Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berres, Anne Sabine
This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.
Visualization of Morse connection graphs for topologically rich 2D vector fields.
Szymczak, Andrzej; Sipeki, Levente
2013-12-01
Recent advances in vector field topologymake it possible to compute its multi-scale graph representations for autonomous 2D vector fields in a robust and efficient manner. One of these representations is a Morse Connection Graph (MCG), a directed graph whose nodes correspond to Morse sets, generalizing stationary points and periodic trajectories, and arcs - to trajectories connecting them. While being useful for simple vector fields, the MCG can be hard to comprehend for topologically rich vector fields, containing a large number of features. This paper describes a visual representation of the MCG, inspired by previous work on graph visualization. Our approach aims to preserve the spatial relationships between the MCG arcs and nodes and highlight the coherent behavior of connecting trajectories. Using simulations of ocean flow, we show that it can provide useful information on the flow structure. This paper focuses specifically on MCGs computed for piecewise constant (PC) vector fields. In particular, we describe extensions of the PC framework that make it more flexible and better suited for analysis of data on complex shaped domains with a boundary. We also describe a topology simplification scheme that makes our MCG visualizations less ambiguous. Despite the focus on the PC framework, our approach could also be applied to graph representations or topological skeletons computed using different methods.
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
NASA Technical Reports Server (NTRS)
Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan
2012-01-01
The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.
High-quality and interactive animations of 3D time-varying vector fields.
Helgeland, Anders; Elboth, Thomas
2006-01-01
In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.
A Visualization Case Study of Feature Vector and Stemmer Effects on TREC Topic-document Subsets.
ERIC Educational Resources Information Center
Rorvig, Mark T.; Sullivan, Terry; Oyarce, Guillermo
1998-01-01
Demonstrates a method of visual analysis which takes advantage of the pooling technique of topic-document set creation in the TREC collection. Describes the procedures used to create the initial visual fields, and their respective treatments as vectors without stemming and vectors with stemming; discusses results of these treatments and…
Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment
NASA Technical Reports Server (NTRS)
Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.
2005-01-01
Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.
View-Dependent Streamline Deformation and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Xin; Edwards, John; Chen, Chun-Ming
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less
Representation and display of vector field topology in fluid flow data sets
NASA Technical Reports Server (NTRS)
Helman, James; Hesselink, Lambertus
1989-01-01
The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field that is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.
ERIC Educational Resources Information Center
Klein, P.; Viiri, J.; Mozaffari, S.; Dengel, A.; Kuhn, J.
2018-01-01
Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux…
Clouding tracing: Visualization of the mixing of fluid elements in convection-diffusion systems
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Smith, Philip J.
1993-01-01
This paper describes a highly interactive method for computer visualization of the basic physical process of dispersion and mixing of fluid elements in convection-diffusion systems. It is based on transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Fluid elements are traced through the vector field for the mean path as well as the statistical dispersion of the fluid elements about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of fluid elements are traced and are not just mean paths. We have used this method to visualize the simulation of an industrial incinerator to help identify mechanisms for poor mixing.
View-Dependent Streamline Deformation and Exploration
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung
2016-01-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061
View-Dependent Streamline Deformation and Exploration.
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung
2016-07-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.
Visualizing second order tensor fields with hyperstreamlines
NASA Technical Reports Server (NTRS)
Delmarcelle, Thierry; Hesselink, Lambertus
1993-01-01
Hyperstreamlines are a generalization to second order tensor fields of the conventional streamlines used in vector field visualization. As opposed to point icons commonly used in visualizing tensor fields, hyperstreamlines form a continuous representation of the complete tensor information along a three-dimensional path. This technique is useful in visulaizing both symmetric and unsymmetric three-dimensional tensor data. Several examples of tensor field visualization in solid materials and fluid flows are provided.
Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian
2017-01-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469
Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen
2017-06-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.
Visualizing turbulent mixing of gases and particles
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Smith, Philip J.; Jain, Sandeep
1995-01-01
A physical model and interactive computer graphics techniques have been developed for the visualization of the basic physical process of stochastic dispersion and mixing from steady-state CFD calculations. The mixing of massless particles and inertial particles is visualized by transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Groups of particles are traced through the vector field for the mean path as well as their statistical dispersion about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of particles in a turbulent environment are traced, not just mean paths. In combustion simulations of many industrial processes, good mixing is required to achieve a sufficient degree of combustion efficiency. The ability to visualize this multiphase mixing can not only help identify poor mixing but also explain the mechanism for poor mixing. The information gained from the visualization can be used to improve the overall combustion efficiency in utility boilers or propulsion devices. We have used this technique to visualize steady-state simulations of the combustion performance in several furnace designs.
Introduction to Vector Field Visualization
NASA Technical Reports Server (NTRS)
Kao, David; Shen, Han-Wei
2010-01-01
Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.
New trend in electron holography
NASA Astrophysics Data System (ADS)
Tanigaki, Toshiaki; Harada, Ken; Murakami, Yasukazu; Niitsu, Kodai; Akashi, Tetsuya; Takahashi, Yoshio; Sugawara, Akira; Shindo, Daisuke
2016-06-01
Electron holography using a coherent electron wave is a promising technique for high-resolution visualization of electromagnetic fields in and around objects. The capability of electron holography has been enhanced by the development of new technologies and has thus become an even more powerful tool for exploring scientific frontiers. This review introduces these technologies including split-illumination electron holography and vector-field electron tomography. Split-illumination electron holography, which uses separated coherent waves, overcomes the limits imposed by the lateral coherence requirement for electron waves in electron holography. Areas that are difficult to observe using conventional electron holography are now observable. Exemplified applications include observing a singular magnetic domain wall in electrical steel sheets, local magnetizations at anti-phase boundaries, and electrostatic potentials in metal-oxide-semiconductor field-effect transistors. Vector-field electron tomography can be used to visualize magnetic vectors in three dimensions. Two components of the vectors are reconstructed using dual-axis tomography, and the remaining one is calculated using div B = 0. A high-voltage electron microscope can be used to achieve precise magnetic reconstruction. For example, magnetic vortices have been visualized using a 1 MV holography electron microscope.
Multiresolution and Explicit Methods for Vector Field Analysis and Visualization
NASA Technical Reports Server (NTRS)
Nielson, Gregory M.
1997-01-01
This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.
NASA Astrophysics Data System (ADS)
Banesh, D.; Oskin, M. E.; Mu, A.; Vu, C.; Westerteiger, R.; Krishnan, A.; Hamann, B.; Glennie, C. L.; Hinojosa, A.; Borsa, A. A.
2013-12-01
Differential LiDAR provides unprecedented images of the near-field ground deformation and fault slip due to earthquakes. Here we examine the performance of the Iterative Closest Point (ICP) technique for data registration between pre- and post-earthquake LiDAR point clouds of varying density. We use the 2010 El Mayor-Cucapah data set as our region of interest since this earthquake produced different types of surface ruptures, yielding a variety of deformation styles for analysis. We also test a more simplistic, Chi-Squared minimization approach and find that it produces good results when compared to ICP. We present different techniques for visualizing large vector fields, and show how each method highlights a unique feature in the data set. Dense vector fields are useful when analyzing smaller deformations in the surface. A sparse, averaged vector field analyzes the bigger, overall shifts without interference caused by small details. Flow-based visualizations like Line Integral Convolution (LIC) graphs, provide insight into particular artifacts of data collection, such as distortions due to uncorrected pitch and yaw of the aircraft during the survey. Animations of the vector field establish the direction of movement in the landscape, quickly highlighting areas of interest.
Hairy Slices: Evaluating the Perceptual Effectiveness of Cutting Plane Glyphs for 3D Vector Fields.
Stevens, Andrew H; Butkiewicz, Thomas; Ware, Colin
2017-01-01
Three-dimensional vector fields are common datasets throughout the sciences. Visualizing these fields is inherently difficult due to issues such as visual clutter and self-occlusion. Cutting planes are often used to overcome these issues by presenting more manageable slices of data. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. This paper presents a quantitative human factors study that evaluates static monoscopic depth and orientation cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The goal of the study was to ascertain the relative effectiveness of various techniques for portraying the direction of flow through a cutting plane at a given point, and to identify the visual cues and combinations of cues involved, and how they contribute to accurate performance. It was found that increasing the dimensionality of line-based glyphs into tubular structures enhances their ability to convey orientation through shading, and that increasing their diameter intensifies this effect. These tube-based glyphs were also less sensitive to visual clutter issues at higher densities. Adding shadows to lines was also found to increase perception of flow direction. Implications of the experimental results are discussed and extrapolated into a number of guidelines for designing more perceptually effective glyphs for 3D vector field visualizations.
Rotation invariants of vector fields from orthogonal moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Kostková, Jitka; Flusser, Jan
Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less
Rotation invariants of vector fields from orthogonal moments
Yang, Bo; Kostková, Jitka; Flusser, Jan; ...
2017-09-11
Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less
Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality
NASA Astrophysics Data System (ADS)
Cherukuru, Nihanth Wagmi
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
NASA Astrophysics Data System (ADS)
Klein, P.; Viiri, J.; Mozaffari, S.; Dengel, A.; Kuhn, J.
2018-06-01
Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux concept. We test the effectiveness of both strategies in an instruction-based eye-tracking study with N =41 physics majors. We found that students' performance improved when both strategies were introduced (74% correct) instead of only one strategy (64% correct), and students performed best when they were free to choose between the two strategies (88% correct). This finding supports the idea of introducing multiple representations of a physical concept to foster student understanding. Relevant eye-tracking measures demonstrate that both strategies imply different visual processing of the vector field plots, therefore reflecting conceptual differences between the strategies. Advanced analysis methods further reveal significant differences in eye movements between the best and worst performing students. For instance, the best students performed predominantly horizontal and vertical saccades, indicating correct interpretation of partial derivatives. They also focused on smaller regions when they balanced positive and negative flux. This mixed-method research leads to new insights into student visual processing of vector field representations, highlights the advantages and limitations of eye-tracking methodologies in this context, and discusses implications for teaching and for future research. The introduction of saccadic direction analysis expands traditional methods, and shows the potential to discover new insights into student understanding and learning difficulties.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
Proprioception Is Robust under External Forces
Kuling, Irene A.; Brenner, Eli; Smeets, Jeroen B. J.
2013-01-01
Information from cutaneous, muscle and joint receptors is combined with efferent information to create a reliable percept of the configuration of our body (proprioception). We exposed the hand to several horizontal force fields to examine whether external forces influence this percept. In an end-point task subjects reached visually presented positions with their unseen hand. In a vector reproduction task, subjects had to judge a distance and direction visually and reproduce the corresponding vector by moving the unseen hand. We found systematic individual errors in the reproduction of the end-points and vectors, but these errors did not vary systematically with the force fields. This suggests that human proprioception accounts for external forces applied to the hand when sensing the position of the hand in the horizontal plane. PMID:24019959
McTrusty, Alice D; Cameron, Lorraine A; Perperidis, Antonios; Brash, Harry M; Tatham, Andrew J; Agarwal, Pankaj K; Murray, Ian C; Fleck, Brian W; Minns, Robert A
2017-09-01
We compared patterns of visual field loss detected by standard automated perimetry (SAP) to saccadic vector optokinetic perimetry (SVOP) and examined patient perceptions of each test. A cross-sectional study was done of 58 healthy subjects and 103 with glaucoma who were tested using SAP and two versions of SVOP (v1 and v2). Visual fields from both devices were categorized by masked graders as: 0, normal; 1, paracentral defect; 2, nasal step; 3, arcuate defect; 4, altitudinal; 5, biarcuate; and 6, end-stage field loss. SVOP and SAP classifications were cross-tabulated. Subjects completed a questionnaire on their opinions of each test. We analyzed 142 (v1) and 111 (v2) SVOP and SAP test pairs. SVOP v2 had a sensitivity of 97.7% and specificity of 77.9% for identifying normal versus abnormal visual fields. SAP and SVOP v2 classifications showed complete agreement in 54% of glaucoma patients, with a further 23% disagreeing by one category. On repeat testing, 86% of SVOP v2 classifications agreed with the previous test, compared to 91% of SAP classifications; 71% of subjects preferred SVOP compared to 20% who preferred SAP. Eye-tracking perimetry can be used to obtain threshold visual field sensitivity values in patients with glaucoma and produce maps of visual field defects, with patterns exhibiting close agreement to SAP. Patients preferred eye-tracking perimetry compared to SAP. This first report of threshold eye tracking perimetry shows good agreement with conventional automated perimetry and provides a benchmark for future iterations.
Tailor, Vijay; Glaze, Selina; Unwin, Hilary; Bowman, Richard; Thompson, Graham; Dahlmann-Noor, Annegret
2016-10-01
Children and adults with neurological impairments are often not able to access conventional perimetry; however, information about the visual field is valuable. A new technology, saccadic vector optokinetic perimetry (SVOP), may have improved accessibility, but its accuracy has not been evaluated. We aimed to explore accessibility, testability and accuracy of SVOP in children with neurodisability or isolated visual pathway deficits. Cohort study; recruitment October 2013-May 2014, at children's eye clinics at a tertiary referral centre and a regional Child Development Centre; full orthoptic assessment, SVOP (central 30° of the visual field) and confrontation visual fields (CVF). Group 1: age 1-16 years, neurodisability (n=16), group 2: age 10-16 years, confirmed or suspected visual field defect (n=21); group 2 also completed Goldmann visual field testing (GVFT). Group 1: testability with a full 40-point test protocol is 12.5%; with reduced test protocols, testability is 100%, but plots may be clinically meaningless. Children (44%) and parents/carers (62.5%) find the test easy. SVOP and CVF agree in 50%. Group 2: testability is 62% for the 40-point protocol, and 90.5% for reduced protocols. Corneal changes in childhood glaucoma interfere with SVOP testing. All children and parents/carers find SVOP easy. Overall agreement with GVFT is 64.7%. While SVOP is highly accessible to children, many cannot complete a full 40-point test. Agreement with current standard tests is moderate to poor. Abnormal saccades cause an apparent non-specific visual field defect. In children with glaucoma or nystagmus SVOP calibration often fails. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Detecting glaucomatous change in visual fields: Analysis with an optimization framework.
Yousefi, Siamak; Goldbaum, Michael H; Varnousfaderani, Ehsan S; Belghith, Akram; Jung, Tzyy-Ping; Medeiros, Felipe A; Zangwill, Linda M; Weinreb, Robert N; Liebmann, Jeffrey M; Girkin, Christopher A; Bowd, Christopher
2015-12-01
Detecting glaucomatous progression is an important aspect of glaucoma management. The assessment of longitudinal series of visual fields, measured using Standard Automated Perimetry (SAP), is considered the reference standard for this effort. We seek efficient techniques for determining progression from longitudinal visual fields by formulating the problem as an optimization framework, learned from a population of glaucoma data. The longitudinal data from each patient's eye were used in a convex optimization framework to find a vector that is representative of the progression direction of the sample population, as a whole. Post-hoc analysis of longitudinal visual fields across the derived vector led to optimal progression (change) detection. The proposed method was compared to recently described progression detection methods and to linear regression of instrument-defined global indices, and showed slightly higher sensitivities at the highest specificities than other methods (a clinically desirable result). The proposed approach is simpler, faster, and more efficient for detecting glaucomatous changes, compared to our previously proposed machine learning-based methods, although it provides somewhat less information. This approach has potential application in glaucoma clinics for patient monitoring and in research centers for classification of study participants. Copyright © 2015 Elsevier Inc. All rights reserved.
Schwenke, M; Hennemuth, A; Fischer, B; Friman, O
2012-01-01
Phase-contrast MRI (PC MRI) can be used to assess blood flow dynamics noninvasively inside the human body. The acquired images can be reconstructed into flow vector fields. Traditionally, streamlines can be computed based on the vector fields to visualize flow patterns and particle trajectories. The traditional methods may give a false impression of precision, as they do not consider the measurement uncertainty in the PC MRI images. In our prior work, we incorporated the uncertainty of the measurement into the computation of particle trajectories. As a major part of the contribution, a novel numerical scheme for solving the anisotropic Fast Marching problem is presented. A computing time comparison to state-of-the-art methods is conducted on artificial tensor fields. A visual comparison of healthy to pathological blood flow patterns is given. The comparison shows that the novel anisotropic Fast Marching solver outperforms previous schemes in terms of computing time. The visual comparison of flow patterns directly visualizes large deviations of pathological flow from healthy flow. The novel anisotropic Fast Marching solver efficiently resolves even strongly anisotropic path costs. The visualization method enables the user to assess the uncertainty of particle trajectories derived from PC MRI images.
Knowledge Space: A Conceptual Basis for the Organization of Knowledge
ERIC Educational Resources Information Center
Meincke, Peter P. M.; Atherton, Pauline
1976-01-01
Proposes a new conceptual basis for visualizing the organization of information, or knowledge, which differentiates between the concept "vectors" for a field of knowledge represented in a multidimensional space, and the state "vectors" for a person based on his understanding of these concepts, and the representational…
NASA Astrophysics Data System (ADS)
Dean, Cleon E.; Braselton, James P.
2004-05-01
Color-coded and vector-arrow grid representations of the Poynting vector field are used to show the energy flow in and around a fluid-loaded elastic cylindrical shell for both forward- and backward-propagating waves. The present work uses a method adapted from a simpler technique due to Kaduchak and Marston [G. Kaduchak and P. L. Marston, ``Traveling-wave decomposition of surface displacements associated with scattering by a cylindrical shell: Numerical evaluation displaying guided forward and backward wave properties,'' J. Acoust. Soc. Am. 98, 3501-3507 (1995)] to isolate unidirectional energy flows.
NASA Astrophysics Data System (ADS)
Anikeenko, A. V.; Malenkov, G. G.; Naberukhin, Yu. I.
2018-03-01
We propose a new measure of collectivity of molecular motion in the liquid: the average vector of displacement of the particles, ⟨ΔR⟩, which initially have been localized within a sphere of radius Rsph and then have executed the diffusive motion during a time interval Δt. The more correlated the motion of the particles is, the longer will be the vector ⟨ΔR⟩. We visualize the picture of collective motions in molecular dynamics (MD) models of liquids by constructing the ⟨ΔR⟩ vectors and pinning them to the sites of the uniform grid which divides each of the edges of the model box into equal parts. MD models of liquid argon and water have been studied by this method. Qualitatively, the patterns of ⟨ΔR⟩ vectors are similar for these two liquids but differ in minor details. The most important result of our research is the revealing of the aggregates of ⟨ΔR⟩ vectors which have the form of extended flows which sometimes look like the parts of vortices. These vortex-like clusters of ⟨ΔR⟩ vectors have the mesoscopic size (of the order of 10 nm) and persist for tens of picoseconds. Dependence of the ⟨ΔR⟩ vector field on parameters Rsph, Δt, and on the model size has been investigated. This field in the models of liquids differs essentially from that in a random-walk model.
NASA Astrophysics Data System (ADS)
Arabasi, Sameer; Al-Taani, Hussein
2017-03-01
Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor.
Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications
NASA Technical Reports Server (NTRS)
Edwards, David E.; Haimes, Robert
1999-01-01
An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.
Caruso, Valeria C; Pages, Daniel S; Sommer, Marc A; Groh, Jennifer M
2016-06-01
Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway. Copyright © 2016 the American Physiological Society.
Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli
2012-01-01
A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.
NASA Astrophysics Data System (ADS)
Zhang, Wenlan; Luo, Ting; Jiang, Gangyi; Jiang, Qiuping; Ying, Hongwei; Lu, Jing
2016-06-01
Visual comfort assessment (VCA) for stereoscopic images is a particularly significant yet challenging task in 3D quality of experience research field. Although the subjective assessment given by human observers is known as the most reliable way to evaluate the experienced visual discomfort, it is time-consuming and non-systematic. Therefore, it is of great importance to develop objective VCA approaches that can faithfully predict the degree of visual discomfort as human beings do. In this paper, a novel two-stage objective VCA framework is proposed. The main contribution of this study is that the important visual attention mechanism of human visual system is incorporated for visual comfort-aware feature extraction. Specifically, in the first stage, we first construct an adaptive 3D visual saliency detection model to derive saliency map of a stereoscopic image, and then a set of saliency-weighted disparity statistics are computed and combined to form a single feature vector to represent a stereoscopic image in terms of visual comfort. In the second stage, a high dimensional feature vector is fused into a single visual comfort score by performing random forest algorithm. Experimental results on two benchmark databases confirm the superior performance of the proposed approach.
Visualization of 3-D tensor fields
NASA Technical Reports Server (NTRS)
Hesselink, L.
1996-01-01
Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.
NASA Astrophysics Data System (ADS)
Mešić, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša
2016-06-01
Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented by sinusoidal curves. The second teaching approach includes representing light waves by a series of static images, showing the oscillating electric field vectors at characteristic, subsequent instants of time. Within the third approach phasors are used for visualizing light waves. A total of N =85 secondary school students were randomly assigned to one of the three teaching approaches, each of which lasted a period of four class hours. Students who learned with phasors and students who learned from the series of static images outperformed the students learning according to the conventional approach, i.e., they showed a much better understanding of basic wave optics, as measured by a conceptual survey administered to the students one week after the treatment. Our results suggest that visualizing light waves with phasors or oscillating electric field vectors is a promising approach to developing a deeper understanding of wave optics for students enrolled in conceptual level physics courses.
Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin
2016-01-01
Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435
Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition
Cheng, Yujie; Zhou, Bo; Lu, Chen; Yang, Chao
2017-01-01
Fault diagnosis for rolling bearings has attracted increasing attention in recent years. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper introduces a fault diagnosis method for rolling bearings under variable conditions based on visual cognition. The proposed method includes the following steps. First, the vibration signal data are transformed into a recurrence plot (RP), which is a two-dimensional image. Then, inspired by the visual invariance characteristic of the human visual system (HVS), we utilize speed up robust feature to extract fault features from the two-dimensional RP and generate a 64-dimensional feature vector, which is invariant to image translation, rotation, scaling variation, etc. Third, based on the manifold perception characteristic of HVS, isometric mapping, a manifold learning method that can reflect the intrinsic manifold embedded in the high-dimensional space, is employed to obtain a low-dimensional feature vector. Finally, a classical classification method, support vector machine, is utilized to realize fault diagnosis. Verification data were collected from Case Western Reserve University Bearing Data Center, and the experimental result indicates that the proposed fault diagnosis method based on visual cognition is highly effective for rolling bearings under variable conditions, thus providing a promising approach from the cognitive computing field. PMID:28772943
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.
A Unified Air-Sea Visualization System: Survey on Gridding Structures
NASA Technical Reports Server (NTRS)
Anand, Harsh; Moorhead, Robert
1995-01-01
The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.
High-quality animation of 2D steady vector fields.
Lefer, Wilfrid; Jobard, Bruno; Leduc, Claire
2004-01-01
Simulators for dynamic systems are now widely used in various application areas and raise the need for effective and accurate flow visualization techniques. Animation allows us to depict direction, orientation, and velocity of a vector field accurately. This paper extends a former proposal for a new approach to produce perfectly cyclic and variable-speed animations for 2D steady vector fields (see [1] and [2]). A complete animation of an arbitrary number of frames is encoded in a single image. The animation can be played using the color table animation technique, which is very effective even on low-end workstations. A cyclic set of textures can be produced as well and then encoded in a common animation format or used for texture mapping on 3D objects. As compared to other approaches, the method presented in this paper produces smoother animations and is more effective, both in memory requirements to store the animation, and in computation time.
Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken
2011-03-15
Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti.
Identification of cardiac rhythm features by mathematical analysis of vector fields.
Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K
2005-01-01
Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing
2013-01-01
The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.
Enhanced line integral convolution with flow feature detection
DOT National Transportation Integrated Search
1995-01-01
Prepared ca. 1995. The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain [Cabral & Leedom '93]. The method produces a flow texture imag...
Quantum speed limit time in a magnetic resonance
NASA Astrophysics Data System (ADS)
Ivanchenko, E. A.
2017-12-01
A visualization for dynamics of a qudit spin vector in a time-dependent magnetic field is realized by means of mapping a solution for a spin vector on the three-dimensional spherical curve (vector hodograph). The obtained results obviously display the quantum interference of precessional and nutational effects on the spin vector in the magnetic resonance. For any spin the bottom bounds of the quantum speed limit time (QSL) are found. It is shown that the bottom bound goes down when using multilevel spin systems. Under certain conditions the non-nil minimal time, which is necessary to achieve the orthogonal state from the initial one, is attained at spin S = 2. An estimation of the product of two and three standard deviations of the spin components are presented. We discuss the dynamics of the mutual uncertainty, conditional uncertainty and conditional variance in terms of spin standard deviations. The study can find practical applications in the magnetic resonance, 3D visualization of computational data and in designing of optimized information processing devices for quantum computation and communication.
3DView: Space physics data visualizer
NASA Astrophysics Data System (ADS)
Génot, V.; Beigbeder, L.; Popescu, D.; Dufourg, N.; Gangloff, M.; Bouchemit, M.; Caussarieu, S.; Toniutti, J.-P.; Durand, J.; Modolo, R.; André, N.; Cecconi, B.; Jacquey, C.; Pitout, F.; Rouillard, A.; Pinto, R.; Erard, S.; Jourdane, N.; Leclercq, L.; Hess, S.; Khodachenko, M.; Al-Ubaidi, T.; Scherf, M.; Budnik, E.
2018-04-01
3DView creates visualizations of space physics data in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, and 2D cuts in simulation cubes are among the variety of data representation enabled by 3DView. It offers direct connections to several large databases and uses VO standards; it also allows the user to upload data. 3DView's versatility covers a wide range of space physics contexts.
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi
2015-05-01
The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Vector Flow Visualization of Urinary Flow Dynamics in a Bladder Outlet Obstruction Model.
Ishii, Takuro; Yiu, Billy Y S; Yu, Alfred C H
2017-11-01
Voiding dysfunction that results from bladder outlet (BO) obstruction is known to alter significantly the dynamics of urine passage through the urinary tract. To non-invasively image this phenomenon on a time-resolved basis, we pursued the first application of a recently developed flow visualization technique called vector projectile imaging (VPI) that can track the spatiotemporal dynamics of flow vector fields at a frame rate of 10,000 fps (based on plane wave excitation and least-squares Doppler vector estimation principles). For this investigation, we designed a new anthropomorphic urethral tract phantom to reconstruct urinary flow dynamics under controlled conditions (300 mm H 2 O inlet pressure and atmospheric outlet pressure). Both a normal model and a diseased model with BO obstruction were developed for experimentation. VPI cine loops were derived from these urinary flow phantoms. Results show that VPI is capable of depicting differences in the flow dynamics of normal and diseased urinary tracts. In the case with BO obstruction, VPI depicted the presence of BO flow jet and vortices in the prostatic urethra. The corresponding spatial-maximum flow velocity magnitude was estimated to be 2.43 m/s, and it is significantly faster than that for the normal model (1.52 m/s) and is in line with values derived from computational fluid dynamics simulations. Overall, this investigation demonstrates the feasibility of using vector flow visualization techniques to non-invasively examine internal flow characteristics related to voiding dysfunction in the urethral tract. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Volume illustration of muscle from diffusion tensor images.
Chen, Wei; Yan, Zhicheng; Zhang, Song; Crow, John Allen; Ebert, David S; McLaughlin, Ronald M; Mullins, Katie B; Cooper, Robert; Ding, Zi'ang; Liao, Jun
2009-01-01
Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging (DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig leg), demonstrating plausible illustration and expressiveness.
A border-ownership model based on computational electromagnetism.
Zainal, Zaem Arif; Satoh, Shunji
2018-03-01
The mathematical relation between a vector electric field and its corresponding scalar potential field is useful to formulate computational problems of lower/middle-order visual processing, specifically related to the assignment of borders to the side of the object: so-called border ownership (BO). BO coding is a key process for extracting the objects from the background, allowing one to organize a cluttered scene. We propose that the problem is solvable simultaneously by application of a theorem of electromagnetism, i.e., "conservative vector fields have zero rotation, or "curl." We hypothesize that (i) the BO signal is definable as a vector electric field with arrowheads pointing to the inner side of perceived objects, and (ii) its corresponding scalar field carries information related to perceived order in depth of occluding/occluded objects. A simple model was developed based on this computational theory. Model results qualitatively agree with object-side selectivity of BO-coding neurons, and with perceptions of object order. The model update rule can be reproduced as a plausible neural network that presents new interpretations of existing physiological results. Results of this study also suggest that T-junction detectors are unnecessary to calculate depth order. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural Circuit to Integrate Opposing Motions in the Visual Field.
Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander
2015-07-16
When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.
Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle.
Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico
2018-06-01
Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.
Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle
NASA Astrophysics Data System (ADS)
Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico
2018-06-01
Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.
Marino, Alexandria C.; Mazer, James A.
2016-01-01
During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron’s spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed. PMID:26903820
A Predictive Model of Anesthesia Depth Based on SVM in the Primary Visual Cortex
Shi, Li; Li, Xiaoyuan; Wan, Hong
2013-01-01
In this paper, a novel model for predicting anesthesia depth is put forward based on local field potentials (LFPs) in the primary visual cortex (V1 area) of rats. The model is constructed using a Support Vector Machine (SVM) to realize anesthesia depth online prediction and classification. The raw LFP signal was first decomposed into some special scaling components. Among these components, those containing higher frequency information were well suited for more precise analysis of the performance of the anesthetic depth by wavelet transform. Secondly, the characteristics of anesthetized states were extracted by complexity analysis. In addition, two frequency domain parameters were selected. The above extracted features were used as the input vector of the predicting model. Finally, we collected the anesthesia samples from the LFP recordings under the visual stimulus experiments of Long Evans rats. Our results indicate that the predictive model is accurate and computationally fast, and that it is also well suited for online predicting. PMID:24044024
Multispectral image analysis for object recognition and classification
NASA Astrophysics Data System (ADS)
Viau, C. R.; Payeur, P.; Cretu, A.-M.
2016-05-01
Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.
NASA Technical Reports Server (NTRS)
Wing, David J.
1998-01-01
The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.
Flow Charts: Visualization of Vector Fields on Arbitrary Surfaces
Li, Guo-Shi; Tricoche, Xavier; Weiskopf, Daniel; Hansen, Charles
2009-01-01
We introduce a novel flow visualization method called Flow Charts, which uses a texture atlas approach for the visualization of flows defined over curved surfaces. In this scheme, the surface and its associated flow are segmented into overlapping patches, which are then parameterized and packed in the texture domain. This scheme allows accurate particle advection across multiple charts in the texture domain, providing a flexible framework that supports various flow visualization techniques. The use of surface parameterization enables flow visualization techniques requiring the global view of the surface over long time spans, such as Unsteady Flow LIC (UFLIC), particle-based Unsteady Flow Advection Convolution (UFAC), or dye advection. It also prevents visual artifacts normally associated with view-dependent methods. Represented as textures, Flow Charts can be naturally integrated into hardware accelerated flow visualization techniques for interactive performance. PMID:18599918
Applications of lentiviral vectors in molecular imaging.
Chatterjee, Sushmita; De, Abhijit
2014-06-01
Molecular imaging provides the ability of simultaneous visual and quantitative estimation of long term gene expression directly from living organisms. To reveal the kinetics of gene expression by imaging method, often sustained expression of the transgene is required. Lentiviral vectors have been extensively used over last fifteen years for delivery of a transgene in a wide variety of cell types. Lentiviral vectors have the well known advantages such as sustained transgene delivery through stable integration into the host genome, the capability of infecting non-dividing and dividing cells, broad tissue tropism, a reasonably large carrying capacity for delivering therapeutic and reporter gene combinations. Additionally, they do not express viral proteins during transduction, have a potentially safe integration site profile, and a relatively easy system for vector manipulation and infective viral particle production. As a result, lentiviral vector mediated therapeutic and imaging reporter gene delivery to various target organs holds promise for the future treatment. In this review, we have conducted a brief survey of important lentiviral vector developments in diverse biomedical fields including reproductive biology.
NASA Technical Reports Server (NTRS)
DiZio, P.; Li, W.; Lackner, J. R.; Matin, L.
1997-01-01
Psychophysical measurements of the level at which observers set a small visual target so as to appear at eye level (VPEL) were made on 13 subjects in 1.0 g and 1.5 g environments in the Graybiel Laboratory rotating room while they viewed a pitched visual field or while in total darkness. The gravitoinertial force was parallel to the z-axis of the head and body during the measurements. The visual field consisted of two 58 degrees high, luminous, pitched-from-vertical, bilaterally symmetric, parallel lines, viewed in otherwise total darkness. The lines were horizontally separated by 53 degrees and presented at each of 7 angles of pitch ranging from 30 degrees with the top of the visual field turned away from the subject (top backward) to 30 degrees with the top turned toward the subject (top forward). At 1.5 g, VPEL changed linearly with the pitch of the 2-line stimulus and was depressed with top backward pitch and elevated with top forward pitch as had been reported previously at 1.0 g (1,2); however, the slopes of the VPEL-vs-pitch functions at 1.0 g and 1.5 g were indistinguishable. As reported previously also (3,4), the VPEL in darkness was considerably lower at 1.5 g than at 1.0 g; however, although the y-intercept of the VPEL-vs-pitch function in the presence of the 2-line visual field (visual field erect) was also lower at 1.5 g than at 1.0 g as it was in darkness, the G-related difference was significantly attenuated by the presence of the visual field. The quantitative characteristics of the results are consistent with a model in which VPEL is treated as a consequence of an algebraic weighted average or a vector sum of visual and nonvisual influences although the two combining rules lead to fits that are equally good.
Cascaded image analysis for dynamic crack detection in material testing
NASA Astrophysics Data System (ADS)
Hampel, U.; Maas, H.-G.
Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.
How random is a random vector?
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2015-12-01
Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, Harsh
This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thusmore » creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty visualization of unavoidable discretization errors. Together, the two main contributions of this dissertation address two important concerns regarding feature extraction from scientific data: correctness and precision. The work presented here also opens new avenues for further research by exploring more-general reference frames and more-sophisticated domain discretizations.« less
Charge density wave properties of the quasi two-dimensional purple molybdenum bronze KMo 6O 17
NASA Astrophysics Data System (ADS)
Balaska, H.; Dumas, J.; Guyot, H.; Mallet, P.; Marcus, J.; Schlenker, C.; Veuillen, J. Y.; Vignolles, D.
2005-06-01
The purple molybdenum bronze KMo 6O 17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic CDW state. Electron spectroscopy (ARUPS), Scanning Tunnelling Microscopy (STM) and spectroscopy (STS) as well as high magnetic field studies are reported. ARUPS studies corroborate the model of the hidden nesting and provide a value of the CDW vector in good agreement with other measurements. STM studies visualize the triple- q CDW in real space. This is consistent with other measurements of the CDW vector. STS studies provide a value of several 10 meV for the average CDW gap. High magnetic field measurements performed in pulsed fields up to 55 T establish that first order transitions to smaller gap states take place at low temperature. These transitions are ascribed to Pauli type coupling. A phase diagram summarizing all observed anomalies and transitions is presented.
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory
NASA Astrophysics Data System (ADS)
Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.
2004-04-01
A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.
Dynamic visualization of data streams
Wong, Pak Chung [Richalnd, WA; Foote, Harlan P [Richland, WA; Adams, Daniel R [Kennewick, WA; Cowley, Wendy E [Richland, WA; Thomas, James J [Richland, WA
2009-07-07
One embodiment of the present invention includes a data communication subsystem to receive a data stream, and a data processing subsystem responsive to the data communication subsystem to generate a visualization output based on a group of data vectors corresponding to a first portion of the data stream. The processing subsystem is further responsive to a change in rate of receipt of the data to modify the visualization output with one or more other data vectors corresponding to a second portion of the data stream as a function of eigenspace defined with the group of data vectors. The system further includes a display device responsive to the visualization output to provide a corresponding visualization.
A new image representation for compact and secure communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, Lakshman; Skourikhine, A. N.
In many areas of nuclear materials management there is a need for communication, archival, and retrieval of annotated image data between heterogeneous platforms and devices to effectively implement safety, security, and safeguards of nuclear materials. Current image formats such as JPEG are not ideally suited in such scenarios as they are not scalable to different viewing formats, and do not provide a high-level representation of images that facilitate automatic object/change detection or annotation. The new Scalable Vector Graphics (SVG) open standard for representing graphical information, recommended by the World Wide Web Consortium (W3C) is designed to address issues of imagemore » scalability, portability, and annotation. However, until now there has been no viable technology to efficiently field images of high visual quality under this standard. Recently, LANL has developed a vectorized image representation that is compatible with the SVG standard and preserves visual quality. This is based on a new geometric framework for characterizing complex features in real-world imagery that incorporates perceptual principles of processing visual information known from cognitive psychology and vision science, to obtain a polygonal image representation of high fidelity. This representation can take advantage of all textual compression and encryption routines unavailable to other image formats. Moreover, this vectorized image representation can be exploited to facilitate automated object recognition that can reduce time required for data review. The objects/features of interest in these vectorized images can be annotated via animated graphics to facilitate quick and easy display and comprehension of processed image content.« less
Plurigon: three dimensional visualization and classification of high-dimensionality data
Martin, Bronwen; Chen, Hongyu; Daimon, Caitlin M.; Chadwick, Wayne; Siddiqui, Sana; Maudsley, Stuart
2013-01-01
High-dimensionality data is rapidly becoming the norm for biomedical sciences and many other analytical disciplines. Not only is the collection and processing time for such data becoming problematic, but it has become increasingly difficult to form a comprehensive appreciation of high-dimensionality data. Though data analysis methods for coping with multivariate data are well-documented in technical fields such as computer science, little effort is currently being expended to condense data vectors that exist beyond the realm of physical space into an easily interpretable and aesthetic form. To address this important need, we have developed Plurigon, a data visualization and classification tool for the integration of high-dimensionality visualization algorithms with a user-friendly, interactive graphical interface. Unlike existing data visualization methods, which are focused on an ensemble of data points, Plurigon places a strong emphasis upon the visualization of a single data point and its determining characteristics. Multivariate data vectors are represented in the form of a deformed sphere with a distinct topology of hills, valleys, plateaus, peaks, and crevices. The gestalt structure of the resultant Plurigon object generates an easily-appreciable model. User interaction with the Plurigon is extensive; zoom, rotation, axial and vector display, feature extraction, and anaglyph stereoscopy are currently supported. With Plurigon and its ability to analyze high-complexity data, we hope to see a unification of biomedical and computational sciences as well as practical applications in a wide array of scientific disciplines. Increased accessibility to the analysis of high-dimensionality data may increase the number of new discoveries and breakthroughs, ranging from drug screening to disease diagnosis to medical literature mining. PMID:23885241
Method for the reduction of image content redundancy in large image databases
Tobin, Kenneth William; Karnowski, Thomas P.
2010-03-02
A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.
Visualization tool for the world ocean surface currents
NASA Astrophysics Data System (ADS)
Kasyanov, S.; Nikitin, O.
2003-04-01
Fortran-based software for the world ocean surface currents visualization functioning on the Windows platform (95 and higher) has been developed. The software works with the global interpolated drifting buoys data set (1979-2002) from the WOCE Surface Velocity Program and the global bottom relief five-minute resolution data set (ETOPO5). These data sets loaded in binary form into operative memory of a PC (256 Mb or better more), together with the software compose the world ocean surface currents visualization tool. The tool allows researches to process data on-line in any region of the world ocean, display data in different visualization forms, calculate currents velocity statistics and save chosen images as graphic files. It provides displays of buoy movement (animation), maps of buoy trajectories, averaged (by prescribed time and space grid intervals) current vector and modulus fields, fields of current mean and eddy kinetic energies and their ratio, current steadiness coefficient and sea surface temperature. Any trajectory may be selected simply by clicking it on any summary map of trajectories (or by given buoy number). It may then be viewed and analyzed in detail, while graphs of velocity (components, module and vector) and water temperature variations along this trajectory may be displayed. The description of the previous version of the tool and some screen shots are available at http://zhurnal.ape.relarn.ru/articles/2001/154.pdf(in Russian) and will be available (in English) at http://csit.ugatu.ac.ru (CSIT '2001, Proceedings, v.2, p. 32-41, Nikitin O.P. et al).
A feature selection approach towards progressive vector transmission over the Internet
NASA Astrophysics Data System (ADS)
Miao, Ru; Song, Jia; Feng, Min
2017-09-01
WebGIS has been applied for visualizing and sharing geospatial information popularly over the Internet. In order to improve the efficiency of the client applications, the web-based progressive vector transmission approach is proposed. Important features should be selected and transferred firstly, and the methods for measuring the importance of features should be further considered in the progressive transmission. However, studies on progressive transmission for large-volume vector data have mostly focused on map generalization in the field of cartography, but rarely discussed on the selection of geographic features quantitatively. This paper applies information theory for measuring the feature importance of vector maps. A measurement model for the amount of information of vector features is defined based upon the amount of information for dealing with feature selection issues. The measurement model involves geometry factor, spatial distribution factor and thematic attribute factor. Moreover, a real-time transport protocol (RTP)-based progressive transmission method is then presented to improve the transmission of vector data. To clearly demonstrate the essential methodology and key techniques, a prototype for web-based progressive vector transmission is presented, and an experiment of progressive selection and transmission for vector features is conducted. The experimental results indicate that our approach clearly improves the performance and end-user experience of delivering and manipulating large vector data over the Internet.
Myocardial wall thickening from gated magnetic resonance images using Laplace's equation
NASA Astrophysics Data System (ADS)
Prasad, M.; Ramesh, A.; Kavanagh, P.; Gerlach, J.; Germano, G.; Berman, D. S.; Slomka, P. J.
2009-02-01
The aim of our work is to present a robust 3D automated method for measuring regional myocardial thickening using cardiac magnetic resonance imaging (MRI) based on Laplace's equation. Multiple slices of the myocardium in short-axis orientation at end-diastolic and end-systolic phases were considered for this analysis. Automatically assigned 3D epicardial and endocardial boundaries were fitted to short-axis and long axis slices corrected for breathold related misregistration, and final boundaries were edited by a cardiologist if required. Myocardial thickness was quantified at the two cardiac phases by computing the distances between the myocardial boundaries over the entire volume using Laplace's equation. The distance between the surfaces was found by computing normalized gradients that form a vector field. The vector fields represent tangent vectors along field lines connecting both boundaries. 3D thickening measurements were transformed into polar map representation and 17-segment model (American Heart Association) regional thickening values were derived. The thickening results were then compared with standard 17-segment 6-point visual scoring of wall motion/wall thickening (0=normal; 5=greatest abnormality) performed by a consensus of two experienced imaging cardiologists. Preliminary results on eight subjects indicated a strong negative correlation (r=-0.8, p<0.0001) between the average thickening obtained using Laplace and the summed segmental visual scores. Additionally, quantitative ejection fraction measurements also correlated well with average thickening scores (r=0.72, p<0.0001). For segmental analysis, we obtained an overall correlation of -0.55 (p<0.0001) with higher agreement along the mid and apical regions (r=-0.6). In conclusion 3D Laplace transform can be used to quantify myocardial thickening in 3D.
Vector and Raster Data Storage Based on Morton Code
NASA Astrophysics Data System (ADS)
Zhou, G.; Pan, Q.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Liu, X.
2018-05-01
Even though geomatique is so developed nowadays, the integration of spatial data in vector and raster formats is still a very tricky problem in geographic information system environment. And there is still not a proper way to solve the problem. This article proposes a method to interpret vector data and raster data. In this paper, we saved the image data and building vector data of Guilin University of Technology to Oracle database. Then we use ADO interface to connect database to Visual C++ and convert row and column numbers of raster data and X Y of vector data to Morton code in Visual C++ environment. This method stores vector and raster data to Oracle Database and uses Morton code instead of row and column and X Y to mark the position information of vector and raster data. Using Morton code to mark geographic information enables storage of data make full use of storage space, simultaneous analysis of vector and raster data more efficient and visualization of vector and raster more intuitive. This method is very helpful for some situations that need to analyse or display vector data and raster data at the same time.
Position Information Encoded by Population Activity in Hierarchical Visual Areas
Majima, Kei; Horikawa, Tomoyasu
2017-01-01
Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634
WebGL-enabled 3D visualization of a Solar Flare Simulation
NASA Astrophysics Data System (ADS)
Chen, A.; Cheung, C. M. M.; Chintzoglou, G.
2016-12-01
The visualization of magnetohydrodynamic (MHD) simulations of astrophysical systems such as solar flares often requires specialized software packages (e.g. Paraview and VAPOR). A shortcoming of using such software packages is the inability to share our findings with the public and scientific community in an interactive and engaging manner. By using the javascript-based WebGL application programming interface (API) and the three.js javascript package, we create an online in-browser experience for rendering solar flare simulations that will be interactive and accessible to the general public. The WebGL renderer displays objects such as vector flow fields, streamlines and textured isosurfaces. This allows the user to explore the spatial relation between the solar coronal magnetic field and the thermodynamic structure of the plasma in which the magnetic field is embedded. Plans for extending the features of the renderer will also be presented.
The Topology of Symmetric Tensor Fields
NASA Technical Reports Server (NTRS)
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
Real-time scalable visual analysis on mobile devices
NASA Astrophysics Data System (ADS)
Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William
2008-02-01
Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.
Cai, Yu-Yan; Wei, Xin; Zhang, Xiao-Ling; Liu, Gu-Yue; Li, Xi; Tang, Hong
2018-01-01
To quantify the hemodynamic characteristics of patients with nonvalvular atrial fibrillation. Twenty patients with paroxysmal atrial fibrillation and 15 patients with persistent atrial fibrillation enrolled in this study,while 12 patients with sinus rhythms served as controls. The hemodynamic characteristics of the patients in left atrial appendage were measured by transesophageal echocardiography (TEE) and vector flow mapping (VFM) using indicators such as vectors,vortex and energy loss (EL). ① Significant differences appeared between the patients with atrial fibrillation and the controls in heart rate,size of left atrium,size of left atrial appendage (LAA),and velocities of LAA filling and emptying. ② Regular vectors in LAA in early systole and late diastole were found in the patients with paroxysmal atrial fibrillation and the controls; whereas,irregular vectors with direction alternating were visualized in the whole cardiac cycle in the patients with persistent atrial fibrillation. ③ Small vortexes were observed at the opening of the left atrial appendage in late diastole in the patients with paroxysmal atrial fibrillation and the controls. ④ Peak EL values occurred in early systole and late diastole in the patients with paroxysmal atrial fibrillation and the controls. But the patients with persistent atrial fibrillation had increased EL values over the whole cardiac cycle. VFM can visualize and quantify the hemodynamics of LAA in patients with different heart rhythms. It may provide a new method for assessing atrial fibrillation. CopyrightCopyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).
Kosmidou, Vasiliki E; Adam, Aikaterini; Papadaniil, Chrysa D; Tsolaki, Magda; Hadjileontiadis, Leontios J; Kompatsiaris, Ioannis
2015-01-01
The effect of gender in rapidly allocating attention to objects, features or locations, as reflected in brain activity, is examined in this study. A visual-attention task, consisting of bottom-up (visual pop-out) and top-down (visual search) conditions during stimuli of four triangles, i.e., a target and three distractors, was engaged. In pop-out condition, both color and orientation of the distractors differed from target, while in search condition they differed only in orientation. During the task, high-density EEG (256 channels) data were recorded and analyzed by means of behavioral, event-related potentials, i.e., the P300 component and brain source localization analysis using 3D-Vector Field Tomography (3D-VFT). Twenty subjects (half female; 32±4.7 years old) participated in the experiments, performing 60 trials for each condition. Behavioral analysis revealed that both female and male outperformed in the pop-out condition compared to the search one, with respect to accuracy and reaction time, whereas no gender-related statistical significant differences were found. Nevertheless, in the search condition, higher P300 amplitudes were detected for females compared to males (p <; 7 · 10(-3)). Moreover, the findings suggested that the maximum activation in females was located mainly in the left inferior frontal and superior temporal gyri, whereas in males it was found in the right inferior frontal and superior temporal gyri. Overall, the experimental results show that visual attention depends on contributions from different brain lateralization linked to gender, posing important implications in studying developmental disorders, characterized by gender differences.
Reviving a neglected celestial underwater polarization compass for aquatic animals.
Waterman, Talbot H
2006-02-01
Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation.
Chhabra, Lovely; Sareen, Pooja; Gandagule, Amit; Spodick, David H
2012-03-01
Verticalization of the frontal P vector in patients older than 45 years is virtually diagnostic of pulmonary emphysema (sensitivity, 96%; specificity, 87%). We investigated the correlation of P vector and the computed tomographic visual score of emphysema (VSE) in patients with established diagnosis of chronic obstructive pulmonary disease/emphysema. High-resolution computed tomographic scans of 26 patients with emphysema (age, >45 years) were reviewed to assess the type and extent of emphysema using the subjective visual scoring. Electrocardiograms were independently reviewed to determine the frontal P vector. The P vector and VSE were compared for statistical correlation. Both P vector and VSE were also directly compared with the forced expiratory volume at 1 second. The VSE and the orientation of the P vector (ÂP) had an overall significant positive correlation (r = +0.68; P = .0001) in all patients, but the correlation was very strong in patients with predominant lower-lobe emphysema (r = +0.88; P = .0004). Forced expiratory volume at 1 second and ÂP had almost a linear inverse correlation in predominant lower-lobe emphysema (r = -0.92; P < .0001). Orientation of the P vector positively correlates with visually scored emphysema. Both ÂP and VSE are strong reflectors of qualitative lung function in patients with predominant lower-lobe emphysema. A combination of more vertical ÂP and predominant lower-lobe emphysema reflects severe obstructive lung dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.
Ranging through Gabor logons-a consistent, hierarchical approach.
Chang, C; Chatterjee, S
1993-01-01
In this work, the correspondence problem in stereo vision is handled by matching two sets of dense feature vectors. Inspired by biological evidence, these feature vectors are generated by a correlation between a bank of Gabor sensors and the intensity image. The sensors consist of two-dimensional Gabor filters at various scales (spatial frequencies) and orientations, which bear close resemblance to the receptive field profiles of simple V1 cells in visual cortex. A hierarchical, stochastic relaxation method is then used to obtain the dense stereo disparities. Unlike traditional hierarchical methods for stereo, feature based hierarchical processing yields consistent disparities. To avoid false matchings due to static occlusion, a dual matching, based on the imaging geometry, is used.
Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John
2016-01-01
Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.
Formation of magnetic discontinuities through viscous relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.
2014-05-15
According to Parker's magnetostatic theorem, tangential discontinuities in magnetic field, or current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic field in achieving force-balance everywhere and preserving its topology while remaining in a spatially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas 20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of the vector magnetic field. The magnetohydrodynamic simulations presented here complement the above work by demonstrating CS formation by employing a novel approach ofmore » describing the magnetofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a direct visualization of the CS formation, helpful in understanding the governing dynamics. The simulations confirm development of tangential discontinuities through a favorable contortion of magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is in its demonstration of CS formation at spatial locations away from the magnetic nulls.« less
Elliptic-symmetry vector optical fields.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian
2014-08-11
We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.
Ocular Aberrations Across the Visual Field During Accommodation
NASA Astrophysics Data System (ADS)
Liu, Tao
Myopia is classically defined as a mismatch between the optical power of the relaxed eye and its dioptric length. This definition is entirely foveocentric without concern for the contributions of peripheral refractive errors to myopia development. Long periods of steady near-work was considered to cause myopia development due to inadequate accommodation. Consequently, not only the on-axis optical features but also off-axis ones should be probed to gain insight about myopia progression. Moreover, these features need to be understood not only for the relaxed eye, but also for the accommodating eye. To acquire complete data set, a custom-built Indiana Scanning Aberrometer for Wavefront (I SAW) was developed to measure wavefront aberration along 37 line-of-sights at 8 different accommodation states in the central 30 degree visual field. We found that ocular refractive state changed uniformly over the central visual field as the eye accommodates up to 6D, and the accuracy of accommodation across the central visual field is similar to that measured in the fovea. No systematic difference between emmetropic and myopic eyes was evident. Then, a linear vector-summation rule for axial and oblique astigmatism was found to account for their interaction over the central visual field. Using this combination rule, our experimental evidence revealed no systematic effect of accommodation on axial or oblique astigmatism for two adult populations. The axial and oblique astigmatism of the whole eye is less than for the cornea alone, indicating a compensatory role for internal optics at all accommodative states. This compensation mechanism was further validated theoretically with schematic eye model. Lastly, we developed a hybrid method yielding customized eye models that accurately reproduce the empirical measurements and reasonably represent the anatomical structure, thus providing a mechanistic explanation for the changes in the eye's aberration structure that occur over the central visual field during accommodation.
Page segmentation using script identification vectors: A first look
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, J.; Cannon, M.; Kelly, P.
1997-07-01
Document images in which different scripts, such as Chinese and Roman, appear on a single page pose a problem for optical character recognition (OCR) systems. This paper explores the use of script identification vectors in the analysis of multilingual document images. A script identification vector is calculated for each connected component in a document. The vector expresses the closest distance between the component and templates developed for each of thirteen scripts, including Arabic, Chinese, Cyrillic, and Roman. The authors calculate the first three principal components within the resulting thirteen-dimensional space for each image. By mapping these components to red, green,more » and blue, they can visualize the information contained in the script identification vectors. The visualization of several multilingual images suggests that the script identification vectors can be used to segment images into script-specific regions as large as several paragraphs or as small as a few characters. The visualized vectors also reveal distinctions within scripts, such as font in Roman documents, and kanji vs. kana in Japanese. Results are best for documents containing highly dissimilar scripts such as Roman and Japanese. Documents containing similar scripts, such as Roman and Cyrillic will require further investigation.« less
Versatile generation of optical vector fields and vector beams using a non-interferometric approach.
Tripathi, Santosh; Toussaint, Kimani C
2012-05-07
We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.
Applications of Java and Vector Graphics to Astrophysical Visualization
NASA Astrophysics Data System (ADS)
Edirisinghe, D.; Budiardja, R.; Chae, K.; Edirisinghe, G.; Lingerfelt, E.; Guidry, M.
2002-12-01
We describe a series of projects utilizing the portability of Java programming coupled with the compact nature of vector graphics (SVG and SWF formats) for setup and control of calculations, local and collaborative visualization, and interactive 2D and 3D animation presentations in astrophysics. Through a set of examples, we demonstrate how such an approach can allow efficient and user-friendly control of calculations in compiled languages such as Fortran 90 or C++ through portable graphical interfaces written in Java, and how the output of such calculations can be packaged in vector-based animation having interactive controls and extremely high visual quality, but very low bandwidth requirements.
Summary of Work for Joint Research Interchanges with DARWIN Integrated Product Team 1998
NASA Technical Reports Server (NTRS)
Hesselink, Lambertus
1999-01-01
The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available under the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.
Summary of Work for Joint Research Interchanges with DARWIN Integrated Product Team
NASA Technical Reports Server (NTRS)
Hesselink, Lambertus
1999-01-01
The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available un- der the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching an@ vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.
3-D Flow Visualization with a Light-field Camera
NASA Astrophysics Data System (ADS)
Thurow, B.
2012-12-01
Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.
Can invertebrates see the e-vector of polarization as a separate modality of light?
Labhart, Thomas
2016-12-15
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs. © 2016. Published by The Company of Biologists Ltd.
Can invertebrates see the e-vector of polarization as a separate modality of light?
2016-01-01
ABSTRACT The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, ‘color-blind’ humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert ‘water below!’ to water-seeking bugs. PMID:27974532
Tiled vector data model for the geographical features of symbolized maps.
Li, Lin; Hu, Wei; Zhu, Haihong; Li, You; Zhang, Hang
2017-01-01
Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and 'addition' (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.
Speed tuning of motion segmentation and discrimination
NASA Technical Reports Server (NTRS)
Masson, G. S.; Mestre, D. R.; Stone, L. S.
1999-01-01
Motion transparency requires that the visual system distinguish different motion vectors and selectively integrate similar motion vectors over space into the perception of multiple surfaces moving through or over each other. Using large-field (7 degrees x 7 degrees) displays containing two populations of random-dots moving in the same (horizontal) direction but at different speeds, we examined speed-based segmentation by measuring the speed difference above which observers can perceive two moving surfaces. We systematically investigated this 'speed-segmentation' threshold as a function of speed and stimulus duration, and found that it increases sharply for speeds above approximately 8 degrees/s. In addition, speed-segmentation thresholds decrease with stimulus duration out to approximately 200 ms. In contrast, under matched conditions, speed-discrimination thresholds stay low at least out to 16 degrees/s and decrease with increasing stimulus duration at a faster rate than for speed segmentation. Thus, motion segmentation and motion discrimination exhibit different speed selectivity and different temporal integration characteristics. Results are discussed in terms of the speed preferences of different neuronal populations within the primate visual cortex.
Tracking without perceiving: a dissociation between eye movements and motion perception.
Spering, Miriam; Pomplun, Marc; Carrasco, Marisa
2011-02-01
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.
Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception
Spering, Miriam; Pomplun, Marc; Carrasco, Marisa
2011-01-01
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept. PMID:21189353
2015-11-19
cortex. These features can be described through the plane equation (nx, ny, nz )(Xi, Yi, Zi) T − d = 0 with the normal vector (nx, ny, nz ) the point...operator. Using Eq 2 and Eq 3 we find the following expression for the distance Di ¼ d nx sin yi cosi þ ny sini þ nz cos yi cosi : ð5Þ Plugging in
Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai
2015-10-01
Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.
Establishing a Corky Ringspot Disease Plot for Research Purposes
Mojtahedi, H.; Boydston, R. A.; Crosslin, J. M.; Brown, C. R.; Riga, E.; Anderson, T. L.; Spellman, D.; Quick, R. A.
2007-01-01
A method to establish two experimental corky ringspot disease (CRS) plots that had no prior CRS history is described. CRS is a serious disease of potato in the Pacific Northwest caused by tobacco rattle virus (TRV) and transmitted primarily by Paratrichodorus allius. ‘Samsun NN’ tobacco seedlings were inoculated with viruliferous P. allius in the greenhouse before they were transplanted into the field soil at the rate of 3,000 plus seedlings/ha. Care was taken to keep soil around plants in the greenhouse and transplants in the field moist to avoid vector mortality. The vector population in the soil of one of the fields was monitored by extraction, examination under microscope and bioassay on tobacco seedlings to ascertain that they were virus carriers. Presence of virus in tobacco bioassay plants was determined by visual symptoms on tobacco leaves and by testing leaves and roots using ELISA. Although TRV transmission was rapid, there was loss of infectivity in the first winter which necessitated a re-inoculation. After two years of planting infected tobacco seedlings, 100% of soil samples collected from this field contained viruliferous P. allius. In the second field, all five commercial potato cultivars, known to be susceptible, expressed symptoms of CRS disease indicating that the procedure was successful. PMID:19259504
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
Integrated Computational System for Aerodynamic Steering and Visualization
NASA Technical Reports Server (NTRS)
Hesselink, Lambertus
1999-01-01
In February of 1994, an effort from the Fluid Dynamics and Information Sciences Divisions at NASA Ames Research Center with McDonnel Douglas Aerospace Company and Stanford University was initiated to develop, demonstrate, validate and disseminate automated software for numerical aerodynamic simulation. The goal of the initiative was to develop a tri-discipline approach encompassing CFD, Intelligent Systems, and Automated Flow Feature Recognition to improve the utility of CFD in the design cycle. This approach would then be represented through an intelligent computational system which could accept an engineer's definition of a problem and construct an optimal and reliable CFD solution. Stanford University's role focused on developing technologies that advance visualization capabilities for analysis of CFD data, extract specific flow features useful for the design process, and compare CFD data with experimental data. During the years 1995-1997, Stanford University focused on developing techniques in the area of tensor visualization and flow feature extraction. Software libraries were created enabling feature extraction and exploration of tensor fields. As a proof of concept, a prototype system called the Integrated Computational System (ICS) was developed to demonstrate CFD design cycle. The current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will (1) briefly review the technologies developed during 1995-1997 (2) describe current technologies in the area of comparison techniques, (4) describe the theory of our new method researched during the grant year (5) summarize a few of the results and finally (6) discuss work within the last 6 months that are direct extensions from the grant.
Electron microscopy of electromagnetic waveforms.
Ryabov, A; Baum, P
2016-07-22
Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.
Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms
NASA Astrophysics Data System (ADS)
Mayor, S. D.
2016-02-01
Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the surf zone appeared to be rare and fleeting. Nonetheless, faint coherent aerosol structures are observable in the backscatter field as long, streaky, wind-parallel filaments and a wind field was retrieved. During the 10-day deployment, the seas were not as rough as expected. A current goal is to find collaborators and return to map airflow in rougher conditions.
Vector-Based Data Services for NASA Earth Science
NASA Astrophysics Data System (ADS)
Rodriguez, J.; Roberts, J. T.; Ruvane, K.; Cechini, M. F.; Thompson, C. K.; Boller, R. A.; Baynes, K.
2016-12-01
Vector data sources offer opportunities for mapping and visualizing science data in a way that allows for more customizable rendering and deeper data analysis than traditional raster images, and popular formats like GeoJSON and Mapbox Vector Tiles allow diverse types of geospatial data to be served in a high-performance and easily consumed-package. Vector data is especially suited to highly dynamic mapping applications and visualization of complex datasets, while growing levels of support for vector formats and features in open-source mapping clients has made utilizing them easier and more powerful than ever. NASA's Global Imagery Browse Services (GIBS) is working to make NASA data more easily and conveniently accessible than ever by serving vector datasets via GeoJSON, Mapbox Vector Tiles, and raster images. This presentation will review these output formats, the services, including WFS, WMS, and WMTS, that can be used to access the data, and some ways in which vector sources can be utilized in popular open-source mapping clients like OpenLayers. Lessons learned from GIBS' recent move towards serving vector will be discussed, as well as how to use GIBS open source software to create, configure, and serve vector data sources using Mapserver and the GIBS OnEarth Apache module.
A link between torse-forming vector fields and rotational hypersurfaces
NASA Astrophysics Data System (ADS)
Chen, Bang-Yen; Verstraelen, Leopold
Torse-forming vector fields introduced by Yano [On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944) 340-346] are natural extension of concurrent and concircular vector fields. Such vector fields have many nice applications to geometry and mathematical physics. In this paper, we establish a link between rotational hypersurfaces and torse-forming vector fields. More precisely, our main result states that, for a hypersurface M of 𝔼n+1 with n ≥ 3, the tangential component xT of the position vector field of M is a proper torse-forming vector field on M if and only if M is contained in a rotational hypersurface whose axis of rotation contains the origin.
A diagram for evaluating multiple aspects of model performance in simulating vector fields
NASA Astrophysics Data System (ADS)
Xu, Zhongfeng; Hou, Zhaolu; Han, Ying; Guo, Weidong
2016-12-01
Vector quantities, e.g., vector winds, play an extremely important role in climate systems. The energy and water exchanges between different regions are strongly dominated by wind, which in turn shapes the regional climate. Thus, how well climate models can simulate vector fields directly affects model performance in reproducing the nature of a regional climate. This paper devises a new diagram, termed the vector field evaluation (VFE) diagram, which is a generalized Taylor diagram and able to provide a concise evaluation of model performance in simulating vector fields. The diagram can measure how well two vector fields match each other in terms of three statistical variables, i.e., the vector similarity coefficient, root mean square length (RMSL), and root mean square vector difference (RMSVD). Similar to the Taylor diagram, the VFE diagram is especially useful for evaluating climate models. The pattern similarity of two vector fields is measured by a vector similarity coefficient (VSC) that is defined by the arithmetic mean of the inner product of normalized vector pairs. Examples are provided, showing that VSC can identify how close one vector field resembles another. Note that VSC can only describe the pattern similarity, and it does not reflect the systematic difference in the mean vector length between two vector fields. To measure the vector length, RMSL is included in the diagram. The third variable, RMSVD, is used to identify the magnitude of the overall difference between two vector fields. Examples show that the VFE diagram can clearly illustrate the extent to which the overall RMSVD is attributed to the systematic difference in RMSL and how much is due to the poor pattern similarity.
Enhanced Line Integral Convolution with Flow Feature Detection
NASA Technical Reports Server (NTRS)
Lane, David; Okada, Arthur
1996-01-01
The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.
Huang, Ai-Mei; Nguyen, Truong
2009-04-01
In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.
GLOBE Observer Mosquito Habitat Mapper: Geoscience and Public Health Connections
NASA Astrophysics Data System (ADS)
Low, R.; Boger, R. A.
2017-12-01
The global health crisis posed by vector-borne diseases is so great in scope that it is clearly insurmountable without the active help of tens-or hundreds- of thousands of individuals, working to identify and eradicate risk in communities around the world. Mobile devices equipped with data collection capabilities and visualization opportunities are lowering the barrier for participation in data collection efforts. The GLOBE Observer Mosquito Habitat Mapper (MHM) provides citizen scientists with an easy to use mobile platform to identify and locate mosquito breeding sites in their community. The app also supports the identification of vector taxa in the larvae development phase via a built-in key, which provides important information for scientists and public health officials tracking the rate of range expansion of invasive vector species and associated health threats. GO Mosquito is actively working with other citizen scientist programs across the world to ensure interoperability of data through standardization of metadata fields specific to vector monitoring, and through the development of APIs that allow for data exchange and shared data display through a UN-sponsored proof of concept project, Global Mosquito Alert. Avenues of application for mosquito vector data-both directly, by public health entities, and by modelers who employ remotely sensed environmental data to project mosquito population dynamics and epidemic disease will be featured.
NASA Astrophysics Data System (ADS)
Lipsa, D.; Chaudhary, A.; Williams, D. N.; Doutriaux, C.; Jhaveri, S.
2017-12-01
Climate Data Analysis Tools (UV-CDAT, https://uvcdat.llnl.gov) is a data analysis and visualization software package developed at Lawrence Livermore National Laboratory and designed for climate scientists. Core components of UV-CDAT include: 1) Community Data Management System (CDMS) which provides I/O support and a data model for climate data;2) CDAT Utilities (GenUtil) that processes data using spatial and temporal averaging and statistic functions; and 3) Visualization Control System (VCS) for interactive visualization of the data. VCS is a Python visualization package primarily built for climate scientists, however, because of its generality and breadth of functionality, it can be a useful tool to other scientific applications. VCS provides 1D, 2D and 3D visualization functions such as scatter plot and line graphs for 1d data, boxfill, meshfill, isofill, isoline for 2d scalar data, vector glyphs and streamlines for 2d vector data and 3d_scalar and 3d_vector for 3d data. Specifically for climate data our plotting routines include projections, Skew-T plots and Taylor diagrams. While VCS provided a user-friendly API, the previous implementation of VCS relied on slow performing vector graphics (Cairo) backend which is suitable for smaller dataset and non-interactive graphics. LLNL and Kitware team has added a new backend to VCS that uses the Visualization Toolkit (VTK) as its visualization backend. VTK is one of the most popular open source, multi-platform scientific visualization library written in C++. Its use of OpenGL and pipeline processing architecture results in a high performant VCS library. Its multitude of available data formats and visualization algorithms results in easy adoption of new visualization methods and new data formats in VCS. In this presentation, we describe recent contributions to VCS that includes new visualization plots, continuous integration testing using Conda and CircleCI, tutorials and examples using Jupyter notebooks as well as upgrades that we are planning in the near future which will improve its ease of use and reliability and extend its capabilities.
Emotion computing using Word Mover's Distance features based on Ren_CECps.
Ren, Fuji; Liu, Ning
2018-01-01
In this paper, we propose an emotion separated method(SeTF·IDF) to assign the emotion labels of sentences with different values, which has a better visual effect compared with the values represented by TF·IDF in the visualization of a multi-label Chinese emotional corpus Ren_CECps. Inspired by the enormous improvement of the visualization map propelled by the changed distances among the sentences, we being the first group utilizes the Word Mover's Distance(WMD) algorithm as a way of feature representation in Chinese text emotion classification. Our experiments show that both in 80% for training, 20% for testing and 50% for training, 50% for testing experiments of Ren_CECps, WMD features get the best f1 scores and have a greater increase compared with the same dimension feature vectors obtained by dimension reduction TF·IDF method. Compared experiments in English corpus also show the efficiency of WMD features in the cross-language field.
Open Source Software in Teaching Physics: A Case Study on Vector Algebra and Visual Representations
ERIC Educational Resources Information Center
Cataloglu, Erdat
2006-01-01
This study aims to report the effort on teaching vector algebra using free open source software (FOSS). Recent studies showed that students have difficulties in learning basic physics concepts. Constructivist learning theories suggest the use of visual and hands-on activities in learning. We will report on the software used for this purpose. The…
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.
Visualization of Underfill Flow in Ball Grid Array (BGA) using Particle Image Velocimetry (PIV)
NASA Astrophysics Data System (ADS)
Ng, Fei Chong; Abas, Aizat; Abustan, Ismail; Remy Rozainy, Z. Mohd; Abdullah, MZ; Jamaludin, Ali b.; Kon, Sharon Melissa
2018-05-01
This paper presents the experimental methodology using particle image velocimetry (PIV) to study the underfill process of ball grid array (BGA) chip package. PIV is a non-intrusive approach to visualize the flow behavior of underfill across the solder ball array. The BGA model of three different configurations – perimeter, middle empty and full array – were studied in current research. Through PIV experimental works, the underfill velocity distribution and vector fields for each BGA models were successfully obtained. It is found that perimeter has the shortest filling time resulting to a higher underfill velocity. Therefore, it is concluded that the flow behavior of underfill in BGA can be justified thoroughly with the aid of PIV.
Geometric representation of spin correlations and applications to ultracold systems
NASA Astrophysics Data System (ADS)
Mukherjee, Rick; Mirasola, Anthony E.; Hollingsworth, Jacob; White, Ian G.; Hazzard, Kaden R. A.
2018-04-01
We provide a one-to-one map between the spin correlations and certain three-dimensional shapes, analogous to the map between single spins and Bloch vectors, and demonstrate its utility. Much as one can reason geometrically about dynamics using a Bloch vector—e.g., a magnetic field causes it to precess and dissipation causes it to shrink—one can reason similarly about the shapes we use to visualize correlations. This visualization demonstrates its usefulness by unveiling the hidden structure in the correlations. For example, seemingly complex correlation dynamics can be described as simple motions of the shapes. We demonstrate the simplicity of the dynamics, which is obscured in conventional analyses, by analyzing several physical systems of relevance to cold atoms.
Effectiveness of basic display augmentation in vehicular control by visual field cues
NASA Technical Reports Server (NTRS)
Grunwald, A. J.; Merhav, S. J.
1978-01-01
The paper investigates the effectiveness of different basic display augmentation concepts - fixed reticle, velocity vector, and predicted future vehicle path - for RPVs controlled by a vehicle-mounted TV camera. The task is lateral manual control of a low flying RPV along a straight reference line in the presence of random side gusts. The man-machine system and the visual interface are modeled as a linear time-invariant system. Minimization of a quadratic performance criterion is assumed to underlie the control strategy of a well-trained human operator. The solution for the optimal feedback matrix enables the explicit computation of the variances of lateral deviation and directional error of the vehicle and of the control force that are used as performance measures.
Analysis of recurrent patterns in toroidal magnetic fields.
Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua
2010-01-01
In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.
Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro
2010-08-01
In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.
2010-01-01
Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a Bayesian-derived probability of glaucoma as an output. These results suggest that these machine learning classifiers show good potential for glaucoma diagnosis. PMID:15790898
Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico
2015-01-01
Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows
NASA Technical Reports Server (NTRS)
Lane, David A.
1996-01-01
Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.
Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás
2012-10-01
For many decades, visualization and evaluation of three-dimensional (3D) spinal deformities have only been possible by two-dimensional (2D) radiodiagnostic methods, and as a result, characterization and classification were based on 2D terminologies. Recent developments in medical digital imaging and 3D visualization techniques including surface 3D reconstructions opened a chance for a long-sought change in this field. Supported by a 3D Terminology on Spinal Deformities of the Scoliosis Research Society, an approach for 3D measurements and a new 3D classification of scoliosis yielded several compelling concepts on 3D visualization and new proposals for 3D classification in recent years. More recently, a new proposal for visualization and complete 3D evaluation of the spine by 3D vertebra vectors has been introduced by our workgroup, a concept, based on EOS 2D/3D, a groundbreaking new ultralow radiation dose integrated orthopedic imaging device with sterEOS 3D spine reconstruction software. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and vertebra vector-based 3D measurements in a routine clinical setting. Retrospective, nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4 and 117.5°. Analysis of accuracy and reliability of measurements was carried out on a group of all patients and in subgroups based on coronal plane deviation: 0 to 10° (Group 1; n=36), 10 to 25° (Group 2; n=25), 25 to 50° (Group 3; n=69), 50 to 75° (Group 4; n=49), and above 75° (Group 5; n=22). All study subjects were examined by EOS 2D imaging, resulting in anteroposterior (AP) and lateral (LAT) full spine, orthogonal digital X-ray images, in standing position. Conventional coronal and sagittal curvature measurements including sagittal L5 vertebra wedges were determined by 3 experienced examiners, using traditional Cobb methods on EOS 2D AP and LAT images. Vertebra vector-based measurements were performed as published earlier, based on computer-assisted calculations of corresponding spinal curvature. Vertebra vectors were generated by dedicated software from sterEOS 3D spine models reconstructed from EOS 2D images by the same three examiners. Manual measurements were performed by each examiner, thrice for sterEOS 3D reconstructions and twice for vertebra vector-based measurements. Means comparison t test, Pearson bivariate correlation analysis, reliability analysis by intraclass correlation coefficients for intraobserver reproducibility and interrater reliability were performed using SPSS v16.0 software. In comparison with manual 2D methods, only small and nonsignificant differences were detectable in vertebra vector-based curvature data for coronal curves and thoracic kyphosis, whereas the found difference in L1-L5 lordosis values was shown to be strongly related to the magnitude of corresponding L5 wedge. Intraobserver reliability was excellent for both methods, and interrater reproducibility was consistently higher for vertebra vector-based methods that was also found to be unaffected by the magnitude of coronal curves or sagittal plane deviations. Vertebra vector-based angulation measurements could fully substitute conventional manual 2D measurements, with similar accuracy and higher intraobserver reliability and interrater reproducibility. Vertebra vectors represent a truly 3D solution for clear and comprehensible 3D visualization of spinal deformities while preserving crucial parametric information for vertebral size, 3D position, orientation, and rotation. The concept of vertebra vectors may serve as a starting point to a valid and clinically useful alternative for a new 3D classification of scoliosis. Copyright © 2012 Elsevier Inc. All rights reserved.
Powers, P.S.; Chiarle, M.; Savage, W.Z.
1996-01-01
The traditional approach to making aerial photographic measurements uses analog or analytic photogrammetric equipment. We have developed a digital method for making measurements from aerial photographs which uses geographic information system (GIS) software, and primarily DOS-based personal computers. This method, which is based on the concept that a direct visual comparison can be made between images derived from two sets of aerial photographs taken at different times, was applied to the surface of the active portion of the Slumgullion earthflow in Colorado to determine horizontal displacement vectors from the movements of visually identifiable objects, such as trees and large rocks. Using this method, more of the slide surface can be mapped in a shorter period of time than using the standard photogrammetric approach. More than 800 horizontal displacement vectors were determined on the active earthflow surface using images produced by our digital photogrammetric technique and 1985 (1:12,000-scale) and 1990 (1:6,000-scale) aerial photographs. The resulting displacement field shows, with a 2-m measurement error (??? 10%), that the fastest moving portion of the landslide underwent 15-29 m of horizontal displacement between 1985 and 1990. Copyright ?? 1996 Elsevier Science Ltd.
Immersive Visualization of the Solid Earth
NASA Astrophysics Data System (ADS)
Kreylos, O.; Kellogg, L. H.
2017-12-01
Immersive visualization using virtual reality (VR) display technology offers unique benefits for the visual analysis of complex three-dimensional data such as tomographic images of the mantle and higher-dimensional data such as computational geodynamics models of mantle convection or even planetary dynamos. Unlike "traditional" visualization, which has to project 3D scalar data or vectors onto a 2D screen for display, VR can display 3D data in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection and interfere with interpretation. As a result, researchers can apply their spatial reasoning skills to 3D data in the same way they can to real objects or environments, as well as to complex objects like vector fields. 3D Visualizer is an application to visualize 3D volumetric data, such as results from mantle convection simulations or seismic tomography reconstructions, using VR display technology and a strong focus on interactive exploration. Unlike other visualization software, 3D Visualizer does not present static visualizations, such as a set of cross-sections at pre-selected positions and orientations, but instead lets users ask questions of their data, for example by dragging a cross-section through the data's domain with their hands and seeing data mapped onto that cross-section in real time, or by touching a point inside the data domain, and immediately seeing an isosurface connecting all points having the same data value as the touched point. Combined with tools allowing 3D measurements of positions, distances, and angles, and with annotation tools that allow free-hand sketching directly in 3D data space, the outcome of using 3D Visualizer is not primarily a set of pictures, but derived data to be used for subsequent analysis. 3D Visualizer works best in virtual reality, either in high-end facility-scale environments such as CAVEs, or using commodity low-cost virtual reality headsets such as HTC's Vive. The recent emergence of high-quality commodity VR means that researchers can buy a complete VR system off the shelf, install it and the 3D Visualizer software themselves, and start using it for data analysis immediately.
Glyph-based analysis of multimodal directional distributions in vector field ensembles
NASA Astrophysics Data System (ADS)
Jarema, Mihaela; Demir, Ismail; Kehrer, Johannes; Westermann, Rüdiger
2015-04-01
Ensemble simulations are increasingly often performed in the geosciences in order to study the uncertainty and variability of model predictions. Describing ensemble data by mean and standard deviation can be misleading in case of multimodal distributions. We present first results of a glyph-based visualization of multimodal directional distributions in 2D and 3D vector ensemble data. Directional information on the circle/sphere is modeled using mixtures of probability density functions (pdfs), which enables us to characterize the distributions with relatively few parameters. The resulting mixture models are represented by 2D and 3D lobular glyphs showing direction, spread and strength of each principal mode of the distributions. A 3D extension of our approach is realized by means of an efficient GPU rendering technique. We demonstrate our method in the context of ensemble weather simulations.
Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.
Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho
2018-04-16
We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.
NASA Astrophysics Data System (ADS)
Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron
2017-12-01
This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.
Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen
2015-09-20
Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.
Streaming simplification of tetrahedral meshes.
Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T
2007-01-01
Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.
Peripheral refraction and image blur in four meridians in emmetropes and myopes.
Shen, Jie; Spors, Frank; Egan, Donald; Liu, Chunming
2018-01-01
The peripheral refractive error of the human eye has been hypothesized to be a major stimulus for the development of its central refractive error. The purpose of this study was to investigate the changes in the peripheral refractive error across horizontal, vertical and two diagonal meridians in emmetropic and low, moderate and high myopic adults. Thirty-four adult subjects were recruited and aberration was measured using a modified commercial aberrometer. We then computed the refractive error in power vector notation from second-order Zernike terms. Statistical analysis was performed to evaluate the statistical differences in refractive error profiles between the subject groups and across all measured visual field meridians. Small amounts of relative myopic shift were observed in emmetropic and low myopic subjects. However, moderate and high myopic subjects exhibited a relative hyperopic shift in all four meridians. Astigmatism J 0 and J 45 had quadratic or linear changes dependent on the visual field meridians. Peripheral Sphero-Cylindrical Retinal Image Blur increased in emmetropic eyes in most of the measured visual fields. The findings indicate an overall emmetropic or slightly relative myopic periphery (spherical or oblate retinal shape) formed in emmetropes and low myopes, while moderate and high myopes form relative hyperopic periphery (prolate, or less oblate, retinal shape). In general, human emmetropic eyes demonstrate higher amount of peripheral retinal image blur.
A note on φ-analytic conformal vector fields
NASA Astrophysics Data System (ADS)
Deshmukh, Sharief; Bin Turki, Nasser
2017-09-01
Taking clue from the analytic vector fields on a complex manifold, φ-analytic conformal vector fields are defined on a Riemannian manifold (Deshmukh and Al-Solamy in Colloq. Math. 112(1):157-161, 2008). In this paper, we use φ-analytic conformal vector fields to find new characterizations of the n-sphere Sn(c) and the Euclidean space (Rn,<,> ).
Mapping the magnetic field vector in a fountain clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy
2014-12-01
The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.
Reciprocity relationships in vector acoustics and their application to vector field calculations.
Deal, Thomas J; Smith, Kevin B
2017-08-01
The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.
NASA Astrophysics Data System (ADS)
Sheykina, Nadiia; Bogatina, Nina
The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.
Visualization of vacuum cleaner-induced flow in a carpet by using magnetic resonance velocimetry
NASA Astrophysics Data System (ADS)
Lee, Jeesoo; Song, Simon
2016-11-01
Understanding characteristics of in-carpet flow induced by a vacuum cleaner nozzle is important to improve the design and performance of the cleaner nozzle. However, optical visualization techniques like PIV are limited to uncover the flow details because a carpet is opaque porous media. We have visualized a mean flow field in a cut-pile type carpet by magnetic resonance velocimetry. The flow was generated by a static vacuum cleaner nozzle, and the working fluid is a copper sulfate aqueous solution. Three dimensional, three component velocity vectors were obtained in a measurement domain of 336 x 128 x 14 mm3 covering the entire nozzle span and a 7-mm thick carpet below the nozzle. The voxel size was 1 x 1 x 0.5 (depthwise) mm3. Based on the visualization data, the permeability, the Forchheimer coefficient and pressure distribution were calculated for the carpet. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).
Weaving Knotted Vector Fields with Tunable Helicity.
Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M
2016-12-30
We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.
System Theoretic Models for High Density VLSI Structures
1989-01-01
vector is also called a stable We first present a simple example to help visualize how vector of the AMN. The set of all stable vectors is denoted these...New York: Springer- Verlag. 1978. 1980 [34] B. De Finetti. "Funtzione catatteristica di un fenomeno aleato- , [16] W A Little. "The existence of
Use of Colour and Interactive Animation in Learning 3D Vectors
ERIC Educational Resources Information Center
Iskander, Wejdan; Curtis, Sharon
2005-01-01
This study investigated the effects of two computer-implemented techniques (colour and interactive animation) on learning 3D vectors. The participants were 43 female Saudi Arabian high school students. They were pre-tested on 3D vectors using a paper questionnaire that consisted of calculation and visualization types of questions. The students…
Student difficulties regarding symbolic and graphical representations of vector fields
NASA Astrophysics Data System (ADS)
Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke
2017-12-01
The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing, and switching between representations of vector fields, using both qualitative and quantitative methods. We first identified to what extent students are fluent with the use of field vector plots, field line diagrams, and symbolic expressions of vector fields by conducting individual student interviews and analyzing in-class student activities. Based on those findings, we designed the Vector Field Representations test, a free response assessment tool that has been given to 196 second- and third-year physics, mathematics, and engineering students from four different universities. From the obtained results we gained a comprehensive overview of typical errors that students make when switching between vector field representations. In addition, the study allowed us to determine the relative prevalence of the observed difficulties. Although the results varied greatly between institutions, a general trend revealed that many students struggle with vector addition, fail to recognize the field line density as an indication of the magnitude of the field, confuse characteristics of field lines and equipotential lines, and do not choose the appropriate coordinate system when writing out mathematical expressions of vector fields.
Discovering and understanding the vector field using simulation in android app
NASA Astrophysics Data System (ADS)
Budi, A.; Muliyati, D.
2018-05-01
An understanding of vector field’s concepts are fundamental parts of the electrodynamics course. In this paper, we use a simple simulation that can be used to show qualitative imaging results as a variation of the vector field. Android application packages the simulation with consideration of the efficiency of use during the lecture. In addition, this simulation also trying to cover the divergences and curl concepts from the same conditions that students have a complete understanding and can distinguish concepts that have been described only mathematically. This simulation is designed to show the relationship between the field magnitude and its potential. This application can show vector field simulations in various conditions that help to improve students’ understanding of vector field concepts and their relation to particle existence around the field vector.
Solar physics applications of computer graphics and image processing
NASA Technical Reports Server (NTRS)
Altschuler, M. D.
1985-01-01
Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.
Polarization analysis for magnetic field imaging at RADEN in J-PARC/MLF
NASA Astrophysics Data System (ADS)
Shinohara, Takenao; Hiroi, Kosuke; Su, Yuhua; Kai, Tetsuya; Nakatani, Takeshi; Oikawa, Kenichi; Segawa, Mariko; Hayashida, Hirotoshi; Parker, Joseph D.; Matsumoto, Yoshihiro; Zhang, Shuoyuan; Kiyanagi, Yoshiaki
2017-06-01
Polarized neutron imaging is an attractive method for visualizing magnetic fields in a bulk object or in free space. In this technique polarization of neutrons transmitted through a sample is analyzed position by position to produce an image of the polarization distribution. In particular, the combination of three-dimensional spin analysis and the use of a pulsed neutron beam is very effective for the quantitative evaluation of both field strength and direction by means of the analysis of the wavelength dependent polarization vector. Recently a new imaging instrument “RADEN” has been constructed at the beam line of BL22 of the Materials and Life Science Experimental Facility (MLF) at J-PARC, which is dedicated to energy-resolved neutron imaging experiments. We have designed a polarization analysis apparatus for magnetic field imaging at the RADEN instrument and have evaluated its performance.
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
Tomita, Hiroshi; Sugano, Eriko; Yawo, Hiromu; Ishizuka, Toru; Isago, Hitomi; Narikawa, Satoko; Kügler, Sebastian; Tamai, Makoto
2007-08-01
To investigate whether the channelopsin-2 (Chop2) gene would restore visual responses in 10-month-old dystrophic Royal College of Surgeons (aged RCS; rdy/rdy) rats, the authors transferred the Chop2 gene into the retinal cells of aged RCS rats using the adenoassociated virus (AAV) vector. The N-terminal fragment (residues 1-315) of Chop2 was fused to a fluorescent protein, Venus, in frame at the end of the Chop2 coding fragment. The viral vector construct (AAV-Chop2V) for the expression of the Chop2V in the retina was made by subcloning into an adenoassociated virus vector, including the CAG promoter. To evaluate the expression profile of Chop2V in the retina, the rats were killed and the eyes were removed and fixed with 4% paraformaldehyde in 0.1 M phosphate-buffered saline. Retinal wholemount specimens and cryosections were made. Under anesthetized conditions, electrodes for the recording of visually evoked potentials (VEPs) were implanted onto the visual cortex in aged-RCS (rdy/rdy) rats. AAV-Chop2V vectors were then injected into the vitreous cavity of the left eyes. As a control, AAV-Venus vectors were applied to the right eyes. VEPs were evoked by the flash of a blue, white, or red light-emitting diode (LED) and were recorded from the visual cortex of the rats at various time points after the AAV vector injection. Chop2V fluorescence was predominantly observed in retinal ganglion cells (RGCs). Some fluorescence was observed in the inner nuclear layer and the inner plexiform layer neurites. A tendency of recovery was observed in the VEPs of aged RCS (rdy/rdy) rats after the AAV-Chop2V injection but not after the AAV-Venus injection. The visual response of AAV-Chop2V-injected aged RCS (rdy/rdy) rats was less sensitive to the blue LED flash than that of nondystrophic RCS (+/+) rats. The AAV-Chop2V-injected aged RCS (rdy/rdy) rats were insensitive to the red LED flash, which evoked a robust VEP in the RCS (+/+) rats. The visual response of aged RCS (rdy/rdy) rats was partially restored by transduction of the Chop2 gene through AAV into the inner retinal neurons, mainly RGCs. These results suggest that the transduction of Chop2 would provide a new strategy to treat some retinitis pigmentosa (RP) symptoms independent of their etiology.
Killing vector fields in three dimensions: a method to solve massive gravity field equations
NASA Astrophysics Data System (ADS)
Gürses, Metin
2010-10-01
Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.
Decoding the cortical transformations for visually guided reaching in 3D space.
Blohm, Gunnar; Keith, Gerald P; Crawford, J Douglas
2009-06-01
To explore the possible cortical mechanisms underlying the 3-dimensional (3D) visuomotor transformation for reaching, we trained a 4-layer feed-forward artificial neural network to compute a reach vector (output) from the visual positions of both the hand and target viewed from different eye and head orientations (inputs). The emergent properties of the intermediate layers reflected several known neurophysiological findings, for example, gain field-like modulations and position-dependent shifting of receptive fields (RFs). We performed a reference frame analysis for each individual network unit, simulating standard electrophysiological experiments, that is, RF mapping (unit input), motor field mapping, and microstimulation effects (unit outputs). At the level of individual units (in both intermediate layers), the 3 different electrophysiological approaches identified different reference frames, demonstrating that these techniques reveal different neuronal properties and suggesting that a comparison across these techniques is required to understand the neural code of physiological networks. This analysis showed fixed input-output relationships within each layer and, more importantly, within each unit. These local reference frame transformation modules provide the basic elements for the global transformation; their parallel contributions are combined in a gain field-like fashion at the population level to implement both the linear and nonlinear elements of the 3D visuomotor transformation.
Proper projective symmetry in LRS Bianchi type V spacetimes
NASA Astrophysics Data System (ADS)
Shabbir, Ghulam; Mahomed, K. S.; Mahomed, F. M.; Moitsheki, R. J.
2018-04-01
In this paper, we investigate proper projective vector fields of locally rotationally symmetric (LRS) Bianchi type V spacetimes using direct integration and algebraic techniques. Despite the non-degeneracy in the Riemann tensor eigenvalues, we classify proper Bianchi type V spacetimes and show that the above spacetimes do not admit proper projective vector fields. Here, in all the cases projective vector fields are Killing vector fields.
Egri, Ádám; Blahó, Miklós; Sándor, András; Kriska, György; Gyurkovszky, Mónika; Farkas, Róbert; Horváth, Gábor
2012-05-01
Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host's coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.
NASA Astrophysics Data System (ADS)
Egri, Ádám; Blahó, Miklós; Sándor, András; Kriska, György; Gyurkovszky, Mónika; Farkas, Róbert; Horváth, Gábor
2012-05-01
Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host's coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.
Video-rate terahertz electric-field vector imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less
NASA Astrophysics Data System (ADS)
Loring, B.; Karimabadi, H.; Rortershteyn, V.
2015-10-01
The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim
2014-07-01
The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not.more » We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.« less
Emotion computing using Word Mover’s Distance features based on Ren_CECps
2018-01-01
In this paper, we propose an emotion separated method(SeTF·IDF) to assign the emotion labels of sentences with different values, which has a better visual effect compared with the values represented by TF·IDF in the visualization of a multi-label Chinese emotional corpus Ren_CECps. Inspired by the enormous improvement of the visualization map propelled by the changed distances among the sentences, we being the first group utilizes the Word Mover’s Distance(WMD) algorithm as a way of feature representation in Chinese text emotion classification. Our experiments show that both in 80% for training, 20% for testing and 50% for training, 50% for testing experiments of Ren_CECps, WMD features get the best f1 scores and have a greater increase compared with the same dimension feature vectors obtained by dimension reduction TF·IDF method. Compared experiments in English corpus also show the efficiency of WMD features in the cross-language field. PMID:29624573
1991-01-01
visual and three-layer connectionist network, in that the input layer of memory processing is serial, and is likely to represent each module is... Selective attention gates visual University Press. processing in the extrastnate cortex. Science, 229:782-784. Treasman, A.M. (1985). Preartentive...AD-A242 225 A CONNECTIONIST SIMULATION OF ATTENTION AND VECTOR COMPARISON: THE NEED FOR SERIAL PROCESSING IN PARALLEL HARDWARE Technical Report AlP
NASA Astrophysics Data System (ADS)
Li, W.; Shao, H.
2017-12-01
For geospatial cyberinfrastructure enabled web services, the ability of rapidly transmitting and sharing spatial data over the Internet plays a critical role to meet the demands of real-time change detection, response and decision-making. Especially for the vector datasets which serve as irreplaceable and concrete material in data-driven geospatial applications, their rich geometry and property information facilitates the development of interactive, efficient and intelligent data analysis and visualization applications. However, the big-data issues of vector datasets have hindered their wide adoption in web services. In this research, we propose a comprehensive optimization strategy to enhance the performance of vector data transmitting and processing. This strategy combines: 1) pre- and on-the-fly generalization, which automatically determines proper simplification level through the introduction of appropriate distance tolerance (ADT) to meet various visualization requirements, and at the same time speed up simplification efficiency; 2) a progressive attribute transmission method to reduce data size and therefore the service response time; 3) compressed data transmission and dynamic adoption of a compression method to maximize the service efficiency under different computing and network environments. A cyberinfrastructure web portal was developed for implementing the proposed technologies. After applying our optimization strategies, substantial performance enhancement is achieved. We expect this work to widen the use of web service providing vector data to support real-time spatial feature sharing, visual analytics and decision-making.
Segmentation of discrete vector fields.
Li, Hongyu; Chen, Wenbin; Shen, I-Fan
2006-01-01
In this paper, we propose an approach for 2D discrete vector field segmentation based on the Green function and normalized cut. The method is inspired by discrete Hodge Decomposition such that a discrete vector field can be broken down into three simpler components, namely, curl-free, divergence-free, and harmonic components. We show that the Green Function Method (GFM) can be used to approximate the curl-free and the divergence-free components to achieve our goal of the vector field segmentation. The final segmentation curves that represent the boundaries of the influence region of singularities are obtained from the optimal vector field segmentations. These curves are composed of piecewise smooth contours or streamlines. Our method is applicable to both linear and nonlinear discrete vector fields. Experiments show that the segmentations obtained using our approach essentially agree with human perceptual judgement.
Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI
NASA Astrophysics Data System (ADS)
Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger
2015-03-01
In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.
Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu2Ga2B
NASA Astrophysics Data System (ADS)
Wulferding, D.; Kim, H.; Yang, I.; Jeong, J.; Barros, K.; Kato, Y.; Martin, I.; Ayala-Valenzuela, O. E.; Lee, M.; Choi, H. C.; Ronning, F.; Civale, L.; Baumbach, R. E.; Bauer, E. D.; Thompson, J. D.; Movshovich, R.; Kim, Jeehoon
2017-04-01
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu2Ga2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field as well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.
Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu 2Ga 2B
Wulferding, Dirk; Kim, Hoon; Yang, Ilkyu; ...
2017-04-10
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu 2Ga 2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field asmore » well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.« less
Structuring Stokes correlation functions using vector-vortex beam
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Anwar, Ali; Singh, R. P.
2018-01-01
Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.
Vector optical fields with bipolar symmetry of linear polarization.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian
2013-09-15
We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.
NASA Astrophysics Data System (ADS)
Benioff, Paul
2015-05-01
The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as just one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex number structures and vector space structures. The structures are parameterized by a real or complex scaling factor, s. A vector space at a fiber level, s, has, as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector valued fields gives the same vector fields. The derivation shows that the complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.
Dynamic visual attention: motion direction versus motion magnitude
NASA Astrophysics Data System (ADS)
Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.
2008-02-01
Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.
A texture-based framework for improving CFD data visualization in a virtual environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bivins, Gerrick O'Ron
2005-01-01
In the field of computational fluid dynamics (CFD) accurate representations of fluid phenomena can be simulated hut require large amounts of data to represent the flow domain. Most datasets generated from a CFD simulation can be coarse, ~10,000 nodes or cells, or very fine with node counts on the order of 1,000,000. A typical dataset solution can also contain multiple solutions for each node, pertaining to various properties of the flow at a particular node. Scalar properties such as density, temperature, pressure, and velocity magnitude are properties that are typically calculated and stored in a dataset solution. Solutions are notmore » limited to just scalar properties. Vector quantities, such as velocity, are also often calculated and stored for a CFD simulation. Accessing all of this data efficiently during runtime is a key problem for visualization in an interactive application. Understanding simulation solutions requires a post-processing tool to convert the data into something more meaningful. Ideally, the application would present an interactive visual representation of the numerical data for any dataset that was simulated while maintaining the accuracy of the calculated solution. Most CFD applications currently sacrifice interactivity for accuracy, yielding highly detailed flow descriptions hut limiting interaction for investigating the field.« less
A texture-based frameowrk for improving CFD data visualization in a virtual environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bivins, Gerrick O'Ron
2005-01-01
In the field of computational fluid dynamics (CFD) accurate representations of fluid phenomena can be simulated but require large amounts of data to represent the flow domain. Most datasets generated from a CFD simulation can be coarse, ~ 10,000 nodes or cells, or very fine with node counts on the order of 1,000,000. A typical dataset solution can also contain multiple solutions for each node, pertaining to various properties of the flow at a particular node. Scalar properties such as density, temperature, pressure, and velocity magnitude are properties that are typically calculated and stored in a dataset solution. Solutions aremore » not limited to just scalar properties. Vector quantities, such as velocity, are also often calculated and stored for a CFD simulation. Accessing all of this data efficiently during runtime is a key problem for visualization in an interactive application. Understanding simulation solutions requires a post-processing tool to convert the data into something more meaningful. Ideally, the application would present an interactive visual representation of the numerical data for any dataset that was simulated while maintaining the accuracy of the calculated solution. Most CFD applications currently sacrifice interactivity for accuracy, yielding highly detailed flow descriptions but limiting interaction for investigating the field.« less
Expanding the Detection of Traversable Area with RealSense for the Visually Impaired
Yang, Kailun; Wang, Kaiwei; Hu, Weijian; Bai, Jian
2016-01-01
The introduction of RGB-Depth (RGB-D) sensors into the visually impaired people (VIP)-assisting area has stirred great interest of many researchers. However, the detection range of RGB-D sensors is limited by narrow depth field angle and sparse depth map in the distance, which hampers broader and longer traversability awareness. This paper proposes an effective approach to expand the detection of traversable area based on a RGB-D sensor, the Intel RealSense R200, which is compatible with both indoor and outdoor environments. The depth image of RealSense is enhanced with IR image large-scale matching and RGB image-guided filtering. Traversable area is obtained with RANdom SAmple Consensus (RANSAC) segmentation and surface normal vector estimation, preliminarily. A seeded growing region algorithm, combining the depth image and RGB image, enlarges the preliminary traversable area greatly. This is critical not only for avoiding close obstacles, but also for allowing superior path planning on navigation. The proposed approach has been tested on a score of indoor and outdoor scenarios. Moreover, the approach has been integrated into an assistance system, which consists of a wearable prototype and an audio interface. Furthermore, the presented approach has been proved to be useful and reliable by a field test with eight visually impaired volunteers. PMID:27879634
A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.
Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian
2017-07-27
When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal's frame of reference. Despite this, many aquatic animals consistently orient and swim against oncoming flows (a behaviour known as rheotaxis) even in the absence of visual cues. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that, in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioural data that support a novel algorithm based on such local velocity gradients that fish use to avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, to measure its temporal change after swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioural algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviours in moving fluids.
Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges
NASA Astrophysics Data System (ADS)
Cherukuru, N. W.; Calhoun, R.
2016-06-01
Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.
Shankar, Shiva; Agrawal, Deepak Kumar
2016-03-01
Malaria is a serious disease which has repeatedly threatened Andaman, an island territory of India. Uncharted dense vegetation and inaccessibility are the salient features of the area and the major areas are covered by remotely sensed data to identify the malaria vector's natural habitat. The present investigation appraises the role of geospatial technologies in identifying the natural habitat of malarial vectors. The base map was prepared from Survey of India's toposheets, the landuse map was prepared from indices techniques like normalised difference vegetation index (NDVI), normalised difference water index (NDWI), modified normalised difference water index (MNDWI), normalised difference pond index (NDPI), and normalized difference turbidity index (NDTI) in conjugation with visual interpretation. The soil moisture content map was reproduced from the soil atlas of Andaman and Nicobar Islands followed by generation of an aspect profile from ASTER-GDEM satellite data. Both the landuse map and aspect profile were validated for accuracy in the field. A weighted overlay analysis of the classes like landuse, soil moisture and aspect profile of the study area resulted in identification of the potential natural habitat map of malaria vector surrounding the areas of Tushnabad, Garacharma, Manglutan, Chouldari, Ferrargunj and Wimberlygunj hamlets. The natural habitat of malaria vector indicated that Tushnabad, Garacharma, Manglutan, Chouldari, Ferrargunj and Wimberlygunj hamlets are within the proximity of 2.5 km from the prime habitat location with more number of malaria positive cases. Also these hamlets are surrounded by dense evergreen forest and the land surface is draped by clay loam and clay soil texture exhibiting high soil moisture content warranting high rates of survival and proliferation of the vector ensuring resurgence of malaria every year. It is thus concluded that application of geospatial technologies plays an important role in identifying the natural habitat of malaria vector.
NASA Astrophysics Data System (ADS)
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.
Intuitive Visualization of Transient Flow: Towards a Full 3D Tool
NASA Astrophysics Data System (ADS)
Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph
2015-04-01
Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool. Currently STRING can generate animations of single 2D cuts, either planar or curved surfaces, through 3D simulation domains. To provide a general tool for experts enabling also direct exploration and analysis of large 3D flow fields the software needs to be extended to intuitive as well as interactive visualizations of entire 3D flow domains. The current research concerning this project, which is funded by the Federal Ministry for Economic Affairs and Energy (Germany), is presented.
Vector curvaton with varying kinetic function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Wagstaff, Jacques M.
2010-01-15
A new model realization of the vector curvaton paradigm is presented and analyzed. The model consists of a single massive Abelian vector field, with a Maxwell-type kinetic term. By assuming that the kinetic function and the mass of the vector field are appropriately varying during inflation, it is shown that a scale-invariant spectrum of superhorizon perturbations can be generated. These perturbations can contribute to the curvature perturbation of the Universe. If the vector field remains light at the end of inflation it is found that it can generate substantial statistical anisotropy in the spectrum and bispectrum of the curvature perturbation.more » In this case the non-Gaussianity in the curvature perturbation is predominantly anisotropic, which will be a testable prediction in the near future. If, on the other hand, the vector field is heavy at the end of inflation then it is demonstrated that particle production is approximately isotropic and the vector field alone can give rise to the curvature perturbation, without directly involving any fundamental scalar field. The parameter space for both possibilities is shown to be substantial. Finally, toy models are presented which show that the desired variation of the mass and kinetic function of the vector field can be realistically obtained, without unnatural tunings, in the context of supergravity or superstrings.« less
Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric fields on the nanoscale. This is illustrated through ambient TERS measurements recorded using silver atomic force microscope tips coated with 4-mercaptobenzonitrile molecules and used to image step edges on an Au(111) surface. The observed 2D TERS images uniquely map electric fields localized at Au(111) step edges following 671-nm excitation. We establish that our measurements are not only sensitive to spatial variations in the enhanced electric fields but also to their vector components. We also experimentally demonstrate that (i) few nanometer precision is attainable in TERS nanoscopy using corrugatedmore » tips with nominally radii on the order of 100-200 nm, and (ii) TERS signals do not necessarily exhibit the expected E4 dependence. Overall, we illustrate the concept of electric field imaging via TERS and establish the connections between our observations and conventional TERS chemical imaging measurements.« less
Navigation in wood ants Formica japonica: context dependent use of landmarks.
Fukushi, Tsukasa; Wehner, Rüdiger
2004-09-01
Wood ants Formica japonica can steer their outbound (foraging) and inbound (homing) courses without using celestial compass information, by relying exclusively on landmark cues. This is shown by training ants to run back and forth between the nest and an artificial feeder, and later displacing the trained ants either from the nest (when starting their foraging runs: outbound full-vector ants) or from the feeder (when starting their home runs: inbound full-vector ants) to various nearby release sites. In addition, ants that have already completed their foraging and homing runs are displaced after arrival either at the feeder (outbound zero-vector ants) or at the nest (inbound zero-vector ants), respectively, to the very same release sites. Upon release, the full-vector ants steer their straight courses by referring to panoramic landmark cues, while the zero-vector ants presented with the very same visual scenery immediately search for local landmark cues defining their final goal. Hence, it depends on the context, in this case on the state of the forager's round-trip cycle, what visual cues are picked out from a given set of landmarks and used for navigation.
Killing spinors are Killing vector fields in Riemannian supergeometry
NASA Astrophysics Data System (ADS)
Alekseevsky, D. V.; Cortés, V.; Devchand, C.; Semmelmann, U.
1998-06-01
A supermanifold M is canonically associated to any pseudo-Riemannian spin manifold ( M0, g0). Extending the metric g0 to a field g of bilinear forms g( p) on TpM, pɛM0, the pseudo-Riemannian supergeometry of ( M, g) is formulated as G-structure on M, where G is a supergroup with even part G 0 ≊ Spin(k, l); (k, l) the signature of ( M0, go). Killing vector fields on ( M, g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field Xs on M. Our main result is that Xs is a Killing vector field on ( M, g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field Xs.
Zhang, Jiamei; Wang, Yan
2016-01-01
Since sixty percent of ametropes obtain astigmatism, which has influence on the visual quality, correcting the astigmatism is always the focus of concerns during visual correction procedures especially for the corneal refractive surgery. The postoperative spherical equivalent or residual cylindrical dioptors was used as quantitative index to evaluate the correction of astigmatism previously; however, such results neglect the effect of astigmatic axis shift on the treatment. Taking astigmatism as a vector parameter could describe the magnitude and direction of astigmatism accurately, thus it was increasingly applied in the evaluation of astigmatism correction. This paper reviews the present vector analysis methods, evaluation indexes and its application for the correction of astigmatism in the corneal refractive surgery.
An artificial elementary eye with optic flow detection and compositional properties.
Pericet-Camara, Ramon; Dobrzynski, Michal K; Juston, Raphaël; Viollet, Stéphane; Leitel, Robert; Mallot, Hanspeter A; Floreano, Dario
2015-08-06
We describe a 2 mg artificial elementary eye whose structure and functionality is inspired by compound eye ommatidia. Its optical sensitivity and electronic architecture are sufficient to generate the required signals for the measurement of local optic flow vectors in multiple directions. Multiple elementary eyes can be assembled to create a compound vision system of desired shape and curvature spanning large fields of view. The system configurability is validated with the fabrication of a flexible linear array of artificial elementary eyes capable of extracting optic flow over multiple visual directions. © 2015 The Author(s).
Adapting line integral convolution for fabricating artistic virtual environment
NASA Astrophysics Data System (ADS)
Lee, Jiunn-Shyan; Wang, Chung-Ming
2003-04-01
Vector field occurs not only extensively in scientific applications but also in treasured art such as sculptures and paintings. Artist depicts our natural environment stressing valued directional feature besides color and shape information. Line integral convolution (LIC), developed for imaging vector field in scientific visualization, has potential of producing directional image. In this paper we present several techniques of exploring LIC techniques to generate impressionistic images forming artistic virtual environment. We take advantage of directional information given by a photograph, and incorporate many investigations to the work including non-photorealistic shading technique and statistical detail control. In particular, the non-photorealistic shading technique blends cool and warm colors into the photograph to imitate artists painting convention. Besides, we adopt statistical technique controlling integral length according to image variance to preserve details. Furthermore, we also propose method for generating a series of mip-maps, which revealing constant strokes under multi-resolution viewing and achieving frame coherence in an interactive walkthrough system. The experimental results show merits of emulating satisfyingly and computing efficiently, as a consequence, relying on the proposed technique successfully fabricates a wide category of non-photorealistic rendering (NPR) application such as interactive virtual environment with artistic perception.
Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.
Mohiaddin, R H; Yang, G Z; Kilner, P J
1994-01-01
We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.
1990-10-01
type of approach for finding a dense displacement vector field has a time complexity that allows a real - time implementation when an appropriate control...hardly vector fields as they appear in Stereo or motion. The reason for this is the fact that local displacement vector field ( DVF ) esti- mates bave...2 objects’ motion, but that the quantitative optical flow is not a reliable measure of the real motion [VP87, SU87]. This applies even more to the
Astrand, Elaine; Enel, Pierre; Ibos, Guilhem; Dominey, Peter Ford; Baraduc, Pierre; Ben Hamed, Suliann
2014-01-01
Decoding neuronal information is important in neuroscience, both as a basic means to understand how neuronal activity is related to cerebral function and as a processing stage in driving neuroprosthetic effectors. Here, we compare the readout performance of six commonly used classifiers at decoding two different variables encoded by the spiking activity of the non-human primate frontal eye fields (FEF): the spatial position of a visual cue, and the instructed orientation of the animal's attention. While the first variable is exogenously driven by the environment, the second variable corresponds to the interpretation of the instruction conveyed by the cue; it is endogenously driven and corresponds to the output of internal cognitive operations performed on the visual attributes of the cue. These two variables were decoded using either a regularized optimal linear estimator in its explicit formulation, an optimal linear artificial neural network estimator, a non-linear artificial neural network estimator, a non-linear naïve Bayesian estimator, a non-linear Reservoir recurrent network classifier or a non-linear Support Vector Machine classifier. Our results suggest that endogenous information such as the orientation of attention can be decoded from the FEF with the same accuracy as exogenous visual information. All classifiers did not behave equally in the face of population size and heterogeneity, the available training and testing trials, the subject's behavior and the temporal structure of the variable of interest. In most situations, the regularized optimal linear estimator and the non-linear Support Vector Machine classifiers outperformed the other tested decoders. PMID:24466019
Vector optical fields with polarization distributions similar to electric and magnetic field lines.
Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian
2013-07-01
We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.
Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.
2014-01-01
Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784
Visualization and Analysis of Geology Word Vectors for Efficient Information Extraction
NASA Astrophysics Data System (ADS)
Floyd, J. S.
2016-12-01
When a scientist begins studying a new geographic region of the Earth, they frequently begin by gathering relevant scientific literature in order to understand what is known, for example, about the region's geologic setting, structure, stratigraphy, and tectonic and environmental history. Experienced scientists typically know what keywords to seek and understand that if a document contains one important keyword, then other words in the document may be important as well. Word relationships in a document give rise to what is known in linguistics as the context-dependent nature of meaning. For example, the meaning of the word `strike' in geology, as in the strike of a fault, is quite different from its popular meaning in baseball. In addition, word order, such as in the phrase `Cretaceous-Tertiary boundary,' often corresponds to the order of sequences in time or space. The context of words and the relevance of words to each other can be derived quantitatively by machine learning vector representations of words. Here we show the results of training a neural network to create word vectors from scientific research papers from selected rift basins and mid-ocean ridges: the Woodlark Basin of Papua New Guinea, the Hess Deep rift, and the Gulf of Mexico basin. The word vectors are statistically defined by surrounding words within a given window, limited by the length of each sentence. The word vectors are analyzed by their cosine distance to related words (e.g., `axial' and `magma'), classified by high dimensional clustering, and visualized by reducing the vector dimensions and plotting the vectors on a two- or three-dimensional graph. Similarity analysis of `Triassic' and `Cretaceous' returns `Jurassic' as the nearest word vector, suggesting that the model is capable of learning the geologic time scale. Similarity analysis of `basalt' and `minerals' automatically returns mineral names such as `chlorite', `plagioclase,' and `olivine.' Word vector analysis and visualization allow one to extract information from hundreds of papers or more and find relationships in less time than it would take to read all of the papers. As machine learning tools become more commonly available, more and more scientists will be able to use and refine these tools for their individual needs.
Electromagnetic potential vectors and the Lagrangian of a charged particle
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.
2012-03-09
equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the...wave function arguments from complex scalars to complex vectors . This conversion allows us to separate the electric field vector and the imaginary...magnetic field vector , because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while ex- ponentials of imaginary
Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori
2015-01-01
Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions. PMID:25993263
Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori
2015-01-01
In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.
Reconstruction of Vectorial Acoustic Sources in Time-Domain Tomography
Xia, Rongmin; Li, Xu; He, Bin
2009-01-01
A new theory is proposed for the reconstruction of curl-free vector field, whose divergence serves as acoustic source. The theory is applied to reconstruct vector acoustic sources from the scalar acoustic signals measured on a surface enclosing the source area. It is shown that, under certain conditions, the scalar acoustic measurements can be vectorized according to the known measurement geometry and subsequently be used to reconstruct the original vector field. Theoretically, this method extends the application domain of the existing acoustic reciprocity principle from a scalar field to a vector field, indicating that the stimulating vectorial source and the transmitted acoustic pressure vector (acoustic pressure vectorized according to certain measurement geometry) are interchangeable. Computer simulation studies were conducted to evaluate the proposed theory, and the numerical results suggest that reconstruction of a vector field using the proposed theory is not sensitive to variation in the detecting distance. The present theory may be applied to magnetoacoustic tomography with magnetic induction (MAT-MI) for reconstructing current distribution from acoustic measurements. A simulation on MAT-MI shows that, compared to existing methods, the present method can give an accurate estimation on the source current distribution and a better conductivity reconstruction. PMID:19211344
Measuring magnetic field vector by stimulated Raman transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda
2016-03-21
We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Hagyard, M. J.
1990-01-01
Off-center vector magnetograms which use all three components of the measured field provide the maximum information content from the photospheric field and can provide the most consistent potential field independent of the viewing angle by defining the normal component of the field. The required transformations of the magnetic field vector and the geometric mapping of the observed field in the image plane into the heliographic plane have been described. Here we discuss the total transformation of specific vector magnetograms to detail the problems and procedures that one should be aware of in analyzing observational magnetograms. The effect of the 180-deg ambiguity of the observed transverse field is considered as well as the effect of curvature of the photosphere. Specific results for active regions AR 2684 (September 23, 1980) and AR 4474 (April 26, 1984) from the Marshall Space Flight Center Vector magnetograph are described which point to the need for the heliographic projection in determining the field structure of an active region.
Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P
2013-09-01
We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.
Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W
2015-04-01
Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.
Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.
2015-01-01
Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.
Nalbach, H O
1992-01-01
Pigeons freely standing in the centre of a two-dimensionally textured cylinder not only rotate but also laterally translate their head in response to the pattern sinusoidally oscillating or unidirectionally rotating around their vertical axis. The translational head movement dominates the response at high oscillation frequencies, whereas in a unidirectionally rotating drum head translation declines at about the same rate as the rotational response increases. It is suggested that this is a consequence of charging the 'velocity storage' in the vestibulo-ocular system. Similar to the rotational head movement (opto-collic reflex), the translational head movement is elicited via a wide-field motion sensitive system. The underlying mechanism can be described as vector integration of movement vectors tangential to the pattern rotation. Stimulation of the frontal visual field elicits largest translational responses while rotational responses can be elicited equally well from any azimuthal position of a moving pattern. Experiments where most of the pattern is occluded by a screen and the pigeon is allowed to view the stimulus through one or two windows demonstrate a short-range inhibition and long-range excitation between movement detectors that feed into the rotational system. Furthermore, the results obtained from such types of experiments suggest that the rotational system inhibits the translational system. These mechanisms may help the pigeon to decompose image flow into its translational and rotational components. Because of their translational response to a rotational stimulus, it is concluded, however, that pigeons either generally cannot perfectly perform the task or they need further visual information, like differential image motion, that was not available to them in the paradigms.
Burgansky-Eliash, Zvia; Wollstein, Gadi; Chu, Tianjiao; Ramsey, Joseph D.; Glymour, Clark; Noecker, Robert J.; Ishikawa, Hiroshi; Schuman, Joel S.
2007-01-01
Purpose Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Methods Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] ≥ −6 dB) and 20 had advanced glaucoma (MD < −6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. Results The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Conclusions Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. PMID:16249492
Vector-beam solutions of Maxwell's wave equation.
Hall, D G
1996-01-01
The Hermite-Gauss and Laguerre-Gauss modes are well-known beam solutions of the scalar Helmholtz equation in the paraxial limit. As such, they describe linearly polarized fields or single Cartesian components of vector fields. The vector wave equation admits, in the paraxial limit, of a family of localized Bessel-Gauss beam solutions that can describe the entire transverse electric field. Two recently reported solutions are members of this family of vector Bessel-Gauss beam modes.
Gold, Peter O.; Cowgill, Eric; Kreylos, Oliver; Gold, Ryan D.
2012-01-01
Three-dimensional (3D) slip vectors recorded by displaced landforms are difficult to constrain across complex fault zones, and the uncertainties associated with such measurements become increasingly challenging to assess as landforms degrade over time. We approach this problem from a remote sensing perspective by using terrestrial laser scanning (TLS) and 3D structural analysis. We have developed an integrated TLS data collection and point-based analysis workflow that incorporates accurate assessments of aleatoric and epistemic uncertainties using experimental surveys, Monte Carlo simulations, and iterative site reconstructions. Our scanning workflow and equipment requirements are optimized for single-operator surveying, and our data analysis process is largely completed using new point-based computing tools in an immersive 3D virtual reality environment. In a case study, we measured slip vector orientations at two sites along the rupture trace of the 1954 Dixie Valley earthquake (central Nevada, United States), yielding measurements that are the first direct constraints on the 3D slip vector for this event. These observations are consistent with a previous approximation of net extension direction for this event. We find that errors introduced by variables in our survey method result in <2.5 cm of variability in components of displacement, and are eclipsed by the 10–60 cm epistemic errors introduced by reconstructing the field sites to their pre-erosion geometries. Although the higher resolution TLS data sets enabled visualization and data interactivity critical for reconstructing the 3D slip vector and for assessing uncertainties, dense topographic constraints alone were not sufficient to significantly narrow the wide (<26°) range of allowable slip vector orientations that resulted from accounting for epistemic uncertainties.
Correlation between topological structure and its properties in dynamic singular vector fields.
Vasilev, Vasyl; Soskin, Marat
2016-04-20
A new technique for establishment of topology measurements for static and dynamic singular vector fields is elaborated. It is based on precise measurement of the 3D landscape of ellipticity distribution for a checked singular optical field with C points on the tops of ellipticity hills. Vector fields possess three-component topology: areas with right-hand (RH) and left-hand (LH) ellipses, and delimiting those L lines as the singularities of handedness. The azimuth map of polarization ellipses is common for both RH and LH ellipses of vector fields and do not feel L lines. The strict rules were confirmed experimentally, which define the connection between the sign of underlying optical vortices and morphological parameters of upper-lying C points. Percolation phenomena explain their realization in-between singular vector fields and long duration of their chains of 103 s order.
Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping
2014-07-01
Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.
Optimal cue integration in ants.
Wystrach, Antoine; Mangan, Michael; Webb, Barbara
2015-10-07
In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy. © 2015 The Author(s).
Visual homing with a pan-tilt based stereo camera
NASA Astrophysics Data System (ADS)
Nirmal, Paramesh; Lyons, Damian M.
2013-01-01
Visual homing is a navigation method based on comparing a stored image of the goal location and the current image (current view) to determine how to navigate to the goal location. It is theorized that insects, such as ants and bees, employ visual homing methods to return to their nest. Visual homing has been applied to autonomous robot platforms using two main approaches: holistic and feature-based. Both methods aim at determining distance and direction to the goal location. Navigational algorithms using Scale Invariant Feature Transforms (SIFT) have gained great popularity in the recent years due to the robustness of the feature operator. Churchill and Vardy have developed a visual homing method using scale change information (Homing in Scale Space, HiSS) from SIFT. HiSS uses SIFT feature scale change information to determine distance between the robot and the goal location. Since the scale component is discrete with a small range of values, the result is a rough measurement with limited accuracy. We have developed a method that uses stereo data, resulting in better homing performance. Our approach utilizes a pan-tilt based stereo camera, which is used to build composite wide-field images. We use the wide-field images combined with stereo-data obtained from the stereo camera to extend the keypoint vector described in to include a new parameter, depth (z). Using this info, our algorithm determines the distance and orientation from the robot to the goal location. We compare our method with HiSS in a set of indoor trials using a Pioneer 3-AT robot equipped with a BumbleBee2 stereo camera. We evaluate the performance of both methods using a set of performance measures described in this paper.
GeneXplorer: an interactive web application for microarray data visualization and analysis.
Rees, Christian A; Demeter, Janos; Matese, John C; Botstein, David; Sherlock, Gavin
2004-10-01
When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data. We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields. The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.
Origin and structures of solar eruptions II: Magnetic modeling
NASA Astrophysics Data System (ADS)
Guo, Yang; Cheng, Xin; Ding, MingDe
2017-07-01
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.
Gaugeon formalism for the second-rank antisymmetric tensor gauge fields
NASA Astrophysics Data System (ADS)
Aochi, Masataka; Endo, Ryusuke; Miura, Hikaru
2018-02-01
We present a BRST symmetric gaugeon formalism for the second-rank antisymmetric tensor gauge fields. A set of vector gaugeon fields is introduced as a quantum gauge freedom. One of the gaugeon fields satisfies a higher-derivative field equation; this property is necessary to change the gauge-fixing parameter of the antisymmetric tensor gauge field. A naive Lagrangian for the vector gaugeon fields is itself invariant under a gauge transformation for the vector gaugeon field. The Lagrangian of our theory includes the gauge-fixing terms for the gaugeon fields and corresponding Faddeev-Popov ghost terms.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
Inflation with a massive vector field nonminimally coupled to gravity
NASA Astrophysics Data System (ADS)
Páramos, J.
2018-01-01
The possibility that inflation is driven by a massive vector field with SO(3) global symmetry nonminimally coupled to gravity is presented. Through an appropriate Ansatz for the vector field, the behaviour of the equations of motion is studied through the ensuing dynamical system, focusing on the characterisation of the ensuing fixed points.
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
NASA Astrophysics Data System (ADS)
Li, P.; Turk, J.; Vu, Q.; Knosp, B.; Hristova-Veleva, S. M.; Lambrigtsen, B.; Poulsen, W. L.; Licata, S.
2009-12-01
NASA is planning a new field experiment, the Genesis and Rapid Intensification Processes (GRIP), in the summer of 2010 to better understand how tropical storms form and develop into major hurricanes. The DC-8 aircraft and the Global Hawk Unmanned Airborne System (UAS) will be deployed loaded with instruments for measurements including lightning, temperature, 3D wind, precipitation, liquid and ice water contents, aerosol and cloud profiles. During the field campaign, both the spaceborne and the airborne observations will be collected in real-time and integrated with the hurricane forecast models. This observation-model integration will help the campaign achieve its science goals by allowing team members to effectively plan the mission with current forecasts. To support the GRIP experiment, JPL developed a website for interactive visualization of all related remote-sensing observations in the GRIP’s geographical domain using the new Google Earth API. All the observations are collected in near real-time (NRT) with 2 to 5 hour latency. The observations include a 1KM blended Sea Surface Temperature (SST) map from GHRSST L2P products; 6-hour composite images of GOES IR; stability indices, temperature and vapor profiles from AIRS and AMSU-B; microwave brightness temperature and rain index maps from AMSR-E, SSMI and TRMM-TMI; ocean surface wind vectors, vorticity and divergence of the wind from QuikSCAT; the 3D precipitation structure from TRMM-PR and vertical profiles of cloud and precipitation from CloudSAT. All the NRT observations are collected from the data centers and science facilities at NASA and NOAA, subsetted, re-projected, and composited into hourly or daily data products depending on the frequency of the observation. The data products are then displayed on the 3D Google Earth plug-in at the JPL Tropical Cyclone Information System (TCIS) website. The data products offered by the TCIS in the Google Earth display include image overlays, wind vectors, clickable placemarks with vertical profiles for temperature and water vapors and curtain plots along the satellite tracks. Multiple products can be overlaid with individual adjustable opacity control. The time sequence visualization is supported by calendar and Google Earth time animation. The work described here was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.
1990-01-01
A 9.2 percent scale STOVL hot gas ingestion model was tested in the NASA Lewis 9 x 15-foot Low-Speed Wind Tunnel. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R and contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.
A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish
Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian
2017-01-01
When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water1. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal’s frame of reference2. In spite of this, many aquatic animals consistently orient and swim against oncoming flows (a behavior known as rheotaxis) even in the absence of visual cues3,4. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioral data that support a novel algorithm based on such local velocity gradients that fish use to efficiently avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, measure its temporal change following swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioral algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviors in moving fluids. PMID:28700578
Scalar/Vector potential formulation for compressible viscous unsteady flows
NASA Technical Reports Server (NTRS)
Morino, L.
1985-01-01
A scalar/vector potential formulation for unsteady viscous compressible flows is presented. The scalar/vector potential formulation is based on the classical Helmholtz decomposition of any vector field into the sum of an irrotational and a solenoidal field. The formulation is derived from fundamental principles of mechanics and thermodynamics. The governing equations for the scalar potential and vector potential are obtained, without restrictive assumptions on either the equation of state or the constitutive relations or the stress tensor and the heat flux vector.
Magnetic vector field tag and seal
Johnston, Roger G.; Garcia, Anthony R.
2004-08-31
One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.
NASA Astrophysics Data System (ADS)
Itatani, Keiichi; Okada, Takashi; Uejima, Tokuhisa; Tanaka, Tomohiko; Ono, Minoru; Miyaji, Kagami; Takenaka, Katsu
2013-07-01
We have developed a system to estimate velocity vector fields inside the cardiac ventricle by echocardiography and to evaluate several flow dynamical parameters to assess the pathophysiology of cardiovascular diseases. A two-dimensional continuity equation was applied to color Doppler data using speckle tracking data as boundary conditions, and the velocity component perpendicular to the echo beam line was obtained. We determined the optimal smoothing method of the color Doppler data, and the 8-pixel standard deviation of the Gaussian filter provided vorticity without nonphysiological stripe shape noise. We also determined the weight function at the bilateral boundaries given by the speckle tracking data of the ventricle or vascular wall motion, and the weight function linear to the distance from the boundary provided accurate flow velocities not only inside the vortex flow but also around near-wall regions on the basis of the results of the validation of a digital phantom of a pipe flow model.
Accelerating 4D flow MRI by exploiting vector field divergence regularization.
Santelli, Claudio; Loecher, Michael; Busch, Julia; Wieben, Oliver; Schaeffter, Tobias; Kozerke, Sebastian
2016-01-01
To improve velocity vector field reconstruction from undersampled four-dimensional (4D) flow MRI by penalizing divergence of the measured flow field. Iterative image reconstruction in which magnitude and phase are regularized separately in alternating iterations was implemented. The approach allows incorporating prior knowledge of the flow field being imaged. In the present work, velocity data were regularized to reduce divergence, using either divergence-free wavelets (DFW) or a finite difference (FD) method using the ℓ1-norm of divergence and curl. The reconstruction methods were tested on a numerical phantom and in vivo data. Results of the DFW and FD approaches were compared with data obtained with standard compressed sensing (CS) reconstruction. Relative to standard CS, directional errors of vector fields and divergence were reduced by 55-60% and 38-48% for three- and six-fold undersampled data with the DFW and FD methods. Velocity vector displays of the numerical phantom and in vivo data were found to be improved upon DFW or FD reconstruction. Regularization of vector field divergence in image reconstruction from undersampled 4D flow data is a valuable approach to improve reconstruction accuracy of velocity vector fields. © 2014 Wiley Periodicals, Inc.
Visualization and manipulating the image of a formal data structure (FDS)-based database
NASA Astrophysics Data System (ADS)
Verdiesen, Franc; de Hoop, Sylvia; Molenaar, Martien
1994-08-01
A vector map is a terrain representation with a vector-structured geometry. Molenaar formulated an object-oriented formal data structure for 3D single valued vector maps. This FDS is implemented in a database (Oracle). In this study we describe a methodology for visualizing a FDS-based database and manipulating the image. A data set retrieved by querying the database is converted into an import file for a drawing application. An objective of this study is that an end-user can alter and add terrain objects in the image. The drawing application creates an export file, that is compared with the import file. Differences between these files result in updating the database which involves checks on consistency. In this study Autocad is used for visualizing and manipulating the image of the data set. A computer program has been written for the data exchange and conversion between Oracle and Autocad. The data structure of the FDS is compared to the data structure of Autocad and the data of the FDS is converted into the structure of Autocad equal to the FDS.
Accurate Initial State Estimation in a Monocular Visual–Inertial SLAM System
Chen, Jing; Zhou, Zixiang; Leng, Zhen; Fan, Lei
2018-01-01
The fusion of monocular visual and inertial cues has become popular in robotics, unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based fusion strategies outperform filtering strategies. Robust state estimation is the core capability for optimization-based visual–inertial Simultaneous Localization and Mapping (SLAM) systems. As a result of the nonlinearity of visual–inertial systems, the performance heavily relies on the accuracy of initial values (visual scale, gravity, velocity and Inertial Measurement Unit (IMU) biases). Therefore, this paper aims to propose a more accurate initial state estimation method. On the basis of the known gravity magnitude, we propose an approach to refine the estimated gravity vector by optimizing the two-dimensional (2D) error state on its tangent space, then estimate the accelerometer bias separately, which is difficult to be distinguished under small rotation. Additionally, we propose an automatic termination criterion to determine when the initialization is successful. Once the initial state estimation converges, the initial estimated values are used to launch the nonlinear tightly coupled visual–inertial SLAM system. We have tested our approaches with the public EuRoC dataset. Experimental results show that the proposed methods can achieve good initial state estimation, the gravity refinement approach is able to efficiently speed up the convergence process of the estimated gravity vector, and the termination criterion performs well. PMID:29419751
3D Planetary Data Visualization with CesiumJS
NASA Astrophysics Data System (ADS)
Larsen, K. W.; DeWolfe, A. W.; Nguyen, D.; Sanchez, F.; Lindholm, D. M.
2017-12-01
Complex spacecraft orbits and multi-instrument observations can be challenging to visualize with traditional 2D plots. To facilitate the exploration of planetary science data, we have developed a set of web-based interactive 3D visualizations for the MAVEN and MMS missions using the free CesiumJS library. The Mars Atmospheric and Volatile Evolution (MAVEN) mission has been collecting data at Mars since September 2014. The MAVEN3D project allows playback of one day's orbit at a time, displaying the spacecraft's position and orientation. Selected science data sets can be overplotted on the orbit track, including vectors for magnetic field and ion flow velocities. We also provide an overlay the M-GITM model on the planet itself. MAVEN3D is available at the MAVEN public website at: https://lasp.colorado.edu/maven/sdc/public/pages/maven3d/ The Magnetospheric MultiScale Mission (MMS) consists of one hundred instruments on four spacecraft flying in formation around Earth, investigating the interactions between the solar wind and Earth's magnetic field. While the highest temporal resolution data isn't received and processed until later, continuous daily observations of the particle and field environments are made available as soon as they are received. Traditional `quick-look' static plots have long been the first interaction with data from a mission of this nature. Our new 3D Quicklook viewer allows data from all four spacecraft to be viewed in an interactive web application as soon as the data is ingested into the MMS Science Data Center, less than one day after collection, in order to better help identify scientifically interesting data.
Polarization ellipse and Stokes parameters in geometric algebra.
Santos, Adler G; Sugon, Quirino M; McNamara, Daniel J
2012-01-01
In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.
Long-Term Effect of Gene Therapy on Leber’s Congenital Amaurosis
Bainbridge, J.W.B.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.M.; Beattie, S.G.; Gardner, P.J.; Feathers, K.L.; Luong, V.A.; Yzer, S.; Balaggan, K.; Viswanathan, A.; de Ravel, T.J.L.; Casteels, I.; Holder, G.E.; Tyler, N.; Fitzke, F.W.; Weleber, R.G.; Nardini, M.; Moore, A.T.; Thompson, D.A.; Petersen-Jones, S.M.; Michaelides, M.; van den Born, L.I.; Stockman, A.; Smith, A.J.; Rubin, G.; Ali, R.R.
2015-01-01
BACKGROUND Mutations in RPE65 cause Leber’s congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. METHODS We performed a phase 1–2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. RESULTS Improvements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was detected by means of ERG. Three participants had intraocular inflammation, and two had clinically significant deterioration of visual acuity. The reduction in central retinal thickness varied among participants. In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG. CONCLUSIONS Gene therapy with rAAV2/2 RPE65 vector improved retinal sensitivity, albeit modestly and temporarily. Comparison with the results obtained in the dog model indicates that there is a species difference in the amount of RPE65 required to drive the visual cycle and that the demand for RPE65 in affected persons was not met to the extent required for a durable, robust effect. (Funded by the National Institute for Health Research and others; ClinicalTrials.gov number, NCT00643747.) PMID:25938638
Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing
2015-05-29
A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less
The Curl of a Vector Field: Beyond the Formula
ERIC Educational Resources Information Center
Burch, Kimberly Jordan; Choi, Youngna
2006-01-01
It has been widely acknowledged that there is some discrepancy in the teaching of vector calculus in mathematics courses and other applied fields. The curl of a vector field is one topic many students can calculate without understanding its significance. In this paper, we explain the origin of the curl after presenting the standard mathematical…
Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Meadows, Steven
1997-10-01
Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.
A comparison of in situ measurements of vector-E and - vector-V x vector-B from Dynamics Explorer 2
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Coley, W. R.; Heelis, R. A.; Maynard, N. C.; Aggson, T. L.
1993-01-01
Dynamics Explorer-2 provided the first opportunity to make a direct comparison of in situ measurements of the high-latitude convection electric field by two distinctly different techniques. The vector electric field instrument (VEFI) used antennae to measure the intrinsic electric fields and the ion drift meter (IDM) and retarding potential analyzer (RPA) measured the ion drift velocity vector, from which the convection electric field can be deduced. The data from three orbits having large electric fields at high latitude are presented, one at high, one at medium, and one at low altitudes. The general agreement between the two measurements of electric field is very good, with typical differences at high latitudes of the order of a few millivolts per meter, but there are some regions where the particle fluxes are extremely large (e.g., the cusp) and the disagreement is worse, probably because of IDM difficulties. The auroral zone potential patterns derived from the two devices are in excellent agreement for two of the cases, but not in the third, where bad attitude data may be the problem. At low latitudes there are persistent differences in the measurements of a few millivolts per meter, though these differences are quite constant from orbit to orbit. This problem seems to arise from some shortcoming in the VEFI measurments. Overall, however, these measurements confirm the concept of `frozen-in' plasma that drifts with velocity vector-E x vector-B/B(exp 2) within the measurement errors of the two techniques.
MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.
Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn
2013-12-01
We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.
Vector coding of wavelet-transformed images
NASA Astrophysics Data System (ADS)
Zhou, Jun; Zhi, Cheng; Zhou, Yuanhua
1998-09-01
Wavelet, as a brand new tool in signal processing, has got broad recognition. Using wavelet transform, we can get octave divided frequency band with specific orientation which combines well with the properties of Human Visual System. In this paper, we discuss the classified vector quantization method for multiresolution represented image.
Ahmad, Rohani; Ali, Wan N W M; Nor, Zurainee M; Ismail, Zamree; Hadi, Azahari A; Ibrahim, Mohd N; Lim, Lee H
2011-12-13
The application of the Geographic Information Systems (GIS) to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species. As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats. Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of Anopheles maculatus s.s. immature habitats were found within the buffer zone. This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level.
2011-01-01
Background The application of the Geographic Information Systems (GIS) to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species. Methods As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats. Results Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of Anopheles maculatus s.s. immature habitats were found within the buffer zone. Conclusions This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level. PMID:22166101
Amira: Multi-Dimensional Scientific Visualization for the GeoSciences in the 21st Century
NASA Astrophysics Data System (ADS)
Bartsch, H.; Erlebacher, G.
2003-12-01
amira (www.amiravis.com) is a general purpose framework for 3D scientific visualization that meets the needs of the non-programmer, the script writer, and the advanced programmer alike. Provided modules may be visually assembled in an interactive manner to create complex visual displays. These modules and their associated user interfaces are controlled either through a mouse, or via an interactive scripting mechanism based on Tcl. We provide interactive demonstrations of the various features of Amira and explain how these may be used to enhance the comprehension of datasets in use in the Earth Sciences community. Its features will be illustrated on scalar and vector fields on grid types ranging from Cartesian to fully unstructured. Specialized extension modules developed by some of our collaborators will be illustrated [1]. These include a module to automatically choose values for salient isosurface identification and extraction, and color maps suitable for volume rendering. During the session, we will present several demonstrations of remote networking, processing of very large spatio-temporal datasets, and various other projects that are underway. In particular, we will demonstrate WEB-IS, a java-applet interface to Amira that allows script editing via the web, and selected data analysis [2]. [1] G. Erlebacher, D. A. Yuen, F. Dubuffet, "Case Study: Visualization and Analysis of High Rayleigh Number -- 3D Convection in the Earth's Mantle", Proceedings of Visualization 2002, pp. 529--532. [2] Y. Wang, G. Erlebacher, Z. A. Garbow, D. A. Yuen, "Web-Based Service of a Visualization Package 'amira' for the Geosciences", Visual Geosciences, 2003.
Psyplot: Visualizing rectangular and triangular Climate Model Data with Python
NASA Astrophysics Data System (ADS)
Sommer, Philipp
2016-04-01
The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.
A Subdivision-Based Representation for Vector Image Editing.
Liao, Zicheng; Hoppe, Hugues; Forsyth, David; Yu, Yizhou
2012-11-01
Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing. These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image representation achieves high visual quality and better supports editing operations than existing representations.
Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell'Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean
2008-03-01
We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.
Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell’Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean
2010-01-01
We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 × 1010 vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations. PMID:18209734
Lsiviewer 2.0 - a Client-Oriented Online Visualization Tool for Geospatial Vector Data
NASA Astrophysics Data System (ADS)
Manikanta, K.; Rajan, K. S.
2017-09-01
Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of serverdominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer - a simple, easy-to-use and robust online geospatial data visualisation system for the user's own data that harness the client's capabilities for data rendering and user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35 MB, showed that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical system.
Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G
2015-05-18
Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.
ERIC Educational Resources Information Center
Curjel, C. R.
1990-01-01
Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.
Colorimetric qualification of shear sensitive liquid crystal coatings
NASA Technical Reports Server (NTRS)
Muratore, Joseph J., Jr.
1993-01-01
The work that has been done to date on the Shear Sensitive Liquid Crystal Project demonstrated that cholesteric liquid crystal coatings respond to both the direction and magnitude of a shearing force. The response of the coating is to selectively scatter incident white light into a spectrum of colors. Discernible color changes at a fixed angle of observation and illumination are the result of an applied shear stress. The intention was to be able to convert these observable color patterns from a flow visualization technique into a quantitative tool. One of the earlier intentions was to be able to use liquid crystals in dynamic flow fields. This was assumed possible because liquid crystals had made it possible to visualize transients in surface shear forces. Although the transients were visualized by color changes to an order one micro second, the time response of a coating to align to a shearing force is dependent on the magnitude of the change between its initial and final states. Unfortunately, the response is not instantaneous. It is for this reason any future attempt at quantifying the magnitude and directions of a shearing force are limited to surface shear stress vector fields in three dimensional steady state flows. This limitation does not significantly detract from the utility of liquid crystal coatings. The measurement of skin friction in the study of transition on wings, prediction of drag forces, performance assessment, and the investigation of boundary layer behavior is of great importance in aerodynamics. There exist numerous examples of techniques for the measurement of surface shear stress. Most techniques require arduous calibrations and necessitate extensive preparation of the receiving surfaces. However, the main draw back of instruments such as Preston tubes, hot films, buried wire gages, and floating element balances is that they only provide a point measurement. The advantages of capturing global shear data would be appreciable when compared with conventional point measurement sensors. It has yet to be determined if a repeatable correlation exists between the measured color of a liquid crystal coating and the magnitude/directional components of a shear vector imposed onto it.
The hopf algebra of vector fields on complex quantum groups
NASA Astrophysics Data System (ADS)
Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno
1992-10-01
We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.
On Finsler spacetimes with a timelike Killing vector field
NASA Astrophysics Data System (ADS)
Caponio, Erasmo; Stancarone, Giuseppe
2018-04-01
We study Finsler spacetimes and Killing vector fields taking care of the fact that the generalised metric tensor associated to the Lorentz–Finsler function L is in general well defined only on a subset of the slit tangent bundle. We then introduce a new class of Finsler spacetimes endowed with a timelike Killing vector field that we call stationary splitting Finsler spacetimes. We characterize when a Finsler spacetime with a timelike Killing vector field is locally a stationary splitting. Finally, we show that the causal structure of a stationary splitting is the same of one of two Finslerian static spacetimes naturally associated to the stationary splitting.
Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skraba, Primoz; Rosen, Paul; Wang, Bei
Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with amore » guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. Here, we apply our method to synthetic and simulation datasets to demonstrate its effectiveness.« less
Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.
Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio
2016-02-29
Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.
Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion
Skraba, Primoz; Rosen, Paul; Wang, Bei; ...
2016-02-29
Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with amore » guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. Here, we apply our method to synthetic and simulation datasets to demonstrate its effectiveness.« less
Stress field modelling from digital geological map data
NASA Astrophysics Data System (ADS)
Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián
2016-04-01
To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is calculated from the fracture criterion. The calculation includes the gravitational acceleration, the average density of rocks and the experimental 60 degree of the fracture angle from the normal of the fault plane. This way, the stress tensors are calculated as absolute pressure values per square meters on both sides of the faults. If the stress from the overburden is greater than 1 bar (i.e. the faults are buried), a confined compression would be present. Modelling this state of stress may result a confusing pattern of vectors, because in a confined position the horizontal stress vectors may point towards structures primarily associated with extension. To step over this, and to highlight the variability in the stress-field, the model calculates the vectors directly from the differential stress (practically subtracting the minimum principal stress from the critical stress). The result of the modelling is a vector map, which theoretically represents the minimum tectonic pressure in the moment, when the rock body breaks from an initial state. This map - together with the original fault-map - is suitable for determining those areas where unrevealed tectonic, sedimentary and lithological structures are possibly present (e.g. faults, sub-basins and intrusions). With modelling different deformational phases on the same area, change of the stress vectors can be detected which reveals not only the varying directions of the principal stresses, but the tectonic-driven sedimentation patterns too. The decrease of necessary critical stress in the case of a possible reactivation of a fault in subsequent deformation phase can be managed with the down-ranking of the concerning structural elements. Reference: Albert G., Ungvári ZS., Szentpéteri K. 2014: Modeling the present day stress field of the Pannonian Basin from neotectonic maps - In: Beqiraj A, Ionescu C, Christofides G, Uta A, Beqiraj Goga E, Marku S (eds.) Proceedings XX Congress of the Carpathian-Balkan Geological Association. Tirana: p. 2.
Statistics of partially-polarized fields: beyond the Stokes vector and coherence matrix
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail
2017-08-01
Traditionally, the partially-polarized light is characterized by the four Stokes parameters. Equivalent description is also provided by correlation tensor of the optical field. These statistics specify only the second moments of the complex amplitudes of the narrow-band two-dimensional electric field of the optical wave. Electric field vector of the random quasi monochromatic wave is a nonstationary oscillating two-dimensional real random variable. We introduce a novel statistical description of these partially polarized waves: the Period-Averaged Probability Density Function (PA-PDF) of the field. PA-PDF contains more information on the polarization state of the field than the Stokes vector. In particular, in addition to the conventional distinction between the polarized and depolarized components of the field PA-PDF allows to separate the coherent and fluctuating components of the field. We present several model examples of the fields with identical Stokes vectors and very distinct shapes of PA-PDF. In the simplest case of the nonstationary, oscillating normal 2-D probability distribution of the real electrical field and stationary 4-D probability distribution of the complex amplitudes, the newly-introduced PA-PDF is determined by 13 parameters that include the first moments and covariance matrix of the quadrature components of the oscillating vector field.
Sarhan, A; Dua, H.; Beach, M.
2000-01-01
BACKGROUND/AIMS—Post-keratoplasty astigmatism can be managed by selective suture removal in the steep axis. Corneal topography, keratometry, and refraction are used to determine the steep axis for suture removal. However, often there is a disagreement between the topographically determined steep axis and sutures to be removed and that determined by keratometry and refraction. The purpose of this study was to evaluate any difference in the effect of suture removal, on visual acuity and astigmatism, in patients where such a disagreement existed. METHODS—37 cases (from 37 patients) of selective suture removal after penetrating keratoplasty, were included. In the first group "the disagreement group" (n=15) there was disagreement between corneal topography, keratometry, and refraction regarding the axis of astigmatism and sutures to be removed. In the second group "the agreement group" (n=22) there was agreement between corneal topography, keratometry, and refraction in the determination of the astigmatic axis and sutures to be removed. Sutures were removed according to the corneal topography, at least 5 months postoperatively. Vector analysis for change in astigmatism and visual acuity after suture removal was compared between groups. RESULTS—In the disagreement group, the amount of vector corrected change in refractive, keratometric, and topographic astigmatism after suture removal was 3.45 (SD 2.34), 3.57 (1.63), and 2.83 (1.68) dioptres, respectively. In the agreement group, the amount of vector corrected change in refractive, keratometric, and topographic astigmatism was 5.95 (3.52), 5.37 (3.29), and 4.71 (2.69) dioptres respectively. This difference in the vector corrected change in astigmatism between groups was statistically significant, p values of 0.02, 0.03, and 0.03 respectively. Visual acuity changes were more favourable in the agreement group. Improvement or no change in visual acuity occurred in 90.9% in the agreement group compared with 73.3% of the disagreement group. CONCLUSIONS—Agreement between refraction, keratometry, and topography was associated with greater change in vector corrected astigmatism and was an indicator of good prognosis. Disagreement between refraction, keratometry, and topography was associated with less vector corrected change in astigmatism, a greater probability of decrease in visual acuity, and a relatively poor outcome following suture removal. However, patients in the disagreement group still have a greater chance of improvement than worsening, following suture removal. PMID:10906087
NASA Astrophysics Data System (ADS)
Maruyama, Tomoyuki; Nakano, Eiji; Yanase, Kota; Yoshinaga, Naotaka
2018-06-01
The spontaneous spin polarization of strongly interacting matter due to axial-vector- and tensor-type interactions is studied at zero temperature and high baryon-number densities. We start with the mean-field Lagrangian for the axial-vector and tensor interaction channels and find in the chiral limit that the spin polarization due to the tensor mean field (U ) takes place first as the density increases for sufficiently strong coupling constants, and then the spin polarization due to the axial-vector mean field (A ) emerges in the region of the finite tensor mean field. This can be understood as making the axial-vector mean-field finite requires a broken chiral symmetry somehow, which is achieved by the finite tensor mean field in the present case. It is also found from the symmetry argument that there appear the type I (II) Nambu-Goldstone modes with a linear (quadratic) dispersion in the spin polarized phase with U ≠0 and A =0 (U ≠0 and A ≠0 ), although these two phases exhibit the same symmetry breaking pattern.
Lefschetz thimbles in fermionic effective models with repulsive vector-field
NASA Astrophysics Data System (ADS)
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2018-06-01
We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.
Characteristic classes of gauge systems
NASA Astrophysics Data System (ADS)
Lyakhovich, S. L.; Sharapov, A. A.
2004-12-01
We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.
Ugorcáková, J; Bukovská, G; Timko, J
2000-01-01
We constructed new promoter-probe vectors for E. coli and corynebacteria based on the promoterless alpha-amylase gene originating from Bacillus subtilis. Vectors pJUPAE1 and pJUPAE2 are suitable for isolation of transcriptionally active fragments from plasmids, phages or genomic DNA. alpha-Amylase activity can be easily visually detected on agar plates containing a chromogenic substrate, or by direct measurement of alpha-amylase activity.
A multistage motion vector processing method for motion-compensated frame interpolation.
Huang, Ai- Mei; Nguyen, Truong Q
2008-05-01
In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.
Three-dimensional study of the vector potential of magnetic structures.
Phatak, Charudatta; Petford-Long, Amanda K; De Graef, Marc
2010-06-25
The vector potential is central to a number of areas of condensed matter physics, such as superconductivity and magnetism. We have used a combination of electron wave phase reconstruction and electron tomographic reconstruction to experimentally measure and visualize the three-dimensional vector potential in and around a magnetic Permalloy structure. The method can probe the vector potential of the patterned structures with a resolution of about 13 nm. A transmission electron microscope operated in the Lorentz mode is used to record four tomographic tilt series. Measurements for a square Permalloy structure with an internal closure domain configuration are presented.
NASA Astrophysics Data System (ADS)
Haigang, Sui; Zhina, Song
2016-06-01
Reliably ship detection in optical satellite images has a wide application in both military and civil fields. However, this problem is very difficult in complex backgrounds, such as waves, clouds, and small islands. Aiming at these issues, this paper explores an automatic and robust model for ship detection in large-scale optical satellite images, which relies on detecting statistical signatures of ship targets, in terms of biologically-inspired visual features. This model first selects salient candidate regions across large-scale images by using a mechanism based on biologically-inspired visual features, combined with visual attention model with local binary pattern (CVLBP). Different from traditional studies, the proposed algorithm is high-speed and helpful to focus on the suspected ship areas avoiding the separation step of land and sea. Largearea images are cut into small image chips and analyzed in two complementary ways: Sparse saliency using visual attention model and detail signatures using LBP features, thus accordant with sparseness of ship distribution on images. Then these features are employed to classify each chip as containing ship targets or not, using a support vector machine (SVM). After getting the suspicious areas, there are still some false alarms such as microwaves and small ribbon clouds, thus simple shape and texture analysis are adopted to distinguish between ships and nonships in suspicious areas. Experimental results show the proposed method is insensitive to waves, clouds, illumination and ship size.
NASA Astrophysics Data System (ADS)
Jiang, Feng; Liu, Shulin
2018-03-01
In this paper, we present a feasibility study for detecting cracks with different hidden depths and shapes using information contained in the magnetic field excited by a rectangular coil with a rectangular cross section. First, we solve for the eigenvalues and the unknown coefficients of the magnetic vector potential by imposing artificial and natural boundary conditions. Thus, a semi-analytical solution for the magnetic field distribution around the surface of a conducting plate that contains a long hidden crack is formulated. Next, based on the proposed modelling, the influences of the different hidden depth cracks on the surface magnetic field are analysed. The results show that the horizontal and vertical components of the magnetic field near the crack are becoming weaker and that the phase information of the magnetic field can be used to qualitatively determine the hidden depth of the crack. In addition, the model is optimised to improve its accuracy in classifying crack types. The relationship between signal features and crack shapes is subsequently established. The modified model is validated by using finite element simulations, visually indicating the change in the magnetic field near the crack.
Adaptive near-field beamforming techniques for sound source imaging.
Cho, Yong Thung; Roan, Michael J
2009-02-01
Phased array signal processing techniques such as beamforming have a long history in applications such as sonar for detection and localization of far-field sound sources. Two sometimes competing challenges arise in any type of spatial processing; these are to minimize contributions from directions other than the look direction and minimize the width of the main lobe. To tackle this problem a large body of work has been devoted to the development of adaptive procedures that attempt to minimize side lobe contributions to the spatial processor output. In this paper, two adaptive beamforming procedures-minimum variance distorsionless response and weight optimization to minimize maximum side lobes--are modified for use in source visualization applications to estimate beamforming pressure and intensity using near-field pressure measurements. These adaptive techniques are compared to a fixed near-field focusing technique (both techniques use near-field beamforming weightings focusing at source locations estimated based on spherical wave array manifold vectors with spatial windows). Sound source resolution accuracies of near-field imaging procedures with different weighting strategies are compared using numerical simulations both in anechoic and reverberant environments with random measurement noise. Also, experimental results are given for near-field sound pressure measurements of an enclosed loudspeaker.
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
Altieri, Nicholas; Pisoni, David B.; Townsend, James T.
2012-01-01
Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield’s feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration. PMID:21968081
Altieri, Nicholas; Pisoni, David B; Townsend, James T
2011-01-01
Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield's feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration.
NASA Astrophysics Data System (ADS)
Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.
2015-12-01
The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .
New rules for visual selection: Isolating procedural attention.
Ramamurthy, Mahalakshmi; Blaser, Erik
2017-02-01
High performance in well-practiced, everyday tasks-driving, sports, gaming-suggests a kind of procedural attention that can allocate processing resources to behaviorally relevant information in an unsupervised manner. Here we show that training can lead to a new, automatic attentional selection rule that operates in the absence of bottom-up, salience-driven triggers and willful top-down selection. Taking advantage of the fact that attention modulates motion aftereffects, observers were presented with a bivectorial display with overlapping, iso-salient red and green dot fields moving to the right and left, respectively, while distracted by a demanding auditory two-back memory task. Before training, since the motion vectors canceled each other out, no net motion aftereffect (MAE) was found. However, after 3 days (0.5 hr/day) of training, during which observers practiced selectively attending to the red, rightward field, a significant net MAE was observed-even when top-down selection was again distracted. Further experiments showed that these results were not due to perceptual learning, and that the new rule targeted the motion, and not the color of the target dot field, and global, not local, motion signals; thus, the new rule was: "select the rightward field." This study builds on recent work on selection history-driven and reward-driven biases, but uses a novel paradigm where the allocation of visual processing resources are measured passively, offline, and when the observer's ability to execute top-down selection is defeated.
Parts-based stereoscopic image assessment by learning binocular manifold color visual properties
NASA Astrophysics Data System (ADS)
Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi
2016-11-01
Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.; Stark, B. A.; Venkatakrishnan, P.
1998-01-01
A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region.
Electrical Microstimulation of the Superior Colliculus in Strabismic Monkeys.
Fleuriet, Jérome; Walton, Mark M G; Ono, Seiji; Mustari, Michael J
2016-06-01
Visually guided saccades are disconjugate in human and nonhuman strabismic primates. The superior colliculus (SC) is a region of the brain topographically organized in visual and motor maps where the saccade goal is spatially coded. The present study was designed to investigate if a site of stimulation on the topographic motor map was evoking similar or different saccade vectors for each eye. We used microelectrical stimulation (MS) of the SC in two strabismic (one esotrope and one exotrope) and two control macaques under binocular and monocular viewing conditions. We compared the saccade amplitudes and directions for each SC site and each condition independently of the fixating eye and then between each fixating eye. A comparison with disconjugacies of visually guided saccades was also performed. We observed different saccade vectors for the two eyes in strabismic monkeys, but conjugate saccades in normal monkeys. Evoked saccade vectors for the left eye when that eye was fixating the target were different from those of the right eye when it was fixating. The disconjugacies evoked by the MS were not identical but similar to those observed for visually guided saccades especially for the dominant eye. Our results suggest that, in strabismus, the saccade generator does not interpret activation of a single location of the SC as the same desired displacement for each eye. This finding is important for advancing understanding of the development of neural circuits in strabismus. French Abstract.
Doroudchi, M Mehdi; Greenberg, Kenneth P; Liu, Jianwen; Silka, Kimberly A; Boyden, Edward S; Lockridge, Jennifer A; Arman, A Cyrus; Janani, Ramesh; Boye, Shannon E; Boye, Sanford L; Gordon, Gabriel M; Matteo, Benjamin C; Sampath, Alapakkam P; Hauswirth, William W; Horsager, Alan
2011-01-01
Previous work established retinal expression of channelrhodopsin-2 (ChR2), an algal cation channel gated by light, restored physiological and behavioral visual responses in otherwise blind rd1 mice. However, a viable ChR2-based human therapy must meet several key criteria: (i) ChR2 expression must be targeted, robust, and long-term, (ii) ChR2 must provide long-term and continuous therapeutic efficacy, and (iii) both viral vector delivery and ChR2 expression must be safe. Here, we demonstrate the development of a clinically relevant therapy for late stage retinal degeneration using ChR2. We achieved specific and stable expression of ChR2 in ON bipolar cells using a recombinant adeno-associated viral vector (rAAV) packaged in a tyrosine-mutated capsid. Targeted expression led to ChR2-driven electrophysiological ON responses in postsynaptic retinal ganglion cells and significant improvement in visually guided behavior for multiple models of blindness up to 10 months postinjection. Light levels to elicit visually guided behavioral responses were within the physiological range of cone photoreceptors. Finally, chronic ChR2 expression was nontoxic, with transgene biodistribution limited to the eye. No measurable immune or inflammatory response was observed following intraocular vector administration. Together, these data indicate that virally delivered ChR2 can provide a viable and efficacious clinical therapy for photoreceptor disease-related blindness. PMID:21505421
Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset
NASA Astrophysics Data System (ADS)
Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi
2017-11-01
Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.
Vector quantizer based on brightness maps for image compression with the polynomial transform
NASA Astrophysics Data System (ADS)
Escalante-Ramirez, Boris; Moreno-Gutierrez, Mauricio; Silvan-Cardenas, Jose L.
2002-11-01
We present a vector quantization scheme acting on brightness fields based on distance/distortion criteria correspondent with psycho-visual aspects. These criteria quantify sensorial distortion between vectors that represent either portions of a digital image or alternatively, coefficients of a transform-based coding system. In the latter case, we use an image representation model, namely the Hermite transform, that is based on some of the main perceptual characteristics of the human vision system (HVS) and in their response to light stimulus. Energy coding in the brightness domain, determination of local structure, code-book training and local orientation analysis are all obtained by means of the Hermite transform. This paper, for thematic reasons, is divided in four sections. The first one will shortly highlight the importance of having newer and better compression algorithms. This section will also serve to explain briefly the most relevant characteristics of the HVS, advantages and disadvantages related with the behavior of our vision in front of ocular stimulus. The second section shall go through a quick review of vector quantization techniques, focusing their performance on image treatment, as a preview for the image vector quantizer compressor actually constructed in section 5. Third chapter was chosen to concentrate the most important data gathered on brightness models. The building of this so-called brightness maps (quantification of the human perception on the visible objects reflectance), in a bi-dimensional model, will be addressed here. The Hermite transform, a special case of polynomial transforms, and its usefulness, will be treated, in an applicable discrete form, in the fourth chapter. As we have learned from previous works 1, Hermite transform has showed to be a useful and practical solution to efficiently code the energy within an image block, deciding which kind of quantization is to be used upon them (whether scalar or vector). It will also be a unique tool to structurally classify the image block within a given lattice. This particular operation intends to be one of the main contributions of this work. The fifth section will fuse the proposals derived from the study of the three main topics- addressed in the last sections- in order to propose an image compression model that takes advantage of vector quantizers inside the brightness transformed domain to determine the most important structures, finding the energy distribution inside the Hermite domain. Sixth and last section will show some results obtained while testing the coding-decoding model. The guidelines to evaluate the image compressing performance were the compression ratio, SNR and psycho-visual quality. Some conclusions derived from the research and possible unexplored paths will be shown on this section as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Andrew; Haass, Michael; Rintoul, Mark Daniel
GazeAppraise advances the state of the art of gaze pattern analysis using methods that simultaneously analyze spatial and temporal characteristics of gaze patterns. GazeAppraise enables novel research in visual perception and cognition; for example, using shape features as distinguishing elements to assess individual differences in visual search strategy. Given a set of point-to-point gaze sequences, hereafter referred to as scanpaths, the method constructs multiple descriptive features for each scanpath. Once the scanpath features have been calculated, they are used to form a multidimensional vector representing each scanpath and cluster analysis is performed on the set of vectors from all scanpaths.more » An additional benefit of this method is the identification of causal or correlated characteristics of the stimuli, subjects, and visual task through statistical analysis of descriptive metadata distributions within and across clusters.« less
The optical analogy for vector fields
NASA Technical Reports Server (NTRS)
Parker, E. N. (Editor)
1991-01-01
This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.
Automated objective characterization of visual field defects in 3D
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor)
2006-01-01
A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.
NASA Astrophysics Data System (ADS)
Wang, Hongmei; Zhang, Yafei; Xu, Huaizhe
2007-01-01
The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures, which is significant but has been frequently omitted in previous theoretical methods, has been reported in this paper. The analytical expressions of the longitudinal energies of quasibound levels (LEQBL) and the lifetimes of quasibound levels (LQBL) in symmetrical double-barrier (SDB) structures have been derived as a function of transverse wave vector and longitudinal magnetic fields perpendicular to interfaces. Based on our derived analytical expressions, the LEQBL and LQBL dependence upon transverse wave vector and longitudinal magnetic fields has been explored numerically for a SDB structure. Model calculations show that the LEQBL decrease monotonically and the LQBL shorten with increasing transverse wave vector, and each original LEQBL splits to a series of sub-LEQBL which shift nearly linearly toward the well bottom and the lifetimes of quasibound level series (LQBLS) shorten with increasing Landau-level indices and magnetic fields.
Azil, Aishah H; Ritchie, Scott A; Williams, Craig R
2015-10-01
This qualitative study aimed to describe field worker perceptions, evaluations of worth, and time costs of routine dengue vector surveillance methods in Cairns (Australia), Kuala Lumpur and Petaling District (Malaysia). In Cairns, the BG-Sentinel trap is a favored method for field workers because of its user-friendliness, but is not as cost-efficient as the sticky ovitrap. In Kuala Lumpur, the Mosquito Larvae Trapping Device is perceived as a solution for the inaccessibility of premises to larval surveys. Nonetheless, the larval survey method is retained in Malaysia for prompt detection of dengue vectors. For dengue vector surveillance to be successful, there needs to be not only technical, quantitative evaluations of method performance but also an appreciation of how amenable field workers are to using particular methods. Here, we report novel field worker perceptions of dengue vector surveillance methods in addition to time analysis for each method. © 2014 APJPH.
Zhang, Yu; Wu, Jianxin; Cai, Jianfei
2016-05-01
In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.
Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira
2012-12-07
Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gonçalves, Ítalo Gomes; Kumaira, Sissa; Guadagnin, Felipe
2017-06-01
Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side of a geological boundary a given point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector potential-field solution from a machine learning perspective, recasting the problem as multi-class classification, which alleviates some of the original method's assumptions. The potentials related to each geological class are interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R language and 3D visualizations were prepared with the rgl package.
Wang, Wei; Takeda, Mitsuo
2006-09-01
A new concept of vector and tensor densities is introduced into the general coherence theory of vector electromagnetic fields that is based on energy and energy-flow coherence tensors. Related coherence conservation laws are presented in the form of continuity equations that provide new insights into the propagation of second-order correlation tensors associated with stationary random classical electromagnetic fields.
Vector boson star solutions with a quartic order self-interaction
NASA Astrophysics Data System (ADS)
Minamitsuji, Masato
2018-05-01
We investigate boson star (BS) solutions in the Einstein-Proca theory with the quartic order self-interaction of the vector field λ (AμA¯ μ)2/4 and the mass term μ A¯ μAμ/2 , where Aμ is the complex vector field and A¯μ is the complex conjugate of Aμ, and λ and μ are the coupling constant and the mass of the vector field, respectively. The vector BSs are characterized by the two conserved quantities, the Arnowitt-Deser-Misner (ADM) mass and the Noether charge associated with the global U (1 ) symmetry. We show that in comparison with the case without the self-interaction λ =0 , the maximal ADM mass and Noether charge increase for λ >0 and decrease for λ <0 . We also show that there exists the critical central amplitude of the temporal component of the vector field above which there is no vector BS solution, and for λ >0 it can be expressed by the simple analytic expression. For a sufficiently large positive coupling Λ ≔Mpl2λ /(8 π μ2)≫1 , the maximal ADM mass and Noether charge of the vector BSs are obtained from the critical central amplitude and of O [√{λ }Mpl3/μ2ln (λ Mpl2/μ2)] , which is different from that of the scalar BSs, O (√{λϕ }Mpl3/μϕ2) , where λϕ and μϕ are the coupling constant and the mass of the complex scalar field.
Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons
NASA Astrophysics Data System (ADS)
Chanyal, B. C.
2017-12-01
In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.
NASA Technical Reports Server (NTRS)
Bommier, V.; Leroy, J. L.; Sahal-Brechot, S.
1985-01-01
The Hanle effect method for magnetic field vector diagnostics has now provided results on the magnetic field strength and direction in quiescent prominences, from linear polarization measurements in the He I E sub 3 line, performed at the Pic-du-Midi and at Sacramento Peak. However, there is an inescapable ambiguity in the field vector determination: each polarization measurement provides two field vector solutions symmetrical with respect to the line-of-sight. A statistical analysis capable of solving this ambiguity was applied to the large sample of prominences observed at the Pic-du-Midi (Leroy, et al., 1984); the same method of analysis applied to the prominences observed at Sacramento Peak (Athay, et al., 1983) provides results in agreement on the most probable magnetic structure of prominences; these results are detailed. The statistical results were confirmed on favorable individual cases: for 15 prominences observed at Pic-du-Midi, the two-field vectors are pointing on the same side of the prominence, and the alpha angles are large enough with respect to the measurements and interpretation inaccuracies, so that the field polarity is derived without any ambiguity.
Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V
2013-09-01
Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.
Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.
2014-01-01
Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388
Sakura, Midori; Lambrinos, Dimitrios; Labhart, Thomas
2008-02-01
Many insects exploit skylight polarization for visual compass orientation or course control. As found in crickets, the peripheral visual system (optic lobe) contains three types of polarization-sensitive neurons (POL neurons), which are tuned to different ( approximately 60 degrees diverging) e-vector orientations. Thus each e-vector orientation elicits a specific combination of activities among the POL neurons coding any e-vector orientation by just three neural signals. In this study, we hypothesize that in the presumed orientation center of the brain (central complex) e-vector orientation is population-coded by a set of "compass neurons." Using computer modeling, we present a neural network model transforming the signal triplet provided by the POL neurons to compass neuron activities coding e-vector orientation by a population code. Using intracellular electrophysiology and cell marking, we present evidence that neurons with the response profile of the presumed compass neurons do indeed exist in the insect brain: each of these compass neuron-like (CNL) cells is activated by a specific e-vector orientation only and otherwise remains silent. Morphologically, CNL cells are tangential neurons extending from the lateral accessory lobe to the lower division of the central body. Surpassing the modeled compass neurons in performance, CNL cells are insensitive to the degree of polarization of the stimulus between 99% and at least down to 18% polarization and thus largely disregard variations of skylight polarization due to changing solar elevations or atmospheric conditions. This suggests that the polarization vision system includes a gain control circuit keeping the output activity at a constant level.
Bleul, Christiane; Baumann-Klausener, Franziska; Labhart, Thomas; Dickinson, Michael H.
2016-01-01
Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. SIGNIFICANCE STATEMENT The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called polarization vision. Because skylight is polarized in an orientation that is rigidly determined by the position of the sun, this cue provides compass information. Behavioral experiments have shown that many species use the polarization pattern in the sky to direct locomotion. Here we describe the input stage of the fly's polarization-vision system. PMID:27170135
Evaluation of helmet-mounted display targeting symbology based on eye tracking technology
NASA Astrophysics Data System (ADS)
Wang, Lijing; Wen, Fuzhen; Ma, Caixin; Zhao, Shengchu; Liu, Xiaodong
2014-06-01
The purpose of this paper is to find the Target Locator Lines (TLLs) which perform best by contrasting and comparing experiment based on three kinds of TTLs of fighter HMD. 10 university students, male, with an average age of 21-23, corrected visual acuity 1.5, participated in the experiment. In the experiment, head movement data was obtained by TrackIR. The geometric relationship between the coordinates of the real world and coordinates of the visual display was obtained by calculating the distance from viewpoint to midpoint of both eyes and the head movement data. Virtual helmet system simulation experiment environment was created by drawing TLLs of fighter HMD in the flight simulator visual scene. In the experiment, eye tracker was used to record the time and saccade trajectory. The results were evaluated by the duration of the time and saccade trajectory. The results showed that the symbol"locator line with digital vector length indication" cost most time and had the longest length of the saccade trajectory. It is the most ineffective and most unacceptable way. "Locator line with extending head vector length symbol" cost less time and had less length of the saccade trajectory. It is effective and acceptable;"Locator line with reflected vector length symbol" cost the least time and had the least length of the saccade trajectory. It is the most effective and most acceptable way. "Locator line with reflected vector length symbol" performs best. The results will provide reference value for the research of TTLs in future.
Reviving the shear-free perfect fluid conjecture in general relativity
NASA Astrophysics Data System (ADS)
Sikhonde, Muzikayise E.; Dunsby, Peter K. S.
2017-12-01
Employing a Mathematica symbolic computer algebra package called xTensor, we present (1+3) -covariant special case proofs of the shear-free perfect fluid conjecture in general relativity. We first present the case where the pressure is constant, and where the acceleration is parallel to the vorticity vector. These cases were first presented in their covariant form by Senovilla et al. We then provide a covariant proof for the case where the acceleration and vorticity vectors are orthogonal, which leads to the existence of a Killing vector along the vorticity. This Killing vector satisfies the new constraint equations resulting from the vanishing of the shear. Furthermore, it is shown that in order for the conjecture to be true, this Killing vector must have a vanishing spatially projected directional covariant derivative along the velocity vector field. This in turn implies the existence of another basic vector field along the direction of the vorticity for the conjecture to hold. Finally, we show that in general, there exists a basic vector field parallel to the acceleration for which the conjecture is true.
Divide and Recombine for Large Complex Data
2017-12-01
Empirical Methods in Natural Language Processing , October 2014 Keywords Enter keywords for the publication. URL Enter the URL...low-latency data processing systems. Declarative Languages for Interactive Visualization: The Reactive Vega Stack Another thread of XDATA research...for array processing operations embedded in the R programming language . Vector virtual machines work well for long vectors. One of the most
Surface Tension Driven Convection Experiment (STDCE)
NASA Technical Reports Server (NTRS)
Ostrach, S.; Kamotani, Y.
1996-01-01
This document reports the results obtained from the Surface Tension Driven Convection Experiment (STDCE) conducted aboard the USML-1 Spacelab in 1992. The experiments used 10 cSt silicone oil placed in an open circular container that was 10 cm wide and 5 cm deep. Thermocapillary flow was induced by using either a cylindrical heater placed along the container centerline or by a CO2 laser. The tests were conducted under various power settings, laser beam diameters, and free surface shapes. Thermistors located at various positions in the test section recorded the temperature of the fluid, heater, walls, and air. An infrared imager was used to measure the free surface temperature. The flow field was studied by flow visualization and the data was analyzed by a PTV technique. The results from the flow visualization and the temperature measurements are compared with the numerical analysis that was conducted in conjunction with the experiment. The compared results include the experimental and numerical velocity vector plots, the streamline plots, the fluid temperature, and the surface temperature distribution.
Managing focal fields of vector beams with multiple polarization singularities.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin
2016-11-10
We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.
Measurements of compressible secondary flow in a circular S-duct
NASA Technical Reports Server (NTRS)
Vakili, A.; Wu, J. M.; Liver, P.; Bhat, M. K.
1983-01-01
This paper presents the results of an experimental study of secondary flow in a circular cross section 30 deg - 30 deg S-duct with entrance Mach number of 0.6. Local flow velocity vectors have been measured along the length of the duct at six stations. These measurements have been made using a five-port cone probe. Static and total pressure profiles in the transverse planes are obtained from the cone probe measurements. Wall static pressure measurements along three azimuth angles of 0 deg, 90 deg, and 180 deg along the duct are also made. Contour plots presenting the three dimensional velocity field as well as the total- and static-pressure fields are obtained. Surface oil flow visualization technique has been used to provide details of the flow on the S-duct boundaries. The experimental observations have been compared with typical computational results.
Visual data mining for quantized spatial data
NASA Technical Reports Server (NTRS)
Braverman, Amy; Kahn, Brian
2004-01-01
In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.
Visual behavior of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae)
USDA-ARS?s Scientific Manuscript database
As the vector of the global disease of citrus greening or huanglongbing (HLB), relatively little is known concerning the Asian Citrus Psyllid (ACP) behavior towards visual cues. The objective of this study was to elucidate behavioral responses of ACP towards several colors of light. ACP responded ...
Measurements of Solar Vector Magnetic Fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J. (Editor)
1985-01-01
Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.
Modeling respiratory motion for reducing motion artifacts in 4D CT images.
Zhang, Yongbin; Yang, Jinzhong; Zhang, Lifei; Court, Laurence E; Balter, Peter A; Dong, Lei
2013-04-01
Four-dimensional computed tomography (4D CT) images have been recently adopted in radiation treatment planning for thoracic and abdominal cancers to explicitly define respiratory motion and anatomy deformation. However, significant image distortions (artifacts) exist in 4D CT images that may affect accurate tumor delineation and the shape representation of normal anatomy. In this study, the authors present a patient-specific respiratory motion model, based on principal component analysis (PCA) of motion vectors obtained from deformable image registration, with the main goal of reducing image artifacts caused by irregular motion during 4D CT acquisition. For a 4D CT image set of a specific patient, the authors calculated displacement vector fields relative to a reference phase, using an in-house deformable image registration method. The authors then used PCA to decompose each of the displacement vector fields into linear combinations of principal motion bases. The authors have demonstrated that the regular respiratory motion of a patient can be accurately represented by a subspace spanned by three principal motion bases and their projections. These projections were parameterized using a spline model to allow the reconstruction of the displacement vector fields at any given phase in a respiratory cycle. Finally, the displacement vector fields were used to deform the reference CT image to synthesize CT images at the selected phase with much reduced image artifacts. The authors evaluated the performance of the in-house deformable image registration method using benchmark datasets consisting of ten 4D CT sets annotated with 300 landmark pairs that were approved by physicians. The initial large discrepancies across the landmark pairs were significantly reduced after deformable registration, and the accuracy was similar to or better than that reported by state-of-the-art methods. The proposed motion model was quantitatively validated on 4D CT images of a phantom and a lung cancer patient by comparing the synthesized images and the original images at different phases. The synthesized images matched well with the original images. The motion model was used to reduce irregular motion artifacts in the 4D CT images of three lung cancer patients. Visual assessment indicated that the proposed approach could reduce severe image artifacts. The shape distortions around the diaphragm and tumor regions were mitigated in the synthesized 4D CT images. The authors have derived a mathematical model to represent the regular respiratory motion from a patient-specific 4D CT set and have demonstrated its application in reducing irregular motion artifacts in 4D CT images. The authors' approach can mitigate shape distortions of anatomy caused by irregular breathing motion during 4D CT acquisition.
Representation of magnetic fields in space
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.
Quantum corrections to the generalized Proca theory via a matter field
NASA Astrophysics Data System (ADS)
Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab
2017-09-01
We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.
Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery
Pothier, N M; Weimer, D R; Moore, W B
2015-01-01
We have produced the first series of spherical harmonic, numerical maps of the time-dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998–2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet. Key Points Show quantitative maps of ground geomagnetic perturbations due to substorms Three vector components mapped as function of time during onset and recovery Compare/contrast results for different tilt angle and sign of IMF Y-component PMID:26167445
The synoptic maps of Br from HMI observations
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Hoeksema, J. Todd; Liu, Sun; Yang, Xudong; Centeno, Rebecca; Leka, K. D.; Barnes, Graham
2012-03-01
The vector magnetic field measurement can, in principal, give the "true" radial component of the magnetic field. We prepare 4 types of synoptic maps of the radial photospheric magnetic field, from the vector magnetic field data disambiguated by means of the minimum energy method developed at NWRA/CoRA, the vector data determined under the potential-field acute assumption, and the vector data determined under the radial-acute assumption, and the standard line-of-sight magnetogram. The models of the global corona, the MHD and the PFSS, are applied to different types of maps. Although the three-dimensional structures of the global coronal magnetic field with different maps are similar and overall agreeing well the AIA full-disk images, noticeable differences among the model outputs are found especially in the high latitude regions. We will show details of these test maps and discuss the issues in determining the radial component of the photospheric magnetic field near the poles and limb.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
NASA Astrophysics Data System (ADS)
Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville
2017-01-01
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.
Lee, Kai-Hui; Chiu, Pei-Ling
2013-10-01
Conventional visual cryptography (VC) suffers from a pixel-expansion problem, or an uncontrollable display quality problem for recovered images, and lacks a general approach to construct visual secret sharing schemes for general access structures. We propose a general and systematic approach to address these issues without sophisticated codebook design. This approach can be used for binary secret images in non-computer-aided decryption environments. To avoid pixel expansion, we design a set of column vectors to encrypt secret pixels rather than using the conventional VC-based approach. We begin by formulating a mathematic model for the VC construction problem to find the column vectors for the optimal VC construction, after which we develop a simulated-annealing-based algorithm to solve the problem. The experimental results show that the display quality of the recovered image is superior to that of previous papers.
ViSBARD: Visual System for Browsing, Analysis and Retrieval of Data
NASA Astrophysics Data System (ADS)
Roberts, D. Aaron; Boller, Ryan; Rezapkin, V.; Coleman, J.; McGuire, R.; Goldstein, M.; Kalb, V.; Kulkarni, R.; Luckyanova, M.; Byrnes, J.; Kerbel, U.; Candey, R.; Holmes, C.; Chimiak, R.; Harris, B.
2018-04-01
ViSBARD interactively visualizes and analyzes space physics data. It provides an interactive integrated 3-D and 2-D environment to determine correlations between measurements across many spacecraft. It supports a variety of spacecraft data products and MHD models and is easily extensible to others. ViSBARD provides a way of visualizing multiple vector and scalar quantities as measured by many spacecraft at once. The data are displayed three-dimesionally along the orbits which may be displayed either as connected lines or as points. The data display allows the rapid determination of vector configurations, correlations between many measurements at multiple points, and global relationships. With the addition of magnetohydrodynamic (MHD) model data, this environment can also be used to validate simulation results with observed data, use simulated data to provide a global context for sparse observed data, and apply feature detection techniques to the simulated data.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less
Nielsen, Kristina J.; Callaway, Edward M.; Krauzlis, Richard J.
2012-01-01
Viral vectors are promising tools for the dissection of neural circuits. In principle, they can manipulate neurons at a level of specificity not otherwise achievable. While many studies have used viral vector-based approaches in the rodent brain, only a few have employed this technique in the non-human primate, despite the importance of this animal model for neuroscience research. Here, we report evidence that a viral vector-based approach can be used to manipulate a monkey's behavior in a task. For this purpose, we used the allatostatin receptor/allatostatin (AlstR/AL) system, which has previously been shown to allow inactivation of neurons in vivo. The AlstR was expressed in neurons in monkey V1 by injection of an adeno-associated virus 1 (AAV1) vector. Two monkeys were trained in a detection task, in which they had to make a saccade to a faint peripheral target. Injection of AL caused a retinotopic deficit in the detection task in one monkey. Specifically, the monkey showed marked impairment for detection targets placed at the visual field location represented at the virus injection site, but not for targets shown elsewhere. We confirmed that these deficits indeed were due to the interaction of AlstR and AL by injecting saline, or AL at a V1 location without AlstR expression. Post-mortem histology confirmed AlstR expression in this monkey. We failed to replicate the behavioral results in a second monkey, as AL injection did not impair the second monkey's performance in the detection task. However, post-mortem histology revealed a very low level of AlstR expression in this monkey. Our results demonstrate that viral vector-based approaches can produce effects strong enough to influence a monkey's performance in a behavioral task, supporting the further development of this approach for studying how neuronal circuits control complex behaviors in non-human primates. PMID:22723770
Stable solutions of inflation driven by vector fields
NASA Astrophysics Data System (ADS)
Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li
2017-03-01
Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.
Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field
Fishman, Randy S.
2018-01-03
Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less
Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field
NASA Astrophysics Data System (ADS)
Fishman, Randy S.
2018-01-01
Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.
Pinning, rotation, and metastability of BiFeO 3 cycloidal domains in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishman, Randy S.
Earlier models for the room-temperature multiferroic BiFeO 3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m. In this paper, we show that the previously neglected threefold anisotropy K 3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable belowmore » B c1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ=M×B along P exceeds a threshold value τ pin. Since τ=0 when m⊥q, the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. Finally, the model developed in this paper also explains how the three multiferroic domains of BiFeO 3 for a fixed P can be manipulated by a magnetic field.« less
USSR and Eastern Europe Scientific Abstracts- Physics - Number 45
1978-10-02
compound, a function of the angle between the electrical vector of the ’ light wave and the optical c-axis of the crystal. Heterodiodes have first...of naturally radioactive U, Th and K in a 1-liter sample. USSR A VECTOR MESON IN A QUANTUM ELECTROMAGNETIC FIELD Moscow TEORETICHESKAYA I...arbitrary spin in a classical plane electromagnetic field are used to find the exact wave function of a vector meson in the quantum field of a linearly
The magnetic field investigation on Cluster
NASA Technical Reports Server (NTRS)
Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.
1988-01-01
The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.
Improvement of cardiac CT reconstruction using local motion vector fields.
Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael
2009-03-01
The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.
Detection of a sudden change of the field time series based on the Lorenz system.
Da, ChaoJiu; Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan
2017-01-01
We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series.
NASA Astrophysics Data System (ADS)
Laib dit Leksir, Y.; Mansour, M.; Moussaoui, A.
2018-03-01
Analysis and processing of databases obtained from infrared thermal inspections made on electrical installations require the development of new tools to obtain more information to visual inspections. Consequently, methods based on the capture of thermal images show a great potential and are increasingly employed in this field. However, there is a need for the development of effective techniques to analyse these databases in order to extract significant information relating to the state of the infrastructures. This paper presents a technique explaining how this approach can be implemented and proposes a system that can help to detect faults in thermal images of electrical installations. The proposed method classifies and identifies the region of interest (ROI). The identification is conducted using support vector machine (SVM) algorithm. The aim here is to capture the faults that exist in electrical equipments during an inspection of some machines using A40 FLIR camera. After that, binarization techniques are employed to select the region of interest. Later the comparative analysis of the obtained misclassification errors using the proposed method with Fuzzy c means and Ostu, has also be addressed.
The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance
NASA Astrophysics Data System (ADS)
Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Sun, Xudong; Schou, Jesper; Couvidat, Sebastien; Norton, Aimee; Bobra, Monica; Centeno, Rebecca; Leka, K. D.; Barnes, Graham; Turmon, Michael
2014-09-01
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180∘ azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.
Electrical Microstimulation of the Superior Colliculus in Strabismic Monkeys
Fleuriet, Jérome; Walton, Mark M. G.; Ono, Seiji; Mustari, Michael J.
2016-01-01
Purpose Visually guided saccades are disconjugate in human and nonhuman strabismic primates. The superior colliculus (SC) is a region of the brain topographically organized in visual and motor maps where the saccade goal is spatially coded. The present study was designed to investigate if a site of stimulation on the topographic motor map was evoking similar or different saccade vectors for each eye. Methods We used microelectrical stimulation (MS) of the SC in two strabismic (one esotrope and one exotrope) and two control macaques under binocular and monocular viewing conditions. We compared the saccade amplitudes and directions for each SC site and each condition independently of the fixating eye and then between each fixating eye. A comparison with disconjugacies of visually guided saccades was also performed. Results We observed different saccade vectors for the two eyes in strabismic monkeys, but conjugate saccades in normal monkeys. Evoked saccade vectors for the left eye when that eye was fixating the target were different from those of the right eye when it was fixating. The disconjugacies evoked by the MS were not identical but similar to those observed for visually guided saccades especially for the dominant eye. Conclusions Our results suggest that, in strabismus, the saccade generator does not interpret activation of a single location of the SC as the same desired displacement for each eye. This finding is important for advancing understanding of the development of neural circuits in strabismus. French Abstract PMID:27309621
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment
NASA Astrophysics Data System (ADS)
Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.
2017-10-01
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.
NASA Astrophysics Data System (ADS)
Park, Kyoung-Duck; Raschke, Markus B.
2018-05-01
Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.
Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M
2017-09-21
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
Circular Conditional Autoregressive Modeling of Vector Fields*
Modlin, Danny; Fuentes, Montse; Reich, Brian
2013-01-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452
Spatial Distribution of Phase Singularities in Optical Random Vector Waves.
De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L
2016-08-26
Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.
Navigational potential of e-vector sensing by marine animals
NASA Astrophysics Data System (ADS)
Waterman, Talbot H.
1993-02-01
This essay documents an informal talk about the central theme in the author's research career. That has mainly related to the visual physiology and orientation of aquatic animals, particularly with regard to underwater polarized light. This required pioneer measurements of underwater polarized light patterns, proof that oriented behavior could be determined by e- vector direction independently of intensity patterns or other secondary clues and a demonstration of the retinal dichroic mechanism involved, at least in crustacean compound eyes. The relevant visual data processing by two orthogonal channels was also analyzed with regard to oriented swimming behavior. Some current research by others and major unsolved problems are mentioned and the relevant part of the author's bibliography is appended.
Quantization of Electromagnetic Fields in Cavities
NASA Technical Reports Server (NTRS)
Kakazu, Kiyotaka; Oshiro, Kazunori
1996-01-01
A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.
Analyzing neural responses with vector fields.
Buneo, Christopher A
2011-04-15
Analyzing changes in the shape and scale of single cell response fields is a key component of many neurophysiological studies. Typical analyses of shape change involve correlating firing rates between experimental conditions or "cross-correlating" single cell tuning curves by shifting them with respect to one another and correlating the overlapping data. Such shifting results in a loss of data, making interpretation of the resulting correlation coefficients problematic. The problem is particularly acute for two dimensional response fields, which require shifting along two axes. Here, an alternative method for quantifying response field shape and scale based on correlation of vector field representations is introduced. The merits and limitations of the methods are illustrated using both simulated and experimental data. It is shown that vector correlation provides more information on response field changes than scalar correlation without requiring field shifting and concomitant data loss. An extension of this vector field approach is also demonstrated which can be used to identify the manner in which experimental variables are encoded in studies of neural reference frames. Copyright © 2011 Elsevier B.V. All rights reserved.
IIB supergravity and the E 6(6) covariant vector-tensor hierarchy
Ciceri, Franz; de Wit, Bernard; Varela, Oscar
2015-04-20
IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the 27 two-form fields that are required by the vector-tensor hierarchy of the five-dimensional theory. The missing 5 two-form fields must transform in the same representation as a descendant of the ten-dimensional ‘dual graviton’. The invariant E 6(6) symmetric tensor that appears in the vector-tensor hierarchy is reproduced. Generalized vielbeine are derived from the supersymmetry transformations of the vector fields, as well as consistent expressions formore » the USp(8) covariant fermion fields. Implications are further discussed for the consistency of the truncation of IIB supergravity compactified on the five-sphere to maximal gauged supergravity in five space-time dimensions with an SO(6) gauge group.« less
Attitude Estimation for Large Field-of-View Sensors
NASA Technical Reports Server (NTRS)
Cheng, Yang; Crassidis, John L.; Markley, F. Landis
2005-01-01
The QUEST measurement noise model for unit vector observations has been widely used in spacecraft attitude estimation for more than twenty years. It was derived under the approximation that the noise lies in the tangent plane of the respective unit vector and is axially symmetrically distributed about the vector. For large field-of-view sensors, however, this approximation may be poor, especially when the measurement falls near the edge of the field of view. In this paper a new measurement noise model is derived based on a realistic noise distribution in the focal-plane of a large field-of-view sensor, which shows significant differences from the QUEST model for unit vector observations far away from the sensor boresight. An extended Kalman filter for attitude estimation is then designed with the new measurement noise model. Simulation results show that with the new measurement model the extended Kalman filter achieves better estimation performance using large field-of-view sensor observations.
Diffeomorphism invariance and black hole entropy
NASA Astrophysics Data System (ADS)
Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning
2003-11-01
The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.
An improved exact inversion formula for solenoidal fields in cone beam vector tomography
NASA Astrophysics Data System (ADS)
Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas
2017-06-01
In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.
Black holes in vector-tensor theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic andmore » quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.« less
Constraints on primordial magnetic fields from inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it
2016-03-01
We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less
NASA Astrophysics Data System (ADS)
Lucio Rapoport, Diego
2013-04-01
We present a unified principle for science that surmounts dualism, in terms of torsion fields and the non-orientable surfaces, notably the Klein Bottle and its logic, the Möbius strip and the projective plane. We apply it to the complex numbers and cosmology, to non-linear systems integrating the issue of hyperbolic divergences with the change of orientability, to the biomechanics of vision and the mammal heart, to the morphogenesis of crustal shapes on Earth in connection to the wavefronts of gravitation, elasticity and electromagnetism, to pattern recognition of artificial images and visual recognition, to neurology and the topographic maps of the sensorium, to perception, in particular of music. We develop it in terms of the fundamental 2:1 resonance inherent to the Möbius strip and the Klein Bottle, the minimal surfaces representation of the wavefronts, and the non-dual Klein Bottle logic inherent to pattern recognition, to the harmonic functions and vector fields that lay at the basis of geophysics and physics at large. We discuss the relation between the topographic maps of the sensorium, and the issue of turning inside-out of the visual world as a general principle for cognition, topological chemistry, cell biology and biological morphogenesis in particular in embryology
Madsen, Kristoffer H; Ewald, Lars; Siebner, Hartwig R; Thielscher, Axel
2015-01-01
Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector potential of the TMS coils. To develop an approach to reconstruct the magnetic vector potential based on automated measurements. We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel approach to determine the magnetic vector potential via volume integration of the measured field. The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well with that calculated using a model reconstructed from x-ray images. The setup can supply validated models for existing and newly appearing TMS coils. Copyright © 2015 Elsevier Inc. All rights reserved.
Visualizing Three-Dimensional Calculus Concepts: The Study of a Manipulative's Effectiveness
ERIC Educational Resources Information Center
McGee, Daniel, Jr.; Moore-Russo, Deborah; Ebersole, Dennis; Lomen, David O.; Quintero, Maider Marin
2012-01-01
With the help of the National Science Foundation, the Department of Mathematics at the University of Puerto Rico in Mayaguez has developed a set of manipulatives to help students of science and engineering visualize concepts relating to points, surfaces, curves, contours, and vectors in three dimensions. This article will present the manipulatives…
UTOOLS: microcomputer software for spatial analysis and landscape visualization.
Alan A. Ager; Robert J. McGaughey
1997-01-01
UTOOLS is a collection of programs designed to integrate various spatial data in a way that allows versatile spatial analysis and visualization. The programs were designed for watershed-scale assessments in which a wide array of resource data must be integrated, analyzed, and interpreted. UTOOLS software combines raster, attribute, and vector data into "spatial...
Ranked centroid projection: a data visualization approach with self-organizing maps.
Yen, G G; Wu, Z
2008-02-01
The self-organizing map (SOM) is an efficient tool for visualizing high-dimensional data. In this paper, the clustering and visualization capabilities of the SOM, especially in the analysis of textual data, i.e., document collections, are reviewed and further developed. A novel clustering and visualization approach based on the SOM is proposed for the task of text mining. The proposed approach first transforms the document space into a multidimensional vector space by means of document encoding. Afterwards, a growing hierarchical SOM (GHSOM) is trained and used as a baseline structure to automatically produce maps with various levels of detail. Following the GHSOM training, the new projection method, namely the ranked centroid projection (RCP), is applied to project the input vectors to a hierarchy of 2-D output maps. The RCP is used as a data analysis tool as well as a direct interface to the data. In a set of simulations, the proposed approach is applied to an illustrative data set and two real-world scientific document collections to demonstrate its applicability.
2006-08-23
polarization the electric field vector is parallel to the substrate, for TM polarization the magnetic field vector is parallel to the substrate. Figure...section can be obtained for the case of the two electromagnetic field polarization vectors λ and µ describing the two photons being absorbed (of the same or... polarization effects on two-photon absorption as investigated by the technique of thermal lensing detected absorption of a mode- locked laser beam. This
1991-09-01
12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Vector spherical harmonic expansions are...electric and magnetic field vectors from E rand B - r alone. Genural expressions are given relating the scattered field expansion coefficients to the source...Prescnbed by ANSI Std. Z39-18 29W-102 NCSC TR 426-90 CONTENTS Pag o INTRODUCTION 1 BACKGROUND 1 ANGULAR MOMENTUM OPERATOR AND VECTOR SPHERICAL
NASA Technical Reports Server (NTRS)
Bommier, V.
1986-01-01
The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.
NASA Technical Reports Server (NTRS)
Hom, K. W.
1994-01-01
The EM-ANIMATE program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D (LAR-15074). The EM-ANIMATE program is windows based and contains a user-friendly, graphical interface for setting viewing options, case selection, file manipulation, etc. EM-ANIMATE displays the field and surface-current magnitude as smooth shaded color fields (color contours) ranging from a minimum contour value to a maximum contour value for the fields and surface currents. The program can display either the total electric field or the scattered electric field in either time-harmonic animation mode or in the root mean square (RMS) average mode. The default setting is initially set to the minimum and maximum values within the field and surface current data and can be optionally set by the user. The field and surface-current value are animated by calculating and viewing the solution at user selectable radian time increments between 0 and 2pi. The surface currents can also be displayed in either time-harmonic animation mode or in RMS average mode. In RMS mode, the color contours do not vary with time, but show the constant time averaged field and surface-current magnitude solution. The electric field and surface-current directions can be displayed as scaled vector arrows which have a length proportional to the magnitude at each field grid point or surface node point. These vector properties can be viewed separately or concurrently with the field or surface-current magnitudes. Animation speed is improved by turning off the display of the vector arrows. In RMS modes, the direction vectors are still displayed as varying with time since the time averaged direction vectors would be zero length vectors. Other surface properties can optionally be viewed. These include the surface grid, the resistance value assigned to each element of the grid, and the power dissipation of each element which has an assigned resistance value. The EM-ANIMATE program will accept up to 10 different surface current cases each consisting of up to 20,000 node points and 10,000 triangle definitions and will animate one of these cases. The capability is used to compare surface-current distribution due to various initial excitation directions or electric field orientations. The program can accept up to 50 planes of field data consisting of a grid of 100 by 100 field points. These planes of data are user selectable and can be viewed individually or concurrently. With these preset limits, the program requires 55 megabytes of core memory to run. These limits can be changed in the header files to accommodate the available core memory of an individual workstation. An estimate of memory required can be made as follows: approximate memory in bytes equals (number of nodes times number of surfaces times 14 variables times bytes per word, typically 4 bytes per floating point) plus (number of field planes times number of nodes per plane times 21 variables times bytes per word). This gives the approximate memory size required to store the field and surface-current data. The total memory size is approximately 400,000 bytes plus the data memory size. The animation calculations are performed in real time at any user set time step. For Silicon Graphics Workstations that have multiple processors, this program has been optimized to perform these calculations on multiple processors to increase animation rates. The optimized program uses the SGI PFA (Power FORTRAN Accelerator) library. On single processor machines, the parallelization directives are seen as comments to the program and will have no effect on compilation or execution. EM-ANIMATE is written in FORTRAN 77 for implementation on SGI IRIS workstations running IRIX 3.0 or later. A minimum of 55Mb of RAM is required for execution of this program; however, the code may be modified to accommodate the available memory of an individual workstation. For program execution, twenty-four bit, double-buffered color capability is suggested, but not required. Sample input and output files and a sample executable are provided on the distribution medium. Electronic documentation is provided in PostScript format and in the form of IRIX man pages. The standard distribution medium for EM-ANIMATE is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. EM-ANIMATE is also available as part of a bundled package, COS-10048 that includes MOM3D, an IRIS program that produces electromagnetic near field and surface current solutions. This program was developed in 1993.
Folio, Les R; Fischer, Tatjana; Shogan, Paul; Frew, Michael; Dwyer, Andrew; Provenzale, James M
2011-08-01
The purpose of this study is to determine the agreement with which radiologists identify wound paths in vivo on MDCT and calculate missile trajectories on the basis of Cartesian coordinates using a Cartesian positioning system (CPS). Three radiologists retrospectively identified 25 trajectories on MDCT in 19 casualties who sustained penetrating trauma in Iraq. Trajectories were described qualitatively in terms of directional path descriptors and quantitatively as trajectory vectors. Directional descriptors, trajectory angles, and angles between trajectories were calculated based on Cartesian coordinates of entrance and terminus or exit recorded in x, y image and table space (z) using a Trajectory Calculator created using spreadsheet software. The consistency of qualitative descriptor determinations was assessed in terms of frequency of observer agreement and multirater kappa statistics. Consistency of trajectory vectors was evaluated in terms of distribution of magnitude of the angles between vectors and the differences between their paraaxial and parasagittal angles. In 68% of trajectories, the observers' visual assessment of qualitative descriptors was congruent. Calculated descriptors agreed across observers in 60% of the trajectories. Estimated kappa also showed good agreement (0.65-0.79, p < 0.001); 70% of calculated paraaxial and parasagittal angles were within 20° across observers, and 61.3% of angles between trajectory vectors were within 20° across observers. Results show agreement of visually assessed and calculated qualitative descriptors and trajectory angles among observers. The Trajectory Calculator describes trajectories qualitatively similar to radiologists' visual assessment, showing the potential feasibility of automated trajectory analysis.
Jiang, Jingfeng; Johnson, Kevin; Valen-Sendstad, Kristian; Mardal, Kent-Andre; Wieben, Oliver; Strother, Charles
2011-01-01
Purpose: Our purpose was to compare quantitatively velocity fields in and around experimental canine aneurysms as measured using an accelerated 4D PC-MR angiography (MRA) method and calculated based on animal-specific CFD simulations. Methods: Two animals with a surgically created bifurcation aneurysm were imaged using an accelerated 4D PC-MRA method. Meshes were created based on the geometries obtained from the PC-MRA and simulations using “subject-specific” pulsatile velocity waveforms and geometries were then solved using a commercial CFD solver. Qualitative visual assessments and quantitative comparisons of the time-resolved velocity fields obtained from the PC-MRA measurements and the CFD simulations were performed using a defined similarity metric combining both angular and magnitude differences of vector fields. Results: PC-MRA and image-based CFD not only yielded visually consistent representations of 3D streamlines in and around both aneurysms, but also showed good agreement with regard to the spatial velocity distributions. The estimated similarity between time-resolved velocity fields from both techniques was reasonably high (mean value >0.60; one being the highest and zero being the lowest). Relative differences in inflow and outflow zones among selected planes were also reasonable (on the order of 10%–20%). The correlation between CFD-calculated and PC-MRA-measured time-averaged wall shear stresses was low (0.22 and 0.31, p < 0.001). Conclusions: In two experimental canine aneurysms, PC-MRA and image-based CFD showed favorable agreement in intra-aneurismal velocity fields. Combining these two complementary techniques likely will further improve the ability to characterize and interpret the complex flow that occurs in human intracranial aneurysms. PMID:22047395
NASA Astrophysics Data System (ADS)
Renaud, Olivier; Heintzmann, Rainer; Sáez-Cirión, Asier; Schnelle, Thomas; Mueller, Torsten; Shorte, Spencer
2007-02-01
Three dimensional imaging provides high-content information from living intact biology, and can serve as a visual screening cue. In the case of single cell imaging the current state of the art uses so-called "axial through-stacking". However, three-dimensional axial through-stacking requires that the object (i.e. a living cell) be adherently stabilized on an optically transparent surface, usually glass; evidently precluding use of cells in suspension. Aiming to overcome this limitation we present here the utility of dielectric field trapping of single cells in three-dimensional electrode cages. Our approach allows gentle and precise spatial orientation and vectored rotation of living, non-adherent cells in fluid suspension. Using various modes of widefield, and confocal microscope imaging we show how so-called "microrotation" can provide a unique and powerful method for multiple point-of-view (three-dimensional) interrogation of intact living biological micro-objects (e.g. single-cells, cell aggregates, and embryos). Further, we show how visual screening by micro-rotation imaging can be combined with micro-fluidic sorting, allowing selection of rare phenotype targets from small populations of cells in suspension, and subsequent one-step single cell cloning (with high-viability). Our methodology combining high-content 3D visual screening with one-step single cell cloning, will impact diverse paradigms, for example cytological and cytogenetic analysis on haematopoietic stem cells, blood cells including lymphocytes, and cancer cells.
O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram
2018-03-01
We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.
Electric control of wave vector filtering in a hybrid magnetic-electric-barrier nanostructure
NASA Astrophysics Data System (ADS)
Kong, Yong-Hong; Lu, Ke-Yu; He, Ya-Ping; Liu, Xu-Hui; Fu, Xi; Li, Ai-Hua
2018-06-01
We theoretically investigate how to manipulate the wave vector filtering effect by a traverse electric field for electrons across a hybrid magnetic-electric-barrier nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe and a Schottky-metal stripe on top and bottom of a GaAs/Al x Ga1- x As heterostructure, respectively. The wave vector filtering effect is found to be related closely to the applied electric field. Moreover, the wave vector filtering efficiency can be manipulated by changing direction or adjusting strength of the traverse electric field. Therefore, such a nanostructure can be employed as an electrically controllable electron-momentum filter for nanoelectronics applications.
Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight
NASA Technical Reports Server (NTRS)
Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles
2005-01-01
On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.
Arbelaez, Maria Clara; Alpins, Noel; Verma, Shwetabh; Stamatelatos, George; Arbelaez, Juan Guillermo; Arba-Mosquera, Samuel
2017-12-01
To evaluate clinical outcomes of laser in situ keratomileusis (LASIK) with an aberration-neutral profile centered on the estimated visual axis (considering 70% of the pupil offset toward the corneal vertex) comparing vector planning with manifest refraction planning for the treatment of myopic astigmatism. Muscat Eye Laser Center, Muscat, Sultanate of Oman, Muscat, Oman. Retrospective case series. The outcomes were evaluated at a 6-month follow-up in eyes showing ocular residual astigmatism (ORA) over 0.75 diopters (D) preoperatively. Eighty-five treatments were based on manifest astigmatism (preoperative sphere -2.11 D ± 1.3 [SD], cylinder -0.90 ± 1.0 D), and 79 treatments were based on vector planning (preoperative sphere -2.46 ± 1.5 D, cylinder -0.78 ± 0.79 D). At a 6-month follow-up, 128 patients (164 eyes) were evaluated and no significant differences were observed between the 2 groups in terms of difference between corrected distance visual acuity and uncorrected distance visual acuity (UDVA) (P = .1, t test and Fisher exact test Snellen lines 1 or better, P = .4) and postoperative UDVA (P = .05, t test and Fisher exact test for UDVA 20/16 or better, P = .3). Significant differences were observed between the 2 groups in terms of achieved spherical equivalent (P = .04), corneal toricity, and ORA (P < .001, t test and Fisher exact test for ORA ≤0.75 D, P < .001). Performing LASIK for myopic astigmatism with the vector planning approach resulted in comparable visual outcomes to manifest refraction planning. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun
2014-10-20
In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.
Numerical solution of 2D-vector tomography problem using the method of approximate inverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna
2016-08-10
We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.
Vector fields in a tight laser focus: comparison of models.
Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael
2017-06-26
We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.
The significance of vector magnetic field measurements
NASA Technical Reports Server (NTRS)
Hagyard, M. J.
1990-01-01
Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.
Yamagata, Yoshitaka; Terada, Yuko; Suzuki, Atsushi; Mimura, Osamu
2010-01-01
The visual efficiency scale currently adopted to determine the legal grade of visual disability associated with visual field loss in Japan is not appropriate for the evaluation of disability regarding daily living activities. We investigated whether Esterman disability score (EDS) is suitable for the assessment of mobility difficulty in patients with visual field loss. The correlation between the EDS calculated from Goldmann's kinetic visual field and the degree of subjective mobility difficulty determined by a questionnaire was investigated in 164 patients with visual field loss. The correlation between the EDS determined using a program built into the Humphrey field analyzer and that calculated from Goldmann's kinetic visual field was also investigated. The EDS based on the kinetic visual field was correlated well with the degree of subjective mobility difficulty, and the EDS measured using the Humphrey field analyzer could be estimated from the kinetic visual field-based EDS. Instead of the currently adopted visual efficiency scale, EDS should be employed for the assessment of mobility difficulty in patients with visual field loss, also to establish new judgment criteria concerning the visual field.
Combinatorial vector fields and the valley structure of fitness landscapes.
Stadler, Bärbel M R; Stadler, Peter F
2010-12-01
Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.
Detection of a sudden change of the field time series based on the Lorenz system
Li, Fang; Shen, BingLu; Yan, PengCheng; Song, Jian; Ma, DeShan
2017-01-01
We conducted an exploratory study of the detection of a sudden change of the field time series based on the numerical solution of the Lorenz system. First, the time when the Lorenz path jumped between the regions on the left and right of the equilibrium point of the Lorenz system was quantitatively marked and the sudden change time of the Lorenz system was obtained. Second, the numerical solution of the Lorenz system was regarded as a vector; thus, this solution could be considered as a vector time series. We transformed the vector time series into a time series using the vector inner product, considering the geometric and topological features of the Lorenz system path. Third, the sudden change of the resulting time series was detected using the sliding t-test method. Comparing the test results with the quantitatively marked time indicated that the method could detect every sudden change of the Lorenz path, thus the method is effective. Finally, we used the method to detect the sudden change of the pressure field time series and temperature field time series, and obtained good results for both series, which indicates that the method can apply to high-dimension vector time series. Mathematically, there is no essential difference between the field time series and vector time series; thus, we provide a new method for the detection of the sudden change of the field time series. PMID:28141832
Wu, Howard G.
2013-01-01
The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and movement vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that (1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences, even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation affects movement sequence planning. PMID:23804099
Visualization of Microbiota in Tick Guts by Whole-mount In Situ Hybridization.
Moss, Caitlin E; Robson, Andrew; Fikrig, Erol; Narasimhan, Sukanya
2018-06-01
Infectious diseases transmitted by arthropod vectors continue to pose a significant threat to human health worldwide. The pathogens causing these diseases, do not exist in isolation when they colonize the vector; rather, they likely engage in interactions with resident microorganisms in the gut lumen. The vector microbiota has been demonstrated to play an important role in pathogen transmission for several vector-borne diseases. Whether resident bacteria in the gut of the Ixodes scapularis tick, the vector of several human pathogens including Borrelia burgdorferi, influence tick transmission of pathogens is not determined. We require methods for characterizing the composition of the bacteria associated with the tick gut to facilitate a better understanding of potential interspecies interactions in the tick gut. Using whole-mount in situ hybridization to visualize RNA transcripts associated with particular bacterial species allows for the collection of qualitative data regarding the abundance and distribution of the microbiota in intact tissue. This technique can be used to examine changes in the gut microbiota milieu over the course of tick feeding and can also be applied to analyze expression of tick genes. Staining of whole tick guts yield information about the gross spatial distribution of target RNA in the tissue without the need for three-dimensional reconstruction and is less affected by environmental contamination, which often confounds the sequencing-based methods frequently used to study complex microbial communities. Overall, this technique is a valuable tool that can be used to better understand vector-pathogen-microbiota interactions and their role in disease transmission.
Introduction to Electrodynamics
NASA Astrophysics Data System (ADS)
Griffiths, David J.
2017-06-01
1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.
Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates
NASA Astrophysics Data System (ADS)
den Otter, W. K.
2000-05-01
A generalized formulation of the thermodynamic integration (TI) method for calculating the free energy along a reaction coordinate is derived. Molecular dynamics simulations with a constrained reaction coordinate are used to sample conformations. These are then projected onto conformations with a higher value of the reaction coordinate by means of a vector field. The accompanying change in potential energy plus the divergence of the vector field constitute the derivative of the free energy. Any vector field meeting some simple requirements can be used as the basis of this TI expression. Two classes of vector fields are of particular interest here. The first recovers the conventional TI expression, with its cumbersome dependence on a full set of generalized coordinates. As the free energy is a function of the reaction coordinate only, it should in principle be possible to derive an expression depending exclusively on the definition of the reaction coordinate. This objective is met by the second class of vector fields to be discussed. The potential of mean constraint force (PMCF) method, after averaging over the unconstrained momenta, falls in this second class. The new method is illustrated by calculations on the isomerization of n-butane, and is compared with existing methods.
[Factors for Degaussing of a Cochlear Implant Magnet in the MR Scanner].
Koganezawa, Takumi; Uchiyama, Naoko; Teshigawara, Mai; Ogura, Akio
This study examined the conditions influencing degauss of the magnet using magnetic resonance imaging (MRI). Poly methyl methacrylate (PMMA) was used to fix the measurement magnets to the MRI bed at angles from 0° to 180° for the magnetic flux vector of static magnetic field. The PMMA was moved in the MRI magnetic field. Magnetic flux density was measured before and after bed movement, and the rate of degauss was calculated. The contents examined are as follows: (1) the angle of the magnetic flux vector of the measurement magnets for the magnetic flux vector of the static magnetic field, (2) the number of movements, (3) moving velocity, and (4) the movement on the spatial gradient of magnetic field. Mann-Whitney U test was used for statistical analysis of the data. In conclusion, the effect of the angle of the magnetic flux vector of the implant magnet was high under the conditions of degauss in this study. Therefore, during the MRI examination of a patient with a cochlear implant magnet, the operators identified the directions of the magnetic flux vector and static magnetic field of the implant magnet.
The history of polarisation measurements: their role in studies of magnetic fields
NASA Astrophysics Data System (ADS)
Wielebinski, R.
2015-03-01
Radio astronomy gave us new methods to study magnetic fields. Synchrotron radiation, the main cause of comic radio waves, is highly linearly polarised with the `E' vector normal to the magnetic field. The Faraday Effect rotates the `E' vector in thermal regions by the magnetic field in the line of sight. Also the radio Zeeman Effect has been observed.
Electron Beam Propagation Through a Magnetic Wiggler with Random Field Errors
1989-08-21
Another quantity of interest is the vector potential 6.A,.(:) associated with the field error 6B,,,(:). Defining the normalized vector potentials ba = ebA...then follows that the correlation of the normalized vector potential errors is given by 1 . 12 (-a.(zj)a.,(z2)) = a,k,, dz’ , dz" (bBE(z’)bB , (z")) a2...Throughout the following, terms of order O(z:/z) will be neglected. Similarly, for the y-component of the normalized vector potential errors, one
Aircraft attitude measurement using a vector magnetometer
NASA Technical Reports Server (NTRS)
Peitila, R.; Dunn, W. R., Jr.
1977-01-01
The feasibility of a vector magnetometer system was investigated by developing a technique to determine attitude given magnetic field components. Sample calculations are then made using the earth's magnetic field data acquired during actual flight conditions. Results of these calculations are compared graphically with measured attitude data acquired simultaneously with the magnetic data. The role and possible implementation of various reference angles are discussed along with other pertinent considerations. Finally, it is concluded that the earth's magnetic field as measured by modern vector magnetometers can play a significant role in attitude control systems.
Vector models and generalized SYK models
Peng, Cheng
2017-05-23
Here, we consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. Furthermore, a chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.
Comment on "Chiral gauge field and axial anomaly in a Weyl semimetal"
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhang, Erhu; Zhang, Shengli
2017-12-01
In Liu et al. [Phys. Rev. B 87, 235306 (2013), 10.1103/PhysRevB.87.235306], the authors obtain that the cross coupling between vector gauge field and chiral gauge field can lead to the anomaly of vector current. We demonstrate that this anomaly is not a physical effect. On one hand, it can be regulated out by the proper regulation. On the other hand, it leads to unjustifiable results, the breaking of the vector gauge symmetry and the ambiguous boundary current. Moreover, the effects associated with anomaly of vector current are understood by random phase approximation (RPA) in the paper we comment on. We point out that the RPA cannot describe the effects resulting from the quantum anomaly.
Correlated Topic Vector for Scene Classification.
Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang
2017-07-01
Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.
A model for predicting field-directed particle transport in the magnetofection process.
Furlani, Edward P; Xue, Xiaozheng
2012-05-01
To analyze the magnetofection process in which magnetic carrier particles with surface-bound gene vectors are attracted to target cells for transfection using an external magnetic field and to obtain a fundamental understanding of the impact of key factors such as particle size and field strength on the gene delivery process. A numerical model is used to study the field-directed transport of the carrier particle-gene vector complex to target cells in a conventional multiwell culture plate system. The model predicts the transport dynamics and the distribution of particle accumulation at the target cells. The impact of several factors that strongly influence gene vector delivery is assessed including the properties of the carrier particles, the strength of the field source, and its extent and proximity relative to the target cells. The study demonstrates that modeling can be used to predict and optimize gene vector delivery in the magnetofection process for novel and conventional in vitro systems.
Multifractal vector fields and stochastic Clifford algebra.
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Content based image retrieval using local binary pattern operator and data mining techniques.
Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan
2015-01-01
Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.
Aerial images visual localization on a vector map using color-texture segmentation
NASA Astrophysics Data System (ADS)
Kunina, I. A.; Teplyakov, L. M.; Gladkov, A. P.; Khanipov, T. M.; Nikolaev, D. P.
2018-04-01
In this paper we study the problem of combining UAV obtained optical data and a coastal vector map in absence of satellite navigation data. The method is based on presenting the territory as a set of segments produced by color-texture image segmentation. We then find such geometric transform which gives the best match between these segments and land and water areas of the georeferenced vector map. We calculate transform consisting of an arbitrary shift relatively to the vector map and bound rotation and scaling. These parameters are estimated using the RANSAC algorithm which matches the segments contours and the contours of land and water areas of the vector map. To implement this matching we suggest computing shape descriptors robust to rotation and scaling. We performed numerical experiments demonstrating the practical applicability of the proposed method.
Learning semantic and visual similarity for endomicroscopy video retrieval.
Andre, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas
2012-06-01
Content-based image retrieval (CBIR) is a valuable computer vision technique which is increasingly being applied in the medical community for diagnosis support. However, traditional CBIR systems only deliver visual outputs, i.e., images having a similar appearance to the query, which is not directly interpretable by the physicians. Our objective is to provide a system for endomicroscopy video retrieval which delivers both visual and semantic outputs that are consistent with each other. In a previous study, we developed an adapted bag-of-visual-words method for endomicroscopy retrieval, called "Dense-Sift," that computes a visual signature for each video. In this paper, we present a novel approach to complement visual similarity learning with semantic knowledge extraction, in the field of in vivo endomicroscopy. We first leverage a semantic ground truth based on eight binary concepts, in order to transform these visual signatures into semantic signatures that reflect how much the presence of each semantic concept is expressed by the visual words describing the videos. Using cross-validation, we demonstrate that, in terms of semantic detection, our intuitive Fisher-based method transforming visual-word histograms into semantic estimations outperforms support vector machine (SVM) methods with statistical significance. In a second step, we propose to improve retrieval relevance by learning an adjusted similarity distance from a perceived similarity ground truth. As a result, our distance learning method allows to statistically improve the correlation with the perceived similarity. We also demonstrate that, in terms of perceived similarity, the recall performance of the semantic signatures is close to that of visual signatures and significantly better than those of several state-of-the-art CBIR methods. The semantic signatures are thus able to communicate high-level medical knowledge while being consistent with the low-level visual signatures and much shorter than them. In our resulting retrieval system, we decide to use visual signatures for perceived similarity learning and retrieval, and semantic signatures for the output of an additional information, expressed in the endoscopist own language, which provides a relevant semantic translation of the visual retrieval outputs.
A new method for distortion magnetic field compensation of a geomagnetic vector measurement system
NASA Astrophysics Data System (ADS)
Liu, Zhongyan; Pan, Mengchun; Tang, Ying; Zhang, Qi; Geng, Yunling; Wan, Chengbiao; Chen, Dixiang; Tian, Wugang
2016-12-01
The geomagnetic vector measurement system mainly consists of three-axis magnetometer and an INS (inertial navigation system), which have many ferromagnetic parts on them. The magnetometer is always distorted by ferromagnetic parts and other electric equipments such as INS and power circuit module within the system, which can lead to geomagnetic vector measurement error of thousands of nT. Thus, the geomagnetic vector measurement system has to be compensated in order to guarantee the measurement accuracy. In this paper, a new distortion magnetic field compensation method is proposed, in which a permanent magnet with different relative positions is used to change the ambient magnetic field to construct equations of the error model parameters, and the parameters can be accurately estimated by solving linear equations. In order to verify effectiveness of the proposed method, the experiment is conducted, and the results demonstrate that, after compensation, the components errors of measured geomagnetic field are reduced significantly. It demonstrates that the proposed method can effectively improve the accuracy of the geomagnetic vector measurement system.
On classical mechanical systems with non-linear constraints
NASA Astrophysics Data System (ADS)
Terra, Gláucio; Kobayashi, Marcelo H.
2004-03-01
In the present work, we analyze classical mechanical systems with non-linear constraints in the velocities. We prove that the d'Alembert-Chetaev trajectories of a constrained mechanical system satisfy both Gauss' principle of least constraint and Hölder's principle. In the case of a free mechanics, they also satisfy Hertz's principle of least curvature if the constraint manifold is a cone. We show that the Gibbs-Maggi-Appell (GMA) vector field (i.e. the second-order vector field which defines the d'Alembert-Chetaev trajectories) conserves energy for any potential energy if, and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint manifold). We introduce the Jacobi-Carathéodory metric tensor and prove Jacobi-Carathéodory's theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville's theorem on the conservation of volume for the flow of the GMA vector field.
NASA Astrophysics Data System (ADS)
Field, J. H.
2006-06-01
It is demonstrated how the right-hand sides of the Lorentz transformation equations may be written, in a Lorentz-invariant manner, as 4-vector scalar products. This implies the existence of invariant length intervals analogous to invariant proper time intervals. An important distinction between the physical meanings of the space time and energy momentum 4-vectors is pointed out. The formalism is shown to provide a short derivation of the Lorentz force law of classical electrodynamics, and the conventional definition of the magnetic field, in terms of spatial derivatives of the 4-vector potential, as well as the Faraday Lenz law and the Gauss law for magnetic fields. The connection between the Gauss law for the electric field and the electrodynamic Ampère law, due to the 4-vector character of the electromagnetic potential, is also pointed out.
The evolution of adenoviral vectors through genetic and chemical surface modifications.
Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo
2014-02-17
A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.
Extended vector-tensor theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp
Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Procamore » theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.« less
Rowe, Fiona J; Wright, David; Brand, Darren; Jackson, Carole; Harrison, Shirley; Maan, Tallat; Scott, Claire; Vogwell, Linda; Peel, Sarah; Akerman, Nicola; Dodridge, Caroline; Howard, Claire; Shipman, Tracey; Sperring, Una; Macdiarmid, Sonia; Freeman, Cicely
2013-01-01
To profile site of stroke/cerebrovascular accident, type and extent of field loss, treatment options, and outcome. Prospective multicentre cohort trial. Standardised referral and investigation protocol of visual parameters. 915 patients were recruited with a mean age of 69 years (SD 14). 479 patients (52%) had visual field loss. 51 patients (10%) had no visual symptoms. Almost half of symptomatic patients (n = 226) complained only of visual field loss: almost half (n = 226) also had reading difficulty, blurred vision, diplopia, and perceptual difficulties. 31% (n = 151) had visual field loss as their only visual impairment: 69% (n = 328) had low vision, eye movement deficits, or visual perceptual difficulties. Occipital and parietal lobe strokes most commonly caused visual field loss. Treatment options included visual search training, visual awareness, typoscopes, substitutive prisms, low vision aids, refraction, and occlusive patches. At followup 15 patients (7.5%) had full recovery, 78 (39%) had improvement, and 104 (52%) had no recovery. Two patients (1%) had further decline of visual field. Patients with visual field loss had lower quality of life scores than stroke patients without visual impairment. Stroke survivors with visual field loss require assessment to accurately define type and extent of loss, diagnose coexistent visual impairments, and offer targeted treatment.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1991-01-01
A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.
Students' difficulties with vector calculus in electrodynamics
NASA Astrophysics Data System (ADS)
Bollen, Laurens; van Kampen, Paul; De Cock, Mieke
2015-12-01
Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.
NASA Astrophysics Data System (ADS)
Boichenko, Stepan
2018-04-01
We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.
Interactive visualization and analysis of multimodal datasets for surgical applications.
Kirmizibayrak, Can; Yim, Yeny; Wakid, Mike; Hahn, James
2012-12-01
Surgeons use information from multiple sources when making surgical decisions. These include volumetric datasets (such as CT, PET, MRI, and their variants), 2D datasets (such as endoscopic videos), and vector-valued datasets (such as computer simulations). Presenting all the information to the user in an effective manner is a challenging problem. In this paper, we present a visualization approach that displays the information from various sources in a single coherent view. The system allows the user to explore and manipulate volumetric datasets, display analysis of dataset values in local regions, combine 2D and 3D imaging modalities and display results of vector-based computer simulations. Several interaction methods are discussed: in addition to traditional interfaces including mouse and trackers, gesture-based natural interaction methods are shown to control these visualizations with real-time performance. An example of a medical application (medialization laryngoplasty) is presented to demonstrate how the combination of different modalities can be used in a surgical setting with our approach.
Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D.
2013-01-01
The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three-dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross-section vector and contouring), and analysis of a range of ADCP-derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open-source code along with this publication.
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Weir, Peter T; Henze, Miriam J; Bleul, Christiane; Baumann-Klausener, Franziska; Labhart, Thomas; Dickinson, Michael H
2016-05-11
Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called polarization vision. Because skylight is polarized in an orientation that is rigidly determined by the position of the sun, this cue provides compass information. Behavioral experiments have shown that many species use the polarization pattern in the sky to direct locomotion. Here we describe the input stage of the fly's polarization-vision system. Copyright © 2016 the authors 0270-6474/16/365397-08$15.00/0.
Interplanetary medium data book, appendix
NASA Technical Reports Server (NTRS)
King, J. H.
1977-01-01
Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.
Rotational polarities of sudden impulses in the magnetotail lobe
NASA Technical Reports Server (NTRS)
Kawano, H.; Yamamoto, T.; Kokubun, S.; Lepping, R. P.
1992-01-01
A sudden impulse (SI) is a sudden change in the magnetic field strength which is caused by a change in the solar wind pressure and is observed throughout the magnetosphere. In this report we have examined the rotations of the magnetic field vectors at times of SIs in the magnetotail lobe, by using IMP 6, 7, and 8 magnetometer data. The following properties have been found: (1) at the time of SI the arrowhead of the magnetic vector tends to rotate in one plane; (2) the plane of rotation tends to include the unperturbed magnetic field vector; (3) the plane of rotation tends to be aligned with the radial direction from the magnetotail axis; and (4) the magnetic vectors have a particular rotational polarity: when the plane of rotation is viewed so that the Sun is to the right of the viewed plane and the magnetotail axis is to the bottom, the arrowhead of the vector tends to rotate counterclockwise in this plane. These magnetic vector properties are consistent with those expected when part of an increase in solar wind lateral pressure squeezes the magnetotail axisymmetrically while moving tailward.
Fu, Liezhen; Wen, Luan; Luu, Nga; Shi, Yun-Bo
2016-01-01
Genome editing with designer nucleases such as TALEN and CRISPR/Cas enzymes has broad applications. Delivery of these designer nucleases into organisms induces various genetic mutations including deletions, insertions and nucleotide substitutions. Characterizing those mutations is critical for evaluating the efficacy and specificity of targeted genome editing. While a number of methods have been developed to identify the mutations, none other than sequencing allows the identification of the most desired mutations, i.e., out-of-frame insertions/deletions that disrupt genes. Here we report a simple and efficient method to visualize and quantify the efficiency of genomic mutations induced by genome-editing. Our approach is based on the expression of a two-color fusion protein in a vector that allows the insertion of the edited region in the genome in between the two color moieties. We show that our approach not only easily identifies developing animals with desired mutations but also efficiently quantifies the mutation rate in vivo. Furthermore, by using LacZα and GFP as the color moieties, our approach can even eliminate the need for a fluorescent microscope, allowing the analysis with simple bright field visualization. Such an approach will greatly simplify the screen for effective genome-editing enzymes and identify the desired mutant cells/animals. PMID:27748423
Udell, Bradley J.
2017-01-01
The Asian citrus psyllid, Diaphorina citri, vectors huanglongbing (HLB), the most serious disease affecting citrus globally. D. citri and HLB have spread to the major citrus growing regions of North America causing billions of dollars of damage in Florida alone. The visual behavior of D. citri is not well characterized and more knowledge is needed to improve attractive traps for monitoring and control of the D. citri. Bioassays were conducted to evaluate attraction to light transmitted through different colored filters. The addition of ultra-violet light (< 400 nm) enhanced attraction of D. citri to transparent visual targets made of green or yellow filters. However, attraction to blue targets was unaffected by UV light. This is the first study to demonstrate a phytophagous insect responding to a hue that is a combination of long and short wavelengths. Further testing is needed to determine how D. citri uses such discriminatory powers in the field. Our results further imply that D. citri utilize color vision, as the less intense yellow and green hues were chosen over white light. In summary, this research provides an increased understanding of D. citri visual behavior and can be used for the development of a more attractive D. citri trap than those currently available. PMID:29236740
Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel
2012-01-01
Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?
Ding, Xin Shun; Schneider, William L; Chaluvadi, Srinivasa Rao; Mian, M A Rouf; Nelson, Richard S
2006-11-01
Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMV(A/G) (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.
NASA Astrophysics Data System (ADS)
Zhao, Yiqun; Wang, Zhihui
2015-12-01
The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.
[Sendai virus vector: vector development and its application to health care and biotechnology].
Iida, Akihiro
2007-06-01
Sendai virus (SeV) is an enveloped virus with a nonsegmented negative-strand RNA genome and a member of the paramyxovirus family. We have developed SeV vector which has shown a high efficiently of gene transfer and expression of foreign genes to a wide range of dividing and non-dividing mammalian cells and tissues. One of the characteristics of the vector is that the genome is located exclusively in the cytoplasm of infected cells and does not go through a DNA phase; thus there is no concern about unwanted integration of foreign sequences into chromosomal DNA. Therefore, this new class of "cytoplasmic RNA vector", an RNA vector with cytoplasmic expression, is expected to be a safer and more efficient viral vector than existing vectors for application to human therapy in various fields including gene therapy and vaccination. In this review, I describe development of Sendai virus vector, its application in the field of biotechnology and clinical application aiming to treat for a large number of diseases including cancer, cardiovascular disease, infectious diseases and neurologic disorders.
The four-meter confrontation visual field test.
Kodsi, S R; Younge, B R
1992-01-01
The 4-m confrontation visual field test has been successfully used at the Mayo Clinic for many years in addition to the standard 0.5-m confrontation visual field test. The 4-m confrontation visual field test is a test of macular function and can identify small central or paracentral scotomas that the examiner may not find when the patient is tested only at 0.5 m. Also, macular sparing in homonymous hemianopias and quadrantanopias may be identified with the 4-m confrontation visual field test. We recommend use of this confrontation visual field test, in addition to the standard 0.5-m confrontation visual field test, on appropriately selected patients to obtain the most information possible by confrontation visual field tests. PMID:1494829
The four-meter confrontation visual field test.
Kodsi, S R; Younge, B R
1992-01-01
The 4-m confrontation visual field test has been successfully used at the Mayo Clinic for many years in addition to the standard 0.5-m confrontation visual field test. The 4-m confrontation visual field test is a test of macular function and can identify small central or paracentral scotomas that the examiner may not find when the patient is tested only at 0.5 m. Also, macular sparing in homonymous hemianopias and quadrantanopias may be identified with the 4-m confrontation visual field test. We recommend use of this confrontation visual field test, in addition to the standard 0.5-m confrontation visual field test, on appropriately selected patients to obtain the most information possible by confrontation visual field tests.
Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis
Fu, Hongping; Niu, Zhendong; Zhang, Chunxia; Ma, Jing; Chen, Jie
2016-01-01
Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM), which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker, and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance. PMID:27471460
Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis.
Fu, Hongping; Niu, Zhendong; Zhang, Chunxia; Ma, Jing; Chen, Jie
2016-01-01
Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM), which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker, and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance.
Characteristics, Causes, and Evaluation of Helicopter Particulate Visual Obstruction
2012-09-10
future full-scale testing. The thrust sources examined were a 1 in. diameter nozzle , a 4 in. diameter nozzle , and a 16 in. ducted fan. The sources...Hiller also evaluated inclining the thrust vector , and determined there was little reduction in dynamic pressure at the point of ground interaction...CHARACTERISTICS, CAUSES, AND EVALUATION OF HELICOPTER PARTICULATE VISUAL OBSTRUCTION THESIS
Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.
Itoh, Takayuki; Klein, Karsten
2015-01-01
Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset.
Population biology of human onchocerciasis.
Basáñez, M G; Boussinesq, M
1999-01-01
Human onchocerciasis (river blindness) is the filarial infection caused by Onchocerca volvulus and transmitted among people through the bites of the Simulium vector. Some 86 million people around the world are at risk of acquiring the nematode, with 18 million people infected and 600,000 visually impaired, half of them partially or totally blind. 99% of cases occur in tropical Africa; scattered foci exist in Latin America. Until recently control programmes, in operation since 1975, have consisted of antivectorial measures. With the introduction of ivermectin in 1988, safe and effective chemotherapy is now available. With the original Onchocerciasis Control Programme of West Africa coming to an end, both the new African Programme for Onchocerciasis Control and the Onchocerciasis Elimination Programme for the Americas, rely heavily on ivermectin self-sustained mass delivery. In consequence, the need for understanding the processes regulating parasite abundance in human and simuliid populations is of utmost importance. We present a simple mathematical framework built around recent analyses of exposure- and density-dependent processes operating, respectively, within the human and vector hosts. An expression for the basic reproductive ratio, R0, is derived and related to the minimum vector density required for parasite persistence in localities of West Africa in general and northern Cameroon in particular. Model outputs suggest that constraints acting against parasite establishment in both humans and vectors are necessary to reproduce field observations, but those in humans may not fully protect against reinfection. Analyses of host age-profiles of infection prevalence, intensity, and aggregation for increasing levels of endemicity and intensity of transmission in the Vina valley of northern Cameroon are in agreement with these results and discussed in light of novel work on onchocerciasis immunology. PMID:10365406
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramar, M.; Lin, H.; Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu
We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, wemore » compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.« less
SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu
2015-01-10
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a databasemore » of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.« less
Achievement of needle-like focus by engineering radial-variant vector fields.
Gu, Bing; Wu, Jia-Lu; Pan, Yang; Cui, Yiping
2013-12-16
We present and demonstrate a novel method for engineering the radial-variant polarization on the incident field to achieve a needle of transversally polarized field without any pupil filters. We generate a new kind of localized linearly-polarized vector fields with distributions of states of polarization (SoPs) describing by the radius to the power p and explore its tight focusing, nonparaxial focusing, and paraxial focusing properties. By tuning the power p, we obtain the needle-like focal field with hybrid SoPs and give the formula for describing the length of the needle. Experimentally, we systematically investigate both the intensity distributions and the polarization evolution of the optical needle by paraxial focusing the generated vector field. Such an optical needle, which enhances the light-matter interaction, has intriguing applications in optical microma-chining and nonlinear optics.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.
1990-01-01
A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.
Computation of Surface Integrals of Curl Vector Fields
ERIC Educational Resources Information Center
Hu, Chenglie
2007-01-01
This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…
Vector calculus in non-integer dimensional space and its applications to fractal media
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Giuliani, James E.
1994-01-01
The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.
On the origin of Poincaré gauge gravity
NASA Astrophysics Data System (ADS)
Chkareuli, J. L.
2017-06-01
We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij) and vector (eμi) representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, Aμij Aijμ = ±MA2 and eμi eiμ = ±Me2 , that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales). It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.
NASA Technical Reports Server (NTRS)
Shaffer, Scott; Dunbar, R. Scott; Hsiao, S. Vincent; Long, David G.
1989-01-01
The NASA Scatterometer, NSCAT, is an active spaceborne radar designed to measure the normalized radar backscatter coefficient (sigma0) of the ocean surface. These measurements can, in turn, be used to infer the surface vector wind over the ocean using a geophysical model function. Several ambiguous wind vectors result because of the nature of the model function. A median-filter-based ambiguity removal algorithm will be used by the NSCAT ground data processor to select the best wind vector from the set of ambiguous wind vectors. This process is commonly known as dealiasing or ambiguity removal. The baseline NSCAT ambiguity removal algorithm and the method used to select the set of optimum parameter values are described. An extensive simulation of the NSCAT instrument and ground data processor provides a means of testing the resulting tuned algorithm. This simulation generates the ambiguous wind-field vectors expected from the instrument as it orbits over a set of realistic meoscale wind fields. The ambiguous wind field is then dealiased using the median-based ambiguity removal algorithm. Performance is measured by comparison of the unambiguous wind fields with the true wind fields. Results have shown that the median-filter-based ambiguity removal algorithm satisfies NSCAT mission requirements.
Supermodes in Coupled Multi-Core Waveguide Structures
2016-04-01
and therefore can be treated as linear polarization (LP) modes. In essence, the LP modes are scalar approximations of the vector mode fields and contain...field, including the discovery of optical discrete solitons , Bragg and vector solitons in fibers, nonlinear surface waves, and the discovery of self...increased for an isolated core, it can guide high-order modes. For optical fibers with low re- fractive index contrast, the vector modes are weakly guided
NASA Astrophysics Data System (ADS)
Tóth, Balázs
2018-03-01
Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.
NASA Technical Reports Server (NTRS)
Metcalf, Thomas R.
1994-01-01
I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.
1976-02-01
Transition from Specular Reflection to Diffuse Scattering. . . 10 Composition of the Electric-Field Vector as Seen at the Radar...r t (16) R • FIGURE P COMPOSITION OF THE ELECTRIC-FIELD VECTOR AS SEEN AT THE RADAR, R, IN FIG. 2. The electric field at the radar, E, is the sum...wavelengths in the VHP and UHF ranges even subsurface characteristics can be important. So in a field experiment one must be careful to measure
Electromagnetically induced transparency in the case of elliptic polarization of interacting fields
NASA Astrophysics Data System (ADS)
Parshkov, Oleg M.
2018-04-01
The theoretical investigation results of disintegration effect of elliptic polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed elliptic polarized control field and in weak probe field approximation are presented. It is shown that this disintegration occurs because the probe field in the medium is the sum of two normal modes, which correspond to elliptic polarized pulses with different speeds of propagation. The polarization ellipses of normal modes have equal eccentricities and mutually perpendicular major axes. Major axis of polarization ellipse of one normal mode is parallel to polarization ellipse major axis of control field, and electric vector of this mode rotates in the opposite direction, than electric vector of the control field. The electric vector other normal mode rotates in the same direction that the control field electric vector. The normal mode speed of the first type aforementioned is less than that of the second type. The polarization characteristics of the normal mode depend uniquely on the polarization characteristics of elliptic polarized control field and remain changeless in the propagation process. The theoretical investigation is performed for Λ-scheme of degenerated quantum transitions between 3P0, 3P10 and 3P2 energy levels of 208Pb isotope.
Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei
2016-01-01
Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers. PMID:27009383
Rotation Detection Using the Precession of Molecular Electric Dipole Moment
NASA Astrophysics Data System (ADS)
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2017-11-01
We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.
Visualization of x-ray computer tomography using computer-generated holography
NASA Astrophysics Data System (ADS)
Daibo, Masahiro; Tayama, Norio
1998-09-01
The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.
Basu, Anamitra; Mandal, Manas K
2004-07-01
The present study examined visual-field advantage as a function of presentation mode (unilateral, bilateral), stimulus structure (facial, lexical), and stimulus content (emotional, neutral). The experiment was conducted in a split visual-field paradigm using a JAVA-based computer program with recognition accuracy as the dependent measure. Unilaterally, rather than bilaterally, presented stimuli were significantly better recognized. Words were significantly better recognized than faces in the right visual-field; the difference was nonsignificant in the left visual-field. Emotional content elicited left visual-field and neutral content elicited right visual-field advantages. Copyright Taylor and Francis Inc.
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
Electric fields and vector potentials of thin cylindrical antennas
NASA Astrophysics Data System (ADS)
King, Ronold W. P.
1990-09-01
The vector potential and electric field generated by the current in a center-driven or parasitic dipole antenna that extends from z = -h to z = h are investigated for each of the several components of the current. These include sin k(h - absolute value of z), sin k (absolute value of z) - sin kh, cos kz - cos kh, and cos kz/2 - cos kh/2. Of special interest are the interactions among the variously spaced elements in parallel nonstaggered arrays. These depend on the mutual vector potentials. It is shown that at a radial distance rho approximately = h and in the range z = -h to h, the vector potentials due to all four components become alike and have an approximately plane-wave form. Simple approximate formulas for the electric fields and vector potentials generated by each of the four distributions are derived and compared with the exact results. The application of the new formulas to large arrays is discussed.
Flow disturbance due to presence of the vane anemometer
NASA Astrophysics Data System (ADS)
Bujalski, M.; Gawor, M.; Sobczyk, J.
2014-08-01
This paper presents the results of the preliminary experimental investigations of the disturbance of velocity field resulting from placing a vane anemometer in the analyzed air flow. Experiments were conducted in a wind tunnel with a closed loop. For the measurement process, Particle Image Velocimetry (PIV) method was used to visualize the flow structure and evaluate the instantaneous, two-dimensional velocity vector fields. Regions of inflow on the vane anemometer as well as flow behind it were examined. Ensemble averaged velocity distribution and root-mean-square (RMS) velocity fluctuations were determined. The results below are presented in the form of contour-velocity maps and profile plots. In order to investigate velocity fluctuations in the wake of vane anemometer with high temporal resolution hot-wire anemometry (HWA) technique was used. Frequency analysis by means of Fast Fourier Transform was carried out. The obtained results give evidence to a significant spatially and temporally complex flow disturbance in the vicinity of analyzed instrument.
Macroscopic theory of dark sector
NASA Astrophysics Data System (ADS)
Meierovich, Boris
A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).
Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P
2015-01-01
The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves monitored at post-veraison and harvest was also built up, reaching a 77.08% of correctly classified samples. The outcomes obtained demonstrate the capability of using a reliable method for fast, in-field, non-destructive grapevine varietal classification that could be very useful in viticulture and wine industry, either global or site-specific.
Geoscience data visualization and analysis using GeoMapApp
NASA Astrophysics Data System (ADS)
Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha
2013-04-01
Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D visualizations into common formats including grids, images, text files, spreadsheets, etc. Examples of interdisciplinary investigations that make use of GeoMapApp visualization and analysis functionality will be provided.
NASA Astrophysics Data System (ADS)
Hashemi, H.; Tax, D. M. J.; Duin, R. P. W.; Javaherian, A.; de Groot, P.
2008-11-01
Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA). In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP) and support vector classifier (SVC) are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.
Tsunekawa, Yuji; Terhune, Raymond Kunikane; Fujita, Ikumi; Shitamukai, Atsunori; Suetsugu, Taeko; Matsuzaki, Fumio
2016-09-01
Genome-editing technology has revolutionized the field of biology. Here, we report a novel de novo gene-targeting method mediated by in utero electroporation into the developing mammalian brain. Electroporation of donor DNA with the CRISPR/Cas9 system vectors successfully leads to knock-in of the donor sequence, such as EGFP, to the target site via the homology-directed repair mechanism. We developed a targeting vector system optimized to prevent anomalous leaky expression of the donor gene from the plasmid, which otherwise often occurs depending on the donor sequence. The knock-in efficiency of the electroporated progenitors reached up to 40% in the early stage and 20% in the late stage of the developing mouse brain. Furthermore, we inserted different fluorescent markers into the target gene in each homologous chromosome, successfully distinguishing homozygous knock-in cells by color. We also applied this de novo gene targeting to the ferret model for the study of complex mammalian brains. Our results demonstrate that this technique is widely applicable for monitoring gene expression, visualizing protein localization, lineage analysis and gene knockout, all at the single-cell level, in developmental tissues. © 2016. Published by The Company of Biologists Ltd.
Data Images and Other Graphical Displays for Directional Data
NASA Technical Reports Server (NTRS)
Morphet, Bill; Symanzik, Juergen
2005-01-01
Vectors, axes, and periodic phenomena have direction. Directional variation can be expressed as points on a unit circle and is the subject of circular statistics, a relatively new application of statistics. An overview of existing methods for the display of directional data is given. The data image for linear variables is reviewed, then extended to directional variables by displaying direction using a color scale composed of a sequence of four or more color gradients with continuity between sequences and ordered intuitively in a color wheel such that the color of the 0deg angle is the same as the color of the 360deg angle. Cross over, which arose in automating the summarization of historical wind data, and color discontinuity resulting from the use a single color gradient in computational fluid dynamics visualization are eliminated. The new method provides for simultaneous resolution of detail on a small scale and overall structure on a large scale. Example circular data images are given of a global view of average wind direction of El Nino periods, computed rocket motor internal combustion flow, a global view of direction of the horizontal component of earth's main magnetic field on 9/15/2004, and Space Shuttle solid rocket motor nozzle vectoring.
The accuracy of confrontation visual field test in comparison with automated perimetry.
Johnson, L. N.; Baloh, F. G.
1991-01-01
The accuracy of confrontation visual field testing was determined for 512 visual fields using automated static perimetry as the reference standard. The sensitivity of confrontation testing excluding patchy defects was 40% for detecting anterior visual field defects, 68.3% for posterior defects, and 50% for both anterior and posterior visual field defects combined. The sensitivity within each group varied depending on the type of visual field defect encountered. Confrontation testing had a high sensitivity (75% to 100%) for detecting altitudinal visual loss, central/centrocecal scotoma, and homonymous hemianopsia. Confrontation testing was fairly insensitive (20% to 50% sensitivity) for detecting arcuate scotoma and bitemporal hemianopsia. The specificity of confrontation testing was high at 93.4%. The high positive predictive value (72.6%) and negative predictive value (75.7%) would indicate that visual field defects identified during confrontation testing are often true visual field defects. However, the many limitations of confrontation testing should be remembered, particularly its low sensitivity for detecting visual field loss associated with parasellar tumors, glaucoma, and compressive optic neuropathies. PMID:1800764
Thermofield duality for higher spin Rindler Gravity
Jevicki, Antal; Suzuki, Kenta
2016-02-15
In this paper, we study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and O(N) vector theory. The CFT represents a decoupled pair of free O(N) vector field theories. It is shown how this decoupled domain CFT is capable of generating the connected Rindler-AdS background with the full set of Higher Spin fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogh, Ellen; Toft-Petersen, Rasmus; Ressouche, Eric
Here, the magnetic phase diagram of magnetoelectric LiCoPO 4 is established using neutron diffraction and magnetometry in fields up to 25.9T applied along the crystallographic b axis. For fields greater than 11.9T, the magnetic unit cell triples in size with propagation vector Q = (0,1/3,0). A magnetized elliptic cycloid is formed with spins in the (b,c) plane and the major axis oriented along b. Such a structure allows for the magnetoelectric effect with an electric polarization along c induced by magnetic fields applied along b. Intriguingly, additional ordering vectors Q ≈ (0,1/4,0) and Q ≈ (0,1/2,0) appear for increasing fieldsmore » in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5–21.0T, the propagation vector Q = (0,1/3,0) remains but the spins orient differently compared to the cycloid phase. Furthermore, above 21.0T and up until saturation, a commensurate magnetic structure exists with a ferromagnetic component along b and an antiferromagnetic component along« less
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei
2018-03-01
For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.
NASA Astrophysics Data System (ADS)
Hagen, C.; Ellmeier, M.; Piris, J.; Lammegger, R.; Jernej, I.; Magnes, W.; Murphy, E.; Pollinger, A.; Erd, C.; Baumjohann, W.
2017-11-01
Scalar magnetometers measure the magnitude of the magnetic field, while vector magnetometers (mostly fluxgate magnetometers) produce three-component outputs proportional to the magnitude and the direction of the magnetic field. While scalar magnetometers have a high accuracy, vector magnetometers suffer from parameter drifts and need to be calibrated during flight. In some cases, full science return can only be achieved by a combination of vector and scalar magnetometers.
Analysis of the vector magnetic fields of complex sunspots
NASA Technical Reports Server (NTRS)
Patty, S. R.
1981-01-01
An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.
Evolution of vector magnetic fields and the August 27 1990 X-3 flare
NASA Technical Reports Server (NTRS)
Wang, Haimin
1992-01-01
Vector magnetic fields in an active region of the sun are studied by means of continuous observations of magnetic-field evolution emphasizing magnetic shear build-up. The vector magnetograms are shown to measure magnetic fields correctly based on concurrent observations and a comparison of the transverse field with the H alpha fibril structure. The morphology and velocity pattern are examined, and these data and the shear build-up suggest that the active region's two major footprints are separated by a region with flows, new flux emergence, and several neutral lines. The magnetic shear appears to be caused by the collision and shear motion of two poles of opposite polarities. The transverse field is shown to turn from potential to sheared during the process of flux cancellation, and this effect can be incorporated into existing models of magnetic flux cancellation.
Inhomogeneity and velocity fields effects on scattering polarization in solar prominences
NASA Astrophysics Data System (ADS)
Milić, I.; Faurobert, M.
2015-10-01
One of the methods for diagnosing vector magnetic fields in solar prominences is the so called "inversion" of observed polarized spectral lines. This inversion usually assumes a fairly simple generative model and in this contribution we aim to study the possible systematic errors that are introduced by this assumption. On two-dimensional toy model of a prominence, we first demonstrate importance of multidimensional radiative transfer and horizontal inhomogeneities. These are able to induce a significant level of polarization in Stokes U, without the need for the magnetic field. We then compute emergent Stokes spectrum from a prominence which is pervaded by the vector magnetic field and use a simple, one-dimensional model to interpret these synthetic observations. We find that inferred values for the magnetic field vector generally differ from the original ones. Most importantly, the magnetic field might seem more inclined than it really is.
NASA Astrophysics Data System (ADS)
Du, J.; Chen, C.; Lesur, V.; Wang, L.
2014-12-01
General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees and orders, are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the higher-order partial derivatives of the magnetic field in local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (version 0.0) and the main magnetic field model of IGRF11. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the potential field.
Ferral, Jhibran; Chavez-Nuñez, Leysi; Euan-Garcia, Maria; Ramirez-Sierra, Maria Jesus; Najera-Vazquez, M Rosario; Dumonteil, Eric
2010-01-01
Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.
Cosmology for quadratic gravity in generalized Weyl geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez, Jose Beltrán; Heisenberg, Lavinia; Koivisto, Tomi S.
A class of vector-tensor theories arises naturally in the framework of quadratic gravity in spacetimes with linear vector distortion. Requiring the absence of ghosts for the vector field imposes an interesting condition on the allowed connections with vector distortion: the resulting one-parameter family of connections generalises the usual Weyl geometry with polar torsion. The cosmology of this class of theories is studied, focusing on isotropic solutions wherein the vector field is dominated by the temporal component. De Sitter attractors are found and inhomogeneous perturbations around such backgrounds are analysed. In particular, further constraints on the models are imposed by excludingmore » pathologies in the scalar, vector and tensor fluctuations. Various exact background solutions are presented, describing a constant and an evolving dark energy, a bounce and a self-tuning de Sitter phase. However, the latter two scenarios are not viable under a closer scrutiny.« less
Vector disformal transformation of cosmological perturbations
NASA Astrophysics Data System (ADS)
Papadopoulos, Vassilis; Zarei, Moslem; Firouzjahi, Hassan; Mukohyama, Shinji
2018-03-01
We study disformal transformations of cosmological perturbations by vector fields in theories invariant under U (1 ) gauge transformations. Three types of vector disformal transformations are considered: (i) disformal transformations by a single timelike vector; (ii) disformal transformations by a single spacelike vector; and (iii) disformal transformations by three spacelike vectors. We show that transformations of type (i) do not change either curvature perturbation or gravitational waves; that those of type (ii) do not change curvature perturbation but change gravitational waves; and that those of type (iii) change both curvature perturbation and gravitational waves. Therefore, coupling matter fields to the metric after disformal transformations of type (ii) or (iii) in principle have observable consequences. While the recent multi-messenger observation of binary neutron stars has singled out a proper disformal frame at the present epoch with a high precision, the result of the present paper may thus help distinguishing disformal frames in the early universe.
A Metric to Quantify Shared Visual Attention in Two-Person Teams
NASA Technical Reports Server (NTRS)
Gontar, Patrick; Mulligan, Jeffrey B.
2015-01-01
Introduction: Critical tasks in high-risk environments are often performed by teams, the members of which must work together efficiently. In some situations, the team members may have to work together to solve a particular problem, while in others it may be better for them to divide the work into separate tasks that can be completed in parallel. We hypothesize that these two team strategies can be differentiated on the basis of shared visual attention, measured by gaze tracking. 2) Methods: Gaze recordings were obtained for two-person flight crews flying a high-fidelity simulator (Gontar, Hoermann, 2014). Gaze was categorized with respect to 12 areas of interest (AOIs). We used these data to construct time series of 12 dimensional vectors, with each vector component representing one of the AOIs. At each time step, each vector component was set to 0, except for the one corresponding to the currently fixated AOI, which was set to 1. This time series could then be averaged in time, with the averaging window time (t) as a variable parameter. For example, when we average with a t of one minute, each vector component represents the proportion of time that the corresponding AOI was fixated within the corresponding one minute interval. We then computed the Pearson product-moment correlation coefficient between the gaze proportion vectors for each of the two crew members, at each point in time, resulting in a signal representing the time-varying correlation between gaze behaviors. We determined criteria for concluding correlated gaze behavior using two methods: first, a permutation test was applied to the subjects' data. When one crew member's gaze proportion vector is correlated with a random time sample from the other crewmember's data, a distribution of correlation values is obtained that differs markedly from the distribution obtained from temporally aligned samples. In addition to validating that the gaze tracker was functioning reasonably well, this also allows us to compute probabilities of coordinated behavior for each value of the correlation. As an alternative, we also tabulated distributions of correlation coefficients for synthetic data sets, in which the behavior was modeled as a first-order Markov process, and compared correlation distributions for identical processes with those for disparate processes, allowing us to choose criteria and estimate error rates. 3) Discussion: Our method of gaze correlation is able to measure shared visual attention, and can distinguish between activities involving different instruments. We plan to analyze whether pilots strategies of sharing visual attention can predict performance. Possible measurements of performance include expert ratings from instructors, fuel consumption, total task time, and failure rate. While developed for two-person crews, our approach can be applied to larger groups, using intra-class correlation coefficients instead of the Pearson product-moment correlation.
Particle production of vector fields: Scale invariance is attractive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, Jacques M.; Dimopoulos, Konstantinos
2011-01-15
In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of perturbations for the components of a vector field, massive or not, whose kinetic function (and mass) is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation weakly anisotropic. The above two characteristics of the attractor solution can source (independently or combined together) significant statisticalmore » anisotropy in the curvature perturbation, which may well be observable in the near future.« less
NASA Technical Reports Server (NTRS)
Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.
1987-01-01
The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.
Index formulas for higher order Loewner vector fields
NASA Astrophysics Data System (ADS)
Broad, Steven
Let ∂ be the Cauchy-Riemann operator and f be a C real-valued function in a neighborhood of 0 in R in which ∂z¯nf≠0 for all z≠0. In such cases, ∂z¯nf is known as a Loewner vector field due to its connection with Loewner's conjecture that the index of such a vector field is bounded above by n. The n=2 case of Loewner's conjecture implies Carathéodory's conjecture that any C-immersion of S into R must have at least two umbilics. Recent work of F. Xavier produced a formula for computing the index of Loewner vector fields when n=2 using data about the Hessian of f. In this paper, we extend this result and establish an index formula for ∂z¯nf for all n⩾2. Structurally, our index formula provides a defect term, which contains geometric data extracted from Hessian-like objects associated with higher order derivatives of f.
Lie-Hamilton systems on the plane: Properties, classification and applications
NASA Astrophysics Data System (ADS)
Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.
2015-04-01
We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.
Spatial attenuation of different sound field components in a water layer and shallow-water sediments
NASA Astrophysics Data System (ADS)
Belov, A. I.; Kuznetsov, G. N.
2017-11-01
The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.
NASA Astrophysics Data System (ADS)
Monten, Ruben; Toldo, Chiara
2018-02-01
We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.
Development of software for the MSFC solar vector magnetograph
NASA Technical Reports Server (NTRS)
Kineke, Jack
1996-01-01
The Marshall Space Flight Center Solar Vector Magnetograph is a special purpose telescope used to measure the vector magnetic field in active areas on the surface of the sun. This instrument measures the linear and circular polarization intensities (the Stokes vectors Q, U and V) produced by the Zeeman effect on a specific spectral line due to the solar magnetic field from which the longitudinal and transverse components of the magnetic field may be determined. Beginning in 1990 as a Summer Faculty Fellow in project JOVE and continuing under NASA Grant NAG8-1042, the author has been developing computer software to perform these computations, first using a DEC MicroVAX system equipped with a high speed array processor, and more recently using a DEC AXP/OSF system. This summer's work is a continuation of this development.
O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C
2016-11-09
Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.
Functional visual fields: relationship of visual field areas to self-reported function.
Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D
2017-07-01
The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p < 0.0001), and for mobility (R 2 = 0.64; p < 0.0001). Central (0-30°) and peripheral (30-60°) visual field areas were similarly related to mobility function (R 2 = 0.61, p < 0.0001 and R 2 = 0.63, p < 0.0001 respectively), although the peripheral (30-60°) visual field was the best predictor of mobility self-reported function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p < 0.0001 and R 2 = 0.67, p < 0.0001 respectively). The inferior field was found to be the best predictor of mobility function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Albert (Bud) Mayfield; Cavell Brownie
2013-01-01
The redbay ambrosia beetle (Syleborus glabratus Eichhoff) is an invasive pest and vector of the pathogen that causes laurel wilt disease in Lauraceous tree species in the eastern United States. This insect uses olfactory cues during host finding, but use of visual cues by X. Glabratus has not been previously investigated and may help explain diameter...
Coleman, Anne Louise
2007-01-01
Purpose To determine the sources of binocular visual field loss most strongly associated with falls in a cohort of older women. Methods In the Study of Osteoporotic Fractures, women with severe binocular visual field loss had an increased risk of two or more falls during the 12 months following the eye examination. The lens and fundus photographs of the 422 women with severe binocular visual field loss, plus a random sample of 141 white women with no, mild, or moderate binocular visual field loss—47 white women with no binocular visual field loss, 46 white women with mild binocular visual field loss, and 48 white women with moderate binocular visual field loss —were evaluated for lens opacities, glaucomatous optic nerve damage, age-related macular degeneration, and diabetic retinopathy. Results Eighty-four percent of the women with severe binocular visual field loss had ocular disease in one or both eyes. Bilateral cataracts and glaucomatous optic nerve damage were the most common sources of this severe binocular visual field loss. Approximately 15.2% of women had no evidence of lens opacities, glaucomatous optic nerve damage, age-related macular degeneration, or diabetic retinopathy. Conclusion Severe binocular visual field loss due primarily to cataracts, glaucoma, and age-related macular degeneration explains 33.3% of the falls among women who fell frequently. Because binocular visual field loss may be treatable and/or preventable, screening programs for binocular visual field loss and subsequent referral for intervention and treatment are recommended as a strategy for preventing falls among the elderly. PMID:18427619
Wind turbine wake visualization and characteristics analysis by Doppler lidar.
Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel
2016-05-16
Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.
Grave, Frank; Buser, Michael
2008-01-01
Visualization of general relativity illustrates aspects of Einstein's insights into the curved nature of space and time to the expert as well as the layperson. One of the most interesting models which came up with Einstein's theory was developed by Kurt Gödel in 1949. The Gödel universe is a valid solution of Einstein's field equations, making it a possible physical description of our universe. It offers remarkable features like the existence of an optical horizon beyond which time travel is possible. Although we know that our universe is not a Gödel universe, it is interesting to visualize physical aspects of a world model resulting from a theory which is highly confirmed in scientific history. Standard techniques to adopt an egocentric point of view in a relativistic world model have shortcomings with respect to the time needed to render an image as well as difficulties in applying a direct illumination model. In this paper we want to face both issues to reduce the gap between common visualization standards and relativistic visualization. We will introduce two techniques to speed up recalculation of images by means of preprocessing and lookup tables and to increase image quality through a special optimization applicable to the Gödel universe. The first technique allows the physicist to understand the different effects of general relativity faster and better by generating images from existing datasets interactively. By using the intrinsic symmetries of Gödel's spacetime which are expressed by the Killing vector field, we are able to reduce the necessary calculations to simple cases using the second technique. This even makes it feasible to account for a direct illumination model during the rendering process. Although the presented methods are applied to Gödel's universe, they can also be extended to other manifolds, for example light propagation in moving dielectric media. Therefore, other areas of research can benefit from these generic improvements.
Evolutionary programming-based univector field navigation method for past mobile robots.
Kim, Y J; Kim, J H; Kwon, D S
2001-01-01
Most of navigation techniques with obstacle avoidance do not consider the robot orientation at the target position. These techniques deal with the robot position only and are independent of its orientation and velocity. To solve these problems this paper proposes a novel univector field method for fast mobile robot navigation which introduces a normalized two dimensional vector field. The method provides fast moving robots with the desired posture at the target position and obstacle avoidance. To obtain the sub-optimal vector field, a function approximator is used and trained by evolutionary programming. Two kinds of vector fields are trained, one for the final posture acquisition and the other for obstacle avoidance. Computer simulations and real experiments are carried out for a fast moving mobile robot to demonstrate the effectiveness of the proposed scheme.
Cryogenic STM in 3D vector magnetic fields realized through a rotatable insert.
Trainer, C; Yim, C M; McLaren, M; Wahl, P
2017-09-01
Spin-polarized scanning tunneling microscopy (SP-STM) performed in vector magnetic fields promises atomic scale imaging of magnetic structure, providing complete information on the local spin texture of a sample in three dimensions. Here, we have designed and constructed a turntable system for a low temperature STM which in combination with a 2D vector magnet provides magnetic fields of up to 5 T in any direction relative to the tip-sample geometry. This enables STM imaging and spectroscopy to be performed at the same atomic-scale location and field-of-view on the sample, and most importantly, without experiencing any change on the tip apex before and after field switching. Combined with a ferromagnetic tip, this enables us to study the magnetization of complex magnetic orders in all three spatial directions.
NASA Technical Reports Server (NTRS)
Kao, David
1999-01-01
The line integral convolution (LIC) technique has been known to be an effective tool for depicting flow patterns in a given vector field. There have been many extensions to make it run faster and reveal useful flow information such as velocity magnitude, motion, and direction. There are also extensions to unsteady flows and 3D vector fields. Surprisingly, none of these extensions automatically highlight flow features, which often represent the most important and interesting physical flow phenomena. In this sketch, a method for highlighting flow direction in LIC images is presented. The method gives an intuitive impression of flow direction in the given vector field and automatically reveals saddle points in the flow.
Transverse spin and transverse momentum in scattering of plane waves.
Saha, Sudipta; Singh, Ankit K; Ray, Subir K; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya
2016-10-01
We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demonstrated that the interference of the transverse electric and transverse magnetic scattering modes enhances both the magnitudes and the spatial extent of the transverse SAM and the transverse momentum components.
The SCHEIE Visual Field Grading System
Sankar, Prithvi S.; O’Keefe, Laura; Choi, Daniel; Salowe, Rebecca; Miller-Ellis, Eydie; Lehman, Amanda; Addis, Victoria; Ramakrishnan, Meera; Natesh, Vikas; Whitehead, Gideon; Khachatryan, Naira; O’Brien, Joan
2017-01-01
Objective No method of grading visual field (VF) defects has been widely accepted throughout the glaucoma community. The SCHEIE (Systematic Classification of Humphrey visual fields-Easy Interpretation and Evaluation) grading system for glaucomatous visual fields was created to convey qualitative and quantitative information regarding visual field defects in an objective, reproducible, and easily applicable manner for research purposes. Methods The SCHEIE grading system is composed of a qualitative and quantitative score. The qualitative score consists of designation in one or more of the following categories: normal, central scotoma, paracentral scotoma, paracentral crescent, temporal quadrant, nasal quadrant, peripheral arcuate defect, expansive arcuate, or altitudinal defect. The quantitative component incorporates the Humphrey visual field index (VFI), location of visual defects for superior and inferior hemifields, and blind spot involvement. Accuracy and speed at grading using the qualitative and quantitative components was calculated for non-physician graders. Results Graders had a median accuracy of 96.67% for their qualitative scores and a median accuracy of 98.75% for their quantitative scores. Graders took a mean of 56 seconds per visual field to assign a qualitative score and 20 seconds per visual field to assign a quantitative score. Conclusion The SCHEIE grading system is a reproducible tool that combines qualitative and quantitative measurements to grade glaucomatous visual field defects. The system aims to standardize clinical staging and to make specific visual field defects more easily identifiable. Specific patterns of visual field loss may also be associated with genetic variants in future genetic analysis. PMID:28932621
Vector Potential Generation for Numerical Relativity Simulations
NASA Astrophysics Data System (ADS)
Silberman, Zachary; Faber, Joshua; Adams, Thomas; Etienne, Zachariah; Ruchlin, Ian
2017-01-01
Many different numerical codes are employed in studies of highly relativistic magnetized accretion flows around black holes. Based on the formalisms each uses, some codes evolve the magnetic field vector B, while others evolve the magnetic vector potential A, the two being related by the curl: B=curl(A). Here, we discuss how to generate vector potentials corresponding to specified magnetic fields on staggered grids, a surprisingly difficult task on finite cubic domains. The code we have developed solves this problem in two ways: a brute-force method, whose scaling is nearly linear in the number of grid cells, and a direct linear algebra approach. We discuss the success both algorithms have in generating smooth vector potential configurations and how both may be extended to more complicated cases involving multiple mesh-refinement levels. NSF ACI-1550436
NASA Astrophysics Data System (ADS)
Bulliner, E. A., IV; Erwin, S. O.; Anderson, B. J.; Wilson, H.; Jacobson, R. B.
2016-12-01
The transition from endogenous to exogenous feeding is an important life-stage transition for many riverine fish larvae. On the Missouri River, U.S., riverine alteration has decreased connectivity between the navigation channel and complex, food-producing and foraging areas on the channel margins, namely shallow side channels and sandbar complexes. A favored hypothesis, the interception hypothesis, for recruitment failure of pallid sturgeon is that drifting larvae are not able to exit the highly engineered navigation channel, and therefore starve. We present work exploring measures of hydraulic connectivity between the navigation channel and channel margins using multiple data-collection protocols with acoustic Doppler current profilers (ADCPs). As ADCP datasets alone often do not have high enough spatial resolution to characterize interception and connectivity sufficiently at the scale of drifting sturgeon larvae, they are often supplemented with physical and empirical models. Using boat-mounted ADCPs, we collected 3-dimensional current velocities with a variety of driving techniques (specifically, regularly spaced transects, reciprocal transects, and irregular patterns) around areas of potential larval interception. We then used toolkits based in Python to interpolate 3-dimensional velocity fields at spatial scales finer than the original measurements, and visualized resultant velocity vectors and flowlines in the software package Paraview. Using these visualizations, we investigated the necessary resolution of field measurements required to model connectivity with channel margin areas on large, highly engineered river ecosystems such as the Missouri River. We anticipate that results from this work will be used to help inform models of larval interception under current conditions. Furthermore, results from this work will be useful in developing monitoring strategies to evaluate the restoration of channel complexity to support ecological functions.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos
2018-02-03
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.
Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos
2018-01-01
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670
Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants
Perilla-Henao, Laura M.; Casteel, Clare L.
2016-01-01
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions. PMID:27555855
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tendick, Frank; Stark, Lawrence
1989-01-01
A teleoperation simulator was constructed with vector display system, joysticks, and a simulated cylindrical manipulator, in order to quantitatively evaluate various display conditions. The first of two experiments conducted investigated the effects of perspective parameter variations on human operators' pick-and-place performance, using a monoscopic perspective display. The second experiment involved visual enhancements of the monoscopic perspective display, by adding a grid and reference lines, by comparison with visual enhancements of a stereoscopic display; results indicate that stereoscopy generally permits superior pick-and-place performance, but that monoscopy nevertheless allows equivalent performance when defined with appropriate perspective parameter values and adequate visual enhancements.
Natural course of visual field loss in patients with Type 2 Usher syndrome.
Fishman, Gerald A; Bozbeyoglu, Simge; Massof, Robert W; Kimberling, William
2007-06-01
To evaluate the natural course of visual field loss in patients with Type 2 Usher syndrome and different patterns of visual field loss. Fifty-eight patients with Type 2 Usher syndrome who had at least three visual field measurements during a period of at least 3 years were studied. Kinetic visual fields measured on a standard calibrated Goldmann perimeter with II4e and V4e targets were analyzed. The visual field areas in both eyes were determined by planimetry with the use of a digitalizing tablet and computer software and expressed in square inches. The data for each visual field area measurement were transformed to a natural log unit. Using a mixed model regression analysis, values for the half-life of field loss (time during which half of the remaining field area is lost) were estimated. Three different patterns of visual field loss were identified, and the half-life time for each pattern of loss was calculated. Of the 58 patients, 11 were classified as having pattern type I, 12 with pattern type II, and 14 with pattern type III. Of 21 patients whose visual field loss was so advanced that they could not be classified, 15 showed only a small residual central field (Group A) and 6 showed a residual central field with a peripheral island (Group B). The average half-life times varied between 3.85 and 7.37 for the II4e test target and 4.59 to 6.42 for the V4e target. There was no statistically significant difference in the half-life times between the various patterns of field loss or for the test targets. The average half-life times for visual field loss in patients with Usher syndrome Type 2 were statistically similar among those patients with different patterns of visual field loss. These findings will be useful for counseling patients with Type 2 Usher syndrome as to their prognosis for anticipated visual field loss.
Kablammo: an interactive, web-based BLAST results visualizer.
Wintersinger, Jeff A; Wasmuth, James D
2015-04-15
Kablammo is a web-based application that produces interactive, vector-based visualizations of sequence alignments generated by BLAST. These visualizations can illustrate many features, including shared protein domains, chromosome structural modifications and genome misassembly. Kablammo can be used at http://kablammo.wasmuthlab.org. For a local installation, the source code and instructions are available under the MIT license at http://github.com/jwintersinger/kablammo. jeff@wintersinger.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
2013-03-01
Jersey: John Wiley & Sons, 2011. Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 2002; 347: 13-8...control of Aedes aegypti mosquitoes , the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device...that is visually-attractive to mosquitoes . This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population
Navy and the HARV: High angle of attack tactical utility issues
NASA Technical Reports Server (NTRS)
Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.
1994-01-01
This presentation will highlight results from the latest Navy evaluation of the HARV (March 1994) and focus primarily on the impressions from a piloting standpoint of the tactical utility of thrust vectoring. Issue to be addressed will be mission suitability of high AOA flight, visual and motion feedback cues associated with operating at high AOA, and the adaptability of a pilot to effectively use the increased control power provided by the thrust vectoring system.
Absolute Geostrophic Velocity Inverted from World Ocean Atlas 2013 (WOAV13) with the P-Vector Method
2015-11-01
The WOAV13 dataset comprises 3D global gridded climatological fields of absolute geostrophic velocity inverted...from World Ocean Atlas-2013 (WOA13) temperature and salinity fields using the P-vector method. It provides a climatological velocity field that is... climatology Dataset Identifier: gov.noaa.nodc:0121576 Creator: NOAP Lab, Department of Oceanography, Naval Postgraduate School, Monterey, CA Title
USDA-ARS?s Scientific Manuscript database
We report the development of an affordable detection kit for the detection of ‘Candidatus Liberibacter asiaticus’ (Las) from the psyllid vector, Diaphorina citri, which can provide real time test results in the field or field laboratory within 30-40 minutes without the need for expensive laboratory ...
A median filter approach for correcting errors in a vector field
NASA Technical Reports Server (NTRS)
Schultz, H.
1985-01-01
Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.
Using parallel computing for the display and simulation of the space debris environment
NASA Astrophysics Data System (ADS)
Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.
2011-07-01
Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction to OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.
Using parallel computing for the display and simulation of the space debris environment
NASA Astrophysics Data System (ADS)
Moeckel, Marek; Wiedemann, Carsten; Flegel, Sven Kevin; Gelhaus, Johannes; Klinkrad, Heiner; Krag, Holger; Voersmann, Peter
Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction of OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.
NASA Technical Reports Server (NTRS)
Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.
2014-01-01
Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.
O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.
2016-01-01
Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541
Fereres, Alberto; Peñaflor, Maria Fernanda G. V.; Favaro, Carla F.; Azevedo, Kamila E. X.; Landi, Carolina H.; Maluta, Nathalie K. P.; Bento, José Mauricio S.; Lopes, Joao R.S.
2016-01-01
Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV), a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV), a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own spread. However, this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship. PMID:27529271
Fereres, Alberto; Peñaflor, Maria Fernanda G V; Favaro, Carla F; Azevedo, Kamila E X; Landi, Carolina H; Maluta, Nathalie K P; Bento, José Mauricio S; Lopes, Joao R S
2016-08-11
Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV), a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV), a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own spread. However, this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship.
NASA Astrophysics Data System (ADS)
Kulchin, Yurii N.; Vitrik, O. B.; Kamenev, O. T.; Kirichenko, O. V.; Petrov, Yu S.
1995-10-01
Reconstruction of vector physical fields by optical tomography, with the aid of a system of fibre-optic measuring lines, is considered. The reported experimental results are used to reconstruct the distribution of the square of the gradient of transverse displacements of a flat membrane.
Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems
NASA Astrophysics Data System (ADS)
Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.
2001-05-01
The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.
NASA Technical Reports Server (NTRS)
Voorhies, C. V.; Langel, R. A.; Slavin, J.; Lancaster, E. R.; Jones, S.
1991-01-01
Prelaunch and postlaunch calibration plans for the APAFO magnetometer experiment are presented. A study of tradeoffs between boom length and spacecraft field is described; the results are summarized. The prelaunch plan includes: calibration of the Vector Fluxgate Magnetometer (VFM), Star Sensors, and Scalar Helium Magnetometer (SHM); optical bench integration; and acquisition of basic spacecraft field data. Postlaunch calibration has two phases. In phase one, SHM data are used to calibrate the VFM, total vector magnetic field data are used to calibrate a physical model of the spacecraft field, and both calibrations are refined by iteration. In phase two, corrected vector data are transformed into geocentric coordinates, previously undetected spacecraft fields are isolated, and initial geomagnetic field models are computed. Provided the SHM is accurate to the required 1.0 nT and can be used to calibrate the VFM to the required 3.0- nT accuracy, the tradeoff study indicates that a 12 m boom and a spacecraft field model uncertainty of 5 percent together allow the 1.0 nT spacecraft field error requirement to be met.
Right Ventricular Hemodynamics in Patients with Pulmonary Hypertension
NASA Astrophysics Data System (ADS)
Browning, James; Fenster, Brett; Hertzberg, Jean; Schroeder, Joyce
2012-11-01
Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for characterization of blood flow in the right ventricle (RV), including calculation of vorticity and circulation, and qualitative visual assessment of coherent flow patterns. In this study, we investigate qualitative and quantitative differences in right ventricular hemodynamics between subjects with pulmonary hypertension (PH) and normal controls. Fifteen (15) PH subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine right ventricular diastolic function as well as pulmonary artery systolic pressure (PASP). Velocity vectors, vorticity vectors, and streamlines in the RV were visualized in Paraview and total RV Early (E) and Atrial (A) wave diastolic vorticity was quantified. Visualizations of blood flow in the RV are presented for PH and normal subjects. The hypothesis that PH subjects exhibit different RV vorticity levels than normals during diastole is tested and the relationship between RV vorticity and PASP is explored. The mechanics of RV vortex formation are discussed within the context of pulmonary arterial pressure and right ventricular diastolic function coincident with PH.
Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M
2015-05-01
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.
2015-05-15
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less
On the Lamb vector divergence as a momentum field diagnostic employed in turbulent channel flow
NASA Astrophysics Data System (ADS)
Hamman, Curtis W.; Kirby, Robert M.; Klewicki, Joseph C.
2006-11-01
Vorticity, enstrophy, helicity, and other derived field variables provide invaluable information about the kinematics and dynamics of fluids. However, whether or not derived field variables exist that intrinsically identify spatially localized motions having a distinct capacity to affect a time rate of change of linear momentum is seldom addressed in the literature. The purpose of the present study is to illustrate the unique attributes of the divergence of the Lamb vector in order to qualify its potential for characterizing such spatially localized motions. Toward this aim, we describe the mathematical properties, near-wall behavior, and scaling characteristics of the divergence of the Lamb vector for turbulent channel flow. When scaled by inner variables, the mean divergence of the Lamb vector merges to a single curve in the inner layer, and the fluctuating quantities exhibit a strong correlation with the Bernoulli function throughout much of the inner layer.
Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation
NASA Astrophysics Data System (ADS)
Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano
2013-09-01
The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.
Assessment of the vision-specific quality of life using clustered visual field in glaucoma patients.
Sawada, Hideko; Yoshino, Takaiko; Fukuchi, Takeo; Abe, Haruki
2014-02-01
To investigate the significance of vision-specific quality of life (QOL) in glaucoma patients based on the location of visual field defects. We examined 336 eyes of 168 patients. The 25-item National Eye Institute Visual Function Questionnaire was used to evaluate patients' QOL. Visual field testing was performed using the Humphrey Field Analyzer; the visual field was divided into 10 clusters. We defined the eye with better mean deviation as the better eye and the fellow eye as the worse eye. A single linear regression analysis was applied to assess the significance of the relationship between QOL and the clustered visual field. The strongest correlation was observed in the lower paracentral visual field in the better eye. The lower peripheral visual field in the better eye also showed a good correlation. Correlation coefficients in the better eye were generally higher than those in the worse eye. For driving, the upper temporal visual field in the better eye was the most strongly correlated (r=0.509). For role limitation and peripheral vision, the lower peripheral visual field in the better eye had the highest correlation coefficients at 0.459 and 0.425, respectively. Overall, clusters in the lower hemifield in the better eye were more strongly correlated with QOL than those in the worse eye. In particular, the lower paracentral visual field in the better eye was correlated most strongly of all. Driving, however, strongly correlated with the upper hemifield in the better eye.