, Shuoshuo; Li, Jinjian; Li, Xiaoyu; Ge, Xiaolu; Zhang, Yuquan; Fu, Shenggui

    2018-06-01

    The tight focusing properties of optical fields combining a spiral phase and cylindrically symmetric state of polarization are presented. First, we theoretically analyze the mathematical characterization, Stokes parameters, and Poincaré sphere representations of arbitrary cylindrical vector (CV) vortex beams. Then, based on the vector diffraction theory, we derive and build an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input CV vortex beams. The calculations reveal that a generalized CV vortex beam can generate a sharper focal spot than that of a radially polarized (RP) plane beam in the focal plane. Besides, the focal size decrease accompanies its elongation along the optical axis. Hence, it seems that there is a trade-off between the transverse and axial resolutions. In addition, under the precondition that the absolute values between polarization order and topological charge are equal, a higher-order CV vortex can also achieve a smaller focal size than an RP plane beam. Further, the intensity for the sidelobe admits a significant suppression. To give a deep understanding of the peculiar focusing properties, the magnetic field and Poynting vector distributions are also demonstrated in detail. These properties may be helpful in applications such as optical trapping and manipulation of particles and superresolution microscopy imaging.

  9. Anisotropic power spectrum and bispectrum in the f(Φ)F² mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco

    2013-01-04

    A suitable coupling of the inflaton φ to a vector kinetic term F² gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ~5 e-folds (~50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis,more » for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local f NL~3(~30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.« less

  10. Anisotropic Bispectrum of Curvature Perturbations from Primordial Non-Abelian Vector Fields

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2009-10-01

    We consider a primordial SU(2) vector multiplet during inflation in models where quantum fluctuations of vector fields are involved in producing the curvature perturbation. Recently, a lot of attention has been paid to models populated by vector fields, given the interesting possibility of generating some level of statistical anisotropy in the cosmological perturbations. The scenario we propose is strongly motivated by the fact that, for non-Abelian gauge fields, self-interactions are responsible for generating extra terms in the cosmological correlation functions, which are naturally absent in the Abelian case. We compute these extra contributions to the bispectrum of the curvature perturbation, using the δN formula and the Schwinger-Keldysh formalism. The primordial violation of rotational invariance (due to the introduction of the SU(2) gauge multiplet) leaves its imprint on the correlation functions introducing, as expected, some degree of statistical anisotropy in our results. We calculate the non-Gaussianity parameter fNL, proving that the new contributions derived from gauge bosons self-interactions can be important, and in some cases the dominat ones. We study the shape of the bispectrum and we find that it turns out to peak in the local configuration, with an amplitude that is modulated by the preferred directions that break statistical isotropy.

  11. Anisotropic power spectrum and bispectrum in the f(ϕ)F2 mechanism

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo

    2013-01-01

    A suitable coupling of the inflaton φ to a vector kinetic term F2 gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ˜5 e-folds (˜50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL˜3(˜30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.

  12. Observation of Polarization Vortices in Momentum Space

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  13. The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    1984-01-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.

  14. Observation of Polarization Vortices in Momentum Space.

    PubMed

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-04

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  15. Logarithmic violation of scaling in anisotropic kinematic dynamo model

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2016-01-01

    Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t')/k⊥d-1 +ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schertzer, Daniel, E-mail: Daniel.Schertzer@enpc.fr; Tchiguirinskaia, Ioulia, E-mail: Ioulia.Tchiguirinskaia@enpc.fr

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge upmore » the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.« less

  17. Production of non viral DNA vectors.

    PubMed

    Schleef, Martin; Blaesen, Markus; Schmeer, Marco; Baier, Ruth; Marie, Corinne; Dickson, George; Scherman, Daniel

    2010-12-01

    After some decades of research, development and first clinical approaches to use DNA vectors in gene therapy, cell therapy and DNA vaccination, the requirements for the pharmaceutical manufacturing of gene vectors has improved significantly step by step. Even the expression level and specificity of non viral DNA vectors were significantly modified and followed the success of viral vectors. The strict separation of "viral" and "non viral" gene transfer are historic borders between scientist and we will show that both fields together are able to allow the next step towards successful prevention and therapy. Here we summarize the features of producing and modifying these non-viral gene vectors to ensure the required quality to modify cells and to treat human and animals.

  18. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  19. Principal component analysis-based anatomical motion models for use in adaptive radiation therapy of head and neck cancer patients

    NASA Astrophysics Data System (ADS)

    Chetvertkov, Mikhail A.

    Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment. Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create "digital phantom" images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients' actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution. Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA's ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into the higher dose volumes during the radiotherapy course. Modeled DVHs still underestimated the effect of parotid shrinkage due to the large compression factor (CF) used to acquire DVFs. Conclusion: Leading EDVFs from both PCA approaches have the potential to capture systematic anatomical changes during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable than SPCA at capturing systematic changes, enabling dosimetric consequences to be projected to the future treatment fractions based on trends established early in a treatment course, or, potentially, based on population models. This work showed that PCA has a potential in identifying the major mode of anatomical changes during the radiotherapy course and subsequent use of this information in future dose predictions is feasible. Use of smaller CF values for DVFs is preferred, otherwise anatomical motion will be underestimated.

  20. Electron in higher-dimensional weakly charged rotating black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2013-03-01

    We demonstrate separability of the Dirac equation in weakly charged rotating black hole spacetimes in all dimensions. The electromagnetic field of the black hole is described by a test field approximation, with the vector potential proportional to the primary Killing vector field. It is shown that the demonstrated separability can be intrinsically characterized by the existence of a complete set of mutually commuting first-order symmetry operators generated from the principal Killing-Yano tensor. The presented results generalize the results on integrability of charged particle motion and separability of charged scalar field studied in V. P. Frolov and P. Krtous [Phys. Rev. D 83, 024016 (2011)].

  1. Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories

    NASA Astrophysics Data System (ADS)

    Arabasi, Sameer; Al-Taani, Hussein

    2017-03-01

    Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor.

  2. Dipole interaction of the Quincke rotating particles.

    PubMed

    Dolinsky, Yu; Elperin, T

    2012-02-01

    We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.

  3. Dipole interaction of the Quincke rotating particles

    NASA Astrophysics Data System (ADS)

    Dolinsky, Yu.; Elperin, T.

    2012-02-01

    We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.

  4. Acoustical contribution calculation and analysis of compressor shell based on acoustic transfer vector method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaol; Guo, Bei; Tuo, Jinliang; Zhou, Ruixin; Lu, Yang

    2017-08-01

    Nowadays, people are paying more and more attention to the noise reduction of household refrigerator compressor. This paper established a sound field bounded by compressor shell and ISO3744 standard field points. The Acoustic Transfer Vector (ATV) in the sound field radiated by a refrigerator compressor shell were calculated which fits the test result preferably. Then the compressor shell surface is divided into several parts. Based on Acoustic Transfer Vector approach, the sound pressure contribution to the field points and the sound power contribution to the sound field of each part were calculated. To obtain the noise radiation in the sound field, the sound pressure cloud charts were analyzed, and the contribution curves in different frequency of each part were acquired. Meanwhile, the sound power contribution of each part in different frequency was analyzed, to ensure those parts where contributes larger sound power. Through the analysis of acoustic contribution, those parts where radiate larger noise on the compressor shell were determined. This paper provides a credible and effective approach on the structure optimal design of refrigerator compressor shell, which is meaningful in the noise and vibration reduction.

  5. Reversible “triple-Q” elastic field structures in a chiral magnet

    PubMed Central

    Hu, Yangfan; Wang, Biao

    2016-01-01

    The analytical solution of the periodic elastic fields in chiral magnets caused by presence of periodically distributed eigenstrains is obtained. For the skyrmion phase, both the periodic displacement field and the stress field are composed of three “triple-Q” structures with different wave numbers. The periodic displacement field, obtained by combining the three “triple-Q” displacement structures, is found to have the same lattice vectors with the magnetic skyrmion lattice. We find that for increasing external magnetic field, one type of “triple-Q” displacement structure and stress structure undergo a “configurational reversal”, where the initial and the final field configuration share similar pattern but with opposite direction of all the field vectors. The solution obtained is of fundamental significance for understanding the emergent mechanical properties of skyrmions in chiral magnets. PMID:27457629

  6. Mach's principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K=({+-}1,0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Christoph

    We show that there is exact dragging of the axis directions of local inertial frames by a weighted average of the cosmological energy currents via gravitomagnetism for all linear perturbations of all Friedmann-Robertson-Walker (FRW) universes and of Einstein's static closed universe, and for all energy-momentum-stress tensors and in the presence of a cosmological constant. This includes FRW universes arbitrarily close to the Milne Universe and the de Sitter universe. Hence the postulate formulated by Ernst Mach about the physical cause for the time-evolution of inertial axes is shown to hold in general relativity for linear perturbations of FRW universes. -more » The time-evolution of local inertial axes (relative to given local fiducial axes) is given experimentally by the precession angular velocity {omega}-vector{sub gyro} of local gyroscopes, which in turn gives the operational definition of the gravitomagnetic field: B-vector{sub g}{identical_to}-2{omega}-vector{sub gyro}. The gravitomagnetic field is caused by energy currents J-vector{sub {epsilon}} via the momentum constraint, Einstein's G{sup 0-}circumflex{sub i-circumflex} equation, (-{delta}+{mu}{sup 2})A-vector{sub g}=-16{pi}G{sub N}J-vector{sub {epsilon}} with B-vector{sub g}=curl A-vector{sub g}. This equation is analogous to Ampere's law, but it holds for all time-dependent situations. {delta} is the de Rham-Hodge Laplacian, and {delta}=-curl curl for the vorticity sector in Riemannian 3-space. - In the solution for an open universe the 1/r{sup 2}-force of Ampere is replaced by a Yukawa force Y{sub {mu}}(r)=(-d/dr)[(1/R)exp(-{mu}r)], form-identical for FRW backgrounds with K=(-1,0). Here r is the measured geodesic distance from the gyroscope to the cosmological source, and 2{pi}R is the measured circumference of the sphere centered at the gyroscope and going through the source point. The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, dot is the derivative with respect to cosmic time, and {mu}{sup 2}=-4(dH/dt). Analogous results hold in closed FRW universes and in Einstein's closed static universe.--We list six fundamental tests for the principle formulated by Mach: all of them are explicitly fulfilled by our solutions.--We show that only energy currents in the toroidal vorticity sector with l=1 can affect the precession of gyroscopes. We show that the harmonic decomposition of toroidal vorticity fields in terms of vector spherical harmonics X-vector{sub lm}{sup -} has radial functions which are form-identical for the 3-sphere, the hyperbolic 3-space, and Euclidean 3-space, and are form-identical with the spherical Bessel-, Neumann-, and Hankel functions. - The Appendix gives the de Rham-Hodge Laplacian on vorticity fields in Riemannian 3-spaces by equations connecting the calculus of differential forms with the curl notation. We also give the derivation the Weitzenboeck formula for the difference between the de Rham-Hodge Laplacian {delta} and the ''rough'' Laplacian {nabla}{sup 2} on vector fields.« less

  7. SSM/I and ECMWF Wind Vector Comparison

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Ashcroft, Peter D.

    1996-01-01

    Wentz was the first to convincingly show that satellite microwave radiometers have the potential to measure the oceanic wind vector. The most compelling evidence for this conclusion was the monthly wind vector maps derived solely from a statistical analysis of Special Sensor Microwave Imager (SSM/I) observations. In a qualitative sense, these maps clearly showed the general circulation over the world's oceans. In this report we take a closer look at the SSM/I monthly wind vector maps and compare them to European Center for Medium-Range Weather Forecasts (ECMWF) wind fields. This investigation leads both to an empirical comparison of SSM/I calculated wind vectors with ECMWF wind vectors, and to an examination of possible reasons that the SSM/I calculated wind vector direction would be inherently more reliable at some locations than others.

  8. A flippon related singlet at the LHC II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianjun; Maxin, James A.; Mayes, Van E.

    2016-06-28

    Here, we consider the 750 GeV diphoton resonance at the 13 TeV LHC in the ℱ-SU(5) model with a Standard Model (SM) singlet field which couples to TeV-scale vector-like particles, dubbed flippons. This singlet field assumes the role of the 750 GeV resonance, with production via gluon fusion and subsequent decay to a diphoton via the vector-like particle loops. We present a numerical analysis showing that the observed 8 TeV and 13 TeV diphoton production cross-sections can be generated in the model space with realistic electric charges and Yukawa couplings for light vector-like masses. We further discuss the experimental viabilitymore » of light vector-like masses in a General No-Scale ℱ-SU(5) model, offering a few benchmark scenarios in this consistent GUT that can satisfy all experimental constraints imposed by the LHC and other essential experiments.« less

  9. Spectrum of perturbations in anisotropic inflationary universe with vector hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmetoglu, Burak, E-mail: burak@physics.umn.edu

    2010-03-01

    We study both the background evolution and cosmological perturbations of anisotropic inflationary models supported by coupled scalar and vector fields. The models we study preserve the U(1) gauge symmetry associated with the vector field, and therefore do not possess instabilities associated with longitudinal modes (which instead plague some recently proposed models of vector inflation and curvaton). We first intoduce a model in which the background anisotropy slowly decreases during inflation; we then confirm the stability of the background solution by studying the quadratic action for all the perturbations of the model. We then compute the spectrum of the h{sub ×}more » gravitational wave polarization. The spectrum we find breaks statistical isotropy at the largest scales and reduces to the standard nearly scale invariant form at small scales. We finally discuss the possible relevance of our results to the large scale CMB anomalies.« less

  10. Intraventricular vector flow mapping—a Doppler-based regularized problem with automatic model selection

    NASA Astrophysics Data System (ADS)

    Assi, Kondo Claude; Gay, Etienne; Chnafa, Christophe; Mendez, Simon; Nicoud, Franck; Abascal, Juan F. P. J.; Lantelme, Pierre; Tournoux, François; Garcia, Damien

    2017-09-01

    We propose a regularized least-squares method for reconstructing 2D velocity vector fields within the left ventricular cavity from single-view color Doppler echocardiographic images. Vector flow mapping is formulated as a quadratic optimization problem based on an {{\\ell }2} -norm minimization of a cost function composed of a Doppler data-fidelity term and a regularizer. The latter contains three physically interpretable expressions related to 2D mass conservation, Dirichlet boundary conditions, and smoothness. A finite difference discretization of the continuous problem was adopted in a polar coordinate system, leading to a sparse symmetric positive-definite system. The three regularization parameters were determined automatically by analyzing the L-hypersurface, a generalization of the L-curve. The performance of the proposed method was numerically evaluated using (1) a synthetic flow composed of a mixture of divergence-free and curl-free flow fields and (2) simulated flow data from a patient-specific CFD (computational fluid dynamics) model of a human left heart. The numerical evaluations showed that the vector flow fields reconstructed from the Doppler components were in good agreement with the original velocities, with a relative error less than 20%. It was also demonstrated that a perturbation of the domain contour has little effect on the rebuilt velocity fields. The capability of our intraventricular vector flow mapping (iVFM) algorithm was finally illustrated on in vivo echocardiographic color Doppler data acquired in patients. The vortex that forms during the rapid filling was clearly deciphered. This improved iVFM algorithm is expected to have a significant clinical impact in the assessment of diastolic function.

  11. Determination of Coronal Magnetic Fields from Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that magnetic nonequilibrium can disrupt sheared coronal arcades, and that helmet streamers can disrupt, leading to coronal mass ejections. Our model has significantly extended the realism with which the coronal magnetic field can be inferred from actual observations. In a subsequent contract awarded by NASA, we have continued to apply and improve the evolutionary technique, to study the physical properties of active regions, and to develop theoretical models of magnetic fields.

  12. Ponderomotive Force in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  13. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR.

    PubMed

    D'Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new "Free-ITR" qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  14. A Preliminary Study to Forecast Japanese Encephalitis Vector Abundance in Paddy Growing Area, with the Aid of Radar Satellite Images.

    PubMed

    Raju, K Hari Kishan; Sabesan, Shanmugavelu; Rajavel, Aladu Ramakrishnan; Subramanian, Swaminathan; Natarajan, Ramalingam; Thenmozhi, Velayutham; Tyagi, Brij Kishore; Jambulingam, Purushothaman

    2016-02-01

    Vector mosquitoes of Japanese encephalitis (JE) breed mostly in rice fields, and human cases occur scattered over extended rural rice-growing areas. From this, one may surmise an ecological connection with the irrigation facilities and paddy cultivation. Furthermore, it has been hypothesized that a particular stage of paddy growth is a premonitory sign that can lead to a markedly increased population of the vector mosquitoes. The present study aimed to forecast the vector abundance by monitoring the paddy growth using remote sensing and geographical information systems. The abundance of the JE vector Culex tritaeniorhynchus peaked when the paddy crop was at its heading stage and dipped when the crop reached the maturing stage. A significant positive correlation was observed between paddy growth and adult density (r = 0.73, p < 0.008). The sigma naught values (σ0) derived from satellite images of paddy fields ranged from -18.3 (during transplantation stage) to approximately -10 (during the noncultivation period). A significant positive correlation was observed between σ0 and paddy growth stages (r = 0.87, p < 0.05) and adult vector density (r = 0.74, p = 0.04). The σ0 value observed during the vegetative and flowering stages of paddy growth ranged from -17.6 to -17.16, at which period the vector density started building up. This could be the spectral signature that denotes the "risk," following which a high vector abundance is expected during heading stage of the paddy.

  15. Infinite-Dimensional Symmetry Algebras as a Help Toward Solutions of the Self-Dual Field Equations with One Killing Vector

    NASA Astrophysics Data System (ADS)

    Finley, Daniel; McIver, John K.

    2002-12-01

    The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.

  16. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures

    DTIC Science & Technology

    2015-05-01

    ABSTRACT The main objective of this research is to study coherent quantum effects, such as Rabi oscillations in optical spectra of wide- band-gap...field corresponds to the rotation of the B vector about the pseudo field vector, Ω, with components determined by the effective Rabi frequency ( )e...to examine coherent quantum effects, such as Rabi oscillations and quantum entanglement in optical spectra of wide-band-gap materials, and to

  17. Aspects of mutually unbiased bases in odd-prime-power dimensions

    NASA Astrophysics Data System (ADS)

    Chaturvedi, S.

    2002-04-01

    We rephrase the Wootters-Fields construction [W. K. Wootters and B. C. Fields, Ann. Phys. 191, 363 (1989)] of a full set of mutually unbiased bases in a complex vector space of dimensions N=pr, where p is an odd prime, in terms of the character vectors of the cyclic group G of order p. This form may be useful in explicitly writing down mutually unbiased bases for N=pr.

  18. The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.

    2015-12-01

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.

  19. High-quality animation of 2D steady vector fields.

    PubMed

    Lefer, Wilfrid; Jobard, Bruno; Leduc, Claire

    2004-01-01

    Simulators for dynamic systems are now widely used in various application areas and raise the need for effective and accurate flow visualization techniques. Animation allows us to depict direction, orientation, and velocity of a vector field accurately. This paper extends a former proposal for a new approach to produce perfectly cyclic and variable-speed animations for 2D steady vector fields (see [1] and [2]). A complete animation of an arbitrary number of frames is encoded in a single image. The animation can be played using the color table animation technique, which is very effective even on low-end workstations. A cyclic set of textures can be produced as well and then encoded in a common animation format or used for texture mapping on 3D objects. As compared to other approaches, the method presented in this paper produces smoother animations and is more effective, both in memory requirements to store the animation, and in computation time.

  20. Development of software-hardware complex for investigation of the vector field of speeds in the cyclone-separator

    NASA Astrophysics Data System (ADS)

    Borisov, A.

    2018-05-01

    The current issue of studying the vector velocity field in a cyclone-separator with a screw insert is considered in the article. Modeling of the velocity vector field in SolidWorks was carried out, tangential, axial and radial velocities were investigated. Also, a software and hardware complex was developed that makes it possible to obtain data on the speed inside a cyclone separator. The results of the experiment showed that on flour dusts the efficiency of the cyclone separator in question was more than 99.5%, with an air flow rate of 376 m3 / h, 472 m3 / h and 516 m3 / h, and ΔP less than 600 Pa. The velocity in the inlet branch of the screw insert was 18-20 m / s, and at the exit of the screw insert the airflow velocity is 50-70 m / s.

  1. Experimental investigation of vector static magnetic field detection using an NV center with a single first-shell 13C nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang

    2018-05-01

    We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).

  2. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    PubMed

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  3. Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate.

    PubMed

    Liu, Gui-Geng; Wang, Ke; Lee, Yun-Han; Wang, Dan; Li, Ping-Ping; Gou, Fangwang; Li, Yongnan; Tu, Chenghou; Wu, Shin-Tson; Wang, Hui-Tian

    2018-02-15

    Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.

  4. Polarization masks: concept and initial assessment

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Neureuther, Andrew R.

    2002-07-01

    Polarization from photomasks can be used as a new lever to improve lithographic performance in both binary and phase-shifting masks (PSMs). While PSMs manipulate the phase of light to control the temporal addition of electric field vectors, polarization masks manipulate the vector direction of electric field vectors to control the spatial addition of electric field components. This paper explores the theoretical possibilities of polarization masks, showing that it is possible to use bar structures within openings on the mask itself to polarize incident radiation. Rigorous electromagnetic scattering simulations using TEMPEST and imaging with SPLAT are used to give an initial assessment on the functionality of polarization masks, discussing the polarization quality and throughputs achieved with the masks. Openings between 1/8 and 1/3 of a wavelength provide both a low polarization ratio and good transmission. A final overall throughput of 33% - 40% is achievable, corresponding to a dose hit of 2.5x - 3x.

  5. Detection of Wolbachia in Aedes albopictus and Their Effects on Chikungunya Virus

    PubMed Central

    Ahmad, Noor Afizah; Vythilingam, Indra; Lim, Yvonne A. L.; Zabari, Nur Zatil Aqmar M.; Lee, Han Lim

    2017-01-01

    Wolbachia-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing Wolbachia as a novel vector control strategy, it is crucial to understand the Wolbachia–mosquito interactions. In this study, field surveys were conducted to screen for the infection status of Wolbachia in field-collected Aedes albopictus. The effects of Wolbachia in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of Wolbachia-infected field-collected Ae. albopictus was estimated to be 98.6% (N = 142) for females and 95.1% (N = 102) for males in the population studied. The Ae. albopictus were naturally infected with both wAlbA and wAlbB strains. We also found that the native Wolbachia has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs. PMID:27920393

  6. Dose-response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato.

    PubMed

    Mbare, Oscar; Lindsay, Steven W; Fillinger, Ulrike

    2013-03-14

    Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Dose-response and standardized field tests were implemented following standard procedures of the World Health Organization's Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0.018 ppm ai failed to hatch, whilst 98% of eggs laid by females exposed to 0.09 ppm ai did not hatch. Anopheles gambiae s.s. and An. arabiensis are highly susceptible to Sumilarv®0.5G at very low dosages. The persistence of this granule formulation in treated habitats under standardized field conditions and its sub-lethal impact, reducing the number of viable eggs from adults emerging from treated ponds, enhances its potential as malaria vector control tool. These unique properties warrant further field testing to determine its suitability for inclusion in malaria vector control programmes.

  7. Dose–response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato

    PubMed Central

    2013-01-01

    Background Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Methods Dose–response and standardized field tests were implemented following standard procedures of the World Health Organization’s Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Results Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0.018 ppm ai failed to hatch, whilst 98% of eggs laid by females exposed to 0.09 ppm ai did not hatch. Conclusion Anopheles gambiae s.s. and An. arabiensis are highly susceptible to Sumilarv®0.5G at very low dosages. The persistence of this granule formulation in treated habitats under standardized field conditions and its sub-lethal impact, reducing the number of viable eggs from adults emerging from treated ponds, enhances its potential as malaria vector control tool. These unique properties warrant further field testing to determine its suitability for inclusion in malaria vector control programmes. PMID:23497149

  8. Studies of Solar Helicity Using Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.; Pevstov, Alexei A.

    1999-01-01

    observations of photospheric magnetic fields made with vector magnetographs have been used recently to study solar helicity. In this paper we indicate what can and cannot be derived from vector magnetograms, and point out some potential problems in these data that could affect the calculations of 'helicity'. Among these problems are magnetic saturation, Faraday rotation, low spectral resolution, and the method of resolving the ambiguity in the azimuth.

  9. Ideal flux field dielectric concentrators.

    PubMed

    García-Botella, Angel

    2011-10-01

    The concept of the vector flux field was first introduced as a photometrical theory and later developed in the field of nonimaging optics; it has provided new perspectives in the design of concentrators, overcoming standard ray tracing techniques. The flux field method has shown that reflective concentrators with the geometry of the field lines achieve the theoretical limit of concentration. In this paper we study the role of surfaces orthogonal to the field vector J. For rotationally symmetric systems J is orthogonal to its curl, and then a family of surfaces orthogonal to the lines of J exists, which can be called the family of surfaces of constant pseudopotential. Using the concept of the flux tube, it is possible to demonstrate that refractive concentrators with the shape of these pseudopotential surfaces achieve the theoretical limit of concentration.

  10. Elastic Gauge Fields in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  11. Current Status of Gene Therapy for Inherited Lung Diseases

    PubMed Central

    Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    Gene therapy as a treatment modality for pulmonary disorders has attracted significant interest over the past decade. Since the initiation of the first clinical trials for cystic fibrosis lung disease using recombinant adenovirus in the early 1990s, the field has encountered numerous obstacles including vector inflammation, inefficient delivery, and vector production. Despite these obstacles, enthusiasm for lung gene therapy remains high. In part, this enthusiasm is fueled through the diligence of numerous researchers whose studies continue to reveal great potential of new gene transfer vectors that demonstrate increased tropism for airway epithelia. Several newly identified serotypes of adeno-associated virus have demonstrated substantial promise in animal models and will likely surface soon in clinical trials. Furthermore, an increased understanding of vector biology has also led to the development of new technologies to enhance the efficiency and selectivity of gene delivery to the lung. Although the promise of gene therapy to the lung has yet to be realized, the recent concentrated efforts in the field that focus on the basic virology of vector development will undoubtedly reap great rewards over the next decade in treating lung diseases. PMID:12524461

  12. Stealth configurations in vector-tensor theories of gravity

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Tasinato, Gianmassimo

    2018-01-01

    Studying the physics of compact objects in modified theories of gravity is important for understanding how future observations can test alternatives to General Relativity. We consider a subset of vector-tensor Galileon theories of gravity characterized by new symmetries, which can prevent the propagation of the vector longitudinal polarization, even in absence of Abelian gauge invariance. We investigate new spherically symmetric and slowly rotating solutions for these systems, including an arbitrary matter Lagrangian. We show that, under certain conditions, there always exist stealth configurations whose geometry coincides with solutions of Einstein gravity coupled with the additional matter. Such solutions have a non-trivial profile for the vector field, characterized by independent integration constants, which extends to asymptotic infinity. We interpret our findings in terms of the symmetries and features of the original vector-tensor action, and on the number of degrees of freedom that it propagates. These results are important to eventually describe gravitationally bound configurations in modified theories of gravity, such as black holes and neutron stars, including realistic matter fields forming or surrounding the object.

  13. A sensor for vector electric field measurements through a nonlinear anisotropic optical crystal

    NASA Astrophysics Data System (ADS)

    Barbieri, Luca; Gondola, Marco; Potenza, Marco; Villa, Andrea; Malgesini, Roberto

    2017-11-01

    Electrical applications require the development of electric field sensors that can reproduce vector electric field waveforms with a very large spectral width ranging from 50 Hz to at least 70 MHz. This makes it possible to measure both the normal operation modes of electrical components and abnormal behaviors such as the corona emission and partial discharges. In this work, we aim to develop a fully dielectric sensor capable of measuring two components of the electric field using a wide class of optical crystals including anisotropic ones, whereas most of the efforts in this field have been devoted to isotropic crystals. We report the results of the measurements performed at 50 Hz and with a lightning impulse, to validate the sensor.

  14. Multiscale vector fields for image pattern recognition

    NASA Technical Reports Server (NTRS)

    Low, Kah-Chan; Coggins, James M.

    1990-01-01

    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  15. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  16. Chagas disease vector control and Taylor's law

    PubMed Central

    Rodríguez-Planes, Lucía I.; Gaspe, María S.; Cecere, María C.; Cardinal, Marta V.

    2017-01-01

    Background Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. Methodology/Principal findings We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. Conclusions/Significance A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease. PMID:29190728

  17. On the Tensorial Nature of Fluxes in Continuous Media.

    ERIC Educational Resources Information Center

    Stokes, Vijay Kumar; Ramkrishna, Doraiswami

    1982-01-01

    Argues that mass and energy fluxes in a fluid are vectors. Topics include the stress tensor, theorem for tensor fields, mass flux as a vector, stress as a second order tensor, and energy flux as a tensor. (SK)

  18. Flux vector splitting of the inviscid equations with application to finite difference methods

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Warming, R. F.

    1979-01-01

    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.

  19. Cascading effect of economic globalization on human risks of scrub typhus and tick-borne rickettsial diseases.

    PubMed

    Kuo, Chi-Chien; Huang, Jing-Lun; Shu, Pei-Yun; Lee, Pei-Lung; Kelt, Douglas A; Wang, Hsi-Chieh

    2012-09-01

    The increase in global travel and trade has facilitated the dissemination of disease vectors. Globalization can also indirectly affect vector-borne diseases through the liberalization of cross-border trade, which has far-reaching, worldwide effects on agricultural practices and may in turn influence vectors through the modification of the ecological landscape. While the cascading effect of economic globalization on vector-borne diseases, sometimes acting synergistically with regional agricultural policy, could be substantial and have significant economic, agricultural, and public health implications, research into this remains very limited. We evaluated how abandonment of rice paddies in Taiwan after joining the World Trade Organization, along with periodic plowing, an agricultural policy to reduce farm pests in abandoned fields can unexpectedly influence risks to diseases transmitted by ticks and chiggers (larval trombiculid mites), which we collected from their small-mammal hosts. Sampling was limited to abandoned (fallow) and plowed fields due to the challenge of trapping small mammals in flooded rice paddies. Striped field mice (Apodemus agrarius) are the main hosts for both vectors. They harbored six times more ticks and three times more chiggers in fallow than in plowed plots. The proportion of ticks infected with Rickettsia spp. (etiologic agent of spotted fever) was three times higher in fallow plots, while that of Orientia tsutsugamushi (scrub typhus) in chiggers was similar in both treatments. Fallow plots had more ground cover and higher vegetation than plowed ones. Moreover, ticks and chiggers in both field types were dominated by species known to infest humans. Because ticks and chiggers should exhibit very low survival in flooded rice paddies, we propose that farm abandonment in Taiwan, driven by globalization, may have inadvertently led to increased risks of spotted fever and scrub typhus. However, periodic plowing can unintentionally mitigate vector burdens. Economic globalization can have unexpected consequences on disease risk through modification of the agricultural landscape, but the outcome may also be influenced by agricultural policies, calling for further research on vector-borne diseases and their control from broader perspectives.

  20. New Method for Solving Inductive Electric Fields in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  1. Localization of U(1) gauge vector field on flat branes with five-dimension (asymptotic) AdS5 spacetime

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen-Hua; Xie, Qun-Ying

    2018-05-01

    In order to localize U(1) gauge vector field on Randall-Sundrum-like braneworld model with infinite extra dimension, we propose a new kind of non-minimal coupling between the U(1) gauge field and the gravity. We propose three kinds of coupling methods and they all support the localization of zero mode. In addition, one of them can support the localization of massive modes. Moreover, the massive tachyonic modes can be excluded. And our method can be used not only in the thin braneword models but also in the thick ones.

  2. Anisotropic mimetic cosmology

    NASA Astrophysics Data System (ADS)

    Abbassi, M. H.; Jozani, A.; Sepangi, H. R.

    2018-06-01

    We consider a mimetic set up in which the mimetic scalar is coupled to a vector field. It is shown that such a field with a timelike component does not contribute to the background equations and yet produces healthy isocurvature perturbations with respect to ghost and gradient instabilities in spite of the absence of any propagating curvature perturbations at the level of the quadratic action. We then consider a vector field with spacelike components, which leads to an anisotropic Bianchi universe, and show that the ghost and gradient instabilities are absent in the limit of high momenta and that the propagating curvature perturbations have healthy UV behavior.

  3. Brillouin light scattering on Fe/Cr/Fe thin-film sandwiches

    NASA Astrophysics Data System (ADS)

    Kabos, P.; Patton, C. E.; Dima, M. O.; Church, D. B.; Stamps, R. L.; Camley, R. E.

    1994-04-01

    The aim of this work is to perform Brillouin light scattering measurements of the field and wave-vector dependencies of the frequencies of the fundamental magnetic excitations in Fe/Cr/Fe thin film sandwiches with antiferromagnetically coupled magnetic layers, correlate these results with magnetization versus field data on such films, and compare the observed dependencies with theory for low-wave number spin-wave modes in sandwich films. The measurements were made for the in-plane static magnetic field H along the crystallographic and directions, with the in-plane wave vector k always perpendicular to H.

  4. Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment

    NASA Technical Reports Server (NTRS)

    Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.

    2005-01-01

    Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.

  5. Combining Synthetic Human Odours and Low-Cost Electrocuting Grids to Attract and Kill Outdoor-Biting Mosquitoes: Field and Semi-Field Evaluation of an Improved Mosquito Landing Box

    PubMed Central

    Matowo, Nancy S.; Koekemoer, Lizette L.; Moore, Sarah J.; Mmbando, Arnold S.; Mapua, Salum A.; Coetzee, Maureen; Okumu, Fredros O.

    2016-01-01

    Background On-going malaria transmission is increasingly mediated by outdoor-biting vectors, especially where indoor insecticidal interventions such as long-lasting insecticide treated nets (LLINs) are widespread. Often, the vectors are also physiologically resistant to insecticides, presenting major obstacles for elimination. We tested a combination of electrocuting grids with synthetic odours as an alternative killing mechanism against outdoor-biting mosquitoes. Methods An odour-baited device, the Mosquito Landing Box (MLB), was improved by fitting it with low-cost electrocuting grids to instantly kill mosquitoes attracted to the odour lure, and automated photo switch to activate attractant-dispensing and mosquito-killing systems between dusk and dawn. MLBs fitted with one, two or three electrocuting grids were compared outdoors in a malaria endemic village in Tanzania, where vectors had lost susceptibility to pyrethroids. MLBs with three grids were also tested in a large semi-field cage (9.6×9.6×4.5m), to assess effects on biting-densities of laboratory-reared Anopheles arabiensis on volunteers sitting near MLBs. Results Significantly more mosquitoes were killed when MLBs had two or three grids, than one grid in wet and dry seasons (P<0.05). The MLBs were highly efficient against Mansonia species and malaria vector, An. arabiensis. Of all mosquitoes, 99% were non-blood fed, suggesting host-seeking status. In the semi-field, the MLBs reduced mean number of malaria mosquitoes attempting to bite humans fourfold. Conclusion The improved odour-baited MLBs effectively kill outdoor-biting malaria vector mosquitoes that are behaviourally and physiologically resistant to insecticidal interventions e.g. LLINs. The MLBs reduce human-biting vector densities even when used close to humans, and are insecticide-free, hence potentially antiresistance. The devices could either be used as surveillance tools or complementary mosquito control interventions to accelerate malaria elimination where outdoor transmission is significant. PMID:26789733

  6. Third International Kharkov Symposium "Physics and Engineering of Millimeter and Submillimeter Waves" MSMW󈨦 Symposium Proceedings, Volume 1,

    DTIC Science & Technology

    1998-09-01

    potential of the surface wave electromagnetic field; ea is the unit of the polarization vectors : ex = ela. = e2x= (qx/\\q\\)\\/L\\q\\/(ei + e0), ely... polarization basis of the incident wave: EB°=eB^(/kr), (1) where e„ is the cyclic unit vector , n = ±1, k is the wave vector . The equation describing...rectangular grid. From the direction determined by wave vector k0, the plane electromagnetic wave of linear polarization incidents onto the array. It

  7. [Ubiquitination of recombinant adeno-associated viral vector and its application].

    PubMed

    Wang, Qi-zhao; Lu, Ying-hui; Diao, Yong; Xu, Rui-an

    2012-09-01

    Recombinant adeno-associated virus (rAAV) has been widely used as vector for gene therapy. However, the effectiveness of gene therapy based on rAAV needs to be further improved. Enhancement of the transduction efficiency is one of the most important fields for rAAV-based gene therapy. Recent results have showed that the ubiquitin-proteasome system plays an important role in the trafficking of rAAV vector in cytoplasm, and regulation of its function may significantly improve the transduction efficiency of rAAV vector in various types of cells and tissues.

  8. Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; hide

    2009-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to I3 x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's to 100's of km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (< 8 Hz) magnetic field broadband irregularities have been detected, suggestive of filamentary currents, although there is no one-to-one correspondence of these waves with the observed plasma density depletions, at least within the data examined thus far. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data set represents a treasure trove of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.

  9. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya.

    PubMed

    Njoroge, Margaret M; Tirados, Inaki; Lindsay, Steven W; Vale, Glyn A; Torr, Stephen J; Fillinger, Ulrike

    2017-01-10

    Malaria vector mosquitoes with exophilic and zoophilic tendencies, or with a high acceptance of alternative blood meal sources when preferred human blood-hosts are unavailable, may help maintain low but constant malaria transmission in areas where indoor vector control has been scaled up. This residual transmission might be addressed by targeting vectors outside the house. Here we investigated the potential of insecticide-treated cattle, as routinely used for control of tsetse and ticks in East Africa, for mosquito control. The malaria vector population in the study area was investigated weekly for 8 months using two different trapping tools: light traps indoors and cattle-baited traps (CBTs) outdoors. The effect of the application of the insecticide deltamethrin and the acaricide amitraz on cattle on host-seeking Anopheles arabiensis was tested experimentally in field-cages and the impact of deltamethrin-treated cattle explored under field conditions on mosquito densities on household level. CBTs collected on average 2.8 (95% CI: 1.8-4.2) primary [Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.)] and 6.3 (95% CI: 3.6-11.3) secondary malaria vectors [An. ivulorum and An. coustani (s.l.)] per trap night and revealed a distinct, complementary seasonality. At the same time on average only 1.4 (95% CI: 0.8-2.3) primary and 1.1 (95% CI: 0.6-2.0) secondary malaria vectors were collected per trap night with light traps indoors. Amitraz had no effect on survival of host-seeking An. arabiensis under experimental conditions but deltamethrin increased mosquito mortality (OR 19, 95% CI: 7-50), but only for 1 week. In the field, vector mortality in association with deltamethrin treatment was detected only with CBTs and only immediately after the treatment (OR 0.25, 95% CI: 0.13-0.52). Entomological sampling with CBTs highlights that targeting cattle for mosquito control has potential since it would not only target naturally zoophilic malaria vectors but also opportunistic feeders that lack access to human hosts as is expected in residual malaria transmission settings. However, the deltamethrin formulation tested here although used widely to treat cattle for tsetse and tick control, is not suitable for the control of malaria vectors since it causes only moderate initial mortality and has little residual activity.

  10. The feasibility of using magnetic nanoparticles modified as gene vector.

    PubMed

    Chen, D; Tang, Q; Xue, W; Wang, X

    2010-06-01

    To evaluate the feasibility of using magnetic nanoparticles (MNPs) as gene vector and the effect of magnetic field on efficiency of transfection. Magnetic nanoparticles were prepared by controlling some chemical reaction parameters through a partially reduction precipitation method with ferric chloride aqueous solution as precursor material. The surface of particles was modified by polyethyleneimine (PEI) agents. The appearance, the size distribution, structure and phase constitute of MNPs were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD); the potential of absorbing DNA of MNPs was analysed by electrophoresis. Transfection was determined by delivering reporter gene, PGL2-control encoding luciferase, to different cell lines using MNPs-PLL as vector. The effect of magnetic field on the efficiency of transfection was determined using Nd-Fe-B permanent magnet. Foreign gene could be delivered to various cell lines by MNPs-PLL and expressed with high efficiency but the transfection efficiency and time course varied in the different cell lines studied. Magnetic field could enhance the efficiency of transfection by 5-10 fold. MNPs- PLL can be used as a novel non-viral gene vector in vitro, which offers a basis for gene delivery in vivo.

  11. Vector magnetometer based on synchronous manipulation of nitrogen-vacancy centers in all crystal directions

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Yuan, Heng; Zhang, Ning; Xu, Lixia; Zhang, Jixing; Li, Bo; Fang, Jiancheng

    2018-04-01

    Negatively charged nitrogen vacancy (NV‑) centers in diamond have been extensively studied as high-sensitivity magnetometers, showcasing a wide range of applications. This study experimentally demonstrates a vector magnetometry scheme based on synchronous manipulation of NV‑ center ensembles in all crystal directions using double frequency microwaves (MWs) and multi-coupled-strip-lines (mCSL) waveguide. The application of the mCSL waveguide ensures a high degree of synchrony (99%) for manipulating NV‑ centers in multiple orientations in a large volume. Manipulation with double frequency MWs makes NV‑ centers of all four crystal directions involved, and additionally leads to an enhancement of the manipulation field. In this work, by monitoring the changes in the slope of the resonance line consisting of multi-axes NV‑ centers, measurement of the direction of the external field vector was demonstrated with a sensitivity of {{10}\\prime}/\\sqrt{Hz} . Based on the scheme, the fluorescence signal contrast was improved by four times higher and the sensitivity to the magnetic field strength was improved by two times. The method provides a more practical way of achieving vector sensors based on NV‑ center ensembles in diamond.

  12. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Makarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  13. Comparing WSA coronal and solar wind model predictions driven by line-of-sight and vector HMI ADAPT maps

    NASA Astrophysics Data System (ADS)

    Arge, C. N.; Henney, C. J.; Shurkin, K.; Wallace, S.

    2017-12-01

    As the primary input to nearly all coronal models, reliable estimates of the global solar photospheric magnetic field distribution are critical for accurate modeling and understanding of solar and heliospheric magnetic fields. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model generates synchronic (i.e., globally instantaneous) maps by evolving observed solar magnetic flux using relatively well understood transport processes when measurements are not available and then updating modeled flux with new observations (available from both the Earth and the far-side of the Sun) using data assimilation methods that rigorously take into account model and observational uncertainties. ADAPT is capable of assimilating line-of-sight and vector magnetic field data from all observatory sources including the expected photospheric vector magnetograms from the Polarimetric and Helioseismic Imager (PHI) on the Solar Orbiter, as well as those generated using helioseismic methods. This paper compares Wang-Sheeley-Arge (WSA) coronal and solar wind modeling results at Earth and STEREO A & B using ADAPT input model maps derived from both line-of-site and vector SDO/HMI magnetograms that include methods for incorporating observations of a large, newly emerged (July 2010) far-side active region (AR11087).

  14. Three axis vector atomic magnetometer utilizing polarimetric technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less

  15. Initial geomagnetic field model from MAGSAT

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.; Mead, G. D.; Fabiano, E. B.; Lancaster, E. R.

    1980-01-01

    Magsat data from magnetically quiet days were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(3/80). The model utilized both scalar and vector data and fit that data with standard deviations of 8, 52, 55 and 97 nT for the scalar magnitude, B sub r, B sub theta and B sub phi respectively. When compared with earlier models, the Earth's dipole moment continues to decrease at a rate of about 26 nT/year. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the AWC/75 and IGS/75 are better for predicting vector fields.

  16. A possible alternative method for collecting mosquito larvae in rice fields

    PubMed Central

    Robert, Vincent; Goff, Gilbert Le; Ariey, Frédéric; Duchemin, Jean-Bernard

    2002-01-01

    Background Rice fields are efficient breeding places for malaria vectors in Madagascar. In order to establish as easily as possible if a rice field is an effective larval site for anophelines, we compared classical dipping versus a net as methods of collecting larvae. Results Using similar collecting procedures, we found that the total number of anopheline larvae collected with the net was exactly double (174/87) that collected by dipping. The number of anopheline species collected was also greater with a net. Conclusions The net is an effective means of collecting anopheline larvae and can be used for qualitative ecological studies and to rapidly determine which rice fields are containing malaria vectors. PMID:12057018

  17. Direct discretization of planar div-curl problems

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.

    1989-01-01

    A control volume method is proposed for planar div-curl systems. The method is independent of potential and least squares formulations, and works directly with the div-curl system. The novelty of the technique lies in its use of a single local vector field component and two control volumes rather than the other way around. A discrete vector field theory comes quite naturally from this idea and is developed. Error estimates are proved for the method, and other ramifications investigated.

  18. Unique Normal Form and the Associated Coefficients for a Class of Three-Dimensional Nilpotent Vector Fields

    NASA Astrophysics Data System (ADS)

    Li, Jing; Kou, Liying; Wang, Duo; Zhang, Wei

    2017-12-01

    In this paper, we mainly focus on the unique normal form for a class of three-dimensional vector fields via the method of transformation with parameters. A general explicit recursive formula is derived to compute the higher order normal form and the associated coefficients, which can be achieved easily by symbolic calculations. To illustrate the efficiency of the approach, a comparison of our result with others is also presented.

  19. Investigating the Magnetic Imprints of Major Solar Eruptions with SDO /HMI High-cadence Vector Magnetograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Xudong; Hoeksema, J. Todd; Liu Yang

    The solar active region photospheric magnetic field evolves rapidly during major eruptive events, suggesting appreciable feedback from the corona. Previous studies of these “magnetic imprints” are mostly based on line of sight only or lower-cadence vector observations; a temporally resolved depiction of the vector field evolution is hitherto lacking. Here, we introduce the high-cadence (90 s or 135 s) vector magnetogram data set from the Helioseismic and Magnetic Imager, which is well suited for investigating the phenomenon. These observations allow quantitative characterization of the permanent, step-like changes that are most pronounced in the horizontal field component (B {sub h}). Amore » highly structured pattern emerges from analysis of an archetypical event, SOL2011-02-15T01:56, where B {sub h} near the main polarity inversion line increases significantly during the earlier phase of the associated flare with a timescale of several minutes, while B {sub h} in the periphery decreases at later times with smaller magnitudes and a slightly longer timescale. The data set also allows effective identification of the “magnetic transient” artifact, where enhanced flare emission alters the Stokes profiles and the inferred magnetic field becomes unreliable. Our results provide insights on the momentum processes in solar eruptions. The data set may also be useful to the study of sunquakes and data-driven modeling of the corona.« less

  20. Volume illustration of muscle from diffusion tensor images.

    PubMed

    Chen, Wei; Yan, Zhicheng; Zhang, Song; Crow, John Allen; Ebert, David S; McLaughlin, Ronald M; Mullins, Katie B; Cooper, Robert; Ding, Zi'ang; Liao, Jun

    2009-01-01

    Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging (DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig leg), demonstrating plausible illustration and expressiveness.

  1. A border-ownership model based on computational electromagnetism.

    PubMed

    Zainal, Zaem Arif; Satoh, Shunji

    2018-03-01

    The mathematical relation between a vector electric field and its corresponding scalar potential field is useful to formulate computational problems of lower/middle-order visual processing, specifically related to the assignment of borders to the side of the object: so-called border ownership (BO). BO coding is a key process for extracting the objects from the background, allowing one to organize a cluttered scene. We propose that the problem is solvable simultaneously by application of a theorem of electromagnetism, i.e., "conservative vector fields have zero rotation, or "curl." We hypothesize that (i) the BO signal is definable as a vector electric field with arrowheads pointing to the inner side of perceived objects, and (ii) its corresponding scalar field carries information related to perceived order in depth of occluding/occluded objects. A simple model was developed based on this computational theory. Model results qualitatively agree with object-side selectivity of BO-coding neurons, and with perceptions of object order. The model update rule can be reproduced as a plausible neural network that presents new interpretations of existing physiological results. Results of this study also suggest that T-junction detectors are unnecessary to calculate depth order. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Contributions of poroelastic-wave potentials to seismoelectromagnetic wavefields and validity of the quasi-static calculation: a view from a borehole model

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Shi, Peng; Hu, Hengshan

    2018-01-01

    In this study, we theoretically analyse the contributions of the four poroelastic-wave potentials to seismoelectromagnetic (SEM) wavefields, verify the validity of the quasi-static calculation of the electric field and provide a method to calculate the magnetic field by using the curl-free electric field. Calculations show that both the fast and slow P waves and the SH and SV waves have non-negligible contributions to the SEM fields. The S waves have indirect contribution to the electric field through the EM conversion from the magnetic field, although the direct contribution due to streaming current is negligible if EM wavenumbers are much smaller than those of the S waves. The P waves have indirect contribution to the magnetic field through EM conversion from the electric field, although the direct contribution is absent. The quasi-static calculation of the electric field is practicable since it is normally satisfied in reality that the EM wavenumbers are much smaller than those of poroelastic waves. While the direct contribution of the S waves and the higher-order EM conversions are ignored, the first-order EM conversion from the S-wave-induced magnetic field is reserved through the continuity of the electric-current density. To calculate the magnetic field on this basis, we separate the quasi-static electric field into a rotational and an irrotational part. The magnetic-field solutions are derived through Hertz vectors in which the coefficients of the magnetic Hertz vector are determined from the magnetic-field continuities and those of the electric Hertz vector originate from the irrotational part of the quasi-static electric field.

  3. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches

    NASA Astrophysics Data System (ADS)

    Bobra, M. G.; Sun, X.; Hoeksema, J. T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K. D.

    2014-09-01

    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches ( SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.

  4. On scalar and vector fields coupled to the energy-momentum tensor

    NASA Astrophysics Data System (ADS)

    Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.

    2018-05-01

    We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.

  5. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors.

    PubMed

    Kutner, Robert H; Zhang, Xian-Yang; Reiser, Jakob

    2009-01-01

    Over the past decade, lentiviral vectors have emerged as powerful tools for transgene delivery. The use of lentiviral vectors has become commonplace and applications in the fields of neuroscience, hematology, developmental biology, stem cell biology and transgenesis are rapidly emerging. Also, lentiviral vectors are at present being explored in the context of human clinical trials. Here we describe improved protocols to generate highly concentrated lentiviral vector pseudotypes involving different envelope glycoproteins. In this protocol, vector stocks are prepared by transient transfection using standard cell culture media or serum-free media. Such stocks are then concentrated by ultracentrifugation and/or ion exchange chromatography, or by precipitation using polyethylene glycol 6000, resulting in vector titers of up to 10(10) transducing units per milliliter and above. We also provide reliable real-time PCR protocols to titrate lentiviral vectors based on proviral DNA copies present in genomic DNA extracted from transduced cells or on vector RNA. These production/concentration methods result in high-titer vector preparations that show reduced toxicity compared with lentiviral vectors produced using standard protocols involving ultracentrifugation-based methods. The vector production and titration protocol described here can be completed within 8 d.

  6. Note on the Noether charge and holographic transports

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2018-03-01

    We clarify the relation between the Noether charge associated to an arbitrary vector field and the equations of motion by revisiting Wald formalism. For a timelike Killing vector, aspects of the Noether charge suggest that it is dual to the heat current in the boundary for general holographic theories. For a spacelike Killing vector, we interpret the Noether charge (at the transverse direction) as shear stress of the dual fluid so we can compute the ratio of shear viscosity to entropy density by simply using the infrared data on the black hole event horizon. We test the new method for Einstein gravity and Gauss-Bonnet gravity and find that it produces correct results for both cases even in the presence of additional matter fields.

  7. Discrete Data Transfer Technique for Fluid-Structure Interaction

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2007-01-01

    This paper presents a general three-dimensional algorithm for data transfer between dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is independent of the mesh topology, we can treat structured and unstructured meshes in the same manner. The algorithm is fast and accurate for transfer of scalar or vector fields between dissimilar surface meshes. The algorithm is also applicable for the integration of a scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors (e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ computer code. This paper contains a complete formulation of the algorithm with a few selected results.

  8. Cloud field classification based upon high spatial resolution textural features. II - Simplified vector approaches

    NASA Technical Reports Server (NTRS)

    Chen, D. W.; Sengupta, S. K.; Welch, R. M.

    1989-01-01

    This paper compares the results of cloud-field classification derived from two simplified vector approaches, the Sum and Difference Histogram (SADH) and the Gray Level Difference Vector (GLDV), with the results produced by the Gray Level Cooccurrence Matrix (GLCM) approach described by Welch et al. (1988). It is shown that the SADH method produces accuracies equivalent to those obtained using the GLCM method, while the GLDV method fails to resolve error clusters. Compared to the GLCM method, the SADH method leads to a 31 percent saving in run time and a 50 percent saving in storage requirements, while the GLVD approach leads to a 40 percent saving in run time and an 87 percent saving in storage requirements.

  9. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    NASA Astrophysics Data System (ADS)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  10. Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shin-itiro, E-mail: sgoto@ims.ac.jp

    It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamicmore » variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.« less

  11. The Z3 model of Saturn's magnetic field and the Pioneer 11 vector helium magnetometer observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    1984-01-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1 percent) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.

  12. Product Quality Modelling Based on Incremental Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhang, W.; Qin, B.; Shi, W.

    2012-05-01

    Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.

  13. The Effects of City Streets on an Urban Disease Vector

    PubMed Central

    Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.

    2013-01-01

    With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756

  14. Helicons in uniform fields. I. Wave diagnostics with hodograms

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2018-03-01

    The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.

  15. Magnetic Field, Density Current, and Lorentz Force Full Vector Maps of the NOAA 10808 Double Sunspot: Evidence of Strong Horizontal Current Flows in the Penumbra

    NASA Astrophysics Data System (ADS)

    Bommier, V.; Landi Degl'Innocenti, E.; Schmieder, B.; Gelly, B.

    2011-04-01

    The context is that of the so-called “fundamental ambiguity” (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the “simulated annealing” algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).

  16. Gravity Field of Venus and Comparison with Earth

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1985-01-01

    The acceleration (gravity) anomaly estimates by spacecraft tracking, determined from Doppler residuals, are components of the gravity field directed along the spacecraft Earth line of sight (LOS). These data constitute a set of vector components of a planet's gravity field, the specific component depending upon where the Earth happened to be at the time of each measurement, and they are at varying altitudes above the planet surface. From this data set the gravity field vector components were derived using the method of harmonic splines which imposes a smoothness criterion to select a gravity model compatible with the LOS data. Given the piecewise model it is now possible to upward and downward continue the field quantities desired with a few parameters unlike some other methods which must return to the full dataset for each desired calculation.

  17. Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes.

    PubMed

    East, William E; Pretorius, Frans

    2017-07-28

    We study the growth and saturation of the superradiant instability of a complex, massive vector (Proca) field as it extracts energy and angular momentum from a spinning black hole, using numerical solutions of the full Einstein-Proca equations. We concentrate on a rapidly spinning black hole (a=0.99) and the dominant m=1 azimuthal mode of the Proca field, with real and imaginary components of the field chosen to yield an axisymmetric stress-energy tensor and, hence, spacetime. We find that in excess of 9% of the black hole's mass can be transferred into the field. In all cases studied, the superradiant instability smoothly saturates when the black hole's horizon frequency decreases to match the frequency of the Proca cloud that spontaneously forms around the black hole.

  18. Flare research with the NASA/MSFC vector magnetograph - Observed characteristics of sheared magnetic fields that produce flares

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Hagyard, M. J.; Davis, J. M.

    1987-01-01

    The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.

  19. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams

    NASA Astrophysics Data System (ADS)

    Singh, Ankit Kumar; Saha, Sudipta; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2018-04-01

    We study the effect of focusing of the radially and azimuthally polarized vector beams on the spin angular momentum (SAM) density and Poynting vector of scattered waves from a Mie particle. Remarkably, the study reveals that the SAM density of the scattered field is solely transverse in nature for radially and azimuthally polarized incident vector beams; however, the Poynting vector shows the usual longitudinal character. We also demonstrate that the transverse SAM density can further be tuned with wavelength and focusing of the incident beam by exploiting the interference of different scattering modes. These results may stimulate further experimental techniques to detect the transverse spin and Belinfante's spin-momentum densities.

  20. Experimental study of Bloch vector analysis in nonlinear, finite, dissipative systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Aguanno, G.; Mattiucci, N.; C. M. Bowden Facility, Building 7804, RDECOM, Redstone Arsenal, Alabama 35898

    2010-01-15

    We have investigated and experimentally demonstrated the applicability of the Bloch vector for one-dimensional, nonlinear, finite, dissipative systems. The case studied is the second harmonic generation from metallodielectric multilayer filters. In particular, we have applied the Bloch vector analysis to Ag/Ta{sub 2}O{sub 5} thin-film multilayer samples and shown the importance of the phase matching calculated through the Bloch vector. The nonlinear coefficients extracted from experimental results are consistent with previous studies. Nowadays, metal-based nanostructures play a fundamental role in nonlinear nanophotonics and nanoplasmonics. Our results clearly suggest that even in these forefront fields the Bloch vector continues to play anmore » essential role.« less

Top