Sample records for vector genome copy

  1. A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange.

    PubMed

    Shi, Xue; Zeng, Haiyang; Xue, Yadong; Luo, Meizhong

    2011-10-11

    Large-insert BAC and BIBAC libraries are important tools for structural and functional genomics studies of eukaryotic genomes. To facilitate the construction of BAC and BIBAC libraries and the transfer of complete large BAC inserts into BIBAC vectors, which is desired in positional cloning, we developed a pair of new BAC and BIBAC vectors. The new BAC vector pIndigoBAC536-S and the new BIBAC vector BIBAC-S have the following features: 1) both contain two 18-bp non-palindromic I-SceI sites in an inverted orientation at positions that flank an identical DNA fragment containing the lacZ selection marker and the cloning site. Large DNA inserts can be excised from the vectors as single fragments by cutting with I-SceI, allowing the inserts to be easily sized. More importantly, because the two vectors contain different antibiotic resistance genes for transformant selection and produce the same non-complementary 3' protruding ATAA ends by I-SceI that suppress self- and inter-ligations, the exchange of intact large genomic DNA inserts between the BAC and BIBAC vectors is straightforward; 2) both were constructed as high-copy composite vectors. Reliable linearized and dephosphorylated original low-copy pIndigoBAC536-S and BIBAC-S vectors that are ready for library construction can be prepared from the high-copy composite vectors pHZAUBAC1 and pHZAUBIBAC1, respectively, without the need for additional preparation steps or special reagents, thus simplifying the construction of BAC and BIBAC libraries. BIBAC clones constructed with the new BIBAC-S vector are stable in both E. coli and Agrobacterium. The vectors can be accessed through our website http://GResource.hzau.edu.cn. The two new vectors and their respective high-copy composite vectors can largely facilitate the construction and characterization of BAC and BIBAC libraries. The transfer of complete large genomic DNA inserts from one vector to the other is made straightforward.

  2. Trial and error: how the unclonable human mitochondrial genome was cloned in yeast.

    PubMed

    Bigger, Brian W; Liao, Ai-Yin; Sergijenko, Ana; Coutelle, Charles

    2011-11-01

    Development of a human mitochondrial gene delivery vector is a critical step in the ability to treat diseases arising from mutations in mitochondrial DNA. Although we have previously cloned the mouse mitochondrial genome in its entirety and developed it as a mitochondrial gene therapy vector, the human mitochondrial genome has been dubbed unclonable in E. coli, due to regions of instability in the D-loop and tRNA(Thr) gene. We tested multi- and single-copy vector systems for cloning human mitochondrial DNA in E. coli and Saccharomyces cerevisiae, including transformation-associated recombination. Human mitochondrial DNA is unclonable in E. coli and cannot be retained in multi- or single-copy vectors under any conditions. It was, however, possible to clone and stably maintain the entire human mitochondrial genome in yeast as long as a single-copy centromeric plasmid was used. D-loop and tRNA(Thr) were both stable and unmutated. This is the first report of cloning the entire human mitochondrial genome and the first step in developing a gene delivery vehicle for human mitochondrial gene therapy.

  3. New ΦBT1 site-specific integrative vectors with neutral phenotype in Streptomyces.

    PubMed

    Gonzalez-Quiñonez, Nathaly; López-García, María Teresa; Yagüe, Paula; Rioseras, Beatriz; Pisciotta, Annalisa; Alduina, Rosa; Manteca, Ángel

    2016-03-01

    Integrative plasmids are one of the best options to introduce genes in low copy and in a stable form into bacteria. The ΦC31-derived plasmids constitute the most common integrative vectors used in Streptomyces. They integrate at different positions (attB and pseudo-attB sites) generating different mutations. The less common ΦBT1-derived vectors integrate at the unique attB site localized in the SCO4848 gene (S. coelicolor genome) or their orthologues in other streptomycetes. This work demonstrates that disruption of SCO4848 generates a delay in spore germination. SCO4848 is co-transcribed with SCO4849, and the spore germination phenotype is complemented by SCO4849. Plasmids pNG1-4 were created by modifying the ΦBT1 integrative vector pMS82 by introducing a copy of SCO4849 under the control of the promoter region of SCO4848. pNG2 and pNG4 also included a copy of the P ermE * in order to facilitate gene overexpression. pNG3 and pNG4 harboured a copy of the bla gene (ampicillin resistance) to facilitate selection in E. coli. pNG1-4 are the only integrative vectors designed to produce a neutral phenotype when they are integrated into the Streptomyces genome. The experimental approach developed in this work can be applied to create phenotypically neutral integrative plasmids in other bacteria.

  4. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    PubMed

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution analysis in inhibitory tissues.

  5. Sparse representation and Bayesian detection of genome copy number alterations from microarray data.

    PubMed

    Pique-Regi, Roger; Monso-Varona, Jordi; Ortega, Antonio; Seeger, Robert C; Triche, Timothy J; Asgharzadeh, Shahab

    2008-02-01

    Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) that are associated with the development and behavior of tumors. Advances in microarray technology have allowed for greater resolution in detection of DNA copy number changes (amplifications or deletions) across the genome. However, the increase in number of measured signals and accompanying noise from the array probes present a challenge in accurate and fast identification of breakpoints that define CNA. This article proposes a novel detection technique that exploits the use of piece wise constant (PWC) vectors to represent genome copy number and sparse Bayesian learning (SBL) to detect CNA breakpoints. First, a compact linear algebra representation for the genome copy number is developed from normalized probe intensities. Second, SBL is applied and optimized to infer locations where copy number changes occur. Third, a backward elimination (BE) procedure is used to rank the inferred breakpoints; and a cut-off point can be efficiently adjusted in this procedure to control for the false discovery rate (FDR). The performance of our algorithm is evaluated using simulated and real genome datasets and compared to other existing techniques. Our approach achieves the highest accuracy and lowest FDR while improving computational speed by several orders of magnitude. The proposed algorithm has been developed into a free standing software application (GADA, Genome Alteration Detection Algorithm). http://biron.usc.edu/~piquereg/GADA

  6. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    PubMed

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Copy number determination of genetically-modified hematopoietic stem cells.

    PubMed

    Schuesler, Todd; Reeves, Lilith; Kalle, Christof von; Grassman, Elke

    2009-01-01

    Human gene transfer with gammaretroviral, murine leukemia virus (MLV) based vectors has been shown to effectively insert and express transgene sequences at a level of therapeutic benefit. However, there are numerous reports of disruption of the normal cellular processes caused by the viral insertion, even of replication deficient gammaretroviral vectors. Current gammaretroviral and lentiviral vectors do not control the site of insertion into the genome, hence, the possibility of disruption of the target cell genome. Risk related to viral insertions is linked to the number of insertions of the transgene into the cellular DNA, as has been demonstrated for replication competent and replication deficient retroviruses in experiments. At high number of insertions per cell, cell transformation due to vector induced activation of proto-oncogenes is more likely to occur, in particular since more than one transforming event is needed for oncogenesis. Thus, determination of the vector copy number in bulk transduced populations, individual colony forming units, and tissue from the recipient of the transduced cells is an increasingly important safety assay and has become a standard, though not straightforward assay, since the inception of quantitative PCR.

  8. Genomic Approaches for Detection and Treatment of Breast Cancer

    DTIC Science & Technology

    2007-07-01

    The T7Select 10-3b system of lytic phage display is a mid-copy vector that displays between 5-15 copies on the surface of the T7 capsid. The natural... Phage are amplified on a bacterial host that carries an ampicillin-resistant plasmid expressing additional 10A capsid protein from a T7 promoter. We... phage display library of coding fragments encompassing all open reading frames of the human genome. We designed approximately 467,000 overlapping

  9. Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods.

    PubMed

    Fagone, Paolo; Wright, J Fraser; Nathwani, Amit C; Nienhuis, Arthur W; Davidoff, Andrew M; Gray, John T

    2012-02-01

    Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities.

  10. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravalli, Rajagopal N., E-mail: aravalli@umn.edu; Park, Chang W.; Steer, Clifford J., E-mail: steer001@umn.edu

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed amore » series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.« less

  12. The loss-of-allele assay for ES cell screening and mouse genotyping.

    PubMed

    Frendewey, David; Chernomorsky, Rostislav; Esau, Lakeisha; Om, Jinsop; Xue, Yingzi; Murphy, Andrew J; Yancopoulos, George D; Valenzuela, David M

    2010-01-01

    Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction (qPCR) as our method of allele quantification, but any method that can reliably distinguish the difference between one and two copies of the target gene can be used to develop an LOA assay. We have designed qPCR LOA assays for deletions, insertions, point mutations, domain swaps, conditional, and humanized alleles and have used the insert assays to quantify the copy number of random insertion BAC transgenics. Because of its quantitative precision, specificity, and compatibility with high throughput robotic operations, the LOA assay eliminates bottlenecks in ES cell screening and mouse genotyping and facilitates maximal speed and throughput for knockout mouse production. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Molecular Characterization of Transgene Integration by Next-Generation Sequencing in Transgenic Cattle

    PubMed Central

    Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning

    2012-01-01

    As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species. PMID:23185606

  14. The ace-1 Locus Is Amplified in All Resistant Anopheles gambiae Mosquitoes: Fitness Consequences of Homogeneous and Heterogeneous Duplications

    PubMed Central

    Djogbénou, Luc S.; Berthomieu, Arnaud; Makoundou, Patrick; Baba-Moussa, Lamine S.; Fiston-Lavier, Anna-Sophie; Belkhir, Khalid; Labbé, Pierrick; Weill, Mylène

    2016-01-01

    Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides’ target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector control in Africa. PMID:27918584

  15. Nonencapsidated 5' Copy-Back Defective Interfering Genomes Produced by Recombinant Measles Viruses Are Recognized by RIG-I and LGP2 but Not MDA5.

    PubMed

    Mura, Marie; Combredet, Chantal; Najburg, Valérie; Sanchez David, Raul Y; Tangy, Frédéric; Komarova, Anastassia V

    2017-10-15

    Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it an attractive candidate vector for preventing other infectious diseases. Yet the great capacity of this vaccine still needs to be understood at the molecular level. MV vaccine strains have different type I interferon (IFN)-inducing abilities that partially depend on the presence of 5' copy-back defective interfering genomes (DI-RNAs). DI-RNAs are pathogen-associated molecular patterns recognized by RIG-I-like receptors (RLRs) (RIG-I, MDA5, and LGP2) that activate innate immune signaling and shape the adaptive immune response. In this study, we characterized the DI-RNAs produced by various modified recombinant MVs (rMVs), including vaccine candidates, as well as wild-type MV. All tested rMVs produced 5' copy-back DI-RNAs that were different in length and nucleotide sequence but still respected the so-called "rule of six." We correlated the presence of DI-RNAs with a larger stimulation of the IFN-β pathway and compared their immunostimulatory potentials. Importantly, we revealed that encapsidation of DI-RNA molecules within the MV nucleocapsid abolished their immunoactive properties. Furthermore, we identified specific interactions of DI-RNAs with both RIG-I and LGP2 but not MDA5. Our results suggest that DI-RNAs produced by rMV vaccine candidates may indeed strengthen their efficiency by triggering RLR signaling. IMPORTANCE Having been administered to hundreds of millions of children, the live attenuated measles virus (MV) vaccine is the safest and most widely used human vaccine, providing high protection with long-term memory. Additionally, recombinant MVs carrying heterologous antigens are promising vectors for new vaccines. The great capacity of this vaccine still needs to be elucidated at the molecular level. Here we document that recombinant MVs produce defective interfering genomes that have high immunostimulatory properties via their binding to RIG-I and LGP2 proteins, both of which are cytosolic nonself RNA sensors of innate immunity. Defective interfering genome production during viral replication should be considered of great importance due to the immunostimulatory properties of these genomes as intrinsic adjuvants produced by the vector that increase recognition by the innate immune system. Copyright © 2017 American Society for Microbiology.

  16. Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis.

    PubMed Central

    Vanin, E F; Kaloss, M; Broscius, C; Nienhuis, A W

    1994-01-01

    Rapidly progressive T-cell lymphomas were observed in 3 of 10 rhesus monkeys several months after autologous transplantation of enriched bone marrow stem cells that had been transduced with a retroviral vector preparation containing replication-competent virus (R. E. Donahue, S. W. Kessler, D. Bodice, K. McDonagh, C. Dunbar, S. Goodman, B. Agricola, E. Byrne, M. Raffeld, R. Moen, J. Bacher, K. M. Zsebo, and A. W. Nienhuis, J. Exp. Med. 176:1124-1135, 1992). The animals with lymphoma appeared to be tolerant to retroviral antigens in that their sera lacked antibodies reactive with viral proteins and contained 10(4) to 10(5) infectious virus particles per ml. By molecular cloning and DNA sequencing, we have now demonstrated that the serum from one of the monkeys contained a replication-competent retrovirus that arose by recombination between vector and packaging encoding sequences (vector/helper [V/H] recombinant) in the producer clone used for transduction of bone marrow stem cells. Southern blot analysis demonstrated 14 or 25 copies of this genome per cell where present in two animals. The genome of a second replication-competent virus was also recovered by molecular cloning; it arose by recombination involving the genome of the V/H recombinant and endogenous murine retroviral genomes in the producer clone. Twelve copies of this amphotropic virus/mink cell focus-forming virus genome were present in tumor DNA of one animal, but it was not found in tumor DNA of the other two animals with lymphoma. Southern blot analysis of DNA from various tissues demonstrated common insertion site bands in several samples of tumor DNA from one animal, suggesting clonal origin of the lymphoma. Our data are most consistent with a pathogenic mechanism in which chronic productive retroviral infection allowed insertional mutagenesis of critical growth control genes, leading to cell transformation and clonal tumor evolution. Images PMID:8207799

  17. Assessment of the Mobilizable Vector Plasmids pSUP202 and pSUP404.2 as Genetic Tools for the Predatory Bacterium Bdellovibrio bacteriovorus

    PubMed Central

    Roschanski, Nicole

    2010-01-01

    Bdellovibrio and like organisms (BALOs) form the group of predatory bacteria which require Gram-negative bacteria as prey. Genetic studies with Bdellovibrio bacteriovorus can be performed with vectors which are introduced into the predator via conjugation. The usefulness of the two vectors pSUP202 and pSUP404.2 as genetic tools were assessed. Both vectors were transferable into B. bacteriovorus by conjugative matings with an Escherichia coli K12 strain as donor. The transfer frequency was higher for vector pSUP404.2 (approx. 10−1–10−4) as for pSUP202 (approx. 10−5–10−6). Vector pSUP202 with a pMB1 origin is unstable in the predatory bacterium, whereas pSUP404.2 is stably maintained in the absence of selective antibiotics. pSUP404.2 harbors two plasmid replicons, the p15A ori and the RSF1010 replication region The copy number of pSUP404.2 was determined by quantitative PCR in B. bacteriovorus and averages seven copies per genome. pSUP404.2 harbors two resistance genes (chloramphenicol and kanamycin) which can be used for cloning either by selection for transconjugants or by insertional inactivation. PMID:20824276

  18. Agroinoculation of Beet necrotic yellow vein virus cDNA clones results in plant systemic infection and efficient Polymyxa betae transmission.

    PubMed

    Delbianco, Alice; Lanzoni, Chiara; Klein, Elodie; Rubies Autonell, Concepcion; Gilmer, David; Ratti, Claudio

    2013-05-01

    Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV. © 2013 BSPP AND BLACKWELL PUBLISHING LTD.

  19. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  20. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by non-integrating plasmid expression

    PubMed Central

    Cheng, Linzhao; Hansen, Nancy F.; Zhao, Ling; Du, Yutao; Zou, Chunlin; Donovan, Frank X.; Chou, Bin-Kuan; Zhou, Guangyu; Li, Shijie; Dowey, Sarah N.; Ye, Zhaohui; Chandrasekharappa, Settara C.; Yang, Huanming; Mullikin, James C.; Liu, P. Paul

    2012-01-01

    Summary The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1058–1808 heterozygous single nucleotide variants (SNVs), but no copy number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction. PMID:22385660

  1. Phase 1 Gene Therapy for Duchenne Muscular Dystrophy Using a Translational Optimized AAV Vector

    PubMed Central

    Bowles, Dawn E; McPhee, Scott WJ; Li, Chengwen; Gray, Steven J; Samulski, Jade J; Camp, Angelique S; Li, Juan; Wang, Bing; Monahan, Paul E; Rabinowitz, Joseph E; Grieger, Joshua C; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Xiao, Xiao; Samulski, R Jude

    2012-01-01

    Efficient and widespread gene transfer is required for successful treatment of Duchenne muscular dystrophy (DMD). Here, we performed the first clinical trial using a chimeric adeno-associated virus (AAV) capsid variant (designated AAV2.5) derived from a rational design strategy. AAV2.5 was generated from the AAV2 capsid with five mutations from AAV1. The novel chimeric vector combines the improved muscle transduction capacity of AAV1 with reduced antigenic crossreactivity against both parental serotypes, while keeping the AAV2 receptor binding. In a randomized double-blind placebo-controlled phase I clinical study in DMD boys, AAV2.5 vector was injected into the bicep muscle in one arm, with saline control in the contralateral arm. A subset of patients received AAV empty capsid instead of saline in an effort to distinguish an immune response to vector versus minidystrophin transgene. Recombinant AAV genomes were detected in all patients with up to 2.56 vector copies per diploid genome. There was no cellular immune response to AAV2.5 capsid. This trial established that rationally designed AAV2.5 vector was safe and well tolerated, lays the foundation of customizing AAV vectors that best suit the clinical objective (e.g., limb infusion gene delivery) and should usher in the next generation of viral delivery systems for human gene transfer. PMID:22068425

  2. Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis.

    PubMed

    Villate-Beitia, Ilia; Zarate, Jon; Puras, Gustavo; Pedraz, José Luis

    2017-07-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder where the defective gene, the cystic fibrosis transmembrane conductance regulator (CFTR), is well identified. Moreover, the respiratory tract can be targeted through noninvasive aerosolized formulations for inhalation. Therefore, gene therapy is considered a plausible strategy to address this disease. Conventional gene therapy strategies rely on the addition of a correct copy of the CFTR gene into affected cells in order to restore the channel activity. In recent years, genome correction strategies have emerged, such as zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases. These gene editing tools aim to repair the mutated gene at its original genomic locus with high specificity. Besides, the success of gene therapy critically depends on the nucleic acids carriers. To date, several clinical studies have been carried out to add corrected copies of the CFTR gene into target cells using viral and non-viral vectors, some of them with encouraging results. Regarding genome editing systems, preliminary in vitro studies have been performed in order to repair the CFTR gene. In this review, after briefly introducing the basis of CF, we discuss the up-to-date gene therapy strategies to address the disease. The review focuses on the main factors to take into consideration when developing gene delivery strategies, such as the design of vectors and plasmid DNA, in vitro/in vivo tests, translation to human use, administration methods, manufacturing conditions and regulatory issues.

  3. The rational design of a 'type 88' genetically stable peptide display vector in the filamentous bacteriophage fd.

    PubMed

    Enshell-Seijffers, D; Smelyanski, L; Gershoni, J M

    2001-05-15

    Filamentous bacteriophages are particularly efficient for the expression and display of combinatorial random peptides. Two phage proteins are often employed for peptide display: the infectivity protein, PIII, and the major coat protein, PVIII. The use of PVIII typically requires the expression of two pVIII genes: the wild-type and the recombinant pVIII gene, to generate mosaic phages. 'Type 88' vectors contain two pVIII genes in one phage genome. In this study a novel 'type 88' expression vector has been rationally designed and constructed. Two factors were taken into account: the insertion site and the genetic stability of the second pVIII gene. It was found that selective deletion of recombinant genes was encountered when inserts were cloned into either of the two non-coding regions of the phage genome. The deletions were independent of recA yet required a functional F-episome. Transcription was also found to be a positive factor for deletion. Taking the above into account led to the generation of a novel vector, designated fth1, which can be used to express recombinant peptides as pVIII chimeric proteins in mosaic bacteriophages. The fth1 vector is not only genetically stable but also of high copy number and produces high titers of recombinant phages.

  4. Hybrid Adeno-Associated Viral Vectors Utilizing Transposase-Mediated Somatic Integration for Stable Transgene Expression in Human Cells

    PubMed Central

    Zhang, Wenli; Solanki, Manish; Müther, Nadine; Ebel, Melanie; Wang, Jichang; Sun, Chuanbo; Izsvak, Zsuzsanna; Ehrhardt, Anja

    2013-01-01

    Recombinant adeno-associated viral (AAV) vectors have been shown to be one of the most promising vectors for therapeutic gene delivery because they can induce efficient and long-term transduction in non-dividing cells with negligible side-effects. However, as AAV vectors mostly remain episomal, vector genomes and transgene expression are lost in dividing cells. Therefore, to stably transduce cells, we developed a novel AAV/transposase hybrid-vector. To facilitate SB-mediated transposition from the rAAV genome, we established a system in which one AAV vector contains the transposon with the gene of interest and the second vector delivers the hyperactive Sleeping Beauty (SB) transposase SB100X. Human cells were infected with the AAV-transposon vector and the transposase was provided in trans either by transient and stable plasmid transfection or by AAV vector transduction. We found that groups which received the hyperactive transposase SB100X showed significantly increased colony forming numbers indicating enhanced integration efficiencies. Furthermore, we found that transgene copy numbers in transduced cells were dose-dependent and that predominantly SB transposase-mediated transposition contributed to stabilization of the transgene. Based on a plasmid rescue strategy and a linear-amplification mediated PCR (LAM-PCR) protocol we analysed the SB100X-mediated integration profile after transposition from the AAV vector. A total of 1840 integration events were identified which revealed a close to random integration profile. In summary, we show for the first time that AAV vectors can serve as template for SB transposase mediated somatic integration. We developed the first prototype of this hybrid-vector system which with further improvements may be explored for treatment of diseases which originate from rapidly dividing cells. PMID:24116154

  5. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors.

    PubMed

    Kutner, Robert H; Zhang, Xian-Yang; Reiser, Jakob

    2009-01-01

    Over the past decade, lentiviral vectors have emerged as powerful tools for transgene delivery. The use of lentiviral vectors has become commonplace and applications in the fields of neuroscience, hematology, developmental biology, stem cell biology and transgenesis are rapidly emerging. Also, lentiviral vectors are at present being explored in the context of human clinical trials. Here we describe improved protocols to generate highly concentrated lentiviral vector pseudotypes involving different envelope glycoproteins. In this protocol, vector stocks are prepared by transient transfection using standard cell culture media or serum-free media. Such stocks are then concentrated by ultracentrifugation and/or ion exchange chromatography, or by precipitation using polyethylene glycol 6000, resulting in vector titers of up to 10(10) transducing units per milliliter and above. We also provide reliable real-time PCR protocols to titrate lentiviral vectors based on proviral DNA copies present in genomic DNA extracted from transduced cells or on vector RNA. These production/concentration methods result in high-titer vector preparations that show reduced toxicity compared with lentiviral vectors produced using standard protocols involving ultracentrifugation-based methods. The vector production and titration protocol described here can be completed within 8 d.

  6. High copy and stable expression of the xylanase XynHB in Saccharomyces cerevisiae by rDNA-mediated integration.

    PubMed

    Fang, Cheng; Wang, Qinhong; Selvaraj, Jonathan Nimal; Zhou, Yuling; Ma, Lixin; Zhang, Guimin; Ma, Yanhe

    2017-08-18

    Xylanase is a widely-used additive in baking industry for enhancing dough and bread quality. Several xylanases used in baking industry were expressed in different systems, but their expression in antibiotic free vector system is highly essential and safe. In the present study, an alternative rDNA-mediated technology was developed to increase the copy number of target gene by integrating it into Saccharomyces cerevisiae genome. A xylanase-encoding gene xynHB from Bacillus sp. was cloned into pHBM367H and integrated into S. cerevisiae genome through rDNA-mediated recombination. Exogenous XynHB expressed by recombinant S. cerevisiae strain A13 exhibited higher degradation activity towards xylan than other transformants. The real-time PCR analysis on A13 genome revealed the presence of 13.64 copies of xynHB gene. Though no antibiotics have been used, the genetic stability and the xylanase activity of xynHB remained stable up to 1,011 generations of cultivation. S. cerevisiae strain A13 expressing xylanase reduced the required kneading time and increased the height and diameter of the dough size, which would be safe and effective in baking industry as no antibiotics-resistance risk. The new effective rDNA-mediated technology without using antibiotics here provides a way to clone other food related industrial enzymes for applications.

  7. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  8. Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. coli

    NASA Astrophysics Data System (ADS)

    Küpper, Hans; Keller, Walter; Kurz, Christina; Forss, Sonja; Schaller, Heinz

    1981-02-01

    Double-stranded DNA copies of the single-stranded genomic RNA of foot and mouth disease virus have been cloned into the Escherichia coli plasmid pBR322. A restriction map of the viral genome was established and aligned with the biochemical map of foot and mouth disease virus. The coding sequence for structural protein VP1, the major antigen of the virus, was identified and inserted into a plasmid vector where the expression of this sequence is under control of the phage λ PL promoter. In an appropriate host the synthesis of antigenic polypeptide can be demonstrated by radioimmunoassay.

  9. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.

    PubMed

    Lin, Yao-Cheng; Boone, Morgane; Meuris, Leander; Lemmens, Irma; Van Roy, Nadine; Soete, Arne; Reumers, Joke; Moisse, Matthieu; Plaisance, Stéphane; Drmanac, Radoje; Chen, Jason; Speleman, Frank; Lambrechts, Diether; Van de Peer, Yves; Tavernier, Jan; Callewaert, Nico

    2014-09-03

    The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.

  10. Infectious mutants of cassava latent virus generated in vivo from intact recombinant DNA clones containing single copies of the genome.

    PubMed Central

    Stanley, J; Townsend, R

    1986-01-01

    Intact recombinant DNAs containing single copies of either component of the cassava latent virus genome can elicit infection when mechanically inoculated to host plants in the presence of the appropriate second component. Characterisation of infectious mutant progeny viruses, by analysis of virus-specific supercoiled DNA intermediates, indicates that most if not all of the cloning vector has been deleted, achieved at least in some cases by intermolecular recombination in vivo between DNAs 1 and 2. Significant rearrangements within the intergenic region of DNA 2, predominantly external to the common region, can be tolerated without loss of infectivity suggesting a somewhat passive role in virus multiplication for the sequences in question. Although packaging constraints might impose limits on the amount of DNA within geminate particles, isolation of an infectious coat protein mutant defective in virion production suggests that packaging is not essential for systemic spread of the viral DNA. Images PMID:2875435

  11. Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1.

    PubMed

    Wang, Yuchen; Sima, Linshan; Lv, Jie; Huang, Suiyuan; Liu, Ying; Wang, Jiao; Krupovic, Mart; Chen, Xiangdong

    2016-07-15

    The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased during the lytic cycle. Sequence analysis suggested that RepA is a distant homolog of HUH endonucleases, a superfamily that includes rolling-circle replication initiation proteins from various viruses and plasmids. In addition to RepA, two genetic elements located within both termini of the 3.9-kb replicon were also required for SNJ1 replication. SNJ1 genome and SNJ1 replicon-based shuttle vectors were present at 1 to 3 copies per chromosome. However, the deletion of ORF4 significantly increased the SNJ1 copy number, suggesting that the product of ORF4 is a negative regulator of SNJ1 abundance. Shuttle vectors based on the SNJ1 replicon were constructed and validated for stable expression of heterologous proteins, both in J7 derivatives and in Natrinema pallidum JCM 8980(T), suggesting their broad applicability as genetic tools for Natrinema species. Archaeal viruses exhibit striking morphological diversity and unique gene content. In this study, the minimal replicon of the temperate haloarchaeal virus SNJ1 was identified. A number of ORFs and genetic elements controlling virus genome replication, maintenance, and copy number were characterized. In addition, based on the replicon, a novel expression shuttle vector has been constructed and validated for protein expression and purification in Natrinema sp. CJ7 and Natrinema pallidum JCM 8980(T) This study not only provided mechanistic and functional insights into SNJ1 replication but also led to the development of useful genetic tools to investigate SNJ1 and other viruses infecting Natrinema species as well as their hosts. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Comparison of HIV- and EIAV-based vectors on their efficiency in transducing murine and human hematopoietic repopulating cells.

    PubMed

    Siapati, Elena K; Bigger, Brian W; Miskin, James; Chipchase, Daniel; Parsley, Kathryn L; Mitrophanous, Kyriacos; Themis, Mike; Thrasher, Adrian J; Bonnet, Dominique

    2005-09-01

    The use of lentiviral vectors for gene transfer into hematopoietic stem cells has raised considerable interest as these vectors can permanently integrate their genome into quiescent cells. Vectors based on alternative lentiviruses would theoretically be safer than HIV-1-based vectors and could also be used in HIV-positive patients, minimizing the risk of generating replication-competent virus. Here we report the use of third-generation equine infectious anemia virus (EIAV)- and HIV-1-based vectors with minimal viral sequences and absence of accessory proteins. We have compared their efficiency in transducing mouse and human hematopoietic stem cells both in vitro and in vivo to that of a previously documented second-generation HIV-1 vector. The third-generation EIAV- and HIV-based vectors gave comparable levels of transduction and transgene expression in both mouse and human NOD/SCID repopulating cells but were less efficient than the second-generation HIV-1 vector in human HSCs. For the EIAV vector this is possibly a reflection of the lower protein expression levels achieved in human cells, as vector copy number analysis revealed that this vector exhibited a trend to integrate equally efficiently compared to the third-generation HIV-1 vector in both mouse and human HSCs. Interestingly, the presence or absence of Tat in viral preparations did not influence the transduction efficiency of HIV-1 vectors in human HSCs.

  13. Inhibition of CRISPR/Cas9-Mediated Genome Engineering by a Type I Interferon-Induced Reduction in Guide RNA Expression.

    PubMed

    Machitani, Mitsuhiro; Sakurai, Fuminori; Wakabayashi, Keisaku; Nakatani, Kosuke; Takayama, Kazuo; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2017-01-01

    Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome engineering technology is a powerful tool for generation of cells and animals with engineered mutations in their genomes. In order to introduce the CRISPR/Cas9 system into target cells, nonviral and viral vectors are often used; however, such vectors trigger innate immune responses associated with production of type I interferons (IFNs). We have recently demonstrated that type I IFNs inhibit short-hairpin RNA-mediated gene silencing, which led us to hypothesize that type I IFNs may also inhibit CRISPR/Cas9-mediated genome mutagenesis. Here we investigated this hypothesis. A single-strand annealing assay using a reporter plasmid demonstrated that CRISPR/Cas9-mediated cleavage efficiencies of the target double-stranded DNA were significantly reduced by IFNα. A mismatch recognition nuclease-dependent genotyping assay also demonstrated that IFNα reduced insertion or deletion (indel) mutation levels by approximately half. Treatment with IFNα did not alter Cas9 protein expression levels, whereas the copy numbers of guide RNA (gRNA) were significantly reduced by IFNα stimulation. These results indicate that type I IFNs significantly reduce gRNA expression levels following introduction of the CRISPR/Cas9 system in the cells, leading to a reduction in the efficiencies of CRISPR/Cas9-mediated genome mutagenesis. Our findings provide important clues for the achievement of efficient genome engineering using the CRISPR/Cas9 system.

  14. A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.

    PubMed

    Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry

    2008-11-01

    A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.

  15. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization.

    PubMed

    Schwarzhans, Jan-Philipp; Wibberg, Daniel; Winkler, Anika; Luttermann, Tobias; Kalinowski, Jörn; Friehs, Karl

    2016-05-20

    The classic AOX1 replacement approach is still one of the most often used techniques for expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. Although this approach is largely successful, it frequently delivers clones with unpredicted production characteristics and a work-intense screening process is required to find the strain with desired productivity. In this project 845 P. pastoris clones, transformed with a GFP expression cassette, were analyzed for their methanol-utilization (Mut)-phenotypes, GFP gene expression levels and gene copy numbers. Several groups of strains with irregular features were identified. Such features include GFP expression that is markedly higher or lower than expected based on gene copy number as well as strains that grew under selective conditions but where the GFP gene cassette and its expression could not be detected. From these classes of strains 31 characteristic clones were selected and their genomes sequenced. By correlating the assembled genome data with the experimental phenotypes novel insights were obtained. These comprise a clear connection between productivity and cassette-to-cassette orientation in the genome, the occurrence of false-positive clones due to a secondary recombination event, and lower total productivity due to the presence of untransformed cells within the isolates were discovered. To cope with some of these problems, the original vector was optimized by replacing the AOX1 terminator, preventing the occurrence of false-positive clones due to the secondary recombination event. Standard methods for transformation of P. pastoris led to a multitude of unintended and sometimes detrimental integration events, lowering total productivity. By documenting the connections between productivity and integration event we obtained a deeper understanding of the genetics of mutation in P. pastoris. These findings and the derived improved mutagenesis and transformation procedures and tools will help other scientists working on recombinant protein production in P. pastoris and similar non-conventional yeasts.

  16. Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging.

    PubMed

    Ridge, Perry G; Maxwell, Taylor J; Foutz, Spencer J; Bailey, Matthew H; Corcoran, Christopher D; Tschanz, JoAnn T; Norton, Maria C; Munger, Ronald G; O'Brien, Elizabeth; Kerber, Richard A; Cawthon, Richard M; Kauwe, John S K

    2014-01-01

    The mitochondria are essential organelles and are the location of cellular respiration, which is responsible for the majority of ATP production. Each cell contains multiple mitochondria, and each mitochondrion contains multiple copies of its own circular genome. The ratio of mitochondrial genomes to nuclear genomes is referred to as mitochondrial copy number. Decreases in mitochondrial copy number are known to occur in many tissues as people age, and in certain diseases. The regulation of mitochondrial copy number by nuclear genes has been studied extensively. While mitochondrial variation has been associated with longevity and some of the diseases known to have reduced mitochondrial copy number, the role that the mitochondrial genome itself has in regulating mitochondrial copy number remains poorly understood. We analyzed the complete mitochondrial genomes from 1007 individuals randomly selected from the Cache County Study on Memory Health and Aging utilizing the inferred evolutionary history of the mitochondrial haplotypes present in our dataset to identify sequence variation and mitochondrial haplotypes associated with changes in mitochondrial copy number. Three variants belonging to mitochondrial haplogroups U5A1 and T2 were significantly associated with higher mitochondrial copy number in our dataset. We identified three variants associated with higher mitochondrial copy number and suggest several hypotheses for how these variants influence mitochondrial copy number by interacting with known regulators of mitochondrial copy number. Our results are the first to report sequence variation in the mitochondrial genome that causes changes in mitochondrial copy number. The identification of these variants that increase mtDNA copy number has important implications in understanding the pathological processes that underlie these phenotypes.

  17. Facile Recovery of Individual High-Molecular-Weight, Low-Copy-Number Natural Plasmids for Genomic Sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, L.E.; Detter, C,; Barrie, K.

    2006-06-01

    Sequencing of the large (>50 kb), low-copy-number (<5 per cell) plasmids that mediate horizontal gene transfer has been hindered by the difficulty and expense of isolating DNA from individual plasmids of this class. We report here that a kit method previously devised for purification of bacterial artificial chromosomes (BACs) can be adapted for effective preparation of individual plasmids up to 220 kb from wild gram-negative and gram-positive bacteria. Individual plasmid DNA recovered from less than 10 ml of Escherichia coli, Staphylococcus, and Corynebacterium cultures was of sufficient quantity and quality for construction of highcoverage libraries, as shown by sequencing fivemore » native plasmids ranging in size from 30 kb to 94 kb. We also report recommendations for vector screening to optimize plasmid sequence assembly, preliminary annotation of novel plasmid genomes, and insights on mobile genetic element biology derived from these sequences. Adaptation of this BAC method for large plasmid isolation removes one major technical hurdle to expanding our knowledge of the natural plasmid gene pool.« less

  18. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex.

    PubMed

    Becker, Noémie S; Margos, Gabriele; Blum, Helmut; Krebs, Stefan; Graf, Alexander; Lane, Robert S; Castillo-Ramírez, Santiago; Sing, Andreas; Fingerle, Volker

    2016-09-15

    The Borrelia burgdorferi sensu lato (s.l.) species complex consists of tick-transmitted bacteria and currently comprises approximately 20 named and proposed genospecies some of which are known to cause Lyme Borreliosis. Species have been defined via genetic distances and ecological niches they occupy. Understanding the evolutionary relationship of species of the complex is fundamental to explaining patterns of speciation. This in turn forms a crucial basis to frame testable hypotheses concerning the underlying processes including host and vector adaptations. Illumina Technology was used to obtain genome-wide sequence data for 93 strains of 14 named genospecies of the B. burgdorferi species complex and genomic data already published for 18 additional strain (including one new species) was added. Phylogenetic reconstruction based on 114 orthologous single copy genes shows that the genospecies represent clearly distinguishable taxa with recent and still ongoing speciation events apparent in Europe and Asia. The position of Borrelia species in the phylogeny is consistent with host associations constituting a major driver for speciation. Interestingly, the data also demonstrate that vector associations are an additional driver for diversification in this tick-borne species complex. This is particularly obvious in B. bavariensis, a rodent adapted species that has diverged from the bird-associated B. garinii most likely in Asia. It now consists of two populations one of which most probably invaded Europe following adaptation to a new vector (Ixodes ricinus) and currently expands its distribution range. The results imply that genotypes/species with novel properties regarding host or vector associations have evolved recurrently during the history of the species complex and may emerge at any time. We suggest that the finding of vector associations as a driver for diversification may be a general pattern for tick-borne pathogens. The core genome analysis presented here provides an important source for investigations of the underlying mechanisms of speciation in tick-borne pathogens.

  19. Organization and transient expression of the gene for human U11 snRNA

    PubMed Central

    Clemens, Suter-Crazzolara; Walter, Keller

    1991-01-01

    The nucleotide sequence of U11 small nuclear RNA, a minor U RNA from HeLa cells, was determined. Computer analysis of the sequence (135 residues) predicts two strong hairpin loops which are separated by seventeen nucleotides containing an Sm binding site (AAUUUUUUGG). A synthetic gene was constructed in which the coding region of U11 RNA is under the control of a T7 promoter. This vector can be used to produce U11 RNA in vitro. Southern hybridization and PCR analysis of HeLa genomic DNA suggest that U11 RNA is encoded by a single copy gene, and that at least three genomic regions could be U11 RNA pseudogenes. A HeLa genomic copy of a U11 gene was isolated by inverted PCR. This gene contains the U11 RNA coding sequence and several sequence elements unique for the U RNA genes. These include a Distal Sequence Element (DSE, ATTTGCATA) present between positions −215 and −223 relative to the start of transcription; a Proximal Sequence Element (PSE, TTCACCTTTACCAAAAATG) located between positions −43 and −63 ; and a 3′box (GTTAGGCGAAATATTA) between positions +150 and +166. Transfection of HeLa cells with this gene revealed that it is functioning in vivo and can produce U11 RNA. PMID:1820214

  20. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-04-05

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.

  1. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Cancer.gov

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  2. CRISPR/Cas9-Mediated Knockin Application in Cell Therapy: A Non-viral Procedure for Bystander Treatment of Glioma in Mice.

    PubMed

    Meca-Cortés, Oscar; Guerra-Rebollo, Marta; Garrido, Cristina; Borrós, Salvador; Rubio, Nuria; Blanco, Jeronimo

    2017-09-15

    The use of non-viral procedures, together with CRISPR/Cas9 genome-editing technology, allows the insertion of single-copy therapeutic genes at pre-determined genomic sites, overcoming safety limitations resulting from random gene insertions of viral vectors with potential for genome damage. In this study, we demonstrate that combination of non-viral gene delivery and CRISPR/Cas9-mediated knockin via homology-directed repair can replace the use of viral vectors for the generation of genetically modified therapeutic cells. We custom-modified human adipose mesenchymal stem cells (hAMSCs), using electroporation as a transfection method and CRISPR/Cas9-mediated knockin for the introduction and stable expression of a 3 kb DNA fragment including the eGFP (selectable marker) and a variant of the herpes simplex virus 1 thymidine kinase genes (therapeutic gene), under the control of the human elongation factor 1 alpha promoter in exon 5 of the endogenous thymidine kinase 2 gene. Using a U87 glioma model in SCID mice, we show that the therapeutic capacity of the new CRISPR/Cas9-engineered hAMSCs is equivalent to that of therapeutic hAMSCs generated by introduction of the same therapeutic gene by transduction with a lentiviral vector previously published by our group. This strategy should be of general use to other applications requiring genetic modification of therapeutic cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15.

    PubMed

    Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V

    2007-06-15

    A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.

  4. Evolution of Foamy Viruses: The Most Ancient of All Retroviruses †

    PubMed Central

    Rethwilm, Axel; Bodem, Jochen

    2013-01-01

    Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed. PMID:24072062

  5. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses

    PubMed Central

    Li, Ci-Xiu; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Kang, Yan-Jun; Chen, Liang-Jun; Qin, Xin-Cheng; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-01

    Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution. DOI: http://dx.doi.org/10.7554/eLife.05378.001 PMID:25633976

  6. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo

    PubMed Central

    White, JD; Thesier, DM; Swain, JBD; Katz, MG; Tomasulo, C; Henderson, A; Wang, L; Yarnall, C; Fargnoli, A; Sumaroka, M; Isidro, A; Petrov, M; Holt, D; Nolen-Walston, R; Koch, WJ; Stedman, HH; Rabinowitz, J; Bridges, CR

    2013-01-01

    We use a novel technique that allows for closed recirculation of vector genomes in the cardiac circulation using cardiopulmonary bypass, referred to here as molecular cardiac surgery with recirculating delivery (MCARD). We demonstrate that this platform technology is highly efficient in isolating the heart from the systemic circulation in vivo. Using MCARD, we compare the relative efficacy of single-stranded (ss) adeno-associated virus (AAV)6, ssAAV9 and self-complimentary (sc)AAV6-encoding enhanced green fluorescent protein, driven by the constitutive cytomegalovirus promoter to transduce the ovine myocardium in situ. MCARD allows for the unprecedented delivery of up to 48 green fluorescent protein genome copies per cell globally in the sheep left ventricular (LV) myocardium. We demonstrate that scAAV6-mediated MCARD delivery results in global, cardiac-specific LV gene expression in the ovine heart and provides for considerably more robust and cardiac-specific gene delivery than other available delivery techniques such as intramuscular injection or intracoronary injection; thus, representing a potential, clinically translatable platform for heart failure gene therapy. PMID:21228882

  7. aCGH Local Copy Number Aberrations Associated with Overall Copy Number Genomic Instability in Colorectal Cancer: Coordinate Involvement of the Regions Including BCR and ABL

    PubMed Central

    Bartos, Jeremy D.; Gaile, Daniel P.; McQuaid, Devin E.; Conroy, Jeffrey M.; Darbary, Huferesh; Nowak, Norma J.; Block, Annemarie; Petrelli, Nicholas J.; Mittelman, Arnold; Stoler, Daniel L.; Anderson, Garth R.

    2007-01-01

    In order to identify small regions of the genome whose specific copy number alteration is associated with high genomic instability in the form of overall genome-wide copy number aberrations, we have analyzed array-based comparative genomic hybridization (aCGH) data from 33 sporadic colorectal carcinomas. Copy number changes of a small number of specific regions were significantly correlated with elevated overall amplifications and deletions scattered throughout the entire genome. One significant region at 9q34 includes the c-ABL gene Another region spanning 22q11–13 includes the breakpoint cluster region (BCR) of the Philadelphia chromosome Coordinate 22q11–13 alterations were observed in nine of eleven tumors with the 9q34 alteration Additional regions on 1q and 14q were associated with overall genome-wide copy number changes, while copy number aberrations on chromosome 7p, 7q, and 13q21.1–31.3 were found associated with this instability only in tumors from patients with a smoking history Our analysis demonstrates there are a small number of regions of the genome where gain or loss is commonly associated with a tumor’s overall level of copy number aberrations Our finding BCR and ABL located within two of the instability-associated regions, and the involvement of these two regions occurring coordinately, suggests a system akin to the BCR-ABL translocation of CML may be involved in genomic instability in about one-third of human colorectal carcinomas. PMID:17196995

  8. A comprehensive profile of DNA copy number variations in a Korean population: identification of copy number invariant regions among Koreans.

    PubMed

    Jeon, Jae Pil; Shim, Sung Mi; Jung, Jong Sun; Nam, Hye Young; Lee, Hye Jin; Oh, Berm Seok; Kim, Kuchan; Kim, Hyung Lae; Han, Bok Ghee

    2009-09-30

    To examine copy number variations among the Korean population, we compared individual genomes with the Korean reference genome assembly using the publicly available Korean HapMap SNP 50 k chip data from 90 individuals. Korean individuals exhibited 123 copy number variation regions (CNVRs) covering 27.2 mb, equivalent to 1.0% of the genome in the copy number variation (CNV) analysis using the combined criteria of P value (P<0.01) and standard deviation of copy numbers (SD>or= 0.25) among study subjects. In contrast, when compared to the Affymetrix reference genome assembly from multiple ethnic groups, considerably more CNVRs (n=643) were detected in larger proportions (5.0%) of the genome covering 135.1 mb even by more stringent criteria (P<0.001 and SD>or=0.25), reflecting ethnic diversity of structural variations between Korean and other populations. Some CNVRs were validated by the quantitative multiplex PCR of short fluorescent fragment (QMPSF) method, and then copy number invariant regions were detected among the study subjects. These copy number invariant regions would be used as good internal controls for further CNV studies. Lastly, we demonstrated that the CNV information could stratify even a single ethnic population with a proper reference genome assembly from multiple heterogeneous populations.

  9. GeneCount: genome-wide calculation of absolute tumor DNA copy numbers from array comparative genomic hybridization data

    PubMed Central

    Lyng, Heidi; Lando, Malin; Brøvig, Runar S; Svendsrud, Debbie H; Johansen, Morten; Galteland, Eivind; Brustugun, Odd T; Meza-Zepeda, Leonardo A; Myklebost, Ola; Kristensen, Gunnar B; Hovig, Eivind; Stokke, Trond

    2008-01-01

    Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide calculation of absolute copy numbers from clinical array comparative genomic hybridization data. The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are achieved. We demonstrate significant improvements over existing methods for exploring gene dosages and intratumor copy number heterogeneity in cancers. PMID:18500990

  10. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    PubMed

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  11. Mobile units of DNA in phytoplasma genomes.

    PubMed

    Dickinson, Matt

    2010-09-01

    Phytoplasmas are obligate symbionts of plants and insects that are responsible for significant yield losses in diverse crops. Genome sequencing has revealed that many phytoplasma genomes appear to contain repeated genes organized in units of approximately 20 kb. These 'potential mobile units' (PMUs) resemble composite replicative transposons. PMUs contain several genes for recombination and some also contain putative 'virulence genes'. Genome alignments suggest that PMUs are involved in phytoplasma genome instability and recombination. In this edition of Molecular Microbiology, Hogenhout and colleagues report that one PMU from the aster yellows phytoplasma strain Witches' Broom (AY-WB) can exist as both a linear PMU within the chromosome and as an extrachromosomal circular form. The copy number of the circular form is much higher in the insect vector compared with the plant, and expression levels of genes present on the PMU are also higher in the insect. These observations suggest not only that this PMU could be a mobile element, but that it could also be involved in a phase-variation mechanism that allows the phytoplasma to adapt to its different hosts.

  12. Geminivirus vectors for high-level expression of foreign proteins in plant cells.

    PubMed

    Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S

    2003-02-20

    Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.

  13. Insertion and deletion mutagenesis of the human cytomegalovirus genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaete, R.R.; Mocarski, E.S.

    1987-10-01

    Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, withmore » levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.« less

  14. Randomly picked cosmid clones overlap the pyrB and oriC gap in the physical map of the E. coli chromosome.

    PubMed Central

    Knott, V; Rees, D J; Cheng, Z; Brownlee, G G

    1988-01-01

    Sets of overlapping cosmid clones generated by random sampling and fingerprinting methods complement data at pyrB (96.5') and oriC (84') in the published physical map of E. coli. A new cloning strategy using sheared DNA, and a low copy, inducible cosmid vector were used in order to reduce bias in libraries, in conjunction with micro-methods for preparing cosmid DNA from a large number of clones. Our results are relevant to the design of the best approach to the physical mapping of large genomes. PMID:2834694

  15. Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.

    PubMed

    Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao

    2016-08-01

    The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study. Copyright © 2016. Published by Elsevier B.V.

  16. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    PubMed Central

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  17. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.

    PubMed

    Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong

    2017-03-01

    Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1 ys/ys ). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1 ys/ys mice at a dose of 5 × 10 11 vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1 ys/ys mice.

  18. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, are known to be associated with both diseases and phenotypic traits. Deeply sequenced genomes are often u...

  19. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines

    PubMed Central

    Bish, Lawrence T.; Sleeper, Meg M.; Brainard, Benjamin; Cole, Stephen; Russell, Nicholas; Withnall, Elanor; Arndt, Jason; Reynolds, Caryn; Davison, Ellen; Sanmiguel, Julio; Wu, Di; Gao, Guangping; Wilson, James M.; Sweeney, H. Lee

    2011-01-01

    Achieving efficient cardiac gene transfer in a large animal model has proven to be technically challenging. Prior strategies have employed cardio-pulmonary bypass or dual catheterization with the aid of vasodilators to deliver vectors, such as adenovirus, adeno-associated virus or plasmid DNA. While single stranded adeno-associated virus vectors have shown the greatest promise, they suffer from delayed expression, which might be circumvented by using self-complementary vectors. We sought to optimize cardiac gene transfer using a percutaneous transendocardial injection catheter to deliver adeno-associated virus vectors to the canine myocardium. Four vectors were evaluated—single stranded adeno-associated virus 9, self-complementary adeno-associated virus 9, self-complementary adeno-associated virus 8, self-complementary adeno-associated virus 6—so that comparison could be made between single stranded and self complementary vectors as well as among serotypes 9, 8, and 6. We demonstrate that self-complementary adeno-associated virus is superior to single stranded adeno-associated virus and that adeno-associated virus 6 is superior to other serotypes evaluated. Biodistribution studies revealed that vector genome copies were 15 to 4000 times more abundant in the heart than in any other organ for self-complementary adeno-associated virus 6. Percutaneous transendocardial injection of self-complementary adeno-associated virus 6 is a safe, effective method for achieving efficient cardiac gene transfer. PMID:18813281

  20. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics1

    PubMed Central

    Weitemier, Kevin; Straub, Shannon C. K.; Cronn, Richard C.; Fishbein, Mark; Schmickl, Roswitha; McDonnell, Angela; Liston, Aaron

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca) were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp) followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera) resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. • Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics. PMID:25225629

  1. Construction of a novel gene bank of Bacillus subtilis using a low copy number vector in Escherichia coli.

    PubMed

    Hasnain, S; Thomas, C M

    1986-07-01

    Low copy number vector plasmid pCT571 was constructed to clone Bacillus subtilis genomic fragments in Escherichia coli. pCT571 confers KmR, TcR and CmR in E. coli and CmR in B. subtilis. It has unique restriction sites within the KmR and TcR markers to allow screening for recombinant plasmids by insertional inactivation of these genes. It contains the pSC101 replicon and replicates normally at six to eight copies per chromosome equivalent in E. coli. It also contains oriVRK2, which when supplied with the product of the trfA gene of RK2 in trans, allows pCT571 to replicate at 35-40 copies per chromosome equivalent. A B. subtilis gene bank was created by cloning partially Sau3A-digested and size-fractionated fragments of B. subtilis chromosomal DNA into the BamHI site of pCT571. DNA from 1097 KmR TcS transformants was extracted and analysed electrophoretically as supercoiled DNA and after digesting with EcoRI or EcoRI and SalI. Approximately 1000 hybrid plasmids were found with reasonably sized B. subtilis fragments. The mean size of the inserts in pCT571 is 8 kb, ranging from 4 to 20 kb in different plasmids. The gene bank covers most of the B. subtilis chromosome, as demonstrated by the results of screening the gene bank for selectable nutritional markers in E. coli and B. subtilis. Hybrid plasmids which complement E. coli mutants for arg, his, lys, met, pdx, pyr and thr markers were identified from the gene bank. In B. subtilis the presence of argC, cysA, dal, hisA, ilvA, leuA, lys, metB, metC, phe, purA, purB, thr and trpC was established by transformation experiments. The effects of copy number on cloning and long-term maintenance in the bacterial strains were also investigated. At high copy number some hybrid plasmids cannot be maintained at all, while others show an increased rate of structural deletions and rearrangements.

  2. Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus.

    PubMed

    Filée, Jonathan; Rouault, Jacques-Deric; Harry, Myriam; Hua-Van, Aurélie

    2015-12-15

    The Triatomine bug Rhodnius prolixus is a vector of Trypanosoma cruzi, which causes the Chagas disease in Latin America. R. prolixus can also transfer transposable elements horizontally across a wide range of species. We have taken advantage of the availability of the 700 Mbp complete genome sequence of R. prolixus to study the dynamics of invasion and persistence of transposable elements in this species. Using both library-based and de novo methods of transposon detection, we found less than 6 % of transposable elements in the R. prolixus genome, a relatively low percentage compared to other insect genomes with a similar genome size. DNA transposons are surprisingly abundant and elements belonging to the mariner family are by far the most preponderant components of the mobile part of this genome with 11,015 mariner transposons that could be clustered in 89 groups (75 % of the mobilome). Our analysis allowed the detection of a new mariner clade in the R. prolixus genome, that we called nosferatis. We demonstrated that a large diversity of mariner elements invaded the genome and expanded successfully over time via three main processes. (i) several families experienced recent and massive expansion, for example an explosive burst of a single mariner family led to the generation of more than 8000 copies. These recent expansion events explain the unusual prevalence of mariner transposons in the R. prolixus genome. Other families expanded via older bursts of transposition demonstrating the long lasting permissibility of mariner transposons in the R. prolixus genome. (ii) Many non-autonomous families generated by internal deletions were also identified. Interestingly, two non autonomous families were generated by atypical recombinations (5' part replacement with 3' part). (iii) at least 10 cases of horizontal transfers were found, supporting the idea that host/vector relationships played a pivotal role in the transmission and subsequent persistence of transposable elements in this genome. These data provide a new insight into the evolution of transposons in the genomes of hematophagous insects and bring additional evidences that lateral exchanges of mobile genetics elements occur frequently in the R. prolixus genome.

  3. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  4. The effect of input DNA copy number on genotype call and characterising SNP markers in the humpback whale genome using a nanofluidic array.

    PubMed

    Bhat, Somanath; Polanowski, Andrea M; Double, Mike C; Jarman, Simon N; Emslie, Kerry R

    2012-01-01

    Recent advances in nanofluidic technologies have enabled the use of Integrated Fluidic Circuits (IFCs) for high-throughput Single Nucleotide Polymorphism (SNP) genotyping (GT). In this study, we implemented and validated a relatively low cost nanofluidic system for SNP-GT with and without Specific Target Amplification (STA). As proof of principle, we first validated the effect of input DNA copy number on genotype call rate using well characterised, digital PCR (dPCR) quantified human genomic DNA samples and then implemented the validated method to genotype 45 SNPs in the humpback whale, Megaptera novaeangliae, nuclear genome. When STA was not incorporated, for a homozygous human DNA sample, reaction chambers containing, on average 9 to 97 copies, showed 100% call rate and accuracy. Below 9 copies, the call rate decreased, and at one copy it was 40%. For a heterozygous human DNA sample, the call rate decreased from 100% to 21% when predicted copies per reaction chamber decreased from 38 copies to one copy. The tightness of genotype clusters on a scatter plot also decreased. In contrast, when the same samples were subjected to STA prior to genotyping a call rate and a call accuracy of 100% were achieved. Our results demonstrate that low input DNA copy number affects the quality of data generated, in particular for a heterozygous sample. Similar to human genomic DNA, a call rate and a call accuracy of 100% was achieved with whale genomic DNA samples following multiplex STA using either 15 or 45 SNP-GT assays. These calls were 100% concordant with their true genotypes determined by an independent method, suggesting that the nanofluidic system is a reliable platform for executing call rates with high accuracy and concordance in genomic sequences derived from biological tissue.

  5. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  6. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  7. Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride

    PubMed Central

    Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce. PMID:23409088

  8. A comparative genomic hybridization approach to study gene copy number variations among Chinese hamster cell lines.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan; Fu, Hsu-Yuan; Johnson, Kathryn C; Springer, Nathan M; Hu, Wei-Shou

    2017-08-01

    Chinese Hamster Ovary (CHO) cells are aneuploid in nature. The genome of recombinant protein producing CHO cell lines continuously undergoes changes in its structure and organization. We analyzed nine cell lines, including parental cell lines, using a comparative genomic hybridization (CGH) array focused on gene-containing regions. The comparison of CGH with copy-number estimates from sequencing data showed good correlation. Hierarchical clustering of the gene copy number variation data from CGH data revealed the lineage relationships between the cell lines. On analyzing the clones of a clonal population, some regions with altered genomic copy number status were identified indicating genomic changes during passaging. A CGH array is thus an effective tool in quantifying genomic alterations in industrial cell lines and can provide insights into the changes in the genomic structure during cell line derivation and long term culture. Biotechnol. Bioeng. 2017;114: 1903-1908. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    PubMed

    Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  10. Copy Number Variation across European Populations

    PubMed Central

    Chen, Wanting; Hayward, Caroline; Wright, Alan F.; Hicks, Andrew A.; Vitart, Veronique; Knott, Sara; Wild, Sarah H.; Pramstaller, Peter P.; Wilson, James F.; Rudan, Igor; Porteous, David J.

    2011-01-01

    Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations. PMID:21829696

  11. Molecular analysis of vector genome structures after liver transduction by conventional and self-complementary adeno-associated viral serotype vectors in murine and nonhuman primate models.

    PubMed

    Sun, Xun; Lu, You; Bish, Lawrence T; Calcedo, Roberto; Wilson, James M; Gao, Guangping

    2010-06-01

    Vectors based on several new adeno-associated viral (AAV) serotypes demonstrated strong hepatocyte tropism and transduction efficiency in both small- and large-animal models for liver-directed gene transfer. Efficiency of liver transduction by AAV vectors can be further improved in both murine and nonhuman primate (NHP) animals when the vector genomes are packaged in a self-complementary (sc) format. In an attempt to understand potential molecular mechanism(s) responsible for enhanced transduction efficiency of the sc vector in liver, we performed extensive molecular studies of genome structures of conventional single-stranded (ss) and sc AAV vectors from liver after AAV gene transfer in both mice and NHPs. These included treatment with exonucleases with specific substrate preferences, single-cutter restriction enzyme digestion and polarity-specific hybridization-based vector genome mapping, and bacteriophage phi29 DNA polymerase-mediated and double-stranded circular template-specific rescue of persisted circular genomes. In mouse liver, vector genomes of both genome formats seemed to persist primarily as episomal circular forms, but sc vectors converted into circular forms more rapidly and efficiently. However, the overall differences in vector genome abundance and structure in the liver between ss and sc vectors could not account for the remarkable differences in transduction. Molecular structures of persistent genomes of both ss and sc vectors were significantly more heterogeneous in macaque liver, with noticeable structural rearrangements that warrant further characterizations.

  12. Molecular Analysis of Vector Genome Structures After Liver Transduction by Conventional and Self-Complementary Adeno-Associated Viral Serotype Vectors in Murine and Nonhuman Primate Models

    PubMed Central

    Sun, Xun; Lu, You; Bish, Lawrence T.; Calcedo, Roberto; Wilson, James M.

    2010-01-01

    Abstract Vectors based on several new adeno-associated viral (AAV) serotypes demonstrated strong hepatocyte tropism and transduction efficiency in both small- and large-animal models for liver-directed gene transfer. Efficiency of liver transduction by AAV vectors can be further improved in both murine and nonhuman primate (NHP) animals when the vector genomes are packaged in a self-complementary (sc) format. In an attempt to understand potential molecular mechanism(s) responsible for enhanced transduction efficiency of the sc vector in liver, we performed extensive molecular studies of genome structures of conventional single-stranded (ss) and sc AAV vectors from liver after AAV gene transfer in both mice and NHPs. These included treatment with exonucleases with specific substrate preferences, single-cutter restriction enzyme digestion and polarity-specific hybridization-based vector genome mapping, and bacteriophage ϕ29 DNA polymerase-mediated and double-stranded circular template-specific rescue of persisted circular genomes. In mouse liver, vector genomes of both genome formats seemed to persist primarily as episomal circular forms, but sc vectors converted into circular forms more rapidly and efficiently. However, the overall differences in vector genome abundance and structure in the liver between ss and sc vectors could not account for the remarkable differences in transduction. Molecular structures of persistent genomes of both ss and sc vectors were significantly more heterogeneous in macaque liver, with noticeable structural rearrangements that warrant further characterizations. PMID:20113166

  13. In planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector.

    PubMed

    Zhang, G; Leung, C; Murdin, L; Rovinski, B; White, K A

    2000-02-01

    Plant viruses show significant potential as expression vectors for the production of foreign proteins (e.g., antigens) in plants. The HIV-1 p24 nucleocapsid protein is an important early marker of HIV infection and has been used as an antigen in the development of HIV vaccines. Toward developing a plant-based expression system for the production of p24, we have investigated the use of a (positive)-strand RNA plant virus, tomato bushy stunt virus (TBSV), as an expression vector. The HIV p24 open reading frame (ORF) was introduced into a cloned cDNA copy of the TBSV genome as an in-frame fusion with a 5'-terminal portion of the TBSV coat protein ORF. In vitro-generated RNA transcripts corresponding to the engineered virus vector were infectious when inoculated into plant protoplasts; Northern and Western blot analyses verified the accumulation of a predicted p24-encoding viral subgenomic mRNA and the production of p24 fusion product. Whole-plant infections with the viral vector led to the accumulation of p24 fusion protein in inoculated leaves, which cross-reacted with p24-specific antibodies, thus confirming the maintenance of key antigenic determinants. This study is the first to demonstrate that TBSV can be engineered to express a complete foreign protein of clinical importance. Strategies for optimizing protein yield from this viral vector are discussed.

  14. Psoriasis is associated with increased beta-defensin genomic copy number

    PubMed Central

    Hollox, Edward J.; Huffmeier, Ulrike; Zeeuwen, Patrick L.J.M.; Palla, Raquel; Lascorz, Jesús; Rodijk-Olthuis, Diana; van de Kerkhof, Peter C.M.; Traupe, Heiko; de Jongh, Gys; den Heijer, Martin; Reis, André; Armour, John A.L.; Schalkwijk, Joost

    2008-01-01

    Psoriasis is a common inflammatory skin disease with a strong genetic component. We have analysed the genomic copy number polymorphism of the beta-defensin region on human chromosome 8 in 179 Dutch psoriasis patients and 272 controls, and in 319 German psoriasis patients and 305 controls. Comparisons in both cohorts show a significant association between higher genomic copy number for beta-defensin genes and the risk of psoriasis. PMID:18059266

  15. Gene Addition Strategies for β-Thalassemia and Sickle Cell Anemia.

    PubMed

    Dong, Alisa C; Rivella, Stefano

    2017-01-01

    Beta-thalassemia and sickle cell anemia are two of the most common diseases related to the hemoglobin protein. In these diseases, the beta-globin gene is mutated, causing severe anemia and ineffective erythropoiesis. Patients can additionally present with a number of life-threatening co-morbidities, such as stroke or spontaneous fractures. Current treatment involves transfusion and iron chelation; allogeneic bone marrow transplant is the only curative option, but is limited by the availability of matching donors and graft-versus-host disease. As these two diseases are monogenic diseases, they make an attractive setting for gene therapy. Gene therapy aims to correct the mutated beta-globin gene or add back a functional copy of beta- or gamma-globin. Initial gene therapy work was done with oncoretroviral vectors, but has since shifted to lentiviral vectors. Currently, there are a few clinical trials underway to test the curative potential of some of these lentiviral vectors. This review will highlight the work done thus far, and present the challenges still facing gene therapy, such as genome toxicity concerns and achieving sufficient transgene expression to cure those with the most severe forms of thalassemia.

  16. Analysis of copy number variations among cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  17. Copy number variation of individual cattle genomes using next-generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  18. Copy number variation of individual cattle genomes using next-generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often difficult to track. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angu...

  19. GEAR: genomic enrichment analysis of regional DNA copy number changes.

    PubMed

    Kim, Tae-Min; Jung, Yu-Chae; Rhyu, Mun-Gan; Jung, Myeong Ho; Chung, Yeun-Jun

    2008-02-01

    We developed an algorithm named GEAR (genomic enrichment analysis of regional DNA copy number changes) for functional interpretation of genome-wide DNA copy number changes identified by array-based comparative genomic hybridization. GEAR selects two types of chromosomal alterations with potential biological relevance, i.e. recurrent and phenotype-specific alterations. Then it performs functional enrichment analysis using a priori selected functional gene sets to identify primary and clinical genomic signatures. The genomic signatures identified by GEAR represent functionally coordinated genomic changes, which can provide clues on the underlying molecular mechanisms related to the phenotypes of interest. GEAR can help the identification of key molecular functions that are activated or repressed in the tumor genomes leading to the improved understanding on the tumor biology. GEAR software is available with online manual in the website, http://www.systemsbiology.co.kr/GEAR/.

  20. Divergent copies of the large inverted repeat in the chloroplast genomes of ulvophycean green algae.

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2017-04-20

    The chloroplast genomes of many algae and almost all land plants carry two identical copies of a large inverted repeat (IR) sequence that can pair for flip-flop recombination and undergo expansion/contraction. Although the IR has been lost multiple times during the evolution of the green algae, the underlying mechanisms are still largely unknown. A recent comparison of IR-lacking and IR-containing chloroplast genomes of chlorophytes from the Ulvophyceae (Ulotrichales) suggested that differential elimination of genes from the IR copies might lead to IR loss. To gain deeper insights into the evolutionary history of the chloroplast genome in the Ulvophyceae, we analyzed the genomes of Ignatius tetrasporus and Pseudocharacium americanum (Ignatiales, an order not previously sampled), Dangemannia microcystis (Oltmannsiellopsidales), Pseudoneochloris marina (Ulvales) and also Chamaetrichon capsulatum and Trichosarcina mucosa (Ulotrichales). Our comparison of these six chloroplast genomes with those previously reported for nine ulvophyceans revealed unsuspected variability. All newly examined genomes feature an IR, but remarkably, the copies of the IR present in the Ignatiales, Pseudoneochloris, and Chamaetrichon diverge in sequence, with the tRNA genes from the rRNA operon missing in one IR copy. The implications of this unprecedented finding for the mechanism of IR loss and flip-flop recombination are discussed.

  1. Novel applications of array comparative genomic hybridization in molecular diagnostics.

    PubMed

    Cheung, Sau W; Bi, Weimin

    2018-05-31

    In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.

  2. Tipping Points in Seaweed Genetic Engineering: Scaling Up Opportunities in the Next Decade

    PubMed Central

    Lin, Hanzhi; Qin, Song

    2014-01-01

    Seaweed genetic engineering is a transgenic expression system with unique features compared with those of heterotrophic prokaryotes and higher plants. This study discusses several newly sequenced seaweed nuclear genomes and the necessity that research on vector design should consider endogenous promoters, codon optimization, and gene copy number. Seaweed viruses and artificial transposons can be applied as transformation methods after acquiring a comprehensive understanding of the mechanism of viral infections in seaweeds and transposon patterns in seaweed genomes. After cultivating transgenic algal cells and tissues in a photobioreactor, a biosafety assessment of genetically modified (GM) seaweeds must be conducted before open-sea application. We propose a set of programs for the evaluation of gene flow from GM seaweeds to local/geographical environments. The effective implementation of such programs requires fundamentally systematic and interdisciplinary studies on algal physiology and genetics, marine hydrology, reproductive biology, and ecology. PMID:24857961

  3. Tipping points in seaweed genetic engineering: scaling up opportunities in the next decade.

    PubMed

    Lin, Hanzhi; Qin, Song

    2014-05-22

    Seaweed genetic engineering is a transgenic expression system with unique features compared with those of heterotrophic prokaryotes and higher plants. This study discusses several newly sequenced seaweed nuclear genomes and the necessity that research on vector design should consider endogenous promoters, codon optimization, and gene copy number. Seaweed viruses and artificial transposons can be applied as transformation methods after acquiring a comprehensive understanding of the mechanism of viral infections in seaweeds and transposon patterns in seaweed genomes. After cultivating transgenic algal cells and tissues in a photobioreactor, a biosafety assessment of genetically modified (GM) seaweeds must be conducted before open-sea application. We propose a set of programs for the evaluation of gene flow from GM seaweeds to local/geographical environments. The effective implementation of such programs requires fundamentally systematic and interdisciplinary studies on algal physiology and genetics, marine hydrology, reproductive biology, and ecology.

  4. Analysis of copy number variations reveals differences among cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  5. Measurement of locus copy number by hybridisation with amplifiable probes

    PubMed Central

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  6. Measurement of locus copy number by hybridisation with amplifiable probes.

    PubMed

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  7. Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome.

    PubMed

    Maisonhaute, Claude; Ogereau, David; Hua-Van, Aurélie; Capy, Pierre

    2007-05-15

    Transposable elements (TEs), represent a large fraction of the eukaryotic genome. In Drosophila melanogaster, about 20% of the genome corresponds to such middle repetitive DNA dispersed sequences. A fraction of TEs is composed of elements showing a retrovirus-like structure, the LTR-retrotransposons, the first TEs to be described in the Drosophila genome. Interestingly, in D. melanogaster embryonic immortal cell culture genomes the copy number of these LTR-retrotransposons was revealed to be higher than the copy number in the Drosophila genome, presumably as the result of transposition of some copies to new genomic locations [Potter, S.S., Brorein Jr., W.J., Dunsmuir, P., Rubin, G.M., 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415-427; Junakovic, N., Di Franco, C., Best-Belpomme, M., Echalier, G., 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97, 212-218]. This suggests that so many transpositions modified the genome organisation and consequently the expression of targeted genes. To understand what has directed the transposition of TEs in Drosophila cell culture genomes, a search to identify the newly transposed copies was undertaken using 1731, a LTR-retrotransposon. A comparison between 1731 full-length elements found in the fly sequenced genome (y(1); cn(1)bw(1), sp(1) stock) and 1731 full-length elements amplified by PCR in the two cell line was done. The resulting data provide evidence that all 1731 neocopies were derived from a single copy slightly active in the Drosophila genome and subsequently strongly activated in cultured cells; and that this active copy is related to a newly evolved genomic variant (Kalmykova, A.I., et al., 2004. Selective expansion of the newly evolved genomic variants of retrotransposon 1731 in the Drosophila genomes. Mol. Biol. Evol. 21, 2281-2289). Moreover, neocopies are shown to be inserted in different sets of genes in the two cell lines suggesting they might be involved in the biological and physiological differences observed between Kc and S2 cell lines.

  8. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.

    PubMed

    Gonçalves, Juliana W; Valiati, Victor Hugo; Delprat, Alejandra; Valente, Vera L S; Ruiz, Alfredo

    2014-09-13

    Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral element in the genome. Galileo shows a significant insertion preference for a 15-bp palindromic TSM.

  9. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization

    PubMed Central

    2009-01-01

    Background Array genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use. Results We performed 500 K Affymetrix GeneChip® array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip® array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip® array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip® array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied. Conclusion Affymetrix GeneChip® 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip® array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip® array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires considerable skill and experience. PMID:19917086

  10. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics

    Treesearch

    Kevin Weitemier; Shannon C.K. Straub; Richard C. Cronn; Mark Fishbein; Roswitha Schmickl; Angela McDonnell; Aaron Liston

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed ( Asclepias syriaca ) were used to design enrichment probes for 3385...

  11. Characterization of the complete chloroplast genome of Platycarya strobilacea (Juglandaceae)

    Treesearch

    Jing Yan; Kai Han; Shuyun Zeng; Peng Zhao; Keith Woeste; Jianfang Li; Zhan-Lin Liu

    2017-01-01

    The whole chloroplast genome (cp genome) sequence of Platycarya strobilacea was characterized from Illumina pair-end sequencing data. The complete cp genome was 160,994 bp in length and contained a large single copy region (LSC) of 90,225 bp and a small single copy region (SSC) of 18,371 bp, which were separated by a pair of inverted repeat regions...

  12. Cancer vulnerabilities unveiled by genomic loss

    PubMed Central

    Nijhawan, Deepak; Zack, Travis I.; Ren, Yin; Strickland, Matthew R.; Lamothe, Rebecca; Schumacher, Steven E.; Tsherniak, Aviad; Besche, Henrike C.; Rosenbluh, Joseph; Shehata, Shyemaa; Cowley, Glenn S.; Weir, Barbara A.; Goldberg, Alfred L.; Mesirov, Jill P.; Root, David E.; Bhatia, Sangeeta N.; Beroukhim, Rameen; Hahn, William C.

    2012-01-01

    Summary Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy-number losses, we performed integrated analyses of genome-wide copy-number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy-number loss of that gene. These CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes are enriched for spliceosome, proteasome and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy-number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability. PMID:22901813

  13. Application of Nexus copy number software for CNV detection and analysis.

    PubMed

    Darvishi, Katayoon

    2010-04-01

    Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.

  14. Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    PubMed Central

    Eizaguirre, Christophe; Samonte, Irene E.; Kalbe, Martin; Lenz, Tobias L.; Stoll, Monika; Bornberg-Bauer, Erich; Milinski, Manfred; Reusch, Thorsten B. H.

    2014-01-01

    Duplicate genes emerge as copy-number variations (CNVs) at the population level, and remain copy-number polymorphic until they are fixed or lost. The successful establishment of such structural polymorphisms in the genome plays an important role in evolution by promoting genetic diversity, complexity and innovation. To characterize the early evolutionary stages of duplicate genes and their potential adaptive benefits, we combine comparative genomics with population genomics analyses to evaluate the distribution and impact of CNVs across natural populations of an eco-genomic model, the three-spined stickleback. With whole genome sequences of 66 individuals from populations inhabiting three distinct habitats, we find that CNVs generally occur at low frequencies and are often only found in one of the 11 populations surveyed. A subset of CNVs, however, displays copy-number differentiation between populations, showing elevated within-population frequencies consistent with local adaptation. By comparing teleost genomes to identify lineage-specific genes and duplications in sticklebacks, we highlight rampant gene content differences among individuals in which over 30% of young duplicate genes are CNVs. These CNV genes are evolving rapidly at the molecular level and are enriched with functional categories associated with environmental interactions, depicting the dynamic early copy-number polymorphic stage of genes during population differentiation. PMID:25474574

  15. SG-ADVISER CNV: copy-number variant annotation and interpretation.

    PubMed

    Erikson, Galina A; Deshpande, Neha; Kesavan, Balachandar G; Torkamani, Ali

    2015-09-01

    Copy-number variants have been associated with a variety of diseases, especially cancer, autism, schizophrenia, and developmental delay. The majority of clinically relevant events occur de novo, necessitating the interpretation of novel events. In this light, we present the Scripps Genome ADVISER CNV annotation pipeline and Web server, which aims to fill the gap between copy number variant detection and interpretation by performing in-depth annotations and functional predictions for copy number variants. The Scripps Genome ADVISER CNV suite includes a Web server interface to a high-performance computing environment for calculations of annotations and a table-based user interface that allows for the execution of numerous annotation-based variant filtration strategies and statistics. The annotation results include details regarding location, impact on the coding portion of genes, allele frequency information (including allele frequencies from the Scripps Wellderly cohort), and overlap information with other reference data sets (including ClinVar, DGV, DECIPHER). A summary variant classification is produced (ADVISER score) based on the American College of Medical Genetics and Genomics scoring guidelines. We demonstrate >90% sensitivity/specificity for detection of pathogenic events. Scripps Genome ADVISER CNV is designed to allow users with no prior bioinformatics expertise to manipulate large volumes of copy-number variant data. Scripps Genome ADVISER CNV is available at http://genomics.scripps.edu/ADVISER/.

  16. Germline Transgenic Pigs by Sleeping Beauty Transposition in Porcine Zygotes and Targeted Integration in the Pig Genome

    PubMed Central

    Garrels, Wiebke; Mátés, Lajos; Holler, Stephanie; Dalda, Anna; Taylor, Ulrike; Petersen, Björn; Niemann, Heiner; Izsvák, Zsuzsanna; Ivics, Zoltán; Kues, Wilfried A.

    2011-01-01

    Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases. PMID:21897845

  17. Development of versatile non-homologous end joining-based knock-in module for genome editing.

    PubMed

    Sawatsubashi, Shun; Joko, Yudai; Fukumoto, Seiji; Matsumoto, Toshio; Sugano, Shigeo S

    2018-01-12

    CRISPR/Cas9-based genome editing has dramatically accelerated genome engineering. An important aspect of genome engineering is efficient knock-in technology. For improved knock-in efficiency, the non-homologous end joining (NHEJ) repair pathway has been used over the homology-dependent repair pathway, but there remains a need to reduce the complexity of the preparation of donor vectors. We developed the versatile NHEJ-based knock-in module for genome editing (VIKING). Using the consensus sequence of the time-honored pUC vector to cut donor vectors, any vector with a pUC backbone could be used as the donor vector without customization. Conditions required to minimize random integration rates of the donor vector were also investigated. We attempted to isolate null lines of the VDR gene in human HaCaT keratinocytes using knock-in/knock-out with a selection marker cassette, and found 75% of clones isolated were successfully knocked-in. Although HaCaT cells have hypotetraploid genome composition, the results suggest multiple clones have VDR null phenotypes. VIKING modules enabled highly efficient knock-in of any vectors harboring pUC vectors. Users now can insert various existing vectors into an arbitrary locus in the genome. VIKING will contribute to low-cost genome engineering.

  18. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    NASA Technical Reports Server (NTRS)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  19. Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize (Zea mays ssp. mays) Genome

    PubMed Central

    Diez, Concepcion M.; Meca, Esteban; Tenaillon, Maud I.; Gaut, Brandon S.

    2014-01-01

    Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24∶22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome. PMID:24743518

  20. Gene Graphics: a genomic neighborhood data visualization web application.

    PubMed

    Harrison, Katherine J; Crécy-Lagard, Valérie de; Zallot, Rémi

    2018-04-15

    The examination of gene neighborhood is an integral part of comparative genomics but no tools to produce publication quality graphics of gene clusters are available. Gene Graphics is a straightforward web application for creating such visuals. Supported inputs include National Center for Biotechnology Information gene and protein identifiers with automatic fetching of neighboring information, GenBank files and data extracted from the SEED database. Gene representations can be customized for many parameters including gene and genome names, colors and sizes. Gene attributes can be copied and pasted for rapid and user-friendly customization of homologous genes between species. In addition to Portable Network Graphics and Scalable Vector Graphics, produced representations can be exported as Tagged Image File Format or Encapsulated PostScript, formats that are standard for publication. Hands-on tutorials with real life examples inspired from publications are available for training. Gene Graphics is freely available at https://katlabs.cc/genegraphics/ and source code is hosted at https://github.com/katlabs/genegraphics. katherinejh@ufl.edu or remizallot@ufl.edu. Supplementary data are available at Bioinformatics online.

  1. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas)

    USGS Publications Warehouse

    Greenblatt, R.J.; Work, Thierry M.; Balazs, G.; Sutton, C.A.; Casey, R.N.; Casey, J.W.

    2004-01-01

    Fibropapillomatosis (FP) of marine turtles is a neoplastic disease of ecological concern. A fibropapilloma-associated turtle herpesvirus (FPTHV) is consistently present, usually at loads exceeding one virus copy per tumor cell. DNA from an array of parasites of green turtles (Chelonia mydas) was examined with quantitative PCR (qPCR) to determine whether any carried viral loads are sufficient to implicate them as vectors for FPTHV. Marine leeches (Ozobranchus spp.) were found to carry high viral DNA loads; some samples approached 10 million copies per leech. Isopycnic sucrose density gradient/qPCR analysis confirmed that some of these copies were associated with particles of the density of enveloped viruses. The data implicate the marine leech Ozobranchus as a mechanical vector for FPTHV. Quantitative RT-PCR analysis of FPTHV gene expression indicated that most of the FPTHV copies in a fibropapilloma have restricted DNA polymerase expression, suggestive of latent infection.

  2. Development of a chemiluminescence competitive PCR for the detection and quantification of parvovirus B19 DNA using a microplate luminometer.

    PubMed

    Fini, F; Gallinella, G; Girotti, S; Zerbini, M; Musiani, M

    1999-09-01

    Quantitative PCR of viral nucleic acids can be useful clinically in diagnosis, risk assessment, and monitoring of antiviral therapy. We wished to develop a chemiluminescence competitive PCR (cPCR) for parvovirus B19. Parvovirus DNA target sequences and competitor sequences were coamplified and directly labeled. Amplified products were then separately hybridized by specific biotin-labeled probes, captured onto streptavidin-coated ELISA microplates, and detected immunoenzymatically using chemiluminescent substrates of peroxidase. Chemiluminescent signals were quantitatively analyzed by a microplate luminometer and were correlated to the amounts of amplified products. Luminol-based systems displayed constant emission but had a higher detection limit (100-1000 genome copies) than the acridan-based system (20 genome copies). The detection limit of chemiluminescent substrates was lower (20 genome copies) than colorimetric substrates (50 genome copies). In chemiluminescence cPCR, the titration curves showed linear correlation above 100 target genome copies. Chemiluminescence cPCR was positive in six serum samples from patients with parvovirus infections and negative in six control sera. The chemiluminescence cPCR appears to be a sensitive and specific method for the quantitative detection of viral DNAs.

  3. Retroviral DNA Integration

    PubMed Central

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  4. Effects of vector backbone and pseudotype on lentiviral vector-mediated gene transfer: studies in infant ADA-deficient mice and rhesus monkeys.

    PubMed

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-10-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options.

  5. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  6. Influence of sequence and size of DNA on packaging efficiency of parvovirus MVM-based vectors.

    PubMed

    Brandenburger, A; Coessens, E; El Bakkouri, K; Velu, T

    1999-05-01

    We have derived a vector from the autonomous parvovirus MVM(p), which expresses human IL-2 specifically in transformed cells (Russell et al., J. Virol 1992;66:2821-2828). Testing the therapeutic potential of these vectors in vivo requires high-titer stocks. Stocks with a titer of 10(9) can be obtained after concentration and purification (Avalosse et al., J. Virol. Methods 1996;62:179-183), but this method requires large culture volumes and cannot easily be scaled up. We wanted to increase the production of recombinant virus at the initial transfection step. Poor vector titers could be due to inadequate genome amplification or to inefficient packaging. Here we show that intracellular amplification of MVM vector genomes is not the limiting factor for vector production. Several vector genomes of different size and/or structure were amplified to an equal extent. Their amplification was also equivalent to that of a cotransfected wild-type genome. We did not observe any interference between vector and wild-type genomes at the level of DNA amplification. Despite equivalent genome amplification, vector titers varied greatly between the different genomes, presumably owing to differences in packaging efficiency. Genomes with a size close to 100% that of wild type were packaged most efficiently with loss of efficiency at lower and higher sizes. However, certain genomes of identical size showed different packaging efficiencies, illustrating the importance of the DNA sequence, and probably its structure.

  7. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives.

    PubMed

    Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development.

  8. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives

    PubMed Central

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development. PMID:24564169

  9. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies.

    PubMed

    Willemsen, Marjolein H; de Leeuw, Nicole; de Brouwer, Arjan P M; Pfundt, Rolph; Hehir-Kwa, Jayne Y; Yntema, Helger G; Nillesen, Willy M; de Vries, Bert B A; van Bokhoven, Hans; Kleefstra, Tjitske

    2012-11-01

    Genome-wide array studies are now routinely being used in the evaluation of patients with cognitive disorders (CD) and/or congenital anomalies (CA). Therefore, inevitably each clinician is confronted with the challenging task of the interpretation of copy number variations detected by genome-wide array platforms in a diagnostic setting. Clinical interpretation of autosomal copy number variations is already challenging, but assessment of the clinical relevance of copy number variations of the X-chromosome is even more complex. This study provides an overview of the X-Chromosome copy number variations that we have identified by genome-wide array analysis in a large cohort of 4407 male and female patients. We have made an interpretation of the clinical relevance of each of these copy number variations based on well-defined criteria and previous reports in literature and databases. The prevalence of X-chromosome copy number variations in this cohort was 57/4407 (∼1.3%), of which 15 (0.3%) were interpreted as (likely) pathogenic. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Current status of genome editing in vector mosquitoes: A review.

    PubMed

    Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah

    2017-01-16

    Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.

  11. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Sczyrba, Alex

    2018-02-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  12. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) are large insertions, deletions or duplications in the genome that vary between members of a species and are known to affect a wide variety of phenotypic traits. In this study, we identified CNVs in a population of bulls using low coverage next-generation sequence data....

  14. Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.

    PubMed

    Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James

    2008-04-11

    The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.

  15. Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q.

    PubMed

    Xie, Wen; Chen, Chunhai; Yang, Zezhong; Guo, Litao; Yang, Xin; Wang, Dan; Chen, Ming; Huang, Jinqun; Wen, Yanan; Zeng, Yang; Liu, Yating; Xia, Jixing; Tian, Lixia; Cui, Hongying; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Li, Xianchun; Tan, Xinqiu; Ghanim, Murad; Qiu, Baoli; Pan, Huipeng; Chu, Dong; Delatte, Helene; Maruthi, M N; Ge, Feng; Zhou, Xueping; Wang, Xiaowei; Wan, Fanghao; Du, Yuzhou; Luo, Chen; Yan, Fengming; Preisser, Evan L; Jiao, Xiaoguo; Coates, Brad S; Zhao, Jinyang; Gao, Qiang; Xia, Jinquan; Yin, Ye; Liu, Yong; Brown, Judith K; Zhou, Xuguo Joe; Zhang, Youjun

    2017-05-01

    The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future 'pan-genomic' comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management. © The Author 2017. Published by Oxford University Press.

  16. Cloning and study of the pectate lyase gene of Erwinia carotovora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.

    1986-04-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector lambda 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representativemore » gene libraries on phage vectors from no less than 1 ..mu..g of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, lambda 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it.« less

  17. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    PubMed Central

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  18. The consequences of chromosomal aneuploidy on the transcriptome of cancer cells☆

    PubMed Central

    Ried, Thomas; Hu, Yue; Difilippantonio, Michael J.; Ghadimi, B. Michael; Grade, Marian; Camps, Jordi

    2016-01-01

    Chromosomal aneuploidies are a defining feature of carcinomas, i.e., tumors of epithelial origin. Such aneuploidies result in tumor specific genomic copy number alterations. The patterns of genomic imbalances are tumor specific, and to a certain extent specific for defined stages of tumor development. Genomic imbalances occur already in premalignant precursor lesions, i.e., before the transition to invasive disease, and their distribution is maintained in metastases, and in cell lines derived from primary tumors. These observations are consistent with the interpretation that tumor specific genomic imbalances are drivers of malignant transformation. Naturally, this precipitates the question of how such imbalances influence the expression of resident genes. A number of laboratories have systematically integrated copy number alterations with gene expression changes in primary tumors and metastases, cell lines, and experimental models of aneuploidy to address the question as to whether genomic imbalances deregulate the expression of one or few key genes, or rather affect the cancer transcriptome more globally. The majority of these studies showed that gene expression levels follow genomic copy number. Therefore, gross genomic copy number changes, including aneuploidies of entire chromosome arms and chromosomes, result in a massive deregulation of the transcriptome of cancer cells. This article is part of a Special Issue entitled: Chromatin in time and space. PMID:22426433

  19. Algorithms and Complexity Results for Genome Mapping Problems.

    PubMed

    Rajaraman, Ashok; Zanetti, Joao Paulo Pereira; Manuch, Jan; Chauve, Cedric

    2017-01-01

    Genome mapping algorithms aim at computing an ordering of a set of genomic markers based on local ordering information such as adjacencies and intervals of markers. In most genome mapping models, markers are assumed to occur uniquely in the resulting map. We introduce algorithmic questions that consider repeats, i.e., markers that can have several occurrences in the resulting map. We show that, provided with an upper bound on the copy number of repeated markers and with intervals that span full repeat copies, called repeat spanning intervals, the problem of deciding if a set of adjacencies and repeat spanning intervals admits a genome representation is tractable if the target genome can contain linear and/or circular chromosomal fragments. We also show that extracting a maximum cardinality or weight subset of repeat spanning intervals given a set of adjacencies that admits a genome realization is NP-hard but fixed-parameter tractable in the maximum copy number and the number of adjacent repeats, and tractable if intervals contain a single repeated marker.

  20. Highly stable maintenance of a mouse artificial chromosome in human cells and mice.

    PubMed

    Kazuki, Kanako; Takehara, Shoko; Uno, Narumi; Imaoka, Natsuko; Abe, Satoshi; Takiguchi, Masato; Hiramatsu, Kei; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2013-12-06

    Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effects of Vector Backbone and Pseudotype on Lentiviral Vector-mediated Gene Transfer: Studies in Infant ADA-Deficient Mice and Rhesus Monkeys

    PubMed Central

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I.; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-01-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options. PMID:24925206

  2. Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control.

    PubMed

    Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M

    2016-10-01

    The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.

  3. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    PubMed Central

    Tembrock, Luke R.; Zheng, Shaoyu; Wu, Zhiqiang

    2018-01-01

    Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae. PMID:29425128

  4. Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 Genome Project samples.

    PubMed

    Mandage, Rajendra; Telford, Marco; Rodríguez, Juan Antonio; Farré, Xavier; Layouni, Hafid; Marigorta, Urko M; Cundiff, Caitlin; Heredia-Genestar, Jose Maria; Navarro, Arcadi; Santpere, Gabriel

    2017-01-01

    Epstein-Barr virus (EBV), human herpes virus 4, has been classically associated with infectious mononucleosis, multiple sclerosis and several types of cancers. Many of these diseases show marked geographical differences in prevalence, which points to underlying genetic and/or environmental factors. Those factors may include a different susceptibility to EBV infection and viral copy number among human populations. Since EBV is commonly used to transform B-cells into lymphoblastoid cell lines (LCLs) we hypothesize that differences in EBV copy number among individual LCLs may reflect differential susceptibility to EBV infection. To test this hypothesis, we retrieved whole-genome sequenced EBV-mapping reads from 1,753 LCL samples derived from 19 populations worldwide that were sequenced within the context of the 1000 Genomes Project. An in silico methodology was developed to estimate the number of EBV copy number in LCLs and validated these estimations by real-time PCR. After experimentally confirming that EBV relative copy number remains stable over cell passages, we performed a genome wide association analysis (GWAS) to try detecting genetic variants of the host that may be associated with EBV copy number. Our GWAS has yielded several genomic regions suggestively associated with the number of EBV genomes per cell in LCLs, unraveling promising candidate genes such as CAND1, a known inhibitor of EBV replication. While this GWAS does not unequivocally establish the degree to which genetic makeup of individuals determine viral levels within their derived LCLs, for which a larger sample size will be needed, it potentially highlighted human genes affecting EBV-related processes, which constitute interesting candidates to follow up in the context of EBV related pathologies.

  5. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose.

    PubMed

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K; Abaidoo, Robert C; Dalsgaard, Anders; Hald, Tine

    2017-12-01

    The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10 -5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio to estimate the norovirus count. In all scenarios of using different water sources, the application of the fecal indicator conversion ratio underestimated the norovirus disease burden, measured by the Disability Adjusted Life Years (DALYs), when compared to results using the genome copies norovirus data. In some cases the difference was >2 orders of magnitude. All scenarios using genome copies met the 10 -4 DALY per person per year for consumption of vegetables irrigated with wastewater, although these results are considered to be highly conservative risk estimates. The fecal indicator conversion ratio model of stream-water and drain-water sources of wastewater achieved the 10 -6 DALY per person per year threshold, which tends to indicate an underestimation of health risk when compared to using genome copies for estimating the dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Is quantitative PCR for the pneumolysin (ply) gene useful for detection of pneumococcal lower respiratory tract infection?

    PubMed

    Abdeldaim, G; Herrmann, B; Korsgaard, J; Olcén, P; Blomberg, J; Strålin, K

    2009-06-01

    The pneumolysin (ply) gene is widely used as a target in PCR assays for Streptococcus pneumoniae in respiratory secretions. However, false-positive results with conventional ply-based PCR have been reported. The aim here was to study the performance of a quantitative ply-based PCR for the identification of pneumococcal lower respiratory tract infection (LRTI). In a prospective study, fibreoptic bronchoscopy was performed in 156 hospitalized adult patients with LRTI and 31 controls who underwent bronchoscopy because of suspicion of malignancy. Among the LRTI patients and controls, the quantitative ply-based PCR applied to bronchoalveolar lavage (BAL) fluid was positive at >or=10(3) genome copies/mL in 61% and 71% of the subjects, at >or=10(5) genome copies/mL in 40% and 58% of the subjects, and at >or=10(7) genome copies/mL in 15% and 3.2% of the subjects, respectively. Using BAL fluid culture, blood culture, and/or a urinary antigen test, S. pneumoniae was identified in 19 LRTI patients. As compared with these diagnostic methods used in combination, quantitative ply-based PCR showed sensitivities and specificities of 89% and 43% at a cut-off of 10(3) genome copies/mL, of 84% and 66% at a cut-off of 10(5) genome copies/mL, and of 53% and 90% at a cut-off of 10(7) genome copies/mL, respectively. In conclusion, a high cut-off with the quantitative ply-based PCR was required to reach acceptable specificity. However, as a high cut-off resulted in low sensitivity, quantitative ply-based PCR does not appear to be clinically useful. Quantitative PCR methods for S. pneumoniae using alternative gene targets should be evaluated.

  7. VectorBase: a data resource for invertebrate vector genomics

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2009-01-01

    VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744

  8. Association of Higher Defensin β-4 Genomic Copy Numbers with Behçet's Disease in Iraqi Patients.

    PubMed

    Hameed, Ammar F; Jaradat, Sameh; Al-Musawi, Bassam M; Sharquie, Khalifa; Ibrahim, Mazin J; Hayani, Raafa K; Norgauer, Johannes

    2015-11-01

    Behçet's disease (BD) is an immune-mediated small vessel systemic vasculitis. Human β-defensins are antimicrobial peptides associated with many inflammatory diseases and are encoded by the β-defensin family of multiple-copy genes. However, their role in BD necessitates further investigation. The aim of the present study was to investigate the possible association of BD in its various clinical forms with defensin β-4 (DEFB4) genomic copy numbers. This case-control study was conducted from January to September 2011 and included 50 control subjects and 27 unrelated Iraqi BD patients registered at Baghdad Teaching Hospital, Bagdad, Iraq. Copy numbers of the DEFB4 gene were determined using the comparative cycle threshold method by duplex real-time polymerase chain reaction technology at the Department of Dermatology of Jena University Hospital, Jena, Germany. DEFB4 genomic copy numbers were significantly higher in the BD group compared to the control group (P = 0.010). However, no statistically significant association was found between copy numbers and clinical variables within the BD group. The DEFB4 copy number polymorphism may be associated with BD; however, it is not associated with different clinical manifestations of the disease.

  9. The complete chloroplast DNA sequence of Eleutherococcus senticosus (Araliaceae); comparative evolutionary analyses with other three asterids.

    PubMed

    Yi, Dong-Keun; Lee, Hae-Lim; Sun, Byung-Yun; Chung, Mi Yoon; Kim, Ki-Joong

    2012-05-01

    This study reports the complete chloroplast (cp) DNA sequence of Eleutherococcus senticosus (GenBank: JN 637765), an endangered endemic species. The genome is 156,768 bp in length, and contains a pair of inverted repeat (IR) regions of 25,930 bp each, a large single copy (LSC) region of 86,755 bp and a small single copy (SSC) region of 18,153 bp. The structural organization, gene and intron contents, gene order, AT content, codon usage, and transcription units of the E. senticosus chloroplast genome are similar to that of typical land plant cp DNA. We aligned and analyzed the sequences of 86 coding genes, 19 introns and 113 intergenic spacers (IGS) in three different taxonomic hierarchies; Eleutherococcus vs. Panax, Eleutherococcus vs. Daucus, and Eleutherococcus vs. Nicotiana. The distribution of indels, the number of polymorphic sites and nucleotide diversity indicate that positional constraint is more important than functional constraint for the evolution of cp genome sequences in Asterids. For example, the intron sequences in the LSC region exhibited base substitution rates 5-11-times higher than that of the IR regions, while the intron sequences in the SSC region evolved 7-14-times faster than those in the IR region. Furthermore, the Ka/Ks ratio of the gene coding sequences supports a stronger evolutionary constraint in the IR region than in the LSC or SSC regions. Therefore, our data suggest that selective sweeps by base collection mechanisms more frequently eliminate polymorphisms in the IR region than in other regions. Chloroplast genome regions that have high levels of base substitutions also show higher incidences of indels. Thirty-five simple sequence repeat (SSR) loci were identified in the Eleutherococcus chloroplast genome. Of these, 27 are homopolymers, while six are di-polymers and two are tri-polymers. In addition to the SSR loci, we also identified 18 medium size repeat units ranging from 22 to 79 bp, 11 of which are distributed in the IGS or intron regions. These medium size repeats may contribute to developing a cp genome-specific gene introduction vector because the region may use for specific recombination sites.

  10. VectorBase: a home for invertebrate vectors of human pathogens

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A.; Kennedy, Ryan C.; Lobo, Neil F.; MacCallum, M. Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Zdobnov, Evgeny M.; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2007-01-01

    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever. PMID:17145709

  11. Genomic characteristics of cattle copy number variations

    USDA-ARS?s Scientific Manuscript database

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  12. Genomic Copy Number Variation in Disorders of Cognitive Development

    ERIC Educational Resources Information Center

    Morrow, Eric M.

    2010-01-01

    Objective: To highlight recent discoveries in the area of genomic copy number variation in neuropsychiatric disorders including intellectual disability, autism, and schizophrenia. To emphasize new principles emerging from this area, involving the genetic architecture of disease, pathophysiology, and diagnosis. Method: Review of studies published…

  13. High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations

    PubMed Central

    Stegelmann, Frank; Bullinger, Lars; Griesshammer, Martin; Holzmann, Karlheinz; Habdank, Marianne; Kuhn, Susanne; Maile, Carmen; Schauer, Stefanie; Döhner, Hartmut; Döhner, Konstanze

    2010-01-01

    Single-nucleotide polymorphism arrays allow for genome-wide profiling of copy-number alterations and copy-neutral runs of homozygosity at high resolution. To identify novel genetic lesions in myeloproliferative neoplasms, a large series of 151 clinically well characterized patients was analyzed in our study. Copy-number alterations were rare in essential thrombocythemia and polycythemia vera. In contrast, approximately one third of myelofibrosis patients exhibited small genomic losses (less than 5 Mb). In 2 secondary myelofibrosis cases the tumor suppressor gene NF1 in 17q11.2 was affected. Sequencing analyses revealed a mutation in the remaining NF1 allele of one patient. In terms of copy-neutral aberrations, no chromosomes other than 9p were recurrently affected. In conclusion, novel genomic aberrations were identified in our study, in particular in patients with myelofibrosis. Further analyses on single-gene level are necessary to uncover the mechanisms that are involved in the pathogenesis of myeloproliferative neoplasms. PMID:20015882

  14. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

    PubMed Central

    2010-01-01

    Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should consider and, when possible take advantage of, the implications of polyploidy. PMID:20977772

  15. Characteristics of Minimally Oversized Adeno-Associated Virus Vectors Encoding Human Factor VIII Generated Using Producer Cell Lines and Triple Transfection.

    PubMed

    Nambiar, Bindu; Cornell Sookdeo, Cathleen; Berthelette, Patricia; Jackson, Robert; Piraino, Susan; Burnham, Brenda; Nass, Shelley; Souza, David; O'Riordan, Catherine R; Vincent, Karen A; Cheng, Seng H; Armentano, Donna; Kyostio-Moore, Sirkka

    2017-02-01

    Several ongoing clinical studies are evaluating recombinant adeno-associated virus (rAAV) vectors as gene delivery vehicles for a variety of diseases. However, the production of vectors with genomes >4.7 kb is challenging, with vector preparations frequently containing truncated genomes. To determine whether the generation of oversized rAAVs can be improved using a producer cell-line (PCL) process, HeLaS3-cell lines harboring either a 5.1 or 5.4 kb rAAV vector genome encoding codon-optimized cDNA for human B-domain deleted Factor VIII (FVIII) were isolated. High-producing "masterwells" (MWs), defined as producing >50,000 vg/cell, were identified for each oversized vector. These MWs provided stable vector production for >20 passages. The quality and potency of the AAVrh8R/FVIII-5.1 and AAVrh8R/FVIII-5.4 vectors generated by the PCL method were then compared to those prepared via transient transfection (TXN). Southern and dot blot analyses demonstrated that both production methods resulted in packaging of heterogeneously sized genomes. However, the PCL-derived rAAV vector preparations contained some genomes >4.7 kb, whereas the majority of genomes generated by the TXN method were ≤4.7 kb. The PCL process reduced packaging of non-vector DNA for both the AAVrh8R/FVIII-5.1 and the AAVrh8R/FVIII-5.4 kb vector preparations. Furthermore, more DNA-containing viral particles were obtained for the AAVrh8R/FVIII-5.1 vector. In a mouse model of hemophilia A, animals administered a PCL-derived rAAV vector exhibited twofold higher plasma FVIII activity and increased levels of vector genomes in the liver than mice treated with vector produced via TXN did. Hence, the quality of oversized vectors prepared using the PCL method is greater than that of vectors generated using the TXN process, and importantly this improvement translates to enhanced performance in vivo.

  16. Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis.

    PubMed

    Walz, M; Kück, U

    1995-12-01

    The ascomycete Sordaria macrospora was transformed using different plasmid molecules containing the bacterial hygromycin B resistance gene (hph) under the control of different expression signals. The highest transformation frequency was obtained with vector pMW1. On this plasmid molecule, expression of the hph gene is directed by the upstream region of the isopenicillin N synthetase gene (pcbC) from the deuteromycete Acremonium chrysogenum. Southern analysis suggests that the vector copies are integrated as tandem repeats into the S. macrospora chromosomes and that duplicated sequences are most probably not inactivated by methylation during meiosis. Furthermore, the hygromycin B resistance (hygR) is not correlated with the number of integrated vector molecules. Electrophoretic karyotyping was used to further characterize S. macrospora transformants. Five chromosomal bands were separated by pulsed-field gel electrophoresis (PFGE) representing seven chromosomes with a total genome size of 39.5Mb. Hybridization analysis revealed ectopic integration of vector DNA into different chromosomes. In a few transformants, major rearrangements were detected. Transformants were sexually propagated to analyze the fate of the heterologous vector DNA. Although the hygR phenotype is stably maintained during mitosis, about a third of all lines tested showed loss of the resistance marker gene after meiosis. However, as was concluded from electrophoretic karyotyping, the resistant spores showed a Mendelian segregation of the integrated vector molecules in at least three consecutive generations. Our data indicate that heterologous marker genes can be used for transformation tagging, or the molecular mapping of chromosomal loci in S. macrospora.

  17. The Adenovirus Genome Contributes to the Structural Stability of the Virion

    PubMed Central

    Saha, Bratati; Wong, Carmen M.; Parks, Robin J.

    2014-01-01

    Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design. PMID:25254384

  18. Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    PubMed Central

    Hollox, Edward J; Davies, Jane; Griesenbach, Uta; Burgess, Juliana; Alton, Eric WFW; Armour, John AL

    2005-01-01

    Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2) is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF), and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found. PMID:16336654

  19. The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome

    PubMed Central

    Saillard, Colette; Carle, Patricia; Duret-Nurbel, Sybille; Henri, Raphaël; Killiny, Nabil; Carrère, Sébastien; Gouzy, Jérome; Bové, Joseph-Marie; Renaudin, Joël; Foissac, Xavier

    2008-01-01

    Background Spiroplama citri, the causal agent of citrus stubborn disease, is a bacterium of the class Mollicutes and is transmitted by phloem-feeding leafhopper vectors. In order to characterize candidate genes potentially involved in spiroplasma transmission and pathogenicity, the genome of S. citri strain GII3-3X is currently being deciphered. Results Assembling 20,000 sequencing reads generated seven circular contigs, none of which fit the 1.8 Mb chromosome map or carried chromosomal markers. These contigs correspond to seven plasmids: pSci1 to pSci6, with sizes ranging from 12.9 to 35.3 kbp and pSciA of 7.8 kbp. Plasmids pSci were detected as multiple copies in strain GII3-3X. Plasmid copy numbers of pSci1-6, as deduced from sequencing coverage, were estimated at 10 to 14 copies per spiroplasma cell, representing 1.6 Mb of extrachromosomal DNA. Genes encoding proteins of the TrsE-TraE, Mob, TraD-TraG, and Soj-ParA protein families were predicted in most of the pSci sequences, in addition to members of 14 protein families of unknown function. Plasmid pSci6 encodes protein P32, a marker of insect transmissibility. Plasmids pSci1-5 code for eight different S. citri adhesion-related proteins (ScARPs) that are homologous to the previously described protein P89 and the S. kunkelii SkARP1. Conserved signal peptides and C-terminal transmembrane alpha helices were predicted in all ScARPs. The predicted surface-exposed N-terminal region possesses the following elements: (i) 6 to 8 repeats of 39 to 42 amino acids each (sarpin repeats), (ii) a central conserved region of 330 amino acids followed by (iii) a more variable domain of about 110 amino acids. The C-terminus, predicted to be cytoplasmic, consists of a 27 amino acid stretch enriched in arginine and lysine (KR) and an optional 23 amino acid stretch enriched in lysine, aspartate and glutamate (KDE). Plasmids pSci mainly present a linear increase of cumulative GC skew except in regions presenting conserved hairpin structures. Conclusion The genome of S. citri GII3-3X is characterized by abundant extrachromosomal elements. The pSci plasmids could not only be vertically inherited but also horizontally transmitted, as they encode proteins usually involved in DNA element partitioning and cell to cell DNA transfer. Because plasmids pSci1-5 encode surface proteins of the ScARP family and pSci6 was recently shown to confer insect transmissibility, diversity and abundance of S. citri plasmids may essentially aid the rapid adaptation of S. citri to more efficient transmission by different insect vectors and to various plant hosts. PMID:18442384

  20. Genomic and evolutionary characteristics of cattle copy number variations

    USDA-ARS?s Scientific Manuscript database

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  1. Mammalian Synthetic Biology: Time for Big MACs.

    PubMed

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  2. Molecular inversion probe assay for allelic quantitation

    PubMed Central

    Ji, Hanlee; Welch, Katrina

    2010-01-01

    Molecular inversion probe (MIP) technology has been demonstrated to be a robust platform for large-scale dual genotyping and copy number analysis. Applications in human genomic and genetic studies include the possibility of running dual germline genotyping and combined copy number variation ascertainment. MIPs analyze large numbers of specific genetic target sequences in parallel, relying on interrogation of a barcode tag, rather than direct hybridization of genomic DNA to an array. The MIP approach does not replace, but is complementary to many of the copy number technologies being performed today. Some specific advantages of MIP technology include: Less DNA required (37 ng vs. 250 ng), DNA quality less important, more dynamic range (amplifications detected up to copy number 60), allele specific information “cleaner” (less SNP crosstalk/contamination), and quality of markers better (fewer individual MIPs versus SNPs needed to identify copy number changes). MIPs can be considered a candidate gene (targeted whole genome) approach and can find specific areas of interest that otherwise may be missed with other methods. PMID:19488872

  3. Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations

    PubMed Central

    Bianchi-Frias, Daniella; Basom, Ryan; Delrow, Jeffrey J; Coleman, Ilsa M; Dakhova, Olga; Qu, Xiaoyu; Fang, Min; Franco, Omar E.; Ericson, Nolan G.; Bielas, Jason H.; Hayward, Simon W.; True, Lawrence; Morrissey, Colm; Brown, Lisha; Bhowmick, Neil A.; Rowley, David; Ittmann, Michael; Nelson, Peter S.

    2017-01-01

    Prostate cancer-associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium-associated stroma by whole genome copy number analyses, targeted sequencing of TP53, and fluorescence in situ hybridization. Comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy number aberrations (SCNAs). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, no loss of heterozygosity (LOH) or copy-neutral LOH in cultured cancer-associated fibroblasts (CAFs), which are known to promote prostate cancer progression in vivo. PMID:26753621

  4. Effective normalization for copy number variation detection from whole genome sequencing.

    PubMed

    Janevski, Angel; Varadan, Vinay; Kamalakaran, Sitharthan; Banerjee, Nilanjana; Dimitrova, Nevenka

    2012-01-01

    Whole genome sequencing enables a high resolution view of the human genome and provides unique insights into genome structure at an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools, while validated, also include a number of parameters that are configurable to genome data being analyzed. These algorithms allow for normalization to account for individual and population-specific effects on individual genome CNV estimates but the impact of these changes on the estimated CNVs is not well characterized. We evaluate in detail the effect of normalization methodologies in two CNV algorithms FREEC and CNV-seq using whole genome sequencing data from 8 individuals spanning four populations. We apply FREEC and CNV-seq to a sequencing data set consisting of 8 genomes. We use multiple configurations corresponding to different read-count normalization methodologies in FREEC, and statistically characterize the concordance of the CNV calls between FREEC configurations and the analogous output from CNV-seq. The normalization methodologies evaluated in FREEC are: GC content, mappability and control genome. We further stratify the concordance analysis within genic, non-genic, and a collection of validated variant regions. The GC content normalization methodology generates the highest number of altered copy number regions. Both mappability and control genome normalization reduce the total number and length of copy number regions. Mappability normalization yields Jaccard indices in the 0.07 - 0.3 range, whereas using a control genome normalization yields Jaccard index values around 0.4 with normalization based on GC content. The most critical impact of using mappability as a normalization factor is substantial reduction of deletion CNV calls. The output of another method based on control genome normalization, CNV-seq, resulted in comparable CNV call profiles, and substantial agreement in variable gene and CNV region calls. Choice of read-count normalization methodology has a substantial effect on CNV calls and the use of genomic mappability or an appropriately chosen control genome can optimize the output of CNV analysis.

  5. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    PubMed

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (<2.8 × 10(-5)), including the PTEN pathway (7.8 × 10(-7)), the gene set up-regulated under heat shock (3.6 × 10(-6)), the gene sets involved in the immune profile for rejection of kidney transplantation (9.2 × 10(-6)) and for transcriptional control of leukocytes (2.2 × 10(-5)), and the ganglioside biosynthesis pathway (2.7 × 10(-5)). In conclusion, we present a new method for pathway analyses of copy number data, and causal mechanisms of the five pathways require further study.

  6. Vector-Potential Flow in Relativistic Beam Diodes.

    DTIC Science & Technology

    1980-09-05

    is no plasma formation and consequent loss of energy to accelerated ions. Entering a region close to the ax ik in which an anode plasma does exist...Hubbard 1 copy J. Guillory 1 copy JAYCOR, Inc. 1401 Camino Del Mar Del Mar, CA 92014 Attn: E. Wenaas 1 copy JAYCOR, INC. 300 Unicorn Park Drive Woburn

  7. A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains.

    PubMed

    Pappas, Christopher J; Benaroudj, Nadia; Picardeau, Mathieu

    2015-05-01

    Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Identification and Characterization of Domesticated Bacterial Transposases

    PubMed Central

    Gallie, Jenna; Rainey, Paul B.

    2017-01-01

    Abstract Selfish genetic elements, such as insertion sequences and transposons are found in most genomes. Transposons are usually identifiable by their high copy number within genomes. In contrast, REP-associated tyrosine transposases (RAYTs), a recently described class of bacterial transposase, are typically present at just one copy per genome. This suggests that RAYTs no longer copy themselves and thus they no longer function as a typical transposase. Motivated by this possibility we interrogated thousands of fully sequenced bacterial genomes in order to determine patterns of RAYT diversity, their distribution across chromosomes and accessory elements, and rate of duplication. RAYTs encompass exceptional diversity and are divisible into at least five distinct groups. They possess features more similar to housekeeping genes than insertion sequences, are predominantly vertically transmitted and have persisted through evolutionary time to the point where they are now found in 24% of all species for which at least one fully sequenced genome is available. Overall, the genomic distribution of RAYTs suggests that they have been coopted by host genomes to perform a function that benefits the host cell. PMID:28910967

  9. Dana-Farber Cancer Institute (DFCI): Computational Correction of Copy-number Effect in CRISPR-Cas9 Essentiality Screens of Cancer Cells | Office of Cancer Genomics

    Cancer.gov

    Genome-wide CRISPR-Cas9 screens were performed in 341 cell lines. The results were processed with the CERES algorithm to produce copy-number and guide-efficacy corrected gene-knockout effect estimates.

  10. Dana-Farber Cancer Institute (DFCI): Computational Correction of Copy-number Effect in CRISPR-Cas9 Essentiality Screens of Cancer Cells | Office of Cancer Genomics

    Cancer.gov

    Genome-wide CRISPR-Cas9 screens were performed in 341 cell lines. The results were processed with the CERES algorithm to produce copy-number and guide-efficacy corrected gene knockout effect estimates.

  11. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    PubMed

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  12. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    PubMed Central

    Tyson, Jess; Majerus, Tamsin MO; Walker, Susan; Armour, John AL

    2009-01-01

    Background Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms. PMID:19785739

  13. Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure

    PubMed Central

    Diez Benavente, Ernest; Ward, Zoe; Chan, Wilson; Mohareb, Fady R.; Sutherland, Colin J.; Roper, Cally; Campino, Susana

    2017-01-01

    Background Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. Results We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. Conclusions This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications. PMID:28493919

  14. Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure.

    PubMed

    Diez Benavente, Ernest; Ward, Zoe; Chan, Wilson; Mohareb, Fady R; Sutherland, Colin J; Roper, Cally; Campino, Susana; Clark, Taane G

    2017-01-01

    Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications.

  15. iCopyDAV: Integrated platform for copy number variations—Detection, annotation and visualization

    PubMed Central

    Vogeti, Sriharsha

    2018-01-01

    Discovery of copy number variations (CNVs), a major category of structural variations, have dramatically changed our understanding of differences between individuals and provide an alternate paradigm for the genetic basis of human diseases. CNVs include both copy gain and copy loss events and their detection genome-wide is now possible using high-throughput, low-cost next generation sequencing (NGS) methods. However, accurate detection of CNVs from NGS data is not straightforward due to non-uniform coverage of reads resulting from various systemic biases. We have developed an integrated platform, iCopyDAV, to handle some of these issues in CNV detection in whole genome NGS data. It has a modular framework comprising five major modules: data pre-treatment, segmentation, variant calling, annotation and visualization. An important feature of iCopyDAV is the functional annotation module that enables the user to identify and prioritize CNVs encompassing various functional elements, genomic features and disease-associations. Parallelization of the segmentation algorithms makes the iCopyDAV platform even accessible on a desktop. Here we show the effect of sequencing coverage, read length, bin size, data pre-treatment and segmentation approaches on accurate detection of the complete spectrum of CNVs. Performance of iCopyDAV is evaluated on both simulated data and real data for different sequencing depths. It is an open-source integrated pipeline available at https://github.com/vogetihrsh/icopydav and as Docker’s image at http://bioinf.iiit.ac.in/icopydav/. PMID:29621297

  16. Evaluation of the efficacy of constitutional array-based comparative genomic hybridization in the diagnosis of aneuploidy using genomic and amplified DNA.

    PubMed

    Tan, Niap H; Palmer, Rodger; Wang, Rubin

    2010-02-01

    Array-based comparative genomic hybridization (array CGH) is a new molecular technique that has the potential to revolutionize cytogenetics. However, use of high resolution array CGH in the clinical setting is plagued by the problem of widespread copy number variations (CNV) in the human genome. Constitutional microarray, containing only clones that interrogate regions of known constitutional syndromes, may circumvent the dilemma of detecting CNV of unknown clinical significance. The present study investigated the efficacy of constitutional microarray in the diagnosis of trisomy. Test samples included genomic DNA from trisomic cell lines, amplification products of 50 ng of genomic DNA and whole genome amplification products of single cells. DNA amplification was achieved by means of multiple displacement amplification (MDA) over 16 h. The trisomic and sex chromosomes copy number imbalances in the genomic DNA were correctly identified by the constitutional microarrays. However, there was a failure to detect the trisomy in the amplification products of 50 ng of genomic DNA and whole genome amplification products of single cells. Using carefully selected clones, Spectral Genomics constitutional microarray was able to detect the chromosomal copy number imbalances in genomic DNA without the confounding effects of CNV. The diagnostic failure in amplified DNA samples could be attributed to the amplification process. The MDA duration of 16 h generated excessive amount of biases and shortening the duration might minimize the problem.

  17. A novel specific duplex real-time RT-PCR method for absolute quantitation of Grapevine Pinot gris virus in plant material and single mites.

    PubMed

    Morán, Félix; Olmos, Antonio; Lotos, Leonidas; Predajňa, Lukáš; Katis, Nikolaos; Glasa, Miroslav; Maliogka, Varvara; Ruiz-García, Ana B

    2018-01-01

    Grapevine Pinot gris virus (GPGV) is a widely distributed grapevine pathogen that has been associated to the grapevine leaf mottling and deformation disease. With the aim of better understanding the disease epidemiology and providing efficient control strategies a specific and quantitative duplex TaqMan real-time RT-PCR assay has been developed. This method has allowed reliable quantitation of the GPGV titer ranging from 30 up to 3 x 108 transcript copies, with a detection limit of 70 viral copies in plant material. The assay targets a grapevine internal control that reduces the occurrence of false negative results, thus increasing the diagnostic sensitivity of the technique. Viral isolates both associated and non-associated to symptoms from Greece, Slovakia and Spain have been successfully detected. The method has also been applied to the absolute quantitation of GPGV in its putative transmission vector Colomerus vitis. Moreover, the viral titer present in single mites has been determined. In addition, in the current study a new polymorphism in the GPGV genome responsible for a shorter movement protein has been found. A phylogenetic study based on this genomic region has shown a high variability among Spanish isolates and points to a different evolutionary origin of this new polymorphism. The methodology here developed opens new possibilities for basic and epidemiological studies as well as for the establishment of efficient control strategies.

  18. Development of single-copy nuclear intron markers for species-level phylogenetics: Case study with Paullinieae (Sapindaceae).

    PubMed

    Chery, Joyce G; Sass, Chodon; Specht, Chelsea D

    2017-09-01

    We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.

  19. Engineered promoters enable constant gene expression at any copy number in bacteria.

    PubMed

    Segall-Shapiro, Thomas H; Sontag, Eduardo D; Voigt, Christopher A

    2018-04-01

    The internal environment of growing cells is variable and dynamic, making it difficult to introduce reliable parts, such as promoters, for genetic engineering. Here, we applied control-theoretic ideas to design promoters that maintained constant levels of expression at any copy number. Theory predicts that independence to copy number can be achieved by using an incoherent feedforward loop (iFFL) if the negative regulation is perfectly non-cooperative. We engineered iFFLs into Escherichia coli promoters using transcription-activator-like effectors (TALEs). These promoters had near-identical expression in different genome locations and plasmids, even when their copy number was perturbed by genomic mutations or changes in growth medium composition. We applied the stabilized promoters to show that a three-gene metabolic pathway to produce deoxychromoviridans could retain function without re-tuning when the stabilized-promoter-driven genes were moved from a plasmid into the genome.

  20. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes. In this study, we performed a lar...

  1. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus Cattle

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to intestinal nematodes. In this study, we performed a large sca...

  2. Comparative analyses across cattle breeds reveal the pitfalls caused by artificial and lineage-differential copy number variations

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNV) are well known genomic variants, which often complicate structural and functional genomics studies. Here, we integrated the CNV region (CNVR) result detected from 1,682 Nellore cattle with the equivalent result derived from the Bovine HapMap samples. Through comparing CN...

  3. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle

    USDA-ARS?s Scientific Manuscript database

    Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...

  4. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor

    USDA-ARS?s Scientific Manuscript database

    Different individuals of the same species are generally thought to have very similar genomes. However, there is growing evidence that structural variation in the form of copy number variation (CNV) and presence-absence variation (PAV) can lead to variation in the genome content of individuals withi...

  5. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.

    PubMed

    Baucom, Regina S; Estill, James C; Chaparro, Cristian; Upshaw, Naadira; Jogi, Ansuya; Deragon, Jean-Marc; Westerman, Richard P; Sanmiguel, Phillip J; Bennetzen, Jeffrey L

    2009-11-01

    Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and approximately 35,000 copies, respectively, or a combined approximately 1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity.

  6. Gene copy number evolution during tetraploid cotton radiation.

    PubMed

    Rong, J; Feltus, F A; Liu, L; Lin, L; Paterson, A H

    2010-11-01

    After polyploid formation, retention or loss of duplicated genes is not random. Genes with some functional domains are convergently restored to 'singleton' state after many independent genome duplications, and have been referred to as 'duplication-resistant' (DR) genes. To further explore the timeframe for their restoration to the singleton state, 27 cotton homologs of genes found to be 'DR' in Arabidopsis were selected based on diagnostic Pfam domains. Their copy numbers were studied using southern hybridization and sequence analysis in five tetraploid species and their ancestral A and D genome diploids. DR genes had significantly lower copy number than gene families hybridizing to randomly selected cotton ESTs. Three DR genes showed complete loss of D genome-derived homoeologs in some or all tetraploid species. Prior analysis has shown gene loss in polyploid cotton to be rare, and herein only one randomly selected gene showed loss of a homoeolog in only one of the five tetraploid species (Gossypium mustelinum). BAC sequencing confirmed two cases of gene loss in tetraploid cotton. Divergence among 5' sequences of DR genes amplified from G. arboreum, G. raimondii, and Gossypioides kirkii was correlated with gene copy number. These results show that genes containing Pfam domains associated with duplication resistance in Arabidopsis have also been preferentially restored to low copy number after a more recent polyploidization event in cotton. In tetraploid cotton, genes from the progenitor D genome seem to experience more gene copy number divergence than genes from the A genome. Together with D subgenome-biased alterations in gene expression, perhaps gene loss may contribute to the relatively larger portion of quantitative trait variation attributable to D than A subgenome chromosomes of tetraploid cotton.

  7. Strand-specific, real-time RT-PCR assays for quantification of genomic and positive-sense RNAs of the fish rhabdovirus, Infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Hart, S. Alexandra; Kurath, Gael; Winton, James R.

    2006-01-01

    The fish rhabdovirus, Infectious hematopoietic necrosis virus (IHNV), is an important pathogen of salmonids. Cell culture assays have traditionally been used to quantify levels of IHNV in samples; however, real-time or quantitative RT-PCR assays have been proposed as a rapid alternative. For viruses having a single-stranded, negative-sense RNA genome, standard qRT-PCR assays do not distinguish between the negative-sense genome and positive-sense RNA species including mRNA and anti-genome. Thus, these methods do not determine viral genome copy number. This study reports development of strand-specific, qRT-PCR assays that use tagged primers for enhancing strand specificity during cDNA synthesis and quantitative PCR. Protocols were developed for positive-strand specific (pss-qRT-PCR) and negative-strand specific (nss-qRT-PCR) assays for IHNV glycoprotein (G) gene sequences. Validation with synthetic RNA transcripts demonstrated the assays could discriminate the correct strand with greater than 1000-fold fidelity. The number of genome copies in livers of IHNV-infected fish determined by nss-qRT-PCR was, on average, 8000-fold greater than the number of infectious units as determined by plaque assay. We also compared the number of genome copies with the quantity of positive-sense RNA and determined that the ratio of positive-sense molecules to negative-sense genome copies was, on average, 2.7:1. Potential future applications of these IHNV strand-specific qRT-PCR assays are discussed.

  8. Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells.

    PubMed Central

    Belmaaza, A; Wallenburg, J C; Brouillette, S; Gusew, N; Chartrand, P

    1990-01-01

    The repetitive LINE (L1) elements of the mouse, which are present at about 10(5) copies per genome and share over 80% of sequence homology, were examined for their ability to undergo genetic exchange with exogenous L1 sequences. The exogenous L1 sequences, carried by a shuttle vector, consisted of an internal fragment from L1Md-A2, a previously described member of the L1 family of the mouse. Using an assay that does not require the reconstitution of a selectable marker we found that this vector, in either circular or linear form, acquired DNA sequences from endogenous L1 elements at a frequency of 10(-3) to 10(-4) per rescued vector. Physical analysis of the acquired L1 sequences revealed that distinct endogenous L1 elements acted as donors and that different subfamilies participated. These results demonstrate that L1 elements are readily capable of genetic exchange. Apart from gene conversion events, the acquisition of L1 sequences outside the region of homology suggested that a second mechanism was also involved in the genetic exchange. A model which accounts for this mechanism is presented and its potential implication on the rearrangement of L1 elements is discussed. Images PMID:1978749

  9. nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi.

    PubMed

    Macias, Vanessa M; Jimenez, Alyssa J; Burini-Kojin, Bianca; Pledger, David; Jasinskiene, Nijole; Phong, Celine Hien; Chu, Karen; Fazekas, Aniko; Martin, Kelcie; Marinotti, Osvaldo; James, Anthony A

    2017-08-01

    Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Identification of an Internal Ribosome Entry Segment in the 5′ Region of the Mouse VL30 Retrotransposon and Its Use in the Development of Retroviral Vectors

    PubMed Central

    López-Lastra, Marcelo; Ulrici, Sandrine; Gabus, Caroline; Darlix, Jean-Luc

    1999-01-01

    Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5′ region of VL30m could replace the 5′ leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5′ region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5′ region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5′ region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors. PMID:10482590

  11. Identification of an internal ribosome entry segment in the 5' region of the mouse VL30 retrotransposon and its use in the development of retroviral vectors.

    PubMed

    López-Lastra, M; Ulrici, S; Gabus, C; Darlix, J L

    1999-10-01

    Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5' region of VL30m could replace the 5' leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5' region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5' region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5' region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors.

  12. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production.

    PubMed

    Irla, Marta; Heggeset, Tonje M B; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B; Brautaset, Trygve; Wendisch, Volker F

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.

  13. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

    PubMed Central

    Irla, Marta; Heggeset, Tonje M. B.; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B.; Brautaset, Trygve; Wendisch, Volker F.

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium. PMID:27713731

  14. Molecular Inversion Probe Analysis of Gene Copy Alterations Reveals Distinct Categories of Colorectal Carcinoma

    PubMed Central

    Ji, Hanlee; Kumm, Jochen; Zhang, Michael; Farnam, Kyle; Salari, Keyan; Faham, Malek; Ford, James M.; Davis, Ronald W.

    2006-01-01

    Genomic instability is a major feature of neoplastic development in colorectal carcinoma and other cancers. Specific genomic instability events, such as deletions in chromosomes and other alterations in gene copy number, have potential utility as biologically relevant prognostic biomarkers. For example, genomic deletions on chromosome arm 18q are an indicator of colorectal carcinoma behavior and potentially useful as a prognostic indicator. Adapting a novel genomic technology called molecular inversion probes which can determine gene copy alterations, such as genomic deletions, we designed a set of probes to interrogate several hundred individual exons of >200 cancer genes with an overall distribution covering all chromosome arms. In addition, >100 probes were designed in close proximity of microsatellite markers on chromosome arm 18q. We analyzed a set of colorectal carcinoma cell lines and primary colorectal tumor samples for gene copy alterations and deletion mutations in exons. Based on clustering analysis, we distinguished the different categories of genomic instability among the colorectal cancer cell lines. Our analysis of primary tumors uncovered several distinct categories of colorectal carcinoma, each with specific patterns of 18q deletions and deletion mutations in specific genes. This finding has potential clinical ramifications given the application of 18q loss of heterozygosity events as a potential indicator for adjuvant treatment in stage II colorectal carcinoma. PMID:16912164

  15. Gene amplification of the Hps locus in Glycine max

    PubMed Central

    Gijzen, Mark; Kuflu, Kuflom; Moy, Pat

    2006-01-01

    Background Hydrophobic protein from soybean (HPS) is an 8 kD cysteine-rich polypeptide that causes asthma in persons allergic to soybean dust. HPS is synthesized in the pod endocarp and deposited on the seed surface during development. Past evidence suggests that the protein may mediate the adherence or dehiscence of endocarp tissues during maturation and affect the lustre, or glossiness of the seed surface. Results A comparison of soybean germplasm by genomic DNA blot hybridization shows that the copy number and structure of the Hps locus is polymorphic among soybean cultivars and related species. Changes in Hps gene copy number were also detected by comparative genomic DNA hybridization using cDNA microarrays. The Hps copy number polymorphisms co-segregated with seed lustre phenotype and HPS surface protein in a cross between dull- and shiny-seeded soybeans. In soybean cultivar Harosoy 63, a minimum of 27 ± 5 copies of the Hps gene were estimated to be present in each haploid genome. The isolation and analysis of genomic clones indicates that the core Hps locus is comprised of a tandem array of reiterated units, with each 8.6 kb unit containing a single HPS open reading frame. Conclusion This study shows that polymorphisms at the Hps locus arise from changes in the gene copy number via gene amplification. We present a model whereby Hps copy number modulates protein expression levels and seed lustre, and we suggest that gene amplification may result from selection pressures imposed on crop plants. PMID:16536872

  16. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-09-12

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .

  17. A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells.

    PubMed

    Weyer, U; Possee, R D

    1991-12-01

    A baculovirus transfer vector, pAcUW3, was developed to facilitate the insertion of two influenza virus genes, those encoding the haemagglutinin (HA) and neuraminidase (NA) membrane glycoproteins, into the Autographa californica nuclear polyhedrosis virus genome in a single cotransfection experiment. The NA gene was inserted in place of the polyhedrin coding sequences under the control of the polyhedrin promoter, whereas the HA gene was placed under the control of a copy of the p10 promoter at a site upstream of and in opposite orientation to the polyhedrin promoter. After infection of Spodoptera frugiperda cells with the recombinant virus, AcUW3HANA, both HA and NA were expressed in the very late phase of infection and were shown to be functional in appropriate assays. Immunofluorescence assays demonstrated their localization at the surface of infected insect cells. The expression of both foreign genes in the recombinant virus was found to be stable for at least 12 passages in cell culture.

  18. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  19. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  20. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches

    PubMed Central

    Severson, David W.; Behura, Susanta K.

    2016-01-01

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions. PMID:27809220

  1. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    PubMed

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  2. Creating single-copy genetic circuits

    PubMed Central

    Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.

    2017-01-01

    SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413

  3. Chompy: an infestation of MITE-like repetitive elements in the crocodilian genome.

    PubMed

    Ray, David A; Hedges, Dale J; Herke, Scott W; Fowlkes, Justin D; Barnes, Erin W; LaVie, Daniel K; Goodwin, Lindsey M; Densmore, Llewellyn D; Batzer, Mark A

    2005-12-05

    Interspersed repeats are a major component of most eukaryotic genomes and have an impact on genome size and stability, but the repetitive element landscape of crocodilian genomes has not yet been fully investigated. In this report, we provide the first detailed characterization of an interspersed repeat element in any crocodilian genome. Chompy is a putative miniature inverted-repeat transposable element (MITE) family initially recovered from the genome of Alligator mississippiensis (American alligator) but also present in the genomes of Crocodylus moreletii (Morelet's crocodile) and Gavialis gangeticus (Indian gharial). The element has all of the hallmarks of MITEs including terminal inverted repeats, possible target site duplications, and a tendency to form secondary structures. We estimate the copy number in the alligator genome to be approximately 46,000 copies. As a result of their size and unique properties, Chompy elements may provide a useful source of genomic variation for crocodilian comparative genomics.

  4. Evolutionary dynamics of hAT DNA transposon families in Saccharomycetaceae.

    PubMed

    Sarilar, Véronique; Bleykasten-Grosshans, Claudine; Neuvéglise, Cécile

    2014-12-21

    Transposable elements (TEs) are widespread in eukaryotes but uncommon in yeasts of the Saccharomycotina subphylum, in terms of both host species and genome fraction. The class II elements are especially scarce, but the hAT element Rover is a noteworthy exception that deserves further investigation. Here, we conducted a genome-wide analysis of hAT elements in 40 ascomycota. A novel family, Roamer, was found in three species, whereas Rover was detected in 15 preduplicated species from Kluyveromyces, Eremothecium, and Lachancea genera, with up to 41 copies per genome. Rover acquisition seems to have occurred by horizontal transfer in a common ancestor of these genera. The detection of remote Rover copies in Naumovozyma dairenensis and in the sole Saccharomyces cerevisiae strain AWRI1631, without synteny, suggests that two additional independent horizontal transfers took place toward these genomes. Such patchy distribution of elements prevents any anticipation of TE presence in incoming sequenced genomes, even closely related ones. The presence of both putative autonomous and defective Rover copies, as well as their diversification into five families, indicate particular dynamics of Rover elements in the Lachancea genus. Especially, we discovered the first miniature inverted-repeat transposable elements (MITEs) to be described in yeasts, together with their parental autonomous copies. Evidence of MITE insertion polymorphism among Lachancea waltii strains suggests their recent activity. Moreover, 40% of Rover copies appeared to be involved in chromosome rearrangements, showing the large structural impact of TEs on yeast genome and opening the door to further investigations to understand their functional and evolutionary consequences. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    PubMed

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.

  6. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains

    PubMed Central

    van den Broek, M.; Bolat, I.; Nijkamp, J. F.; Ramos, E.; Luttik, M. A. H.; Koopman, F.; Geertman, J. M.; de Ridder, D.; Pronk, J. T.

    2015-01-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. PMID:26150454

  7. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    NASA Astrophysics Data System (ADS)

    Kemp, Jacqueline; Longworth, Michelle

    2015-12-01

    Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  8. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human.

    PubMed

    MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

    2015-04-01

    Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. The Cognitive and Behavioral Phenotypes of Individuals with "CHRNA7" Duplications

    ERIC Educational Resources Information Center

    Gillentine, M. A.; Berry, L. N.; Goin-Kochel, R. P.; Ali, M. A.; Ge, J.; Guffey, D.; Rosenfeld, J. A.; Hannig, V.; Bader, P.; Proud, M.; Shinawi, M.; Graham, B. H.; Lin, A.; Lalani, S. R.; Reynolds, J.; Chen, M.; Grebe, T.; Minard, C. G.; Stankiewicz, P.; Beaudet, A. L.; Schaaf, C. P.

    2017-01-01

    Chromosome 15q11q13 is among the least stable regions in the genome due to its highly complex genomic architecture. Low copy repeat elements at 15q13.3 facilitate recurrent copy number variants (CNVs), with deletions established as pathogenic and "CHRNA7" implicated as a candidate gene. However, the pathogenicity of duplications of…

  10. Exploring the feasibility of using copy number variants as genetic markers through large-scale whole genome sequencing experiments

    USDA-ARS?s Scientific Manuscript database

    Copy number variants (CNV) are large scale duplications or deletions of genomic sequence that are caused by a diverse set of molecular phenomena that are distinct from single nucleotide polymorphism (SNP) formation. Due to their different mechanisms of formation, CNVs are often difficult to track us...

  11. Genome-wide identification of copy number variations between two chicken lines that differ in genetic resistance to Marek’s disease

    USDA-ARS?s Scientific Manuscript database

    Background: Copy number variation (CNV) is a major source of genome polymorphism that directly contributes to phenotypic variation such as resistance to infectious diseases. Lines 63 and 72 are two highly inbred experimental chicken lines that differ greatly in susceptibility to Marek’s disease (MD)...

  12. Sorting by Cuts, Joins, and Whole Chromosome Duplications.

    PubMed

    Zeira, Ron; Shamir, Ron

    2017-02-01

    Genome rearrangement problems have been extensively studied due to their importance in biology. Most studied models assumed a single copy per gene. However, in reality, duplicated genes are common, most notably in cancer. In this study, we make a step toward handling duplicated genes by considering a model that allows the atomic operations of cut, join, and whole chromosome duplication. Given two linear genomes, [Formula: see text] with one copy per gene and [Formula: see text] with two copies per gene, we give a linear time algorithm for computing a shortest sequence of operations transforming [Formula: see text] into [Formula: see text] such that all intermediate genomes are linear. We also show that computing an optimal sequence with fewest duplications is NP-hard.

  13. Single-cell copy number variation detection

    PubMed Central

    2011-01-01

    Detection of chromosomal aberrations from a single cell by array comparative genomic hybridization (single-cell array CGH), instead of from a population of cells, is an emerging technique. However, such detection is challenging because of the genome artifacts and the DNA amplification process inherent to the single cell approach. Current normalization algorithms result in inaccurate aberration detection for single-cell data. We propose a normalization method based on channel, genome composition and recurrent genome artifact corrections. We demonstrate that the proposed channel clone normalization significantly improves the copy number variation detection in both simulated and real single-cell array CGH data. PMID:21854607

  14. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames.

    PubMed

    Ustav, M; Stenlund, A

    1991-02-01

    Bovine papillomavirus (BPV) DNA is maintained as an episome with a constant copy number in transformed cells and is stably inherited. To study BPV replication we have developed a transient replication assay based on a highly efficient electroporation procedure. Using this assay we have determined that in the context of the viral genome two of the viral open reading frames, E1 and E2, are required for replication. Furthermore we show that when produced from expression vectors in the absence of other viral gene products, the full length E2 transactivator polypeptide and a 72 kd polypeptide encoded by the E1 open reading frame in its entirety, are both necessary and sufficient for replication BPV in C127 cells.

  15. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia.

    PubMed

    Barry, Elizabeth G; Witherspoon, David J; Lampe, David J

    2004-02-01

    Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.

  16. The complete chloroplast genome of a medicinal plant Epimedium koreanum Nakai (Berberidaceae).

    PubMed

    Lee, Jung-Hoon; Kim, Kyunghee; Kim, Na-Rae; Lee, Sang-Choon; Yang, Tae-Jin; Kim, Young-Dong

    2016-11-01

    Epimedium koreanum is a perennial medicinal plant distributed in Eastern Asia. The complete chloroplast genome sequences of E. koreanum was obtained by de novo assembly using whole genome next-generation sequences. The chloroplast genome of E. koreanum was 157 218 bp in length and separated into four distinct regions such as large single copy region (89 600 bp), small single copy region (17 222 bp) and a pair of inverted repeat regions (25 198 bp). The genome contained a total of 112 genes including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that E. koreanum is most closely related to Berberis bealei, a traditional medicinal plant in the Berberidaceae family.

  17. Chromosomal integration of adenoviral vector DNA in vivo.

    PubMed

    Stephen, Sam Laurel; Montini, Eugenio; Sivanandam, Vijayshankar Ganesh; Al-Dhalimy, Muhseen; Kestler, Hans A; Finegold, Milton; Grompe, Markus; Kochanek, Stefan

    2010-10-01

    So far there has been no report of any clinical or preclinical evidence for chromosomal vector integration following adenovirus (Ad) vector-mediated gene transfer in vivo. We used liver gene transfer with high-capacity Ad vectors in the FAH(Deltaexon5) mouse model to analyze homologous and heterologous recombination events between vector and chromosomal DNA. Intravenous injection of Ad vectors either expressing a fumarylacetoacetate hydrolase (FAH) cDNA or carrying part of the FAH genomic locus resulted in liver nodules of FAH-expressing hepatocytes, demonstrating chromosomal vector integration. Analysis of junctions between vector and chromosomal DNA following heterologous recombination indicated integration of the vector genome through its termini. Heterologous recombination occurred with a median frequency of 6.72 x 10(-5) per transduced hepatocyte, while homologous recombination occurred more rarely with a median frequency of 3.88 x 10(-7). This study has established quantitative and qualitative data on recombination of adenoviral vector DNA with genomic DNA in vivo, contributing to a risk-benefit assessment of the biosafety of Ad vector-mediated gene transfer.

  18. Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae.

    PubMed

    Chung, K-R; Ehrenshaft, M; Wetzel, D K; Daub, M E

    2003-11-01

    We have successfully adapted plasmid insertion and restriction enzyme-mediated integration (REMI) to produce cercosporin toxin-deficient mutants in the asexual phytopathogenic fungus Cercospora nicotianae. The use of pre-linearized plasmid or restriction enzymes in the transformation procedure significantly decreased the transformation frequency, but promoted a complicated and undefined mode of plasmid integration that leads to mutations in the C. nicotianae genome. Vector DNA generally integrated in multiple copies, and no increase in single-copy insertion was observed when enzymes were added to the transformation mixture. Out of 1873 transformants tested, 39 putative cercosporin toxin biosynthesis ( ctb) mutants were recovered that showed altered levels of cercosporin production. Seven ctb mutants were recovered using pre-linearized plasmids without the addition of enzymes, and these were considered to be non-REMI mutants. The correlation between a specific insertion and a mutant phenotype was confirmed using rescued plasmids as gene disruption vectors in the wild-type strain. Six out of fifteen rescued plasmids tested yielded cercosporin-deficient transformants when re-introduced into the wild-type strain, suggesting a link between the insertion site and the cercosporin-deficient phenotype. Sequence analysis of a fragment flanking the insert site recovered from one insertion mutant showed it to be disrupted in sequences with high homology to the acyl transferase domain of polyketide synthases from other fungi. Disruption of this polyketide synthase gene ( CTB1) using a rescued plasmid resulted in mutants that were defective in cercosporin production. Thus, we provide the first molecular evidence that cercosporin is synthesized via a polyketide pathway as previously hypothesized.

  19. The Complete Plastid Genome of Lagerstroemia fauriei and Loss of rpl2 Intron from Lagerstroemia (Lythraceae)

    PubMed Central

    Gu, Cuihua; Tembrock, Luke R.; Johnson, Nels G.; Simmons, Mark P.; Wu, Zhiqiang

    2016-01-01

    Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications. PMID:26950701

  20. The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross

    PubMed Central

    2011-01-01

    Background Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. Results We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. Conclusions CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations. PMID:21936954

  1. The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells

    PubMed Central

    Shi, Lingling; Chang, Xiao; Zhang, Peilin; Coba, Marcelo P.; Lu, Wange; Wang, Kai

    2013-01-01

    Genetic mutations in NLGN4X (neuroligin 4), including point mutations and copy number variants (CNVs), have been associated with susceptibility to autism spectrum disorders (ASDs). However, it is unclear how mutations in NLGN4X result in neurodevelopmental defects. Here, we used neural stem cells (NSCs) as in vitro models to explore the impacts of NLGN4X knockdown on neurodevelopment. Using two shRNAmir-based vectors targeting NLGN4X and one control shRNAmir vector, we modulated NLGN4X expression and differentiated these NSCs into mature neurons. We monitored the neurodevelopmental process at Weeks 0, 0.5, 1, 2, 4 and 6, based on morphological analysis and whole-genome gene expression profiling. At the cellular level, in NSCs with NLGN4X knockdown, we observed increasingly delayed neuronal development and compromised neurite formation, starting from Week 2 through Week 6 post differentiation. At the molecular level, we identified multiple pathways, such as neurogenesis, neuron differentiation and muscle development, which are increasingly disturbed in cells with NLGN4X knockdown. Notably, several postsynaptic genes, including DLG4, NLGN1 and NLGN3, also have decreased expression. Based on in vitro models, NLGN4X knockdown directly impacts neurodevelopmental process during the formation of neurons and their connections. Our functional genomics study highlights the utility of NSCs models in understanding the functional roles of CNVs in affecting neurodevelopment and conferring susceptibility to neurodevelopmental diseases. PMID:23710042

  2. The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells.

    PubMed

    Shi, Lingling; Chang, Xiao; Zhang, Peilin; Coba, Marcelo P; Lu, Wange; Wang, Kai

    2013-09-15

    Genetic mutations in NLGN4X (neuroligin 4), including point mutations and copy number variants (CNVs), have been associated with susceptibility to autism spectrum disorders (ASDs). However, it is unclear how mutations in NLGN4X result in neurodevelopmental defects. Here, we used neural stem cells (NSCs) as in vitro models to explore the impacts of NLGN4X knockdown on neurodevelopment. Using two shRNAmir-based vectors targeting NLGN4X and one control shRNAmir vector, we modulated NLGN4X expression and differentiated these NSCs into mature neurons. We monitored the neurodevelopmental process at Weeks 0, 0.5, 1, 2, 4 and 6, based on morphological analysis and whole-genome gene expression profiling. At the cellular level, in NSCs with NLGN4X knockdown, we observed increasingly delayed neuronal development and compromised neurite formation, starting from Week 2 through Week 6 post differentiation. At the molecular level, we identified multiple pathways, such as neurogenesis, neuron differentiation and muscle development, which are increasingly disturbed in cells with NLGN4X knockdown. Notably, several postsynaptic genes, including DLG4, NLGN1 and NLGN3, also have decreased expression. Based on in vitro models, NLGN4X knockdown directly impacts neurodevelopmental process during the formation of neurons and their connections. Our functional genomics study highlights the utility of NSCs models in understanding the functional roles of CNVs in affecting neurodevelopment and conferring susceptibility to neurodevelopmental diseases.

  3. Genome-wide copy number variant analysis in Holstein cattle reveals variants associated with 10 production traits including residual feed intake and dry matter intake

    USDA-ARS?s Scientific Manuscript database

    Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...

  4. The genomic proliferation of transposable elements in colonizing populations: Schistosoma mansoni in the new world.

    PubMed

    Wijayawardena, Bhagya K; DeWoody, J Andrew; Minchella, Dennis J

    2015-06-01

    Transposable elements (TEs) are mobile genes with an inherent ability to move within and among genomes. Theory predicts that TEs proliferate extensively during physiological stress due to the breakdown of TE repression systems. We tested this hypothesis in Schistosoma mansoni, a widespread trematode parasite that causes the human disease schistosomiasis. According to phylogenetic analysis, S. mansoni invaded the new world during the last 500 years. We hypothesized that new world strains of S. mansoni would have more copies of TEs than old world strains due to the physiological stress associated with invasion of the new world. We quantified the copy number of six TEs (Saci-1, Saci-2 and Saci-3, Perere-1, Merlin-sm1, and SmTRC1) in the genome and the transcriptome of old world and new world strains of S. mansoni, using qPCR relative quantification. As predicted, the genomes of new world parasites contain significantly more copies of class I and class II TEs in both laboratory and field strains. However, such differences are not observed in the transcriptome suggesting that either TE silencing mechanisms have reactivated to control the expression of these elements or the presence of inactive truncated copies of TEs.

  5. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics

    PubMed Central

    HUANG, SHUJUN; CAI, NIANGUANG; PACHECO, PEDRO PENZUTI; NARANDES, SHAVIRA; WANG, YANG; XU, WAYNE

    2017-01-01

    Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. PMID:29275361

  6. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    PubMed

    Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  7. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    PubMed

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae).

    PubMed

    Li, Jing; Chen, Chen; Wang, Zhe-Zhi

    2016-07-01

    Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal.

  9. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants

    PubMed Central

    De La Torre, Amanda R.; Sterck, Lieven; Cánovas, Francisco M.; Avila, Concepción; Merino, Irene; Cabezas, José Antonio; Cervera, María Teresa; Ingvarsson, Pär K.

    2017-01-01

    Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny. PMID:28460034

  10. The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata.

    PubMed

    Ding, Ping; Shao, Yanhua; Li, Qian; Gao, Junli; Zhang, Runjing; Lai, Xiaoping; Wang, Deqin; Zhang, Huiye

    2016-07-01

    The complete chloroplast genome of Andrographis paniculata, an important medicinal plant with great economic value, has been studied in this article. The genome size is 150,249 bp in length, with 38.3% GC content. A pair of inverted repeats (IRs, 25,300 bp) are separated by a large single copy region (LSC, 82,459 bp) and a small single-copy region (SSC, 17,190 bp). The chloroplast genome contains 114 unique genes, 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. In these genes, 15 genes contained 1 intron and 3 genes comprised of 2 introns.

  11. The complete chloroplast genome sequence of Dendrobium nobile.

    PubMed

    Yan, Wenjin; Niu, Zhitao; Zhu, Shuying; Ye, Meirong; Ding, Xiaoyu

    2016-11-01

    The complete chloroplast (cp) genome sequence of Dendrobium nobile, an endangered and traditional Chinese medicine with important economic value, is presented in this article. The total genome size is 150,793 bp, containing a large single copy (LSC) region (84,939 bp) and a small single copy region (SSC) (13,310 bp) which were separated by two inverted repeat (IRs) regions (26,272 bp). The overall GC contents of the plastid genome were 38.8%. In total, 130 unique genes were annotated and they were consisted of 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Fourteen genes contained one or two introns.

  12. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    PubMed

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions.

  13. A genome-wide detection of copy number variation using SNP genotyping arrays in Beijing-You chickens.

    PubMed

    Zhou, Wei; Liu, Ranran; Zhang, Jingjing; Zheng, Maiqing; Li, Peng; Chang, Guobin; Wen, Jie; Zhao, Guiping

    2014-10-01

    Copy number variation (CNV) has been recently examined in many species and is recognized as being a source of genetic variability, especially for disease-related phenotypes. In this study, the PennCNV software, a genome-wide CNV detection system based on the 60 K SNP BeadChip was used on a total sample size of 1,310 Beijing-You chickens (a Chinese local breed). After quality control, 137 high confidence CNVRs covering 27.31 Mb of the chicken genome and corresponding to 2.61 % of the whole chicken genome. Within these regions, 131 known genes or coding sequences were involved. Q-PCR was applied to verify some of the genes related to disease development. Results showed that copy number of genes such as, phosphatidylinositol-5-phosphate 4-kinase II alpha, PHD finger protein 14, RHACD8 (a CD8α- like messenger RNA), MHC B-G, zinc finger protein, sarcosine dehydrogenase and ficolin 2 varied between individual chickens, which also supports the reliability of chip-detection of the CNVs. As one source of genomic variation, CNVs may provide new insight into the relationship between the genome and phenotypic characteristics.

  14. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity

    PubMed Central

    Usher, Christina L; Handsaker, Robert E; Esko, Tõnu; Tuke, Marcus A; Weedon, Michael N; Hastie, Alex R; Cao, Han; Moon, Jennifer E; Kashin, Seva; Fuchsberger, Christian; Metspalu, Andres; Pato, Carlos N; Pato, Michele T; McCarthy, Mark I; Boehnke, Michael; Altshuler, David M; Frayling, Timothy M; Hirschhorn, Joel N; McCarroll, Steven A

    2016-01-01

    Hundreds of genes reside in structurally complex, poorly understood regions of the human genome1-3. One such region contains the three amylase genes (AMY2B, AMY2A, and AMY1) responsible for digesting starch into sugar. The copy number of AMY1 is reported to be the genome’s largest influence on obesity4, though genome-wide association studies for obesity have found this locus unremarkable. Using whole genome sequence analysis3,5, droplet digital PCR6, and genome mapping7, we identified eight common structural haplotypes of the amylase locus that suggest its mutational history. We found that AMY1 copy number in individuals’ genomes is generally even (rather than odd) and partially correlates to nearby SNPs, which do not associate with BMI. We measured amylase gene copy number in 1,000 obese or lean Estonians and in two other cohorts totaling ~3,500 individuals. We had 99% power to detect the lower bound of the reported effects on BMI4, yet found no association. PMID:26098870

  15. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci

    PubMed Central

    Philippe, Claude; Vargas-Landin, Dulce B; Doucet, Aurélien J; van Essen, Dominic; Vera-Otarola, Jorge; Kuciak, Monika; Corbin, Antoine; Nigumann, Pilvi; Cristofari, Gaël

    2016-01-01

    LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI: http://dx.doi.org/10.7554/eLife.13926.001 PMID:27016617

  16. Construction of a genomic DNA library with a TA vector and its application in cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis M-135

    NASA Astrophysics Data System (ADS)

    Yoshikazu, Kawata; Shin-Ichi, Yano; Hiroyuki, Kojima

    1998-03-01

    An efficient and simple method for constructing a genomic DNA library using a TA cloning vector is presented. It is based on the sonicative cleavage of genomic DNA and modification of fragment ends with Taq DNA polymerase, followed by ligation using a TA vector. This method was applied for cloning of the phytoene synthase gene crt B from Spirulina platensis. This method is useful when genomic DNA cannot be efficiently digested with restriction enzymes, a problem often encountered during the construction of a genomic DNA library of cyanobacteria.

  17. Application of Droplet Digital PCR for Estimating Vector Copy Number States in Stem Cell Gene Therapy.

    PubMed

    Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto

    2016-10-01

    Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer-probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications.

  18. Application of Droplet Digital PCR for Estimating Vector Copy Number States in Stem Cell Gene Therapy

    PubMed Central

    Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto

    2016-01-01

    Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer–probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications. PMID:27763786

  19. The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma

    PubMed Central

    Bianchi-Frias, Daniella; Hernandez, Susana A.; Coleman, Roger; Wu, Hong; Nelson, Peter S.

    2015-01-01

    Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). PMID:25298407

  20. Origin and Reticulate Evolutionary Process of Wheatgrass Elymus trachycaulus (Triticeae: Poaceae)

    PubMed Central

    Zuo, Hongwei; Wu, Panpan; Wu, Dexiang; Sun, Genlou

    2015-01-01

    To study origin and evolutionary dynamics of tetraploid Elymus trachycaulus that has been cytologically defined as containing StH genomes, thirteen accessions of E. trachycaulus were analyzed using two low-copy nuclear gene Pepc (phosphoenolpyruvate carboxylase) and Rpb2 (the second largest subunit of RNA polymerase II), and one chloroplast region trnL–trnF (spacer between the tRNA Leu (UAA) gene and the tRNA-Phe (GAA) gene). Our chloroplast data indicated that Pseudoroegneria (St genome) was the maternal donor of E. trachycaulus. Rpb2 data indicated that the St genome in E. trachycaulus was originated from either P. strigosa, P. stipifolia, P. spicata or P. geniculate. The Hordeum (H genome)-like sequences of E. trachycaulus are polyphyletic in the Pepc tree, suggesting that the H genome in E. trachycaulus was contributed by multiple sources, whether due to multiple origins or introgression resulting from subsequent hybridization. Failure to recovering St copy of Pepc sequence in most accessions of E. trachycaulus might be caused by genome convergent evolution in allopolyploids. Multiple copies of H-like Pepc sequence from each accession with relative large deletions and insertions might be caused by either instability of Pepc sequence in H- genome or incomplete concerted evolution. Our results highlighted complex evolutionary history of E. trachycaulus. PMID:25946188

  1. Phylogenomic relationship of feijoa (Acca sellowiana (O.Berg) Burret) with other Myrtaceae based on complete chloroplast genome sequences.

    PubMed

    Machado, Lilian de Oliveira; Vieira, Leila do Nascimento; Stefenon, Valdir Marcos; Oliveira Pedrosa, Fábio de; Souza, Emanuel Maltempi de; Guerra, Miguel Pedro; Nodari, Rubens Onofre

    2017-04-01

    Given their distribution, importance, and richness, Myrtaceae species comprise a model system for studying the evolution of tropical plant diversity. In addition, chloroplast (cp) genome sequencing is an efficient tool for phylogenetic relationship studies. Feijoa [Acca sellowiana (O. Berg) Burret; CN: pineapple-guava] is a Myrtaceae species that occurs naturally in southern Brazil and northern Uruguay. Feijoa is known for its exquisite perfume and flavorful fruits, pharmacological properties, ornamental value and increasing economic relevance. In the present work, we reported the complete cp genome of feijoa. The feijoa cp genome is a circular molecule of 159,370 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC 88,028 bp) and a Small Single Copy region (SSC 18,598 bp) separated by Inverted Repeat regions (IRs 26,372 bp). The genome structure, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. When compared to other cp genome sequences of Myrtaceae, feijoa showed closest relationship with pitanga (Eugenia uniflora L.). Furthermore, a comparison of pitanga synonymous (Ks) and nonsynonymous (Ka) substitution rates revealed extremely low values. Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of three Myrtoideae clades.

  2. Integrative pipeline for profiling DNA copy number and inferring tumor phylogeny.

    PubMed

    Urrutia, Eugene; Chen, Hao; Zhou, Zilu; Zhang, Nancy R; Jiang, Yuchao

    2018-06-15

    Copy number variation is an important and abundant source of variation in the human genome, which has been associated with a number of diseases, especially cancer. Massively parallel next-generation sequencing allows copy number profiling with fine resolution. Such efforts, however, have met with mixed successes, with setbacks arising partly from the lack of reliable analytical methods to meet the diverse and unique challenges arising from the myriad experimental designs and study goals in genetic studies. In cancer genomics, detection of somatic copy number changes and profiling of allele-specific copy number (ASCN) are complicated by experimental biases and artifacts as well as normal cell contamination and cancer subclone admixture. Furthermore, careful statistical modeling is warranted to reconstruct tumor phylogeny by both somatic ASCN changes and single nucleotide variants. Here we describe a flexible computational pipeline, MARATHON, which integrates multiple related statistical software for copy number profiling and downstream analyses in disease genetic studies. MARATHON is publicly available at https://github.com/yuchaojiang/MARATHON. Supplementary data are available at Bioinformatics online.

  3. Single Nucleotide Polymorphism (SNP)-Strings: An Alternative Method for Assessing Genetic Associations

    PubMed Central

    Goodin, Douglas S.; Khankhanian, Pouya

    2014-01-01

    Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that the SNP-string method is more accurate across the entire region. Conclusions/Significance Accurate haplotype identification will enhance the detection of genetic-associations. The SNP-string method provides a simple means to accomplish this and can be extended to cover larger genomic regions, thereby improving a GWAS’s power, even for those published previously. PMID:24727690

  4. Mapping and sequencing the human genome: Science, ethics, and public policy. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, J.D.

    1993-03-31

    Development of Mapping and Sequencing the Human Genome: Science, Ethics, and Public Policy followed the standard process of curriculum development at the Biological Sciences Curriculum Study (BSCS), the process is described. The production of this module was a collaborative effort between BSCS and the American Medical Association (AMA). Appendix A contains a copy of the module. Copies of reports sent to the Department of Energy (DOE) during the development process are contained in Appendix B; all reports should be on file at DOE. Appendix B also contains copies of status reports submitted to the BSCS Board of Directors.

  5. Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA.

    PubMed

    Hurrelbrink, R J; Nestorowicz, A; McMinn, P C

    1999-12-01

    An infectious cDNA clone of Murray Valley encephalitis virus prototype strain 1-51 (MVE-1-51) was constructed by stably inserting genome-length cDNA into the low-copy-number plasmid vector pMC18. Designated pMVE-1-51, the clone consisted of genome-length cDNA of MVE-1-51 under the control of a T7 RNA polymerase promoter. The clone was constructed by using existing components of a cDNA library, in addition to cDNA of the 3' terminus derived by RT-PCR of poly(A)-tailed viral RNA. Upon comparison with other flavivirus sequences, the previously undetermined sequence of the 3' UTR was found to contain elements conserved throughout the genus FLAVIVIRUS: RNA transcribed from pMVE-1-51 and subsequently transfected into BHK-21 cells generated infectious virus. The plaque morphology, replication kinetics and antigenic profile of clone-derived virus (CDV-1-51) was similar to the parental virus in vitro. Furthermore, the virulence properties of CDV-1-51 and MVE-1-51 (LD(50) values and mortality profiles) were found to be identical in vivo in the mouse model. Through site-directed mutagenesis, the infectious clone should serve as a valuable tool for investigating the molecular determinants of virulence in MVE virus.

  6. Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts.

    PubMed

    Toruño, Tania Y; Musić, Martina Seruga; Simi, Silvia; Nicolaisen, Mogens; Hogenhout, Saskia A

    2010-09-01

    Phytoplasmas replicate intracellularly in plants and insects and are dependent on both hosts for dissemination in nature. Phytoplasmas have small genomes lacking genes for major metabolic pathways. Nevertheless, their genomes harbour multicopy gene clusters that were named potential mobile units (PMUs). PMU1 is the largest most complete repeat among the PMUs in the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB). PMU1 is c. 20 kb in size and contains 21 genes encoding DNA replication and predicted membrane-targeted proteins. Here we show that AY-WB has a chromosomal linear PMU1 (L-PMU1) and an extrachromosomal circular PMU1 (C-PMU1). The C-PMU1 copy number was consistently higher by in average approximately fivefold in insects compared with plants and PMU1 gene expression levels were also considerably higher in insects indicating that C-PMU1 synthesis and expression are regulated. We found that the majority of AY-WB virulence genes lie on chromosomal PMU regions that have similar gene content and organization as PMU1 providing evidence that PMUs contribute to phytoplasma host adaptation and have integrated into the AY-WB chromosome. © 2010 Blackwell Publishing Ltd.

  7. The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis.

    PubMed

    Duan, Naibin; Sun, Honghe; Wang, Nan; Fei, Zhangjun; Chen, Xuesen

    2016-07-01

    The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis, a widely used apple rootstock, was determined using the Illumina high-throughput sequencing approach. The genome is 422,555 bp in length and has a GC content of 45.21%. It is separated by a pair of inverted repeats of 32,504 bp, to form a large single copy region of 213,055 bp and a small single copy region of 144,492 bp. The genome contains 38 protein-coding genes, four pseudogenes, 25 tRNA genes, and three rRNA genes. The genome is 25,608 bp longer than that of M. domestica, and several structural variations between these two mitogenomes were detected.

  8. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    PubMed Central

    2011-01-01

    Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models. PMID:21542930

  9. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    PubMed

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models.

  10. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array

    USDA-ARS?s Scientific Manuscript database

    Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases...

  11. Genome-wide identification of significant aberrations in cancer genome.

    PubMed

    Yuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P; Wang, Roger R; Zhang, Zhen; Wang, Yue

    2012-07-27

    Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is implemented using C++, together with R scripts for data formatting and Perl scripts for user interfacing, and it is easy to install and efficient to use. The source code and documentation are freely available at http://www.cbil.ece.vt.edu/software.htm.

  12. The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes.

    PubMed

    Hijri, Mohamed; Sanders, Ian R

    2004-02-01

    The genome size, complexity, and ploidy of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was determined using flow cytometry, reassociation kinetics, and genomic reconstruction. Nuclei of G. intraradices from in vitro culture, were analyzed by flow cytometry. The estimated average length of DNA per nucleus was 14.07+/-3.52 Mb. Reassociation kinetics on G. intraradices DNA indicated a haploid genome size of approximately 16.54 Mb, comprising 88.36% single copy DNA, 1.59% repetitive DNA, and 10.05% fold-back DNA. To determine ploidy, the DNA content per nucleus measured by flow cytometry was compared with the genome estimate of reassociation kinetics. G. intraradices was found to have a DNA index (DNA per nucleus per haploid genome size) of approximately 0.9, indicating that it is haploid. Genomic DNA of G. intraradices was also analyzed by genomic reconstruction using four genes (Malate synthase, RecA, Rad32, and Hsp88). Because we used flow cytometry and reassociation kinetics to reveal the genome size of G. intraradices and show that it is haploid, then a similar value for genome size should be found when using genomic reconstruction as long as the genes studied are single copy. The average genome size estimate was 15.74+/-1.69 Mb indicating that these four genes are single copy per haploid genome and per nucleus of G. intraradices. Our results show that the genome size of G. intraradices is much smaller than estimates of other AMF and that the unusually high within-spore genetic variation that is seen in this fungus cannot be due to high ploidy.

  13. Identification of copy number variants in whole-genome data using Reference Coverage Profiles

    PubMed Central

    Glusman, Gustavo; Severson, Alissa; Dhankani, Varsha; Robinson, Max; Farrah, Terry; Mauldin, Denise E.; Stittrich, Anna B.; Ament, Seth A.; Roach, Jared C.; Brunkow, Mary E.; Bodian, Dale L.; Vockley, Joseph G.; Shmulevich, Ilya; Niederhuber, John E.; Hood, Leroy

    2015-01-01

    The identification of DNA copy numbers from short-read sequencing data remains a challenge for both technical and algorithmic reasons. The raw data for these analyses are measured in tens to hundreds of gigabytes per genome; transmitting, storing, and analyzing such large files is cumbersome, particularly for methods that analyze several samples simultaneously. We developed a very efficient representation of depth of coverage (150–1000× compression) that enables such analyses. Current methods for analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we developed a method to identify CNVs in individual genomes, based on comparison to joint profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over 6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific fluctuations only partially explained by global parameters like %GC. To account for these fluctuations, we constructed multi-genome profiles representing the observed or inferred diploid depth of coverage at each position along the genome. These Reference Coverage Profiles (RCPs) take into account the diverse technologies and pipeline versions used. Normalization of the scaled coverage to the RCP followed by hidden Markov model (HMM) segmentation enables efficient detection of CNVs and large deletions in individual genomes. Use of pre-computed multi-genome coverage profiles improves our ability to analyze each individual genome. We make available RCPs and tools for performing these analyses on personal genomes. We expect the increased sensitivity and specificity for individual genome analysis to be critical for achieving clinical-grade genome interpretation. PMID:25741365

  14. A remark on copy number variation detection methods.

    PubMed

    Li, Shuo; Dou, Xialiang; Gao, Ruiqi; Ge, Xinzhou; Qian, Minping; Wan, Lin

    2018-01-01

    Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.

  15. Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer

    PubMed Central

    Chao, Hann-Hsiang; He, Xiaping; Parker, Joel S.; Zhao, Wei; Perou, Charles M.

    2012-01-01

    Introduction In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line. Methods We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb). Results Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival. Conclusion Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses. PMID:23284754

  16. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.

    PubMed

    Huang, Shujun; Cai, Nianguang; Pacheco, Pedro Penzuti; Narrandes, Shavira; Wang, Yang; Xu, Wayne

    2018-01-01

    Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. A Complex 6p25 Rearrangement in a Child With Multiple Epiphyseal Dysplasia

    PubMed Central

    Bedoyan, Jirair K.; Lesperance, Marci M.; Ackley, Todd; Iyer, Ramaswamy K.; Innis, Jeffrey W.; Misra, Vinod K.

    2015-01-01

    Genomic rearrangements are increasingly recognized as important contributors to human disease. Here we report on an 11½-year-old child with myopia, Duane retraction syndrome, bilateral mixed hearing loss, skeletal anomalies including multiple epiphyseal dysplasia, and global developmental delay, and a complex 6p25 genomic rearrangement. We have employed oligonucleotide-based comparative genomic hybridization arrays (aCGH) of different resolutions (44 and 244K) as well as a 1 M single nucleotide polymorphism (SNP) array to analyze this complex rearrangement. Our analyses reveal a complex rearrangement involving a ~2.21 Mb interstitial deletion, a ~240 kb terminal deletion, and a 70–80 kb region in between these two deletions that shows maintenance of genomic copy number. The interstitial deletion contains eight known genes, including three Forkhead box containing (FOX) transcription factors (FOXQ1, FOXF2, and FOXC1). The region maintaining genomic copy number partly overlaps the dual specificity protein phosphatase 22 (DUSP22) gene. Array analyses suggest a homozygous loss of genomic material at the 5′ end of DUSP22, which was corroborated using TaqMan® copy number analysis. It is possible that this homozygous genomic loss may render both copies of DUSP22 or its products non-functional. Our analysis suggests a rearrangement mechanism distinct from a previously reported replication-based error-prone mechanism without template switching for a specific 6p25 rearrangement with a 1.22 Mb interstitial deletion. Our study demonstrates the utility and limitations of using oligonucleotide-based aCGH and SNP array technologies of increasing resolutions in order to identify complex DNA rearrangements and gene disruptions. PMID:21204225

  18. Comparative Chloroplast Genomes of Photosynthetic Orchids: Insights into Evolution of the Orchidaceae and Development of Molecular Markers for Phylogenetic Applications

    PubMed Central

    Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu

    2014-01-01

    The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family. PMID:24911363

  19. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications.

    PubMed

    Luo, Jing; Hou, Bei-Wei; Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu

    2014-01-01

    The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.

  20. A survey of copy number variation in the porcine genome detected from whole-genome sequence

    USDA-ARS?s Scientific Manuscript database

    An important challenge to post-genomic biology is relating observed phenotypic variation to the underlying genotypic variation. Genome-wide association studies (GWAS) have made thousands of connections between single nucleotide polymorphisms (SNPs) and phenotypes, implicating regions of the genome t...

  1. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis

    PubMed Central

    2013-01-01

    Background Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. Results In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Conclusions Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome. PMID:23374229

  2. Effect of the Modified Live Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccine on European and North American PRRSV Shedding in Semen from Infected Boars ▿

    PubMed Central

    Han, Kiwon; Seo, Hwi Won; Shin, Jeoung Hwa; Oh, Yeonsu; Kang, Ikjae; Park, Changhoon; Chae, Chanhee

    2011-01-01

    The objective of the present study was to compare the effects of the modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Ingelvac PRRS MLV; Boehringer Ingelheim Animal Health, St. Joseph, MO) on European and North American PRRSV shedding in the semen of experimentally infected boars. The boars were randomly divided into six groups. Vaccinated boars shed the North American PRRSV at the rate of 100.1 to 101.0 viral genome copies per ml and 3.63 to 101.1 50% tissue culture infective doses (TCID50)/ml, respectively, in semen, whereas nonvaccinated boars shed the North American PRRSV at the rate of 100.2 to 104.7 viral genome copies per ml and 1.14 to 103.07 TCID50/ml, respectively, in semen. Vaccinated boars shed the European PRRSV at the rate of 100.1 to 104.57 viral genome copies per ml and 1.66 to 103.10 TCID50/ml, respectively, in semen, whereas nonvaccinated boars shed the European PRRSV at the rate of 100.3 to 105.14 viral genome copies per ml and 1.69 to 103.17 TCID50/ml, respectively, in semen. The number of genomic copies of the European PRRSV in semen samples was not significantly different between vaccinated and nonvaccinated challenged European PRRSV boars. The present study demonstrated that boar vaccination using commercial modified live PRRSV vaccine was able to decrease subsequent shedding of North American PRRSV in semen after challenge but was unable to decrease shedding of European PRRSV in semen after challenge. PMID:21832096

  3. Sex drives intracellular conflict in yeast.

    PubMed

    Harrison, E; MacLean, R C; Koufopanou, V; Burt, A

    2014-08-01

    Theory predicts that sex can drive the evolution of conflict within the cell. During asexual reproduction, genetic material within the cell is inherited as a single unit, selecting for cooperation both within the genome as well as between the extra-genomic elements within the cell (e.g. plasmids and endosymbionts). Under sexual reproduction, this unity is broken down as parental genomes are distributed between meiotic progeny. Genetic elements able to transmit to more than 50% of meiotic progeny have a transmission advantage over the rest of the genome and are able to spread, even where they reduce the fitness of the individual as a whole. Sexual reproduction is therefore expected to drive the evolution of selfish genetic elements (SGEs). Here, we directly test this hypothesis by studying the evolution of two independent SGEs, the 2-μm plasmid and selfish mitochondria, in populations of Saccharomyces cerevisiae. Following 22 rounds of sexual reproduction, 2-μm copy number increased by approximately 13.2 (±5.6) copies per cell, whereas in asexual populations copy number decreased by approximately 5.1 (±1.5) copies per cell. Given that the burden imposed by this parasite increases with copy number, these results support the idea that sex drives the evolution of increased SGE virulence. Moreover, we found that mitochondria that are respiratory-deficient rapidly invaded sexual but not asexual populations, demonstrating that frequent outcrossed sex can drive the de novo evolution of genetic parasites. Our study highlights the genomic perils of sex and suggests that SGEs may play a key role in driving major evolutionary transitions, such as uniparental inheritance. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  4. Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae

    PubMed Central

    2013-01-01

    Background The sequenced genomes of cucumber, melon and watermelon have relatively few R-genes, with 70, 75 and 55 copies only, respectively. The mechanism for low copy number of R-genes in Cucurbitaceae genomes remains unknown. Results Manual annotation of R-genes in the sequenced genomes of Cucurbitaceae species showed that approximately half of them are pseudogenes. Comparative analysis of R-genes showed frequent loss of R-gene loci in different Cucurbitaceae species. Phylogenetic analysis, data mining and PCR cloning using degenerate primers indicated that Cucurbitaceae has limited number of R-gene lineages (subfamilies). Comparison between R-genes from Cucurbitaceae and those from poplar and soybean suggested frequent loss of R-gene lineages in Cucurbitaceae. Furthermore, the average number of R-genes per lineage in Cucurbitaceae species is approximately 1/3 that in soybean or poplar. Therefore, both loss of lineages and deficient duplications in extant lineages accounted for the low copy number of R-genes in Cucurbitaceae. No extensive chimeras of R-genes were found in any of the sequenced Cucurbitaceae genomes. Nevertheless, one lineage of R-genes from Trichosanthes kirilowii, a wild Cucurbitaceae species, exhibits chimeric structures caused by gene conversions, and may contain a large number of distinct R-genes in natural populations. Conclusions Cucurbitaceae species have limited number of R-gene lineages and each genome harbors relatively few R-genes. The scarcity of R-genes in Cucurbitaceae species was due to frequent loss of R-gene lineages and infrequent duplications in extant lineages. The evolutionary mechanisms for large variation of copy number of R-genes in different plant species were discussed. PMID:23682795

  5. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis.

    PubMed

    Marzo, Mar; Bello, Xabier; Puig, Marta; Maside, Xulio; Ruiz, Alfredo

    2013-02-04

    Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.

  6. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits.

    PubMed

    Larsson, John; Nylander, Johan Aa; Bergman, Birgitta

    2011-06-30

    Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs. A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today. The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few genomes display extreme proliferation of non-coding nucleotides which is likely to be the result of initial expansion of genomes/gene copy number to gain adaptive potential, followed by a shift to a life-style in a highly specific niche (e.g. symbiosis). This transition results in redundancy of genes and gene families, leading to an increase in junk DNA and eventually to gene loss. A few orthologs can be correlated with specific phenotypes in cyanobacteria, such as filament formation and symbiotic competence; these constitute exciting exploratory targets.

  7. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits

    PubMed Central

    2011-01-01

    Background Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs. Results A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today. Conclusions The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few genomes display extreme proliferation of non-coding nucleotides which is likely to be the result of initial expansion of genomes/gene copy number to gain adaptive potential, followed by a shift to a life-style in a highly specific niche (e.g. symbiosis). This transition results in redundancy of genes and gene families, leading to an increase in junk DNA and eventually to gene loss. A few orthologs can be correlated with specific phenotypes in cyanobacteria, such as filament formation and symbiotic competence; these constitute exciting exploratory targets. PMID:21718514

  8. COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS

    EPA Science Inventory

    Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...

  9. Endogenous Retroviruses: With Us and Against Us

    NASA Astrophysics Data System (ADS)

    Meyer, Thomas J.; Rosenkrantz, Jimi L.; Carbone, Lucia; Chavez, Shawn L.

    2017-04-01

    Mammalian genomes are scattered with thousands of copies of endogenous retroviruses (ERVs), mobile genetic elements that are relics of ancient retroviral infections. After inserting copies into the germ line of a host, most ERVs accumulate mutations that prevent the normal assembly of infectious viral particles, becoming trapped in host genomes and unable to leave to infect other cells. While most copies of ERVs are inactive, some are transcribed and encode the proteins needed to generate new insertions at novel loci. In some cases, old copies are removed via recombination and other mechanisms. This creates a shifting landscape of ERV copies within host genomes. New insertions can disrupt normal expression of nearby genes via directly inserting into key regulatory elements or by containing regulatory motifs within their sequences. Further, the transcriptional silencing of ERVs via epigenetic modification may result in changes to the epigenetic regulation of adjacent genes. In these ways, ERVs can be potent sources of regulatory disruption as well as genetic innovation. Here, we provide a brief review of the association between ERVs and gene expression, especially as observed in pre-implantation development and placentation. Moreover, we will describe the roles ERVs may play in somatic tissues, mostly in the context of human disease, including cancer, neurodegenerative disorders, and schizophrenia. Lastly, we discuss the recent discovery that some ERVs may have been pressed into the service of their host genomes to aid in the innate immune response to exogenous viral infections.

  10. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  11. Inactivation of p53 Rescues the Maintenance of High Risk HPV DNA Genomes Deficient in Expression of E6

    PubMed Central

    Lorenz, Laurel D.; Rivera Cardona, Jessenia; Lambert, Paul F.

    2013-01-01

    The human papillomavirus DNA genome undergoes three distinct stages of replication: establishment, maintenance and amplification. We show that the HPV16 E6 protein is required for the maintenance of the HPV16 DNA genome as an extrachromosomal, nuclear plasmid in its natural host cell, the human keratinocyte. Based upon mutational analyses, inactivation of p53 by E6, but not necessarily E6-mediated degradation of p53, was found to correlate with the ability of E6 to support maintenance of the HPV16 genome as a nuclear plasmid. Inactivation of p53 with dominant negative p53 rescued the ability of HPV16 E6STOP and E6SAT mutant genomes to replicate as extrachromosomal genomes, though not to the same degree as observed for the HPV16 E6 wild-type (WT) genome. Inactivation of p53 also rescued the ability of HPV18 and HPV31 E6-deficient genomes to be maintained at copy numbers comparable to that of HPV18 and HPV31 E6WT genomes at early passages, though upon further passaging copy numbers for the HPV18 and 31 E6-deficient genomes lessened compared to that of the WT genomes. We conclude that inactivation of p53 is necessary for maintenance of HPV16 and for HPV18 and 31 to replicate at WT copy number, but that additional functions of E6 independent of inactivating p53 must also contribute to the maintenance of these genomes. Together these results suggest that re-activation of p53 may be a possible means for eradicating extrachromosomal HPV16, 18 or 31 genomes in the context of persistent infections. PMID:24204267

  12. The complete chloroplast genome of North American ginseng, Panax quinquefolius.

    PubMed

    Han, Zeng-Jie; Li, Wei; Liu, Yuan; Gao, Li-Zhi

    2016-09-01

    We report complete nucleotide sequence of the Panax quinquefolius chloroplast genome using next-generation sequencing technology. The genome size is 156 359 bp, including two inverted repeats (IRs) of 52 153 bp, separated by the large single-copy (LSC 86 184 bp) and small single-copy (SSC 18 081 bp) regions. This cp genome encodes 114 unigenes (80 protein-coding genes, four rRNA genes, and 30 tRNA genes), in which 18 are duplicated in the IR regions. Overall GC content of the genome is 38.08%. A phylogenomic analysis of the 10 complete chloroplast genomes from Araliaceae using Daucus carota from Apiaceae as outgroup showed that P. quinquefolius is closely related to the other two members of the genus Panax, P. ginseng and P. notoginseng.

  13. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames.

    PubMed Central

    Ustav, M; Stenlund, A

    1991-01-01

    Bovine papillomavirus (BPV) DNA is maintained as an episome with a constant copy number in transformed cells and is stably inherited. To study BPV replication we have developed a transient replication assay based on a highly efficient electroporation procedure. Using this assay we have determined that in the context of the viral genome two of the viral open reading frames, E1 and E2, are required for replication. Furthermore we show that when produced from expression vectors in the absence of other viral gene products, the full length E2 transactivator polypeptide and a 72 kd polypeptide encoded by the E1 open reading frame in its entirety, are both necessary and sufficient for replication BPV in C127 cells. Images PMID:1846806

  14. Genetic transformation of Begonia tuberhybrida by Ri rol genes.

    PubMed

    Kiyokawa, S; Kikuchi, Y; Kamada, H; Harada, H

    1996-04-01

    We have developed an Agrobacterium -mediated transformation system for commercial Begonia species. The leaf explants of Begonia semperflorens, Begonia x hiemalis and B. tuberhybrida were inoculated with Agrobacterium tumefaciens LBA4404 harboring a binary vector pBI121 which contains rolA, B and C genes of an agropine type Ri plasmid (pRiA4b). Kanamycin resistant shoots of B. tuberhybrida were obtained on MS agar medium supplemented with 0.1 mg/l NAA, 0.5 mg/l BA, 500 mg/l claforan and 100 mg/l kanamycin. These shoots exhibited GUS activity and Southern analysis showed a single copy insertion into the genome. When the transgenic plants were transferred to soil, they displayed the phenotype specific to the transgenic plants by A. rhizogenes such as dwarfness, delay of flowering, and wrinkled leaves and petals.

  15. Individualized cattle copy number and segmental duplication maps using next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  16. Aluminum tolerance is associated with higher MATE1 gene copy-number in maize

    USDA-ARS?s Scientific Manuscript database

    Genome structure variation, including copy-number (CNV) and presence/absence variation (PAV), comprise a large extent of maize genetic diversity but their effect on phenotypes remains largely unexplored. Here we describe how copy-number variation in a major aluminum (Al) tolerance locus contributes ...

  17. Disclosing the Parameters Leading to High Productivity of Retroviral Producer Cells Lines: Evaluating Random Versus Targeted Integration.

    PubMed

    Bandeira, Vanessa S; Tomás, Hélio A; Alici, Evren; Carrondo, Manuel J T; Coroadinha, Ana S

    2017-04-01

    Gammaretrovirus and lentivirus are the preferred viral vectors to genetically modify T and natural killer cells to be used in immune cell therapies. The transduction efficiency of hematopoietic and T cells is more efficient using gibbon ape leukemia virus (GaLV) pseudotyping. In this context gammaretroviral vector producer cells offer competitive higher titers than transient lentiviral vectors productions. The main aim of this work was to identify the key parameters governing GaLV-pseudotyped gammaretroviral vector productivity in stable producer cells, using a retroviral vector expression cassette enabling positive (facilitating cell enrichment) and negative cell selection (allowing cell elimination). The retroviral vector contains a thymidine kinase suicide gene fused with a ouabain-resistant Na + ,K + -ATPase gene, a potential safer and faster marker. The establishment of retroviral vector producer cells is traditionally performed by randomly integrating the retroviral vector expression cassette codifying the transgene. More recently, recombinase-mediated cassette exchange methodologies have been introduced to achieve targeted integration. Herein we compared random and targeted integration of the retroviral vector transgene construct. Two retroviral producer cell lines, 293 OuaS and 293 FlexOuaS, were generated by random and targeted integration, respectively, producing high titers (on the order of 10 7 infectious particles·ml -1 ). Results showed that the retroviral vector transgene cassette is the key retroviral vector component determining the viral titers notwithstanding, single-copy integration is sufficient to provide high titers. The expression levels of the three retroviral constructs (gag-pol, GaLV env, and retroviral vector transgene) were analyzed. Although gag-pol and GaLV env gene expression levels should surpass a minimal threshold, we found that relatively modest expression levels of these two expression cassettes are required. Their levels of expression should not be maximized. We concluded, to establish a high producer retroviral vector cell line only the expression level of the genomic retroviral RNA, that is, the retroviral vector transgene cassette, should be maximized, both through (1) the optimization of its design (i.e., genetic elements composition) and (2) the selection of high expressing chromosomal locus for its integration. The use of methodologies identifying and promoting integration into high-expression loci, as targeted integration or high-throughput screening are in this perspective highly valuable.

  18. Complete mitochondrial genome of endangered Yellow-shouldered Amazon (Amazona barbadensis): two control region copies in parrot species of the Amazona genus.

    PubMed

    Urantowka, Adam Dawid; Hajduk, Kacper; Kosowska, Barbara

    2013-08-01

    Amazona barbadensis is an endangered species of parrot living in northern coastal Venezuela and in several Caribbean islands. In this study, we sequenced full mitochondrial genome of the considered species. The total length of the mitogenome was 18,983 bp and contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, duplicated control region, and degenerate copies of ND6 and tRNA (Glu) genes. High degree of identity between two copies of control region suggests their coincident evolution and functionality. Comparative analysis of both the control region sequences from four Amazona species revealed their 89.1% identity over a region of 1300 bp and indicates the presence of distinctive parts of two control region copies.

  19. Development of a Novel Escherichia coli-Kocuria Shuttle Vector Using the Cryptic pKPAL3 Plasmid from K. palustris IPUFS-1 and Its Utilization in Producing Enantiopure (S)-Styrene Oxide.

    PubMed

    Toda, Hiroshi; Itoh, Nobuya

    2017-01-01

    The novel cryptic pKPAL3 plasmid was isolated from the Gram-positive microorganism Kocuria palustris IPUFS-1 and characterized in detail. pKPAL3 is a circular plasmid that is 4,443 bp in length. Open reading frame (ORF) and homology search analyses indicated that pKPAL3 possesses four ORFs; however, there were no replication protein coding genes predicted in the plasmid. Instead, there were two nucleotide sequence regions that showed significant identities with untranslated regions of K. rhizophila DC2201 (NBRC 103217) genomic sequences, and these sequences were essential for autonomous replication of pKPAL3 in Kocuria cells. Based on these findings, we constructed the novel Escherichia coli - Kocuria shuttle vectors pKITE301 (kanamycin resistant) and pKITE303 (thiostrepton resistant) from pKPAL3. The copy numbers of the constructed shuttle vectors were estimated to be 20 per cell, and they exhibited low segregation stability in Kocuria transformant cells in the absence of antibiotics. Moreover, constructed vectors showed compatibility with the other K. rhizophila shuttle vector pKITE103. We successfully expressed multiple heterologous genes, including the styrene monooxygenase gene from Rhodococcus sp. ST-10 ( rhsmo ) and alcohol dehydrogenase gene from Leifsonia sp. S749 ( lsadh ), in K . rhizophila DC2201 using the pKITE301P and pKITE103P vectors under the control of the glyceraldehyde 3-phosphate dehydrogenase ( gapdh ) promotor. The RhSMO-LSADH co-expressing K. rhizophila was used as a biocatalyst in an organic solvent-water biphasic reaction system to efficiently convert styrene into ( S )-styrene oxide with 99% ee in the presence of 2-propanol as a hydrogen donor. The product concentration of the reaction in the organic solvent reached 235 mM after 30 h under optimum conditions. Thus, we demonstrated that this novel shuttle vector is useful for developing biocatalysts based on organic solvent-tolerant Kocuria cells.

  20. Germline incorporation of a replication-defective adenoviral vector in mice does not alter immune responses to adenoviral vectors.

    PubMed

    Camargo, F D; Huey-Louie, D A; Finn, A V; Sassani, A B; Cozen, A E; Moriwaki, H; Schneider, D B; Agah, R; Dichek, D A

    2000-11-01

    The utility of adenoviral vectors is limited by immune responses to adenoviral antigens. We sought to develop immune-competent mice in which the immune response to adenoviral antigens was selectively absent. To do so, we generated mice that were transgenic for a replication-defective vector. Adenoviral antigens might be seen as self-antigens by these mice, and the mice could exhibit immunologic tolerance after postnatal exposure to adenoviral vectors. In addition, characterization of these mice could reveal potential consequences of germline transmission of an adenoviral vector, as might occur in a gene therapy trial. Injection of a "null" (not containing a transgene) E1, E3-deleted vector genome into mouse zygotes yielded five founders that were capable of transmitting the vector genome. Among offspring of these mice, transgenic pups were significantly underrepresented: 108 of 255 pups (42%) were transgenic (P<0.02 versus expected frequency of 50%). Postnatal transgenic mice, however, had no apparent abnormalities. Persistence of an adenoviral vector after intravenous injection was equivalent in livers of transgenic mice and their nontransgenic littermates. Transgenic and nontransgenic mice also had equivalent humoral and cellular immune responses to adenoviral vector injection. Mice that are transgenic for an E1, E3-deleted adenoviral genome can be easily generated; however, they are not tolerant of adenovirus. Moreover, germline transmission of an adenoviral vector genome does not prevent generation of a robust immune response after exposure to adenoviral antigens.

  1. Construction of a novel shuttle vector for use in Gluconobacter oxydans.

    PubMed

    Zhang, Lin; Lin, Jinping; Ma, Yushu; Wei, Dongzhi; Sun, Ming

    2010-11-01

    A shuttle vector pZL1 which can replicate both in Gluconobacter oxydans and Escherichia coli was constructed based on G. oxydans DSM2003 cryptic plasmid pGOX3, a homology of G. oxydans 621H pGOX3, and E. coli cloning vector pUC18. It was found to be stably maintained in G. oxydans during the serial subcultures in the absence of antibiotic pressure for 144 h. With pGOX3 as the reference sample, the relative copy number of pZL1 in G. oxydans is 13 determined by real-time fluorescence quantitative PCR (qPCR). The copy number of pZL1 is much higher than pBBR1MCS5 in E. coli. The vector pZL1 contains six commonly used restriction endonuclease sites, HindIII, SalI, XbaI, BamHI, SmaI, KpnI, and SacI, and is easy to manipulate in molecular biology experiments. The shuttle vector was used to express a reporter protein wasabi successfully in G. oxydans DSM2003 under the control of the tufB promoter.

  2. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

    PubMed Central

    Yang, V W; Marks, J A; Davis, B P; Jeffries, T W

    1994-01-01

    This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063

  3. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants

    PubMed Central

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A.

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  4. A Mitochondrial Mutator System in Maize1[w

    PubMed Central

    Kuzmin, Evgeny V.; Duvick, Donald N.; Newton, Kathleen J.

    2005-01-01

    The P2 line of maize (Zea mays) is characterized by mitochondrial genome destabilization, initiated by recessive nuclear mutations. These alleles alter copy number control of mitochondrial subgenomes and disrupt normal transfer of mitochondrial genomic components to progeny, resulting in differences in mitochondrial DNA profiles among sibling plants and between parents and progeny. The mitochondrial DNA changes are often associated with variably defective phenotypes, reflecting depletion of essential mitochondrial genes. The P2 nuclear genotype can be considered a natural mutagenesis system for maize mitochondria. It dramatically accelerates mitochondrial genomic divergence by increasing low copy-number subgenomes, by rapidly amplifying aberrant recombination products, and by causing the random loss of normal components of the mitochondrial genomes. PMID:15681663

  5. The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum).

    PubMed

    Zeng, Fan-chun; Gao, Cheng-wen; Gao, Li-zhi

    2016-01-01

    The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum) is reported and characterized in this study. The genome size is 156,612 bp, containing a pair of inverted repeats (IRs) of 25,776 bp separated by a large single-copy region of 87,213 bp and a small single-copy region of 17,851 bp. The chloroplast genome harbors 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. A total of 18 of these genes are duplicated in the inverted repeat regions, 16 genes contain 1 intron, and 2 genes and one ycf have 2 introns.

  6. Low copy number of the salivary amylase gene predisposes to obesity.

    PubMed

    Falchi, Mario; El-Sayed Moustafa, Julia Sarah; Takousis, Petros; Pesce, Francesco; Bonnefond, Amélie; Andersson-Assarsson, Johanna C; Sudmant, Peter H; Dorajoo, Rajkumar; Al-Shafai, Mashael Nedham; Bottolo, Leonardo; Ozdemir, Erdal; So, Hon-Cheong; Davies, Robert W; Patrice, Alexandre; Dent, Robert; Mangino, Massimo; Hysi, Pirro G; Dechaume, Aurélie; Huyvaert, Marlène; Skinner, Jane; Pigeyre, Marie; Caiazzo, Robert; Raverdy, Violeta; Vaillant, Emmanuel; Field, Sarah; Balkau, Beverley; Marre, Michel; Visvikis-Siest, Sophie; Weill, Jacques; Poulain-Godefroy, Odile; Jacobson, Peter; Sjostrom, Lars; Hammond, Christopher J; Deloukas, Panos; Sham, Pak Chung; McPherson, Ruth; Lee, Jeannette; Tai, E Shyong; Sladek, Robert; Carlsson, Lena M S; Walley, Andrew; Eichler, Evan E; Pattou, Francois; Spector, Timothy D; Froguel, Philippe

    2014-05-01

    Common multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10(-14)) and serum enzyme levels (P < 2.20 × 10(-16)), whereas reduced AMY1 copy number was associated with increased BMI (change in BMI per estimated copy = -0.15 (0.02) kg/m(2); P = 6.93 × 10(-10)) and obesity risk (odds ratio (OR) per estimated copy = 1.19, 95% confidence interval (CI) = 1.13-1.26; P = 1.46 × 10(-10)). The OR value of 1.19 per copy of AMY1 translates into about an eightfold difference in risk of obesity between subjects in the top (copy number > 9) and bottom (copy number < 4) 10% of the copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies.

  7. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome. PMID:18983662

  8. The complete chloroplast genome of Sinopodophyllum hexandrum (Berberidaceae).

    PubMed

    Li, Huie; Guo, Qiqiang

    2016-07-01

    The complete chloroplast (cp) genome of the Sinopodophyllum hexandrum (Berberidaceae) was determined in this study. The circular genome is 157,940 bp in size, and comprises a pair of inverted repeat (IR) regions of 26,077 bp each, a large single-copy (LSC) region of 86,460 bp and a small single-copy (SSC) region of 19,326 bp. The GC content of the whole cp genome was 38.5%. A total of 133 genes were identified, including 88 protein-coding genes, 37 tRNA genes and eight rRNA genes. The whole cp genome consists of 114 unique genes, and 19 genes are duplicated in the IR regions. The phylogenetic analysis revealed that S. hexandrum is closely related to Nandina domestica within the family Berberidaceae.

  9. The complete chloroplast genome sequence of Hibiscus syriacus.

    PubMed

    Kwon, Hae-Yun; Kim, Joon-Hyeok; Kim, Sea-Hyun; Park, Ji-Min; Lee, Hyoshin

    2016-09-01

    The complete chloroplast genome sequence of Hibiscus syriacus L. is presented in this study. The genome is composed of 161 019 bp in length, with a typical circular structure containing a pair of inverted repeats of 25 745 bp of length separated by a large single-copy region and a small single-copy region of 89 698 bp and 19 831 bp of length, respectively. The overall GC content is 36.8%. One hundred and fourteen genes were annotated, including 81 protein-coding genes, 4 ribosomal RNA genes and 29 transfer RNA genes.

  10. Potentially Therapeutic Levels of Anti-Sickling Globin Gene Expression Following Lentivirus-mediated Gene Transfer in Sickle Cell Disease Bone Marrow CD34+ Cells

    PubMed Central

    Urbinati, Fabrizia; Hargrove, Philip W.; Geiger, Sabine; Romero, Zulema; Wherley, Jennifer; Kaufman, Michael L.; Hollis, Roger P.; Chambers, Christopher B.; Persons, Derek A.; Kohn, Donald B.; Wilber, Andrew

    2015-01-01

    Sickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell (HSC) transplant. However, this is only possible when a matched donor is available making the development of gene therapy using autologous HSCs a highly desired alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified β-globin (βAS3-FB) for production of anti-sickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation. Bone marrow CD34+ cells from three SCD patients were transduced using V5m3-400 or βAS3-FB and compared to mock transduced SCD or healthy donor CD34+ cells. Lentiviral transduction did not impair cell growth or differentiation, as gauged by proliferation and acquisition of erythroid markers. Vector copy number averaged ~1 copy per cell and corrective globin mRNA levels were increased more than 7-fold over mock-transduced controls. Erythroblasts derived from healthy donor and mock-transduced SCD cells produced a low level of HbF that was increased to 23.6 ± 4.1% per vector copy for cells transduced with V5m3-400. Equivalent levels of modified HbA of 17.6 ± 3.8% per vector copy were detected for SCD cells transduced with βAS3-FB. These levels of anti-sickling Hb production were sufficient to reduce sickling of terminal stage RBCs upon deoxygenation. We conclude that the achieved levels of HbF and modified HbA would likely prove therapeutic to SCD patients who lack matched donors. PMID:25681747

  11. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    PubMed Central

    Matochko, Wadim L.; Derda, Ratmir

    2013-01-01

    Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071

  12. The repetitive landscape of the chicken genome.

    PubMed

    Wicker, Thomas; Robertson, Jon S; Schulze, Stefan R; Feltus, F Alex; Magrini, Vincent; Morrison, Jason A; Mardis, Elaine R; Wilson, Richard K; Peterson, Daniel G; Paterson, Andrew H; Ivarie, Robert

    2005-01-01

    Cot-based cloning and sequencing (CBCS) is a powerful tool for isolating and characterizing the various repetitive components of any genome, combining the established principles of DNA reassociation kinetics with high-throughput sequencing. CBCS was used to generate sequence libraries representing the high, middle, and low-copy fractions of the chicken genome. Sequencing high-copy DNA of chicken to about 2.7 x coverage of its estimated sequence complexity led to the initial identification of several new repeat families, which were then used for a survey of the newly released first draft of the complete chicken genome. The analysis provided insight into the diversity and biology of known repeat structures such as CR1 and CNM, for which only limited sequence data had previously been available. Cot sequence data also resulted in the identification of four novel repeats (Birddawg, Hitchcock, Kronos, and Soprano), two new subfamilies of CR1 repeats, and many elements absent from the chicken genome assembly. Multiple autonomous elements were found for a novel Mariner-like transposon, Galluhop, in addition to nonautonomous deletion derivatives. Phylogenetic analysis of the high-copy repeats CR1, Galluhop, and Birddawg provided insight into two distinct genome dispersion strategies. This study also exemplifies the power of the CBCS method to create representative databases for the repetitive fractions of genomes for which only limited sequence data is available.

  13. The repetitive landscape of the chicken genome

    PubMed Central

    Wicker, Thomas; Robertson, Jon S.; Schulze, Stefan R.; Feltus, F. Alex; Magrini, Vincent; Morrison, Jason A.; Mardis, Elaine R.; Wilson, Richard K.; Peterson, Daniel G.; Paterson, Andrew H.; Ivarie, Robert

    2005-01-01

    Cot-based cloning and sequencing (CBCS) is a powerful tool for isolating and characterizing the various repetitive components of any genome, combining the established principles of DNA reassociation kinetics with high-throughput sequencing. CBCS was used to generate sequence libraries representing the high, middle, and low-copy fractions of the chicken genome. Sequencing high-copy DNA of chicken to about 2.7× coverage of its estimated sequence complexity led to the initial identification of several new repeat families, which were then used for a survey of the newly released first draft of the complete chicken genome. The analysis provided insight into the diversity and biology of known repeat structures such as CR1 and CNM, for which only limited sequence data had previously been available. Cot sequence data also resulted in the identification of four novel repeats (Birddawg, Hitchcock, Kronos, and Soprano), two new subfamilies of CR1 repeats, and many elements absent from the chicken genome assembly. Multiple autonomous elements were found for a novel Mariner-like transposon, Galluhop, in addition to nonautonomous deletion derivatives. Phylogenetic analysis of the high-copy repeats CR1, Galluhop, and Birddawg provided insight into two distinct genome dispersion strategies. This study also exemplifies the power of the CBCS method to create representative databases for the repetitive fractions of genomes for which only limited sequence data is available. PMID:15256510

  14. GeneBreak: detection of recurrent DNA copy number aberration-associated chromosomal breakpoints within genes.

    PubMed

    van den Broek, Evert; van Lieshout, Stef; Rausch, Christian; Ylstra, Bauke; van de Wiel, Mark A; Meijer, Gerrit A; Fijneman, Remond J A; Abeln, Sanne

    2016-01-01

    Development of cancer is driven by somatic alterations, including numerical and structural chromosomal aberrations. Currently, several computational methods are available and are widely applied to detect numerical copy number aberrations (CNAs) of chromosomal segments in tumor genomes. However, there is lack of computational methods that systematically detect structural chromosomal aberrations by virtue of the genomic location of CNA-associated chromosomal breaks and identify genes that appear non-randomly affected by chromosomal breakpoints across (large) series of tumor samples. 'GeneBreak' is developed to systematically identify genes recurrently affected by the genomic location of chromosomal CNA-associated breaks by a genome-wide approach, which can be applied to DNA copy number data obtained by array-Comparative Genomic Hybridization (CGH) or by (low-pass) whole genome sequencing (WGS). First, 'GeneBreak' collects the genomic locations of chromosomal CNA-associated breaks that were previously pinpointed by the segmentation algorithm that was applied to obtain CNA profiles. Next, a tailored annotation approach for breakpoint-to-gene mapping is implemented. Finally, dedicated cohort-based statistics is incorporated with correction for covariates that influence the probability to be a breakpoint gene. In addition, multiple testing correction is integrated to reveal recurrent breakpoint events. This easy-to-use algorithm, 'GeneBreak', is implemented in R ( www.cran.r-project.org ) and is available from Bioconductor ( www.bioconductor.org/packages/release/bioc/html/GeneBreak.html ).

  15. Tβ4-overexpression based on the piggyBac transposon system in cashmere goats alters hair fiber characteristics.

    PubMed

    Shi, Bingbo; Ding, Qiang; He, Xiaolin; Zhu, Haijing; Niu, Yiyuan; Cai, Bei; Cai, Jiao; Lei, Anming; Kang, Danju; Yan, Hailong; Ma, Baohua; Wang, Xiaolong; Qu, Lei; Chen, Yulin

    2017-02-01

    Increasing cashmere yield is one of the vital aims of cashmere goats breeding. Compared to traditional breeding methods, transgenic technology is more efficient and the piggyBac (PB) transposon system has been widely applied to generate transgenic animals. For the present study, donor fibroblasts were stably transfected via a PB donor vector containing the coding sequence of cashmere goat thymosin beta-4 (Tβ4) and driven by a hair follicle-specific promoter, the keratin-associated protein 6.1 (KAP6.1) promoter. To obtain genetically modified cells as nuclear donors, we co-transfected donor vectors into fetal fibroblasts of cashmere goats. Five transgenic cashmere goats were generated following somatic cell nuclear transfer (SCNT). Via determination of the copy numbers and integration sites, the Tβ4 gene was successfully inserted into the goat genome. Histological examination of skin tissue revealed that Tβ4-overexpressing, transgenic goats had a higher secondary to primary hair follicle (S/P) ratio compared to wild type goats. This indicates that Tβ4-overexpressing goats possess increased numbers of secondary hair follicles (SHF). Our results indicate that Tβ4-overexpression in cashmere goats could be a feasible strategy to increase cashmere yield.

  16. Genetic therapeutic approaches for Duchenne muscular dystrophy.

    PubMed

    Foster, Helen; Popplewell, Linda; Dickson, George

    2012-07-01

    Despite an expansive wealth of research following the discovery of the DMD gene 25 years ago, there is still no curative treatment for Duchenne muscular dystrophy. However, there are currently many promising lines of research, including cell-based therapies and pharmacological reagents to upregulate dystrophin via readthrough of nonsense mutations or by upregulation of the dystrophin homolog utrophin. Here we review genetic-based therapeutic strategies aimed at the amelioration of the DMD phenotype. These include the reintroduction of a copy of the DMD gene into an affected tissue by means of a viral vector; correction of the mutated DMD transcript by antisense oligonucleotide-induced exon skipping to restore the open reading frame; and direct modification of the DMD gene at a chromosomal level through genome editing. All these approaches are discussed in terms of the more recent advances, and the hurdles to be overcome if a comprehensive and effective treatment for DMD is to be found. These hurdles include the need to target all musculature of the body. Therefore any potential treatment would need to be administered systemically. In addition, any treatment needs to have a long-term effect, with the possibility of readministration, while avoiding any potentially detrimental immune response to the vector or transgene.

  17. Sites of Retroviral DNA Integration: From Basic Research to Clinical Applications

    PubMed Central

    Serrao, Erik; Engelman, Alan N.

    2016-01-01

    One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of the viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with HIV-1 can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or AIDS patients on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency. PMID:26508664

  18. Copy number rather than epigenetic alterations are the major dictator of imprinted methylation in tumors.

    PubMed

    Martin-Trujillo, Alex; Vidal, Enrique; Monteagudo-Sa Nchez, Ana; Sanchez-Delgado, Marta; Moran, Sebastian; Hernandez Mora, Jose Ramon; Heyn, Holger; Guitart, Miriam; Esteller, Manel; Monk, David

    2017-09-07

    It has been postulated that imprinting aberrations are common in tumors. To understand the role of imprinting in cancer, we have characterized copy-number and methylation in over 280 cancer cell lines and confirm our observations in primary tumors. Imprinted differentially methylated regions (DMRs) regulate parent-of-origin monoallelic expression of neighboring transcripts in cis. Unlike single-copy CpG islands that may be prone to hypermethylation, imprinted DMRs can either loose or gain methylation during tumorigenesis. Here, we show that methylation profiles at imprinted DMRs often not represent genuine epigenetic changes but simply the accumulation of underlying copy-number aberrations (CNAs), which is independent of the genome methylation state inferred from cancer susceptible loci. Our results reveal that CNAs also influence allelic expression as loci with copy-number neutral loss-of-heterozygosity or amplifications may be expressed from the appropriate parental chromosomes, which is indicative of maintained imprinting, although not observed as a single expression foci by RNA FISH.Altered genomic imprinting is frequently reported in cancer. Here, the authors analyze copy number and methylation in cancer cell lines and primary tumors to show that imprinted methylation profiles represent the accumulation of copy number alteration, rather than epigenetic alterations.

  19. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.

    PubMed

    Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo

    2018-02-01

    The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.

  20. Specific functions of the Rep and Rep' proteins of porcine circovirus during copy-release and rolling-circle DNA replication

    USDA-ARS?s Scientific Manuscript database

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep', in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replica...

  1. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements

    PubMed Central

    Liu, Pengfei; Erez, Ayelet; Sreenath Nagamani, Sandesh C.; Dhar, Shweta U.; Kołodziejska, Katarzyna E.; Dharmadhikari, Avinash V.; Cooper, M. Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A.; Bacino, Carlos A.; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R.; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A.; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R.; McLean, Scott D.; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L.; Patel, Ankita; Cheung, Sau Wai; Hastings, P. J.; Stankiewicz, Paweł; Lupski, James R.; Bi, Weimin

    2011-01-01

    SUMMARY Complex genomic rearrangements (CGR) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated we observed localization and multiple copy number changes including deletions, duplications and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism’s life cycle. PMID:21925314

  2. Population genetics and molecular evolution of DNA sequences in transposable elements. I. A simulation framework.

    PubMed

    Kijima, T E; Innan, Hideki

    2013-11-01

    A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.

  3. Detection of Low-Copy-Number Genomic DNA Sequences in Individual Bacterial Cells by Using Peptide Nucleic Acid-Assisted Rolling-Circle Amplification and Fluorescence In Situ Hybridization▿ †

    PubMed Central

    Smolina, Irina; Lee, Charles; Frank-Kamenetskii, Maxim

    2007-01-01

    An approach is proposed for in situ detection of short signature DNA sequences present in single copies per bacterial genome. The site is locally opened by peptide nucleic acids, and a circular oligonucleotide is assembled. The amplicon generated by rolling circle amplification is detected by hybridization with fluorescently labeled decorator probes. PMID:17293504

  4. Heterogeneic dynamics of the structures of multiple gene clusters in two pathogenetically different lines originating from the same phytoplasma.

    PubMed

    Arashida, Ryo; Kakizawa, Shigeyuki; Hoshi, Ayaka; Ishii, Yoshiko; Jung, Hee-Young; Kagiwada, Satoshi; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2008-04-01

    Phytoplasmas are phloem-limited plant pathogens that are transmitted by insect vectors and are associated with diseases in hundreds of plant species. Despite their small sizes, phytoplasma genomes have repeat-rich sequences, which are due to several genes that are encoded as multiple copies. These multiple genes exist in a gene cluster, the potential mobile unit (PMU). PMUs are present at several distinct regions in the phytoplasma genome. The multicopy genes encoded by PMUs (herein named mobile unit genes [MUGs]) and similar genes elsewhere in the genome (herein named fundamental genes [FUGs]) are likely to have the same function based on their annotations. In this manuscript we show evidence that MUGs and FUGs do not cluster together within the same clade. Each MUG is in a cluster with a short branch length, suggesting that MUGs are recently diverged paralogs, whereas the origin of FUGs is different from that of MUGs. We also compared the genome structures around the lplA gene in two derivative lines of the 'Candidatus Phytoplasma asteris' OY strain, the severe-symptom line W (OY-W) and the mild-symptom line M (OY-M). The gene organizations of the nucleotide sequences upstream of the lplA genes of OY-W and OY-M were dramatically different. The tra5 insertion sequence, an element of PMUs, was found only in this region in OY-W. These results suggest that transposition of entire PMUs and PMU sections has occurred frequently in the OY phytoplasma genome. The difference in the pathogenicities of OY-W and OY-M might be caused by the duplication and transposition of PMUs, followed by genome rearrangement.

  5. Copy number variation is a fundamental aspect of the placental genome.

    PubMed

    Hannibal, Roberta L; Chuong, Edward B; Rivera-Mulia, Juan Carlos; Gilbert, David M; Valouev, Anton; Baker, Julie C

    2014-05-01

    Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.

  6. Specific functions of the Rep and Rep׳ proteins of porcine circovirus during copy-release and rolling-circle DNA replication.

    PubMed

    Cheung, Andrew K

    2015-07-01

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep׳, in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replication) and generates the single-stranded circular (ssc) genome from the displaced DNA strand. In the process, a minus-genome primer (MGP) necessary for complementary-strand synthesis, from ssc to ccc, is synthesized. Rep׳ cleaves the growing nascent-strand to regenerate the parent ccc molecule. In the process, a Rep׳-DNA hybrid containing the right palindromic sequence (at the origin of DNA replication) is generated. Analysis of the virus particle showed that it is composed of four components: ssc, MGP, capsid protein and a novel Rep-related protein (designated Protein-3). Copyright © 2015. Published by Elsevier Inc.

  7. Ascorbate peroxidase-related (APx-R) is not a duplicable gene.

    PubMed

    Dunand, Christophe; Mathé, Catherine; Lazzarotto, Fernanda; Margis, Rogério; Margis-Pinheiro, Marcia

    2011-12-01

    Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate. © 2011 Landes Bioscience

  8. Cre/lox-Recombinase-Mediated Cassette Exchange for Reversible Site-Specific Genomic Targeting of the Disease Vector, Aedes aegypti.

    PubMed

    Häcker, Irina; Harrell Ii, Robert A; Eichner, Gerrit; Pilitt, Kristina L; O'Brochta, David A; Handler, Alfred M; Schetelig, Marc F

    2017-03-07

    Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting.

  9. The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.

    2005-02-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similarmore » to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.« less

  10. Non-essential viral proteins of orbiviruses are essential for vector-borne spread by midges

    USDA-ARS?s Scientific Manuscript database

    Members of the Reoviridae family are non-enveloped multi-layered viruses with a double stranded RNA genome consisting of 9-12 genome segments. The Orbivirus genus contains vector borne virus species with 10 genome segments such as bluetongue virus (BTV) with about 30 serotypes, and African horse sic...

  11. Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.

    PubMed

    Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin

    2018-06-01

    The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.

  12. The whole chloroplast genome of wild rice (Oryza australiensis).

    PubMed

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  13. Whole-genome analysis of a patient with early-stage small-cell lung cancer.

    PubMed

    Han, J-Y; Lee, Y-S; Kim, B C; Lee, G K; Lee, S; Kim, E-H; Kim, H-M; Bhak, J

    2014-12-01

    We performed whole-genome sequencing (WGS) of a case of early-stage small-cell lung cancer (SCLC) to analyze the genomic features. WGS revealed a lot of single-nucleotide variations (SNVs), small insertion/deletions and chromosomal abnormality. Chromosomes 4p, 5q, 13q, 15q, 17p and 22q contained many block deletions. Especially, copy loss was observed in tumor suppressor genes RB1 and TP53, and copy gain in oncogene hTERT. Somatic mutations were found in TP53 and CREBBP. Novel nonsynonymous (ns) SNVs in C6ORF103 and SLC5A4 genes were also found. Sanger sequencing of the SLC5A4 gene in 23 independent SCLC samples showed another nsSNV in the SLC5A4 gene, indicating that nsSNVs in the SLC5A4 gene are recurrent in SCLC. WGS of an early-stage SCLC identified novel recurrent mutations and validated known variations, including copy number variations. These findings provide insight into the genomic landscape contributing to SCLC development.

  14. Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    PubMed Central

    Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.

    2011-01-01

    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912

  15. Studies on cattle genomic structural variation provide insights into ruminant speciation and adaptation

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variations, including segmental duplications (SD) and copy number variations (CNV), contribute significantly to individual health and disease in primates and rodents. As a part of the bovine genome annotation effort, we performed the first genome-wide analysis of SD in cattle usin...

  16. Comparative ruminant genomics highlights segmental duplication and mobile element insertion diversity

    USDA-ARS?s Scientific Manuscript database

    We have expanded upon a previously reported comparative genomics approach using a read-depth (JaRMs) and a hybrid read-pair, split-read (RAPTR-SV) copy number variation (CNV) detection method that uses read alignments to the cattle reference genome in order to identify species-specific genomic rearr...

  17. Aluminum tolerance in maize is associated with higher MATE1 gene copy number

    PubMed Central

    Maron, Lyza G.; Guimarães, Claudia T.; Kirst, Matias; Albert, Patrice S.; Birchler, James A.; Bradbury, Peter J.; Buckler, Edward S.; Coluccio, Alison E.; Danilova, Tatiana V.; Kudrna, David; Magalhaes, Jurandir V.; Piñeros, Miguel A.; Schatz, Michael C.; Wing, Rod A.; Kochian, Leon V.

    2013-01-01

    Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments. PMID:23479633

  18. Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    PubMed Central

    Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua

    2009-01-01

    Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415

  19. Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis.

    PubMed

    Salati, Simona; Zini, Roberta; Nuzzo, Simona; Guglielmelli, Paola; Pennucci, Valentina; Prudente, Zelia; Ruberti, Samantha; Rontauroli, Sebastiano; Norfo, Ruggiero; Bianchi, Elisa; Bogani, Costanza; Rotunno, Giada; Fanelli, Tiziana; Mannarelli, Carmela; Rosti, Vittorio; Salmoiraghi, Silvia; Pietra, Daniela; Ferrari, Sergio; Barosi, Giovanni; Rambaldi, Alessandro; Cazzola, Mario; Bicciato, Silvio; Tagliafico, Enrico; Vannucchi, Alessandro M; Manfredini, Rossella

    2016-04-01

    Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients. © 2015 UICC.

  20. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.

    PubMed

    Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil

    2007-11-29

    Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.

  1. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene

    PubMed Central

    Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil

    2007-01-01

    Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains. PMID:18047649

  2. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmore, Joshua R.; Furches, Anna; Wolff, Gara N.

    Pseudomonas putida strains are highly robust bacteria known for their ability to efficiently utilize a variety of carbon sources, including aliphatic and aromatic hydrocarbons. Recently, P. putida has been engineered to valorize the lignin stream of a lignocellulosic biomass pretreatment process. Nonetheless, when compared to platform organisms such as Escherichia coli, the toolkit for engineering P. putida is underdeveloped. Heterologous gene expression in particular is problematic. Plasmid instability and copy number variance provide challenges for replicative plasmids, while use of homologous recombination for insertion of DNA into the chromosome is slow and laborious. Furthermore, heterologous expression efforts to date typicallymore » rely on overexpression of exogenous pathways using a handful of poorly characterized promoters. In order to improve the P. putida toolkit, we developed a rapid genome integration system using the site-specific recombinase from bacteriophage Bxb1 to enable rapid, high efficiency integration of DNA into the P. putida chromosome. We also developed a library of synthetic promoters with various UP elements, -35 sequences, and -10 sequences, as well as different ribosomal binding sites. We tested these promoters using a fluorescent reporter gene, mNeonGreen, to characterize the strength of each promoter, and identified UP-element-promoter-ribosomal binding sites combinations capable of driving a ~150-fold range of protein expression levels. One additional integrating vector was developed that confers more robust kanamycin resistance when integrated at single copy into the chromosome. This genome integration and reporter systems are extensible for testing other genetic parts, such as examining terminator strength, and will allow rapid integration of heterologous pathways for metabolic engineering.« less

  3. Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms.

    PubMed

    Caprioara-Buda, M; Meyer, W; Jeynov, B; Corbisier, P; Trapmann, S; Emons, H

    2012-07-01

    The reliable quantification of genetically modified organisms (GMOs) by real-time PCR requires, besides thoroughly validated quantitative detection methods, sustainable calibration systems. The latter establishes the anchor points for the measured value and the measurement unit, respectively. In this paper, the suitability of two types of DNA calibrants, i.e. plasmid DNA and genomic DNA extracted from plant leaves, for the certification of the GMO content in reference materials as copy number ratio between two targeted DNA sequences was investigated. The PCR efficiencies and coefficients of determination of the calibration curves as well as the measured copy number ratios for three powder certified reference materials (CRMs), namely ERM-BF415e (NK603 maize), ERM-BF425c (356043 soya), and ERM-BF427c (98140 maize), originally certified for their mass fraction of GMO, were compared for both types of calibrants. In all three systems investigated, the PCR efficiencies of plasmid DNA were slightly closer to the PCR efficiencies observed for the genomic DNA extracted from seed powders rather than those of the genomic DNA extracted from leaves. Although the mean DNA copy number ratios for each CRM overlapped within their uncertainties, the DNA copy number ratios were significantly different using the two types of calibrants. Based on these observations, both plasmid and leaf genomic DNA calibrants would be technically suitable as anchor points for the calibration of the real-time PCR methods applied in this study. However, the most suitable approach to establish a sustainable traceability chain is to fix a reference system based on plasmid DNA.

  4. Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice.

    PubMed

    Tadokoro, Takahiro; Miyanohara, Atsushi; Navarro, Michael; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Marsala, Silvia; Platoshyn, Oleksandr; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Lukacova, Nada; Bimbova, Katarina; Marsala, Martin

    2017-07-13

    The successful development of a subpial adeno-associated virus 9 (AAV9) vector delivery technique in adult rats and pigs has been reported on previously. Using subpially-placed polyethylene catheters (PE-10 or PE-5) for AAV9 delivery, potent transgene expression through the spinal parenchyma (white and gray matter) in subpially-injected spinal segments has been demonstrated. Because of the wide range of transgenic mouse models of neurodegenerative diseases, there is a strong desire for the development of a potent central nervous system (CNS)-targeted vector delivery technique in adult mice. Accordingly, the present study describes the development of a spinal subpial vector delivery device and technique to permit safe and effective spinal AAV9 delivery in adult C57BL/6J mice. In spinally immobilized and anesthetized mice, the pia mater (cervical 1 and lumbar 1-2 spinal segmental level) was incised with a sharp 34 G needle using an XYZ manipulator. A second XYZ manipulator was then used to advance a blunt 36G needle into the lumbar and/or cervical subpial space. The AAV9 vector (3-5 µL; 1.2 x 10 13 genome copies (gc)) encoding green fluorescent protein (GFP) was then injected subpially. After injections, neurological function (motor and sensory) was assessed periodically, and animals were perfusion-fixed 14 days after AAV9 delivery with 4% paraformaldehyde. Analysis of horizontal or transverse spinal cord sections showed transgene expression throughout the entire spinal cord, in both gray and white matter. In addition, intense retrogradely-mediated GFP expression was seen in the descending motor axons and neurons in the motor cortex, nucleus ruber, and formatio reticularis. No neurological dysfunction was noted in any animals. These data show that the subpial vector delivery technique can successfully be used in adult mice, without causing procedure-related spinal cord injury, and is associated with highly potent transgene expression throughout the spinal neuraxis.

  5. Biolistic transformation of Scoparia dulcis L.

    PubMed

    Srinivas, Kota; Muralikrishna, Narra; Kumar, Kalva Bharath; Raghu, Ellendula; Mahender, Aileni; Kiranmayee, Kasula; Yashodahara, Velivela; Sadanandam, Abbagani

    2016-01-01

    Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.

  6. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology.

    PubMed

    Ishizaki, Kimitsune; Chiyoda, Shota; Yamato, Katsuyuki T; Kohchi, Takayuki

    2008-07-01

    Agrobacterium-mediated transformation has not been practical in pteridophytes, bryophytes and algae to date, although it is commonly used in model plants including Arabidopsis and rice. Here we present a rapid Agrobacterium-mediated transformation system for the haploid liverwort Marchantia polymorpha L. using immature thalli developed from spores. Hundreds of hygromycin-resistant plants per sporangium were obtained by co-cultivation of immature thalli with Agrobacterium carrying the binary vector that contains a reporter, the beta-glucuronidase (GUS) gene with an intron, and a selection marker, the hygromycin phosphotransferase (hpt) gene. In this system, individual gemmae, which arise asexually from single initial cells, were analyzed as isogenic transformants. GUS activity staining showed that all hygromycin-resistant plants examined expressed the GUS transgene in planta. DNA analyses verified random integration of 1-5 copies of the intact T-DNA between the right and the left borders into the M. polymorpha genome. The efficient and rapid Agrobacterium-mediated transformation of M. polymorpha should provide molecular techniques to facilitate comparative genomics, taking advantage of this unique model plant that retains many features of the common ancestor of land plants.

  7. Designer diatom episomes delivered by bacterial conjugation

    DOE PAGES

    Karas, Bogumil J.; Diner, Rachel E.; Lefebvre, Stephane C.; ...

    2015-04-21

    Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify amore » yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research.« less

  8. Designer diatom episomes delivered by bacterial conjugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karas, Bogumil J.; Diner, Rachel E.; Lefebvre, Stephane C.

    Eukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome. Here we describe the first nuclear episomal vector for diatoms and a plasmid delivery method via conjugation from Escherichia coli to the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. We identify amore » yeast-derived sequence that enables stable episome replication in these diatoms even in the absence of antibiotic selection and show that episomes are maintained as closed circles at copy number equivalent to native chromosomes. This highly efficient genetic system facilitates high-throughput functional characterization of algal genes and accelerates molecular phytoplankton research.« less

  9. Genomic context drives transcription of insertion sequences in the bacterial endosymbiont Wolbachia wVulC.

    PubMed

    Cerveau, Nicolas; Gilbert, Clément; Liu, Chao; Garrett, Roger A; Grève, Pierre; Bouchon, Didier; Cordaux, Richard

    2015-06-10

    Transposable elements (TEs) are DNA pieces that are present in almost all the living world at variable genomic density. Due to their mobility and density, TEs are involved in a large array of genomic modifications. In eukaryotes, TE expression has been studied in detail in several species. In prokaryotes, studies of IS expression are generally linked to particular copies that induce a modification of neighboring gene expression. Here we investigated global patterns of IS transcription in the Alphaproteobacterial endosymbiont Wolbachia wVulC, using both RT-PCR and bioinformatic analyses. We detected several transcriptional promoters in all IS groups. Nevertheless, only one of the potentially functional IS groups possesses a promoter located upstream of the transposase gene, that could lead up to the production of a functional protein. We found that the majority of IS groups are expressed whatever their functional status. RT-PCR analyses indicate that the transcription of two IS groups lacking internal promoters upstream of the transposase start codon may be driven by the genomic environment. We confirmed this observation with the transcription analysis of individual copies of one IS group. These results suggest that the genomic environment is important for IS expression and it could explain, at least partly, copy number variability of the various IS groups present in the wVulC genome and, more generally, in bacterial genomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Plasmodium copy number variation scan: gene copy numbers evaluation in haploid genomes.

    PubMed

    Beghain, Johann; Langlois, Anne-Claire; Legrand, Eric; Grange, Laura; Khim, Nimol; Witkowski, Benoit; Duru, Valentine; Ma, Laurence; Bouchier, Christiane; Ménard, Didier; Paul, Richard E; Ariey, Frédéric

    2016-04-12

    In eukaryotic genomes, deletion or amplification rates have been estimated to be a thousand more frequent than single nucleotide variation. In Plasmodium falciparum, relatively few transcription factors have been identified, and the regulation of transcription is seemingly largely influenced by gene amplification events. Thus copy number variation (CNV) is a major mechanism enabling parasite genomes to adapt to new environmental changes. Currently, the detection of CNVs is based on quantitative PCR (qPCR), which is significantly limited by the relatively small number of genes that can be analysed at any one time. Technological advances that facilitate whole-genome sequencing, such as next generation sequencing (NGS) enable deeper analyses of the genomic variation to be performed. Because the characteristics of Plasmodium CNVs need special consideration in algorithms and strategies for which classical CNV detection programs are not suited a dedicated algorithm to detect CNVs across the entire exome of P. falciparum was developed. This algorithm is based on a custom read depth strategy through NGS data and called PlasmoCNVScan. The analysis of CNV identification on three genes known to have different levels of amplification and which are located either in the nuclear, apicoplast or mitochondrial genomes is presented. The results are correlated with the qPCR experiments, usually used for identification of locus specific amplification/deletion. This tool will facilitate the study of P. falciparum genomic adaptation in response to ecological changes: drug pressure, decreased transmission, reduction of the parasite population size (transition to pre-elimination endemic area).

  11. Functional noncoding sequences derived from SINEs in the mammalian genome.

    PubMed

    Nishihara, Hidenori; Smit, Arian F A; Okada, Norihiro

    2006-07-01

    Recent comparative analyses of mammalian sequences have revealed that a large number of nonprotein-coding genomic regions are under strong selective constraint. Here, we report that some of these loci have been derived from a newly defined family of ancient SINEs (short interspersed repetitive elements). This is a surprising result, as SINEs and other transposable elements are commonly thought to be genomic parasites. We named the ancient SINE family AmnSINE1, for Amniota SINE1, because we found it to be present in mammals as well as in birds, and some copies predate the mammalian-bird split 310 million years ago (Mya). AmnSINE1 has a chimeric structure of a 5S rRNA and a tRNA-derived SINE, and is related to five tRNA-derived SINE families that we characterized here in the coelacanth, dogfish shark, hagfish, and amphioxus genomes. All of the newly described SINE families have a common central domain that is also shared by zebrafish SINE3, and we collectively name them the DeuSINE (Deuterostomia SINE) superfamily. Notably, of the approximately 1000 still identifiable copies of AmnSINE1 in the human genome, 105 correspond to loci phylogenetically highly conserved among mammalian orthologs. The conservation is strongest over the central domain. Thus, AmnSINE1 appears to be the best example of a transposable element of which a significant fraction of the copies have acquired genomic functionality.

  12. Gene transfer and gene mapping in mammalian cells in culture.

    PubMed

    Shows, T B; Sakaguchi, A Y

    1980-01-01

    The ability to transfer mammalian genes parasexually has opened new possibilities for gene mapping and fine structure mapping and offers great potential for contributing to several aspects of mammalian biology, including gene expression and genetic engineering. The DNA transferred has ranged from whole genomes to single genes and smaller segments of DNA. The transfer of whole genomes by cell fusion forms cell hybrids, which has promoted the extensive mapping of human and mouse genes. Transfer, by cell fusion, of rearranged chromosomes has contributed significantly to determining close linkage and the assignment of genes to specific chromosomal regions. Transfer of single chromosomes has been achieved utilizing microcells fused to recipient cells. Metaphase chromosomes have been isolated and used to transfer single-to-multigenic DNA segments. DNA-mediated gene transfer, simulating bacterial transformation, has achieved transfer of single-copy genes. By utilizing DNA cleaved with restriction endonucleases, gene transfer is being empolyed as a bioassay for the purification of genes. Gene mapping and the fate of transferred genes can be examined now at the molecular level using sequence-specific probles. Recently, single genes have been cloned into eucaryotic and procaryotic vectors for transfer into mammalian cells. Moreover, recombinant libraries in which entire mammalian genomes are represented collectively are a rich new source of transferable genes. Methodology for transferring mammalian genetic information and applications for mapping mammalian genes is presented and prospects for the future discussed.

  13. Glossary

    MedlinePlus

    ... array, and oligo/SNP combination array. Related terms: comparative genomic hybridization ; copy number variant ; SNP array chromosome ... for example, the AB blood groups in humans comparative genomic hybridization Method in which two DNA samples ( ...

  14. A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan

    PubMed Central

    Lin, Chien-Hsing; Li, Ling-Hui; Ho, Sheng-Feng; Chuang, Tzu-Po; Wu, Jer-Yuarn; Chen, Yuan-Tsong; Fann, Cathy SJ

    2008-01-01

    Background Copy number variations (CNVs) have recently been recognized as important structural variations in the human genome. CNVs can affect gene expression and thus may contribute to phenotypic differences. The copy number inferring tool (CNIT) is an effective hidden Markov model-based algorithm for estimating allele-specific copy number and predicting chromosomal alterations from single nucleotide polymorphism microarrays. The CNIT algorithm, which was constructed using data from 270 HapMap multi-ethnic individuals, was applied to identify CNVs from 300 unrelated Han Chinese individuals in Taiwan. Results Using stringent selection criteria, 230 regions with variable copy numbers were identified in the Han Chinese population; 133 (57.83%) had been reported previously, 64 displayed greater than 1% CNV allele frequency. The average size of the CNV regions was 322 kb (ranging from 1.48 kb to 5.68 Mb) and covered a total of 2.47% of the human genome. A total of 196 of the CNV regions were simple deletions and 27 were simple amplifications. There were 449 genes and 5 microRNAs within these CNV regions; some of these genes are known to be associated with diseases. Conclusion The identified CNVs are characteristic of the Han Chinese population and should be considered when genetic studies are conducted. The CNV distribution in the human genome is still poorly characterized, and there is much diversity among different ethnic populations. PMID:19108714

  15. Cytogenetic evidence for asexual evolution of bdelloid rotifers.

    PubMed

    Mark Welch, Jessica L; Mark Welch, David B; Meselson, Matthew

    2004-02-10

    DNA sequencing has shown individual bdelloid rotifer genomes to contain two or more diverged copies of every gene examined and has revealed no closely similar copies. These and other findings are consistent with long-term asexual evolution of bdelloids. It is not entirely ruled out, however, that bdelloid genomes consist of previously undetected pairs of sequences so similar as to be identical over the regions sequenced, as might result if bdelloids were highly inbred sexual diploids or polyploids. Here, we employ fluorescent in situ hybridization with cosmid probes to determine the copy number and chromosomal distribution of the heat shock gene hsp82 and adjacent sequences in the bdelloid Philodina roseola. We conclude that the four copies identified by sequencing are the only ones present and that each is on a separate chromosome. Bdelloids therefore are not highly homozygous sexually reproducing diploids or polyploids.

  16. Prediction of Response to Therapy and Clinical Outcome through a Pilot Study of Complete Genetic Assessment of Ovarian Cancer

    DTIC Science & Technology

    2015-12-01

    Oncology program supported by this grant consented patients to 11-104. OncoPanel is a cancer genomic assay that detects somatic mutations, copy number...KMT2D, EP300, FANCD2 Sertoli Leydig cell DICER1 Copy number variants: In addition, 219 patients were analyzed for copy-number variations ( CNV ) in...OncoPanel genes. >12,000 total CNV were reported in the cohort (Figure 2). Single- copy deletions (n=5558) and copy-number gains (low amplification) (n

  17. Transposable Element Proliferation and Genome Expansion Are Rare in Contemporary Sunflower Hybrid Populations Despite Widespread Transcriptional Activity of LTR Retrotransposons

    PubMed Central

    Kawakami, Takeshi; Dhakal, Preeti; Katterhenry, Angela N.; Heatherington, Chelsea A.; Ungerer, Mark C.

    2011-01-01

    Hybridization is a natural phenomenon that has been linked in several organismal groups to transposable element derepression and copy number amplification. A noteworthy example involves three diploid annual sunflower species from North America that have arisen via ancient hybridization between the same two parental taxa, Helianthus annuus and H. petiolaris. The genomes of the hybrid species have undergone large-scale increases in genome size attributable to long terminal repeat (LTR) retrotransposon proliferation. The parental species that gave rise to the hybrid taxa are widely distributed, often sympatric, and contemporary hybridization between them is common. Natural H. annuus × H. petiolaris hybrid populations likely served as source populations from which the hybrid species arose and, as such, represent excellent natural experiments for examining the potential role of hybridization in transposable element derepression and proliferation in this group. In the current report, we examine multiple H. annuus × H. petiolaris hybrid populations for evidence of genome expansion, LTR retrotransposon copy number increases, and LTR retrotransposon transcriptional activity. We demonstrate that genome expansion and LTR retrotransposon proliferation are rare in contemporary hybrid populations, despite independent proliferation events that took place in the genomes of the ancient hybrid species. Interestingly, LTR retrotransposon lineages that proliferated in the hybrid species genomes remain transcriptionally active in hybrid and nonhybrid genotypes across the entire sampling area. The finding of transcriptional activity but not copy number increases in hybrid genotypes suggests that proliferation and genome expansion in contemporary hybrid populations may be mitigated by posttranscriptional mechanisms of repression. PMID:21282712

  18. Genome content analysis yields new insights into the relationship between the human malaria parasite Plasmodium falciparum and its anopheline vectors.

    PubMed

    Oppenheim, Sara J; Rosenfeld, Jeffrey A; DeSalle, Rob

    2017-02-27

    The persistent and growing gap between the availability of sequenced genomes and the ability to assign functions to sequenced genes led us to explore ways to maximize the information content of automated annotation for studies of anopheline mosquitos. Specifically, we use genome content analysis of a large number of previously sequenced anopheline mosquitos to follow the loss and gain of protein families over the evolutionary history of this group. The importance of this endeavor lies in the potential for comparative genomic studies between Anopheles and closely related non-vector species to reveal ancestral genome content dynamics involved in vector competence. In addition, comparisons within Anopheles could identify genome content changes responsible for variation in the vectorial capacity of this family of important parasite vectors. The competence and capacity of P. falciparum vectors do not appear to be phylogenetically constrained within the Anophelinae. Instead, using ancestral reconstruction methods, we suggest that a previously unexamined component of vector biology, anopheline nucleotide metabolism, may contribute to the unique status of anophelines as P. falciparum vectors. While the fitness effects of nucleotide co-option by P. falciparum parasites on their anopheline hosts are not yet known, our results suggest that anopheline genome content may be responding to selection pressure from P. falciparum. Whether this response is defensive, in an attempt to redress improper nucleotide balance resulting from P. falciparum infection, or perhaps symbiotic, resulting from an as-yet-unknown mutualism between anophelines and P. falciparum, is an open question that deserves further study. Clearly, there is a wealth of functional information to be gained from detailed manual genome annotation, yet the rapid increase in the number of available sequences means that most researchers will not have the time or resources to manually annotate all the sequence data they generate. We believe that efforts to maximize the amount of information obtained from automated annotation can help address the functional annotation deficit that most evolutionary biologists now face, and here demonstrate the value of such an approach.

  19. Targeted Modifications in Adeno-Associated Virus Serotype 8 Capsid Improves Its Hepatic Gene Transfer Efficiency In Vivo

    PubMed Central

    Sen, Dwaipayan; Gadkari, Rupali A; Sudha, Govindarajan; Gabriel, Nishanth; Kumar, Yesupatham Sathish; Selot, Ruchita; Samuel, Rekha; Rajalingam, Sumathi; Ramya, V.; Nair, Sukesh C.; Srinivasan, Narayanaswamy; Srivastava, Alok

    2013-01-01

    Abstract Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host–cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T→Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S→A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (∼9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector biodistribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in therapeutic gene transfer, we delivered human coagulation factor IX (h.FIX) under the control of liver-specific promoters (LP1 or hAAT) into C57BL/6 mice. The circulating levels of h.FIX:Ag were higher in all the K137R-AAV8 treated groups up to 8 weeks post-hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel AAV8 vectors for potential gene therapy of hemophilia B. PMID:23442071

  20. Cancer Genome Anatomy Project | Office of Cancer Genomics

    Cancer.gov

    The National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the research community access to biological tissue characterization data. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov.

  1. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome.

    PubMed

    Watanabe, Kohei; Koga, Hajime; Nakamura, Kodai; Fujita, Akiko; Hattori, Akimasa; Matsuda, Masaru; Koga, Akihiko

    2014-04-01

    DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.

  2. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids.

    PubMed

    Jheng, Cheng-Fong; Chen, Tien-Chih; Lin, Jhong-Yi; Chen, Ting-Chieh; Wu, Wen-Luan; Chang, Ching-Chun

    2012-07-01

    The chloroplast genome of Phalaenopsis equestris was determined and compared to those of Phalaenopsis aphrodite and Oncidium Gower Ramsey in Orchidaceae. The chloroplast genome of P. equestris is 148,959 bp, and a pair of inverted repeats (25,846 bp) separates the genome into large single-copy (85,967 bp) and small single-copy (11,300 bp) regions. The genome encodes 109 genes, including 4 rRNA, 30 tRNA and 75 protein-coding genes, but loses four ndh genes (ndhA, E, F and H) and seven other ndh genes are pseudogenes. The rate of inter-species variation between the two moth orchids was 0.74% (1107 sites) for single nucleotide substitution and 0.24% for insertions (161 sites; 1388 bp) and deletions (189 sites; 1393 bp). The IR regions have a lower rate of nucleotide substitution (3.5-5.8-fold) and indels (4.3-7.1-fold) than single-copy regions. The intergenic spacers are the most divergent, and based on the length variation of the three intergenic spacers, 11 native Phalaenopsis orchids could be successfully distinguished. The coding genes, IR junction and RNA editing sites are relatively more conserved between the two moth orchids than between those of Phalaenopsis and Oncidium spp. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Halophilic archaea cultivated from surface sterilized middle-late eocene rock salt are polyploid.

    PubMed

    Jaakkola, Salla T; Zerulla, Karolin; Guo, Qinggong; Liu, Ying; Ma, Hongling; Yang, Chunhe; Bamford, Dennis H; Chen, Xiangdong; Soppa, Jörg; Oksanen, Hanna M

    2014-01-01

    Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38-41 million years ago) rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11-14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6-8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.

  4. Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania

    PubMed Central

    Plourde, Marie; Gingras, Hélène; Roy, Gaétan; Lapointe, Andréanne; Leprohon, Philippe; Papadopoulou, Barbara; Corbeil, Jacques; Ouellette, Marc

    2014-01-01

    Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment. PMID:24844805

  5. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats

    PubMed Central

    Armour, John A. L.; Palla, Raquel; Zeeuwen, Patrick L. J. M.; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J.

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies. PMID:17175532

  6. “One code to find them all”: a perl tool to conveniently parse RepeatMasker output files

    PubMed Central

    2014-01-01

    Background Of the different bioinformatic methods used to recover transposable elements (TEs) in genome sequences, one of the most commonly used procedures is the homology-based method proposed by the RepeatMasker program. RepeatMasker generates several output files, including the .out file, which provides annotations for all detected repeats in a query sequence. However, a remaining challenge consists of identifying the different copies of TEs that correspond to the identified hits. This step is essential for any evolutionary/comparative analysis of the different copies within a family. Different possibilities can lead to multiple hits corresponding to a unique copy of an element, such as the presence of large deletions/insertions or undetermined bases, and distinct consensus corresponding to a single full-length sequence (like for long terminal repeat (LTR)-retrotransposons). These possibilities must be taken into account to determine the exact number of TE copies. Results We have developed a perl tool that parses the RepeatMasker .out file to better determine the number and positions of TE copies in the query sequence, in addition to computing quantitative information for the different families. To determine the accuracy of the program, we tested it on several RepeatMasker .out files corresponding to two organisms (Drosophila melanogaster and Homo sapiens) for which the TE content has already been largely described and which present great differences in genome size, TE content, and TE families. Conclusions Our tool provides access to detailed information concerning the TE content in a genome at the family level from the .out file of RepeatMasker. This information includes the exact position and orientation of each copy, its proportion in the query sequence, and its quality compared to the reference element. In addition, our tool allows a user to directly retrieve the sequence of each copy and obtain the same detailed information at the family level when a local library with incomplete TE class/subclass information was used with RepeatMasker. We hope that this tool will be helpful for people working on the distribution and evolution of TEs within genomes.

  7. Multiple copies of genes coding for electron transport proteins in the bacterium Nitrosomonas europaea.

    PubMed

    McTavish, H; LaQuier, F; Arciero, D; Logan, M; Mundfrom, G; Fuchs, J A; Hooper, A B

    1993-04-01

    The genome of Nitrosomonas europaea contains at least three copies each of the genes coding for hydroxylamine oxidoreductase (HAO) and cytochrome c554. A copy of an HAO gene is always located within 2.7 kb of a copy of a cytochrome c554 gene. Cytochrome P-460, a protein that shares very unusual spectral features with HAO, was found to be encoded by a gene separate from the HAO genes.

  8. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. | Office of Cancer Genomics

    Cancer.gov

    The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions.

  9. Micro-Plasticity of Genomes As Illustrated by the Evolution of Glutathione Transferases in 12 Drosophila Species

    PubMed Central

    Saisawang, Chonticha; Ketterman, Albert J.

    2014-01-01

    Glutathione transferases (GST) are an ancient superfamily comprising a large number of paralogous proteins in a single organism. This multiplicity of GSTs has allowed the copies to diverge for neofunctionalization with proposed roles ranging from detoxication and oxidative stress response to involvement in signal transduction cascades. We performed a comparative genomic analysis using FlyBase annotations and Drosophila melanogaster GST sequences as templates to further annotate the GST orthologs in the 12 Drosophila sequenced genomes. We found that GST genes in the Drosophila subgenera have undergone repeated local duplications followed by transposition, inversion, and micro-rearrangements of these copies. The colinearity and orientations of the orthologous GST genes appear to be unique in many of the species which suggests that genomic rearrangement events have occurred multiple times during speciation. The high micro-plasticity of the genomes appears to have a functional contribution utilized for evolution of this gene family. PMID:25310450

  10. The complete chloroplast genome of an irreplaceable dietary and model crop, foxtail millet (Setaria italica).

    PubMed

    Wang, Shuo; Gao, Li-Zhi

    2016-11-01

    The complete chloroplast genome sequence of foxtail millet (Setaria italica), an important food and fodder crop in the family Poaceae, is first reported in this study. The genome consists of 1 35 516 bp containing a pair of inverted repeats (IRs) of 21 804 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region of 79 896 bp and 12 012 bp, respectively. Coding sequences constitute 58.8% of the genome harboring 111 unique genes, 71 of which are protein-coding genes, 4 are rRNA genes, and 36 are tRNA genes. Phylogenetic analysis indicated foxtail millet clustered with Panicum virgatum and Echinochloa crus-galli belonging to the tribe Paniceae of the subfamily Panicoideae. This newly determined chloroplast genome will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.

  11. TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus.

    PubMed

    Wu, Yong; Gao, Tieli; Wang, Xiaolin; Hu, Youjin; Hu, Xuyun; Hu, Zhiqing; Pang, Jialun; Li, Zhuo; Xue, Jinfeng; Feng, Mai; Wu, Lingqian; Liang, Desheng

    2014-03-28

    Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution

    PubMed Central

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D’Hont, Angélique

    2013-01-01

    Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670

  13. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution.

    PubMed

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D'Hont, Angélique

    2013-01-01

    Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  14. Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions.

    PubMed

    Zeira, Ron; Shamir, Ron

    2018-05-03

    Problems of genome rearrangement are central in both evolution and cancer research. Most genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also undergo numerical changes such as deletions and duplications, and thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date. More realistic models are needed to help trace genome evolution during tumorigenesis. Here we present a model for the evolution of genomes with multiple gene copies using the operation types double-cut-and-joins, duplications and deletions. The events supported by the model are reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal is to find a series of operations of minimum length that transform one karyotype into the other. We show that the problem is NP-hard and give an integer linear programming formulation that solves the problem exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence of structural and numerical events during cancer evolution. Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes. ronzeira@post.tau.ac.il, rshamir@tau.ac.il. Supplementary data are available at Bioinformatics online.

  15. Segmental Duplications and Copy-Number Variation in the Human Genome

    PubMed Central

    Sharp, Andrew J. ; Locke, Devin P. ; McGrath, Sean D. ; Cheng, Ze ; Bailey, Jeffrey A. ; Vallente, Rhea U. ; Pertz, Lisa M. ; Clark, Royden A. ; Schwartz, Stuart ; Segraves, Rick ; Oseroff, Vanessa V. ; Albertson, Donna G. ; Pinkel, Daniel ; Eichler, Evan E. 

    2005-01-01

    The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic disorders. PMID:15918152

  16. A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products.

    PubMed

    Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò

    2018-01-01

    Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.

  17. Chemiluminescent Detection for Estimating Relative Copy Numbers of Porcine Endogenous Retrovirus Proviruses from Chinese Minipigs Based on Magnetic Nanoparticles.

    PubMed

    Yang, Haowen; Liu, Ming; Zhou, Bingcong; Deng, Yan; He, Nongyue; Jiang, Hesheng; Guo, Yafen; Lan, Ganqiu; Jiang, Qinyang; Yang, Xiurong; Li, Zhiyang

    2016-06-01

    Chinese Bama minipigs could be potential donors for the supply of xenografts because they are genetically stable, highly inbred, and inexpensive. However, porcine endogenous retrovirus (PERV) is commonly integrated in pig genomes and could cause a cross-species infection by xenotransplantation. For screening out the pigs with low copy numbers of PERV proviruses, we have developed a novel semiquantitative analysis approach based on magnetic nanoparticles (MNPs) and chemiluminescence (CL) for estimating relative copy numbers (RCNs) of PERV proviruses in Chinese Bama minipigs. The CL intensities of PERV proviruses and the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were respectively determined with this method, and the RCNs of PERV proviruses were calculated by the equation: RCN of PERV provirus = CL intensity of PERV provirus/CL intensity of GAPDH. The results showed that PERVs were integrated in the genomes of Bama minipigs at different copy numbers, and the copy numbers of PERV-C subtype were greatly low. Two Bama minipigs with low copy numbers of PERV proviruses were detected out and could be considered as xenograft donor candidates. Although only semiquantitation can be achieved, this approach has potential for screening out safe and suitable pig donors for xenotransplantation.

  18. Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D.

    PubMed

    Okamoto, Yuji; Goksungur, Meryem Tuba; Pehlivan, Davut; Beck, Christine R; Gonzaga-Jauregui, Claudia; Muzny, Donna M; Atik, Mehmed M; Carvalho, Claudia M B; Matur, Zeliha; Bayraktar, Serife; Boone, Philip M; Akyuz, Kaya; Gibbs, Richard A; Battaloglu, Esra; Parman, Yesim; Lupski, James R

    2014-05-01

    Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot-Marie-Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive disease has not been associated with copy-number variation as a mutational mechanism. We performed Agilent 8 × 60 K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6-8 that caused decreased mRNA expression of NDRG1. Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered.

  19. 2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador.

    PubMed

    Hernandez-Castro, Luis E; Paterno, Marta; Villacís, Anita G; Andersson, Björn; Costales, Jaime A; De Noia, Michele; Ocaña-Mayorga, Sofía; Yumiseva, Cesar A; Grijalva, Mario J; Llewellyn, Martin S

    2017-07-01

    Rhodnius ecuadoriensis is the main triatomine vector of Chagas disease, American trypanosomiasis, in Southern Ecuador and Northern Peru. Genomic approaches and next generation sequencing technologies have become powerful tools for investigating population diversity and structure which is a key consideration for vector control. Here we assess the effectiveness of three different 2b restriction site-associated DNA (2b-RAD) genotyping strategies in R. ecuadoriensis to provide sufficient genomic resolution to tease apart microevolutionary processes and undertake some pilot population genomic analyses. The 2b-RAD protocol was carried out in-house at a non-specialized laboratory using 20 R. ecuadoriensis adults collected from the central coast and southern Andean region of Ecuador, from June 2006 to July 2013. 2b-RAD sequencing data was performed on an Illumina MiSeq instrument and analyzed with the STACKS de novo pipeline for loci assembly and Single Nucleotide Polymorphism (SNP) discovery. Preliminary population genomic analyses (global AMOVA and Bayesian clustering) were implemented. Our results showed that the 2b-RAD genotyping protocol is effective for R. ecuadoriensis and likely for other triatomine species. However, only BcgI and CspCI restriction enzymes provided a number of markers suitable for population genomic analysis at the read depth we generated. Our preliminary genomic analyses detected a signal of genetic structuring across the study area. Our findings suggest that 2b-RAD genotyping is both a cost effective and methodologically simple approach for generating high resolution genomic data for Chagas disease vectors with the power to distinguish between different vector populations at epidemiologically relevant scales. As such, 2b-RAD represents a powerful tool in the hands of medical entomologists with limited access to specialized molecular biological equipment.

  20. 2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador

    PubMed Central

    Villacís, Anita G.; Andersson, Björn; Costales, Jaime A.; De Noia, Michele; Ocaña-Mayorga, Sofía; Yumiseva, Cesar A.; Grijalva, Mario J.; Llewellyn, Martin S.

    2017-01-01

    Background Rhodnius ecuadoriensis is the main triatomine vector of Chagas disease, American trypanosomiasis, in Southern Ecuador and Northern Peru. Genomic approaches and next generation sequencing technologies have become powerful tools for investigating population diversity and structure which is a key consideration for vector control. Here we assess the effectiveness of three different 2b restriction site-associated DNA (2b-RAD) genotyping strategies in R. ecuadoriensis to provide sufficient genomic resolution to tease apart microevolutionary processes and undertake some pilot population genomic analyses. Methodology/Principal findings The 2b-RAD protocol was carried out in-house at a non-specialized laboratory using 20 R. ecuadoriensis adults collected from the central coast and southern Andean region of Ecuador, from June 2006 to July 2013. 2b-RAD sequencing data was performed on an Illumina MiSeq instrument and analyzed with the STACKS de novo pipeline for loci assembly and Single Nucleotide Polymorphism (SNP) discovery. Preliminary population genomic analyses (global AMOVA and Bayesian clustering) were implemented. Our results showed that the 2b-RAD genotyping protocol is effective for R. ecuadoriensis and likely for other triatomine species. However, only BcgI and CspCI restriction enzymes provided a number of markers suitable for population genomic analysis at the read depth we generated. Our preliminary genomic analyses detected a signal of genetic structuring across the study area. Conclusions/Significance Our findings suggest that 2b-RAD genotyping is both a cost effective and methodologically simple approach for generating high resolution genomic data for Chagas disease vectors with the power to distinguish between different vector populations at epidemiologically relevant scales. As such, 2b-RAD represents a powerful tool in the hands of medical entomologists with limited access to specialized molecular biological equipment. PMID:28723901

  1. The transcription factor titration effect dictates level of gene expression.

    PubMed

    Brewster, Robert C; Weinert, Franz M; Garcia, Hernan G; Song, Dan; Rydenfelt, Mattias; Phillips, Rob

    2014-03-13

    Models of transcription are often built around a picture of RNA polymerase and transcription factors (TFs) acting on a single copy of a promoter. However, most TFs are shared between multiple genes with varying binding affinities. Beyond that, genes often exist at high copy number-in multiple identical copies on the chromosome or on plasmids or viral vectors with copy numbers in the hundreds. Using a thermodynamic model, we characterize the interplay between TF copy number and the demand for that TF. We demonstrate the parameter-free predictive power of this model as a function of the copy number of the TF and the number and affinities of the available specific binding sites; such predictive control is important for the understanding of transcription and the desire to quantitatively design the output of genetic circuits. Finally, we use these experiments to dynamically measure plasmid copy number through the cell cycle. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Applying Genomic and Bioinformatic Resources to Human Adenovirus Genomes for Use in Vaccine Development and for Applications in Vector Development for Gene Delivery

    PubMed Central

    Seto, Jason; Walsh, Michael P.; Mahadevan, Padmanabhan; Zhang, Qiwei; Seto, Donald

    2010-01-01

    Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented. PMID:21994597

  3. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells.

    PubMed Central

    Piechaczek, C; Fetzer, C; Baiker, A; Bode, J; Lipps, H J

    1999-01-01

    We have developed an episomal replicating expression vector in which the SV40 gene coding for the large T-antigen was replaced by chromosomal scaffold/matrix attached regions. Southern analysis as well as vector rescue experiments in CHO cells and in Escherichia coli demonstrate that the vector replicates episomally in CHO cells. It occurs in a very low copy number in the cells and is stably maintained over more than 100 generations without selection pressure. PMID:9862961

  4. Basic linear algebra subprograms for FORTRAN usage

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.

    1977-01-01

    A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.

  5. Genomic amplification of the caprine EDNRA locus might lead to a dose dependent loss of pigmentation

    PubMed Central

    Menzi, Fiona; Keller, Irene; Reber, Irene; Beck, Julia; Brenig, Bertram; Schütz, Ekkehard; Leeb, Tosso; Drögemüller, Cord

    2016-01-01

    The South African Boer goat displays a characteristic white spotting phenotype, in which the pigment is limited to the head. Exploiting the existing phenotype variation within the breed, we mapped the locus causing this white spotting phenotype to chromosome 17 by genome wide association. Subsequent whole genome sequencing identified a 1 Mb copy number variant (CNV) harboring 5 genes including EDNRA. The analysis of 358 Boer goats revealed 3 alleles with one, two, and three copies of this CNV. The copy number is correlated with the degree of white spotting in goats. We propose a hypothesis that ectopic overexpression of a mutant EDNRA scavenges EDN3 required for EDNRB signaling and normal melanocyte development and thus likely lead to an absence of melanocytes in the non-pigmented body areas of Boer goats. Our findings demonstrate the value of domestic animals as reservoir of unique mutants and for identifying a precisely defined functional CNV. PMID:27329507

  6. Copy Number Variation Is a Fundamental Aspect of the Placental Genome

    PubMed Central

    Hannibal, Roberta L.; Chuong, Edward B.; Rivera-Mulia, Juan Carlos; Gilbert, David M.; Valouev, Anton; Baker, Julie C.

    2014-01-01

    Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication. PMID:24785991

  7. Generation of PCV2 in PK15 cells transfected with recombinant baculovirus containing a 1.1 copy of the PCV2 genome.

    PubMed

    Cai, Jie; Xie, Xiaohong; Hu, Yi; Zhan, Yang; Yu, Wanting; Wang, Aibing; Wang, Naidong

    2017-06-01

    Porcine circovirus associated diseases (PCVAD) caused by PCV2 are responsible for severe economic losses in the swine industry. The mechanism of PCV2 replication has not been fully elucidated yet. PCV2 may be successfully rescued by means of either an infectious DNA clone containing the full length of the viral genomic DNA, or from PCV2-infected clinical tissues in PK15 cell culture. However, viruses harvested by both methods have low titres. In this study, PCV2 was prepared with a higher titre from PK15 cells infected by recombinant baculoviruses containing 1PCV2 (one stem-loop structure) or 1.1PCV2 (two stem-loop structure) genomic DNA copy. In addition, infectious DNA clones containing two stem-loop structures in either plasmid or baculovirus backbones are capable of generating a higher virus titre than the DNA clones with only one copy of stem-loop structure.

  8. ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays.

    PubMed

    Rigaill, Guillem; Hupé, Philippe; Almeida, Anna; La Rosa, Philippe; Meyniel, Jean-Philippe; Decraene, Charles; Barillot, Emmanuel

    2008-03-15

    Affymetrix SNP arrays can be used to determine the DNA copy number measurement of 11 000-500 000 SNPs along the genome. Their high density facilitates the precise localization of genomic alterations and makes them a powerful tool for studies of cancers and copy number polymorphism. Like other microarray technologies it is influenced by non-relevant sources of variation, requiring correction. Moreover, the amplitude of variation induced by non-relevant effects is similar or greater than the biologically relevant effect (i.e. true copy number), making it difficult to estimate non-relevant effects accurately without including the biologically relevant effect. We addressed this problem by developing ITALICS, a normalization method that estimates both biological and non-relevant effects in an alternate, iterative manner, accurately eliminating irrelevant effects. We compared our normalization method with other existing and available methods, and found that ITALICS outperformed these methods for several in-house datasets and one public dataset. These results were validated biologically by quantitative PCR. The R package ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) has been submitted to Bioconductor.

  9. rrndb: the Ribosomal RNA Operon Copy Number Database

    PubMed Central

    Klappenbach, Joel A.; Saxman, Paul R.; Cole, James R.; Schmidt, Thomas M.

    2001-01-01

    The Ribosomal RNA Operon Copy Number Database (rrndb) is an Internet-accessible database containing annotated information on rRNA operon copy number among prokaryotes. Gene redundancy is uncommon in prokaryotic genomes, yet the rRNA genes can vary from one to as many as 15 copies. Despite the widespread use of 16S rRNA gene sequences for identification of prokaryotes, information on the number and sequence of individual rRNA genes in a genome is not readily accessible. In an attempt to understand the evolutionary implications of rRNA operon redundancy, we have created a phylogenetically arranged report on rRNA gene copy number for a diverse collection of prokaryotic microorganisms. Each entry (organism) in the rrndb contains detailed information linked directly to external websites including the Ribosomal Database Project, GenBank, PubMed and several culture collections. Data contained in the rrndb will be valuable to researchers investigating microbial ecology and evolution using 16S rRNA gene sequences. The rrndb web site is directly accessible on the WWW at http://rrndb.cme.msu.edu. PMID:11125085

  10. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites.

    PubMed

    Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver

    2015-01-01

    The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    PubMed

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  12. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    PubMed

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  13. Genomic copy concentrations of selected waterborne viruses in a slum environment in Kampala, Uganda.

    PubMed

    Katukiza, A Y; Temanu, H; Chung, J W; Foppen, J W A; Lens, P N L

    2013-06-01

    The presence of viruses in a slum environment where sanitation is poor is a major concern. However, little is known of their occurrence and genomic copy concentration in the slum environment. The main objective of this study was to determine the genomic copy concentrations of human adenoviruses F and G, Rotavirus (RV), Hepatitis A virus (HAV), Hepatitis E virus (HEV) and human adenovirus species A,C,D,E, and F (HAdV-ACDEF) in Bwaise III, a typical slum in Kampala, Uganda. Forty-one samples from surface water, grey water and ground water were collected from 30 sampling locations. The virus particles were recovered by glass wool filtration with elution using beef extract. DNA and RNA viruses were detected by the real time quantitative polymerase chain reaction (qPCR) and the reverse transcription-qPCR (RT-qPCR), respectively. HAdV-F and G were detected in 70.7% of the samples with concentrations up to 2.65 × 10(1) genomic copies per mL (gc mL(-1)). RV and HAV were detected in 60.9% and 17.1% of the samples, respectively. The maximum concentration of RV was 1.87 × 10(2)gc mL(-1). In addition, 78% of the samples tested positive for the HAdV-ACDEF, but all samples tested negative for HEV. These new data are essential for quantitative microbial risk assessment, and for understanding the effects of environmental pollution in slums.

  14. Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus

    PubMed Central

    Lee, Tong Geon; Kumar, Indrajit; Diers, Brian W; Hudson, Matthew E

    2015-01-01

    The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2-kb unit contains four genes. One allele of Rhg1, Rhg1-b, is responsible for protecting most US soybean production from SCN. Whole-genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2-kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high-density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non-neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1. PMID:25735447

  15. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  16. Recombinant vesicular stomatitis virus vectors expressing herpes simplex virus type 2 gD elicit robust CD4+ Th1 immune responses and are protective in mouse and guinea pig models of vaginal challenge.

    PubMed

    Natuk, Robert J; Cooper, David; Guo, Min; Calderon, Priscilla; Wright, Kevin J; Nasar, Farooq; Witko, Susan; Pawlyk, Diane; Lee, Margaret; DeStefano, Joanne; Tummolo, Donna; Abramovitz, Aaron S; Gangolli, Seema; Kalyan, Narender; Clarke, David K; Hendry, R Michael; Eldridge, John H; Udem, Stephen A; Kowalski, Jacek

    2006-05-01

    Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.

  17. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution.

    PubMed

    Schurko, Andrew M; Logsdon, John M; Eads, Brian D

    2009-04-21

    Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.

  18. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution

    PubMed Central

    Schurko, Andrew M; Logsdon, John M; Eads, Brian D

    2009-01-01

    Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment. PMID:19383157

  19. High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    PubMed Central

    Salawu, Abdulazeez; Ul-Hassan, Aliya; Hammond, David; Fernando, Malee; Reed, Malcolm; Sisley, Karen

    2012-01-01

    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment. PMID:23209738

  20. Copy-Number Mutations on Chromosome 17q24.2-q24.3 in Congenital Generalized Hypertrichosis Terminalis with or without Gingival Hyperplasia

    PubMed Central

    Sun, Miao; Li, Ning; Dong, Wu; Chen, Zugen; Liu, Qing; Xu, Yiming; He, Guang; Shi, Yongyong; Li, Xin; Hao, Jiajie; Luo, Yang; Shang, Dandan; Lv, Dan; Ma, Fen; Zhang, Dai; Hua, Rui; Lu, Chaoxia; Wen, Yaran; Cao, Lihua; Irvine, Alan D.; McLean, W.H. Irwin; Dong, Qi; Wang, Ming-Rong; Yu, Jun; He, Lin; Lo, Wilson H.Y.; Zhang, Xue

    2009-01-01

    Congenital generalized hypertrichosis terminalis (CGHT) is a rare condition characterized by universal excessive growth of pigmented terminal hairs and often accompanied with gingival hyperplasia. In the present study, we describe three Han Chinese families with autosomal-dominant CGHT and a sporadic case with extreme CGHT and gingival hyperplasia. We first did a genome-wide linkage scan in a large four-generation family. Our parametric multipoint linkage analysis revealed a genetic locus for CGHT on chromosome 17q24.2-q24.3. Further two-point linkage and haplotyping with microsatellite markers from the same chromosome region confirmed the genetic mapping and showed in all the families a microdeletion within the critical region that was present in all affected individuals but not in unaffected family members. We then carried out copy-number analysis with the Affymetrix Genome-Wide Human SNP Array 6.0 and detected genomic microdeletions of different sizes and with different breakpoints in the three families. We validated these microdeletions by real-time quantitative PCR and confirmed their perfect cosegregation with the disease phenotype in the three families. In the sporadic case, however, we found a de novo microduplication. Two-color interphase FISH analysis demonstrated that the duplication was inverted. These copy-number variations (CNVs) shared a common genomic region in which CNV is not reported in the public database and was not detected in our 434 unrelated Han Chinese normal controls. Thus, pathogenic copy-number mutations on 17q24.2-q24.3 are responsible for CGHT with or without gingival hyperplasia. Our work identifies CGHT as a genomic disorder. PMID:19463983

  1. VISA--Vector Integration Site Analysis server: a web-based server to rapidly identify retroviral integration sites from next-generation sequencing.

    PubMed

    Hocum, Jonah D; Battrell, Logan R; Maynard, Ryan; Adair, Jennifer E; Beard, Brian C; Rawlings, David J; Kiem, Hans-Peter; Miller, Daniel G; Trobridge, Grant D

    2015-07-07

    Analyzing the integration profile of retroviral vectors is a vital step in determining their potential genotoxic effects and developing safer vectors for therapeutic use. Identifying retroviral vector integration sites is also important for retroviral mutagenesis screens. We developed VISA, a vector integration site analysis server, to analyze next-generation sequencing data for retroviral vector integration sites. Sequence reads that contain a provirus are mapped to the human genome, sequence reads that cannot be localized to a unique location in the genome are filtered out, and then unique retroviral vector integration sites are determined based on the alignment scores of the remaining sequence reads. VISA offers a simple web interface to upload sequence files and results are returned in a concise tabular format to allow rapid analysis of retroviral vector integration sites.

  2. Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping.

    PubMed

    Wood-Bouwens, Christina M; Ji, Hanlee P

    2018-01-01

    Droplet digital PCR (ddPCR) allows for accurate quantification of genetic events such as copy number variation and single nucleotide variants. Probe-based assays represent the current "gold-standard" for detection and quantification of these genetic events. Here, we introduce a cost-effective single color ddPCR assay that allows for single genome resolution quantification of copy number and single nucleotide variation.

  3. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data

    PubMed Central

    Roth, Andrew; Khattra, Jaswinder; Ho, Julie; Yap, Damian; Prentice, Leah M.; Melnyk, Nataliya; McPherson, Andrew; Bashashati, Ali; Laks, Emma; Biele, Justina; Ding, Jiarui; Le, Alan; Rosner, Jamie; Shumansky, Karey; Marra, Marco A.; Gilks, C. Blake; Huntsman, David G.; McAlpine, Jessica N.; Aparicio, Samuel

    2014-01-01

    The evolution of cancer genomes within a single tumor creates mixed cell populations with divergent somatic mutational landscapes. Inference of tumor subpopulations has been disproportionately focused on the assessment of somatic point mutations, whereas computational methods targeting evolutionary dynamics of copy number alterations (CNA) and loss of heterozygosity (LOH) in whole-genome sequencing data remain underdeveloped. We present a novel probabilistic model, TITAN, to infer CNA and LOH events while accounting for mixtures of cell populations, thereby estimating the proportion of cells harboring each event. We evaluate TITAN on idealized mixtures, simulating clonal populations from whole-genome sequences taken from genomically heterogeneous ovarian tumor sites collected from the same patient. In addition, we show in 23 whole genomes of breast tumors that the inference of CNA and LOH using TITAN critically informs population structure and the nature of the evolving cancer genome. Finally, we experimentally validated subclonal predictions using fluorescence in situ hybridization (FISH) and single-cell sequencing from an ovarian cancer patient sample, thereby recapitulating the key modeling assumptions of TITAN. PMID:25060187

  4. Comparing CNV detection methods for SNP arrays.

    PubMed

    Winchester, Laura; Yau, Christopher; Ragoussis, Jiannis

    2009-09-01

    Data from whole genome association studies can now be used for dual purposes, genotyping and copy number detection. In this review we discuss some of the methods for using SNP data to detect copy number events. We examine a number of algorithms designed to detect copy number changes through the use of signal-intensity data and consider methods to evaluate the changes found. We describe the use of several statistical models in copy number detection in germline samples. We also present a comparison of data using these methods to assess accuracy of prediction and detection of changes in copy number.

  5. Asymmetric histone modifications between the original and derived loci of human segmental duplications

    PubMed Central

    Zheng, Deyou

    2008-01-01

    Background Sequencing and annotation of several mammalian genomes have revealed that segmental duplications are a common architectural feature of primate genomes; in fact, about 5% of the human genome is composed of large blocks of interspersed segmental duplications. These segmental duplications have been implicated in genomic copy-number variation, gene novelty, and various genomic disorders. However, the molecular processes involved in the evolution and regulation of duplicated sequences remain largely unexplored. Results In this study, the profile of about 20 histone modifications within human segmental duplications was characterized using high-resolution, genome-wide data derived from a ChIP-Seq study. The analysis demonstrates that derivative loci of segmental duplications often differ significantly from the original with respect to many histone methylations. Further investigation showed that genes are present three times more frequently in the original than in the derivative, whereas pseudogenes exhibit the opposite trend. These asymmetries tend to increase with the age of segmental duplications. The uneven distribution of genes and pseudogenes does not, however, fully account for the asymmetry in the profile of histone modifications. Conclusion The first systematic analysis of histone modifications between segmental duplications demonstrates that two seemingly 'identical' genomic copies are distinct in their epigenomic properties. Results here suggest that local chromatin environments may be implicated in the discrimination of derived copies of segmental duplications from their originals, leading to a biased pseudogenization of the new duplicates. The data also indicate that further exploration of the interactions between histone modification and sequence degeneration is necessary in order to understand the divergence of duplicated sequences. PMID:18598352

  6. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits.

    PubMed

    Dittwald, Piotr; Gambin, Tomasz; Szafranski, Przemyslaw; Li, Jian; Amato, Stephen; Divon, Michael Y; Rodríguez Rojas, Lisa Ximena; Elton, Lindsay E; Scott, Daryl A; Schaaf, Christian P; Torres-Martinez, Wilfredo; Stevens, Abby K; Rosenfeld, Jill A; Agadi, Satish; Francis, David; Kang, Sung-Hae L; Breman, Amy; Lalani, Seema R; Bacino, Carlos A; Bi, Weimin; Milosavljevic, Aleksandar; Beaudet, Arthur L; Patel, Ankita; Shaw, Chad A; Lupski, James R; Gambin, Anna; Cheung, Sau Wai; Stankiewicz, Pawel

    2013-09-01

    We delineated and analyzed directly oriented paralogous low-copy repeats (DP-LCRs) in the most recent version of the human haploid reference genome. The computationally defined DP-LCRs were cross-referenced with our chromosomal microarray analysis (CMA) database of 25,144 patients subjected to genome-wide assays. This computationally guided approach to the empirically derived large data set allowed us to investigate genomic rearrangement relative frequencies and identify new loci for recurrent nonallelic homologous recombination (NAHR)-mediated copy-number variants (CNVs). The most commonly observed recurrent CNVs were NPHP1 duplications (233), CHRNA7 duplications (175), and 22q11.21 deletions (DiGeorge/velocardiofacial syndrome, 166). In the ∼25% of CMA cases for which parental studies were available, we identified 190 de novo recurrent CNVs. In this group, the most frequently observed events were deletions of 22q11.21 (48), 16p11.2 (autism, 34), and 7q11.23 (Williams-Beuren syndrome, 11). Several features of DP-LCRs, including length, distance between NAHR substrate elements, DNA sequence identity (fraction matching), GC content, and concentration of the homologous recombination (HR) hot spot motif 5'-CCNCCNTNNCCNC-3', correlate with the frequencies of the recurrent CNVs events. Four novel adjacent DP-LCR-flanked and NAHR-prone regions, involving 2q12.2q13, were elucidated in association with novel genomic disorders. Our study quantitates genome architectural features responsible for NAHR-mediated genomic instability and further elucidates the role of NAHR in human disease.

  7. A novel packaging system for the generation of helper-free oncolytic MVM vector stocks.

    PubMed

    Brandenburger, A; Russell, S

    1996-10-01

    MVM-based autonomous parvoviral vectors have been shown to target the expression of heterologous genes in neoplastic cells and are therefore of interest for cancer gene therapy. The traditional method for production of parvoviral vectors requires the cotransfection of vector and helper plasmids into MVM-permissive cell lines, but recombination between the cotransfected plasmids invariably gives rise to vector stocks that are heavily contaminated with wild-type MVM. Therefore, to minimise recombination between the vector and helper genomes we have utilised a cell line in which the MVM helper functions are expressed inducibly from a modified MVM genome that is stably integrated into the host cell chromosome. Using this MVM packaging cell line, we could reproducibly generate MVM vector stocks that contained no detectable helper virus.

  8. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  9. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus

    PubMed Central

    Coughlan, Simone; Taylor, Ali Shirley; Feane, Eoghan; Sanders, Mandy; Schonian, Gabriele; Cotton, James A.

    2018-01-01

    The unicellular protozoan parasite Leishmania causes the neglected tropical disease leishmaniasis, affecting 12 million people in 98 countries. In South America, where the Viannia subgenus predominates, so far only L. (Viannia) braziliensis and L. (V.) panamensis have been sequenced, assembled and annotated as reference genomes. Addressing this deficit in molecular information can inform species typing, epidemiological monitoring and clinical treatment. Here, L. (V.) naiffi and L. (V.) guyanensis genomic DNA was sequenced to assemble these two genomes as draft references from short sequence reads. The methods used were tested using short sequence reads for L. braziliensis M2904 against its published reference as a comparison. This assembly and annotation pipeline identified 70 additional genes not annotated on the original M2904 reference. Phylogenetic and evolutionary comparisons of L. guyanensis and L. naiffi with 10 other Viannia genomes revealed four traits common to all Viannia: aneuploidy, 22 orthologous groups of genes absent in other Leishmania subgenera, elevated TATE transposon copies and a high NADH-dependent fumarate reductase gene copy number. Within the Viannia, there were limited structural changes in genome architecture specific to individual species: a 45 Kb amplification on chromosome 34 was present in all bar L. lainsoni, L. naiffi had a higher copy number of the virulence factor leishmanolysin, and laboratory isolate L. shawi M8408 had a possible minichromosome derived from the 3’ end of chromosome 34. This combination of genome assembly, phylogenetics and comparative analysis across an extended panel of diverse Viannia has uncovered new insights into the origin and evolution of this subgenus and can help improve diagnostics for leishmaniasis surveillance. PMID:29765675

  10. Studying Genome Heterogeneity within the Arbuscular Mycorrhizal Fungal Cytoplasm

    PubMed Central

    Halary, Sébastien; Bapteste, Eric; Hijri, Mohamed

    2015-01-01

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms. PMID:25573960

  11. Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm.

    PubMed

    Boon, Eva; Halary, Sébastien; Bapteste, Eric; Hijri, Mohamed

    2015-01-07

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Single gene-based distinction of individual microbial genomes from a mixed population of microbial cells.

    PubMed

    Tamminen, Manu V; Virta, Marko P J

    2015-01-01

    Recent progress in environmental microbiology has revealed vast populations of microbes in any given habitat that cannot be detected by conventional culturing strategies. The use of sensitive genetic detection methods such as CARD-FISH and in situ PCR have been limited by the cell wall permeabilization requirement that cannot be performed similarly on all cell types without lysing some and leaving some nonpermeabilized. Furthermore, the detection of low copy targets such as genes present in single copies in the microbial genomes, has remained problematic. We describe an emulsion-based procedure to trap individual microbial cells into picoliter-volume polyacrylamide droplets that provide a rigid support for genetic material and therefore allow complete degradation of cellular material to expose the individual genomes. The polyacrylamide droplets are subsequently converted into picoliter-scale reactors for genome amplification. The amplified genomes are labeled based on the presence of a target gene and differentiated from those that do not contain the gene by flow cytometry. Using the Escherichia coli strains XL1 and MC1061, which differ with respect to the presence (XL1), or absence (MC1061) of a single copy of a tetracycline resistance gene per genome, we demonstrate that XL1 genomes present at 0.1% of MC1061 genomes can be differentiated using this method. Using a spiked sediment microbial sample, we demonstrate that the method is applicable to highly complex environmental microbial communities as a target gene-based screen for individual microbes. The method provides a novel tool for enumerating functional cell populations in complex microbial communities. We envision that the method could be optimized for fluorescence-activated cell sorting to enrich genetic material of interest from complex environmental samples.

  13. Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer.

    PubMed

    Lampe, David J; Witherspoon, David J; Soto-Adames, Felipe N; Robertson, Hugh M

    2003-04-01

    We report the isolation and sequencing of genomic copies of mariner transposons involved in recent horizontal transfers into the genomes of the European earwig, Forficula auricularia; the European honey bee, Apis mellifera; the Mediterranean fruit fly, Ceratitis capitata; and a blister beetle, Epicauta funebris, insects from four different orders. These elements are in the mellifera subfamily and are the second documented example of full-length mariner elements involved in this kind of phenomenon. We applied maximum likelihood methods to the coding sequences and determined that the copies in each genome were evolving neutrally, whereas reconstructed ancestral coding sequences appeared to be under selection, which strengthens our previous hypothesis that the primary selective constraint on mariner sequence evolution is the act of horizontal transfer between genomes.

  14. The complete chloroplast genome sequence of Chikusichloa aquatica (Poaceae: Oryzeae).

    PubMed

    Zhang, Jie; Zhang, Dan; Shi, Chao; Gao, Ju; Gao, Li-Zhi

    2016-07-01

    The complete chloroplast sequence of the Chikusichloa aquatica was determined in this study. The genome consists of 136 563 bp containing a pair of inverted repeats (IRs) of 20 837 bp, which was separated by a large single-copy region and a small single-copy region of 82 315 bp and 33 411 bp, respectively. The C. aquatica cp genome encodes 111 functional genes (71 protein-coding genes, four rRNA genes, and 36 tRNA genes): 92 are unique, while 19 are duplicated in the IR regions. The genic regions account for 58.9% of whole cp genome, and the GC content of the plastome is 39.0%. A phylogenomic analysis showed that C. aquatica is closely related to Rhynchoryza subulata that belongs to the tribe Oryzeae.

  15. Monoclonal antibodies expression improvement in CHO cells by PiggyBac transposition regarding vectors ratios and design.

    PubMed

    Ahmadi, Samira; Davami, Fatemeh; Davoudi, Noushin; Nematpour, Fatemeh; Ahmadi, Maryam; Ebadat, Saeedeh; Azadmanesh, Kayhan; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2017-01-01

    Establishing stable Chinese Hamster Ovary (CHO) cells producing monoclonal antibodies (mAbs) usually pass through the random integration of vectors to the cell genome, which is sensitive to gene silencing. One approach to overcome this issue is to target a highly transcribed region in the genome. Transposons are useful devices to target active parts of genomes, and PiggyBac (PB) transposon can be considered as a good option. In the present study, three PB transposon donor vectors containing both heavy and light chains were constructed, one contained independent expression cassettes while the others utilized either an Internal Ribosome Entry Site (IRES) or 2A element to express mAb. Conventional cell pools were created by transferring donor vectors into the CHO cells, whereas transposon-based cells were generated by transfecting the cells with donor vectors with a companion of a transposase-encoding helper vector, with 1:2.5 helper/donor vectors ratio. To evaluate the influence of helper/donor vectors ratio on expression, the second transposon-based cell pools were generated with 1:5 helper/donor ratio. Expression levels in the transposon-based cells were two to five -folds more than those created by conventional method except for the IRES-mediated ones, in which the observed difference increased more than 100-fold. The results were dependent on both donor vector design and vectors ratios.

  16. Monoclonal antibodies expression improvement in CHO cells by PiggyBac transposition regarding vectors ratios and design

    PubMed Central

    Ahmadi, Samira; Davami, Fatemeh; Davoudi, Noushin; Nematpour, Fatemeh; Ahmadi, Maryam; Ebadat, Saeedeh; Azadmanesh, Kayhan; Barkhordari, Farzaneh

    2017-01-01

    Establishing stable Chinese Hamster Ovary (CHO) cells producing monoclonal antibodies (mAbs) usually pass through the random integration of vectors to the cell genome, which is sensitive to gene silencing. One approach to overcome this issue is to target a highly transcribed region in the genome. Transposons are useful devices to target active parts of genomes, and PiggyBac (PB) transposon can be considered as a good option. In the present study, three PB transposon donor vectors containing both heavy and light chains were constructed, one contained independent expression cassettes while the others utilized either an Internal Ribosome Entry Site (IRES) or 2A element to express mAb. Conventional cell pools were created by transferring donor vectors into the CHO cells, whereas transposon-based cells were generated by transfecting the cells with donor vectors with a companion of a transposase-encoding helper vector, with 1:2.5 helper/donor vectors ratio. To evaluate the influence of helper/donor vectors ratio on expression, the second transposon-based cell pools were generated with 1:5 helper/donor ratio. Expression levels in the transposon-based cells were two to five -folds more than those created by conventional method except for the IRES-mediated ones, in which the observed difference increased more than 100-fold. The results were dependent on both donor vector design and vectors ratios. PMID:28662065

  17. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization.

    PubMed

    Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas

    2016-05-01

    Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Functional noncoding sequences derived from SINEs in the mammalian genome

    PubMed Central

    Nishihara, Hidenori; Smit, Arian F.A.; Okada, Norihiro

    2006-01-01

    Recent comparative analyses of mammalian sequences have revealed that a large number of nonprotein-coding genomic regions are under strong selective constraint. Here, we report that some of these loci have been derived from a newly defined family of ancient SINEs (short interspersed repetitive elements). This is a surprising result, as SINEs and other transposable elements are commonly thought to be genomic parasites. We named the ancient SINE family AmnSINE1, for Amniota SINE1, because we found it to be present in mammals as well as in birds, and some copies predate the mammalian-bird split 310 million years ago (Mya). AmnSINE1 has a chimeric structure of a 5S rRNA and a tRNA-derived SINE, and is related to five tRNA-derived SINE families that we characterized here in the coelacanth, dogfish shark, hagfish, and amphioxus genomes. All of the newly described SINE families have a common central domain that is also shared by zebrafish SINE3, and we collectively name them the DeuSINE (Deuterostomia SINE) superfamily. Notably, of the ∼1000 still identifiable copies of AmnSINE1 in the human genome, 105 correspond to loci phylogenetically highly conserved among mammalian orthologs. The conservation is strongest over the central domain. Thus, AmnSINE1 appears to be the best example of a transposable element of which a significant fraction of the copies have acquired genomic functionality. PMID:16717141

  19. A comparative analysis of whole genome sequencing of esophageal adenocarcinoma pre- and post-chemotherapy

    PubMed Central

    Noorani, Ayesha; Lynch, Andy G.; Achilleos, Achilleas; Eldridge, Matthew; Bower, Lawrence; Weaver, Jamie M.J.; Crawte, Jason; Ong, Chin-Ann; Shannon, Nicholas; MacRae, Shona; Grehan, Nicola; Nutzinger, Barbara; O'Donovan, Maria; Hardwick, Richard; Tavaré, Simon; Fitzgerald, Rebecca C.

    2017-01-01

    The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer. PMID:28465312

  20. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.

    PubMed

    Walter, Vonn; Du, Ying; Danilova, Ludmila; Hayward, Michele C; Hayes, D Neil

    2018-06-15

    Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN , genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition. Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR . ©2018 American Association for Cancer Research.

  1. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR.

    PubMed

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future.

  2. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR

    PubMed Central

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future. PMID:28085908

  3. The FACT Complex Promotes Avian Leukosis Virus DNA Integration.

    PubMed

    Winans, Shelby; Larue, Ross C; Abraham, Carly M; Shkriabai, Nikolozi; Skopp, Amelie; Winkler, Duane; Kvaratskhelia, Mamuka; Beemon, Karen L

    2017-04-01

    All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells. IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells. Copyright © 2017 American Society for Microbiology.

  4. A high-resolution cattle CNV map by population-scale genome sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) are common genomic structural variations that have been linked to human diseases and phenotypic traits. Prior studies in cattle have produced low-resolution CNV maps. We constructed a draft, high-resolution map of cattle CNVs based on whole genome sequencing data from 7...

  5. A universal genomic coordinate translator for comparative genomics

    PubMed Central

    2014-01-01

    Background Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Results Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across species. Conclusions Kraken is a computational genome coordinate translator that facilitates cross-species comparisons, distinguishes orthologs from paralogs, and does not require costly all-to-all whole genome mappings. Kraken is freely available under LPGL from http://github.com/nedaz/kraken. PMID:24976580

  6. A universal genomic coordinate translator for comparative genomics.

    PubMed

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across species. Kraken is a computational genome coordinate translator that facilitates cross-species comparisons, distinguishes orthologs from paralogs, and does not require costly all-to-all whole genome mappings. Kraken is freely available under LPGL from http://github.com/nedaz/kraken.

  7. Development of a Novel Escherichia coli–Kocuria Shuttle Vector Using the Cryptic pKPAL3 Plasmid from K. palustris IPUFS-1 and Its Utilization in Producing Enantiopure (S)-Styrene Oxide

    PubMed Central

    Toda, Hiroshi; Itoh, Nobuya

    2017-01-01

    The novel cryptic pKPAL3 plasmid was isolated from the Gram-positive microorganism Kocuria palustris IPUFS-1 and characterized in detail. pKPAL3 is a circular plasmid that is 4,443 bp in length. Open reading frame (ORF) and homology search analyses indicated that pKPAL3 possesses four ORFs; however, there were no replication protein coding genes predicted in the plasmid. Instead, there were two nucleotide sequence regions that showed significant identities with untranslated regions of K. rhizophila DC2201 (NBRC 103217) genomic sequences, and these sequences were essential for autonomous replication of pKPAL3 in Kocuria cells. Based on these findings, we constructed the novel Escherichia coli–Kocuria shuttle vectors pKITE301 (kanamycin resistant) and pKITE303 (thiostrepton resistant) from pKPAL3. The copy numbers of the constructed shuttle vectors were estimated to be 20 per cell, and they exhibited low segregation stability in Kocuria transformant cells in the absence of antibiotics. Moreover, constructed vectors showed compatibility with the other K. rhizophila shuttle vector pKITE103. We successfully expressed multiple heterologous genes, including the styrene monooxygenase gene from Rhodococcus sp. ST-10 (rhsmo) and alcohol dehydrogenase gene from Leifsonia sp. S749 (lsadh), in K. rhizophila DC2201 using the pKITE301P and pKITE103P vectors under the control of the glyceraldehyde 3-phosphate dehydrogenase (gapdh) promotor. The RhSMO–LSADH co-expressing K. rhizophila was used as a biocatalyst in an organic solvent–water biphasic reaction system to efficiently convert styrene into (S)-styrene oxide with 99% ee in the presence of 2-propanol as a hydrogen donor. The product concentration of the reaction in the organic solvent reached 235 mM after 30 h under optimum conditions. Thus, we demonstrated that this novel shuttle vector is useful for developing biocatalysts based on organic solvent-tolerant Kocuria cells. PMID:29230202

  8. Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series.

    PubMed

    Shwan, Nzar A A; Louzada, Sandra; Yang, Fengtang; Armour, John A L

    2017-05-01

    The human amylase gene cluster includes the human salivary (AMY1) and pancreatic amylase genes (AMY2A and AMY2B), and is a highly variable and dynamic region of the genome. Copy number variation (CNV) of AMY1 has been implicated in human dietary adaptation, and in population association with obesity, but neither of these findings has been independently replicated. Despite these functional implications, the structural genomic basis of CNV has only been defined in detail very recently. In this work, we use high-resolution analysis of copy number, and analysis of segregation in trios, to define new, independent allelic series of amylase CNVs in sub-Saharan Africans, including a series of higher-order expansions of a unit consisting of one copy each of AMY1, AMY2A, and AMY2B. We use fiber-FISH (fluorescence in situ hybridization) to define unexpected complexity in the accompanying rearrangements. These findings demonstrate recurrent involvement of the amylase gene region in genomic instability, involving at least five independent rearrangements of the pancreatic amylase genes (AMY2A and AMY2B). Structural features shared by fundamentally distinct lineages strongly suggest that the common ancestral state for the human amylase cluster contained more than one, and probably three, copies of AMY1. © 2017 WILEY PERIODICALS, INC.

  9. Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    PubMed Central

    2011-01-01

    Background Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28) and T cell maturation (ADAM3A). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity. PMID:21851588

  10. Herpesviruses in Abscesses and Cellulitis of Endodontic Origin

    PubMed Central

    Chen, Vicky; Chen, Yanwen; Li, Hong; Kent, Karla; Baumgartner, J. Craig; Machida, Curtis A.

    2009-01-01

    Acute apical abscesses and cellulitis are severe endodontic diseases caused by opportunistic bacteria with possible co-infection with latent herpesviruses. The objectives of this study are to identify herpesviruses, including human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), herpes simplex virus-1 (HSV-1) and Varicella zoster virus (VZV), in patients (n=31) presenting with acute apical abscesses and cellulitis of endodontic origin. Primary and nested polymerase chain reaction (PCR) was conducted using virus-specific primers and DNA isolated from cell-free abscess fluid. From patients exhibiting concurrent spontaneous pain (n=28), nine abscesses contained HCMV, two abscesses contained EBV, one abscess contained HSV-1, and no abscesses contained VZV. Control PCR using genomic or recombinant templates demonstrated detection limits to a single genomic copy of HCMV, 100 genomic copies for EBV, and 1-10 copies for HSV-1, with no cross-amplification between herpesviral DNA targets. Nested PCR was required for detection of herpesviral DNA in the abscess specimens, indicating that these viruses were present in low copy number. Filtration of abscess specimens and virus transfer experiments using human fibroblastic MRC-5 cells confirmed the presence of HCMV particles in several abscess specimens. We conclude that herpesviruses are present, but not required for development of acute apical abscesses and cellulitis of endodontic origin. PMID:19166769

  11. A local duplication of the Melanocortin receptor 1 locus in Astyanax

    PubMed Central

    Gross, Joshua B.; Weagley, James; Stahl, Bethany A.; Ma, Li; Espinasa, Luis; McGaugh, Suzanne E.

    2017-01-01

    In this study, we report evidence of a novel duplication of Melanocortin receptor 1 (Mc1r) in the cavefish genome. This locus was discovered following the observation of excessive allelic diversity in a ~820 bp fragment of Mc1r amplified via degenerate PCR from a natural population of Astyanax aeneus fish from Guerrero, Mexico. The cavefish genome reveals the presence of two closely related Mc1r open reading frames separated by a 1.46 kb intergenic region. One open reading frame corresponds to the previously reported Mc1r receptor, and the other open reading frame (duplicate copy) is 975 bp in length, encoding a receptor of 325 amino acids. Sequence similarity analyses position both copies in the syntenic region of the single Mc1r locus in 16 representative craniate genomes spanning bony fish (including Astyanax) to mammals, suggesting we discovered tandem duplicates of this important gene. The two Mc1r copies share ~89% sequence similarity, and, within Astyanax, are more similar to one another compared to other melanocortin family members. Future studies will inform the precise functional significance of the duplicated Mc1r locus, and if this novel copy number variant may have adaptive significance for the Astyanax lineage. PMID:28738163

  12. Copy Number Variations of TBK1 in Australian Patients With Primary Open-Angle Glaucoma

    PubMed Central

    AWADALLA, MONA S.; FINGERT, JOHN H.; ROOS, BENJAMIN E.; CHEN, SIMON; HOLMES, RICHARD; GRAHAM, STUART L.; CHEHADE, MARK; GALANOPOLOUS, ANNA; RIDGE, BRONWYN; SOUZEAU, EMMANUELLE; ZHOU, TIGER; SIGGS, OWEN M.; HEWITT, ALEX W.; MACKEY, DAVID A.; BURDON, KATHRYN P.; CRAIG, JAMIE E.

    2015-01-01

    PURPOSE To investigate the presence of TBK1 copy number variations in a large, well-characterized Australian cohort of patients with glaucoma comprising both normal-tension glaucoma and high-tension glaucoma cases. DESIGN A retrospective cohort study. METHODS DNA samples from patients with normal-tension glaucoma and high-tension glaucoma and unaffected controls were screened for TBK1 copy number variations using real-time quantitative polymerase chain reaction. Samples with additional copies of the TBK1 gene were further tested using custom comparative genomic hybridization arrays. RESULTS Four out of 334 normal-tension glaucoma cases (1.2%) were found to carry TBK1 copy number variations using quantitative polymerase chain reaction. One extra dose of the TBK1 gene (duplication) was detected in 3 normal-tension glaucoma patients, while 2 extra doses of the gene (triplication) were detected in a fourth normal-tension glaucoma patient. The results were further confirmed by custom comparative genomic hybridization arrays. Further, the TBK1 copy number variation segregated with normal-tension glaucoma in the family members of the probands, showing an autosomal dominant pattern of inheritance. No TBK1 copy number variations were detected in 1045 Australian patients with high-tension glaucoma or in 254 unaffected controls. CONCLUSION We report the presence of TBK1 copy number variations in our Australian normal-tension glaucoma cohort, including the first example of more than 1 extra copy of this gene in glaucoma patients (gene triplication). These results confirm TBK1 to be an important cause of normal-tension glaucoma, but do not suggest common involvement in high-tension glaucoma. PMID:25284765

  13. Higher DEFB4 genomic copy number in SLE and ANCA-associated small vasculitis.

    PubMed

    Zhou, Xu-Jie; Cheng, Fa-Juan; Lv, Ji-Cheng; Luo, Huan; Yu, Feng; Chen, Min; Zhao, Ming-Hui; Zhang, Hong

    2012-06-01

    Evidence shows that defensins are involved in the pathogenesis of SLE and ANCA-associated small vasculitis (AASV). The copy number variation of DEFB4 has been proposed to be susceptible to inflammatory disorders. This study aims to investigate whether the DEFB4 genomic copy number variations associate with the susceptibility to these two autoimmune diseases. A total of 1178 Chinese people were enrolled, including panel 1 comprising 240 SLE patients and 275 matched controls, panel 2 comprising 303 SLE patients and 248 matched controls and panel 3 with 112 AASV patients. The DEFB4 copy number was typed by a paralogue ratio test (PRT), and all the subjects in panel 1 were also typed using the restriction enzyme digest variant ratio (REDVR) for validation. The results from PRT and REDVR were highly concordant (R = 0.911, P = 3.85 × 10(-199)) and allowed copy numbers to be assigned into integer classes with high confidence. Comparison of mean DEFB4 copy number revealed a small increase in cases with SLE both in Panel 1 (P = 0.063) and Panel 2 (P = 0.017). When pooling panels 1 and 2 together, the association was reinforced (P = 0.002) in SLE. Such association was also observed in AASV (P = 0.009). We found that a higher DEFB4 gene copy number was associated with both SLE and AASV.

  14. Assessing the Role of Copy Number Variants in Prostate Cancer Risk and Progression Using a Novel Genome-Wide Screening Method

    DTIC Science & Technology

    2013-10-01

    role of copy number variants in prostate cancer risk and progression using a novel genome-wide screening method. 5a. CONTRACT NUMBER 5b. GRANT ...Prostate; Cancer; Risk; Deletion; Prognosismatter Published by Elsevier Inc. .urolonc.2013.06.004 d in part by DOD grant PC081025, by grant arly...Detection Research Network of the National CTRC at UTHSCSA grant P30CA054174. Data omics Core Shared Resource, which is supported CI P30CA054174 (CTRC of

  15. The complete chloroplast genome sequence of Dendrobium officinale.

    PubMed

    Yang, Pei; Zhou, Hong; Qian, Jun; Xu, Haibin; Shao, Qingsong; Li, Yonghua; Yao, Hui

    2016-01-01

    The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns.

  16. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Cancer.gov

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies. Applying the approach to the analysis of over 200 skin cancer samples, we demonstrate its utility for discovering distinct CNA events and for deriving ancillary information such as tumor purity. Availability and implementation: https://github.com/xfwang/CLOSE CONTACT: xuefeng.wang@stonybrook.edu or michael.krauthammer@yale.edu. (Publication Abstract)

  17. SINE Retrotransposition: Evaluation of Alu Activity and Recovery of De Novo Inserts.

    PubMed

    Ade, Catherine; Roy-Engel, Astrid M

    2016-01-01

    Mobile element activity is of great interest due to its impact on genomes. However, the types of mobile elements that inhabit any given genome are remarkably varied. Among the different varieties of mobile elements, the Short Interspersed Elements (SINEs) populate many genomes, including many mammalian species. Although SINEs are parasites of Long Interspersed Elements (LINEs), SINEs have been highly successful in both the primate and rodent genomes. When comparing copy numbers in mammals, SINEs have been vastly more successful than other nonautonomous elements, such as the retropseudogenes and SVA. Interestingly, in the human genome the copy number of Alu (a primate SINE) outnumbers LINE-1 (L1) copies 2 to 1. Estimates suggest that the retrotransposition rate for Alu is tenfold higher than LINE-1 with about 1 insert in every twenty births. Furthermore, Alu-induced mutagenesis is responsible for the majority of the documented instances of human retroelement insertion-induced disease. However, little is known on what contributes to these observed differences between SINEs and LINEs. The development of an assay to monitor SINE retrotransposition in culture has become an important tool for the elucidation of some of these differences. In this chapter, we present details of the SINE retrotransposition assay and the recovery of de novo inserts. We also focus on the nuances that are unique to the SINE assay.

  18. Computational Evaluation of the Strict Master and Random Template Models of Endogenous Retrovirus Evolution

    PubMed Central

    Nascimento, Fabrícia F.; Rodrigo, Allen G.

    2016-01-01

    Transposable elements (TEs) are DNA sequences that are able to replicate and move within and between host genomes. Their mechanism of replication is also shared with endogenous retroviruses (ERVs), which are also a type of TE that represent an ancient retroviral infection within animal genomes. Two models have been proposed to explain TE proliferation in host genomes: the strict master model (SMM), and the random template (or transposon) model (TM). In SMM only a single copy of a given TE lineage is able to replicate, and all other genomic copies of TEs are derived from that master copy. In TM, any element of a given family is able to replicate in the host genome. In this paper, we simulated ERV phylogenetic trees under variations of SMM and TM. To test whether current phylogenetic programs can recover the simulated ERV phylogenies, DNA sequence alignments were simulated and maximum likelihood trees were reconstructed and compared to the simulated phylogenies. Results indicate that visual inspection of phylogenetic trees alone can be misleading. However, if a set of statistical summaries is calculated, we are able to distinguish between models with high accuracy by using a data mining algorithm that we introduce here. We also demonstrate the use of our data mining algorithm with empirical data for the porcine endogenous retrovirus (PERV), an ERV that is able to replicate in human and pig cells in vitro. PMID:27649303

  19. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface

    PubMed Central

    Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine

    2012-01-01

    The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082

  20. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat.

    PubMed

    Senerchia, Natacha; Wicker, Thomas; Felber, François; Parisod, Christian

    2013-01-01

    Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot with high-throughput sequencing. Low coverage sequencing of the complex genomes of Aegilops cylindrica and Ae. geniculata using 454 identified more than 70% of the sequences as known TEs, mainly long terminal repeat (LTR) retrotransposons. Comparing the abundance of reads as well as patterns of sequence diversity and divergence within and among genomes assessed the dynamics of 44 major LTR retrotransposon families of the 165 identified. In particular, molecular population genetics on individual TE copies distinguished recently active from quiescent families and highlighted different evolutionary trajectories of retrotransposons among related species. This work presents a suite of tools suitable for current sequencing data, allowing to address the genome-wide evolutionary dynamics of TEs at the family level and advancing our understanding of the evolution of nonmodel genomes.

  1. The mitochondrial subgenomes of the nematode Globodera pallida are mosaics: evidence of recombination in an animal mitochondrial genome.

    PubMed

    Gibson, Tracey; Blok, Vivian C; Phillips, Mark S; Hong, Gary; Kumarasinghe, Duminda; Riley, Ian T; Dowton, Mark

    2007-04-01

    We sequenced four mitochondrial subgenomes from the potato cyst nematode Globodera pallida, previously characterized as one of the few animals to have a multipartite mitochondrial genome. The sequence data indicate that three of these subgenomic mitochondrial circles are mosaics, comprising long, multigenic fragments derived from fragments of the other circles. This pattern is consistent with the operation of intermitochondrial recombination, a process generally considered absent in animal mitochondria. We also report that many of the duplicated genes contain deleterious mutations, ones likely to render the gene nonfunctional; gene conversion does not appear to be homogenizing the different gene copies. The proposed nonfunctional copies are clustered on particular circles, whereas copies that are likely to code functional gene products are clustered on others.

  2. Three copies of a single protein II-encoding sequence in the genome of Neisseria gonorrhoeae JS3: evidence for gene conversion and gene duplication.

    PubMed

    van der Ley, P

    1988-11-01

    Gonococci express a family of related outer membrane proteins designated protein II (P.II). These surface proteins are subject to both phase variation and antigenic variation. The P.II gene repertoire of Neisseria gonorrhoeae strain JS3 was found to consist of at least ten genes, eight of which were cloned. Sequence analysis and DNA hybridization studies revealed that one particular P.II-encoding sequence is present in three distinct, but almost identical, copies in the JS3 genome. These genes encode the P.II protein that was previously identified as P.IIc. Comparison of their sequences shows that the multiple copies of this P.IIc-encoding gene might have been generated by both gene conversion and gene duplication.

  3. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing.

    PubMed

    Cramaro, Wibke J; Hunewald, Oliver E; Bell-Sakyi, Lesley; Muller, Claude P

    2017-02-08

    Global warming and other ecological changes have facilitated the expansion of Ixodes ricinus tick populations. Ixodes ricinus is the most important carrier of vector-borne pathogens in Europe, transmitting viruses, protozoa and bacteria, in particular Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis, the most prevalent vector-borne disease in humans in the Northern hemisphere. To faster control this disease vector, a better understanding of the I. ricinus tick is necessary. To facilitate such studies, we recently published the first reference genome of this highly prevalent pathogen vector. Here, we further extend these studies by scaffolding and annotating the first reference genome by using ultra-long sequencing reads from third generation single molecule sequencing. In addition, we present the first genome size estimation for I. ricinus ticks and the embryo-derived cell line IRE/CTVM19. 235,953 contigs were integrated into 204,904 scaffolds, extending the currently known genome lengths by more than 30% from 393 to 516 Mb and the N50 contig value by 87% from 1643 bp to a N50 scaffold value of 3067 bp. In addition, 25,263 sequences were annotated by comparison to the tick's North American relative Ixodes scapularis. After (conserved) hypothetical proteins, zinc finger proteins, secreted proteins and P450 coding proteins were the most prevalent protein categories annotated. Interestingly, more than 50% of the amino acid sequences matching the homology threshold had 95-100% identity to the corresponding I. scapularis gene models. The sequence information was complemented by the first genome size estimation for this species. Flow cytometry-based genome size analysis revealed a haploid genome size of 2.65Gb for I. ricinus ticks and 3.80 Gb for the cell line. We present a first draft sequence map of the I. ricinus genome based on a PacBio-Illumina assembly. The I. ricinus genome was shown to be 26% (500 Mb) larger than the genome of its American relative I. scapularis. Based on the genome size of 2.65 Gb we estimated that we covered about 67% of the non-repetitive sequences. Genome annotation will facilitate screening for specific molecular pathways in I. ricinus cells and provides an overview of characteristics and functions.

  4. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-05-01

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Integrated genomics for pinpointing survival loci within arm-level somatic copy number alterations

    PubMed Central

    Roy, David M.; Walsh, Logan A.; Desrichard, Alexis; Huse, Jason T.; Wu, Wei; Gao, JianJiong; Bose, Promita; Lee, William; Chan, Timothy A.

    2016-01-01

    SUMMARY The identification of driver loci underlying arm-level somatic copy number alterations (SCNAs) in cancer has remained challenging and incomplete. Here we assess the relative impact and present a detailed landscape of arm-level SCNAs in 10985 patient samples across 33 cancer types from The Cancer Genome Atlas (TCGA). Further, using chromosome 9p loss in lower grade glioma (LGG) as a model, we employ a unique multi-tiered genomic dissection strategy using 540 patients from 3 independent LGG datasets to identify genetic loci that govern tumor aggressiveness and poor survival. This comprehensive approach uncovered several 9p loss-specific prognostic markers, validated existing ones, and re-defined the impact of CDKN2A loss in LGG. PMID:27165745

  6. Complete genome sequence of a Klebsiella pneumoniae strain isolated from a known cotton insect boll vector

    USDA-ARS?s Scientific Manuscript database

    Klebsiella pneumoniae (associated with bacterial pneumonia) was previously isolated from Nezara viridula, a significant vector of cotton boll-rot pathogens. We provide the first annotated genome sequence of the cotton opportunistic strain K. pneumoniae 5-1. This data provides guidance to study the...

  7. Design of a Retrovirus-Derived Vector for Expression and Transduction of Exogenous Genes in Mammalian Cells

    PubMed Central

    Perkins, Archibald S.; Kirschmeier, Paul T.; Gattoni-Celli, Sebastiano; Weinstein, I. Bernard

    1983-01-01

    We have developed a transfection vector for animal cells that contains long terminal repeat (LTR) sequences to promote expression. Plasmid p101/101, a derivative of plasmid pBR322 containing the complete Moloney murine sarcoma virus genome, was cut with restriction enzymes and religated so that both the 5′ and 3′ LTRs were retained and all but about 700 base pairs of the intervening viral sequences were removed. To test this vector, the Escherichia coli gene gpt was cloned into a unique PstI site, between the two LTRs, with guanine and cytosine tailing, a method that can be generalized for insertion of any DNA segment into this vector. When DNA from recombinant plasmids in which the gpt gene was inserted in the same transcriptional polarity as the LTR sequences was transfected onto murine or rat fibroblast cultures, we obtained a high yield of Gpt+ colonies. However, plasmid constructs with the gpt gene in the opposite polarity were virtually devoid of activity. With gpt in the proper orientation, restriction enzyme cuts within the LTRs or between the 5′ LTR and the gpt gene reduced transfection by more than 98%, whereas a cut between the gpt gene and the 3′ LTR gave an 80% reduction in activity. Thus, both 5′ and 3′ LTR sequences are essential for optimal gpt expression, although the 5′ LTR appears to play a more important role. When the LTR-gpt plasmid was transfected onto murine leukemia virus-infected mouse fibroblasts, we obtained evidence that RNA copies became pseudotyped into viral particles which could transfer the Gpt+ phenotype into rodent cells with extremely high efficiency. This vector should prove useful for high-efficiency transduction of a variety of genes in mammalian cells. Images PMID:6308426

  8. Virus Database and Online Inquiry System Based on Natural Vectors.

    PubMed

    Dong, Rui; Zheng, Hui; Tian, Kun; Yau, Shek-Chung; Mao, Weiguang; Yu, Wenping; Yin, Changchuan; Yu, Chenglong; He, Rong Lucy; Yang, Jie; Yau, Stephen St

    2017-01-01

    We construct a virus database called VirusDB (http://yaulab.math.tsinghua.edu.cn/VirusDB/) and an online inquiry system to serve people who are interested in viral classification and prediction. The database stores all viral genomes, their corresponding natural vectors, and the classification information of the single/multiple-segmented viral reference sequences downloaded from National Center for Biotechnology Information. The online inquiry system serves the purpose of computing natural vectors and their distances based on submitted genomes, providing an online interface for accessing and using the database for viral classification and prediction, and back-end processes for automatic and manual updating of database content to synchronize with GenBank. Submitted genomes data in FASTA format will be carried out and the prediction results with 5 closest neighbors and their classifications will be returned by email. Considering the one-to-one correspondence between sequence and natural vector, time efficiency, and high accuracy, natural vector is a significant advance compared with alignment methods, which makes VirusDB a useful database in further research.

  9. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma

    PubMed Central

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-01-01

    Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578

  10. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.

    PubMed

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-12-12

    This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.

  11. Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris.

    PubMed

    Vogl, Thomas; Gebbie, Leigh; Palfreyman, Robin W; Speight, Robert

    2018-03-15

    Pichia pastoris (syn. Komagataella phaffii ) is one of the most common eukaryotic expression systems for heterologous protein production. Expression cassettes are typically integrated in the genome to obtain stable expression strains. In contrast to Saccharomyces cerevisiae , where short overhangs are sufficient to target highly specific integration, long overhangs are more efficient in P. pastoris and ectopic integration of foreign DNA can occur. Here, we aimed to elucidate the influence of ectopic integration by high-throughput screening of >700 transformants and whole-genome sequencing of 27 transformants. Different vector designs and linearization approaches were used to mimic the most common integration events targeted in P. pastoris Fluorescence of an enhanced green fluorescent protein (eGFP) reporter protein was highly uniform among transformants when the expression cassettes were correctly integrated in the targeted locus. Surprisingly, most nonspecifically integrated transformants showed highly uniform expression that was comparable to specific integration, suggesting that nonspecific integration does not necessarily influence expression. However, a few clones (<10%) harboring ectopically integrated cassettes showed a greater variation spanning a 25-fold range, surpassing specifically integrated reference strains up to 6-fold. High-expression strains showed a correlation between increased gene copy numbers and high reporter protein fluorescence levels. Our results suggest that for comparing expression levels between strains, the integration locus can be neglected as long as a sufficient numbers of transformed strains are compared. For expression optimization of highly expressible proteins, increasing copy number appears to be the dominant positive influence rather than the integration locus, genomic rearrangements, deletions, or single-nucleotide polymorphisms (SNPs). IMPORTANCE Yeasts are commonly used as biotechnological production hosts for proteins and metabolites. In the yeast Saccharomyces cerevisiae , expression cassettes carrying foreign genes integrate highly specifically at the targeted sites in the genome. In contrast, cassettes often integrate at random genomic positions in nonconventional yeasts, such as Pichia pastoris (syn. Komagataella phaffii ). Hence, cells from the same transformation event often behave differently, with significant clonal variation necessitating the screening of large numbers of strains. The importance of this study is that we systematically investigated the influence of integration events in more than 700 strains. Our findings provide novel insight into clonal variation in P. pastoris and, thus, how to avoid pitfalls and obtain reliable results. The underlying mechanisms may also play a role in other yeasts and hence could be generally relevant for recombinant yeast protein production strains. Copyright © 2018 American Society for Microbiology.

  12. The dynamics of genome replication using deep sequencing

    PubMed Central

    Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.

    2014-01-01

    Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142

  13. The genomic landscape of chronic lymphocytic leukaemia: biological and clinical implications.

    PubMed

    Strefford, Jonathan C

    2015-04-01

    Chronic lymphocytic leukaemia (CLL) remains at the forefront of the genetic analysis of human tumours, principally due its prevalence, protracted natural history and accessibility to suitable material for analysis. With the application of high-throughput genetic technologies, we have an unbridled view of the architecture of the CLL genome, including a comprehensive description of the copy number and mutational landscape of the disease, a detailed picture of clonal evolution during pathogenesis, and the molecular mechanisms that drive genomic instability and therapeutic resistance. This work has nuanced the prognostic importance of established copy number alterations, and identified novel prognostically relevant gene mutations that function within biological pathways that are attractive treatment targets. Herein, an overview of recent genomic discoveries will be reviewed, with associated biological and clinical implications, and a view into how clinical implementation may be facilitated. © 2014 John Wiley & Sons Ltd.

  14. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.

    PubMed Central

    Hansen, M T

    1978-01-01

    The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572

  15. Copy number variation detection in cattle reveals potential breed specific differences

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) are large, common deletions or duplications of genome sequence among individuals of a species that have been linked to diseases and phenotypic traits. For example, a CNV-generating, translocation mechanism encompassing the KIT gene is responsible for color sidedness in ...

  16. Structural and functional impacts of copy number variations on the cattle genome

    USDA-ARS?s Scientific Manuscript database

    Although there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs), similar realizations for larger, more complex forms of genetic variation have just emerged. Several recent publications reveal that copy number variations (CNVs) are common an...

  17. Figure 4 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Cancer.gov

    Gene-list view of genomic data. The gene-list view allows users to compare data across a set of loci. The data in this figure includes copy number, mutation, and clinical data from 202 glioblastoma samples from TCGA. Adapted from Figure 7; Thorvaldsdottir H et al. 2012

  18. Ultra-barcoding in cacao (Theobroma spp.; malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA

    USDA-ARS?s Scientific Manuscript database

    High-throughput next-generation sequencing was used to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an indivi...

  19. Complete genome sequence of ‘Candidatus Liberibacter africanus’

    USDA-ARS?s Scientific Manuscript database

    The complete genome sequence of ‘Candidatus Liberibacter africanus’ (Laf), strain ptsapsy, was obtained by an Illumina HiSeq 2000. The Laf genome comprises 1,192,232 nucleotides, 34.5% GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S and 5S) ...

  20. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma

    PubMed Central

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F.; Breen, Matthew

    2017-01-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24 and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near two-fold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22% versus 40%). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly-distinct subtypes of canine hemangiosarcoma. PMID:24599718

  1. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma.

    PubMed

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F; Breen, Matthew

    2014-09-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however, the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24, and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA, and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near twofold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22 versus 40 %). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly distinct subtypes of canine hemangiosarcoma.

  2. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization

    PubMed Central

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison

    2017-01-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3–17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways. PMID:25511566

  3. Automated design of paralogue ratio test assays for the accurate and rapid typing of copy number variation

    PubMed Central

    Veal, Colin D.; Xu, Hang; Reekie, Katherine; Free, Robert; Hardwick, Robert J.; McVey, David; Brookes, Anthony J.; Hollox, Edward J.; Talbot, Christopher J.

    2013-01-01

    Motivation: Genomic copy number variation (CNV) can influence susceptibility to common diseases. High-throughput measurement of gene copy number on large numbers of samples is a challenging, yet critical, stage in confirming observations from sequencing or array Comparative Genome Hybridization (CGH). The paralogue ratio test (PRT) is a simple, cost-effective method of accurately determining copy number by quantifying the amplification ratio between a target and reference amplicon. PRT has been successfully applied to several studies analyzing common CNV. However, its use has not been widespread because of difficulties in assay design. Results: We present PRTPrimer (www.prtprimer.org) software for automated PRT assay design. In addition to stand-alone software, the web site includes a database of pre-designed assays for the human genome at an average spacing of 6 kb and a web interface for custom assay design. Other reference genomes can also be analyzed through local installation of the software. The usefulness of PRTPrimer was tested within known CNV, and showed reproducible quantification. This software and database provide assays that can rapidly genotype CNV, cost-effectively, on a large number of samples and will enable the widespread adoption of PRT. Availability: PRTPrimer is available in two forms: a Perl script (version 5.14 and higher) that can be run from the command line on Linux systems and as a service on the PRTPrimer web site (www.prtprimer.org). Contact: cjt14@le.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23742985

  4. Penalized differential pathway analysis of integrative oncogenomics studies.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2014-04-01

    Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature.

  5. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions

    PubMed Central

    Pezer, Željka; Chung, Amanda G.; Karn, Robert C.

    2017-01-01

    Abstract The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. PMID:28575204

  6. Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA.

    PubMed

    Scalvenzi, Thibault; Pollet, Nicolas

    2014-12-01

    The genome size in eukaryotes does not correlate well with the number of genes they contain. We can observe this so-called C-value paradox in amphibian species. By analyzing an amphibian genome we asked how repetitive DNA can impact genome size and architecture. We describe here our discovery of a Tc1/mariner miniature inverted-repeat transposon family present in Xenopus frogs. These transposons named miDNA4 are unique since they contain a satellite DNA motif. We found that miDNA4 measured 331 bp, contained 25 bp long inverted terminal repeat sequences and a sequence motif of 119 bp present as a unique copy or as an array of 2-47 copies. We characterized the structure, dynamics, impact and evolution of the miDNA4 family and its satellite DNA in Xenopus frog genomes. This led us to propose a model for the evolution of these two repeated sequences and how they can synergize to increase genome size. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Copy Number Variations in Tilapia Genomes.

    PubMed

    Li, Bi Jun; Li, Hong Lian; Meng, Zining; Zhang, Yong; Lin, Haoran; Yue, Gen Hua; Xia, Jun Hong

    2017-02-01

    Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2  > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.

  8. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform

    PubMed Central

    Adamson-Small, Laura; Potter, Mark; Falk, Darin J; Cleaver, Brian; Byrne, Barry J; Clément, Nathalie

    2016-01-01

    Recombinant adeno-associated vectors based on serotype 9 (rAAV9) have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV)-based production and purification process capable of generating greater than 1 × 1014 rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 105 vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP) and good manufacturing practice (GMP) production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production. PMID:27222839

  9. Genomic diversity of the human intestinal parasite Entamoeba histolytica

    PubMed Central

    2012-01-01

    Background Entamoeba histolytica is a significant cause of disease worldwide. However, little is known about the genetic diversity of the parasite. We re-sequenced the genomes of ten laboratory cultured lines of the eukaryotic pathogen Entamoeba histolytica in order to develop a picture of genetic diversity across the genome. Results The extreme nucleotide composition bias and repetitiveness of the E. histolytica genome provide a challenge for short-read mapping, yet we were able to define putative single nucleotide polymorphisms in a large portion of the genome. The results suggest a rather low level of single nucleotide diversity, although genes and gene families with putative roles in virulence are among the more polymorphic genes. We did observe large differences in coverage depth among genes, indicating differences in gene copy number between genomes. We found evidence indicating that recombination has occurred in the history of the sequenced genomes, suggesting that E. histolytica may reproduce sexually. Conclusions E. histolytica displays a relatively low level of nucleotide diversity across its genome. However, large differences in gene family content and gene copy number are seen among the sequenced genomes. The pattern of polymorphism indicates that E. histolytica reproduces sexually, or has done so in the past, which has previously been suggested but not proven. PMID:22630046

  10. Expanding probe repertoire and improving reproducibility in human genomic hybridization

    PubMed Central

    Dorman, Stephanie N.; Shirley, Ben C.; Knoll, Joan H. M.; Rogan, Peter K.

    2013-01-01

    Diagnostic DNA hybridization relies on probes composed of single copy (sc) genomic sequences. Sc sequences in probe design ensure high specificity and avoid cross-hybridization to other regions of the genome, which could lead to ambiguous results that are difficult to interpret. We examine how the distribution and composition of repetitive sequences in the genome affects sc probe performance. A divide and conquer algorithm was implemented to design sc probes. With this approach, sc probes can include divergent repetitive elements, which hybridize to unique genomic targets under higher stringency experimental conditions. Genome-wide custom probe sets were created for fluorescent in situ hybridization (FISH) and microarray genomic hybridization. The scFISH probes were developed for detection of copy number changes within small tumour suppressor genes and oncogenes. The microarrays demonstrated increased reproducibility by eliminating cross-hybridization to repetitive sequences adjacent to probe targets. The genome-wide microarrays exhibited lower median coefficients of variation (17.8%) for two HapMap family trios. The coefficients of variations of commercial probes within 300 nt of a repetitive element were 48.3% higher than the nearest custom probe. Furthermore, the custom microarray called a chromosome 15q11.2q13 deletion more consistently. This method for sc probe design increases probe coverage for FISH and lowers variability in genomic microarrays. PMID:23376933

  11. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis.

    PubMed

    Chen, Po Ting; Shaw, Jei-Fu; Chao, Yun-Peng; David Ho, Tuan-Hua; Yu, Su-May

    2010-05-12

    Bacillus subtilis is most commonly employed for secretion of recombinant proteins. To circumvent the problems caused by using plasmids, the T7 expression system known for its high efficiency was rebuilt in B. subtilis. Accordingly, a markerless and replicon-free method was developed for genomic insertion of DNAs. By the act of homologous recombination via the guide DNA, a suicidal vector carrying the gene of interest was integrated into genomic loci of bacteria. Removal of the inserted selection marker and replicon flanked by FRT sites was mediated by the FLP recombinase. By using the mentioned system, B. subtilis strain PT5 was constructed to harbor a genomic copy of the spac promoter-regulated T7 gene 1 located at wprA (encoding the cell wall-associated protease). Similarly, the T7 promoter-driven nattokinase or endoglucanase E1 of Thermomonospora fusca genes were also integrated into mpr (encoding an extracellular protease) of strain PT5. Consequently, the integrant PT5/Mmp-T7N or PT5/MT1-E1 resulted in a "clean" producer strain deprived of six proteases. After 24 h, the strain receiving induction was able to secret nattokinase and endoglucanase E1 with the volumetric activity reaching 10860 CU/mL and 8.4 U/mL, respectively. This result clearly indicates the great promise of the proposed approach for high secretion of recombinant proteins in B. subtilis.

  12. QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito Aedes aegypti.

    PubMed

    Reyes-Solis, Guadalupe Del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C

    2014-10-01

    The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.

  13. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  14. Complete mitochondrial genome sequences of the northern spotted owl (Strix occidentalis caurina) and the barred owl (Strix varia; Aves: Strigiformes: Strigidae) confirm the presence of a duplicated control region

    PubMed Central

    Henderson, James B.; Sellas, Anna B.; Fuchs, Jérôme; Bowie, Rauri C.K.; Dumbacher, John P.

    2017-01-01

    We report here the successful assembly of the complete mitochondrial genomes of the northern spotted owl (Strix occidentalis caurina) and the barred owl (S. varia). We utilized sequence data from two sequencing methodologies, Illumina paired-end sequence data with insert lengths ranging from approximately 250 nucleotides (nt) to 9,600 nt and read lengths from 100–375 nt and Sanger-derived sequences. We employed multiple assemblers and alignment methods to generate the final assemblies. The circular genomes of S. o. caurina and S. varia are comprised of 19,948 nt and 18,975 nt, respectively. Both code for two rRNAs, twenty-two tRNAs, and thirteen polypeptides. They both have duplicated control region sequences with complex repeat structures. We were not able to assemble the control regions solely using Illumina paired-end sequence data. By fully spanning the control regions, Sanger-derived sequences enabled accurate and complete assembly of these mitochondrial genomes. These are the first complete mitochondrial genome sequences of owls (Aves: Strigiformes) possessing duplicated control regions. We searched the nuclear genome of S. o. caurina for copies of mitochondrial genes and found at least nine separate stretches of nuclear copies of gene sequences originating in the mitochondrial genome (Numts). The Numts ranged from 226–19,522 nt in length and included copies of all mitochondrial genes except tRNAPro, ND6, and tRNAGlu. Strix occidentalis caurina and S. varia exhibited an average of 10.74% (8.68% uncorrected p-distance) divergence across the non-tRNA mitochondrial genes. PMID:29038757

  15. Conserved structure and expression of hsp70 paralogs in teleost fishes.

    PubMed

    Metzger, David C H; Hemmer-Hansen, Jakob; Schulte, Patricia M

    2016-06-01

    The cytosolic 70KDa heat shock proteins (Hsp70s) are widely used as biomarkers of environmental stress in ecological and toxicological studies in fish. Here we analyze teleost genome sequences to show that two genes encoding inducible hsp70s (hsp70-1 and hsp70-2) are likely present in all teleost fish. Phylogenetic and synteny analyses indicate that hsp70-1 and hsp70-2 are distinct paralogs that originated prior to the diversification of the teleosts. The promoters of both genes contain a TATA box and conserved heat shock elements (HSEs), but unlike mammalian HSP70s, both genes contain an intron in the 5' UTR. The hsp70-2 gene has undergone tandem duplication in several species. In addition, many other teleost genome assemblies have multiple copies of hsp70-2 present on separate, small, genomic scaffolds. To verify that these represent poorly assembled tandem duplicates, we cloned the genomic region surrounding hsp70-2 in Fundulus heteroclitus and showed that the hsp70-2 gene copies that are on separate scaffolds in the genome assembly are arranged as tandem duplicates. Real-time quantitative PCR of F. heteroclitus genomic DNA indicates that four copies of the hsp70-2 gene are likely present in the F. heteroclitus genome. Comparison of expression patterns in F. heteroclitus and Gasterosteus aculeatus demonstrates that hsp70-2 has a higher fold increase than hsp70-1 following heat shock in gill but not in muscle tissue, revealing a conserved difference in expression patterns between isoforms and tissues. These data indicate that ecological and toxicological studies using hsp70 as a biomarker in teleosts should take this complexity into account. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus

    PubMed Central

    Wu, Yuan-Ming; Li, Jiang

    2018-01-01

    Abstract Background Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. Results We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13 813 and 13 725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Conclusions Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles. PMID:29444297

  17. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus.

    PubMed

    Wu, Yuan-Ming; Li, Jiang; Chen, Xiang-Sheng

    2018-03-01

    Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13 813 and 13 725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles.

  18. Complete Genomic Sequence of “Thermofilum adornatus” Strain 1910bT, a Hyperthermophilic Anaerobic Organotrophic Crenarchaeon

    PubMed Central

    Dominova, I. N.; Kublanov, I. V.; Podosokorskaya, O. A.; Derbikova, K. S.; Patrushev, M. V.

    2013-01-01

    The complete genomic sequence of a novel hyperthermophilic crenarchaeon, strain 1910bT, was determined. The genome comprises a 1,750,259-bp circular chromosome containing single copies of 3 rRNA genes, 43 tRNA genes, and 1,896 protein-coding sequences. In silico genome-genome hybridization suggests the proposal of a novel species, “Thermofilum adornatus” strain 1910bT. PMID:24029764

  19. CCL3L1 copy number and susceptibility to malaria

    PubMed Central

    Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A.L.; Shaw, Marie-Anne

    2012-01-01

    Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n = 922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. PMID:22484763

  20. CCL3L1 copy number and susceptibility to malaria.

    PubMed

    Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A L; Shaw, Marie-Anne

    2012-07-01

    Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n=922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR.

    PubMed

    Hughesman, Curtis B; Lu, X J David; Liu, Kelly Y P; Zhu, Yuqi; Towle, Rebecca M; Haynes, Charles; Poh, Catherine F

    2017-09-19

    Copy number alterations (CNAs), a common genomic event during carcinogenesis, are known to affect a large fraction of the genome. Common recurrent gains or losses of specific chromosomal regions occur at frequencies that they may be considered distinctive features of tumoral cells. Here we introduce a novel multiplexed droplet digital PCR (ddPCR) assay capable of detecting recurrent CNAs that drive tumorigenesis of oral squamous cell carcinoma. Applied to DNA extracted from oral cell lines and clinical samples of various disease stages, we found good agreement between CNAs detected by our ddPCR assay with those previously reported using comparative genomic hybridization or single nucleotide polymorphism arrays. Furthermore, we demonstrate that the ability to target specific locations of the genome permits detection of clinically relevant oncogenic events such as small, submicroscopic homozygous deletions. Additional capabilities of the multiplexed ddPCR assay include the ability to infer ploidy level, quantify the change in copy number of target loci with high-level gains, and simultaneously assess the status and viral load for high-risk human papillomavirus types 16 and 18. This novel multiplexed ddPCR assay therefore may have clinical value in differentiating between benign oral lesions from those that are at risk of progressing to oral cancer.

  2. Common structural and epigenetic changes in the genome of castration-resistant prostate cancer.

    PubMed

    Friedlander, Terence W; Roy, Ritu; Tomlins, Scott A; Ngo, Vy T; Kobayashi, Yasuko; Azameera, Aruna; Rubin, Mark A; Pienta, Kenneth J; Chinnaiyan, Arul; Ittmann, Michael M; Ryan, Charles J; Paris, Pamela L

    2012-02-01

    Progression of primary prostate cancer to castration-resistant prostate cancer (CRPC) is associated with numerous genetic and epigenetic alterations that are thought to promote survival at metastatic sites. In this study, we investigated gene copy number and CpG methylation status in CRPC to gain insight into specific pathophysiologic pathways that are active in this advanced form of prostate cancer. Our analysis defined and validated 495 genes exhibiting significant differences in CRPC in gene copy number, including gains in androgen receptor (AR) and losses of PTEN and retinoblastoma 1 (RB1). Significant copy number differences existed between tumors with or without AR gene amplification, including a common loss of AR repressors in AR-unamplified tumors. Simultaneous gene methylation and allelic deletion occurred frequently in RB1 and HSD17B2, the latter of which is involved in testosterone metabolism. Lastly, genomic DNA from most CRPC was hypermethylated compared with benign prostate tissue. Our findings establish a comprehensive methylation signature that couples epigenomic and structural analyses, thereby offering insights into the genomic alterations in CRPC that are associated with a circumvention of hormonal therapy. Genes identified in this integrated genomic study point to new drug targets in CRPC, an incurable disease state which remains the chief therapeutic challenge. ©2012 AACR.

  3. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence.

    PubMed

    Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing

    2009-11-25

    Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.

  4. Abr1, a Transposon-Like Element in the Genome of the Cultivated Mushroom Agaricus bisporus (Lange) Imbach

    PubMed Central

    Sonnenberg, Anton S. M.; Baars, Johan J. P.; Mikosch, Thomas S. P.; Schaap, Peter J.; Van Griensven, Leo J. L. D.

    1999-01-01

    A 300-bp repetitive element was found in the genome of the white button mushroom, Agaricus bisporus, and designated Abr1. It is present in ∼15 copies per haploid genome in the commercial strain Horst U1. Analysis of seven copies showed 89 to 97% sequence identity. The repeat has features typical of class II transposons (i.e., terminal inverted repeats, subterminal repeats, and a target site duplication of 7 bp). The latter shows a consensus sequence. When used as probe on Southern blots, Abr1 identifies relatively little variation within traditional and present-day commercial strains, indicating that most strains are identical or have a common origin. In contrast to these cultivars, high variation is found among field-collected strains. Furthermore, a remarkable difference in copy numbers of Abr1 was found between A. bisporus isolates with a secondarily homothallic life cycle and those with a heterothallic life cycle. Abr1 is a type II transposon not previously reported in basidiomycetes and appears to be useful for the identification of strains within the species A. bisporus. PMID:10427018

  5. Wheat-specific gene, ribosomal protein l21, used as the endogenous reference gene for qualitative and real-time quantitative polymerase chain reaction detection of transgenes.

    PubMed

    Liu, Yi-Ke; Li, He-Ping; Huang, Tao; Cheng, Wei; Gao, Chun-Sheng; Zuo, Dong-Yun; Zhao, Zheng-Xi; Liao, Yu-Cai

    2014-10-29

    Wheat-specific ribosomal protein L21 (RPL21) is an endogenous reference gene suitable for genetically modified (GM) wheat identification. This taxon-specific RPL21 sequence displayed high homogeneity in different wheat varieties. Southern blots revealed 1 or 3 copies, and sequence analyses showed one amplicon in common wheat. Combined analyses with sequences from common wheat (AABBDD) and three diploid ancestral species, Triticum urartu (AA), Aegilops speltoides (BB), and Aegilops tauschii (DD), demonstrated the presence of this amplicon in the AA genome. Using conventional qualitative polymerase chain reaction (PCR), the limit of detection was 2 copies of wheat haploid genome per reaction. In the quantitative real-time PCR assay, limits of detection and quantification were about 2 and 8 haploid genome copies, respectively, the latter of which is 2.5-4-fold lower than other reported wheat endogenous reference genes. Construct-specific PCR assays were developed using RPL21 as an endogenous reference gene, and as little as 0.5% of GM wheat contents containing Arabidopsis NPR1 were properly quantified.

  6. Development of NIST standard reference material 2373: Genomic DNA standards for HER2 measurements.

    PubMed

    He, Hua-Jun; Almeida, Jamie L; Lund, Steve P; Steffen, Carolyn R; Choquette, Steve; Cole, Kenneth D

    2016-06-01

    NIST standard reference material (SRM) 2373 was developed to improve the measurements of the HER2 gene amplification in DNA samples. SRM 2373 consists of genomic DNA extracted from five breast cancer cell lines with different amounts of amplification of the HER2 gene. The five components are derived from the human cell lines SK-BR-3, MDA-MB-231, MDA-MB-361, MDA-MB-453, and BT-474. The certified values are the ratios of the HER2 gene copy numbers to the copy numbers of selected reference genes DCK, EIF5B, RPS27A, and PMM1. The ratios were measured using quantitative polymerase chain reaction and digital PCR, methods that gave similar ratios. The five components of SRM 2373 have certified HER2 amplification ratios that range from 1.3 to 17.7. The stability and homogeneity of the reference materials were shown by repeated measurements over a period of several years. SRM 2373 is a well characterized genomic DNA reference material that can be used to improve the confidence of the measurements of HER2 gene copy number.

  7. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome.

    PubMed

    Lin, F L; Sternberg, N

    1984-05-01

    We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.

  8. Complete Chloroplast Genome Sequence of Holoparasite Cistanche deserticola (Orobanchaceae) Reveals Gene Loss and Horizontal Gene Transfer from Its Host Haloxylon ammodendron (Chenopodiaceae)

    PubMed Central

    Qiao, Qin; Ren, Zhumei; Zhao, Jiayuan; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M. James C; Li, Jianqiang; Zhong, Yang

    2013-01-01

    Background The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. Principal Findings/Significance Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer. PMID:23554920

  9. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    PubMed

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  10. Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae).

    PubMed

    Li, Xi; Zhang, Ti-Cao; Qiao, Qin; Ren, Zhumei; Zhao, Jiayuan; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M James C; Li, Jianqiang; Zhong, Yang

    2013-01-01

    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. PRINCIPAL FINDINGS/SIGNIFICANCE: Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer.

  11. Detection of genome-wide copy number variants in myeloid malignancies using next-generation sequencing.

    PubMed

    Shen, Wei; Paxton, Christian N; Szankasi, Philippe; Longhurst, Maria; Schumacher, Jonathan A; Frizzell, Kimberly A; Sorrells, Shelly M; Clayton, Adam L; Jattani, Rakhi P; Patel, Jay L; Toydemir, Reha; Kelley, Todd W; Xu, Xinjie

    2018-04-01

    Genetic abnormalities, including copy number variants (CNV), copy number neutral loss of heterozygosity (CN-LOH) and gene mutations, underlie the pathogenesis of myeloid malignancies and serve as important diagnostic, prognostic and/or therapeutic markers. Currently, multiple testing strategies are required for comprehensive genetic testing in myeloid malignancies. The aim of this proof-of-principle study was to investigate the feasibility of combining detection of genome-wide large CNVs, CN-LOH and targeted gene mutations into a single assay using next-generation sequencing (NGS). For genome-wide CNV detection, we designed a single nucleotide polymorphism (SNP) sequencing backbone with 22 762 SNP regions evenly distributed across the entire genome. For targeted mutation detection, 62 frequently mutated genes in myeloid malignancies were targeted. We combined this SNP sequencing backbone with a targeted mutation panel, and sequenced 9 healthy individuals and 16 patients with myeloid malignancies using NGS. We detected 52 somatic CNVs, 11 instances of CN-LOH and 39 oncogenic mutations in the 16 patients with myeloid malignancies, and none in the 9 healthy individuals. All CNVs and CN-LOH were confirmed by SNP microarray analysis. We describe a genome-wide SNP sequencing backbone which allows for sensitive detection of genome-wide CNVs and CN-LOH using NGS. This proof-of-principle study has demonstrated that this strategy can provide more comprehensive genetic profiling for patients with myeloid malignancies using a single assay. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.

    PubMed

    Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo

    2018-01-22

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.

  13. Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma

    PubMed Central

    Skårn, Magne; Namløs, Heidi M.; Barragan-Polania, Ana H.; Cleton-Jansen, Anne-Marie; Serra, Massimo; Liestøl, Knut; Hogendoorn, Pancras C. W.; Hovig, Eivind; Myklebost, Ola; Meza-Zepeda, Leonardo A.

    2012-01-01

    Background Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. Principal Findings The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. Conclusions Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology. PMID:23144859

  14. The Role of Copy Number Variation in Susceptibility to Amyotrophic Lateral Sclerosis: Genome-Wide Association Study and Comparison with Published Loci

    PubMed Central

    Wain, Louise V.; Pedroso, Inti; Landers, John E.; Breen, Gerome; Shaw, Christopher E.; Leigh, P. Nigel; Brown, Robert H.

    2009-01-01

    Background The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS) has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs) in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty. Methodology and Principal Findings In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy) were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability. Conclusions and Significance Interpretation of CNV association findings must take into account the effects of filtering and combining CNV calls when based on early genome-wide genotyping platforms and modest study sizes. PMID:19997636

  15. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes.

    PubMed

    Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai

    2017-01-01

    The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods.

  16. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    PubMed

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  17. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data.

    PubMed

    Ha, Gavin; Roth, Andrew; Khattra, Jaswinder; Ho, Julie; Yap, Damian; Prentice, Leah M; Melnyk, Nataliya; McPherson, Andrew; Bashashati, Ali; Laks, Emma; Biele, Justina; Ding, Jiarui; Le, Alan; Rosner, Jamie; Shumansky, Karey; Marra, Marco A; Gilks, C Blake; Huntsman, David G; McAlpine, Jessica N; Aparicio, Samuel; Shah, Sohrab P

    2014-11-01

    The evolution of cancer genomes within a single tumor creates mixed cell populations with divergent somatic mutational landscapes. Inference of tumor subpopulations has been disproportionately focused on the assessment of somatic point mutations, whereas computational methods targeting evolutionary dynamics of copy number alterations (CNA) and loss of heterozygosity (LOH) in whole-genome sequencing data remain underdeveloped. We present a novel probabilistic model, TITAN, to infer CNA and LOH events while accounting for mixtures of cell populations, thereby estimating the proportion of cells harboring each event. We evaluate TITAN on idealized mixtures, simulating clonal populations from whole-genome sequences taken from genomically heterogeneous ovarian tumor sites collected from the same patient. In addition, we show in 23 whole genomes of breast tumors that the inference of CNA and LOH using TITAN critically informs population structure and the nature of the evolving cancer genome. Finally, we experimentally validated subclonal predictions using fluorescence in situ hybridization (FISH) and single-cell sequencing from an ovarian cancer patient sample, thereby recapitulating the key modeling assumptions of TITAN. © 2014 Ha et al.; Published by Cold Spring Harbor Laboratory Press.

  18. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda).

    PubMed

    Kim, Taeho; Kern, Elizabeth; Park, Chungoo; Nadler, Steven A; Bae, Yeon Jae; Park, Joong-Ki

    2018-05-10

    Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.

  19. Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi.

    PubMed

    Shao, Changwen; Yin, Youping; Qi, Zhaoran; Li, Ren; Song, Zhangyong; Li, Yan; Wang, Zhongkang

    2015-10-01

    An Agrobacterium-mediated genetic transformation system for the entomopathogenic fungus Nomuraea rileyi was established. Three binary T-DNA vectors, pPZP-Hph, pPZP-Hph-RNAi and pPZP-Hph-DsRed2, were constructed. The trpc promoter from Aspergillus nidulans was used as the cis-regulatory element to drive the expression of hygromycin phosphotransferase (hph) gene and DsRed2, which conferred the hygromycin B (Hyg B) resistance and red fluorescence visualization, respectively. The blastospores and conidia were used as the recipients. The blastospores' transformation efficiency reached ∼20-40 transformants per 10(6) blastospores, whereas the conidia were not transformed. Based on an analysis of five generations of subcultures, PCR and Southern blotting assays, the Ptrpc-hph cassette had integrated into the genomes of all transformants, which contained single copy of the hph gene and showed mitotic stability. Abundant altered morphologic phenotypes in colonies, blastospores and hyphae formations were observed in the arbitrary insertional mutants of N. rileyi, which made it possible to study the relationships between the functions and the interrupted genes over the whole genome. The transformation protocol will promote the functional characterization of genes, and the construction of genetically engineered strains of this important entomopathogenic fungus, and potentially of other similar fungal pathogens. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas.

    PubMed

    Etemadmoghadam, Dariush; deFazio, Anna; Beroukhim, Rameen; Mermel, Craig; George, Joshy; Getz, Gad; Tothill, Richard; Okamoto, Aikou; Raeder, Maria B; Harnett, Paul; Lade, Stephen; Akslen, Lars A; Tinker, Anna V; Locandro, Bianca; Alsop, Kathryn; Chiew, Yoke-Eng; Traficante, Nadia; Fereday, Sian; Johnson, Daryl; Fox, Stephen; Sellers, William; Urashima, Mitsuyoshi; Salvesen, Helga B; Meyerson, Matthew; Bowtell, David

    2009-02-15

    A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.

  1. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    USDA-ARS?s Scientific Manuscript database

    The diversity and population-genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analyzed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnola), sequenced to 11-fold...

  2. Rapid construction of capsid-modified adenoviral vectors through bacteriophage lambda Red recombination.

    PubMed

    Campos, Samuel K; Barry, Michael A

    2004-11-01

    There are extensive efforts to develop cell-targeting adenoviral vectors for gene therapy wherein endogenous cell-binding ligands are ablated and exogenous ligands are introduced by genetic means. Although current approaches can genetically manipulate the capsid genes of adenoviral vectors, these approaches can be time-consuming and require multiple steps to produce a modified viral genome. We present here the use of the bacteriophage lambda Red recombination system as a valuable tool for the easy and rapid construction of capsid-modified adenoviral genomes.

  3. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases

    PubMed Central

    Giraldo-Calderón, Gloria I.; Emrich, Scott J.; MacCallum, Robert M.; Maslen, Gareth; Dialynas, Emmanuel; Topalis, Pantelis; Ho, Nicholas; Gesing, Sandra; Madey, Gregory; Collins, Frank H.; Lawson, Daniel

    2015-01-01

    VectorBase is a National Institute of Allergy and Infectious Diseases supported Bioinformatics Resource Center (BRC) for invertebrate vectors of human pathogens. Now in its 11th year, VectorBase currently hosts the genomes of 35 organisms including a number of non-vectors for comparative analysis. Hosted data range from genome assemblies with annotated gene features, transcript and protein expression data to population genetics including variation and insecticide-resistance phenotypes. Here we describe improvements to our resource and the set of tools available for interrogating and accessing BRC data including the integration of Web Apollo to facilitate community annotation and providing Galaxy to support user-based workflows. VectorBase also actively supports our community through hands-on workshops and online tutorials. All information and data are freely available from our website at https://www.vectorbase.org/. PMID:25510499

  4. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands

    PubMed Central

    de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2006-01-01

    Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ considerably in gene content. Conclusion Our results underscore the remarkable plasticity of the chlorophycean chloroplast genome. Owing to this plasticity, only a sketchy portrait could be drawn for the chloroplast genome of the last common ancestor of Scenedesmus and Chlamydomonas. PMID:16638149

  5. Descriptive Statistics of the Genome: Phylogenetic Classification of Viruses.

    PubMed

    Hernandez, Troy; Yang, Jie

    2016-10-01

    The typical process for classifying and submitting a newly sequenced virus to the NCBI database involves two steps. First, a BLAST search is performed to determine likely family candidates. That is followed by checking the candidate families with the pairwise sequence alignment tool for similar species. The submitter's judgment is then used to determine the most likely species classification. The aim of this article is to show that this process can be automated into a fast, accurate, one-step process using the proposed alignment-free method and properly implemented machine learning techniques. We present a new family of alignment-free vectorizations of the genome, the generalized vector, that maintains the speed of existing alignment-free methods while outperforming all available methods. This new alignment-free vectorization uses the frequency of genomic words (k-mers), as is done in the composition vector, and incorporates descriptive statistics of those k-mers' positional information, as inspired by the natural vector. We analyze five different characterizations of genome similarity using k-nearest neighbor classification and evaluate these on two collections of viruses totaling over 10,000 viruses. We show that our proposed method performs better than, or as well as, other methods at every level of the phylogenetic hierarchy. The data and R code is available upon request.

  6. The Transposable Element Mariner Mediates Germline Transformation in Drosophila Melanogaster

    PubMed Central

    Lidholm, D. A.; Lohe, A. R.; Hartl, D. L.

    1993-01-01

    A vector for germline transformation in Drosophila melanogaster was constructed using the transposable element mariner. The vector, denoted pMlwB, contains a mariner element disrupted by an insertion containing the wild-type white gene from D. melanogaster, the β-galactosidase gene from Escherichia coli and sequences that enable plasmid replication and selection in E. coli. The white gene is controlled by the promoter of the D. melanogaster gene for heat-shock protein 70, and the β-galactosidase gene is flanked upstream by the promoter of the transposable element P as well as that of mariner. The MlwB element was introduced into the germline of D. melanogaster by co-injection into embryos with an active mariner element, Mos1, which codes for a functional transposase and serves as a helper. Two independent germline insertions were isolated and characterized. The results show that the MlwB element inserted into the genome in a mariner-dependent manner with the termini of the inverted repeats inserted at a TA dinucleotide. Both insertions exhibit an unexpected degree of germline and somatic stability, even in the presence of an active mariner element in the genetic background. These results demonstrate that the mariner transposable element, which is small (1286 bp) and relatively homogeneous in size among different copies, is nevertheless capable of promoting the insertion of the large (13.2 kb) MlwB element. Because of the widespread phylogenetic distribution of mariner among insects, these results suggest that mariner might provide a wide hostrange transformation vector for insects. PMID:8394264

  7. Construction of a New Phage Integration Vector pFIV-Val for Use in Different Francisella Species

    PubMed Central

    Tlapák, Hana; Köppen, Kristin; Rydzewski, Kerstin; Grunow, Roland; Heuner, Klaus

    2018-01-01

    We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNAVal-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNAVal gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species. PMID:29594068

  8. Construction of a New Phage Integration Vector pFIV-Val for Use in Different Francisella Species.

    PubMed

    Tlapák, Hana; Köppen, Kristin; Rydzewski, Kerstin; Grunow, Roland; Heuner, Klaus

    2018-01-01

    We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 ( F. tularensis subsp. novicida -like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val ( Francisella Integration Vector-tRNA Val -specific), using the attL/R- sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli . The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp . where FIV-Val stably integrated site specifically into the tRNA Val gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species.

  9. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    PubMed Central

    2013-01-01

    Background Cotton, one of the world’s leading crops, is important to the world’s textile and energy industries, and is a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction of a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library and comparative genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.) with one of its diploid putative progenitor species, G. raimondii Ulbr. Results We constructed the cotton BIBAC library in a vector competent for high-molecular-weight DNA transformation in different plant species through either Agrobacterium or particle bombardment. The library contains 76,800 clones with an average insert size of 135 kb, providing an approximate 99% probability of obtaining at least one positive clone from the library using a single-copy probe. The quality and utility of the library were verified by identifying BIBACs containing genes important for fiber development, fiber cellulose biosynthesis, seed fatty acid metabolism, cotton-nematode interaction, and bacterial blight resistance. In order to gain an insight into the Upland cotton genome and its relationship with G. raimondii, we sequenced nearly 10,000 BIBAC ends (BESs) randomly selected from the library, generating approximately one BES for every 250 kb along the Upland cotton genome. The retroelement Gypsy/DIRS1 family predominates in the Upland cotton genome, accounting for over 77% of all transposable elements. From the BESs, we identified 1,269 simple sequence repeats (SSRs), of which 1,006 were new, thus providing additional markers for cotton genome research. Surprisingly, comparative sequence analysis showed that Upland cotton is much more diverged from G. raimondii at the genomic sequence level than expected. There seems to be no significant difference between the relationships of the Upland cotton D- and A-subgenomes with the G. raimondii genome, even though G. raimondii contains a D genome (D5). Conclusions The library represents the first BIBAC library in cotton and related species, thus providing tools useful for integrative physical mapping, large-scale genome sequencing and large-scale functional analysis of the Upland cotton genome. Comparative sequence analysis provides insights into the Upland cotton genome, and a possible mechanism underlying the divergence and evolution of polyploid Upland cotton from its diploid putative progenitor species, G. raimondii. PMID:23537070

  10. Somatic copy number alterations in gastric adenocarcinomas among Asian and Western patients

    PubMed Central

    Corso, Giovanni; Ryu, Min-Hee; Kang, Yoon-Koo; Roviello, Franco; Saksena, Gordon; Peng, Shouyong; Shivdasani, Ramesh A.; Bass, Adam J.; Beroukhim, Rameen

    2017-01-01

    Gastric cancer, a leading worldwide cause of cancer mortality, shows high geographic and ethnic variation in incidence rates, which are highest in East Asia. The anatomic locations and clinical behavior also differ by geography, leading to the controversial idea that Eastern and Western forms of the disease are distinct. In view of these differences, we investigated whether gastric cancers from Eastern and Western patients show distinct genomic profiles. We used high-density profiling of somatic copy-number aberrations to analyze the largest collection to date of gastric adenocarcinomas and utilized genotyping data to rigorously annotate ethnic status. The size of this collection allowed us to accurately identify regions of significant copy-number alteration and separately to evaluate tumors arising in Eastern and Western patients. Among molecular subtypes classified by The Cancer Genome Atlas, the frequency of gastric cancers showing chromosomal instability was modestly higher in Western patients. After accounting for this difference, however, gastric cancers arising in Easterners and Westerners have highly similar somatic copy-number patterns. Only one genomic event, focal deletion of the phosphatase gene PTPRD, was significantly enriched in Western cases, though also detected in Eastern cases. Thus, despite the different risk factors and clinical features, gastric cancer appears to be a fundamentally similar disease in both populations and the divergent clinical outcomes cannot be ascribed to different underlying structural somatic genetic aberrations. PMID:28426752

  11. Assessment of palindromes as platforms for DNA amplification in breast cancer

    PubMed Central

    Guenthoer, Jamie; Diede, Scott J.; Tanaka, Hisashi; Chai, Xiaoyu; Hsu, Li; Tapscott, Stephen J.; Porter, Peggy L.

    2012-01-01

    DNA amplification, particularly of chromosomes 8 and 11, occurs frequently in breast cancer and is a key factor in tumorigenesis, often associated with poor prognosis. The mechanisms involved in the amplification of these regions are not fully understood. Studies from model systems have demonstrated that palindrome formation can be an early step in DNA amplification, most notably seen in the breakage–fusion–bridge (BFB) cycle. Therefore, palindromes might be associated with gene amplicons in breast cancer. To address this possibility, we coupled high-resolution palindrome profiling by the Genome-wide Analysis of Palindrome Formation (GAPF) assay with genome-wide copy-number analyses on a set of breast cancer cell lines and primary tumors to spatially associate palindromes and copy-number gains. We identified GAPF-positive regions distributed nonrandomly throughout cell line and tumor genomes, often in clusters, and associated with copy-number gains. Commonly amplified regions in breast cancer, chromosomes 8q and 11q, had GAPF-positive regions flanking and throughout the copy-number gains. We also identified amplification-associated GAPF-positive regions at similar locations in subsets of breast cancers with similar characteristics (e.g., ERBB2 amplification). These shared positive regions offer the potential to evaluate the utility of palindromes as prognostic markers, particularly in premalignant breast lesions. Our results implicate palindrome formation in the amplification of regions with key roles in breast tumorigenesis, particularly in subsets of breast cancers. PMID:21752925

  12. EvolMarkers: a database for mining exon and intron markers for evolution, ecology and conservation studies.

    PubMed

    Li, Chenhong; Riethoven, Jean-Jack M; Naylor, Gavin J P

    2012-09-01

    Recent innovations in next-generation sequencing have lowered the cost of genome projects. Nevertheless, sequencing entire genomes for all representatives in a study remains expensive and unnecessary for most studies in ecology, evolution and conservation. It is still more cost-effective and efficient to target and sequence single-copy nuclear gene markers for such studies. Many tools have been developed for identifying nuclear markers, but most of these have focused on particular taxonomic groups. We have built a searchable database, EvolMarkers, for developing single-copy coding sequence (CDS) and exon-primed-intron-crossing (EPIC) markers that is designed to work across a broad range of phylogenetic divergences. The database is made up of single-copy CDS derived from BLAST searches of a variety of metazoan genomes. Users can search the database for different types of markers (CDS or EPIC) that are common to different sets of input species with different divergence characteristics. EvolMarkers can be applied to any taxonomic group for which genome data are available for two or more species. We included 82 genomes in the first version of EvolMarkers and have found the methods to be effective across Placozoa, Cnidaria, Arthropod, Nematoda, Annelida, Mollusca, Echinodermata, Hemichordata, Chordata and plants. We demonstrate the effectiveness of searching for CDS markers within annelids and show how to find potentially useful intronic markers within the lizard Anolis. © 2012 Blackwell Publishing Ltd.

  13. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    PubMed Central

    Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.

    2016-01-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184

  14. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation

    PubMed Central

    Zhu, Yuan O.; Sherlock, Gavin; Petrov, Dmitri A.

    2016-01-01

    Budding yeast has undergone several independent transitions from commercial to clinical lifestyles. The frequency of such transitions suggests that clinical yeast strains are derived from environmentally available yeast populations, including commercial sources. However, despite their important role in adaptive evolution, the prevalence of polyploidy and aneuploidy has not been extensively analyzed in clinical strains. In this study, we have looked for patterns governing the transition to clinical invasion in the largest screen of clinical yeast isolates to date. In particular, we have focused on the hypothesis that ploidy changes have influenced adaptive processes. We sequenced 144 yeast strains, 132 of which are clinical isolates. We found pervasive large-scale genomic variation in both overall ploidy (34% of strains identified as 3n/4n) and individual chromosomal copy numbers (36% of strains identified as aneuploid). We also found evidence for the highly dynamic nature of yeast genomes, with 35 strains showing partial chromosomal copy number changes and eight strains showing multiple independent chromosomal events. Intriguingly, a lineage identified to be baker’s/commercial derived with a unique damaging mutation in NDC80 was particularly prone to polyploidy, with 83% of its members being triploid or tetraploid. Polyploidy was in turn associated with a >2× increase in aneuploidy rates as compared to other lineages. This dataset provides a rich source of information on the genomics of clinical yeast strains and highlights the potential importance of large-scale genomic copy variation in yeast adaptation. PMID:27317778

  15. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    PubMed

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  16. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.

    PubMed

    Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron

    2012-02-01

    Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.

  17. Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome

    PubMed Central

    Li, Jian; Harris, R. Alan; Cheung, Sau Wai; Coarfa, Cristian; Jeong, Mira; Goodell, Margaret A.; White, Lisa D.; Patel, Ankita; Kang, Sung-Hae; Shaw, Chad; Chinault, A. Craig; Gambin, Tomasz; Gambin, Anna; Lupski, James R.; Milosavljevic, Aleksandar

    2012-01-01

    The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ∼1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease. PMID:22615578

  18. Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic.

    PubMed

    Marcon, Helena Sanches; Domingues, Douglas Silva; Silva, Juliana Costa; Borges, Rafael Junqueira; Matioli, Fábio Filippi; Fontes, Marcos Roberto de Mattos; Marino, Celso Luis

    2015-08-14

    In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring <3 million years, except one Copia family, RLC_egBianca_1. Protein theoretical models suggest different properties between Copia and Gypsy domains. IRAP and REMAP markers suggested genomic polymorphisms among Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.

  19. The complete chloroplast genome of Sinopodophyllum hexandrum Ying (Berberidaceae).

    PubMed

    Meng, Lihua; Liu, Ruijuan; Chen, Jianbing; Ding, Chenxu

    2017-05-01

    The complete nucleotide sequence of the Sinopodophyllum hexandrum Ying chloroplast genome (cpDNA) was determined based on next-generation sequencing technologies in this study. The genome was 157 203 bp in length, containing a pair of inverted repeat (IRa and IRb) regions of 25 960 bp, which were separated by a large single-copy (LSC) region of 87 065 bp and a small single-copy (SSC) region of 18 218 bp, respectively. The cpDNA contained 148 genes, including 96 protein-coding genes, 8 ribosomal RNA genes, and 44 tRNA genes. In these genes, eight harbored a single intron, and two (ycf3 and clpP) contained a couple of introns. The cpDNA AT content of S. hexandrum cpDNA is 61.5%.

  20. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    PubMed

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus.

  1. Complete genome sequence of chinese strain of ‘Candidatus Liberibacter asiaticus’

    USDA-ARS?s Scientific Manuscript database

    The complete genome sequence of ‘Candidatus Liberibacter asiaticus’ strain (Las) Guangxi-1(GX-1) was obtained by an Illumina HiSeq 2000. The GX-1 genome comprises 1,268,237 nucleotides, 36.5 % GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S ...

  2. Figure 2 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Cancer.gov

    Grouping and sorting genomic data in IGV. The IGV user interface displaying 202 glioblastoma samples from TCGA. Samples are grouped by tumor subtype (second annotation column) and data type (first annotation column) and sorted by copy number of the EGFR locus (middle column). Adapted from Figure 1; Robinson et al. 2011

  3. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    PubMed Central

    Macas, Jiří; Neumann, Pavel; Navrátilová, Alice

    2007-01-01

    Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining. PMID:18031571

  4. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    PubMed

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  5. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  6. Complete Genome Sequence of Pelosinus fermentans JBW45, a Member of a Remarkably Competitive Group of Negativicutes in the Firmicutes Phylum

    DOE PAGES

    De León, Kara B.; Utturkar, Sagar M.; Camilleri, Laura B.; ...

    2015-09-24

    The genome of Pelosinus fermentans JBW45, isolated from a chromium-contaminated site in Hanford, Washington, USA, has been completed with PacBio sequencing. Finally, nine copies of the rRNA gene operon and multiple transposase genes with identical sequences resulted in breaks in the original draft genome and may suggest genomic instability of JBW45.

  7. SINEs as driving forces in genome evolution.

    PubMed

    Schmitz, J

    2012-01-01

    SINEs are short interspersed elements derived from cellular RNAs that repetitively retropose via RNA intermediates and integrate more or less randomly back into the genome. SINEs propagate almost entirely vertically within their host cells and, once established in the germline, are passed on from generation to generation. As non-autonomous elements, their reverse transcription (from RNA to cDNA) and genomic integration depends on the activity of the enzymatic machinery of autonomous retrotransposons, such as long interspersed elements (LINEs). SINEs are widely distributed in eukaryotes, but are especially effectively propagated in mammalian species. For example, more than a million Alu-SINE copies populate the human genome (approximately 13% of genomic space), and few master copies of them are still active. In the organisms where they occur, SINEs are a challenge to genomic integrity, but in the long term also can serve as beneficial building blocks for evolution, contributing to phenotypic heterogeneity and modifying gene regulatory networks. They substantially expand the genomic space and introduce structural variation to the genome. SINEs have the potential to mutate genes, to alter gene expression, and to generate new parts of genes. A balanced distribution and controlled activity of such properties is crucial to maintaining the organism's dynamic and thriving evolution. Copyright © 2012 S. Karger AG, Basel.

  8. Evolution of short inverted repeat in cupressophytes, transfer of accD to nucleus in Sciadopitys verticillata and phylogenetic position of Sciadopityaceae.

    PubMed

    Li, Jia; Gao, Lei; Chen, Shanshan; Tao, Ke; Su, Yingjuan; Wang, Ting

    2016-02-11

    Sciadopitys verticillata is an evergreen conifer and an economically valuable tree used in construction, which is the only member of the family Sciadopityaceae. Acquisition of the S. verticillata chloroplast (cp) genome will be useful for understanding the evolutionary mechanism of conifers and phylogenetic relationships among gymnosperm. In this study, we have first reported the complete chloroplast genome of S. verticillata. The total genome is 138,284 bp in length, consisting of 118 unique genes. The S. verticillata cp genome has lost one copy of the canonical inverted repeats and shown distinctive genomic structure comparing with other cupressophytes. Fifty-three simple sequence repeat loci and 18 forward tandem repeats were identified in the S. verticillata cp genome. According to the rearrangement of cupressophyte cp genome, we proposed one mechanism for the formation of inverted repeat: tandem repeat occured first, then rearrangement divided the tandem repeat into inverted repeats located at different regions. Phylogenetic estimates inferred from 59-gene sequences and cpDNA organizations have both shown that S. verticillata was sister to the clade consisting of Cupressaceae, Taxaceae, and Cephalotaxaceae. Moreover, accD gene was found to be lost in the S. verticillata cp genome, and a nucleus copy was identified from two transcriptome data.

  9. Identification and characterization of jute LTR retrotransposons:

    PubMed Central

    Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit

    2011-01-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842

  10. Copy Number Variants and Congenital Anomalies Surveillance: A Suggested Coding Strategy Using the Royal College of Paediatrics and Child Health Version of ICD-10.

    PubMed

    Bedard, Tanya; Lowry, R Brian; Sibbald, Barbara; Thomas, Mary Ann; Innes, A Micheil

    2016-01-01

    The use of array-based comparative genomic hybridization to assess DNA copy number is increasing in many jurisdictions. Such technology identifies more genetic causes of congenital anomalies; however, the clinical significance of some results may be challenging to interpret. A coding strategy to address cases with copy number variants has recently been implemented by the Alberta Congenital Anomalies Surveillance System and is described.

  11. Identification of a Retroelement from the Resurrection Plant Boea hygrometrica That Confers Osmotic and Alkaline Tolerance in Arabidopsis thaliana

    PubMed Central

    Shen, Chun-Ying; Xu, Guang-Hui; Chen, Shi-Xuan; Song, Li-Zhen; Li, Mei-Jing; Wang, Li-Li; Zhu, Yan; Lv, Wei-Tao; Gong, Zhi-Zhong; Liu, Chun-Ming; Deng, Xin

    2014-01-01

    Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species. PMID:24851859

  12. Integration Profile and Safety of an Adenovirus Hybrid-Vector Utilizing Hyperactive Sleeping Beauty Transposase for Somatic Integration

    PubMed Central

    Zhang, Wenli; Muck-Hausl, Martin; Wang, Jichang; Sun, Chuanbo; Gebbing, Maren; Miskey, Csaba; Ivics, Zoltan; Izsvak, Zsuzsanna; Ehrhardt, Anja

    2013-01-01

    We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models. PMID:24124483

  13. Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family.

    PubMed

    Volff, J N; Körting, C; Altschmied, J; Duschl, J; Sweeney, K; Wichert, K; Froschauer, A; Schartl, M

    2001-02-01

    Jule is the second complete long-terminal-repeat (LTR) Ty3/Gypsy retrotransposon identified to date in vertebrates. Jule, first isolated from the poeciliid fish Xiphophorus maculatus, is 4.8 kb in length, is flanked by two 202-bp LTRs, and encodes Gag (structural core protein) and Pol (protease, reverse transcriptase, RNase H, and integrase, in that order) but no envelope. There are three to four copies of Jule per haploid genome in X. maculatus. Two of them are located in a subtelomeric region of the sex chromosomes, where they are associated with the Xmrk receptor tyrosine kinase genes, of which oncogenic versions are responsible for the formation of hereditary melanoma in Xiphophorus. One almost intact copy of Jule was found in the first intron of the X-chromosomal allele of the Xmrk proto-oncogene, and a second, more corrupted copy is present only 56 nt downstream of the polyadenylation signal of the Xmrk oncogene. Jule-related elements were detected by Southern blot hybridization with less than 10 copies per haploid genome in numerous other poeciliids, as well as in more divergent fishes, including the medakafish Oryzias latipes and the tilapia Oreochromis niloticus. Database searches also identified Jule-related sequences in the zebrafish Danio rerio and in both genome project pufferfishes, Fugu rubripes and Tetraodon nigroviridis. Phylogenetic analysis revealed that Jule is the first member of the Mag family of Ty3/Gypsy retrotransposons described to date in vertebrates. This family includes the silkworm Mag and sea urchin SURL retrotransposons, as well as sequences from the nematode Caenorhabditis elegans. Additional related elements were identified in the genomes of the malaria mosquito Anopheles gambiae and the nematode Ascaris lumbricoides. Phylogeny of Mag-related elements suggested that the Mag family of retrotransposons is polyphyletic and is constituted of several ancient lineages that diverged before their host genomes more than 600 MYA.

  14. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjaerulff, Soren; Jensen, Martin Roland

    2005-10-28

    In the fission yeast Schizosaccharomyces pombe, there are relatively few signal peptides available and most reports of their activity have not been comparative. Using sequence information from the S. pombe genome database we have identified three putative signal peptides, designated Cpy, Amy and Dpp, and compared their ability to support secretion of green fluorescent protein (GFP). In the comparison we also included the two well-described secretion signals derived from the precursors of, respectively, the Saccharomyces cerevisiae {alpha}-factor and the S. pombe P-factor. The capability of the tested signal peptides to direct secretion of GFP varied greatly. The {alpha}-factor signal didmore » not confer secretion to GFP and all the produced GFP was trapped intracellular. In contrast, the Cpy signal peptide supported efficient secretion of GFP with yields approximating 10 mg/L. We also found that the use of an attenuated version of the S. cerevisiae URA3 marker substantially increases vector copy number and expression yield in fission yeast.« less

  15. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli.

    PubMed

    Kubota, Akane; Ishizaki, Kimitsune; Hosaka, Masashi; Kohchi, Takayuki

    2013-01-01

    The thallus, the gametophyte body of the liverwort Marchantia polymorpha, develops clonal progenies called gemmae that are useful in the isolation and propagation of isogenic plants. Developmental timing is critical to Agrobacterium-mediated transformation, and high transformation efficiency has been achieved only with sporelings. Here we report an Agrobacterium-mediated transformation system for M. polymorpha using regenerating thalli. Thallus regeneration was induced by cutting the mature thallus across the apical-basal axis and incubating the basal portion of the thallus for 3 d. Regenerating thalli were infected with Agrobacterium carrying binary vector that contained a selection marker, the hygromycin phosphotransferase gene, and hygromycin-resistant transformants were obtained with an efficiency of over 60%. Southern blot analysis verified random integration of 1 to 4 copies of the T-DNA into the M. polymorpha genome. This Agrobacterium-mediated transformation system for M. polymorpha should provide opportunities to perform genetic transformation without preparing spores and to generate a sufficient number of transformants with isogenic background.

  16. Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases.

    PubMed Central

    Seibel, P; Trappe, J; Villani, G; Klopstock, T; Papa, S; Reichmann, H

    1995-01-01

    Successes in classical gene therapies have been achieved by placing a corrected copy of a defective nuclear gene in cells. A similar gene replacement approach for a mutant mitochondrial genome is invariably linked to the use of a yet unavailable mitochondrial transfection vector. Here we show that DNA coupled covalently to a short mitochondrial leader peptide (chimera) can enter mitochondria via the protein import pathway, opening a new way for gene-, antisense-RNA- or antisense-DNA-delivery in molecular therapies. The import behavior of the purified chimera, composed of the amino-terminal leader peptide of the rat ornithine transcarbamylase (OTC) and a double stranded DNA molecule (17 bp or 322 bp), was tested by incubating with coupled and 'energized' rat liver mitochondria in the presence of reticulocyte lysate. The chimera was translocated with a high efficiency into the matrix of mitochondria utilizing the protein import pathway, independent from the size of its passenger DNA. Images PMID:7870573

  17. An improved host-vector system for Candida maltosa using a gene isolated from its genome that complements the his5 mutation of Saccharomyces cerevisiae.

    PubMed

    Hikiji, T; Ohkuma, M; Takagi, M; Yano, K

    1989-10-01

    The host-vector system of an n-alkane-assimilating-yeast, Candida maltosa, which we previously constructed using an autonomously replicating sequence (ARS) region isolated from the genome of this yeast, utilizes C. maltosa J288 (leu2-) as a host. As this host had a serious growth defect on n-alkane, we developed an improved host-vector system using C. maltosa CH1 (his-) as host. The vectors were constructed with the Candida ARS region and a DNA fragment isolated from the genome of C. maltosa. Since this DNA fragment could complement histidine auxotrophy of both C. maltosa CH1 and S. cerevisiae (his5-), we termed the gene contained in this DNA fragment C-HIS5. The vectors were characterized in terms of transformation frequency and stability, and the nucleotide sequence of C-HIS5 was determined. The deduced amino acid sequence (389 residues) shared 51% homology with that of HIS5 of S. cerevisiae (384 residues; Nishiwaki et al. 1987).

  18. Genomic characterization of recurrent high-grade astroblastoma.

    PubMed

    Bale, Tejus A; Abedalthagafi, Malak; Bi, Wenya Linda; Kang, Yun Jee; Merrill, Parker; Dunn, Ian F; Dubuc, Adrian; Charbonneau, Sarah K; Brown, Loreal; Ligon, Azra H; Ramkissoon, Shakti H; Ligon, Keith L

    2016-01-01

    Astroblastomas are rare primary brain tumors, diagnosed based on histologic features. Not currently assigned a WHO grade, they typically display indolent behavior, with occasional variants taking a more aggressive course. We characterized the immunohistochemical characteristics, copy number (high-resolution array comparative genomic hybridization, OncoCopy) and mutational profile (targeted next-generation exome sequencing, OncoPanel) of a cohort of seven biopsies from four patients to identify recurrent genomic events that may help distinguish astroblastomas from other more common high-grade gliomas. We found that tumor histology was variable across patients and between primary and recurrent tumor samples. No common molecular features were identified among the four tumors. Mutations commonly observed in astrocytic tumors (IDH1/2, TP53, ATRX, and PTEN) or ependymoma were not identified. However one case with rapid clinical progression displayed mutations more commonly associated with GBM (NF1(N1054H/K63)*, PIK3CA(R38H) and ERG(A403T)). Conversely, another case, originally classified as glioblastoma with nine-year survival before recurrence, lacked a GBM mutational profile. Other mutations frequently seen in lower grade gliomas (BCOR, BCORL1, ERBB3, MYB, ATM) were also present in several tumors. Copy number changes were variable across tumors. Our findings indicate that astroblastomas have variable growth patterns and morphologic features, posing significant challenges to accurate classification in the absence of diagnostically specific copy number alterations and molecular features. Their histopathologic overlap with glioblastoma will likely confound the observation of long-term GBM "survivors". Further genomic profiling is needed to determine whether these tumors represent a distinct entity and to guide management strategies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Rare copy number alterations and copy-neutral loss of heterozygosity revealed in ameloblastomas by high-density whole-genome microarray analysis.

    PubMed

    Diniz, Marina Gonçalves; Duarte, Alessandra Pires; Villacis, Rolando A; Guimarães, Bruna V A; Duarte, Luiz Cláudio Pires; Rogatto, Sílvia R; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri

    2017-05-01

    Ameloblastoma (unicystic, UA, or multicystic, MA) is a rare tumor associated with bone destruction and facial deformity. Its malignant counterpart is the ameloblastic carcinoma (AC). The BRAFV600E mutation is highly prevalent in all these tumors subtypes and cannot account for their different clinical behaviors. We assessed copy number alterations (CNAs) and copy-neutral loss of heterozygosity (cnLOH) in UA (n = 2), MA (n = 3), and AC (n = 1) using the CytoScan HD Array (Affymetrix) and the BRAFV600E status. RT-qPCR was applied in four selected genes (B4GALT1, BAG1, PKD1L2, and PPP2R5A) covered by rare alterations, also including three MA and four normal oral tissues. Fifty-seven CNAs and cnLOH were observed in the ameloblastomas and six CNAs in the AC. Seven of the CNAs were rare (six in UA and one in MA), four of them encompassing genes (gains of 7q11.21, 1q32.3, and 9p21.1 and loss of 16q23.2). We found positive correlation between rare CNA gene dosage and the expression of B4GALT1, BAG1, PKD1L2, and PPP2R5A. The AC and 1 UA were BRAF wild-type; however, this UA showed rare genomic alterations encompassing genes associated with RAF/MAPK activation. Ameloblastomas show rare CNAs and cnLOH, presenting a specific genomic profile with no overlapping of the rare alterations among UA, MA, and AC. These genomic changes might play a role in tumor evolution and in BRAFV600E-negative tumors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effectiveness of liquid soap and hand sanitizer against Norwalk virus on contaminated hands.

    PubMed

    Liu, Pengbo; Yuen, Yvonne; Hsiao, Hui-Mien; Jaykus, Lee-Ann; Moe, Christine

    2010-01-01

    Disinfection is an essential measure for interrupting human norovirus (HuNoV) transmission, but it is difficult to evaluate the efficacy of disinfectants due to the absence of a practicable cell culture system for these viruses. The purpose of this study was to screen sodium hypochlorite and ethanol for efficacy against Norwalk virus (NV) and expand the studies to evaluate the efficacy of antibacterial liquid soap and alcohol-based hand sanitizer for the inactivation of NV on human finger pads. Samples were tested by real-time reverse transcription-quantitative PCR (RT-qPCR) both with and without a prior RNase treatment. In suspension assay, sodium hypochlorite concentrations of >or=160 ppm effectively eliminated RT-qPCR detection signal, while ethanol, regardless of concentration, was relatively ineffective, giving at most a 0.5 log(10) reduction in genomic copies of NV cDNA. Using the American Society for Testing and Materials (ASTM) standard finger pad method and a modification thereof (with rubbing), we observed the greatest reduction in genomic copies of NV cDNA with the antibacterial liquid soap treatment (0.67 to 1.20 log(10) reduction) and water rinse only (0.58 to 1.58 log(10) reduction). The alcohol-based hand sanitizer was relatively ineffective, reducing the genomic copies of NV cDNA by only 0.14 to 0.34 log(10) compared to baseline. Although the concentrations of genomic copies of NV cDNA were consistently lower on finger pad eluates pretreated with RNase compared to those without prior RNase treatment, these differences were not statistically significant. Despite the promise of alcohol-based sanitizers for the control of pathogen transmission, they may be relatively ineffective against the HuNoV, reinforcing the need to develop and evaluate new products against this important group of viruses.

Top