The Development of the Differential MEMS Vector Hydrophone
Zhang, Guojun; Liu, Mengran; Shen, Nixin; Wang, Xubo; Zhang, Wendong
2017-01-01
To solve the problem that MEMS vector hydrophones are greatly interfered with by the vibration of the platform and flow noise in applications, this paper describes a differential MEMS vector hydrophone that could simultaneously receive acoustic signals and reject acceleration signals. Theoretical and simulation analyses have been carried out. Lastly, a prototype of the differential MEMS vector hydrophone has been created and tested using a standing wave tube and a vibration platform. The results of the test show that this hydrophone has a high sensitivity, Mv = −185 dB (@ 500 Hz, 0 dB reference 1 V/μPa), which is almost the same as the previous MEMS vector hydrophones, and has a low acceleration sensitivity, Mv = −58 dB (0 dB reference 1 V/g), which has decreased by 17 dB compared with the previous MEMS vector hydrophone. The differential MEMS vector hydrophone basically meets the requirements of acoustic vector detection when it is rigidly fixed to a working platform, which lays the foundation for engineering applications of MEMS vector hydrophones. PMID:28594384
NASA Astrophysics Data System (ADS)
Zhang, Guojun; Ding, Junwen; Xu, Wei; Liu, Yuan; Wang, Renxin; Han, Janjun; Bai, Bing; Xue, Chenyang; Liu, Jun; Zhang, Wendong
2018-05-01
A micro hydrophone based on piezoresistive effect, "MEMS vector hydrophone" was developed for acoustic detection application. To improve the sensitivity of MEMS vector hydrophone at low frequency, we reported a stress centralized MEMS vector hydrophone (SCVH) mainly used in 20-500 Hz. Stress concentration area was actualized in sensitive unit of hydrophone by silicon micromachining technology. Then piezoresistors were placed in stress concentration area for better mechanical response, thereby obtaining higher sensitivity. Static analysis was done to compare the mechanical response of three different sensitive microstructure: SCVH, conventional micro-silicon four-beam vector hydrophone (CFVH) and Lollipop-shaped vector hydrophone (LVH) respectively. And fluid-structure interaction (FSI) was used to analyze the natural frequency of SCVH for ensuring the measurable bandwidth. Eventually, the calibration experiment in standing wave field was done to test the property of SCVH and verify the accuracy of simulation. The results show that the sensitivity of SCVH has nearly increased by 17.2 dB in contrast to CFVH and 7.6 dB in contrast to LVH during 20-500 Hz.
Design and simulation of MEMS vector hydrophone with reduced cross section based meander beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Manoj; Dutta, S.; Pal, Ramjay
MEMS based vector hydrophone is being one of the key device in the underwater communications. In this paper, we presented a bio-inspired MEMS vector hydrophone. The hydrophone structure consists of a proof mass suspended by four meander type beams with reduced cross-section. Modal patterns of the structure were studied. First three modal frequencies of the hydrophone structure were found to be 420 Hz, 420 Hz and 1646 Hz respectively. The deflection and stress of the hydrophone is found have linear behavior in the 1 µPa – 1Pa pressure range.
A passive optical fibre hydrophone array utilising fibre Bragg grating sensors
NASA Astrophysics Data System (ADS)
Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.
2018-02-01
Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.
Fiber-optic hydrophone array for acoustic surveillance in the littoral
NASA Astrophysics Data System (ADS)
Hill, David; Nash, Phillip
2005-05-01
We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Wang, Renxin; Zhang, Guojun; Du, Jin; Zhao, Long; Xue, Chenyang; Zhang, Wendong; Liu, Jun
2015-07-01
This paper presents methods of promoting the sensitivity of Microelectromechanical Systems (MEMS) vector hydrophone by increasing the sensing area of cilium and perfect insulative Parylene membrane. First, a low-density sphere is integrated with the cilium to compose a "lollipop shape," which can considerably increase the sensing area. A mathematic model on the sensitivity of the "lollipop-shaped" MEMS vector hydrophone is presented, and the influences of different structural parameters on the sensitivity are analyzed via simulation. Second, the MEMS vector hydrophone is encapsulated through the conformal deposition of insulative Parylene membrane, which enables underwater acoustic monitoring without any typed sound-transparent encapsulation. Finally, the characterization results demonstrate that the sensitivity reaches up to -183 dB (500 Hz 0dB at 1 V/ μPa ), which is increased by more than 10 dB, comparing with the previous cilium-shaped MEMS vector hydrophone. Besides, the frequency response takes on a sensitivity increment of 6 dB per octave. The working frequency band is 20-500 Hz and the concave point depth of 8-shaped directivity is beyond 30 dB, indicating that the hydrophone is promising in underwater acoustic application.
An intelligent subsurface buoy design for measuring ocean ambient noise
NASA Astrophysics Data System (ADS)
Li, Bing; Wang, Lei
2012-11-01
A type of ultra-low power subsurface buoy system is designed to measure and record ocean ambient noise data. The buoy utilizes a vector hydrophone (pass band 20Hz-1.2kHz) and a 6-element vertical hydrophone array (pass band 20Hz-2kHz) to measure ocean ambient noise. The acoustic signals are passed through an automatically modified gain, a band pass filter, and an analog-to-digital (A/D) conversion module. They are then stored in high-capacity flash memory. In order to identify the direction of noise source, the vector sensor measuring system has integrated an electric-magnetic compass. The system provides a low-rate underwater acoustic communication system which is used to report the buoy state information and a high-speed USB interface which is used to retrieve the recorded data on deck. The whole system weighs about 125kg and can operate autonomously for more than 72 hours. The system's main architecture and the sea-trial test results are provided in this paper.
Killer whale caller localization using a hydrophone array in an oceanarium pool
NASA Astrophysics Data System (ADS)
Bowles, Ann E.; Greenlaw, Charles F.; McGehee, Duncan E.; van Holliday, D.
2004-05-01
A system to localize calling killer whales was designed around a ten-hydrophone array in a pool at SeaWorld San Diego. The array consisted of nine ITC 8212 and one ITC 6050H hydrophones mounted in recessed 30×30 cm2 niches. Eight of the hydrophones were connected to a Compaq Armada E500 laptop computer through a National Instruments DAQ 6024E PCMCIA A/D data acquisition card and a BNC-2120 signal conditioner. The system was calibrated with a 139-dB, 4.5-kHz pinger. Acoustic data were collected during four 48-72 h recording sessions, simultaneously with video recorded from a four-camera array. Calling whales were localized by one of two methods, (1) at the hydrophone reporting the highest sound exposure level and (2) using custom-designed 3-D localization software based on time-of-arrival (ORCA). Complex reverberations in the niches and pool made locations based on time of arrival difficult to collect. Based on preliminary analysis of data from four sessions (400+ calls/session), the hydrophone reporting the highest level reliably attributed callers 51%-100% of the time. This represents a substantial improvement over attribution rates of 5%-15% obtained with single hydrophone recordings. [Funding provided by Hubbs-SeaWorld Research Institute and the Hubbs Society.
A large-aperture low-cost hydrophone array for tracking whales from small boats.
Miller, B; Dawson, S
2009-11-01
A passive sonar array designed for tracking diving sperm whales in three dimensions from a single small vessel is presented, and the advantages and limitations of operating this array from a 6 m boat are described. The system consists of four free floating buoys, each with a hydrophone, built-in recorder, and global positioning system receiver (GPS), and one vertical stereo hydrophone array deployed from the boat. Array recordings are post-processed onshore to obtain diving profiles of vocalizing sperm whales. Recordings are synchronized using a GPS timing pulse recorded onto each track. Sensitivity analysis based on hyperbolic localization methods is used to obtain probability distributions for the whale's three-dimensional location for vocalizations received by at least four hydrophones. These localizations are compared to those obtained via isodiachronic sequential bound estimation. Results from deployment of the system around a sperm whale in the Kaikoura Canyon in New Zealand are shown.
Vector Acoustics, Vector Sensors, and 3D Underwater Imaging
NASA Astrophysics Data System (ADS)
Lindwall, D.
2007-12-01
Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.
Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys †
Mantouka, Agni; Felisberto, Paulo; Santos, Paulo; Zabel, Friedrich; Saleiro, Mário; Jesus, Sérgio M.; Sebastião, Luís
2017-01-01
This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper. PMID:28594342
Development and Testing of a Dual Accelerometer Vector Sensor for AUV Acoustic Surveys.
Mantouka, Agni; Felisberto, Paulo; Santos, Paulo; Zabel, Friedrich; Saleiro, Mário; Jesus, Sérgio M; Sebastião, Luís
2017-06-08
This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of the WiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper.
NASA Astrophysics Data System (ADS)
Murphy, Paul G.
River hydrokinetic turbines may be an economical alternative to traditional energy sources for small communities on Alaskan rivers. However, there is concern that sound from these turbines could affect sockeye salmon (Oncorhynchus nerka), an important resource for small, subsistence based communities, commercial fisherman, and recreational anglers. The hearing sensitivity of sockeye salmon has not been quantified, but behavioral responses to sounds at frequencies less than a few hundred Hertz have been documented for Atlantic salmon (Salmo salar), and particle motion is thought to be the primary mode of stimulation. Methods of measuring acoustic particle motion are well-established, but have rarely been necessary in energetic areas, such as river and tidal current environments. In this study, the acoustic pressure in the vicinity of an operating river current turbine is measured using a freely drifting hydrophone array. Analysis of turbine sound reveals tones that vary in frequency and magnitude with turbine rotation rate, and that may sockeye salmon may sense. In addition to pressure, the vertical components of particle acceleration and velocity are estimated by calculating the finite difference of the pressure signals from the hydrophone array. A method of determining source bearing using an array of hydrophones is explored. The benefits and challenges of deploying drifting hydrophone arrays for marine renewable energy converter monitoring are discussed.
NASA Astrophysics Data System (ADS)
Wang, Delin
In this thesis, we develop the basics of the Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) technique for the instantaneous continental-shelf scale detection, localization and species classification of marine mammal vocalizations. POAWRS uses a large-aperture, densely sampled coherent hydrophone array system with orders of magnitude higher array gain to enhance signal-to-noise ratios (SNR) by coherent beamforming, enabling detection of underwater acoustic signals either two orders of magnitude more distant in range or lower in SNR than a single hydrophone. The ability to employ coherent spatial processing of signals with the POAWRS technology significantly improves areal coverage, enabling detection of oceanic sound sources over instantaneous wide areas spanning 100 km or more in diameter. The POAWRS approach was applied to analyze marine mammal vocalizations from diverse species received on a 160-element Office Naval Research Five Octave Research Array (ONR-FORA) deployed during their feeding season in Fall 2006 in the Gulf of Maine. The species-dependent temporal-spatial distribution of marine mammal vocalizations and correlation to the prey fish distributions have been determined. Furthermore, the probability of detection regions, source level distributions and pulse compression gains of the vocalization signals from diverse marine mammal species have been estimated. We also develop an approach for enhancing the angular resolution and improving bearing estimates of acoustic signals received on a coherent hydrophone array with multiple-nested uniformly-spaced subapertures, such as the ONR-FORA, by nonuniform array beamforming. Finally we develop a low-cost non-oil-filled towable prototype hydrophone array that consists of eight hydrophone elements with real-time data acquisition and 100 m tow cable. The approach demonstrated here will be applied in the development of a full 160 element POAWRS-type low-cost coherent hydrophone array system in the future.
Physically Damped Noise Canceling Hydrophone
2016-06-24
Description of the Prior Art [0004] An acoustic hydrophone can transfer underwater pressure waves to electrical energy. As a result, an output charge...includes two types of piezoelectric transducers coupled together. One transducer maintains voids and is sensitive to hydrostatic acoustic signals. The...the cable assembly. [0009] Cray (United States Patent No. 6,370,084) discloses an acoustic vector sensor. An accelerometer of the acoustic vector
The evolution and exploitation of the fiber-optic hydrophone
NASA Astrophysics Data System (ADS)
Hill, David J.
2007-07-01
In the late 1970s one of the first applications identified for fibre-optic sensing was the fibre-optic hydrophone. It was recognised that the technology had the potential to provide a cost effective solution for large-scale arrays of highly sensitive hydrophones which could be interrogated over large distances. Consequently both the United Kingdom and United States navies funded the development of this sonar technology to the point that it is now deployed on submarines and as seabed arrays. The basic design of a fibre-optic hydrophone has changed little; comprising a coil of optical fibre wound on a compliant mandrel, interrogated using interferometric techniques. Although other approaches are being investigated, including the development of fibre-laser hydrophones, the interferometric approach remains the most efficient way to create highly multiplexed arrays of acoustic sensors. So much so, that the underlying technology is now being exploited in civil applications. Recently the exploration and production sector of the oil and gas industry has begun funding the development of fibre-optic seismic sensing using seabed mounted, very large-scale arrays of four component (three accelerometers and a hydrophone) packages based upon the original technology developed for sonar systems. This has given new impetus to the development of the sensors and the associated interrogation systems which has led to the technology being adopted for other commercial uses. These include the development of networked in-road fibre-optic Weigh-in-Motion sensors and of intruder detection systems which are able to acoustically monitor long lengths of border, on both land and at sea. After two decades, the fibre-optic hydrophone and associated technology has matured and evolved into a number of highly capable sensing solutions used by a range of industries.
Detection Performance of Horizontal Linear Hydrophone Arrays in Shallow Water.
1980-12-15
random phase G gain G angle interval covariance matrix h processor vector H matrix matched filter; generalized beamformer I unity matrix 4 SACLANTCEN SR...omnidirectional sensor is h*Ph P G = - h [Eq. 47] G = h* Q h P s The following two sections evaluate a few examples of application of the OLP. Following the...At broadside the signal covariance matrix reduces to a dyadic: P s s*;therefore, the gain (e.g. Eq. 37) becomes tr(H* P H) Pn * -1 Q -1 Pn G ~OQp
Bio-inspired piezoelectric artificial hair cell sensor fabricated by powder injection molding
NASA Astrophysics Data System (ADS)
Han, Jun Sae; Oh, Keun Ha; Moon, Won Kyu; Kim, Kyungseop; Joh, Cheeyoung; Seo, Hee Seon; Bollina, Ravi; Park, Seong Jin
2015-12-01
A piezoelectric artificial hair cell sensor was fabricated by the powder injection molding process in order to make an acoustic vector hydrophone. The entire process of powder injection molding was developed and optimized for PMN-PZT ceramic powder. The artificial hair cell sensor, which consists of high aspect ratio hair cell and three rectangular mechanoreceptors, was precisely fabricated through the developed powder injection molding process. The density and the dielectric property of the fabricated sensor shows 98% of the theoretical density and 85% of reference dielectric property of PMN-PZT ceramic powder. With regard to homogeneity, three rectangular mechanoreceptors have the same dimensions, with 3 μm of tolerance with 8% of deviation of dielectric property. Packaged vector hydrophones measure the underwater acoustic signals from 500 to 800 Hz with -212 dB of sensitivity. Directivity of vector hydrophone was acquired at 600 Hz as analyzing phase differences of electric signals.
Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.
Wang, Qi; Wang, Yingmin; Zhu, Guolei
2016-12-30
The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.
Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array
Wang, Qi; Wang, Yingmin; Zhu, Guolei
2016-01-01
The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828
Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing
NASA Astrophysics Data System (ADS)
Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing
2014-12-01
In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.
The acoustic field of singing humpback whales in the vertical plane
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Pack, Adam A.; Lammers, Marc O.; Herman, Louis; Andrews, Kimberly; Deakos, Mark
2003-04-01
A vertical array of five hydrophones was used to measure the acoustic field of singing humpback whales. Once a singer was located, two swimmers with snorkel gear were deployed to determine the orientation of the whale and to position the boat so that the array could be deployed in front of the whale at a minimum standoff distance of 10 m. The spacing of the hydrophones was 7 m with the deepest hydrophone deployed at depth of 35 m. An 8-channel TASCAM recorder having a bandwidth of 24 kHz was used to record the hydrophone signals. The location of the singer was determined by computing the time of arrival differences between the hydrophone signals. The maximum source level varied between individual units in a song, with values between 180 and 190 dB. The acoustic field determined by considering the relative intensity of higher frequency harmonics in the signals indicate that the sounds are projected in the horizontal direction with the singer's head canted downward 45 to 60°. High-frequency harmonics extended beyond 24 kHz, suggesting that humpback whales may have an upper frequency limit of hearing as high as 24 kHz.
Offshore killer whale tracking using multiple hydrophone arrays.
Gassmann, Martin; Henderson, E Elizabeth; Wiggins, Sean M; Roch, Marie A; Hildebrand, John A
2013-11-01
To study delphinid near surface movements and behavior, two L-shaped hydrophone arrays and one vertical hydrophone line array were deployed at shallow depths (<125 m) from the floating instrument platform R/P FLIP, moored northwest of San Clemente Island in the Southern California Bight. A three-dimensional propagation-model based passive acoustic tracking method was developed and used to track a group of five offshore killer whales (Orcinus orca) using their emitted clicks. In addition, killer whale pulsed calls and high-frequency modulated (HFM) signals were localized using other standard techniques. Based on these tracks sound source levels for the killer whales were estimated. The peak to peak source levels for echolocation clicks vary between 170-205 dB re 1 μPa @ 1 m, for HFM calls between 185-193 dB re 1 μPa @ 1 m, and for pulsed calls between 146-158 dB re 1 μPa @ 1 m.
Short cavity DFB fiber laser based vector hydrophone for low frequency signal detection
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Faxiang; Jiang, Shaodong; Min, Li; Li, Ming; Peng, Gangding; Ni, Jiasheng; Wang, Chang
2017-12-01
A short cavity distributed feedback (DFB) fiber laser is used for low frequency acoustic signal detection. Three DFB fiber lasers with different central wavelengths are chained together to make three-element vector hydrophone with proper sensitivity enhancement design, which has extensive and significant applications to underwater acoustic monitoring for the national defense, oil, gas exploration, and so on. By wavelength-phase demodulation, the lasing wavelength changes under different frequency signals can be interpreted, and the sensitivity is tested about 33 dB re pm/g. The frequency response range is rather flat from 5 Hz to 300 Hz.
Reciprocity relationships in vector acoustics and their application to vector field calculations.
Deal, Thomas J; Smith, Kevin B
2017-08-01
The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.
Ocean Acoustic Observatory Federation
2001-09-30
range detection and localization of blue whale calls in the northeast Pacific Ocean ousing military hydrophone arrays, Jour. Acoust . Soc. Am., vol. 104...3616- 3624, 1998 . 5 Stafford , Kathleen M., Sharon L. Nieukirk, and Christopher G. Fox, Low-frequency whale sounds recorded on hydrophones... Stafford , Kathleen M., Blue Whale (Balaenoptera musculus) Vocalizations recorded in the North Pacific Ocean: Geographic, Seasonal, and Diel Variation,
Onboard Acoustic Data-Processing for the Statistical Analysis of Array Beam-Noise,
1980-12-15
performance of the sonar system as a measurement tool and others that can assess the character of the ambient- noise field at the time of the measurement. In...the plot as would "dead" hydrophones. A reduction in sensitivity of a hydrophone, a faulty preamplifier , or any other fault in the acoustic channel
Echolocation signals of wild Atlantic spotted dolphin (Stenella frontalis)
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Herzing, Denise L.
2003-01-01
An array of four hydrophones arranged in a symmetrical star configuration was used to measure the echolocation signals of the Atlantic spotted dolphin (Stenella frontalis) in the Bahamas. The spacing between the center hydrophone and the other hydrophones was 45.7 cm. A video camera was attached to the array and a video tape recorder was time synchronized with the computer used to digitize the acoustic signals. The echolocation signals had bi-modal frequency spectra with a low-frequency peak between 40 and 50 kHz and a high-frequency peak between 110 and 130 kHz. The low-frequency peak was dominant when the signal the source level was low and the high-frequency peak dominated when the source level was high. Peak-to-peak source levels as high as 210 dB re 1 μPa were measured. The source level varied in amplitude approximately as a function of the one-way transmission loss for signals traveling from the animals to the array. The characteristics of the signals were similar to those of captive Tursiops truncatus, Delphinapterus leucas and Pseudorca crassidens measured in open waters under controlled conditions.
Acoustic properties of humpback whale songs.
Au, Whitlow W L; Pack, Adam A; Lammers, Marc O; Herman, Louis M; Deakos, Mark H; Andrews, Kim
2006-08-01
A vertical array of five hydrophones was used to measure the acoustic field in the vertical plane of singing humpback whales. Once a singer was located, two swimmers with snorkel gear were deployed to determine the orientation of the whale and position the boat so that the array could be deployed in front of the whale at a minimum standoff distance of at least 10 m. The spacing of the hydrophones was 7 m with the deepest hydrophone deployed at a depth of 35 m. An eight-channel TASCAM recorder with a bandwidth of 24 kHz was used to record the hydrophone signals. The location (distance and depth) of the singer was determined by computing the time of arrival differences between the hydrophone signals. The maximum source level varied between individual units in a song, with values between 151 and 173 dB re 1 microPa. One of the purposes of this study was to estimate potential sound exposure of nearby conspecifics. The acoustic field determined by considering the relative intensity of higher frequency harmonics in the signals indicated that the sounds are projected in the horizontal direction despite the singer being canted head downward anywhere from about 25 degrees to 90 degrees. High-frequency harmonics extended beyond 24 kHz, suggesting that humpback whales may have an upper frequency limit of hearing as high as 24 kHz.
Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring
2016-05-02
individual animals . 15. SUBJECT TERMS Marine mammal; Passive acoustic monitoring ; Localization; Tracking ; Multiple source ; Sparse array 16. SECURITY...al. 2004; Thode 2005; Nosal 2007] to localize animals in situations where straight-line propagation assumptions made by conventional marine mammal...Objective 1: Inveti for sound speed profiles. hydrophone position and hydrophone timing offset in addition to animal position Almost all marine mammal
Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whales
NASA Astrophysics Data System (ADS)
Madsen, P. T.; Wahlberg, M.
2007-08-01
Toothed whales produce short, ultrasonic clicks of high directionality and source level to probe their environment acoustically. This process, termed echolocation, is to a large part governed by the properties of the emitted clicks. Therefore derivation of click source parameters from free-ranging animals is of increasing importance to understand both how toothed whales use echolocation in the wild and how they may be monitored acoustically. This paper addresses how source parameters can be derived from free-ranging toothed whales in the wild using calibrated multi-hydrophone arrays and digital recorders. We outline the properties required of hydrophones, amplifiers and analog to digital converters, and discuss the problems of recording echolocation clicks on the axis of a directional sound beam. For accurate localization the hydrophone array apertures must be adapted and scaled to the behavior of, and the range to, the clicking animal, and precise information on hydrophone locations is critical. We provide examples of localization routines and outline sources of error that lead to uncertainties in localizing clicking animals in time and space. Furthermore we explore approaches to time series analysis of discrete versions of toothed whale clicks that are meaningful in a biosonar context.
NASA Astrophysics Data System (ADS)
Udovydchenkov, Ilya A.
2017-07-01
Modal pulses are broadband contributions to an acoustic wave field with fixed mode number. Stable weakly dispersive modal pulses (SWDMPs) are special modal pulses that are characterized by weak dispersion and weak scattering-induced broadening and are thus suitable for communications applications. This paper investigates, using numerical simulations, receiver array requirements for recovering information carried by SWDMPs under various signal-to-noise ratio conditions without performing channel equalization. Two groups of weakly dispersive modal pulses are common in typical mid-latitude deep ocean environments: the lowest order modes (typically modes 1-3 at 75 Hz), and intermediate order modes whose waveguide invariant is near-zero (often around mode 20 at 75 Hz). Information loss is quantified by the bit error rate (BER) of a recovered binary phase-coded signal. With fixed receiver depths, low BERs (less than 1%) are achieved at ranges up to 400 km with three hydrophones for mode 1 with 90% probability and with 34 hydrophones for mode 20 with 80% probability. With optimal receiver depths, depending on propagation range, only a few, sometimes only two, hydrophones are often sufficient for low BERs, even with intermediate mode numbers. Full modal resolution is unnecessary to achieve low BERs. Thus, a flexible receiver array of autonomous vehicles can outperform a cabled array.
In-vivo fetal ultrasound exposimetry.
Daft, C W; Siddiqi, T A; Fitting, D W; Meyer, R A; O'Brien, W R
1990-01-01
An instrument has been developed to measure the acoustic pressure field in vivo during an obstetric ultrasound examination. This provides for improved intensity values for exposure calculations, to assist in assessment of bioeffects. The ultrasonic field is sampled using a calibrated seven-element linear array hydrophone of poly(vinylidene difluoride) transducers, which is placed as close as possible to the ovary, embryo, or fetus using a vaginal approach. The RF signals from the hydrophone are digitized at 50 MHz, and the maximum amplitude waveform received in the examination is recorded. The output of the clinical B-scanner is calibrated by a measurement with the hydrophone in a water bath. From the hydrophone measurements, the in vivo I(SPTA), I(SPTP), and I(SPPA) are computed. Further analysis allows the frequency-dependent tissue attenuation to be assessed.
On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †
Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong
2016-01-01
The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379
NASA Astrophysics Data System (ADS)
Miller, J.; Potty, G. R.; King, J. W.; Gallien, D. R.; Khan, A. A.; Vigness Raposa, K.; Giard, J. L.; Frankel, A. S.; Mason, T.; Popper, A. N.; Hawkins, A. D.; Crocker, S. E.
2016-02-01
Noise radiation from pile driving activities were monitored using multiple sensors during the construction of the USA's first offshore wind farm located 3 nm off Block Island, RI. The 30-megawatt Block Island Wind Farm (BIWF) consists of five turbines in water depths of approximately 30 m and is scheduled to be online in 2016. The substructure for these turbines consists of jacket type construction with piles driven to pin the structure to the seabed. Pile driving operations generate intense sound, impulsive in nature at close range, which radiates into the surrounding air, water and sediment. The underwater acoustic measurement platforms consisted of a towed array consisting of eight hydrophones, two fixed moorings with four hydrophones each, a fixed sensor package for measuring particle velocity, and boat-deployed dipping hydrophones. The hydrophone array was towed from a position 1 km from the pile driving location to 15 km distance from the construction. The fixed moorings were deployed at 10 km and 15 km from the pile location. The fixed moorings consisted of four hydrophones each at depths of 10, 15, 20 and 25 m. Near field measurements of the underwater acoustic signals from the pile driving were collected with a tetrahedral array deployed at 500 m from the pile driving location about 1 m above the seabed. The boat-deployed dipping hydrophones sampled the acoustic field at locations from 0.5 km to 20 km from the pile driving locations. Based on these acoustic measurements and propagation modeling, the acoustic pressure field as a function of range and depth from the pile is estimated. The transition from fast-rise-time impulsive signals at close range to slow-rise-time non-impulsive signals at longer ranges will be addressed. This study will provide the required information to qualify the different zones of potential marine mammal effects (zones of injury, behavioral effects etc.) and to estimate exposure to fishes and other species. [Work supported by Bureau of Ocean Energy Management (BOEM)
Seismic and Biological Sources of Ambient Ocean Sound
NASA Astrophysics Data System (ADS)
Freeman, Simon Eric
Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed. This distribution of sources could reveal small-scale spatial ecological limitations, such as the availability of food and shelter. While array-based passive acoustic sensing is well established in seismoacoustics, the technique is little utilized in the study of ambient biological sound. With the continuance of Moore's law and advances in battery and memory technology, inferring biological processes from ambient sound may become a more accessible tool in underwater ecological evaluation and monitoring.
Demonstration of an advanced fibre laser hydrophone array in Gulf St Vincent
NASA Astrophysics Data System (ADS)
Foster, Scott; Tikhomirov, Alexei; Harrison, Joanne; van Velzen, John
2015-09-01
We have developed an 8-element fibre laser seabed array demonstrating state-of-the art performance characteristics for a fibre laser sensing system. The system employs sea-state-zero sensitivity hydrophones with a flat acoustic response over a bandwidth exceeding 5kHz and very low inertial sensitivity. The system contains no outboard electronics and few metal components making it extremely light, compact, and low complexity. The array may be deployed up to 4 km from a land or sea based platform to a depth of up to 80m. Power delivery and telemetry for all 8 sensors is achieved via a single 2mm diameter optical fibre cable weighing less than 5kg per km. We report here results of the first field trials of this system.
Tracking marine mammals and ships with small and large-aperture hydrophone arrays
NASA Astrophysics Data System (ADS)
Gassmann, Martin
Techniques for passive acoustic tracking in all three spatial dimensions of marine mammals and ships were developed for long-term acoustic datasets recorded continuously over months using custom-designed arrays of underwater microphones (hydrophones) with spacing ranging from meters to kilometers. From the three-dimensional tracks, the acoustical properties of toothed whales and ships, such as sound intensity and directionality, were estimated as they are needed for the passive acoustic abundance estimation of toothed whales and for a quantitative description of the contribution of ships to the underwater soundscape. In addition, the tracks of the toothed whales reveal their underwater movements and demonstrate the potential of the developed tracking techniques to investigate their natural behavior and responses to sound generated by human activity, such as from ships or military SONAR. To track the periodically emitted echolocation sounds of toothed whales in an acoustically refractive environment in the upper ocean, a propagation-model based technique was developed for a hydrophone array consisting of one vertical and two L-shaped subarrays deployed from the floating instrument platform R/P FLIP. The technique is illustrated by tracking a group of five shallow-diving killer whales showing coordinated behavior. The challenge of tracking the highly directional echolocation sounds of deep-diving (< 1 km) toothed whales, in particular Cuvier's beaked whales, was addressed by embedding volumetric small-aperture (≈ 1 m element spacing) arrays into a large-aperture (≈ 1 km element spacing) seafloor array to reduce the minimum number of required receivers from five to two. The capabilities of this technique are illustrated by tracking several groups of up to three individuals over time periods from 10 min to 33 min within an area of 20 km2 in the Southern California Bight. To track and measure the underwater radiated sound of ships, a frequency domain beamformer was implemented for a volumetric hydrophone array (< 2 m element spacing) that was coupled to an autonomous acoustic seafloor recorder. This allows for the tracking and measurement of underwater radiated sound from ships of opportunity with a single instrument deployment and without depending on track information from the automatic information system (AIS).
Gassmann, Martin; Wiggins, Sean M; Hildebrand, John A
2015-10-01
Cuvier's beaked whales (Ziphius cavirostris) were tracked using two volumetric small-aperture (∼1 m element spacing) hydrophone arrays, embedded into a large-aperture (∼1 km element spacing) seafloor hydrophone array of five nodes. This array design can reduce the minimum number of nodes that are needed to record the arrival of a strongly directional echolocation sound from 5 to 2, while providing enough time-differences of arrivals for a three-dimensional localization without depending on any additional information such as multipath arrivals. To illustrate the capabilities of this technique, six encounters of up to three Cuvier's beaked whales were tracked over a two-month recording period within an area of 20 km(2) in the Southern California Bight. Encounter periods ranged from 11 min to 33 min. Cuvier's beaked whales were found to reduce the time interval between echolocation clicks while alternating between two inter-click-interval regimes during their descent towards the seafloor. Maximum peak-to-peak source levels of 179 and 224 dB re 1 μPa @ 1 m were estimated for buzz sounds and on-axis echolocation clicks (directivity index = 30 dB), respectively. Source energy spectra of the on-axis clicks show significant frequency components between 70 and 90 kHz, in addition to their typically noted FM upsweep at 40-60 kHz.
Earthquake Source Parameters Inferred from T-Wave Observations
NASA Astrophysics Data System (ADS)
Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.
2004-12-01
The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T-wave propagation.
Field demonstration of an eight-element fiber laser hydrophone array
NASA Astrophysics Data System (ADS)
Foster, Scott; Tikhomirov, Alexei; Harrison, Joanne; van Velzen, John
2014-05-01
We have developed an 8-element fibre laser seabed array demonstrating state-of-the art performance characteristics for a fibre laser sensing system and highlighting the advantage this technology provides in the underwater sensing domain. The system employs sea-state-zero sensitivity hydrophones with a flat acoustic response over a bandwidth exceeding 5kHz and very low inertial sensitivity. The system contains no outboard electronics and few metal components making it extremely light, compact, and low complexity. The array may be deployed up to 4 km from a land or sea based platform to a depth of up to 80m. Power delivery and telemetry for all 8 sensors is achieved via a single 2mm diameter optical fibre cable weighing less than 5kg per km. We report here results of the first field trials of this system.
NASA Astrophysics Data System (ADS)
Li, Ming; Sun, Zhihui; Zhang, Xiaolei; Li, Shujuan; Song, Zhiqiang; Wang, Meng; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding; Xu, Xiangang
2017-09-01
Fiber laser hydrophones have got widespread concerns due to the unique advantages and broad application prospects. In this paper, the research results of the eight-element multiplexed fiber laser acoustic pressure array and the interrogation system are introduced, containing low-noise distributed feedback fiber laser (DFB-FL) fabrication, sensitivity enhancement packaging, and interferometric signal demodulation. The frequency response range of the system is 10Hz-10kHz, the laser frequency acoustic pressure sensitivity reaches 115 dB re Hz/Pa, and the equivalent noise acoustic pressure is less than 60μPa/Hz1/2. The dynamic range of the system is greater than 120 dB.
1994-07-22
1944). "Mouvements ondulatoires de la mer en profondeur constante on decroissante," Ann. Ponts Chaussees 114, 25-87. Nichols, R.H. (1981). "Infrasonic...I I II 0 0 06 05 I 2 5 i0 20 50 o0 ---,, bL ....... *. BOT TOM HYDROPHONE FR EQ U EN CY (H Z) o SOFAR HYDROPHONE SEISMIC FIG. 2. Estimated response...Trans. R. Soc. London Ser. A 243, 1-35 (1950). Gauge," J. Atmos. Ocean Technol. 1, 237-246 (1984). 2 M. Miche, "Mouvements Ondulatoires de la Mer en
Large Aperture Acoustic Arrays in Support of Reverberation Studies
1990-04-01
Acoustic Reverberation Special Research Program (SRP). Approach We propose the development of several acoustic arrays in preparation for a FY92 experiment...hydrophone array to measure the directional spectrum of seafloor scattered wavefields. Approach As part of the ONT-sponsored, 1987 SVLA experiment, we...scattered energy. Approach Two methods will be described by which vertical and horizontal acoustic arrays can be deployed together for making bottom
T-phase and tsunami signals recorded by IMS hydrophone triplets during the 2011 Tohoku earthquake
NASA Astrophysics Data System (ADS)
Matsumoto, H.; Haralabus, G.; Zampolli, M.; Ozel, N. M.; Yamada, T.; Mark, P. K.
2016-12-01
A hydrophone station of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is used to estimate the back-azimuth of T-phase signals generated by the 2011 Tohoku earthquake. Among the 6 IMS hydrophone stations required by the Treaty, 5 stations consist of two triplets, with the exception of HA1 (Australia), which has only one. The hydrophones of each triplet are suspended in the SOFAR channel and arranged to form an equilateral triangle with each side being approximately two kilometers long. The waveforms from the Tohoku earthquake were received at HA11, located on Wake Island, which is located approximately 3100 km south-east of the earthquake epicenter. The frequency range used in the array analysis was chosen to be less than 0.375 Hz, which assumed the target phase velocity to be 1.5 km/s for T-phases. The T-phase signals that originated from the seismic source however show peaks in the frequency band above one Hz. As a result of the inter-element distances of 2 km, spatial aliasing is observed in the frequency-wavenumber analysis (F-K analysis) if the entire 100 Hz bandwidth of the hydrophones is used. This spatial aliasing is significant because the distance between hydrophones in the triplet is large in comparison to the ratio between the phase velocity of T-phase signals and the frequency. To circumvent this spatial aliasing problem, a three-step processing technique used in seismic array analysis is applied: (1) high-pass filtering above 1 Hz to retrieve the T-phase, followed by (2) extraction of the envelope of this signal to highlight the T-phase contribution, and finally (3) low-pass filtering of the envelope below 0.375 Hz. The F-K analysis provides accurate back-azimuth and slowness estimations without spatial aliasing. Deconvolved waveforms are also processed to retrieve tsunami components by using a three-pole model of the frequency-amplitude-phase (FAP) response below 0.1 Hz and the measured sensor response for higher frequencies. It is also shown that short-period pressure fluctuations recorded by the IMS hydrophones correspond to theoretical dispersion curves of tsunamis. Thus, short-period dispersive tsunami signals can be identified by the IMS hydrophone triplets.
Tran, Duong D; Huang, Wei; Bohn, Alexander C; Wang, Delin; Gong, Zheng; Makris, Nicholas C; Ratilal, Purnima
2014-06-01
Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing, and classified using a single low-frequency (<2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. Multiple concurrently vocalizing sperm whales, in the far-field of the horizontal receiver array, were distinguished and classified based on their horizontal spatial locations and the inter-pulse intervals of their vocalized click signals. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the horizontal array. By accounting for transmission loss modeled using an ocean waveguide-acoustic propagation model, the sperm whale detection range was found to exceed 60 km in low to moderate sea state conditions after coherent array processing.
Deep seafloor arrivals: an unexplained set of arrivals in long-range ocean acoustic propagation.
Stephen, Ralph A; Bolmer, S Thompson; Dzieciuch, Matthew A; Worcester, Peter F; Andrew, Rex K; Buck, Linda J; Mercer, James A; Colosi, John A; Howe, Bruce M
2009-08-01
Receptions, from a ship-suspended source (in the band 50-100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), "deep seafloor arrivals," that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.
Versatile Experimental Kevlar Array Hydrophones: USRD Type H78
1979-04-05
the design of a small deop-submergence noise-measuring hydropl,one for the infra - sonic and low-audio frequency range, three hydrophone...llenriquez and L.-E. Ivey, -Standard Ilydrophone for the Infrasonic and Audio- F.-equency Range at H~ydrostatic Pressure to 10,000 psig," J. A cous. qoc. Am...Piezoelectric Ceramic Ilydrophone for Infrasonic and Audio Frequencies IJSRD Type 1148," NRL Report 7260, 15 Mar. 1971. 9. S.W. Meeks and R.W. Timme, "Effects
Ladegaard, Michael; Jensen, Frants Havmand; Beedholm, Kristian; da Silva, Vera Maria Ferreira; Madsen, Peter Teglberg
2017-07-15
Toothed whales have evolved to live in extremely different habitats and yet they all rely strongly on echolocation for finding and catching prey. Such biosonar-based foraging involves distinct phases of searching for, approaching and capturing prey, where echolocating animals gradually adjust sonar output to actively shape the flow of sensory information. Measuring those outputs in absolute levels requires hydrophone arrays centred on the biosonar beam axis, but this has never been done for wild toothed whales approaching and capturing prey. Rather, field studies make the assumption that toothed whales will adjust their biosonar in the same manner to arrays as they will when approaching prey. To test this assumption, we recorded wild botos ( Inia geoffrensis ) as they approached and captured dead fish tethered to a hydrophone in front of a star-shaped seven-hydrophone array. We demonstrate that botos gradually decrease interclick intervals and output levels during prey approaches, using stronger adjustment magnitudes than predicted from previous boto array data. Prey interceptions are characterised by high click rates, but although botos buzz during prey capture, they do so at lower click rates than marine toothed whales, resulting in a much more gradual transition from approach phase to buzzing. We also demonstrate for the first time that wild toothed whales broaden biosonar beamwidth when closing in on prey, as is also seen in captive toothed whales and bats, thus resulting in a larger ensonified volume around the prey, probably aiding prey tracking by decreasing the risk of prey evading ensonification. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming
2008-12-01
A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.
Bottom Interaction in Long Range Acoustic Propagation
2006-09-30
Pacific Ocean utilizing controlled sources and vertical and horizontal receiver arrays . Broadband sources are considered with typical center...The LOAPEX (Long-range Ocean Acoustic Propagation Experiment) vertical line arrays (VLA) are described on page 1 of the LOAPEX cruise report: " The...hydrophone arrays on the two combined VLAs covered most of the 5-km water column. We refer to one of the VLAs as the deep VLA (DVLA), located at
A Decade of Ocean Acoustic Measurements from R/P FLIP
NASA Astrophysics Data System (ADS)
D'Spain, G. L.
2002-12-01
Studies of the properties of low frequency acoustic fields in the ocean continue to benefit from the use of manned, stable offshore platforms such as R/P FLIP. A major benefit is providing the at-sea stability required for deployment of extremely large aperture line arrays, line arrays composed of both acoustic motion and acoustic pressure sensors, and arrays that provide measurements in all 3 spatial dimensions. In addition, FLIP provides a high-profile (25 m) observation post with 360 deg coverage for simultaneous visual observations of marine mammals. A few examples of the scientific results that have been achieved over this past decade with ocean acoustic data collected on FLIP are presented. These results include the normal mode decomposition of earthquake T phases to study their generation and water/land coupling characteristics using a 3000 m vertical aperture hydrophone array, simultaneous vertical and horizontal directional information on the underwater sound field from line arrays of hydrophones and geophones, the strange nightime chorusing behavior of fish measured by 3D array aperture, the mirage effect caused by bathymetry changes in inversions for source location in shallow water, and the diving behavior of blue whales determined from 1D recordings of their vocalizations. Presently, FLIP serves as the central data recording platform in ocean acoustic studies using AUV's.
NASA Astrophysics Data System (ADS)
Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong
2017-04-01
A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.
A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer.
Urban, Matthew W; Chalek, Carl; Haider, Bruno; Thomenius, Kai E; Fatemi, Mostafa; Alizad, Azra
2013-03-01
Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using 1-D linear-array transducers. In this article, we discuss VA beamforming and image formation using a 1.75-D array transducer. A 1.75-D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75-D array over a 1-D linear-array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75-D array transducer offers several advantages over scanning with a linear-array transducer, including improved image resolution and contrast resulting from better elevation focusing of the imaging point-spread function.
A Beamforming Study for Implementation of Vibro-acoustography with a 1.75D Array Transducer
Urban, Matthew W.; Chalek, Carl; Haider, Bruno; Thomenius, Kai E.; Fatemi, Mostafa; Alizad, Azra
2013-01-01
Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using one-dimensional (1D) linear array transducers. In this article, we discuss VA beamforming and image formation using a 1.75D array transducer. A 1.75D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75D array over a 1D linear array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75D array transducer offers several advantages over scanning with a linear array transducer including improved image resolution and contrast due to better elevation focusing of the imaging point-spread function. PMID:23475919
Freeman, Simon E; Buckingham, Michael J; Freeman, Lauren A; Lammers, Marc O; D'Spain, Gerald L
2015-01-01
A seven element, bi-linear hydrophone array was deployed over a coral reef in the Papahãnaumokuãkea Marine National Monument, Northwest Hawaiian Islands, in order to investigate the spatial, temporal, and spectral properties of biological sound in an environment free of anthropogenic influences. Local biological sound sources, including snapping shrimp and other organisms, produced curved-wavefront acoustic arrivals at the array, allowing source location via focusing to be performed over an area of 1600 m(2). Initially, however, a rough estimate of source location was obtained from triangulation of pair-wise cross-correlations of the sound. Refinements to these initial source locations, and source frequency information, were then obtained using two techniques, conventional and adaptive focusing. It was found that most of the sources were situated on or inside the reef structure itself, rather than over adjacent sandy areas. Snapping-shrimp-like sounds, all with similar spectral characteristics, originated from individual sources predominantly in one area to the east of the array. To the west, the spectral and spatial distributions of the sources were more varied, suggesting the presence of a multitude of heterogeneous biological processes. In addition to the biological sounds, some low-frequency noise due to distant breaking waves was received from end-fire north of the array.
Alibakhshi, Mohammad A.; Kracht, Jonathan M.; Cleveland, Robin O.; Filoux, Erwan; Ketterling, Jeffrey A.
2013-01-01
Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth. PMID:23654419
Yu, Ying; Shen, Guofeng; Zhou, Yufeng; Bai, Jingfeng; Chen, Yazhu
2013-11-01
With the popularity of ultrasound therapy in clinics, characterization of the acoustic field is important not only to the tolerability and efficiency of ablation, but also for treatment planning. A quantitative method was introduced to assess the intensity distribution of a focused ultrasound beam using a hydrophone and an infrared camera with no prior knowledge of the acoustic and thermal parameters of the absorber or the configuration of the array elements. This method was evaluated in both theoretical simulations and experimental measurements. A three-layer model was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the sonication and the consequent temperature elevation. Experiments were carried out to measure the acoustic pressure with the hydrophone and the temperature elevation with the infrared camera. The percentage differences between the derived results and the simulation are <4.1% for on-axis intensity and <21.1% for -6-dB beam width at heating times up to 360 ms in the focal region of three phased-array ultrasound transducers using two different absorbers. The proposed method is an easy, quick and reliable approach to calibrating focused ultrasound transducers with satisfactory accuracy. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean.
Nieukirk, Sharon L; Stafford, Kathleen M; Mellinger, David K; Dziak, Robert P; Fox, Christopher G
2004-04-01
Beginning in February 1999, an array of six autonomous hydrophones was moored near the Mid-Atlantic Ridge (35 degrees N-15 degrees N, 50 degrees W-33 degrees W). Two years of data were reviewed for whale vocalizations by visually examining spectrograms. Four distinct sounds were detected that are believed to be of biological origin: (1) a two-part low-frequency moan at roughly 18 Hz lasting 25 s which has previously been attributed to blue whales (Balaenoptera musculus); (2) series of short pulses approximately 18 s apart centered at 22 Hz, which are likely produced by fin whales (B. physalus); (3) series of short, pulsive sounds at 30 Hz and above and approximately 1 s apart that resemble sounds attributed to minke whales (B. acutorostrata); and (4) downswept, pulsive sounds above 30 Hz that are likely from baleen whales. Vocalizations were detected most often in the winter, and blue- and fin whale sounds were detected most often on the northern hydrophones. Sounds from seismic airguns were recorded frequently, particularly during summer, from locations over 3000 km from this array. Whales were detected by these hydrophones despite its location in a very remote part of the Atlantic Ocean that has traditionally been difficult to survey.
The Quasi-Eulerian Hydrophone: A New Approach for Ocean Acoustics
NASA Astrophysics Data System (ADS)
Matsumoto, H.; Dziak, R. P.; Fowler, M. J.; Hammond, S. R.; Meinig, C.
2005-12-01
For the last 10 years Oregon State University and NOAA/Pacific Marine Environmental Laboratory have successfully operated and maintained autonomous hydrophone arrays to monitor low frequency acoustic energy of earthquakes and marine mammal calls in remote ocean areas where no historical record existed. These hydrophones are moored at mid-water depth and require a routine servicing cruise to retrieve the stored data. The system is robust, but it is not real-time and it takes up to a year before acoustic events can be identified from the raw acoustic data. As a result, we frequently miss opportunities to observe ocean acoustic events as they occur. A new type of autonomous hydrophone called a Quasi-Eulerian hydrophone (QUEphone) is under development at OSU/PMEL. This instrument allows near-real-time monitoring of a selected study area. It is a tether-free float with a built-in hydrophone monitoring system and a buoyancy controller. It is capable of repeat ascent/descent cycles in up to 2000 m of water. In contrast to the conventional Lagrangean float, the QUEphone float stays in the same area by maintaining negative buoyancy and remaining on the seafloor for most of its life span. While on the seafloor the QUEphone runs an intelligent event detection algorithm, and upon detection of a significant number of events will surface to transmit a small data file to shore. We have conducted brief test deployments of the QUEphone in both a fresh-water lake and marine waters off Oregon coast, and the results of these tests will be discussed and compared with other hydrophone data. Once fully developed the QUEphone is expected to provide near real-time analysis capability of earthquakes that affect seafloor hydrothermal vents and their associated ecosystems. Such fast reaction will allow for a rapid response to seismic events, enabling researchers to examine how changes in hydrothermal activity affect deep-ocean vent ecosystems.
2007-01-01
Fabry - Perot inter- ferometers. The hydrophones are passively multiplexed both in time and in wavelength to allow hundreds of channels to be carried...sensing fiber wrapped on a solid plastic mandrel. For this demon- stration, the laser and the demodulation electronics were collocated with the fiber
NASA Astrophysics Data System (ADS)
Perrot, Julie; Cevatoglu, Melis; Cannat, Mathilde; Escartin, Javier; Maia, Marcia; Tisseau, Chantal; Dziak, Robert; Goslin, Jean
2013-04-01
The seismicity of the South Atlantic Ocean has been recorded by the MARCHE network of 4 autonomous underwater hydrophones (AUH) moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). The instruments were deployed south of the Azores Plateau between 32° and 39°N from July 2005 to August 2008. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation result in a detection threshold reduction from a magnitude completeness level (Mc) of ~4.3 for MAR events recorded by the land-based seismic networks to Mc=2.1 using this hydrophone array. A spatio-temporal analysis has been performed among the 5600 events recorded inside the MARCHE array. Most events are distributed along the ridge between lat. 39°N on the Azores Platform and the Rainbow (36°N) segment. In the hydrophone catalogue, acoustic magnitude (Source Level, SL) is used as a measure of earthquake size. The source level above which the data set is complete is SLc=205 dB. We look for seismic swarms using the cluster software of the SEISAN package. The criterion used are a minimum SL of 210 to detect a possible mainshock, and a radius of 30 km and a time window of 40 days after this mainshock (Cevatoglu, 2010, Goslin et al., 2012). 7 swarms with more than 15 events are identified using this approach between 32°et 39°N of latitude. The maximum number of earthquake in a swarm is 57 events. This result differs from the study of Simao et al. (2010) as we processed a further year of data and selected sequences with fewer events. Looking at the distribution of the SL as a function of time after the mainshock, we discuss the possible mechanism of these earthquakes : tectonic events with a "mainshock-aftershock" distribution fitting a modified Omori law or volcanic events showing more constant SL values. We also present the geophysical setting of these 7 swarms, using gravity, bathymetry, and available local geological data. This study illustrates the potential of hydrophone data to monitor segment-scale ridges processes in the vicinity of the Lucky Strike seafloor observatory (lat. 37°20'N), the Azores node of the EMSO (European Multidiciplinary Subsea Observatory) system. - M. Cevatoglu, Analyse de la sismicité médio-atlantique et son apport dans la compréhension des processus d'accrétion : Expérience MARCHE3, master's thesis , IUEM, University of Brest, 52 p., june 2010. - J. Goslin, J. Perrot, J.-Y. Royer, C. Martin, N. Lourenco, J. Luis, R. P. Dziak, H. Matsumoto, J. Haxel, M. J. Fowler, C. G. Fox, A. T.-K. Lau and S.Bazin. Spatiotemporal distribution of the seismicity along the Mid-Atlantic Ridge north of the Azores from hydroacoustic data: Insights into seismogenic processes in a ridge-hot spot context, 2012, Geochem. Geophys. Geosyst., 13, Q02010, doi:10.1029/2011GC003828. - N. Simao and J. Escartin and J. Goslin and J. Haxel and M. Cannat and R. Dziak, Regional Seismicity of the Mid-Atlantic Ridge: Observations from autonomous hydrophone arrays, 2010, Geophys. J. Int., 183, 1559-1578.
APL - North Pacific Acoustic Laboratory
2015-03-04
PhilSea10 cruise were spent in a series of upgrades and associated tests of the TCTD system. Electronic upgrades in conjunction with the manufacturers, ADM...amplitude at positions sufficiently removed from caustics . Mr. White computed eigenrays to all tracked upper array hydrophone positions relative to each
Koblitz, Jens C; Stilz, Peter; Rasmussen, Marianne H; Laidre, Kristin L
2016-01-01
Recordings of narwhal (Monodon monoceros) echolocation signals were made using a linear 16 hydrophone array in the pack ice of Baffin Bay, West Greenland in 2013 at eleven sites. An average -3 dB beam width of 5.0° makes the narwhal click the most directional biosonar signal reported for any species to date. The beam shows a dorsal-ventral asymmetry with a narrower beam above the beam axis. This may be an evolutionary advantage for toothed whales to reduce echoes from the water surface or sea ice surface. Source level measurements show narwhal click intensities of up to 222 dB pp re 1 μPa, with a mean apparent source level of 215 dB pp re 1 μPa. During ascents and descents the narwhals perform scanning in the vertical plane with their sonar beam. This study provides valuable information for reference sonar parameters of narwhals and for the use of acoustic monitoring in the Arctic.
Baird's beaked whale echolocation signals.
Baumann-Pickering, Simone; Yack, Tina M; Barlow, Jay; Wiggins, Sean M; Hildebrand, John A
2013-06-01
Echolocation signals from Baird's beaked whales were recorded during visual and acoustic shipboard surveys of cetaceans in the California Current ecosystem and with autonomous, long-term recorders in the Southern California Bight. The preliminary measurement of the visually validated Baird's beaked whale echolocation signals from towed array data were used as a basis for identifying Baird's signals in the autonomous recorder data. Two distinct signal types were found, one being a beaked whale-like frequency modulated (FM) pulse, the other being a dolphin-like broadband click. The median FM inter-pulse interval was 230 ms. Both signal types showed a consistent multi-peak structure in their spectra with peaks at ~9, 16, 25, and 40 kHz. Depending on signal type, as well as recording aspect and distance to the hydrophone, these peaks varied in relative amplitude. The description of Baird's echolocation signals will allow for studies of their distribution and abundance using towed array data without associated visual sightings and from autonomous seafloor hydrophones.
Koblitz, Jens C.; Stilz, Peter; Rasmussen, Marianne H.; Laidre, Kristin L.
2016-01-01
Recordings of narwhal (Monodon monoceros) echolocation signals were made using a linear 16 hydrophone array in the pack ice of Baffin Bay, West Greenland in 2013 at eleven sites. An average -3 dB beam width of 5.0° makes the narwhal click the most directional biosonar signal reported for any species to date. The beam shows a dorsal-ventral asymmetry with a narrower beam above the beam axis. This may be an evolutionary advantage for toothed whales to reduce echoes from the water surface or sea ice surface. Source level measurements show narwhal click intensities of up to 222 dB pp re 1 μPa, with a mean apparent source level of 215 dB pp re 1 μPa. During ascents and descents the narwhals perform scanning in the vertical plane with their sonar beam. This study provides valuable information for reference sonar parameters of narwhals and for the use of acoustic monitoring in the Arctic. PMID:27828956
Kreider, Wayne; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera A.
2014-01-01
High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased array transducer. First, low-amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared to pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field including shock formation are quantitatively predicted. PMID:25004539
Characteristics and Use of a Parametric End-Fired Array for Acoustics in Air
2007-03-01
as a sonar application for underwater use. The vast majority of the research for parametric arrays was devoted to underwater applications until the...and also for the calibration of hydrophones and receivers for wide band sonar . All of the researchers mentioned above mainly focused their efforts on...features, which include very high directivity at low frequencies without unwanted side lobes. They are generally used as a wide band sonar system
2007-09-30
the behavioral ecology of marine mammals by simultaneously tracking multiple vocalizing individuals in space and time. OBJECTIVES The ...goal is to contribute to the behavioral ecology of marine mammals by simultaneously tracking multiple vocalizing individuals in space and time. 15...OA Graduate Traineeship for E-M Nosal) LONG-TERM GOALS The goal of our research is to develop systems that use a widely spaced hydrophone array
NASA Astrophysics Data System (ADS)
Newcomb, Joal; Fisher, Robert; Field, Robert; Turgut, Altan; Ioup, George; Ioup, Juliette; Rayborn, Grayson; Kuczaj, Stan; Caruthers, Jerald; Goodman, Ralph; Sidorovskaia, Natalia
2002-05-01
Three bottom-moored hydrophones, 50 m above the bottom, were placed on a downslope line, ending at the largest concentration of sperm whale sightings in the northern Gulf of Mexico, in 600 m, 800 m, and 1000 m water depths. These depths were chosen after upslope propagation modeling, using historical databases, showed transmission losses greater than 110 dB at hydrophones near the bottom in water shallower than 600 m for a 500 m deep source at the 1000 m contour. These autonomously recording hydrophones were environmental acoustic recording system (EARS) buoys obtained from the Naval Oceanographic Office. They were capable of recording signals up to 5500 Hz continuously for 36 days and were deployed from July 17 through August 21. During this period a major marine mammal exercise was being conducted at the surface by the Minerals Management Service and the National Marine Fisheries Service, with other government and university scientists, in which temporary acoustic recording devices were attached to the whales and the whales were monitored by a surface towed array. Our near-bottom measurements of ambient noise and sperm whale vocalizations are discussed and compared to those surface and on-whale measurements. [Research supported by ONR.
NASA Astrophysics Data System (ADS)
Huang, Wei
The passive ocean acoustic waveguide remote sensing (POAWRS) technology is capable of monitoring a large variety of underwater sound sources over instantaneous wide areas spanning continental-shelf scale regions. POAWRS uses a large-aperture densely-sampled coherent hydrophone array to significantly enhance the signal-to-noise ratio via beamforming, enabling detection of sound sources roughly two-orders of magnitude more distant in range than that possible with a single hydrophone. The sound sources detected by POAWRS include ocean biology, geophysical processes, and man-made activities. POAWRS provides detection, bearing-time estimation, localization, and classification of underwater sound sources. The volume of underwater sounds detected by POAWRS is immense, typically exceeding a million unique signal detections per day, in the 10-4000 Hz frequency range, making it a tremendously challenging task to distinguish and categorize the various sound sources present in a given region. Here we develop various approaches for characterizing and clustering the signal detections for various subsets of data acquired using the POAWRS technology. The approaches include pitch tracking of the dominant signal detections, time-frequency feature extraction, clustering and categorization methods. These approaches are essential for automatic processing and enhancing the efficiency and accuracy of POAWRS data analysis. The results of the signal detection, clustering and classification analysis are required for further POAWRS processing, including localization and tracking of a large number of oceanic sound sources. Here the POAWRS detection, localization and clustering approaches are applied to analyze and elucidate the vocalization behavior of humpback, sperm and fin whales in the New England continental shelf and slope, including the Gulf of Maine from data acquired using coherent hydrophone arrays. The POAWRS technology can also be applied for monitoring ocean vehicles. Here the approach is calibrated by application to known ships present in the Gulf of Maine and in the Norwegian Sea from their underwater sounds received using a coherent hydrophone array. The vocalization behavior of humpback whales was monitored over vast areas of the Gulf of Maine using the POAWRS technique over multiple diel cycles in Fall 2006. The humpback vocalizations, received at a rate of roughly 1800+/-1100 calls per day, comprised of both song and non-song. The song vocalizations, composed of highly structured and repeatable set of phrases, are characterized by inter-pulse intervals of 3.5 +/- 1.8 s. Songs were detected throughout the diel cycle, occuring roughly 40% during the day and 60% during the night. The humpback non-song vocalizations, dominated by shorter duration (≤3 s) downsweep and bow-shaped moans, as well as a small fraction of longer duration (˜5 s) cries, have significantly larger mean and more variable inter-pulse intervals of 14.2 +/- 11 s. The non-song vocalizations were detected at night with negligible detections during the day, implying they probably function as nighttime communication signals. The humpback song and non-song vocalizations are separately localized using the moving array triangulation and array invariant techniques. The humpback song and non-song moan calls are both consistently localized to a dense area on northeastern Georges Bank and a less dense region extended from Franklin Basin to the Great South Channel. Humpback cries occur exclusively on northeastern Georges Bank and during nights with coincident dense Atlantic herring shoaling populations, implying the cries are feeding-related. Sperm whales in the New England continental shelf and slope were passively localized and classified from their vocalizations received using a single low-frequency (<2500 Hz) densely-sampled horizontal coherent hydrophone array deployed in Spring 2013 in Gulf of Maine. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. Multiple concurrently vocalizing sperm whales, in the far-field of the horizontal receiver array, were distinguished and classified based on their horizontal spatial locations and the inter-pulse intervals of their vocalized click signals. We provide detailed analysis of over 15,000 fin whale 20 Hz vocalizations received on Oct 1-3, 2006 in the Gulf of Maine. These vocalizations are separated into 16 clusters following the clustering approaches. Seven of these types are prominent, each acounting for between 8% to 16% and together comprise roughly 85% of all the analyzed vocalizations. The 7 prominent clusters are each more abundant during nighttime hours by a factor of roughly 2.5 times than that of the daytime. The diel-spatial correlation of the 7 prominent clusters to the simultaneously observed densities of their fish prey, the Atlantic herring in the Gulf of Maine, is provided which implies that the factor of roughly 2.5 increase in call rate during night-time hours can be attributed to increased fish-feeding activities. (Abstract shortened by ProQuest.).
Portable Multi Hydrophone Array for Field and Laboratory Measurements of Odontocete Acoustic Signals
2014-09-30
false killer whale . Our analysis will also be conducted with current passive acoustic monitoring detectors and classifiers in order to assess if the...obtain horizontal and vertical beam patterns of acoustic signals of a false killer whale and a bottlenose dolphin. The data is currently being
NASA Astrophysics Data System (ADS)
Royer, J.-Y.; Chateau, R.; Dziak, R. P.; Bohnenstiehl, D. R.
2015-08-01
This paper presents the results from the Deflo-hydroacoustic experiment in the Southern Indian Ocean using three autonomous underwater hydrophones, complemented by two permanent hydroacoustic stations. The array monitored for 14 months, from November 2006 to December 2007, a 3000 × 3000 km wide area, encompassing large segments of the three Indian spreading ridges that meet at the Indian Triple Junction. A catalogue of 11 105 acoustic events is derived from the recorded data, of which 55 per cent are located from three hydrophones, 38 per cent from 4, 6 per cent from five and less than 1 per cent by six hydrophones. From a comparison with land-based seismic catalogues, the smallest detected earthquakes are mb 2.6 in size, the range of recorded magnitudes is about twice that of land-based networks and the number of detected events is 5-16 times larger. Seismicity patterns vary between the three spreading ridges, with activity mainly focused on transform faults along the fast spreading Southeast Indian Ridge and more evenly distributed along spreading segments and transforms on the slow spreading Central and ultra-slow spreading Southwest Indian ridges; the Central Indian Ridge is the most active of the three with an average of 1.9 events/100 km/month. Along the Sunda Trench, acoustic events mostly radiate from the inner wall of the trench and show a 200-km-long seismic gap between 2 °S and the Equator. The array also detected more than 3600 cryogenic events, with different seasonal trends observed for events from the Antarctic margin, compared to those from drifting icebergs at lower (up to 50°S) latitudes. Vocalizations of five species and subspecies of large baleen whales were also observed and exhibit clear seasonal variability. On the three autonomous hydrophones, whale vocalizations dominate sound levels in the 20-30 and 100 Hz frequency bands, whereas earthquakes and ice tremor are a dominant source of ambient sound at frequencies <20 Hz.
Portable Multi Hydrophone Array for Field and Laboratory Measurements of Odontocete Acoustic Signals
2015-09-30
bottlenose dolphin and a false killer whale as well as other species such as the Risso’s dolphin . We are currently comparing various file types and methods...echolocation abilities of a Risso’s dolphin are currently being reviewed for publication. 3 The hook detection study recordings are being analyzed for basic...element array in order to obtain horizontal and vertical beam patterns of acoustic signals of a false killer whale and a bottlenose dolphin . The data
Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias
2010-01-01
Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084
15 CFR Supplement No. 7 to Part 774 - Very Sensitive List
Code of Federal Regulations, 2014 CFR
2014-01-01
... designed” for real time application with towed acoustic hydrophone arrays, having “user accessible....2.f—Processing equipment, “specially designed” for real time application with bottom or bay cable...” “specially designed” for a defense article not on the USML or a commodity controlled by a “600 series” ECCN...
Underwater sound radiation patterns of contemporary merchant ships
NASA Astrophysics Data System (ADS)
Gassmann, M.; Wiggins, S. M.; Hildebrand, J. A.
2016-12-01
Merchant ships radiate underwater sound as an unintended by-product of their operation and as consequence contribute significantly to low-frequency, man-made noise in the ocean. Current measurement standards for the description of underwater sound from ships (ISO 17208-1:2016 and ANSI S12.64-2009) require nominal hydrophone depths of 15°, 30° and 45° at the starboard and portside of the test vessel.To opportunistically study the underwater sound of contemporary merchant ships that were tracked by the Automatic Identification System (AIS), an array of seven high-frequency acoustic recording packages (HARPs) with a sampling frequency of 200 kHz was deployed in the Santa Barbara Channel in the primary outgoing shipping lane for the port of Los Angeles and Long Beach. The vertical and horizontal aperture of the array allowed for starboard and portside measurements at all standard-required nominal hydrophone depths in addition to measurements taken at the keel aspect. Based on these measurements, frequency-dependent radiation patterns of contemporary merchant ships were estimated and used to evaluate current standards for computing ship source levels.
Gerhardson, Tyler; Sukovich, Jonathan R; Pandey, Aditya S; Hall, Timothy L; Cain, Charles A; Xu, Zhen
2017-11-01
Histotripsy is a minimally invasive ultrasound therapy that has shown rapid liquefaction of blood clots through human skullcaps in an in vitro intracerebral hemorrhage model. However, the efficiency of these treatments can be compromised if the skull-induced aberrations are uncorrected. We have developed a catheter hydrophone which can perform aberration correction (AC) and drain the liquefied clot following histotripsy treatment. Histotripsy pulses were delivered through an excised human skullcap using a 256-element, 500-kHz hemisphere array transducer with a 15-cm focal distance. A custom hydrophone was fabricated using a mm PZT-5h crystal interfaced to a coaxial cable and integrated into a drainage catheter. An AC algorithm was developed to correct the aberrations introduced between histotripsy pulses from each array element. An increase in focal pressure of up to 60% was achieved at the geometric focus and 27%-62% across a range of electronic steering locations. The sagittal and axial -6-dB beam widths decreased from 4.6 to 2.2 mm in the sagittal direction and 8 to 4.4 mm in the axial direction, compared to 1.5 and 3 mm in the absence of aberration. After performing AC, lesions with diameters ranging from 0.24 to 1.35 mm were generated using electronic steering over a mm grid in a tissue-mimicking phantom. An average volume of 4.07 ± 0.91 mL was liquefied and drained after using electronic steering to treat a 4.2-mL spherical volume in in vitro bovine clots through the skullcap.
NASA Astrophysics Data System (ADS)
Miller, Patrick J.; Tyack, Peter L.
Investigations of communication systems benefit from concurrent observation of vocal and visible behaviors of individual animals. A device has been developed to identify individual vocalizing resident killer whales ( Orcinus orca) during focal behavioral observations. The device consists of a 2-m, 15-element hydrophone array, which is easily towed behind a small vessel, on-board multi-channel recorders, and real-time signal processing equipment. Acoustic data from the hydrophones are digitized and processed using broadband frequency-domain beamforming to yield frequency-azimuth (FRAZ) and "directo-gram" displays of arriving sounds. Based upon statistical analysis of independent portions of typical killer whale calls, the precision of the angle-of-arrival estimate ranges from ±0° to ±2.5° with a mean precision of ±1.5°. Echolocation clicks also are resolved precisely with a typical -6 dB mainlobe width of ±2.0°. Careful positioning of the array relative to the animals minimizes the effects of depth ambiguities and allows identification of individual sources in many circumstances. Several strategies for identifying vocalizing individuals are discussed and an example of a successful identification is described. Use of the array with resident killer whales did not interfere with vessel maneuverability, animal tracking, or behavioral sampling of focal individuals. This localization technique has promise for advancing the abilities of researchers to conduct unbiased behavioral and acoustic sampling of individual free-ranging cetaceans.
Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies.
Littler, Ian C M; Gray, Malcolm B; Chow, Jong H; Shaddock, Daniel A; McClelland, David E
2009-06-22
An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.
50 CFR 218.34 - Requirements for monitoring and reporting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... beyond the border of the exclusion zone (i.e., the circumference of the area from the border of the... (hydrophone or towed array) could be used to determine if marine mammals are in the area before and/or after a... participation shall take into account safety, logistics, and operational concerns. (iv) MMOs shall observe from...
50 CFR 218.34 - Requirements for monitoring and reporting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... beyond the border of the exclusion zone (i.e., the circumference of the area from the border of the... (hydrophone or towed array) could be used to determine if marine mammals are in the area before and/or after a... participation shall take into account safety, logistics, and operational concerns. (iv) MMOs shall observe from...
50 CFR 218.34 - Requirements for monitoring and reporting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... beyond the border of the exclusion zone (i.e., the circumference of the area from the border of the... (hydrophone or towed array) could be used to determine if marine mammals are in the area before and/or after a... participation shall take into account safety, logistics, and operational concerns. (iv) MMOs shall observe from...
Vocalizations produced by humpback whale (Megaptera novaeangliae) calves recorded in Hawaii.
Zoidis, Ann M; Smultea, Mari A; Frankel, Adam S; Hopkins, Julia L; Day, Andy; McFarland, A Sasha; Whitt, Amy D; Fertl, Dagmar
2008-03-01
Although humpback whale (Megaptera novaeangliae) calves are reported to vocalize, this has not been measurably verified. During March 2006, an underwater video camera and two-element hydrophone array were used to record nonsong vocalizations from a mother-calf escort off Hawaii. Acoustic data were analyzed; measured time delays between hydrophones provided bearings to 21 distinct vocalizations produced by the male calf. Signals were pulsed (71%), frequency modulated (19%), or amplitude modulated (10%). They were of simple structure, low frequency (mean=220 Hz), brief duration (mean=170 ms), and relatively narrow bandwidth (mean=2 kHz). The calf produced three series of "grunts" when approaching the diver. During winters of the years 2001-2005 in Hawaii, nonsong vocalizations were recorded in 109 (65%) of 169 groups with a calf using an underwater video and single (omnidirectional) hydrophone. Nonsong vocalizations were most common (34 of 39) in lone mother-calf pairs. A subsample from this dataset of 60 signals assessed to be vocalizations provided strong evidence that 10 male and 18 female calves vocalized based on statistical similarity to the 21 verified calf signals, proximity to an isolated calf (27 of 28 calves), strong signal-to-noise ratio, and/or bubble emissions coincident to sound.
An Operational Summary of the BERMEX81-V3 Experiment: 17-19 September 1981.
1982-07-01
1979 and 1980) were to utilize the Versatile Experimental Kevlar Array (VEKA-3B), a two-hydrophone, vertically moored system with an RF telemetry link to...the nose and tail sections of a MK35 tor- pedo . Operational parameters of the BTS 9029 are presented in Table C-3. The BTS 9029 system was fully
Blue-Whale Calls Detected at the Pioneer Seamount Underwater Observatory
NASA Astrophysics Data System (ADS)
Hoffman, M. D.; Vuosalo, C. O.; Bland, R. W.; Garfield, N.
2002-12-01
In September of 2001 a cabled vertical linear array (VLA) of hydrophones was deployed on Pioneer Seamount, 90 km off the California coast near Half Moon Bay, by the NOAA-PMEL and University of Washington-APL. The array of 4 hydrophones is at a depth of 950 m, and the four signals are digitized at the shore end of the cable at 1000 Hz. The data are archived by PMEL, and are available to the public over the internet. Spectrograms of all of the data are accessible on the SFSU web site. A large number of blue-whale calls are evident in the spectrograms. We have employed spectrogram correlation [Mellinger 2000] and a matched-filter detection scheme [Stafford 1998] to automatically identify these whale calls in three months of data. Results on the frequency of calls and their variability will be presented. Mellinger, David K., and Christopher W. Clark [2000], "Recognizing transient low-frequency whale sounds by spectrogram correlation," J. Acoust. Soc. Am. 107 (3518). Stafford, Kathleen M., Christopher G. Fox, and Davis S. Clark [1998], "Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean," J. Acoust. Soc. Am. 104 (3616).
NASA Astrophysics Data System (ADS)
Simão, N.; Goslin, J.; Perrot, J.; Haxel, J.; Dziak, R.
2006-12-01
Acoustic data recorded by two Autonomous Hydrophone Arrays (AHA) were jointly processed in Brest (IUEM) and Newport (PMEL-VENTS) to monitor the seismicity of the Mid-Atlantic Ridge (MAR) over a ten month period, at a wide range of spatial scales. Over the deployment period, nearly 6000 T-phase generating earthquakes were localized using a semi-automatic algorithm. Our analysis of the temporal and spatial distribution of these events combined with their acoustic energy source levels provides important insights for the generation mechanisms and characteristic behavior of MAR seismicity. It shows for the AHA catalog a variation of the cumulative number of events with time almost linear. Taking in account the area inside the arrays, the section of the ridge north of the Azores is more seismically active than the southern part of it and the seismic activity occurs in large localized clusters. Our (AHA) catalog of acoustic events was used to compare locations, focal mechanisms and magnitude observations with correlated data from land-based stations of the NEIC global seismic network to establish completeness levels from both within and outside of the hydrophone array. The (AHA) catalog has a Source Level of Completeness (SLc) of 204dB, and a b-value of 0.0605. The NEIC catalog for this region during this period has a Magnitude of Completeness (Mc) of 4.6 and a b-value of 1.01. Regressing the AHA values onto the NEIC derived Mc/b-value relationship suggests a Mc of 3.2 for the AHA catalog. By restricting the events to the region inside the AHA, the NEIC catalog has an Mc of 4.7 with a b-value of 1.09, while the AHA catalog has a SLc of 205dB with a b-value of 0.0753. Comparing the b-values of the NEIC catalog with the AHA catalog, we obtain an improved Mc of 3.0 for the AHA inside the array. A time- and space-dependent Single-Link-Cluster algorithm was applied to the events localized inside the AHA. This allowed us to gather cluster sequences of earthquakes for higher temporal and spatial resolution Mc and b-value computations. The cumulative number of events and time series for several of these clusters were used in a Modified Omori Law simulation. Some of the identified sequences correlated well with a main-shock /aftershock mechanism associated with the older and colder crustal characteristics related to a tectonically dominated MAR regime.
Passive Mode Carbon Nanotube Underwater Acoustic Transducer
2016-09-20
Acoustical transducer arrays can reflect a sound signal in reverse to the sender which can be used for echo location devices. [0008] In Jiang...of this layer of the medium determines the amplitude of the resulting sound waves. [0005] Recently, there has been development of underwater...structures. The energy is partially reflected from interfaces between the geologic structure and is detected with geophone or hydrophone sensors
The Moored Acoustic Buoy System (MABS)
1975-04-04
STAQOG, Ocean Sciences & Technology Department Indirect. REVIEWED AND APPROY 4 April lq75 A)R. Hse Associate Director for Sonar Retsearch The authors...It consists of a subsurface instrumentation buoy in conjunction with a family of lightweight hydrophone arrays designed to measure a variety of...vertical to horizontal in the water column. Recent de- velopments in lightweight synthetic-cable technology have been incorporated into the design to make
Marine Bioacoustics: Soundtracks for the Future
2013-09-30
studying humpback whale ecology. During summer courses, we provide students 1.) with a strong conceptual understanding of marine bioacoustics theory...localize and track vocalizing humpback whales . 2 During the summer course, we conducted a multi-frequency acoustic survey of Saanich Inlet, BC... humpback whales can be localized and tracked with hydrophone array deployed on Wave Gliders. Paper from this project will be presented at the 20th
Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring
2016-05-02
separate and associate calls from individual animals . Marine mammal; Passive acoustic monitoring; Localization; Tracking; Multiple source; Sparse array...position and hydrophone timing offset in addition to animal position Almost all marine mammal tracking methods treat animal position as the only unknown...Workshop on Detection, Classification and Localization (DCL) of Marine Mammals). The animals were expected to be relatively close to the surface
Hydroacoustic Signals Recorded by the International Monitoring System
NASA Astrophysics Data System (ADS)
Blackman, D.; de Groot-Hedlin, C.; Orcutt, J.; Harben, P.
2002-12-01
Networks of hydrophones, such as the hydroacoustic part of the International Monitoring System (IMS), and hydrophone arrays, such as the U.S. Navy operates, record many types of signals, some of which travel thousands of kilometers in the oceanic sound channel. Abyssal earthquakes generate many such individual events and occasionally occur in swarms. Here we focus on signals generated by other types of sources, illustrating their character with recent data, mostly from the Indian Ocean. Shipping generates signals in the 5-40 Hz band. Large airgun arrays can generate T-waves that travel across an ocean basin if the near-source seafloor has appropriate depth/slope. Airgun array shots from our 2001 experiment were located with an accuracy of 25-40 km at 700-1000 km ranges, using data from a Diego Garcia tripartite sensor station. Shots at greater range (up to 4800 km) were recorded at multiple stations but their higher background noise levels in the 5-30 Hz band resulted in location errors of ~100 km. Imploding glass spheres shattered within the sound channel produce a very impulsive arrival, even after propagating 4400 km. Recordings of the sphere signal have energy concentrated in the band above 40 Hz. Natural sources such as undersea volcanic eruptions and marine mammals also produce signals that are clearly evident in hydrophone recordings. For whales, the frequency range is 20~120Hz and specific patterns of vocalization characterize different species. Volcanic eruptions typically produce intense swarms of acoustic activity that last days-weeks and the source area can migrate tens of kms during the period. The utility of these types of hydroacoustic sources for research and/or monitoring purposes depends on the accuracy with which recordings can be used to locate and quantitatively characterize the source. Oceanic weather, both local and regional, affect background noise levels in key frequency bands at the recording stations. Databases used in forward modeling of propagation and acoustic losses can be sparse in remote regions. Our Indian Ocean results suggest that when bathymetric coverage is poor, predictions for 8 Hz propagation/loss match observations better than those for propagation of 30 Hz signals over 1000-km distances.
Passive bottom reflection-loss estimation using ship noise and a vertical line array.
Muzi, Lanfranco; Siderius, Martin; Verlinden, Christopher M
2017-06-01
An existing technique for passive bottom-loss estimation from natural marine surface noise (generated by waves and wind) is adapted to use noise generated by ships. The original approach-based on beamforming of the noise field recorded by a vertical line array of hydrophones-is retained; however, additional processing is needed in order for the field generated by a passing ship to show features that are similar to those of the natural surface-noise field. A necessary requisite is that the ship position, relative to the array, varies over as wide a range of steering angles as possible, ideally passing directly over the array to ensure coverage of the steepest angles. The methodology is illustrated through simulation and applied to data from a field experiment conducted offshore of San Diego, CA in 2009.
A Summary of the Naval Postgraduate School Research Program.
1983-05-01
environment . Of particular note here are the activities of the Environmental Physics Group, our work in electro-optics, and work anticipated in the...of natural light and the optical beam spread function of the ocean. The sponsor is DARPA. ENVIRONMENTAL ACOUSTICS G. H. Jung, R. H. Bourke, C. R... environmental phenomena determine the nature of ambient noise signals received at hydrophone arrays. Summary: During FY82, additional data bases were
Deployment of Autonomous Hydrophone Array in the Scotia Sea
2008-09-01
originated by the Clarence Island in the Bransfield strait near the Antarctic Peninsula (Figure 3). The signals originated from a 10x5 km iceberg ...Atlantic Ocean near the Antarctic Peninsula and the South Scotia Sea is a region where acoustic surveillance by International Monitoring System (IMS...study sound propagation through the Antarctic Convergence Zone (ACZ), as well as acoustic blockage and reflection caused by islands and associated
Frank, Scott D; Ferris, Aaron N
2011-08-01
During the Woodlark Basin seismic experiment in eastern Papua New Guinea (1999-2000), an ocean-bottom seismic array recorded marine mammal vocalizations along with target earthquake signals. The array consisted of 14 instruments, 7 of which were three-component seismometers with a fourth component hydrophone. They were deployed at 2.0-3.2 km water depth and operated from September 1999 through February 2000. While whale vocalizations were recorded throughout the deployment, this study focuses on 3 h from December 21, 1999 during which the signals are particularly clear. The recordings show a blue whale song composed of a three-unit phrase. That song does not match vocalization characteristics of other known Pacific subpopulations and may represent a previously undocumented blue whale song. Animal tracking and source level estimates are obtained with a Bayesian inversion method that generates probabilistic source locations. The Bayesian method is augmented to include travel time estimates from seismometers and hydrophones and acoustic signal amplitude. Tracking results show the whale traveled northeasterly over the course of 3 h, covering approximately 27 km. The path followed the edge of the Woodlark Basin along a shelf that separates the shallow waters of the Trobriand platform from the deep waters of the basin.
Dahl, Peter H; Plant, William J; Dall'Osto, David R
2013-09-01
Results of an experiment to measure vertical spatial coherence from acoustic paths interacting once with the sea surface but at perpendicular azimuth angles are presented. The measurements were part of the Shallow Water 2006 program that took place off the coast of New Jersey in August 2006. An acoustic source, frequency range 6-20 kHz, was deployed at depth 40 m, and signals were recorded on a 1.4 m long vertical line array centered at depth 25 m and positioned at range 200 m. The vertical array consisted of four omni-directional hydrophones and vertical coherences were computed between pairs of these hydrophones. Measurements were made over four source-receiver bearing angles separated by 90°, during which sea surface conditions remained stable and characterized by a root-mean-square wave height of 0.17 m and a mixture of swell and wind waves. Vertical coherences show a statistically significant difference depending on source-receiver bearing when the acoustic frequency is less than about 12 kHz, with results tending to fade at higher frequencies. This paper presents field observations and comparisons of these observations with two modeling approaches, one based on bistatic forward scattering and the other on a rough surface parabolic wave equation utilizing synthetic sea surfaces.
Process for Assembly of Multimode Hydrophone Ceramic Stack
2016-09-20
PROCESS FOR ASSEMBLY OF MULTIMODE HYDROPHONE CERAMIC STACK STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...invention relates to a method of assembly for a multimode acoustic hydrophone. (2) Description of the Prior Art [0004] An acoustic hydrophone can...performance difference of a hydrophone that does not have uniform axial stress/voltage on each ring, when the hydrophone is assembled and FIG. 13 thru FIG
Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.
Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C
2012-10-01
A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.
Li, Guangyan; Connors, Bret A; Schaefer, Ray B; Gallagher, John J; Evan, Andrew P
2017-11-01
In this paper, an extracorporeal shock wave source composed of small ellipsoidal sparker units is described. The sparker units were arranged in an array designed to produce a coherent shock wave of sufficient strength to fracture kidney stones. The objective of this paper was to measure the acoustical output of this array of 18 individual sparker units and compare this array to commercial lithotripters. Representative waveforms acquired with a fiber-optic probe hydrophone at the geometric focus of the sparker array indicated that the sparker array produces a shock wave (P + ∼40-47 MPa, P - ∼2.5-5.0 MPa) similar to shock waves produced by a Dornier HM-3 or Dornier Compact S. The sparker array's pressure field map also appeared similar to the measurements from a HM-3 and Compact S. Compared to the HM-3, the electrohydraulic technology of the sparker array produced a more consistent SW pulse (shot-to-shot positive pressure value standard deviation of ±4.7 MPa vs ±3.3 MPa).
ESONET LIDO Demonstration Mission: the East Sicily node
NASA Astrophysics Data System (ADS)
Riccobene, Giorgio; Favali, Paolo; Andrè, Michel; Chierici, Francesco; Pavan, Gianni; Esonet Lido Demonstration Mission Team
2010-05-01
Off East Sicily (at 2100 m depth, 25 km off the harbour of Catania) a prototype of a cabled deep-sea observatory (NEMO-SN1) was set up and has been operational in real-time since 2005 (the cabled deep-sea multi-parameter station SN1, equipped with geophysical and environmental sensors and the cabled NEMO-OνDE, equipped with 4 broadband hydrophones). The Western Ionian Sea is one of the node sites for the upcoming European permanent underwater network (EMSO). Within the activities of the EC project ESONET-NoE some demonstration missions have been funded. The LIDO-DM (Listening to the Deep Ocean-Demonstration Mission) is one of these and is related to two sites, East Sicily and Iberian Margin (Gulf of Cadiz), the main aims being geo-hazards monitoring and warning (seismic, tsunami, and volcanic) and bio-acoustics. The LIDO-DM East Sicily installation represents a further major step within ESONET-NoE, resulting in a fully integrated system for multidisciplinary deep-sea science, capable to transmit and distribute data in real time to the scientific community and to the general public. LIDO-DM East Sicily hosts a large number of sensors aimed at monitoring and studying oceanographic and environmental parameters (by means of CTD, ADCP, 3-C single point current meter, turbidity meter), geophysical phenomena (low frequency hydrophones, accelerometer, gravity meter, vector and scalar magnetometers, seismometer, absolute and differential pressure gauges), ocean noise monitoring and identification and tracking of biological acoustic sources in deep sea. The latter will be performed using two tetrahedral arrays of 4 hydrophones, located at a relative distance of about 5 km, and at about 25 km from the shore. The whole system will be connected and powered from shore, by means of the electro-optical cable net installed at the East Sicily Site Infrastructure, and synchronised with GPS. Sensors data sampling is performed underwater and transmitted via optical fibre link, with optimal S/N ratio for all signals. This will also permit real-time data acquisition, analysis and distribution on-shore. Innovative electronics for the off-shore data acquisition and transmission systems has been designed, built and tested. A dedicated computing and networking infrastructure for data acquisition, storage and distribution through the internet has been also created. The deployment and connection of the deep sea structures will be performed using the dedicated ROV and Deep Sea Shuttle handling facilities (PEGASO, owned by INGV and INFN). LIDO-DM constitutes the enhancement of the Western Ionian site in view of the EMSO Research Infrastructure.
McGinnis, L. D.; Otis, R. M.
1979-01-01
Velocities were obtained from unreversed, refracted arrivals on analog records from a 48‐channel, 3.6-km hydrophone cable (3.89 km from the airgun array to the last hydrophone array). Approximately 200 records were analyzed along 1500 km of ship track on Georges Bank, northwest Atlantic Ocean, to obtain regional sediment velocity distribution to a depth of 1.4 km below sea level. This technique provides nearly continuous coverage of refraction velocities and vertical velocity gradients. Because of the length of the hydrophone cable and the vertical velocity gradients, the technique is applicable only to the Continental Shelf and the shallower parts of the Continental Slope in water depths less than 300 m. Sediment diagenesis, the influence of overburden pressure on compaction, lithology, density, and porosity are inferred from these data. Velocities of the sediment near the water‐sediment interface range from less than 1500 m/sec on the north edge of Georges Bank to 1830 m/sec for glacial deposits in the northcentral part of the bank. Velocity gradients in the upper 400 m range from 1.0km/sec/km(sec−1) on the south edge of the bank to 1.7sec−1 on the north. Minimum gradients of 0.8sec−1 were observed south of Nantucket Island. Velocities and velocity gradients are explained in relation to physical properties of the Cretaceous, Tertiary, and Pleistocene sediments. Isovelocity contours at 100-m/sec intervals are nearly horizontal in the upper 400 m. Isovelocity contours at greater depths show a greater difference from a mean depth because of the greater structural and lithological variation. Bottom densities inferred from the velocities range from 1.7 to 1.9g/cm3 and porosities range from 48 to 62 percent. The most significant factor controlling velocity distribution on Georges Bank is overburden pressure and resulting compaction. From the velocity data we conclude that Georges Bank has been partially overridden by a continental ice sheet.
Freely Drifting Swallow Float Array: August 1990 NATIVE 1 Experiment (First Deployment)
1991-02-01
jump around record 1520, indicating that the apparent increase in float 2’s hydrophone sensitivity occurred only at the lower infra - sonic ...and d) the infrasonic acoustic data. The infrasonic data include the RMS levels of the pressure and the three components of parti- cle velocity for all...active intensity spectra. A description of the Swallow float infrasonic data acquisition system, along with calibration curves, is given in Appendix 1
Sperm whale assessment in the Western Ionian Sea using acoustic data from deep sea observatories
NASA Astrophysics Data System (ADS)
Caruso, Francesco; Bellia, Giorgio; Beranzoli, Laura; De Domenico, Emilio; Larosa, Giuseppina; Marinaro, Giuditta; Papale, Elena; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Scandura, Danila; Sciacca, Virginia; Viola, Salvatore
2015-04-01
The Italian National Institute of Nuclear Physics (INFN) operates two deep sea infrastructures: Capo Passero, Western Ionian Sea 3,600 meters of depth, and Catania Wester Ionian Sea 2,100 m depth. At the two sites, several research observatories have been run: OnDE, NEMO-SN1, SMO, KM3NeT-Italia most of them jointly operated between INFN and INGV. In all these observatories, passive acoustic sensors (hydrophones) have been installed. Passive Acoustics Monitoring (PAM) is nowadays the main tool of the bioacoustics to study marine mammals. In particular, receiving the sounds emitted by cetaceans from a multi-hydrophones array installed in a cabled seafloor observatory, a research about the ecological dynamics of the species may be performed. Data acquired with the hydrophones installed aboard the OnDE, SMO and KM3NeT-Italia observatories will be reported. Thanks to acquired data, the acoustic presence of the sperm whales was assessed and studied for several years (2005:2013). An "ad hoc" algorithm was also developed to allow the automatic identification of the "clicks" emitted by the sperm whales and measure the size of detected animals. According to the results obtained, the sperm whale population in the area is well-distributed in size, sex and sexual maturity. Although specimens more than 14 meters of length (old males) seem to be absent.
Twelve years of tracking 52-Hz whale calls from a unique source in the North Pacific
NASA Astrophysics Data System (ADS)
Watkins, William A.; Daher, Mary Ann; George, Joseph E.; Rodriguez, David
2004-12-01
A unique whale call with 50-52 Hz emphasis from a single source has been tracked over 12 years in the central and eastern North Pacific. These calls, referred to as 52-Hz calls, were monitored and analyzed from acoustic data recorded by hydrophones of the US Navy Sound Surveillance System (SOSUS) and other arrays. The calls were noticed first in 1989, and have been detected and tracked since 1992. No other calls with similar characteristics have been identified in the acoustic data from any hydrophone system in the North Pacific basin. Only one series of these 52-Hz calls has been recorded at a time, with no call overlap, suggesting that a single whale produced the calls. The calls were recorded from August to February with most in December and January. The species producing these calls is unknown. The tracks of the 52-Hz whale were different each year, and varied in length from 708 to 11,062 km with travel speeds ranging from 0.7 to 3.8 km/h. Tracks included (A) meandering over short ranges, (B) predominantly west-to-east movement, and (C) mostly north-to-south travel. These tracks consistently appeared to be unrelated to the presence or movement of other whale species (blue, fin and humpback) monitored year-round with the same hydrophones.
Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones
NASA Astrophysics Data System (ADS)
Caplan-Auerbach, J.; Dziak, R. P.; Haxel, J.; Bohnenstiehl, D. R.; Garcia, C.
2017-04-01
Following the installation of the Ocean Observatories Initiative cabled array, the 2015 eruption of Axial Seamount, Juan de Fuca ridge, became the first submarine eruption to be captured in real time by seafloor seismic and acoustic instruments. This eruption also marked the first instance where the entire eruption cycle of a submarine volcano, from the previous eruption in 2011 to the end of the month-long 2015 event, was monitored continuously using autonomous ocean bottom hydrophones. Impulsive sounds associated with explosive lava-water interactions are identified within hydrophone records during both eruptions. Explosions within the caldera are acoustically distinguishable from those occurring in association with north rift lava flows erupting in 2015. Acoustic data also record a series of broadband diffuse events, occurring in the waning phase of the eruption, and are interpreted as submarine Hawaiian explosions. This transition from gas-poor to gas-rich eruptive activity coincides with an increase in water temperature within the caldera and with a decrease in the rate of deflation. The last recorded diffuse events coincide with the end of the eruption, represented by the onset of inflation. All the observed explosion signals couple strongly into the water column, and only weakly into the solid Earth, demonstrating the importance of hydroacoustic observations as a complement to seismic and geodetic studies of submarine eruptions.
Smart materials systems through mesoscale patterning
NASA Astrophysics Data System (ADS)
Aksay, Ilhan A.; Groves, John T.; Gruner, Sol M.; Lee, P. C. Y.; Prud'homme, Robert K.; Shih, Wei-Heng; Torquato, Salvatore; Whitesides, George M.
1996-02-01
We report work on the fabrication of smart materials with two unique strategies: (1) self- assembly and (2) laser stereolithography. Both methods are akin to the processes used by biological systems. The first one is ideal for pattern development and the fabrication of miniaturized units in the submicron range and the second one in the 10 micrometer to 1 mm size range. By using these miniaturized units as building blocks, one can also produce smart material systems that can be used at larger length scales such as smart structural components. We have chosen to focus on two novel piezoceramic systems: (1) high-displacement piezoelectric actuators, and (2) piezoceramic hydrophone composites possessing negative Poisson ratio matrices. High-displacement actuators are essential in such applications as linear motors, pumps, switches, loud speakers, variable-focus mirrors, and laser deflectors. Arrays of such units can potentially be used for active vibration control of helicopter rotors as well as the fabrication of adaptive rotors. In the case of piezoceramic hydrophone composites, we utilize matrices having a negative Poisson's ratio in order to produce highly sensitive, miniaturized sensors. We envision such devices having promising new application areas such as the implantation of hydrophones in small blood vessels to monitor blood pressure. Negative Poisson ratio materials have promise as robust shock absorbers, air filters, and fasteners, and hence, can be used in aircraft and land vehicles.
High-performance ultra-low power VLSI analog processor for data compression
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1996-01-01
An apparatus for data compression employing a parallel analog processor. The apparatus includes an array of processor cells with N columns and M rows wherein the processor cells have an input device, memory device, and processor device. The input device is used for inputting a series of input vectors. Each input vector is simultaneously input into each column of the array of processor cells in a pre-determined sequential order. An input vector is made up of M components, ones of which are input into ones of M processor cells making up a column of the array. The memory device is used for providing ones of M components of a codebook vector to ones of the processor cells making up a column of the array. A different codebook vector is provided to each of the N columns of the array. The processor device is used for simultaneously comparing the components of each input vector to corresponding components of each codebook vector, and for outputting a signal representative of the closeness between the compared vector components. A combination device is used to combine the signal output from each processor cell in each column of the array and to output a combined signal. A closeness determination device is then used for determining which codebook vector is closest to an input vector from the combined signals, and for outputting a codebook vector index indicating which of the N codebook vectors was the closest to each input vector input into the array.
Liu, Yunbo; Wear, Keith A.; Harris, Gerald R.
2017-01-01
Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement uncertainty and signal analysis still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small PVDF capsule hydrophone and two different fiber-optic hydrophones. The focal waveform and beam distribution of a single element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveform. Compressional pressure, rarefactional pressure, and focal beam distribution were compared up to 10.6/−6.0 MPa (p+ and p−) (1.05 MHz) and 20.65/−7.20 MPa (3.3 MHz). In particular, the effects of spatial averaging, local nonlinear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed an uncertainty of no better than 10–15% on hydrophone-based HITU pressure characterization. PMID:28735734
Liu, Yunbo; Wear, Keith A; Harris, Gerald R
2017-10-01
Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.
Geophysical Inversion with Adaptive Array Processing of Ambient Noise
NASA Astrophysics Data System (ADS)
Traer, James
2011-12-01
Land-based seismic observations of microseisms generated during Tropical Storms Ernesto and Florence are dominated by signals in the 0.15--0.5Hz band. Data from seafloor hydrophones in shallow water (70m depth, 130 km off the New Jersey coast) show dominant signals in the gravity-wave frequency band, 0.02--0.18Hz and low amplitudes from 0.18--0.3Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Both storms produced similar spectra, despite differing sizes, suggesting near-coastal shallow water as the dominant region for observed microseism generation. A mathematical explanation for a sign-inversion induced to the passive fathometer response by minimum variance distortionless response (MVDR) beamforming is presented. This shows that, in the region containing the bottom reflection, the MVDR fathometer response is identical to that obtained with conventional processing multiplied by a negative factor. A model is presented for the complete passive fathometer response to ocean surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. The leading order term of the ocean surface noise produces the cross-correlation of vertical multipaths and yields the depth of sub-bottom reflectors. Discrete noise incident on the array via multipaths give multiple peaks in the fathometer response. These peaks may obscure the sub-bottom reflections but can be attenuated with use of Minimum Variance Distortionless Response (MVDR) steering vectors. A theory is presented for the Signal-to-Noise-Ratio (SNR) for the seabed reflection peak in the passive fathometer response as a function of seabed depth, seabed reflection coefficient, averaging time, bandwidth and spatial directivity of the noise field. The passive fathometer algorithm was applied to data from two drifting array experiments in the Mediterranean, Boundary 2003 and 2004, with 0.34s of averaging time. In the 2004 experiment, the response showed the array depth varied periodically with an amplitude of 1 m and a period of 7 s consistent with wave driven motion of the array. This introduced a destructive interference which prevents the SNR growing with averaging time, unless the motion is removed by use of a peak tracker.
Coherent acoustic communication in a tidal estuary with busy shipping traffic.
van Walree, Paul A; Neasham, Jeffrey A; Schrijver, Marco C
2007-12-01
High-rate acoustic communication experiments were conducted in a dynamic estuarine environment. Two current profilers deployed in a shipping lane were interfaced with acoustic modems, which modulated and transmitted the sensor readings every 200 s over a period of four days. QPSK modulation was employed at a raw data rate of 8 kbits on a 12-kHz carrier. Two 16-element hydrophone arrays, one horizontal and one vertical, were deployed near the shore. A multichannel decision-feedback equalizer was used to demodulate the modem signals received on both arrays. Long-term statistical analysis reveals the effects of the tidal cycle, subsea unit location, attenuation by the wake of passing vessels, and high levels of ship-generated noise on the fidelity of the communication links. The use of receiver arrays enables vast improvement in the overall reliability of data delivery compared with a single-receiver system, with performance depending strongly on array orientation. The vertical array offers the best performance overall, although the horizontal array proves more robust against shipping noise. Spatial coherence estimates, variation of array aperture, and inspection of array angular responses point to adaptive beamforming and coherent combining as the chief mechanisms of array gain.
NASA Astrophysics Data System (ADS)
Perrot, J.; Goslin, J.; Dziak, R. P.; Haxel, J. H.; Maia, M. A.; Tisseau, C.; Royer, J.
2009-12-01
The seismicity of the North Atlantic Ocean was recorded by the SIRENA array of 6 autonomous underwater hydrophones (AUH) moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). The instruments were deployed north of the Azores Plateau between 40° and 50°N from June 2002 to September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation result in a detection threshold reduction to a magnitude completeness level (Mc) of ~2.8, to be compared to a Mc~4.7 for MAR events recorded by land-based seismic networks. A spatio-temporal analysis was performed over the 1696 events localized inside the SIRENA array. For hydrophone-derived catalogs, the acoustic magnitude, or Source Level (SL), is used as a measure of earthquake size. The ''source level completeness'', above which the data set is complete, is SLc=208 dB. The SIRENA catalog was searched for swarms using the cluster software of the SEISAN distribution. A minimum SL of 210 dB was chosen to detect a possible mainshock, and all subsequent events within 40 days following the possible mainshock, located within a radius of 15 km from the mainshock were considered as events of the swarm. 15 km correspond to the maximum fault length in a slow-ridge context. 11 swarms with more than 15 events were detected along the MAR between 40°et 50°N during the SIRENA deployment. The maximum number of earthquakes in a swarm is 40 events. The SL vs. time distribution within each swarm allowed a first discrimination between the swarms occurring in a tectonic context and those which can be attributed to volcanic processes, the latter showing a more constant SL vs. time distribution. Moreover, the swarms occurring in a tectonic context show a "mainshock-afterschock" distribution of the cumulative number of events vs. time, fitting a Modified Omori Law. The location of tectonic and volcanic swarms correlates well with regions where a positive and negative Mantle Bouguer Anomalies (MBAs)(Maia et al., 2007) are observed, indicating the presence of thinner/colder and thicker/warmer crust respectively. Our results thus show that hydrophone data can be fruitfully used to help and characterize active ridge processes at various spatial scales. Maia M., J. Goslin, and P. Gente (2007), Evolution of accretion processes along the Mid-Atlantic Ridge north of the Azores since 5.5 Ma: An insight into the interactions between the ridge and the plume, Geochem. Geophys. Geosyst., 8.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploskey, Gene R.; Hughes, James S.; Khan, Fenton
The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimizationmore » study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage decoded for JSATS transmitters from: turbine operations; spillway operations; DIDSON/ADCP acoustic energy; and PAS hydroacoustic systems at transmit level of -12 dB, although there was a significant impact at all higher transmit levels (-11 to -6 dB). The main conclusion from this optimization study is that valid JSATS telemetry data can be collected simultaneously with a DIDSON/ADCP and a PAS hydroacoustic system at transmit level -12 dB. Multiple evaluation tools should be considered to increase the robustness and thoroughness of future fish passage evaluations at John Day and other dams.« less
NASA Astrophysics Data System (ADS)
Tran, Duong Duy
The statistics of broadband acoustic signal transmissions in a random continental shelf waveguide are characterized for the fully saturated regime. The probability distribution of broadband signal energies after saturated multi-path propagation is derived using coherence theory. The frequency components obtained from Fourier decomposition of a broadband signal are each assumed to be fully saturated, where the energy spectral density obeys the exponential distribution with 5.6 dB standard deviation and unity scintillation index. When the signal bandwidth and measurement time are respectively larger than the correlation bandwidth and correlation time of its energy spectral density components, the broadband signal energy obtained by integrating the energy spectral density across the signal bandwidth then follows the Gamma distribution with standard deviation smaller than 5.6 dB and scintillation index less than unity. The theory is verified with broadband transmissions in the Gulf of Maine shallow water waveguide in the 300-1200 Hz frequency range. The standard deviations of received broadband signal energies range from 2.7 to 4.6 dB for effective bandwidths up to 42 Hz, while the standard deviations of individual energy spectral density components are roughly 5.6 dB. The energy spectral density correlation bandwidths of the received broadband signals are found to be larger for signals with higher center frequency. Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing using a single low-frequency (< 2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth, located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the array. The dependence of broadband energy on bandwidth and measurement time was verified employing recorded sperm whale clicks in the Gulf of Maine.
TRISTEN/FRAM II Cruise Report, East Arctic, April 1980.
1981-04-13
is not readily accessible by air from Alaska. The Eurasia Basin contains the Arctic Midoceanic Ridge, which extends in a straight line for 2000 km...13 6 Bottom Refraction - Shot- Lines Overlain on FRAM II Positions 14 7 Waterfall Display of Successive Spectral Estimates of Single...Northeast leg of the array was oriented 341T and the NW leg 304 ’T. After a windstorm and flow break-up on 16 April, hydrophones 11 and 12 and 21-24 were
2014-09-30
34Ecosystem scale acoustic sensing reveals humpback whale behavior synchronous with herring spawning processes and re-evaluation finds no effect of sonar...on humpback song occurrence in the Gulf of Maine in Fall 2006." PlosOne (accepted, in print for 2014). 2. D. Tran, W. Huang, A. Bohn, D. Wang, Z...Gong, N. Makris and P. Ratilal, "Using a coherent hydrophone array for observing sperm whale range, classification, and shallow-water dive profiles
2007-06-01
file ARC- 20060811T130816.txt, where color is used to represent points in time (red being the earliest, transitioning to orange, yellow , then white...Administration (NOAA), using passive hydrophone arrays along the mid-Atlantic ridge to listen for underwater earthquakes and volcanoes , have found that a...appeared. The earliest data points were designated red, and later points were shades of orange and yellow , until the last points (relative to the
Okada, Nagaya; Takeuchi, Shinichi
2017-07-01
A novel tough hydrophone was fabricated by depositing hydrothermally synthesized lead zirconate titanate polycrystalline film on the back-side surface of a titanium plate. Our developed tough hydrophone resisted damage in a high-pressure field (15 MPa) at a focal point of a sinusoidal continuous wave driven by a concave high-intensity focused ultrasound (HIFU) transducer with up to 50 W of power input to the sound source. The hydrophone was suitable for the HIFU field, even though the hydrophone has a flat-shape tip of 3.5 mm diameter, which is slightly larger than the wavelength of a few megahertz. In this paper, experiments are performed to assess the effect on the HIFU field of changing the shape of the tough hydrophone, with the aim of developing a tough hydrophone. The spatial distribution of the acoustic bubbles around the focal point was visualized by using ultrasonic diagnostic equipment with the tough hydrophone located at the focal point of the HIFU transducer. From the visualization, the trapped acoustic bubbles were seen to arise from the standing wave, which implies that the acoustic pressure is reduced by this cloud of acoustic bubbles that appeared during hydrophone measurement. Although cavitation and acoustic bubbles may be unavoidable when using high-intensity ultrasound, the estimated result of evaluating acoustic fields without misunderstanding by acoustic bubbles can be obtained by the aid of visualizing bubbles around the tough hydrophone.
On measurement of acoustic pulse arrival angles using a vertical array
NASA Astrophysics Data System (ADS)
Makarov, D. V.
2017-11-01
We consider a recently developed method to analyze the angular structure of pulsed acoustic fields in an underwater sound channel. The method is based on the Husimi transform that allows us to approximately link a wave field with the corresponding ray arrivals. The advantage of the method lies in the possibility of its practical realization by a vertical hydrophone array crossing only a small part of the oceanic depth. The main aim of the present work is to find the optimal parameter values of the array that ensure good angular accuracy and sufficient reliability of the algorithm to calculate the arrival angles. Broadband pulses with central frequencies of 80 and 240 Hz are considered. It is shown that an array with a length of several hundred meters allows measuring the angular spectrum with an accuracy of up to 1 degree. The angular resolution is lowered with an increase of the sound wavelength due to the fundamental limitations imposed by the uncertainty relation.
NASA Astrophysics Data System (ADS)
Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.
2015-06-01
This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.
Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
Bloomfield, Philip E; Gandhi, Gaurav; Lewin, Peter A
2011-11-01
This work considers the need for both the amplitude and phase to fully characterize polyvinylidene fluoride (PVDF) membrane hydrophones and presents a comprehensive discussion of the nonlinear acoustic measurements utilized to extract the phase information and the experimental results taken with two widely used PVDF membrane hydrophones up to 100 MHz. A semi-empirical computer model utilized the hyperbolic propagation operator to predict the nonlinear pressure field and provide the complex frequency response of the corresponding source transducer. The PVDF hydrophone phase characteristics, which were obtained directly from the difference between the computer-modeled nonlinear field simulation and the corresponding measured harmonic frequency phase values, agree to within 10% with the phase predictions obtained from receive-transfer-function simulations based on software modeling of the membrane's physical properties. Cable loading effects and membrane hydrophone resonances were distinguished and identified through a series of impedance measurements and receive transfer function simulations on the hydrophones including their hard-wired coaxial cables. The results obtained indicate that the PVDF membrane hydrophone's phase versus frequency plot exhibits oscillations about a monotonically decreasing line. The maxima and minima inflection point slopes occur at the membrane thickness resonances and antiresonances, respectively. A cable resonance was seen at 100 MHz for the hydrophone with a 1-m cable attached, but not seen for the hydrophone with a shorter 0.65-m cable.
Yack, Tina M; Barlow, Jay; Calambokidis, John; Southall, Brandon; Coates, Shannon
2013-09-01
Beaked whales are diverse and species rich taxa. They spend the vast majority of their time submerged, regularly diving to depths of hundreds to thousands of meters, typically occur in small groups, and behave inconspicuously at the surface. These factors make them extremely difficult to detect using standard visual survey methods. However, recent advancements in acoustic detection capabilities have made passive acoustic monitoring (PAM) a viable alternative. Beaked whales can be discriminated from other odontocetes by the unique characteristics of their echolocation clicks. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the Southern California Bight (SCB) and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study. The three year field effort has resulted in (1) the successful classification and tracking of Cuvier's (Ziphius cavirostris), Baird's (Berardius bairdii), and unidentified Mesoplodon beaked whale species and (2) the identification of areas of previously unknown beaked whale habitat use. Identification of habitat use areas will contribute to a better understanding of the complex relationship between beaked whale distribution, occurrence, and preferred habitat characteristics on a relatively small spatial scale. These findings will also provide information that can be used to promote more effective management and conservation of beaked whales in the SCB, a heavily used Naval operation and training region.
Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens).
Au, W W; Pawloski, J L; Nachtigall, P E; Blonz, M; Gisner, R C
1995-07-01
The echolocation transmission beam pattern of a false killer whale (Pseudorca crassidens) was measured in the vertical and horizontal planes. A vertical array of seven broadband miniature hydrophones was used to measure the beam pattern in the vertical plane and a horizontal array of the same hydrophones was used in the horizontal plane. The measurements were performed in the open waters of Kaneohe Bay, Oahu, Hawaii, while the whale performed a target discrimination task. Four types of signals, characterized by their frequency spectra, were measured. Type-1 signals had a single low-frequency peak at 40 +/- 9 kHz and a low-amplitude shoulder at high frequencies. Type-2 signals had a bimodal frequency characteristic with a primary peak at 46 +/- 7 kHz and a secondary peak at 88 +/- 13 kHz. Type-3 signals were also bimodal but with a primary peak at 100 +/- 7 kHz and a secondary peak at 49 +/- 9 kHz. Type-4 signals had a single high-frequency peak at 104 +/- 7 kHz. The center frequency of the signals were found to be linearly correlated to the peak-to-peak source level, increasing with increasing source level. The major axis of the vertical beam was directed slightly downward between 0 and -5 degrees, in contrast to the +5 to 10 degrees for Tursiops and Delphinapterus. The beam in the horizontal plane was directed forward between 0 degrees and -5 degrees.(ABSTRACT TRUNCATED AT 250 WORDS)
Separation control with fluidic oscillators in water
NASA Astrophysics Data System (ADS)
Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.
2017-08-01
The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.
NASA Astrophysics Data System (ADS)
Tsang-Hin-Sun, Eve; Royer, Jean-Yves; Sukhovich, Alexey; Perrot, Julie
2014-05-01
Arrays of autonomous hydrophones (AUHs) proved to be a very valuable tool for monitoring the seismic activity of mid-ocean ridges. AUHs take advantage of the ocean acoustic properties to detect many low-magnitude underwater earthquakes undetected by land-based stations. This allows for a significant improvement in the magnitude completeness level of seismic catalogs in remote oceanic areas. This study presents some results from the deployment of the OHASISBIO array comprising 7 AUHs deployed in the southern Indian Ocean. The source of acoustic events, i.e. site where - conversion from seismic to acoustic waves occur and proxy to epicenters for shallow earthquakes - can be precisely located within few km, inside the AUH array. The distribution of the uncertainties in the locations and time-origins shows that the OHASISBIO array reliably covers a wide region encompassing the Indian Ocean triple junction and large extent of the three mid-oceanic Indian spreading ridges, from 52°E to 80°E and from 25°S to 40°S. During its one year long deployment in 2012 and in this area the AUH array recorded 1670 events, while, for the same period, land-based networks only detected 470 events. A comparison of the background seismicity along the South-east (SEIR) and South-west (SWIR) Indian ridges suggests that the microseismicity, even over a year period, could be representative of the steady-state of stress along the SEIR and SWIR; this conclusion is based on very high Spearman's correlations between our one-year long AUH catalog and teleseismic catalogs over nearly 40 years. Seismicity along the ultra-slow spreading SWIR is regularly distributed in space and time, along spreading segments and transform faults, whereas the intermediate spreading SEIR diplays clusters of events in the vicinity of some transform faults or near specific geological structures such as the St-Paul and Amsterdam hotspot. A majority of these clusters seem to be related to magmatic processes, such as dyke intrusion or propagation. The analysis of mainshock-aftershock sequences reveals that flew clusters fit a modified Omori law, non-withstanding of their location (on transform faults or not), reflecting complex rupture mechanisms along both spreading ridges.
Wear, Keith; Liu, Yunbo; Gammell, Paul M; Maruvada, Subha; Harris, Gerald R
2015-01-01
Nonlinear acoustic signals contain significant energy at many harmonic frequencies. For many applications, the sensitivity (frequency response) of a hydrophone will not be uniform over such a broad spectrum. In a continuation of a previous investigation involving deconvolution methodology, deconvolution (implemented in the frequency domain as an inverse filter computed from frequency-dependent hydrophone sensitivity) was investigated for improvement of accuracy and precision of nonlinear acoustic output measurements. Timedelay spectrometry was used to measure complex sensitivities for 6 fiber-optic hydrophones. The hydrophones were then used to measure a pressure wave with rich harmonic content. Spectral asymmetry between compressional and rarefactional segments was exploited to design filters used in conjunction with deconvolution. Complex deconvolution reduced mean bias (for 6 fiber-optic hydrophones) from 163% to 24% for peak compressional pressure (p+), from 113% to 15% for peak rarefactional pressure (p-), and from 126% to 29% for pulse intensity integral (PII). Complex deconvolution reduced mean coefficient of variation (COV) (for 6 fiber optic hydrophones) from 18% to 11% (p+), 53% to 11% (p-), and 20% to 16% (PII). Deconvolution based on sensitivity magnitude or the minimum phase model also resulted in significant reductions in mean bias and COV of acoustic output parameters but was less effective than direct complex deconvolution for p+ and p-. Therefore, deconvolution with appropriate filtering facilitates reliable nonlinear acoustic output measurements using hydrophones with frequency-dependent sensitivity.
Vessel Noise Affects Beaked Whale Behavior: Results of a Dedicated Acoustic Response Study
Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon
2012-01-01
Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville’s beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022
NASA Astrophysics Data System (ADS)
Yang, DeSen; Zhu, ZhongRui
2012-12-01
This work investigates the direction-of-arrival (DOA) estimation for a uniform circular acoustic Vector-Sensor Array (UCAVSA) mounted around a cylindrical baffle. The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform. Then the so-called modal vector-sensor array signal processing algorithm, which is based on the decomposed wavefield representations, for the UCAVSA mounted around the cylindrical baffle is proposed. Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array (UCPSA). It is pointed out that the acoustic Vector-Sensor (AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.
NASA Astrophysics Data System (ADS)
Bai, Chen; Han, Dongjuan
2018-04-01
MUSIC is widely used on DOA estimation. Triangle grid is a common kind of the arrangement of array, but it is more complicated than rectangular array in calculation of steering vector. In this paper, the quaternions algorithm can reduce dimension of vector and make the calculation easier.
Biological and Behavioral Response Studies of Marine Mammals in Southern California, 2011 (SOCAL-11)
2012-09-01
Hildebrand, C. Kyburg, R. Carlson, T. Yack, and J. Barlow ) EXECUTIVE SUMMARY PROJECT OBJECTIVES METHODOLOGY AND FOCAL SPECIES SOCAL-11...HYDROPHONE ARRAY. ( Tina M. Yack, Shannon Coates, Jay Barlow , John Calambokidis, Annie Douglas, and Shannon Rankin) INTRODUCTION MATERIALS AND...E. Falcone, G. Schorr, A. Douglas, A. Stimpert, J. Hildebrand, C. Kyburg, R. Carlson, T. Yack, J. Barlow SOCAL‐11 PROJECT REPORT 2
Seismic fiber optic multiplexed sensors for exploration and reservoir management
NASA Astrophysics Data System (ADS)
Houston, Mark H.
2000-12-01
Reliable downhole communications, control and sensor networks will dramatically improve oil reservoir management practices and will enable the construction of intelligent or smart-well completions. Fiber optic technology will play a key role in the implementation of these communication, control and sensing systems because of inherent advantages of power, weight and reliability over more conventional electronic-based systems. Field test data, acquired using an array of fiber optic seismic hydrophones within a steam-flood, heavy oil- production filed, showed a significant improvement (10X in this specific case) in subsurface resolution as compared to conventional surface seismic acquisition. These results demonstrate the viability of using multiplexed fiber optic sensors for exploration and reservoir management in 3D vertical seismic profiling (VSP) surveys and in permanent sensor arrays for 4D surveys.
An interferometric fiber optic hydrophone with large upper limit of dynamic range
NASA Astrophysics Data System (ADS)
Zhang, Lei; Kan, Baoxi; Zheng, Baichao; Wang, Xuefeng; Zhang, Haiyan; Hao, Liangbin; Wang, Hailiang; Hou, Zhenxing; Yu, Wenpeng
2017-10-01
Interferometric fiber optic hydrophone based on heterodyne detection is used to measure the missile dropping point in the sea. The signal caused by the missile dropping in the water will be too large to be detected, so it is necessary to boost the upper limit of dynamic range (ULODR) of fiber optic hydrophone. In this article we analysis the factors which influence the ULODR of fiber optic hydrophone based on heterodyne detection, the ULODR is decided by the sampling frequency fsam and the heterodyne frequency Δf. The sampling frequency and the heterodyne frequency should be satisfied with the Nyquist sampling theorem which fsam will be two times larger than Δf, in this condition the ULODR is depended on the heterodyne frequency. In order to enlarge the ULODR, the Nyquist sampling theorem was broken, and we proposed a fiber optic hydrophone which the heterodyne frequency is larger than the sampling frequency. Both the simulation and experiment were done in this paper, the consequences are similar: When the sampling frequency is 100kHz, the ULODR of large heterodyne frequency fiber optic hydrophone is 2.6 times larger than that of the small heterodyne frequency fiber optic hydrophone. As the heterodyne frequency is larger than the sampling frequency, the ULODR is depended on the sampling frequency. If the sampling frequency was set at 2MHz, the ULODR of fiber optic hydrophone based on heterodyne detection will be boosted to 1000rad at 1kHz, and this large heterodyne fiber optic hydrophone can be applied to locate the drop position of the missile in the sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y.; Fung, S.; Wang, Q.
2015-06-29
This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analyticalmore » calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.« less
Preliminary Results from an Hydroacoustic Experiment in the Indian Ocean
NASA Astrophysics Data System (ADS)
Royer, J.; Dziak, R. P.; Delatre, M.; Brachet, C.; Haxel, J. H.; Matsumoto, H.; Goslin, J.; Brandon, V.; Bohnenstiehl, D. R.; Guinet, C.; Samaran, F.
2008-12-01
We report initial results from a 14-month hydroacoustic experiment in the Indian Ocean conducted by CNRS/University of Brest and NOAA/Oregon State University. The objective was to monitor the low-level seismic activity associated with the three contrasting spreading ridges and deforming zones in the Indian Ocean. Three autonomous hydrophones, moored in the SOFAR channel, were deployed in October 2006 and recovered early 2008 by R/V Marion Dufresne, in the Madagascar Basin, and northeast and southwest of Amsterdam Island, complementing the two permanent hydroacoustic stations of the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) located near Diego Garcia Island and off Cape Leeuwin. Our temporary network detected more than 2000 events. Inside the array, we located 592 events (compared to 49 in the NEIC earthquake catalog) with location errors less than 5 km and time error less than 2s. The hydrophone array detected on average 5 to 40 times more events per month than land-based networks. First-order observations indicate that hydroacoustic seismicity along the Southeast Indian ridge (SEIR) occurs predominantly along the transform faults. The Southwest Indian Ridge exhibits some periodicity in earthquake activity between adjacent ridge segments. Two large tectonic/volcanic earthquake swarms are observed along the Central Indian Ridge (near the triple junction) in September and December 2007. Moreover, many off ridge-axis events are also observed both south and north of the SEIR axis. Improved localization using the CTBTO records will help refine these preliminary results and further investigate extended volcanic sequences along the SEIR east of 80°E and other events outside of the temporary array. The records also display numerous vocalizations of baleen whales in the 20-40Hz bandwidth. The calls are attributed to fin whales, Antarctic blue whales and pygmy blue whales of Madagascar and Australian type. Their vocal activity is found to be highly seasonal, occurring mainly from April to October with subspecies variations. This array thus provides a unique data set to improve our understanding of the seismic activity in this region and to establish the occurrence and migration pattern of critically endangered whale species.
High power transcranial beam steering for ultrasonic brain therapy
Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickaël; Thomas, Jean-Louis; Fink, Mathias
2003-01-01
A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single-elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5cm2 and works at 0.9 MHz central frequency with a maximum 20W.cm−2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducers distributions on a spherical surface are simulated: hexagonal, annular, and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/− 15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system. PMID:12974575
High power transcranial beam steering for ultrasonic brain therapy
NASA Astrophysics Data System (ADS)
Pernot, M.; Aubry, J.-F.; Tanter, M.; Thomas, J.-L.; Fink, M.
2003-08-01
A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5 cm2 and works at 0.9 MHz central frequency with a maximum 20 W cm-2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducer distributions on a spherical surface are simulated: hexagonal, annular and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/-15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system.
Goold, J C; Fish, P J
1998-04-01
Acoustic emissions from a 2120 cubic in air-gun array were recorded through a towed hydrophone assembly during an oil industry 2-D seismic survey off the West Wales Coast of the British Isles. Recorded seismic pulses were sampled, calibrated, and analyzed post-survey to investigate power levels of the pulses in the band 200 Hz-22 kHz at 750-m, 1-km, 2.2-km, and 8-km range from source. At 750-m range from source, seismic pulse power at the 200-Hz end of the spectrum was 140 dB re: 1 microPa2/Hz, and at the 20-kHz end of the spectrum seismic pulse power was 90 dB re: 1 microPa2/Hz. Although the background noise levels of the seismic recordings were far in excess of ambient, due to the proximity of engine, propeller, and flow sources of the ship towing the hydrophone, seismic power dominated the entire recorded bandwidth of 200 Hz-22 kHz at ranges of up to 2 km from the air-gun source. Even at 8-km range seismic power was still clearly in excess of the high background noise levels up to 8 kHz. Acoustic observations of common dolphins during preceding seismic surveys suggest that these animals avoided the immediate vicinity of the air-gun array while firing was in progress, i.e., localized disturbance occurred during seismic surveying. Although a general pattern of localized disturbance is suggested, one specific observation revealed that common dolphins were able to tolerate the seismic pulses at 1-km range from the air-gun array. Given the high broadband seismic pulse power levels across the entire recorded bandwidth, and known auditory thresholds for several dolphin species, we consider such seismic emissions to be clearly audible to dolphins across a bandwidth of tens on kilohertz, and at least out to 8-km range.
NASA Astrophysics Data System (ADS)
Sambell, K.; Evers, L. G.; Snellen, M.
2017-12-01
Deriving the deep-ocean temperature is a challenge. In-situ observations and satellite observations are hardly applicable. However, knowledge about changes in the deep ocean temperature is important in relation to climate change. Oceans are filled with low-frequency sound waves created by sources such as underwater volcanoes, earthquakes and seismic surveys. The propagation of these sound waves is temperature dependent and therefore carries valuable information that can be used for temperature monitoring. This phenomenon is investigated by applying interferometry to hydroacoustic data measured in the South Pacific Ocean. The data is measured at hydrophone station H03 which is part of the International Monitoring System (IMS). This network consists of several stations around the world and is in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The station consists of two arrays located north and south of Robinson Crusoe Island separated by 50 km. Both arrays consist of three hydrophones with an intersensor distance of 2 km located at a depth of 1200 m. This depth is in range of the SOFAR channel. Hydroacoustic data measured at the south station is cross-correlated for the time period 2014-2017. The results are improved by applying one-bit normalization as a preprocessing step. Furthermore, beamforming is applied to the hydroacoustic data in order to characterize ambient noise sources around the array. This shows the presence of a continuous source at a backazimuth between 180 and 200 degrees throughout the whole time period, which is in agreement with the results obtained by cross-correlation. Studies on source strength show a seasonal dependence. This is an indication that the sound is related to acoustic activity in Antarctica. Results on this are supported by acoustic propagation modeling. The normal mode technique is used to study the sound propagation from possible source locations towards station H03.
Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring
2015-09-30
applicable for highly directional sources). The MTOA+RL method was applied to a dolphin click sequence from a single hydrophone dataset. Using arrival...arrival and 3 multipath arrivals for a dolphin click recorded on a single seafloor-mounted hydrophone. The hydrophone [described in Fedenczuk et al
HIFU Transducer Characterization Using a Robust Needle Hydrophone
NASA Astrophysics Data System (ADS)
Howard, Samuel M.; Zanelli, Claudio I.
2007-05-01
A robust needle hydrophone has been developed for HIFU transducer characterization and reported on earlier. After a brief review of the hydrophone design and performance, we demonstrate its use to characterize a 1.5 MHz, 10 cm diameter, F-number 1.5 spherically focused source driven to exceed an intensity of 1400 W/cm2at its focus. Quantitative characterization of this source at high powers is assisted by deconvolving the hydrophone's calibrated frequency response in order to accurately reflect the contribution of harmonics generated by nonlinear propagation in the water testing environment. Results are compared to measurements with a membrane hydrophone at 0.3% duty cycle and to theoretical calculations, using measurements of the field at the source's radiating surface as input to a numerical solution of the KZK equation.
Wang, Hua; Zeng, Deping; Chen, Ziguang; Yang, Zengtao
2017-04-12
Based on the acousto-optic interaction, we propose a laser deflection method for rapidly, non-invasively and quantitatively measuring the peak positive pressure of HIFU fields. In the characterization of HIFU fields, the effect of nonlinear propagation is considered. The relation between the laser deflection length and the peak positive pressure is derived. Then the laser deflection method is assessed by comparing it with the hydrophone method. The experimental results show that the peak positive pressure measured by laser deflection method is little higher than that obtained by the hydrophone, confirming that they are in reasonable agreement. Considering that the peak pressure measured by hydrophones is always underestimated, the laser deflection method is assumed to be more accurate than the hydrophone method due to the absence of the errors in hydrophone spatial-averaging measurement and the influence of waveform distortion on hydrophone corrections. Moreover, noting that the Lorentz formula still remains applicable to high-pressure environments, the laser deflection method exhibits a great potential for measuring HIFU field under high-pressure amplitude. Additionally, the laser deflection method provides a rapid way for measuring the peak positive pressure, without the scan time, which is required by the hydrophones.
A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
Cooling, Martin P; Humphrey, Victor F
2008-01-01
A technique for the phase calibration of membrane hydrophones in the frequency range up to 80 MHz is described. This is achieved by comparing measurements and numerical simulation of a nonlinearly distorted test field. The field prediction is obtained using a finite-difference model that solves the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation in the frequency domain. The measurements are made in the far field of a 3.5 MHz focusing circular transducer in which it is demonstrated that, for the high drive level used, spatial averaging effects due to the hydrophone's finite-receive area are negligible. The method provides a phase calibration of the hydrophone under test without the need for a device serving as a phase response reference, but it requires prior knowledge of the amplitude sensitivity at the fundamental frequency. The technique is demonstrated using a 50-microm thick bilaminar membrane hydrophone, for which the results obtained show functional agreement with predictions of a hydrophone response model. Further validation of the results is obtained by application of the response to the measurement of the high amplitude waveforms generated by a modern biomedical ultrasonic imaging system. It is demonstrated that full deconvolution of the calculated complex frequency response of a nonideal hydrophone results in physically realistic measurements of the transmitted waveforms.
Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.
2011-09-30
Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines.more » Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.« less
Dunn, Robert A; Hernandez, Olga
2009-09-01
Low frequency northeastern Pacific blue whale calls were recorded near the northern East Pacific Rise (9 degrees N latitude) on 25 ocean-bottom-mounted hydrophones and three-component seismometers during a 5-day period (November 22-26, 1997). Call types A, B, C, and D were identified; the most common pattern being approximately 130-135 s repetitions of the AB sequence that, for any individual whale, persisted for hours. Up to eight individual blue whales were recorded near enough to the instruments to determine their locations and were tracked call-by-call using the B components of the calls and a Bayesian inversion procedure. For four of these eight whales, the entire call sequences and swim tracks were determined for 20-26-h periods; the other whales were tracked for much shorter periods. The eight whales moved into the area during a period of airgun activity conducted by the academic seismic ship R/V Maurice Ewing. The authors examined the whales' locations and call characteristics with respect to the periods of airgun activity. Although the data do not permit a thorough investigation of behavioral responses, no correlation in vocalization or movement with airgun activity was observed.
Measurement of Complex Sensitivity of Data Channels in Hydrophone Line Array at Very Low Frequency
2015-03-25
minimum frequency at which the acoustic projectors commonly used for acoustic calibrations can transmit a useful acoustic signal. Dkt . No. 300041...Crane Water Surface 10 inch move Dkt . No. 300041 Application No. ?? REPLACEMENT SHEET? 1st DRAFT FIG. 2 62 60 66 64 70 12 66 68 2 1 11 1 12 12 2 Dkt . No...5-5 0.6 0.8 1.0 = 51ms = 0.86 Dkt . No. 300041 Application No. ?? REPLACEMENT SHEET? 1st DRAFT FIG. 4 0 1 210 10 10 -10 -5 0 5 M ag ni tu de ( dB
Killer whales (Orcinus orca) produce ultrasonic whistles.
Samarra, Filipa I P; Deecke, Volker B; Vinding, Katja; Rasmussen, Marianne H; Swift, René J; Miller, Patrick J O
2010-11-01
This study reports that killer whales, the largest dolphin, produce whistles with the highest fundamental frequencies ever reported in a delphinid. Using wide-band acoustic sampling from both animal-attached (Dtag) and remotely deployed hydrophone arrays, ultrasonic whistles were detected in three Northeast Atlantic populations but not in two Northeast Pacific populations. These results are inconsistent with analyses suggesting a correlation of maximum frequency of whistles with body size in delphinids, indicate substantial intraspecific variation in whistle production in killer whales, and highlight the importance of appropriate acoustic sampling techniques when conducting comparative analyses of sound repertoires.
A 3D approximate maximum likelihood localization solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-23
A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with acoustic transmitters and vocalizing marine mammals to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives and support Marine Renewable Energy. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.
Smith, N; Sankin, G N; Simmons, W N; Nanke, R; Fehre, J; Zhong, P
2012-01-01
The performance of a newly developed light spot hydrophone (LSHD) in lithotripter field characterization was compared to that of the fiber optic probe hydrophone (FOPH). Pressure waveforms produced by a stable electromagnetic shock wave source were measured by the LSHD and FOPH under identical experimental conditions. In the low energy regime, focus and field acoustic parameters matched well between the two hydrophones. At clinically relevant high energy settings for shock wave lithotripsy, the measured leading compressive pressure waveforms matched closely with each other. However, the LSHD recorded slightly larger |P_| (p < 0.05) and secondary peak compressive pressures (p < 0.01) than the FOPH, leading to about 20% increase in total acoustic pulse energy calculated in a 6 mm radius around the focus (p = 0.06). Tensile pulse durations deviated ~5% (p < 0.01) due to tensile wave shortening from cavitation activity using the LSHD. Intermittent compression spikes and laser light reflection artifacts have been correlated to bubble activity based on simultaneous high-speed imaging analysis. Altogether, both hydrophones are adequate for lithotripter field characterization as specified by the international standard IEC 61846.
Signal processing applications of massively parallel charge domain computing devices
NASA Technical Reports Server (NTRS)
Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)
1999-01-01
The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.
Auto and hetero-associative memory using a 2-D optical logic gate
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor)
1992-01-01
An optical system for auto-associative and hetero-associative recall utilizing Hamming distance as the similarity measure between a binary input image vector V(sup k) and a binary image vector V(sup m) in a first memory array using an optical Exclusive-OR gate for multiplication of each of a plurality of different binary image vectors in memory by the input image vector. After integrating the light of each product V(sup k) x V(sup m), a shortest Hamming distance detection electronics module determines which product has the lowest light intensity and emits a signal that activates a light emitting diode to illuminate a corresponding image vector in a second memory array for display. That corresponding image vector is identical to the memory image vector V(sup m) in the first memory array for auto-associative recall or related to it, such as by name, for hetero-associative recall.
NASA Technical Reports Server (NTRS)
Muellerschoen, R. J.
1988-01-01
A unified method to permute vector-stored upper-triangular diagonal factorized covariance (UD) and vector stored upper-triangular square-root information filter (SRIF) arrays is presented. The method involves cyclical permutation of the rows and columns of the arrays and retriangularization with appropriate square-root-free fast Givens rotations or elementary slow Givens reflections. A minimal amount of computation is performed and only one scratch vector of size N is required, where N is the column dimension of the arrays. To make the method efficient for large SRIF arrays on a virtual memory machine, three additional scratch vectors each of size N are used to avoid expensive paging faults. The method discussed is compared with the methods and routines of Bierman's Estimation Subroutine Library (ESL).
NASA Astrophysics Data System (ADS)
Weber, Martin; Wilkens, Volker
2017-08-01
A high-frequency vibrometer was used with ultrasonic pulse excitation in order to perform a primary hydrophone calibration. This approach enables the simultaneous characterization of the amplitude and phase transfer characteristic of ultrasonic hydrophones. The method allows a high frequency resolution in a considerably short time for the measurement. Furthermore, the uncertainty contributions of this approach were investigated and quantified. A membrane hydrophone was calibrated and the uncertainty budget for this measurement was determined. The calibration results are presented up to 70~\\text{MHz} . The measurement results show good agreement with the results obtained by sinusoidal burst excitation through the use of the vibrometer and by a homodyne laser interferometer, with RMS deviation of approximately 3% -4% in the frequency range from 1 to 60~\\text{MHz} . Further hydrophones were characterized up to 100~\\text{MHz} with this procedure to demonstrate the suitability for very high frequency calibration.
Implicit, nonswitching, vector-oriented algorithm for steady transonic flow
NASA Technical Reports Server (NTRS)
Lottati, I.
1983-01-01
A rapid computation of a sequence of transonic flow solutions has to be performed in many areas of aerodynamic technology. The employment of low-cost vector array processors makes the conduction of such calculations economically feasible. However, for a full utilization of the new hardware, the developed algorithms must take advantage of the special characteristics of the vector array processor. The present investigation has the objective to develop an efficient algorithm for solving transonic flow problems governed by mixed partial differential equations on an array processor.
Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D
2017-01-01
In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.
Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.
2017-01-01
In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400
Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array
Helble, Tyler A.; D’Spain, Gerald L.; Weller, David W.; Wiggins, Sean M.; Hildebrand, John A.
2017-01-01
Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics. PMID:29084266
Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array.
Guazzo, Regina A; Helble, Tyler A; D'Spain, Gerald L; Weller, David W; Wiggins, Sean M; Hildebrand, John A
2017-01-01
Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics.
Excitation of high density surface plasmon polariton vortex array
NASA Astrophysics Data System (ADS)
Kuo, Chun-Fu; Chu, Shu-Chun
2018-06-01
This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.
Ultrasonic brain therapy: First trans-skull in vivo experiments on sheep using adaptive focusing
NASA Astrophysics Data System (ADS)
Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Michael; Fink, Mathias; Boch, Anne-Laure; Kujas, Michèle
2004-05-01
A high-power prototype dedicated to trans-skull therapy has been tested in vivo on 20 sheep. The array is made of 200 high-power transducers working at 1-MHz central and is able to reach 260 bars at focus in water. An echographic array connected to a Philips HDI 1000 system has been inserted in the therapeutic array in order to perform real-time monitoring of the treatment. A complete craniotomy has been performed on half of the treated animal models in order to get a reference model. On the other animals, a minimally invasive surgery has been performed thanks to a time-reversal experiment: a hydrophone was inserted at the target inside the brain thanks to a 1-mm2 craniotomy. A time-reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. For all the animals a specified region around the target was treated thanks to electronic beam steering. Animals were finally divided into three groups and sacrificed, respectively, 0, 1, and 2 weeks after treatment. Finally, histological examination confirmed tissue damage. These in vivo experiments highlight the strong potential of high-power time-reversal technology.
1992-09-01
5 ENTER PULSE REP PERIOD ................................ 900 ENTER RETURN TO TOP LEVEL C-5 26. SBS1 RECEIVER ----- HYDROPHONE ----- HYDRI ...HYDROPHONE ----- HYDRI PRECISION RETURN 1 LEVEL 29. HEADING INPUT ------ GYRO 1 ------ CONTINUE RANGE GATE OFF ----- FILTER OFF RETURN TO TOP LEVEL 30...700 ENTER RETURN TO TOP LEVEL 12. SBSI RECEIVER ------ HYDROPHONE ------ HYDRI PRECISION RETURN 1 LEVEL 13. HEADING INPUT ------ GYRO 1
Compliant tactile sensor that delivers a force vector
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo (Inventor)
2010-01-01
Tactile Sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector. The applied force vector has three components to establish the direction and magnitude of an applied force. The compliant convex surface defines a dome with a hollow interior and has a linear relation between displacement and load including a magnet disposed substantially at the center of the dome above a sensor array that responds to magnetic field intensity.
Radiated noise from commercial ships in the Gulf of Maine: implications for whale/vessel collisions.
Allen, J Kaitlyn; Peterson, Michael L; Sharrard, George V; Wright, Dana L; Todd, Sean K
2012-09-01
To understand mysticete acoustic-based detection of ships, radiated noise from high-speed craft, cruise ships, catamarans and fishing vessels was recorded June-September 2009. Calibrated acoustic data (<2500 Hz) from a vertical hydrophone array was combined with ship passage information. A cruise ship had the highest broadband source level, while a fishing vessel had the lowest. Ship noise radiated asymmetrically and varied with depth. Bow null-effect acoustic shadow zones were observed for all ship classes and were correlated with ship-length-to-draft-ratios. These shadow zones may reduce ship detection by near-surface mysticetes.
High-frequency modulated signals of killer whales (Orcinus orca) in the North Pacific.
Simonis, Anne E; Baumann-Pickering, Simone; Oleson, Erin; Melcón, Mariana L; Gassmann, Martin; Wiggins, Sean M; Hildebrand, John A
2012-04-01
Killer whales in the North Pacific, similar to Atlantic populations, produce high-frequency modulated signals, based on acoustic recordings from ship-based hydrophone arrays and autonomous recorders at multiple locations. The median peak frequency of these signals ranged from 19.6-36.1 kHz and median duration ranged from 50-163 ms. Source levels were 185-193 dB peak-to-peak re: 1 μPa at 1 m. These uniform, repetitive, down-swept signals are similar to bat echolocation signals and possibly could have echolocation functionality. A large geographic range of occurrence suggests that different killer whale ecotypes may utilize these signals.
Echolocation clicks from killer whales (Orcinus orca) feeding on herring (Clupea harengus).
Simon, Malene; Wahlberg, Magnus; Miller, Lee A
2007-02-01
Echolocation clicks from Norwegian killer whales feeding on herring schools were recorded using a four-hydrophone array. The clicks had broadband bimodal frequency spectra with low and high frequency peaks at 24 and 108 kHz, respectively. The -10 dB bandwidth was 35 kHz. The average source level varied from 173 to 202 dB re 1 microPa (peak-to-peak) at 1 m. This is considerably lower than source levels described for Canadian killer whales foraging on salmon. It is suggested that biosonar clicks of Norwegian killer whales are adapted for localization of prey with high target strength and acute hearing abilities.
Finneran, James J; Branstetter, Brian K; Houser, Dorian S; Moore, Patrick W; Mulsow, Jason; Martin, Cameron; Perisho, Shaun
2014-10-01
Previous measurements of toothed whale echolocation transmission beam patterns have utilized few hydrophones and have therefore been limited to fine angular resolution only near the principal axis or poor resolution over larger azimuthal ranges. In this study, a circular, horizontal planar array of 35 hydrophones was used to measure a dolphin's transmission beam pattern with 5° to 10° resolution at azimuths from -150° to +150°. Beam patterns and directivity indices were calculated from both the peak-peak sound pressure and the energy flux density. The emitted pulse became smaller in amplitude and progressively distorted as it was recorded farther off the principal axis. Beyond ±30° to 40°, the off-axis signal consisted of two distinct pulses whose difference in time of arrival increased with the absolute value of the azimuthal angle. A simple model suggests that the second pulse is best explained as a reflection from internal structures in the dolphin's head, and does not implicate the use of a second sound source. Click energy was also more directional at the higher source levels utilized at longer ranges, where the center frequency was elevated compared to that of the lower amplitude clicks used at shorter range.
Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu
2016-01-01
This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271
NASA Astrophysics Data System (ADS)
Zimina, S. V.
2015-06-01
We present the results of statistical analysis of an adaptive antenna array tuned using the least-mean-square error algorithm with quadratic constraint on the useful-signal amplification with allowance for the weight-coefficient fluctuations. Using the perturbation theory, the expressions for the correlation function and power of the output signal of the adaptive antenna array, as well as the formula for the weight-vector covariance matrix are obtained in the first approximation. The fluctuations are shown to lead to the signal distortions at the antenna-array output. The weight-coefficient fluctuations result in the appearance of additional terms in the statistical characteristics of the antenna array. It is also shown that the weight-vector fluctuations are isotropic, i.e., identical in all directions of the weight-coefficient space.
Calibration of Hydrophone Stations: Lessons Learned from the Ascension Island Experiment
2000-09-01
source based on the implosion of a glass sphere for future long-range calibrations. RESEARCH ACCOMPLISHED The J.C. Ross, an icebreaker class...waters around Ascension Island. The blow - ups show the track in the immediate vicinity of the three hydrophones and plots their nominal location. The...used has practical and cost-driven limitations. Small implosive sources such as lightbulbs have been used from ships as hydrophone calibration sources
Trip Report - June 1989 Swallow Float Deployment with RUM
1990-12-01
Float 1. with its external geophone package resting on the sediment, and float 3, equipped with an infra - sonic hydrophone and tethered to the bottom...an external, triaxial geophone package resting on the ocean bottom and the other equippd with an infrasonic hydrophone and bottom-tethered by a 0.5... infrasonic hydrophone and bottom-tethered by a 0.5-meter line, are presented in this report Introduction An experiment designed to compare the ambient sound
NASA Astrophysics Data System (ADS)
Yi, Chen; Isaev, A. E.; Yuebing, Wang; Enyakov, A. M.; Teng, Fei; Matveev, A. N.
2011-01-01
A description is given of the COOMET project 473/RU-a/09: a pilot comparison of hydrophone calibrations at frequencies from 250 Hz to 200 kHz between Hangzhou Applied Acoustics Research Institute (HAARI, China)—pilot laboratory—and Russian National Research Institute for Physicotechnical and Radio Engineering Measurements (VNIIFTRI, Designated Institute of Russia of the CIPM MRA). Two standard hydrophones, B&K 8104 and TC 4033, were calibrated and compared to assess the current state of hydrophone calibration of HAARI (China) and Russia. Three different calibration methods were applied: a vibrating column method, a free-field reciprocity method and a comparison method. The standard facilities of each laboratory were used, and three different sound fields were applied: pressure field, free-field and reverberant field. The maximum deviation of the sensitivities of two hydrophones between the participants' results was 0.36 dB. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCAUV-KCWG.
NASA Technical Reports Server (NTRS)
Muellerschoen, R. J.
1988-01-01
A unified method to permute vector stored Upper triangular Diagonal factorized covariance and vector stored upper triangular Square Root Information arrays is presented. The method involves cyclic permutation of the rows and columns of the arrays and retriangularization with fast (slow) Givens rotations (reflections). Minimal computation is performed, and a one dimensional scratch array is required. To make the method efficient for large arrays on a virtual memory machine, computations are arranged so as to avoid expensive paging faults. This method is potentially important for processing large volumes of radio metric data in the Deep Space Network.
Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald
2014-01-01
There is increasing concern about the potential effects of noise pollution on marine life in the world's oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville's beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville's beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville's beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150 dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.
NASA Astrophysics Data System (ADS)
Sugioka, H.; Suyehiro, K.; Shinohara, M.
2009-12-01
The hydroacoustic monitoring by the International Monitoring System (IMS) for Comprehensive Nuclear-Test-Treaty (CTBT) verification system utilize hydrophone stations and seismic stations called T-phase stations for worldwide detection. Some signals of natural origin include those from earthquakes, submarine volcanic eruptions, or whale calls. Among artificial sources there are non-nuclear explosions and air-gun shots. It is important for IMS system to detect and locate hydroacoustic events with sufficient accuracy and correctly characterize the signals and identify the source. As there are a number of seafloor cable networks operated offshore Japanese islands basically facing the Pacific Ocean for monitoring regional seismicity, the data from these stations (pressures, hydrophones and seismic sensors) may be utilized to verify and increase the capability of the IMS. We use these data to compare some selected event parameters with those by Pacific in the time period of 2004-present. These anomalous examples and also dynamite shots used for seismic crustal structure studies and other natural sources will be presented in order to help improve the IMS verification capabilities for detection, location and characterization of anomalous signals. The seafloor cable networks composed of three hydrophones and six seismometers and a temporal dense seismic array detected and located hydroacoustic events offshore Japanese island on 12th of March in 2008, which had been reported by the IMS. We detected not only the reverberated hydroacoustic waves between the sea surface and the sea bottom but also the seismic waves going through the crust associated with the events. The determined source of the seismic waves is almost coincident with the one of hydroacoustic waves, suggesting that the seismic waves are converted very close to the origin of the hydroacoustic source. We also detected very similar signals on 16th of March in 2009 to the ones associated with the event of 12th of March in 2008.
Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald
2014-01-01
There is increasing concern about the potential effects of noise pollution on marine life in the world’s oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville’s beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville’s beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville’s beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function. PMID:24465477
NASA Astrophysics Data System (ADS)
Tsekhmistrenko, M.; Sigloch, K.; Hosseini, K.
2017-12-01
The RHUM-RUM experiment (Reunion Hotspot Upper Mantle - Reunions Unterer Mantel) investigates the presence or absence of a whole mantle plume beneath the volcanic hotspot island of La Reunion. From 2011 to 2016, RHUM-RUM instrumented a 2000 km x 2000 km area of western Indian Ocean seafloor, islands and Madagascar with broadband seismometers and hydrophones. The central component was a 13-month deployment of 57 German and French Ocean Bottom Seismometers (OBS) in 2300-5600 m depth. This was supplemented by 2-3 years deployments of 37 island stations on Reunion, Mauritius, Rodrigues, the southern Seychelles, the Iles Eparses and southern Madagascar. Two partner projects contributed another 30+ stations on Madagascar. We present results of multifrequency P- and S-waveform tomography of the entire mantle column beneath the Reunion hotspot. We use all frequency passbands that efficiently transmit body waves and rise above the considerable noise floor of OBS measurements. More than 200 teleseismic events during the 13-month long OBS deployment yielded usable measurements, and another 400 events before and after. We present our methods, discuss data yield and quality of ocean-bottom versus island/land seismometers and hydrophones. 150,000 combined cross-correlations measurements were used in multifrequency P-wave tomography, in passbands between 30 s and 2.7 s dominant period. Cross-correlation coefficients at permanent and temporal land stations are generally higher than on OBS, which are more affected by both microseismic and self-noise. Hydrophones worked more reliably, but strong reverberations from the water column mean that they are still less usable than seismograms. All measurements of the RHUM-RUM array are embedded in a global P-wave inversion. Mantle structures obtained from this new, high resolution tomographic model of the La Reunion area are compared to existing tomographies. We also compare to local and global convection models in order to understand the relation between mantle flow and the development of mantle plumes through time.
A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)
NASA Astrophysics Data System (ADS)
Peng, Zhengyu; Li, Changzhi
2017-05-01
A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)
Acoustic Vector-Sensor Array Processing
2010-06-01
NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) Massachusetts Institute...ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public...section shows, vector-sensor arrays are more versatile than arrays of only pressure-sensors. Exploiting this versatility raises a number of ques
Ocean Bottom Seismometer Augmentation of the Philippine Sea Experiment (OBSAPS) Cruise Report
2011-09-01
single 77.5Hz M-sequence on six OBSAPS receivers: (from bottom to top) the vertical geophone on the North OBS ( blue ), the hydrophone module on the...wet end electronics (pressure sensor, hydrophone and octopus ) to the spare J15-3 S/N 14 and re-deployed the transducer and tow body assembly. We then...our wet end electronics (hydrophone, pressure sensor and octopus ) to the S/N 11 unit and re-deployed. The repaired J15-3 S/N 11 unit performed
Cross-coherent vector sensor processing for spatially distributed glider networks.
Nichols, Brendan; Sabra, Karim G
2015-09-01
Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.
Reduction of solar vector magnetograph data using a microMSP array processor
NASA Technical Reports Server (NTRS)
Kineke, Jack
1990-01-01
The processing of raw data obtained by the solar vector magnetograph at NASA-Marshall requires extensive arithmetic operations on large arrays of real numbers. The objectives of this summer faculty fellowship study are to: (1) learn the programming language of the MicroMSP Array Processor and adapt some existing data reduction routines to exploit its capabilities; and (2) identify other applications and/or existing programs which lend themselves to array processor utilization which can be developed by undergraduate student programmers under the provisions of project JOVE.
Ultrasound therapy transducers with space-filling non-periodic arrays.
Raju, Balasundar I; Hall, Christopher S; Seip, Ralf
2011-05-01
Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.
Broadband continuous wave source localization via pair-wise, cochleagram processing
NASA Astrophysics Data System (ADS)
Nosal, Eva-Marie; Frazer, L. Neil
2005-04-01
A pair-wise processor has been developed for the passive localization of broadband continuous-wave underwater sources. The algorithm uses sparse hydrophone arrays and does not require previous knowledge of the source signature. It is applicable in multiple source situations. A spectrogram/cochleagram version of the algorithm has been developed in order to utilize higher frequencies at longer ranges where signal incoherence, and limited computational resources, preclude the use of full waveforms. Simulations demonstrating the robustness of the algorithm with respect to noise and environmental mismatch will be presented, together with initial results from the analysis of humpback whale song recorded at the Pacific Missile Range Facility off Kauai. [Work supported by MHPCC and ONR.
Broadband calibration of the R/V Marcus G. Langseth four-string seismic sources
NASA Astrophysics Data System (ADS)
Tolstoy, M.; Diebold, J.; Doermann, L.; Nooner, S.; Webb, S. C.; Bohnenstiehl, D. R.; Crone, T. J.; Holmes, R. C.
2009-08-01
The R/V Marcus G. Langseth is the first 3-D seismic vessel operated by the U.S. academic community. With up to a four-string, 36-element source and four 6-km-long solid state hydrophone arrays, this vessel promises significant new insights into Earth science processes. The potential impact of anthropogenic sound sources on marine life is an important topic to the marine seismic community. To ensure that operations fully comply with existing and future marine mammal permitting requirements, a calibration experiment was conducted in the Gulf of Mexico in 2007-2008. Results are presented from deep (˜1.6 km) and shallow (˜50 m) water sites, obtained using the full 36-element (6600 cubic inches) seismic source. This array configuration will require the largest safety radii, and the deep and shallow sites provide two contrasting operational environments. Results show that safety radii and the offset between root-mean-square and sound exposure level measurements were highly dependent on water depth.
High-resolution bottom-loss estimation using the ambient-noise vertical coherence function.
Muzi, Lanfranco; Siderius, Martin; Quijano, Jorge E; Dosso, Stan E
2015-01-01
The seabed reflection loss (shortly "bottom loss") is an important quantity for predicting transmission loss in the ocean. A recent passive technique for estimating the bottom loss as a function of frequency and grazing angle exploits marine ambient noise (originating at the surface from breaking waves, wind, and rain) as an acoustic source. Conventional beamforming of the noise field at a vertical line array of hydrophones is a fundamental step in this technique, and the beamformer resolution in grazing angle affects the quality of the estimated bottom loss. Implementation of this technique with short arrays can be hindered by their inherently poor angular resolution. This paper presents a derivation of the bottom reflection coefficient from the ambient-noise spatial coherence function, and a technique based on this derivation for obtaining higher angular resolution bottom-loss estimates. The technique, which exploits the (approximate) spatial stationarity of the ambient-noise spatial coherence function, is demonstrated on both simulated and experimental data.
Matched Bearing Processing for Airborne Source Localization by an Underwater Horizontal Line Array
NASA Astrophysics Data System (ADS)
Peng, Zhao-Hui; Li, Zheng-Lin; Wang, Guang-Xu
2010-11-01
Location of an airborne source is estimated from signals measured by a horizontal line array (HLA), based on the fact that a signal transmitted by an airborne source will reach a underwater hydrophone in different ways: via a direct refracted path, via one or more bottom and surface reflections, via the so-called lateral wave. As a result, when an HLA near the airborne source is used for beamforming, several peaks at different bearing angles will appear. By matching the experimental beamforming outputs with the predicted outputs for all source locations, the most likely location is the one which gives minimum difference. An experiment is conducted for airborne source localization in the Yellow Sea in October 2008. An HLA was laid on the sea bottom at the depth of 30m. A high-power loudspeaker was hung on a research ship floating near the HLA and sent out LFM pulses. The estimated location of the loudspeaker is in agreement well with the GPS measurements.
NASA Astrophysics Data System (ADS)
Matsumoto, H.; Haralabus, G.; Zampolli, M.; Özel, N. M.
2016-12-01
Underwater acoustic signal waveforms recorded during the 2015 Chile earthquake (Mw 8.3) by the hydrophones of hydroacoustic station HA03, located at the Juan Fernandez Islands, are analyzed. HA03 is part of the Comprehensive Nuclear-Test-Ban Treaty International Monitoring System. The interest in the particular data set stems from the fact that HA03 is located only approximately 700 km SW from the epicenter of the earthquake. This makes it possible to study aspects of the signal associated with the tsunamigenic earthquake, which would be more difficult to detect had the hydrophones been located far from the source. The analysis shows that the direction of arrival of the T phase can be estimated by means of a three-step preprocessing technique which circumvents spatial aliasing caused by the hydrophone spacing, the latter being large compared to the wavelength. Following this preprocessing step, standard frequency-wave number analysis (F-K analysis) can accurately estimate back azimuth and slowness of T-phase signals. The data analysis also shows that the dispersive tsunami signals can be identified by the water-column hydrophones at the time when the tsunami surface gravity wave reaches the station.
Discrete Vector Solitons in Kerr Nonlinear Waveguide Arrays
NASA Astrophysics Data System (ADS)
Meier, Joachim; Hudock, Jared; Christodoulides, Demetrios; Stegeman, George; Silberberg, Y.; Morandotti, R.; Aitchison, J. S.
2003-10-01
We report the first experimental observation of discrete vector solitons in AlGaAs nonlinear waveguide arrays. These self-trapped states are possible through the coexistence of two orthogonally polarized fields and are stable in spite of the presence of four-wave mixing effects. We demonstrate that at sufficiently high power levels the two polarizations lock into a highly localized vector discrete soliton that would have been otherwise impossible in the absence of either one of these two components.
NASA Astrophysics Data System (ADS)
Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration
2013-10-01
Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.
Long-term seismicity of the Reykjanes Ridge (North Atlantic) recorded by a regional hydrophone array
NASA Astrophysics Data System (ADS)
Goslin, Jean; Lourenço, Nuno; Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Haxel, Joe; Luis, Joaquim
2005-08-01
The seismicity of the northern Mid-Atlantic Ridge was recorded by two hydrophone networks moored in the sound fixing and ranging (SOFAR) channel, on the flanks of the Mid-Atlantic Ridge, north and south of the Azores. During its period of operation (05/2002-09/2003), the northern `SIRENA' network, deployed between latitudes 40° 20'N and 50° 30'N, recorded acoustic signals generated by 809 earthquakes on the hotspot-influenced Reykjanes Ridge. This activity was distributed between five spatio-temporal event clusters, each initiated by a moderate-to-large magnitude (4.0-5.6 M) earthquake. The rate of earthquake occurrence within the initial portion of the largest sequence (which began on 2002 October 6) is described adequately by a modified Omori law aftershock model. Although this is consistent with triggering by tectonic processes, none of the Reykjanes Ridge sequences are dominated by a single large-magnitude earthquake, and they appear to be of relatively short duration (0.35-4.5 d) when compared to previously described mid-ocean ridge aftershock sequences. The occurrence of several near-equal magnitude events distributed throughout each sequence is inconsistent with the simple relaxation of mainshock-induced stresses and may reflect the involvement of magmatic or fluid processes along this deep (>2000 m) section of the Reykjanes Ridge.
Development of Vertical Cable Seismic System (3)
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.
2013-12-01
The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of shot points and receiver points in the field include the errors. We use these data as initial guesses, we invert iteratively shot and receiver positions to match the travel time data. After several iterations we could finally estimate the most probable positions. Integration of the constraint of VCS hydrophone positions, such as the spacing is 10m, can accelerate the convergence of the iterative inversion and improve results. The accuracy of the estimated positions from the travel time date is enough for the VCS data processing.
NASA Astrophysics Data System (ADS)
Park, M.; Lee, W.; Dziak, R. P.; Matsumoto, H.; Bohnenstiehl, D. R.; Haxel, J. H.
2008-12-01
To record signals from submarine tectonic activity and ice-generated sound around the Antarctic Peninsula, we have operated an Autonomous Underwater Hydrophone (AUH) array from 2005 to 2007. The objectives of this experiment are to improve detection capability in the study area which is poorly covered by global seismic networks and to reveal characteristics of cryogenic sound which is hard to detect using low-latitude hydrophone array. NEIC has reported ~10-20 earthquakes per year in this region, while the efficiency of sound propagation in the ocean allows detection of greater than two orders of magnitude more earthquakes. A total of 5,160 earthquakes including 12 earthquake swarms are located during the deployment period. A total of 6 earthquake swarms (3,008) occurred in the western part of the Bransfield Strait (WBS), show an epicenter migration of 1-2 km/hr, exhibit a deficiency in high-frequency energy, and occurred near submarine volcanic centers along the back-arc rift axis. Cross-correlation analysis with ocean and solid earth tides indicates the WBS seismicity is modulated by tidal stress, where volcanic earthquake activity reflects variations in tidal forcing than do tectonic earthquakes. On-the-other hand, earthquake swarms from the eastern part of the BS (EBS) show features typical of tectonic earthquakes such as widely distributed epicenters with no clear spatio-temporal pattern and full-spectrum (broadband) signals. These results are consistent with previous crustal models indicating the WBS is undergoing volcanically dominated rifting, whereas rifting in the EBS is tectonically driven. A total of 5,929 ice-generated signals were also derived from the data and are the first detailed observation of various cryogenic phenomena in the region. These cryogenic signals exhibit unusual, tremor-like signals with a high-frequency fundamental (~40 Hz) and 5-6 overtones caused by iceberg resonance, as well as impulsive, short-duration "icequakes" caused by ice break-up and iceberg flow directed along seafloor canyons.
NASA Astrophysics Data System (ADS)
Tara, K.; Asakawa, E.; Murakami, F.; Tsukahara, H.; Saito, S.; Lee, S.; Katou, M.; Jamali Hondori, E.; Sumi, T.; Kadoshima, K.; Kose, M.
2017-12-01
Seafloor Massive Sulfide (SMS) deposits typically show rugged topography such as abundant chimney structures and sulfide mounds. However, buried SMS deposits are not well studied because of few efficient methods to detect and characterize them. Therefore, we proposed a Zero-offset Vertical Cable Seismic (ZVCS) survey using a Sparker and a Remotely Operated Vehicle (ROV) which was equipped with autonomous hydrophone arrays and a sub-bottom profiler (SBP). Zero-offset shooting and near-bottom recording can acquire high resolution acoustic data that could separate the reflection and scattered wave by vertically towed hydrophone arrays. We conducted the multi-source ZVCS survey in the Hakurei site, where the existence of the exposed and the buried SMS deposits has been reported, in Izena Hole, the Mid-Okinawa Trough, during the exploration cruise JM16-04. We obtained the two source's cross-sections of the buried SMS that enabled us to identify the area from the viewpoint of seismic facies. Buried SMS area is characterized by wavy to subparallel internal configuration and semi-continuously reflections. These features suggest that results from collapse of original sedimentary structure and hydrothermal alteration. Previous our exploration of the entire Izena Hole by the Autonomous Cable Seismic (ACS) were conducted in the JM16-02. Comparison between the ZVCS and ACS results gave us not only structural features in the surrounding area of SMS, but also the hydrothermal system of the Izena Hole. These results suggest that the hydrothermal circulation in the Izena Hole is vertically limited to the fracture zone caused by the depression and the buried SMS occurs in a sedimentary layer in the fracture zone. We conclude that ZVCS and ACS imaging of the shallow sub-seafloor structures will be useful for discussion about the geological background of SMS deposits.
NASA Astrophysics Data System (ADS)
Moloney, J. E.; Hannay, D.; Mouy, X.; Mouy, P. A.; Urazghildiiev, I.; Dakin, T.
2016-02-01
Recently JASCO Applied Sciences (Canada) Ltd (JASCO), Ocean Networks Canada (ONC) and the Port of Metro Vancouver (PMV) have collaborated in the installation of a novel, real-time ocean observing (listening) system (PMV-ECHO system deployed in the Strait of Georgia, BC. This system was designed specifically to measure ambient noise, vessel source levels, and to detect, classify, localize and track marine mammals using their vocalization in order to estimate population density. The listening station deployment and monitoring activities are part of the Enhancing Cetacean Habitat and Observation (ECHO) Program. The program aims to better understand and manage the impact of shipping activities on at-risk whales throughout the southern coast of British Columbia. The PMV-ECHO system is composed of two unique spatial arrays of four hydrophones and one active projector each. Both arrays are used to measure and monitor the environment and calibrate the hydrophones over time. Further, a new shored-based data processing and visualization system (JMesh) is used automatically process the data and to enable operators to easily provide measurement information, navigate through large time series of detections, examine spectrograms, listen to detected sounds, validate detections, and compare detections for different species over time and space. The JMesh web platform has been designed to overcome the otherwise overwhelming volume of acoustic data collected by the PMV-ECHO sensor systems. This paper will describe how the PMV-ECHO system along with the automated real-time analysis and visualization software suite can be used study marine mammal distribution and behavior, variation of vessel noises and potential effects of anthropogenic activities on marine mammals. The goal of the PMV-ECHO program is to find ways to reduce shipping impact on at-risk species especially in the approaches to large ports. This program and its scientific and technical approaches should be of interest to many marine organizations, industries, researchers and enforcement agencies.
Optical implementation of systolic array processing
NASA Technical Reports Server (NTRS)
Caulfield, H. J.; Rhodes, W. T.; Foster, M. J.; Horvitz, S.
1981-01-01
Algorithms for matrix vector multiplication are implemented using acousto-optic cells for multiplication and input data transfer and using charge coupled devices detector arrays for accumulation and output of the results. No two dimensional matrix mask is required; matrix changes are implemented electronically. A system for multiplying a 50 component nonnegative real vector by a 50 by 50 nonnegative real matrix is described. Modifications for bipolar real and complex valued processing are possible, as are extensions to matrix-matrix multiplication and multiplication of a vector by multiple matrices.
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung (Inventor); Fang, Wai-Chi (Inventor); Curlander, John C. (Inventor)
1995-01-01
A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array.
Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams
NASA Astrophysics Data System (ADS)
Cooling, M. P.; Humphrey, V. F.; Wilkens, V.
2011-02-01
The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.
Freitag, L E; Tyack, P L
1993-04-01
A method for localization and tracking of calling marine mammals was tested under realistic field conditions that include noise, multipath, and arbitrarily located sensors. Experiments were performed in two locations using four and six hydrophones with captive Atlantic bottlenose dolphins (Tursiops truncatus). Acoustic signals from the animals were collected in the field using a digital acoustic data acquisition system. The data were then processed off-line to determine relative hydrophone positions and the animal locations. Accurate hydrophone position estimates are achieved by pinging sequentially from each hydrophone to all the others. A two-step least-squares algorithm is then used to determine sensor locations from the calibration data. Animal locations are determined by estimating the time differences of arrival of the dolphin signals at the different sensors. The peak of a matched filter output or the first cycle of the observed waveform is used to determine arrival time of an echolocation click. Cross correlation between hydrophones is used to determine inter-sensor time delays of whistles. Calculation of source location using the time difference of arrival measurements is done using a least-squares solution to minimize error. These preliminary experimental results based on a small set of data show that realistic trajectories for moving animals may be generated from consecutive location estimates.
Kloepper, Laura N; Nachtigall, Paul E; Quintos, Christopher; Vlachos, Stephanie A
2012-01-01
Recent studies indicate some odontocetes may produce echolocation beams with a dual-lobed vertical structure. The shape of the odontocete echolocation beam was further investigated in a false killer whale performing an echolocation discrimination task. Clicks were recorded with an array of 16 hydrophones and frequency-dependent amplitude plots were constructed to assess beam shape. The majority of the echolocation clicks were single-lobed in structure with most energy located between 20 and 80 kHz. These data indicate the false killer whale does not produce a dual-lobed structure, as has been shown in bottlenose dolphins, which may be a function of lowered frequencies in the emitted signal due to hearing loss. © 2012 Acoustical Society of America.
FIBER AND INTEGRATED OPTICS: Multiplexed optical-fiber sensors with autodyne detection
NASA Astrophysics Data System (ADS)
Potapov, V. T.; Mamedov, A. M.; Shatalin, S. V.; Yushkaĭtis, R. V.
1993-09-01
A method is proposed for multiplexing optical-fiber interference sensors. The method involves autodyne reception of frequency-modulated radiation reflected back to the laser. The response of a He-Ne laser with a linearly varying generation frequency to radiation reflected back from a single-mode fiber is studied. The spectrum of beats caused in the laser radiation by the reflection is shown to be governed by the distribution of reflectors along the fiber. The phases of the spectral components contain information about the phase shift of the reflected optical signal. A hydrophone array with a sensitivity of 30 μrad/Hz1/2 is described. A distributed temperature sensor with a spatial resolution of 1 m is also described.
Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.
Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela
2016-01-01
We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier.
NASA Astrophysics Data System (ADS)
Madsen, P. T.; Kerr, I.; Payne, R.
2004-10-01
Pods of the little known pygmy killer whale (Feresa attenuata) in the northern Indian Ocean were recorded with a vertical hydrophone array connected to a digital recorder sampling at 320 kHz. Recorded clicks were directional, short (25 μs) transients with estimated source levels between 197 and 223 dB re. 1 μPa (pp). Spectra of clicks recorded close to or on the acoustic axis were bimodal with peak frequencies between 45 and 117 kHz, and with centroid frequencies between 70 and 85 kHz. The clicks share characteristics of echolocation clicks from similar sized, whistling delphinids, and have properties suited for the detection and classification of prey targeted by this odontocete. .
Development of a portable passive-acoustic bedload monitoring system
USDA-ARS?s Scientific Manuscript database
A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Awwal, Abdul A. S. (Inventor); Karim, Mohammad A. (Inventor)
1993-01-01
An inner-product array processor is provided with thresholding of the inner product during each iteration to make more significant the inner product employed in estimating a vector to be used as the input vector for the next iteration. While stored vectors and estimated vectors are represented in bipolar binary (1,-1), only those elements of an initial partial input vector that are believed to be common with those of a stored vector are represented in bipolar binary; the remaining elements of a partial input vector are set to 0. This mode of representation, in which the known elements of a partial input vector are in bipolar binary form and the remaining elements are set equal to 0, is referred to as trinary representation. The initial inner products corresponding to the partial input vector will then be equal to the number of known elements. Inner-product thresholding is applied to accelerate convergence and to avoid convergence to a negative input product.
Radulescu, E G; Wójcik, J; Lewin, P A; Nowicki, A
2003-06-01
To facilitate the implementation and verification of the new ultrasound hydrophone calibration techniques described in the companion paper (somewhere in this issue) a nonlinear propagation model was developed. A brief outline of the theoretical considerations is presented and the model's advantages and disadvantages are discussed. The results of simulations yielding spatial and temporal acoustic pressure amplitude are also presented and compared with those obtained using KZK and Field II models. Excellent agreement between all models is evidenced. The applicability of the model in discrete wideband calibration of hydrophones is documented in the companion paper somewhere in this volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Satoru; Lin, Shi -Zeng; Kamiya, Yoshitomo
Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impuritymore » array with small quenched randomness. Lastly, alternative realizations of impurity superlattices are briefly discussed.« less
Hayami, Satoru; Lin, Shi -Zeng; Kamiya, Yoshitomo; ...
2016-11-10
Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impuritymore » array with small quenched randomness. Lastly, alternative realizations of impurity superlattices are briefly discussed.« less
Sparse Method for Direction of Arrival Estimation Using Denoised Fourth-Order Cumulants Vector.
Fan, Yangyu; Wang, Jianshu; Du, Rui; Lv, Guoyun
2018-06-04
Fourth-order cumulants (FOCs) vector-based direction of arrival (DOA) estimation methods of non-Gaussian sources may suffer from poor performance for limited snapshots or difficulty in setting parameters. In this paper, a novel FOCs vector-based sparse DOA estimation method is proposed. Firstly, by utilizing the concept of a fourth-order difference co-array (FODCA), an advanced FOCs vector denoising or dimension reduction procedure is presented for arbitrary array geometries. Then, a novel single measurement vector (SMV) model is established by the denoised FOCs vector, and efficiently solved by an off-grid sparse Bayesian inference (OGSBI) method. The estimation errors of FOCs are integrated in the SMV model, and are approximately estimated in a simple way. A necessary condition regarding the number of identifiable sources of our method is presented that, in order to uniquely identify all sources, the number of sources K must fulfill K ≤ ( M 4 - 2 M 3 + 7 M 2 - 6 M ) / 8 . The proposed method suits any geometry, does not need prior knowledge of the number of sources, is insensitive to associated parameters, and has maximum identifiability O ( M 4 ) , where M is the number of sensors in the array. Numerical simulations illustrate the superior performance of the proposed method.
Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System
NASA Astrophysics Data System (ADS)
Schafer, Mark E.; Gessert, James; Moore, Wayne
2006-05-01
Concomitant with the growing clinical use of High Intensity Focused Ultrasound (HIFU), there has been a need for reliable, economical and reproducible measurements of HIFU acoustic fields. A number of approaches have been proposed and investigated, most notably by Kaczkowski et al [Proc. 2003 IEEE Ultrasonics Symposium, 982-985]. We are developing a similar reflective scatterer approach, incorporating several novel features which improve the hydrophone's bandwidth, reliability, and reproducibility. For the scattering element, we have used a fused silica optical fiber with a polyamide protective coating. The receiver is designed as a segmented, truncated spherical structure with a 10cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. Each segment has its own high impedance, wideband preamplifier, and the signals from multiple segments are summed coherently. As an additional feature, the system is designed to pulse the PVDF elements so that the pulse-echo response can be used to align the fiber at the center. Initial tests of the system have demonstrated a receiver array sensitivity of -279 dB re 1 microVolt/Pa (before preamplification), with a scattering loss at the fiber of approximately 39dB, producing an effective sensitivity of -318 dB re 1 micro Volt/Pa. The addition of the closely coupled wideband preamplifiers boosts the signal to a range which is sufficient for the measurement of HIFU transducers. The effective bandwidth of the system exceeds 15MHz, through careful design and the use of PVDF as a sensor material. In order to test the system, a HIFU transducer in the 4.0MHz frequency range was tested at low output settings using a conventional PVDF membrane hydrophone. The prototype system was then used to characterize the same HIFU transducer at full power. The results showed good correlation between waveforms and cross-axis beam measurements, taking into account the additional shock losses at higher output settings.
Vertical Cable Seismic Survey for SMS exploration
NASA Astrophysics Data System (ADS)
Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu
2014-05-01
The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two hundred meters. Our VCS system has been demonstrated as a promising survey tool for the SMS exploration.
ORPC RivGen Acoustic Measurements
Brian Polagye
2016-06-06
Drifting hydrophone measurements obtained around the Ocean Renewable Power Company RivGen turbine near the village of Igiugig, Alaska in August, 2014. Each data set contains hydrophone voltage (as well as gain and sensitivity), position on the river (LAT, LONG, and proximity to turbine [xt, yt]), drift velocity, and contextual meteorological data.
NASA Astrophysics Data System (ADS)
Punzo, Michele; Cavuoto, Giuseppe; Tarallo, Daniela; Di Fiore, Vincenzo
2017-09-01
We present high-resolution Vp models of the Capo Granitola harbor, Sicily (Italy) obtained by first arrival traveltime tomography. Seismic data were collected along four hydrophone arrays on the sea-bottom and via a Watergun as seismic source, in order to plan dredging operations in the harbor. Using a hydrophone spacing of 2.5 m and shot spacing of 5 m, very high resolution quality data were recorded. Seismic tomography expands existing knowledge of the harbour subsoil with a penetration of about 20 m, illuminating the Lower Pleistocene bedrock (Marsala calcarenites) that corresponds to high-Vp regions (Vp > 4.5 km/s). Low Vp (1.8-4.5 km/s) deposits belonging to terraced calcarenites (Upper Pleistocene in age) are also well imaged; they are about 8 m thick and lie below loose sand deposits (Vp = 1.5 km/s). The substratum has an articulated morphology; Vp images unravel small steps in the basement probably related to structural discontinuities (e.g., faults). Processing data with 3D techniques enables images of the structure and the thickness of the lithotypes to be reconstructed, thus leading to large-scale, realistic estimates of the total quantity of material to be excavated or dredged. Tomographic profiles permit clear discrimination of the soft sediment above the basement and thus allow the determination of the total volume of sediment above the seismic bedrock, estimated at about 265,000 m3.
Support for the beam focusing hypothesis in the false killer whale.
Kloepper, Laura N; Buck, John R; Smith, Adam B; Supin, Alexander Ya; Gaudette, Jason E; Nachtigall, Paul E
2015-08-01
The odontocete sound production system is complex and composed of tissues, air sacs and a fatty melon. Previous studies suggested that the emitted sonar beam might be actively focused, narrowing depending on target distance. In this study, we further tested this beam focusing hypothesis in a false killer whale. Using three linear arrays of hydrophones, we recorded the same emitted click at 2, 4 and 7 m distance and calculated the beamwidth, intensity, center frequency and bandwidth as recorded on each array at every distance. If the whale did not focus her beam, acoustics predicts the intensity would decay with range as a function of spherical spreading and the angular beamwidth would remain constant. On the contrary, our results show that as the distance from the whale to the array increases, the beamwidth is narrower and the received click intensity is higher than that predicted by a spherical spreading function. Each of these measurements is consistent with the animal focusing her beam on a target at a given range. These results support the hypothesis that the false killer whale is 'focusing' its sonar beam, producing a narrower and more intense signal than that predicted by spherical spreading. © 2015. Published by The Company of Biologists Ltd.
Echolocation signals of foraging killer whales (Orcinus orca)
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Ford, John K. B.; Allman, Kelly A.
2002-05-01
Fish eating resident killer whales that frequent the coastal waters of Vancouver Island, Canada have a strong preference for chinook salmon. The whales in Johnston Strait often forage along the steep cliffs that extend into the water, echolocating their prey. Echolocation signals were measured with a four hydrophone symmetrical star array and the signals were simultaneous digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located close to the array center. Only signals emanated from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broad band echolocation signals (Q 1.3 to 1.5) that tend to have a bimodal frequency structure. Ninety seven percent of the signals had center frequencies between 45 and 80 kHz with a band-width between 35 and 50 kHz. The peak-to-peak source level of the echolocation signal decreased as a function of the one way transmission loss to the array. Source levels varied between 200 and 225 dB re 1 μPa. Using a model of target strength for chinook salmons, the echo levels from the echolocation signals are estimated for different ranges between whale and salmon.
NASA Astrophysics Data System (ADS)
Khodabandeloo, Babak; Landrø, Martin
2017-04-01
Sound is deployed by marine mammals for variety of vital purposes such as finding food, communication, echolocation, etc. On the other hand human activities generate underwater noise. One major type of acoustic source is marine seismic acquisition which is carried out to image layers beneath the seabed exploiting reflected acoustic and elastic waves. Air-gun arrays are the most common and efficient marine seismic sources. Field measurements using broad band hydrophones have revealed that acoustic energies emitted by air-gun arrays contains frequencies from a few Hz up to tens of kHz. Frequencies below 200 Hz benefit seismic imaging and the rest is normally considered as wasted energy. On the other hand, the high frequency range (above 200 Hz) overlaps with hearing curves of many marine mammals and especially toothed whales and may have an impact on their behavior. A phenomenon called ghost cavitation is recently recognized to be responsible for a major part of these high frequencies (> 5 kHz). Acoustic pressure waves of individual air guns reflected from sea surface can cause the hydrostatic pressure to drop towards zero close to the source array. In these regions there is a high probability for water vapor cavity growth and subsequent collapse. We have simulated ghost cavitation cloud using numerical modelling and the results are validated by comparing with field measurements. The model is used to compare the amount of high frequency noise due to ghost cavitation for two different air gun arrays. Both of the arrays have three subarrays but the array distance for the one with 2730 in3 air volume is 6 meters and for the slightly bigger array (3250 in3 in air volume) the subarrays are separated by 8 meters. Simulation results indicate that the second array, despite larger subarray distance, generates stronger ghost cavitation signal.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media
Chen, Zhen; Dorfman, Kevin D.
2013-01-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Deng, Zhiqun; Carlson, Thomas J.
2012-10-19
Tidal power has been identified as one of the most potential commercial-scale renewable energy sources. Puget Sound, Washington, is a potential site to deploy tidal power generating devices. The risk of injury for killer whales needs to be managed before the deployment of these types of devices can be approved by regulating authorities. A passive acoustic system consisting of two star arrays, each with four hydrophones, was designed and implemented for the detection and localization of Southern Resident killer whales. Deployment of the passive acoustic system was conducted at Sequim Bay, Washington. A total of nine test locations were chosen,more » within a radius of 250 m around the star arrays, to test our localization approach. For the localization algorithm, a least square solver was applied to obtain a bearing location from each star array. The final source location was determined by the intersection of the bearings given by each of the two star arrays. Bearing and distance errors were obtained to conduct comparison between the calculated and true (from Global Positioning System) locations. The results indicated that bearing errors were within 1.04º for eight of the test locations; one location had bearing errors slightly larger than expected due to the strong background noise at that position. For the distance errors, six of the test locations were within the range of 1.91 to 32.36 m. The other two test locations were near the intersection line between the centers of the two star arrays, which were expected to have large errors from the theoretical sensitivity analysis performed.« less
Wang, Mingjun; Zhou, Yufeng
2016-08-01
HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.
2011-09-30
when applying the 4 passive sonar equation. The integration of acoustic time series from different ocean basins will provide a synoptic...Penn State ARL Hydrophone Analog signal (V) Preamplifiers & 24-bit AiD 1-100 HzBP filter Signal Flow for a Single Hydrophone Digital signal
Effective data compaction algorithm for vector scan EB writing system
NASA Astrophysics Data System (ADS)
Ueki, Shinichi; Ashida, Isao; Kawahira, Hiroichi
2001-01-01
We have developed a new mask data compaction algorithm dedicated to vector scan electron beam (EB) writing systems for 0.13 μm device generation. Large mask data size has become a significant problem at mask data processing for which data compaction is an important technique. In our new mask data compaction, 'array' representation and 'cell' representation are used. The mask data format for the EB writing system with vector scan supports these representations. The array representation has a pitch and a number of repetitions in both X and Y direction. The cell representation has a definition of figure group and its reference. The new data compaction method has the following three steps. (1) Search arrays of figures by selecting pitches of array so that a number of figures are included. (2) Find out same arrays that have same repetitive pitch and number of figures. (3) Search cells of figures, where the figures in each cell take identical positional relationship. By this new method for the mask data of a 4M-DRAM block gate layer with peripheral circuits, 202 Mbytes without compaction was highly compacted to 6.7 Mbytes in 20 minutes on a 500 MHz PC.
NASA Astrophysics Data System (ADS)
Araki, E.; Kawaguchi, K.; Kaneda, Y.
2011-12-01
We developed and deployed seafloor cabled observatory called "Dense Ocean-floor Network for Earthquake and Tsunamis (DONET)" in the Nankai Trough, south of Japan. The main purpose of the DONET network is to observe large earthquake such as Tonankai earthquake in the deployed seafloor and associate Tsunamis in real-time to help disaster mitigation, and as well to monitor inter-seismic crustal activities such as micro earthquakes, very low frequency earthquakes, and slower crustal deformation. In each DONET seafloor observatory, high-sensitive broadband set of instruments for seismic and seafloor pressure monitoring, consisted from Guralp CMG3T broadband seismometer, Metrozet TSA100S accelerometer, Paroscientific 8B7000-2 pressure gauge, a deep-sea differential pressure gauge, a hydrophone, and a seawater thermometer, are installed. The density of seafloor observatories are 20 observatories distributed in 15-30 km interval which is optimized for monitoring of events in the plate boundary beneath the network. DONET may be regarded as a large-scale, high sensitive high density seismic array for monitoring teleseismic events in the Philippine Sea and the Pacific Ocean. The DONET seafloor observatories are situated in wide range of seafloor depth between 1800m and 4500m, from the seafloor basin about 50 km off Japanese Island through the slope of accerecionary prism to the deep trench axis 150 km off the coast, that may also regarded as a vertical array in the 4.5km thick ocean. This variation of depths helps identify T-phases from the array record. In data analysis, it is necessary to identify propagation mode of each observed wave which may often be mixed together. In our design of DONET observation system, we took care to help identification of seismic phase by obtaining both ground motion and seafloor pressure in the same location. This is simply achieved by combining seafloor pressure gauges and seismometer in a single observatory package, but care was taken to observe both in the similar level of sensitivity and dynamic range in wide frequencies from near DC to over 100 Hz. In the case of DONET, the broadband seismometer and the differential pressure gauge have similar level of sensitivity in 0.005 - 10 Hz, and similarly the accelerometer and the hydrophone cover between 1-100Hz, in total covering most frequencies of our interest, 0.005 Hz to 100 Hz. With both ground motion and seafloor pressure measurement, we may distinguish types of waves relatively easily, and it is also possible to filter particular types of waves from the array dataset to help our data analysis. For example, it has been commonly practiced to distinguish up-going and down-going seismic phases from pressure and ground motion, but this is relatively difficult only with sparse seismometer array. This technique may also be applied to correct teleseismic record with sea surface reflection in receiver function analysis for exploring deep crustal structure.
Balancing Mitigation Against Impact: A Case Study From the 2005 Chicxulub Seismic Survey
NASA Astrophysics Data System (ADS)
Barton, P.; Diebold, J.; Gulick, S.
2006-05-01
In early 2005 the R/V Maurice Ewing conducted a large-scale deep seismic reflection-refraction survey offshore Yucatan, Mexico, to investigate the internal structure of the Chicxulub impact crater, centred on the coastline. Shots from a tuned 20 airgun, 6970 cu in array were recorded on a 6 km streamer and 25 ocean bottom seismometers (OBS). The water is exceptionally shallow to large distances offshore, reaching 30 m about 60 km from the land, making it unattractive to the larger marine mammals, although there are small populations of Atlantic and spotted dolphins living in the area, as well as several turtle breeding and feeding grounds on the Yucatan peninsula. In the light of calibrated tests of the Ewing's array (Tolstoy et al., 2004, Geophysical Research Letters 31, L14310), a 180 dB safety radius of 3.5 km around the gun array was adopted. An energetic campaign was organised by environmentalists opposing the work. In addition to the usual precautions of visual and listening watches by independent observers, gradual ramp-ups of the gun arrays, and power-downs or shut-downs for sightings, constraints were also placed to limit the survey to daylight hours and weather conditions not exceeding Beaufort 4. The operations were subject to several on-board inspections by the Mexican environmental authorities, causing logistical difficulties. Although less than 1% of the total working time was lost to shutdowns due to actual observation of dolphins or turtles, approximately 60% of the cruise time was taken up in precautionary inactivity. A diver in the water 3.5 km from the profiling ship reported that the sound in the water was barely noticeable, leading us to examine the actual sound levels recorded by both the 6 km streamer and the OBS hydrophones. The datasets are highly self-consistent, and give the same pattern of decay with distance past about 2 km offset, but with different overall levels: this may be due to geometry or calibration differences under investigation. Both datasets indicate significantly lower levels than reported by Tolstoy et al. (2004). There was no evidence of environmental damage created by this survey. It can be concluded that the mitigation measures were extremely successful, but there is also a concern that the overhead cost of the environmental protection made this one of the most costly academic surveys ever undertaken, and that not all of this protection was necessary. In particular, the predicted 180 dB safety radius appeared to be overly conservative, even though based on calibrated measurements in very similar physical circumstances, and we suggest that these differences were a result of local seismic velocity structure in the water column and/or shallow seabed, which resulted in different partitioning of the energy. These results suggest that real time monitoring of hydrophone array data may provide a method of determining the safety radius dynamically, in response to local conditions.
Whistle source levels of free-ranging beluga whales in Saguenay-St. Lawrence marine park.
Le Bot, Olivier; Simard, Yvan; Roy, Nathalie; Mars, Jérôme I; Gervaise, Cédric
2016-07-01
Wild beluga whistle source levels (SLs) are estimated from 52 three-dimensional (3D) localized calls using a 4-hydrophone array. The probability distribution functions of the root-mean-square (rms) SL in the time domain, and the peak, the strongest 3-dB, and 10-dB SLs from the spectrogram, were non-Gaussian. The average rms SL was 143.8 ± 6.7 dB re 1 μPa at 1 m. SL spectral metrics were, respectively, 145.8 ± 8 dB, 143.2 ± 7.1 dB, and 138.5 ± 6.9 dB re 1 μPa(2)·Hz(-1) at 1 m.
Design Considerations and Performance of MEMS Acoustoelectric Ultrasound Detectors
Wang, Zhaohui; Ingram, Pier; Greenlee, Charles L.; Olafsson, Ragnar; Norwood, Robert A.; Witte, Russell S.
2014-01-01
Most single-element hydrophones depend on a piezoelectric material that converts pressure changes to electricity. These devices, however, can be expensive, susceptible to damage at high pressure, and/or have limited bandwidth and sensitivity. We have previously described the acoustoelectric (AE) hydrophone as an inexpensive alternative for mapping an ultrasound beam and monitoring acoustic exposure. The device exploits the AE effect, an interaction between electrical current flowing through a material and a propagating pressure wave. Previous designs required imprecise fabrication methods using common laboratory supplies, making it difficult to control basic features such as shape and size. This study describes a different approach based on microelectromechanical systems (MEMS) processing that allows for much finer control of several design features. In an effort to improve the performance of the AE hydrophone, we combine simulations with bench-top testing to evaluate key design features, such as thickness, shape, and conductivity of the active and passive elements. The devices were evaluated in terms of sensitivity, frequency response, and accuracy for reproducing the beam pattern. Our simulations and experimental results both indicated that designs using a combination of indium tin oxide (ITO) for the active element and gold for the passive electrodes (conductivity ratio = ~20) produced the best result for mapping the beam of a 2.25-MHz ultrasound transducer. Also, the AE hydrophone with a rectangular dumbbell configuration achieved a better beam pattern than other shape configurations. Lateral and axial resolutions were consistent with images generated from a commercial capsule hydrophone. Sensitivity of the best-performing device was 1.52 nV/Pa at 500 kPa using a bias voltage of 20 V. We expect a thicker AE hydrophone closer to half the acoustic wavelength to produce even better sensitivity, while maintaining high spectral bandwidth for characterizing medical ultrasound transducers. AE ultrasound detectors may also be useful for monitoring acoustic exposure during therapy or as receivers for photoacoustic imaging. PMID:24658721
Hydrophone calibration for MERMAID seismic network
NASA Astrophysics Data System (ADS)
Joubert, C.; Nolet, G.; Sukhovich, A.; Ogé, A.; Argentino, J.; Hello, Y.
2013-12-01
The MERMAID float (Mobile Earthquake Recorder in Marine Areas by Independent Divers) is a new oceanic seismometer which has already successfully recorded P-waves from teleseismic events, when deployed in the Mediterranean Sea and the Indian Ocean. The frequency band of teleseismic acquisition is for frequencies up to 2 Hz. The P-waves are recorded with a Rafos II hydrophone. The hydrophone has a flat frequency response from 5 Hz to 10 kHz but its behavior below 5 Hz is not documented. In this work we determine the Rafos II response with the electronic card used for MERMAID in the frequency band of 0.1 to 2 Hz. A simple and low-cost calibration method at low frequencies was developed and applied to the Rafos II but can be used for any hydrophone. In this calibration method a brief pressure increase of 1000 Pa is applied to the hydrophone. We record response after filtering and digitizing by the electronic card. To create the pressure increase, the hydrophone is placed in a calibration chamber filled with water and making sure no air bubbles are present. By opening a solenoid valve connected to a tube with 10 cm extra water on top of the chamber, an abrupt pressure of 1000 Pa is applied. The output signal is fitted to an empirical response function, that characterizes it with four parameters: A, B, α and τ which control the shape of the signal: h(t) = t^(ατ) e^(-αt) (A + Bt). A represents the magnification, α defines the exponential relaxation of the signal, B models the overshoot and τ allows for a slightly delayed response due to the low-pass filtering in the electronics. A set of 20 experiments is used to characterize the Rafos II instrumental response in association with the electronic card. The method developed here offers a good and simple way to estimate the response at low frequencies. The MERMAID hydrophone response to the step function input of 1000 Pa can be defined by A = 0.36 × 0.02 mV/Pa, B = - 0.08 × 0.01 mV Pa^(-1) s^(-1), α = 0.28 × 0.02 s^(-1) and τ = 0.41 × 0.14 s.
NASA Astrophysics Data System (ADS)
Zampolli, Mario; Haralabus, Georgios; Prior, Mark K.; Heaney, Kevin D.; Campbell, Richard
2014-05-01
Hydrophone stations of the Comprehensive Nuclear-Test-Ban Organisation (CTBTO) International Monitoring System (IMS), with the exception of one in Australia, comprise two triplets of submerged moored hydrophones, one North and one South of the island from which the respective system is deployed. Triplet distances vary approximately between 50 - 100 km from the island, with each triplet connected to the receiving shore equipment by fibre-optic submarine data cables. Once deployed, the systems relay underwater acoustic waveforms in the band 1 - 100 Hz in real time to Vienna via a shore based satellite link. The design life of hydroacoustic stations is at least 20 years, without need for any maintenance of the underwater system. The re-establishment of hydrophone monitoring station HA04 at Crozet (French Southern and Antarctic Territories) in the South-Western Indian Ocean is currently being investigated. In order to determine appropriate locations and depths for the installation of the hydrophones a number of constraints need to be taken into account and balanced against each other. The most important of these are (i) hydrophone depth in a region where the sound-speed profile is mostly upward refracting and the Sound Fixing and Ranging (SOFAR) channel is not well defined, (ii) a safe distance from the surface currents which occupy the first few hundred meters of the water column, (iii) seabed slopes that enable the safe deployment of the hydrophone mooring bases, (iv) avoidance of regions of high internal tide activity, (v) choice of locations to optimize basin and cross-basin scale acoustic coverage of each triplet and (vi) redundancy considerations so that one triplet can partially cover for the other one in case of necessity. A state-of-the-art three-dimensional (3-D) parabolic equation acoustic propagation model was used to model the propagation for a number of potential triplet locations. Criteria for short-listing candidate triplet locations were based on acoustic coverage towards the North and South, as well as overall acoustic coverage, taking into account different scales of source strength. An increase in the predicted area coverage compared to predictions based on 2-D modelling was observed and attributed to diffraction around sharp localized features such as islands or sea-mounts.
A simple method for verifying the deployment of the TOMS-EP solar arrays
NASA Technical Reports Server (NTRS)
Koppersmith, James R.; Ketchum, Eleanor
1995-01-01
The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) mission relies upon a successful deployment of the spacecraft's solar arrays. Several methods of verification are being employed to ascertain the solar array deployment status, with each requiring differing amounts of data. This paper describes a robust attitude-independent verification method that utilizes telemetry from the coarse Sun sensors (CSS's) and the three-axis magnetometers (TAM's) to determine the solar array deployment status - and it can do so with only a few, not necessarily contiguous, points of data. The method developed assumes that the solar arrays are deployed. Telemetry data from the CSS and TAM are converted to the Sun and magnetic field vectors in spacecraft body coordinates, and the angle between them is calculated. Deployment is indicated if this angle is within a certain error tolerance of the angle between the reference Sun and magnetic field vectors. Although several other methods can indicate a non-deployed state, with this method there is a 70% confidence level in confirming deployment as well as a nearly 100% certainty in confirming a non-deployed state. In addition, the spacecraft attitude (which is not known during the first orbit after launch) is not needed for this algorithm because the angle between the Sun and magnetic field vectors is independent of the spacecraft attitude. This technique can be applied to any spacecraft with a TAM and with CSS's mounted on the solar array(s).
General MoM Solutions for Large Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasenfest, B; Capolino, F; Wilton, D R
2003-07-22
This paper focuses on a numerical procedure that addresses the difficulties of dealing with large, finite arrays while preserving the generality and robustness of full-wave methods. We present a fast method based on approximating interactions between sufficiently separated array elements via a relatively coarse interpolation of the Green's function on a uniform grid commensurate with the array's periodicity. The interaction between the basis and testing functions is reduced to a three-stage process. The first stage is a projection of standard (e.g., RWG) subdomain bases onto a set of interpolation functions that interpolate the Green's function on the array face. Thismore » projection, which is used in a matrix/vector product for each array cell in an iterative solution process, need only be carried out once for a single cell and results in a low-rank matrix. An intermediate stage matrix/vector product computation involving the uniformly sampled Green's function is of convolutional form in the lateral (transverse) directions so that a 2D FFT may be used. The final stage is a third matrix/vector product computation involving a matrix resulting from projecting testing functions onto the Green's function interpolation functions; the low-rank matrix is either identical to (using Galerkin's method) or similar to that for the bases projection. An effective MoM solution scheme is developed for large arrays using a modification of the AIM (Adaptive Integral Method) method. The method permits the analysis of arrays with arbitrary contours and nonplanar elements. Both fill and solve times within the MoM method are improved with respect to more standard MoM solvers.« less
Large-region acoustic source mapping using a movable array and sparse covariance fitting.
Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L
2017-01-01
Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].
Tracking sperm whales with a towed acoustic vector sensor.
Thode, Aaron; Skinner, Jeff; Scott, Pam; Roswell, Jeremy; Straley, Janice; Folkert, Kendall
2010-11-01
Passive acoustic towed linear arrays are increasingly used to detect marine mammal sounds during mobile anthropogenic activities. However, these arrays cannot resolve between signals arriving from the port or starboard without vessel course changes or multiple cable deployments, and their performance is degraded by vessel self-noise and non-acoustic mechanical vibration. In principle acoustic vector sensors can resolve these directional ambiguities, as well as flag the presence of non-acoustic contamination, provided that the vibration-sensitive sensors can be successfully integrated into compact tow modules. Here a vector sensor module attached to the end of a 800 m towed array is used to detect and localize 1813 sperm whale "clicks" off the coast of Sitka, AK. Three methods were used to identify frequency regimes relatively free of non-acoustic noise contamination, and then the active intensity (propagating energy) of the signal was computed between 4-10 kHz along three orthogonal directions, providing unambiguous bearing estimates of two sperm whales over time. These bearing estimates are consistent with those obtained via conventional methods, but the standard deviations of the vector sensor bearing estimates are twice those of the conventionally-derived bearings. The resolved ambiguities of the bearings deduced from vessel course changes match the vector sensor predictions.
Porosity, Fracturing and Alteration of Young Oceanic Crust: New Seismic Analyses at Borehole 504B
NASA Astrophysics Data System (ADS)
Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.
2017-12-01
DSDP/ODP borehole 504B, drilled 2111 m into 6.9 Ma oceanic crust, provides in-situ core and logging measurements of the lithology, fracturing and porosity of crust originally formed at the Costa Rica Rift and its subsequent alteration by hydrothermal fluids. A recent active seismic survey over the borehole and surrounding area reveals wider spatial variations in velocity that can be related to this porosity and fracturing. Over 10,000 airgun shots were fired in a 30 x 30 km grid over the borehole region, using both high-frequency and low-frequency airgun arrays. The shots were recorded on a 4.5 km-long streamer and 24 ocean-bottom seismographs, each equipped with a three-component geophone and an hydrophone. A vertical hydrophone array recorded the downgoing source wavelet, and underway gravity, magnetic field and multibeam bathymetry data were also recorded. This combined dataset enables the most comprehensive geophysical analysis of this area of crust to date, while the ground-truthing provided by 504B enables us to address the questions of what do the seismic oceanic crustal layers represent and what controls their characteristics as the crust ages? Wide-angle seismic modelling with a Monte Carlo based uncertainty analysis reveals new 2D and 3D Vp and Vs models of the area, which show relatively homogeneous crust around borehole 504B, and place the seismic layer 2B/2C, and seismic layer 2/3 boundaries coincident with fracturing and alteration fronts rather than the lithological boundaries between lavas and dykes, and dykes and gabbros, respectively. Analysis of Poisson's ratio, seismic anisotropy and particle motions reveal patterns in fracturing and porosity across the survey area, and locate possible fossilised hydrothermal circulation cells. These cells appear to have influenced the porosity of the crust through alteration and mineralisation processes, with faults inherited from initial crustal accretion influencing basement topographic highs and providing conduits for mineralising fluids to flow. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.
Chen, Zhen; Dorfman, Kevin D
2014-02-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Array analysis of electromagnetic radiation from radio transmitters for submarine communication
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Evans, Adrian
2014-12-01
The array analyses used for seismic and infrasound research are adapted and applied here to the electromagnetic radiation from radio transmitters for submarine communication. It is found that the array analysis enables a determination of the slowness and the arrival azimuth of the wave number vectors associated with the electromagnetic radiation. The array analysis is applied to measurements of ˜20-24 kHz radio waves from transmitters for submarine communication with an array of 10 radio receivers distributed over an area of ˜1 km ×1 km. The observed slowness of the observed wave number vectors range from ˜2.7 ns/m to ˜4.1 ns/m, and the deviations between the expected arrival azimuths and the observed arrival azimuths range from ˜-9.7° to ˜14.5°. The experimental results suggest that it is possible to determine the locations of radio sources from transient luminous events above thunderclouds with an array of radio receivers toward detailed investigations of the electromagnetic radiation from sprites.
Rutz, Gary L.; Sholtis, Matthew D.; Adams, Noah S.; Beeman, John W.
2014-01-01
Acoustic telemetry equipment was installed at three sites in the Willamette River during October 2012 to test the effectiveness of using the Juvenile Salmon Acoustic Telemetry System to monitor the movements of fish in a high-flow, high-velocity riverine environment. Hydrophones installed on concrete blocks were placed on the bottom of the river, and data cables were run from the hydrophones to shore where they were attached to anchor points. Under relatively low-flow conditions (less than approximately 10,000 cubic feet per second) the monitoring system remained in place and could be used to detect tagged fish as they traveled downstream during their seaward migration. At river discharge over approximately 10,000 cubic feet per second, the hydrophones were damaged and cables were lost because of the large volume of woody debris in the river and the increase in water velocity. Damage at two of the sites was sufficient to prevent data collection. A limited amount of data was collected from the equipment at the third site. Site selection and deployment strategies were re-evaluated, and an alternate deployment methodology was designed for implementation in 2013.
Optical systolic array processor using residue arithmetic
NASA Technical Reports Server (NTRS)
Jackson, J.; Casasent, D.
1983-01-01
The use of residue arithmetic to increase the accuracy and reduce the dynamic range requirements of optical matrix-vector processors is evaluated. It is determined that matrix-vector operations and iterative algorithms can be performed totally in residue notation. A new parallel residue quantizer circuit is developed which significantly improves the performance of the systolic array feedback processor. Results are presented of a computer simulation of this system used to solve a set of three simultaneous equations.
Determination of the Pressure Equivalent Noise Signal of Vector Sensors in a Hybrid Array
2012-12-01
pressure sensors for acoustic signals raises the possibility of increased sonar array performance with smaller arrays. Caulk successfully...contribution of the preamplifier in the circuit was estimated as . So the Johnson noise of the sensor wires themselves is expected to dominate
On fiber optic probe hydrophone measurements in a cavitating liquid.
Zijlstra, Aaldert; Ohl, Claus Dieter
2008-01-01
The measurement of high-pressure signals is often hampered by cavitation activity. The usage of a fiber optic probe hydrophone possesses advantages over other hydrophones, yet when measuring in a cavitating liquid large variations in the signal amplitude are found; in particular when the pressure signal recovers back to positive values. With shadowgraphy the wave propagation and cavity dynamics are imaged and the important contributions of secondary shock waves emitted from collapsing cavitation bubbles are revealed. Interestingly, just adding a small amount of acidic acid reduces the cavitation activity to a large extent. With this treatment an altered primary pressure profile which does not force the cavitation bubbles close to fiber tip into collapse has been found. Thereby, the shot-to-shot variations are greatly reduced.
Sources and levels of ambient ocean sound near the Antarctic Peninsula.
Dziak, Robert P; Bohnenstiehl, DelWayne R; Stafford, Kathleen M; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J; Lau, Tai-Kwan; Haxel, Joseph H; Mellinger, David K
2015-01-01
Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.
Sources and Levels of Ambient Ocean Sound near the Antarctic Peninsula
Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.
2015-01-01
Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean. PMID:25875205
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.
Hong-Ping, Xie; Jian-Hui, Jiang; Guo-Li, Shen; Ru-Qin, Yu
2002-01-01
A new approach for estimating the chemical rank of the three-way array called the principal norm vector orthogonal projection method has been proposed. The method is based on the fact that the chemical rank of the three-way data array is equal to one of the column space of the unfolded matrix along the spectral or chromatographic mode. A vector with maximum Frobenius norm is selected among all the column vectors of the unfolded matrix as the principal norm vector (PNV). A transformation is conducted for the column vectors with an orthogonal projection matrix formulated by PNV. The mathematical rank of the column space of the residual matrix thus obtained should decrease by one. Such orthogonal projection is carried out repeatedly till the contribution of chemical species to the signal data is all deleted. At this time the decrease of the mathematical rank would equal that of the chemical rank, and the remaining residual subspace would entirely be due to the noise contribution. The chemical rank can be estimated easily by using an F-test. The method has been used successfully to the simulated HPLC-DAD type three-way data array and two real excitation-emission fluorescence data sets of amino acid mixtures and dye mixtures. The simulation with added relatively high level noise shows that the method is robust in resisting the heteroscedastic noise. The proposed algorithm is simple and easy to program with quite light computational burden.
CMG-Augmented Control of a Hovering VTOL Platform
NASA Technical Reports Server (NTRS)
Lim, K. B.; Moerder, D. D.
2007-01-01
This paper describes how Control Moment Gyroscopes (CMGs) can be used for stability augmentation to a thrust vectoring system for a generic Vertical Take-Off and Landing platform. The response characteristics of the platform which uses only thrust vectoring and a second configuration which includes a single-gimbal CMG array are simulated and compared for hovering flight while subject to severe air turbulence. Simulation results demonstrate the effectiveness of a CMG array in its ability to significantly reduce the agility requirement on the thrust vectoring system. Albeit simplifying physical assumptions on a generic CMG configuration, the numerical results also suggest that reasonably sized CMGs will likely be sufficient for a small hovering vehicle.
Ballistic Impact Resistance of Multi-Layer Textile Fabrics
1981-10-01
REBOT (NNOLA, NVAR). the first array contains the vector of forces externally applied to the ’ top surface of the layer under consideration, while the...array REBOT (NNOLA, NVAR) contains the forces externally applied to the lower surface of the array. Initially all the elements of each of the two arrays...Qodes in a layer, the contents of array REBOT are now replaced with those of array RETOP in preparation for the repetition of the same calculations for
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
As scientists carefully study some aspects of the ocean environment, are they unintentionally distressing others? That is a question to be answered by Robert Benson and his colleagues in the Center for Bioacoustics at Texas A&M University.With help from a 3-year, $316,000 grant from the U.S. Office of Naval Research, Benson will study how underwater noise produced by naval operations and other sources may affect marine mammals. In Benson's study, researchers will generate random sequences of low-frequency, high-intensity (180-decibel) sounds in the Gulf of Mexico, working at an approximate distance of 1 km from sperm whale herds. Using an array of hydrophones, the scientists will listen to the characteristic clicks and whistles of the sperm whales to detect changes in the animals' direction, speed, and depth, as derived from fluctuations in their calls.
A hydrophone prototype for ultra high energy neutrino acoustic detection
NASA Astrophysics Data System (ADS)
Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.
2009-06-01
The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.
Marineau, Mathieu D.; Minear, J. Toby; Wright, Scott A.
2015-01-01
Collecting physical bedload measurements is an expensive and time-consuming endeavor that rarely captures the spatial and temporal variability of sediment transport. Technological advances can improve monitoring of sediment transport by filling in temporal gaps between physical sampling periods. We have developed a low-cost hydrophone recording system designed to record the sediment-generated noise (SGN) resulting from collisions of coarse particles (generally larger than 4 mm) in gravel-bedded rivers. The sound level of the signal recorded by the hydrophone is assumed to be proportional to the magnitude of bedload transport as long as the acoustic frequency of the SGN is known, the grain-size distribution of the bedload is assumed constant, and the frequency band of the ambient noise is known and can be excluded from the analysis. Each system has two hydrophone heads and samples at half-hour intervals. Ten systems were deployed on the San Joaquin River, California, and its tributaries for ten months during water year 2014, and two systems were deployed during a flood event on the Gunnison River, Colorado in 2014. A mobile hydrophone system was also tested at both locations to collect longitudinal profiles of SGN. Physical samples of bedload were not collected in this study. In lieu of physical measurements, several audio recordings from each site were aurally reviewed to confirm the presence or absence of SGN, and hydraulic data were compared to historical measurements of bedload transport or transport capacity estimates to verify if hydraulic conditions during the study would likely produce bedload transport. At one site on the San Joaquin River, the threshold of movement was estimated to have occurred around 30 m 3 /s based on SGN data. During the Gunnison River flood event, continuous data showed clockwise hysteresis, indicating that bedload transport was generally less at any given streamflow discharge during the recession limb of the hydrograph. Spatial variability in transport was also detected in the longitudinal profiles audibly and using signal processing algorithms. These experiments demonstrate the ability of hydrophone technology to capture the temporal and spatial variability of sediment transport, which may be missed when samples are collected using conventional methods.
Electric fields and vector potentials of thin cylindrical antennas
NASA Astrophysics Data System (ADS)
King, Ronold W. P.
1990-09-01
The vector potential and electric field generated by the current in a center-driven or parasitic dipole antenna that extends from z = -h to z = h are investigated for each of the several components of the current. These include sin k(h - absolute value of z), sin k (absolute value of z) - sin kh, cos kz - cos kh, and cos kz/2 - cos kh/2. Of special interest are the interactions among the variously spaced elements in parallel nonstaggered arrays. These depend on the mutual vector potentials. It is shown that at a radial distance rho approximately = h and in the range z = -h to h, the vector potentials due to all four components become alike and have an approximately plane-wave form. Simple approximate formulas for the electric fields and vector potentials generated by each of the four distributions are derived and compared with the exact results. The application of the new formulas to large arrays is discussed.
High precision computing with charge domain devices and a pseudo-spectral method therefor
NASA Technical Reports Server (NTRS)
Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor); Fijany, Amir (Inventor); Zak, Michail (Inventor)
1997-01-01
The present invention enhances the bit resolution of a CCD/CID MVM processor by storing each bit of each matrix element as a separate CCD charge packet. The bits of each input vector are separately multiplied by each bit of each matrix element in massive parallelism and the resulting products are combined appropriately to synthesize the correct product. In another aspect of the invention, such arrays are employed in a pseudo-spectral method of the invention, in which partial differential equations are solved by expressing each derivative analytically as matrices, and the state function is updated at each computation cycle by multiplying it by the matrices. The matrices are treated as synaptic arrays of a neural network and the state function vector elements are treated as neurons. In a further aspect of the invention, moving target detection is performed by driving the soliton equation with a vector of detector outputs. The neural architecture consists of two synaptic arrays corresponding to the two differential terms of the soliton-equation and an adder connected to the output thereof and to the output of the detector array to drive the soliton equation.
NASA Astrophysics Data System (ADS)
Dziak, Robert Paul
Hydroacoustic tertiary (T-) waves are seismically generated acoustic waves that propagate over great distances in the ocean sound channel with little loss in signal strength. Hydrophone recorded T-waves can provide a lower earthquake detection threshold and an improved epicenter location accuracy for oceanic earthquakes than land-based seismic networks. Thus detection and location of NE Pacific ocean earthquakes along the Blanco Transform Fault (BTFZ) and Gorda plate using the U.S. Navy's SOSUS (SOund SUrveillance System) hydrophone arrays afford greater insight into the current state of stress and crustal deformation mechanics than previously available. Acoustic earthquake information combined with bathymetry, submersible observations, earthquake source- parameter estimates, petrologic samples, and water-column chemistry renders a new tectonic view of the southern Juan de Fuca plate boundaries. Chapter 2 discusses development of seismo-acoustic analysis techniques using the well-documented April 1992 Cape Mendocino earthquake sequence. Findings include a hydrophone detection threshold estimate (M ~ 2.4), and T-wave propagation path modeling to approximate earthquake acoustic source energy. Empirical analyses indicate that acoustic energy provides a reasonable magnitude and seismic moment estimate of oceanic earthquakes not detected by seismic networks. Chapters 3 documents a probable volcanogenic T-wave event swarm along a pull-apart basin within the western BTFZ during January 1994. Response efforts yielded evidence of anomalous water-column 3He concentrations, pillow- lava volcanism, and the first discovery of active hydrothermal vents along an oceanic fracture zone. Chapter 4 discusses the detection of a NE-SW trending microearthquake band along the mid-Gorda plate which was active from initiation of SOSUS recording in August 1991 through July 1992, then abruptly ceased. It is proposed that eventual termination of the Gorda plate seismicity band is due to strain reduction associated with the Cape Mendocino earthquake sequence. Chapter 5 combines bathymetric, hydro-acoustic, seismic, submersible, and gravity data to investigate the active tectonics of the transform parallel Blanco Ridge (BR), along the eastern BTFZ. The BR formation mechanism preferred here is uplift through strike-slip motion (with a normal component) followed by formation and intrusion of mantle-derived serpentinized-peridotite into the shallow ocean crust. The conclusion considers a potential link between the deformation patterns observed along the BTFZ and Gorda plate regions.
Guidelines for developing vectorizable computer programs
NASA Technical Reports Server (NTRS)
Miner, E. W.
1982-01-01
Some fundamental principles for developing computer programs which are compatible with array-oriented computers are presented. The emphasis is on basic techniques for structuring computer codes which are applicable in FORTRAN and do not require a special programming language or exact a significant penalty on a scalar computer. Researchers who are using numerical techniques to solve problems in engineering can apply these basic principles and thus develop transportable computer programs (in FORTRAN) which contain much vectorizable code. The vector architecture of the ASC is discussed so that the requirements of array processing can be better appreciated. The "vectorization" of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and some of the difficulties involved. Increases in computing speed with vectorization are illustrated with results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of these principles was substantiated through running programs on other computers with array-associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F.
Precise on-machine extraction of the surface normal vector using an eddy current sensor array
NASA Astrophysics Data System (ADS)
Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun
2016-11-01
To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.
Calibration Errors in Interferometric Radio Polarimetry
NASA Astrophysics Data System (ADS)
Hales, Christopher A.
2017-08-01
Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.
A random phased-array for MR-guided transcranial ultrasound neuromodulation in non-human primates
NASA Astrophysics Data System (ADS)
Chaplin, Vandiver; Phipps, Marshal A.; Caskey, Charles F.
2018-05-01
Transcranial focused ultrasound (FUS) is a non-invasive technique for therapy and study of brain neural activation. Here we report on the design and characterization of a new MR-guided FUS transducer for neuromodulation in non-human primates at 650 kHz. The array is randomized with 128 elements 6.6 mm in diameter, radius of curvature 7.2 cm, opening diameter 10.3 cm (focal ratio 0.7), and 46% coverage. Simulations were used to optimize transducer geometry with respect to focus size, grating lobes, and directivity. Focus size and grating lobes during electronic steering were quantified using hydrophone measurements in water and a three-axis stage. A novel combination of optical tracking and acoustic mapping enabled measurement of the 3D pressure distribution in the cortical region of an ex vivo skull to within ~3.5 mm of the surface, and allowed accurate modelling of the experiment via non-homogeneous 3D acoustic simulations. The data demonstrates acoustic focusing beyond the skull bone, with the focus slightly broadened and shifted proximal to the skull. The fabricated design is capable of targeting regions within the S1 sensorimotor cortex of macaques.
Time reversal technique for gas leakage detection.
Maksimov, A O; Polovinka, Yu A
2015-04-01
The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.
Diurnal vocal activity of gray whales in Laguna San Ignacio, BCS, Mexico
NASA Astrophysics Data System (ADS)
Guerra, Melania; Thode, Aaron; Wisdom, Sheyna; Gonzalez, Sergio; Urban, Jorge; Sumich, James
2005-09-01
Three sets of portable horizontal acoustic arrays were deployed during a week in February 2005 to gather acoustic recordings of gray whales (Eschrichtius robustus) in Laguna San Ignacio, one of the three major breeding/calving lagoons in Baja California, Mexico. These arrays, which were constructed by attaching a pair of autonomous flash-memory acoustic sensors to a rope, were deployed for 36 consecutive hours on two occasions, spatially covering the narrowest point of the lagoon near Punta Piedra, the area of the highest concentration of whales. Additionally a single hydrophone was deployed off a small boat to record during friendly encounters with single whales and cow/calf pairs. Each recorder's time series was analyzed for Type 1 gray whale sounds (called pops), which are pulsive, broadband, and have substantial acoustic energy between 100 and 600 Hz. The number of automated acoustic detections per hour can be compared with population sizes estimated by two visual surveys conducted by scientists of the Autonomous University of Baja California Sur, La Paz. The results of several automated analyses of both the bottom-mounted and boat-deployed recordings will be presented, with a focus on potential diurnal patterns in the vocal activity.
Vertical array measurements of humpback whale songs
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Lammers, Marc O.; Pack, Adam A.; Herman, Louis
2004-05-01
The songs of eight male humpback whales were recorded at ranges varying from 20 to 40 m with a vertical array of hydrophones that had a flat frequency response to 24 kHz. The songs consisted of bursts of sounds called units. Units were organized into phrases and phrases into themes. Most of the units had mean duration between 1 and 2 s and mean silent periods between units between 1 and 2 s. Many of the recorded songs contained units that had high-frequency harmonics that extended beyond 22 kHz. These harmonic results suggest that humpback whale songs have a broadband quality not previously reported and may provide some insights on the high-frequency limit of hearing in these whales. The source levels of the songs were also estimated by considering the root-mean-square sound-pressure level referenced to 1 m for the unit with the largest level for different phrase within a song. Source levels varied between 171 to 189 dB re: 1 μPa. Singing escorts have been regularly observed within two whale lengths of females and these observations and knowledge of source levels provide estimates of sound-pressure levels that male humpback whales expose female whales to.
The temporal characteristics of humpback whale songs
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Lammers, Marc O.; Stimpert, Alison; Schotten, Michiel
2005-09-01
Songs sung by male humpback whales consist of distinct, pulsed sounds that are designated as units. Units are produced in some sequence to form a phrase, a repeated set of phrases forms a theme, and repeated themes form a song. A song can last from minutes to hours. The songs of eight humpback whales were recorded with a vertical array of five hydrophones spaced 7 m apart with the array located within 100 m of the whales. At least seven distinct units were identified aurally from this data set obtained during the 2002 winter humpback whale session in Hawaii. Four distinct recurring themes were found in the songs, and for each whale at least two themes were recorded. The average duration of each unit sampled and the silent interval following the unit were determined in order to describe the temporal characteristics of the songs. From the data the temporal consistency and cadence control of unit production by each humpback whale and between whales were determined. Understanding the temporal and spectral characteristics of units within songs and how these units vary between whales could ultimately help in the design of computer algorithms to automatically identify individual whales.
Adaptive spatial combining for passive time-reversed communications.
Gomes, João; Silva, António; Jesus, Sérgio
2008-08-01
Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA'04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6 kHz, and received at a range of about 2 km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling.
A random phased-array for MR-guided transcranial ultrasound neuromodulation in non-human primates.
Chaplin, Vandiver; Phipps, Marshal A; Caskey, Charles F
2018-05-17
Transcranial focused ultrasound (FUS) is a non-invasive technique for therapy and study of brain neural activation. Here we report on the design and characterization of a new MR-guided FUS transducer for neuromodulation in non-human primates at 650 kHz. The array is randomized with 128 elements 6.6 mm in diameter, radius of curvature 7.2 cm, opening diameter 10.3 cm (focal ratio 0.7), and 46% coverage. Simulations were used to optimize transducer geometry with respect to focus size, grating lobes, and directivity. Focus size and grating lobes during electronic steering were quantified using hydrophone measurements in water and a three-axis stage. A novel combination of optical tracking and acoustic mapping enabled measurement of the 3D pressure distribution in the cortical region of an ex vivo skull to within ~3.5 mm of the surface, and allowed accurate modelling of the experiment via non-homogeneous 3D acoustic simulations. The data demonstrates acoustic focusing beyond the skull bone, with the focus slightly broadened and shifted proximal to the skull. The fabricated design is capable of targeting regions within the S1 sensorimotor cortex of macaques.
Adaptive Focusing For Ultrasonic Transcranial Brain Therapy: First In Vivo Investigation On 22 Sheep
NASA Astrophysics Data System (ADS)
Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickael; Boch, Anne Laure; Kujas, Michelle; Fink, Mathias
2005-03-01
A high power prototype dedicated to trans-skull therapy has been tested in vivo on 22 sheep. The array is made of 300 high power transducers working at 1MHz central frequency and is able to achieve 400 bars at focus in water during five seconds with a 50% percent duty cycle. In the first series of experiments, 10 sheep were treated and sacrificed immediately after treatment. A complete craniotomy was performed on half of the treated animal models in order to get a reference model. On the other half, minimally invasive surgery has been performed: a hydrophone was inserted at a given target location inside the brain through a craniotomy of a few mm2. A time reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. Thanks to the high power technology of the prototype, trans-skull adaptive treatment could be achieved. In a second series of experiments, 12 animals were divided into three groups and sacrificed respectively one, two or three weeks after treatment. Finally, Magnetic Resonance Imaging and histological examination were performed to confirm tissue damage.
Kuzmenko, Paul J.; Davis, Donald T.
1994-01-01
A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.
Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild.
Jensen, F H; Bejder, L; Wahlberg, M; Madsen, P T
2009-04-01
Toothed whales use echolocation to locate and track prey. Most knowledge of toothed whale echolocation stems from studies on trained animals, and little is known about how toothed whales regulate and use their biosonar systems in the wild. Recent research suggests that an automatic gain control mechanism in delphinid biosonars adjusts the biosonar output to the one-way transmission loss to the target, possibly a consequence of pneumatic restrictions in how fast the sound generator can be actuated and still maintain high outputs. This study examines the relationships between target range (R), click intervals, and source levels of wild bottlenose dolphins (Tursiops sp.) by recording regular (non-buzz) echolocation clicks with a linear hydrophone array. Dolphins clicked faster with decreasing distance to the array, reflecting a decreasing delay between the outgoing echolocation click and the returning array echo. However, for interclick intervals longer than 30-40 ms, source levels were not limited by the repetition rate. Thus, pneumatic constraints in the sound-production apparatus cannot account for source level adjustments to range as a possible automatic gain control mechanism for target ranges longer than a few body lengths of the dolphin. Source level estimates drop with reducing range between the echolocating dolphins and the target as a function of 17 log(R). This may indicate either (1) an active form of time-varying gain in the biosonar independent of click intervals or (2) a bias in array recordings towards a 20 log(R) relationship for apparent source levels introduced by a threshold on received click levels included in the analysis.
Throm, Robert E.; Ouma, Annastasia A.; Zhou, Sheng; Chandrasekaran, Anantharaman; Lockey, Timothy; Greene, Michael; De Ravin, Suk See; Moayeri, Morvarid; Malech, Harry L.; Sorrentino, Brian P.
2009-01-01
Retroviral vectors containing internal promoters, chromatin insulators, and self-inactivating (SIN) long terminal repeats (LTRs) may have significantly reduced genotoxicity relative to the conventional retroviral vectors used in recent, otherwise successful clinical trials. Large-scale production of such vectors is problematic, however, as the introduction of SIN vectors into packaging cells cannot be accomplished with the traditional method of viral transduction. We have derived a set of packaging cell lines for HIV-based lentiviral vectors and developed a novel concatemeric array transfection technique for the introduction of SIN vector genomes devoid of enhancer and promoter sequences in the LTR. We used this method to derive a producer cell clone for a SIN lentiviral vector expressing green fluorescent protein, which when grown in a bioreactor generated more than 20 L of supernatant with titers above 107 transducing units (TU) per milliliter. Further refinement of our technique enabled the rapid generation of whole populations of stably transformed cells that produced similar titers. Finally, we describe the construction of an insulated, SIN lentiviral vector encoding the human interleukin 2 receptor common γ chain (IL2RG) gene and the efficient derivation of cloned producer cells that generate supernatants with titers greater than 5 × 107 TU/mL and that are suitable for use in a clinical trial for X-linked severe combined immunodeficiency (SCID-X1). PMID:19286997
Studies of the Propagation of Elastic Waves in Fluids and Solids.
1983-12-15
and scattering of ultrasound ; studies of the generation, propagation, and detection of acoustic transients, including laser induced pressure pulses... ultrasound in water and other liquids. The wide band acoustic pulses used to calibrate the various hydrophones were produced by driving thick PZT...Analysis of Pulsed Ultrasonic Fields by PVDF Spot-Poled Membrane Hydrophones, G. R. Harris, E. F. Carome and H. D. Dardy, IEEE Trans. Sonics Ultrason., SU
Application of Density Estimation Methods to Datasets Collected From a Glider
2015-09-30
species that occur in the locations where the acoustic data was recorded. For example, the data recorded off the west coast of Sardinia, Italy...fixed passive acoustic recordings to datasets recorded from an underwater glider. The current project will benefit from data collections with combined...Electromagnetics and Acoustics Research (NEAR) Laboratory was fitted with two High Tech, Inc., hydrophones (model # HTI-92-WB). The hydrophones were mounted one
Bleeker, H J; Lewin, P A
2000-01-01
A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.
Le Bras, Ronan J; Kuzma, Heidi; Sucic, Victor; Bokelmann, Götz
2016-05-01
A notable sequence of calls was encountered, spanning several days in January 2003, in the central part of the Indian Ocean on a hydrophone triplet recording acoustic data at a 250 Hz sampling rate. This paper presents signal processing methods applied to the waveform data to detect, group, extract amplitude and bearing estimates for the recorded signals. An approximate location for the source of the sequence of calls is inferred from extracting the features from the waveform. As the source approaches the hydrophone triplet, the source level (SL) of the calls is estimated at 187 ± 6 dB re: 1 μPa-1 m in the 15-60 Hz frequency range. The calls are attributed to a subgroup of blue whales, Balaenoptera musculus, with a characteristic acoustic signature. A Bayesian location method using probabilistic models for bearing and amplitude is demonstrated on the calls sequence. The method is applied to the case of detection at a single triad of hydrophones and results in a probability distribution map for the origin of the calls. It can be extended to detections at multiple triads and because of the Bayesian formulation, additional modeling complexity can be built-in as needed.
NASA Astrophysics Data System (ADS)
Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.
2011-02-01
Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.
Coated microneedle arrays for transcutaneous delivery of live virus vaccines
Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.
2016-01-01
Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8+ T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. PMID:22245683
Coated microneedle arrays for transcutaneous delivery of live virus vaccines.
Vrdoljak, Anto; McGrath, Marie G; Carey, John B; Draper, Simon J; Hill, Adrian V S; O'Mahony, Conor; Crean, Abina M; Moore, Anne C
2012-04-10
Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.
Mutual coupling effects in antenna arrays, volume 1
NASA Technical Reports Server (NTRS)
Collin, R. E.
1986-01-01
Mutual coupling between rectangular apertures in a finite antenna array, in an infinite ground plane, is analyzed using the vector potential approach. The method of moments is used to solve the equations that result from setting the tangential magnetic fields across each aperture equal. The approximation uses a set of vector potential model functions to solve for equivalent magnetic currents. A computer program was written to carry out this analysis and the resulting currents were used to determine the co- and cross-polarized far zone radiation patterns. Numerical results for various arrays using several modes in the approximation are presented. Results for one and two aperture arrays are compared against published data to check on the agreement of this model with previous work. Computer derived results are also compared against experimental results to test the accuracy of the model. These tests of the accuracy of the program showed that it yields valid data.
Information-Efficient Spectral Imaging Sensor With Tdi
Rienstra, Jeffrey L.; Gentry, Stephen M.; Sweatt, William C.
2004-01-13
A programmable optical filter for use in multispectral and hyperspectral imaging employing variable gain time delay and integrate arrays. A telescope focuses an image of a scene onto at least one TDI array that is covered by a multispectral filter that passes separate bandwidths of light onto the rows in the TDI array. The variable gain feature of the TDI array allows individual rows of pixels to be attenuated individually. The attenuations are functions of the magnitudes of the positive and negative components of a spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. This system provides for a very efficient determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.
Construction of a Fiber Optic Gradient Hydrophone Using a Michelson Configuration.
1986-03-27
Michelson interferometers; * Fabry - Perot interferometers; • Intermode interferometers; • Sagnac interferometers. Of these, the first two categories show the...most promise for hydrophone applications. The Fabry - Perot design is an excellent tool for precision length measurements but is extremely sensitive to...Pa was measured. Using the demodulation technique in Mills, [Ref. 13: pp. 94-95], one can make a comparison to the USRD type G63 stan- dard pressure
Kuzmenko, P.J.; Davis, D.T.
1994-05-10
A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.
A primary method for the complex calibration of a hydrophone from 1 Hz to 2 kHz
NASA Astrophysics Data System (ADS)
Slater, W. H.; E Crocker, S.; Baker, S. R.
2018-02-01
A primary calibration method is demonstrated to obtain the magnitude and phase of the complex sensitivity for a hydrophone at frequencies between 1 Hz and 2 kHz. The measurement is performed in a coupler reciprocity chamber (‘coupler’) a closed test chamber where time harmonic oscillations in pressure can be achieved and the reciprocity conditions required for a primary calibration can be realized. Relevant theory is reviewed and the reciprocity parameter updated for the complex measurement. Systematic errors and corrections for magnitude are reviewed and more added for phase. The combined expanded uncertainties of the magnitude and phase of the complex sensitivity at 1 Hz were 0.1 dB re 1 V μ Pa-1 and ± 1\\circ , respectively. Complex sensitivity, sensitivity magnitude, and phase measurements are presented on an example primary reference hydrophone.
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays
Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera
2015-01-01
A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.
Transmission beam characteristics of a Risso's dolphin (Grampus griseus).
Smith, Adam B; Kloepper, Laura N; Yang, Wei-Cheng; Huang, Wan-Hsiu; Jen, I-Fan; Rideout, Brendan P; Nachtigall, Paul E
2016-01-01
The echolocation system of the Risso's dolphin (Grampus griseus) remains poorly studied compared to other odontocete species. In this study, echolocation signals were recorded from a stationary Risso's dolphin with an array of 16 hydrophones and the two-dimensional beam shape was explored using frequency-dependent amplitude plots. Click source parameters were similar to those already described for this species. Centroid frequency of click signals increased with increasing sound pressure level, while the beamwidth decreased with increasing center frequency. Analysis revealed primarily single-lobed, and occasionally vertically dual-lobed, beam shapes. Overall beam directivity was found to be greater than that of the harbor porpoise, bottlenose dolphin, and a false killer whale. The relationship between frequency content, beam directivity, and head size for this Risso's dolphin deviated from the trend described for other species. These are the first reported measurements of echolocation beam shape and directivity in G. griseus.
Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; ...
2014-11-27
Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less
NASA Astrophysics Data System (ADS)
Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.
2014-11-01
Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.
Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.
2014-01-01
Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature. PMID:25427517
Li, Xinya; Deng, Z Daniel; Sun, Yannan; Martinez, Jayson J; Fu, Tao; McMichael, Geoffrey A; Carlson, Thomas J
2014-11-27
Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.
Seismic and hydroacoustic analysis relevant to MH370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stead, Richard J.
2014-07-03
The vicinity of the Indian Ocean is searched for open and readily available seismic and/or hydroacoustic stations that might have recorded a possible impact of MH370 with the ocean surface. Only three stations are identified: the IMS hydrophone arrays H01 and H08, and the Geoscope seismic station AIS. Analysis of the data from these stations shows an interesting arrival on H01 that has some interference from an Antarctic ice event, large amplitude repeating signals at H08 that obscure any possible arrivals, and large amplitude chaotic noise at AIS precludes any analysis at higher frequencies of interest. The results are thereforemore » rather inconclusive but may point to a more southerly impact location within the overall Indian Ocean search region. The results would be more useful if they can be combined with any other data that are not readily available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Deng, Z. Daniel; USA, Richland Washington
Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less
Sources and levels of ambient ocean sound near the antarctic peninsula
Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; ...
2015-04-14
Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open,more » deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue ( Balaenoptera musculus) and fin ( B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.« less
Insect Repellents: Modulators of mosquito odorant receptor activity
USDA-ARS?s Scientific Manuscript database
Mosquitoes vector numerous pathogens that cause diseases including malaria, yellow fever, dengue fever and chikungunya. DEET, IR3535, Picaridin and 2-undecanone are insect repellents that are used to prevent interactions between humans and a broad array of disease vectors including mosquitoes. While...
Compliant tactile sensor for generating a signal related to an applied force
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo (Inventor)
2012-01-01
Tactile sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector.
Piezoelectric and Electrostrictive Materials for Transducer Applications. Volume 1.
1988-03-01
3 Composites for Hydrophone Applications ...................... 2 2.3.1 Lead Bismuth Titanate Ferrate Compositions ................. 2 2.3.2...external variables are considered. 2.3 0:3 Composites for Hydrophone Applications 2.3.1 Lead Bismuth Titanate Ferrate Compositions the-"Following up...34" Even for doped samples however, the best results were obtained at the 50% bismuth ferrate composition. 0.. W* . - ’ w-w~-,wn~ , 7WI W W PP7W-w7WnM
Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S
2015-06-22
There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flow noise of an underwater vector sensor embedded in a flexible towed array.
Korenbaum, Vladimir I; Tagiltsev, Alexander A
2012-05-01
The objective of this work is to simulate the flow noise of a vector sensor embedded in a flexible towed array. The mathematical model developed, based on long-wavelength analysis of the inner space of a cylindrical multipole source, predicts the reduction of the flow noise of a vector sensor embedded in an underwater flexible towed array by means of intensimetric processing (cross-spectral density calculation of oscillatory velocity and sound-pressure-sensor responses). It is found experimentally that intensimetric processing results in flow noise reduction by 12-25 dB at mean levels and by 10-30 dB in fluctuations compared to a squared oscillatory velocity channel. The effect of flow noise suppression in the intensimetry channel relative to a squared sound pressure channel is observed, but only for frequencies above the threshold. These suppression values are 10-15 dB at mean noise levels and 3-6 dB in fluctuations. At towing velocities of 1.5-3 ms(-1) and an accumulation time of 98.3 s, the threshold frequency in fluctuations is between 30 and 45 Hz.
Design of a hydrophone for an Ocean World lander
NASA Astrophysics Data System (ADS)
Smith, Heather D.; Duncan, Andrew G.
2017-10-01
For this presentation we describe the science return, and design of a microphone on- board a Europa lander mission. In addition to the E/PO benefit of a hydrophone to listen to the Europa Ocean, a microphone also provides scientific data on the properties of the subsurface ocean.A hydrophone is a small light-weight instrument that could be used to achieve two of the three Europa Lander mission anticipated science goals of: 1) Asses the habitability (particularly through quantitative compositional measurements of Europa via in situ techniques uniquely available to a landed mission. And 2) Characterize surface properties at the scale of the lander to support future exploration, including the local geologic context.Acoustic properties of the ocean would lead to a better understanding of the water density, currents, seafloor topography and other physical properties of the ocean as well as lead to an understanding of the salinity of the ocean. Sound from water movement (tidal movement, currents, subsurface out-gassing, ocean homogeneity (clines), sub-surface morphology, and biological sounds.The engineering design of the hydrophone instrument will be designed to fit within a portion of the resource allocation of the current best estimates of the Europa lander payload (26.6 Kg, 24,900 cm3, 2,500 W-hrs and 2700 Mbits). The hydrophone package will be designed to ensure planetary protection is maintained and will function under the cur- rent Europa lander mission operations scenario of a two-year cruise phase, and 30-day surface operational phase on Europa.Although the microphone could be used on the surface, it is designed to be lowered into the subsurface ocean. As such, planetary protection (forward contamination) is a primary challenge for a subsurface microphone/ camera. The preliminary design is based on the Navy COTS optical microphone.Reference: Pappalardo, R. T., et al. "Science potential from a Europa lander." Astrobiology 13.8 (2013): 740-773.
NASA Astrophysics Data System (ADS)
Pelz, M.; Dewey, R. K.; Hoeberechts, M.; Kanes, K.; Ewing, N.
2015-12-01
Presented by the Ocean Networks Canada (ONC) Leaning and Engagement team, this demonstration focuses on our strategy for engaging and inspiring the next generation of ocean advocates by introducing them to one of the ocean's most charismatic inhabitants: marine mammals (and don't worry, we don't need any tanks or neoprene suits to do it). Using bioacoustic data, we can bring the essence of the animals with us. ONC, an initiative of the University of Victoria, operates cabled ocean observatories which supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea. This Internet connectivity permits researchers, students and members of the public to download freely available data onto their computers from anywhere around the globe, in real-time. Our demo focuses on the story of bioacoustics from instrument to animal. When visiting classrooms or hosting booths, we enhance user knowledge and experience by connecting familiar animals with their acoustic data from hydrophones. This includes listening to hydrophone clips collected from the network, analyzing sounds using interactive, real-time software and playing interactive games designed to get participants thinking like a scientist and taking a whale's perspective. For example, participants listen to recordings and guess the sound, identify frequencies and try a working hydrophone. The presentation consists of a suite of activities that meet a broad range of Next Generation Science Standards and includes links to the SoundCloud, https://soundcloud.com/oceannetworkscanada the ONC hydrophone FAQ, http://www.oceannetworks.ca/smart-hydrophone-faq and a classroom ready resource, Shouting Whales http://openschool.bc.ca/shouting_whales/index.html . The included links allow users anywhere to have a similar whale "experience" as the data are classroom ready, accessible and free.
NASA Astrophysics Data System (ADS)
Tsekhmistrenko, Maria; Sigloch, Karin; Hosseini, Kasra; Barruol, Guilhem
2016-04-01
From 2011 to 2014, the RHUM-RUM project (Reunion Hotspot Upper Mantle - Reunions Unterer Mantel) instrumented a 2000x2000km2 area of Indian Ocean seafloor, islands and Madagascar with broadband seismometers and hydrophones. The central component was a 13-month deployment of 57 German and French Ocean Bottom Seismometers (OBS) in 2300-5600 m depth. This was supplemented by 2-3 year deployments of 37 island stations on Reunion, Mauritius, Rodrigues, the southern Seychelles, the Iles Eparses and southern Madagascar. Two partner projects contributed another 30+ stations on Madagascar. Our ultimate objective is multifrequency waveform tomography of the entire mantle column beneath the Reunion hotspot. Ideally we would use all passbands that efficiently transmit body waves but this meets practical limits in the noise characteristics of ocean-bottom recordings in particular. Here we present the preliminary data set of frequency-dependent P-wave traveltime measurements on seismometers and hydrophones, obtained by cross-correlation of observed with predicted waveforms. The latter are synthesized from fully numerical Green's functions and carefully estimated, broadband source time functions. More than 200 teleseismic events during the 13-month long deployment yielded usable P-waveform measurements. We present our methods and discuss data yield and quality of ocean-bottom versus land seismometers, and of OBS versus broadband hydrophones. Above and below the microseismic noise band, data yields are higher than within it, especially for OBS. The 48 German OBS, equipped with Guralp 60 s sensors, were afflicted by relatively high self-noise compared to the 9 French instruments equipped with Nanometrics Trillium 240 s sensors. The HighTechInc (model HTI-01 and HTI-04-PCA/ULF) hydrophones (100 s corner period) functioned particularly reliably but their waveforms are relatively more challenging to model due to reverberations in the water column. We obtain ~15000 combined cross-correlations measurements that should be usable in multifrequency P-wave tomography, in passbands between 30 s and 2.7 s dominant period.
Spray characteristics affected by physical properties of adjuvants
USDA-ARS?s Scientific Manuscript database
Four drift adjuvants, Array, In-Place, Vector and Control, were tested and physical properties and spray spectrum parameters measured. Array had the highest conductivity, indicating a good potential for the electrostatic charging, and the highest shear viscosity. All adjuvants had very similar neut...
Surface Craft Motion Parameter Estimation Using Multipath Delay Measurements from Hydrophones
2011-12-01
the sensor is cd . The slant range of the source from the sensor at time t is given by 21222 ])([)( cc RtvtR +−= τ ( 1 ) where 2122 ])[( crtc dhhR...Surface Craft Motion Parameter Estimation Using Multipath Delay Measurements from Hydrophones Kam W. Lo # 1 and Brian G. Ferguson #2 # Maritime...Eveleigh, NSW 2015 Australia 1 kam.lo@dsto.defence.gov.au 2 brian.ferguson@dsto.defence.gov.au Abstract— An equation-error (EE) method is
2015-09-30
interpolation was used to estimate fin whale density in between the hydrophone locations , and the result plotted as a density image. This was repeated every 5...singing fin whale density throughout the year for the study location off Portugal. Color indicates whale density, with calibration scale at right; yellow...spots are hydrophone locations ; timeline at top indicates the time of year; circle at lower right is 1000 km 2 , the area used in the unit of whale
1989-08-03
holes drilled in the seafloor from the D/V JOIDES Resolution through petrological , geochemical and paleomagnetic studies of the samples and logging...seismome- ters and/or hydrophones (or differential pressure gauges , DPG). Testing of the new instruments at very early stages is important to ensure...resolved using ocean bottom seismometers, suspended hydrophones and differential pressure gauges assisted by an orbiting radar altimeter (GEOSAT
2008-03-01
Stafford et al. ( 1998 ) utilized MSP for long range and acoustic detection and localization of blue whale calls in the northeast Pacific Ocean...J. Acoust . Soc. Am. 107 (6):3496:3508 (2000). Stafford , K. M., Fox, C. G., Clark, D. S., “ Long - range acoustic detection and localization of blue ...OF THE PERFORMANCE OF THE NEAR- BOTTOM HYDROPHONES OF THE U.S. NAVY SOUTHERN CALIFORNIA OFFSHORE
2007-09-01
since water depth was only 800 m. Interestingly the signal from the 3rd drop has charge-seafloor range and bubble pulse frequency closer to what would...Hydrophone. A near-source hydrophone recording system was put together by Scripps Institution of Oceanography’s (SIO’s) Ocean Bottom Seismograph ...needed. We have thus proposed another research cruise to obtain more detailed measurements . Our new plan calls for several improvements to the previous
1995-05-01
at zero source level to allow time for any mobile marine animal who was annoyed by the sound to depart the affected area; and project facilities would...using conventional thermometers); autonomous polar hydrophones; and a dual site experiment using mobile playback experiments. Of the twelve alternatives...HYDROPHONES (ICE NOISE 2-43 MEASUREMENTS) (ALTERNATIVE 11) 2.2.12 DUAL SITE EXPERIMENT; ALTERNATIVE MMRP 2-44 TECHNIQUES -- MOBILE PLAYBACK EXPERIMENTS
Parallel scheduling of recursively defined arrays
NASA Technical Reports Server (NTRS)
Myers, T. J.; Gokhale, M. B.
1986-01-01
A new method of automatic generation of concurrent programs which constructs arrays defined by sets of recursive equations is described. It is assumed that the time of computation of an array element is a linear combination of its indices, and integer programming is used to seek a succession of hyperplanes along which array elements can be computed concurrently. The method can be used to schedule equations involving variable length dependency vectors and mutually recursive arrays. Portions of the work reported here have been implemented in the PS automatic program generation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, W; Merrick, G; Kurko, B
Purpose: To quantify the effect of metal hip prosthesis on the ability to track and localize electromagnetic transponders. Methods: Three Calypso transponders were implanted into two prostate phantoms. The geometric center of the transponders were identified on computed tomography and set as the isocenter. With the phantom stationary on the treatment table and the tracking array 14-cm above the isocenter, data was acquired by the Calypso system at 10 Hz to establish the uncertainty in measurements. Transponder positional data was acquired with unilateral hip prostheses of different metallic compositions and then with bilateral hips placed at variable separation from themore » phantom. Results: Regardless of hip prosthesis composition, the average vector displacement in the presence of a unilateral prosthesis was < 0.5 mm. The greatest contribution to overall vector displacement occurred in the lateral dimension. With bilateral hip prosthesis, the average vector displacement was 0.3 mm. The displacement in the lateral dimension was markedly reduced compared with a unilateral hip, suggesting that there was a countervailing effect with bilateral hip prosthesis. The greatest average vector displacement was 0.6 mm and occurred when bilateral hip prostheses were placed within 4 cm of the detector array. Conclusion: Unilateral and bilateral hip prostheses did not have any meaningful effect on the ability to accurately track electromagnetic transponders implanted in a prostate phantom. At clinically realistic distances between the hip and detection array, the average tracking error is negligible.« less
NASA Technical Reports Server (NTRS)
1982-01-01
An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.
Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E
2013-10-01
A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.
Effect of nonlinearity on lesion formation for high-intensity focused ultrasound (HIFU) exposures
NASA Astrophysics Data System (ADS)
Lee, Paul; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Vecchio, Christopher J.
2004-05-01
This study examined the effects of nonlinear propagation phenomena on two types of HIFU transducers (5 MHz) being used for thermal treatments of disease. The first transducer is a 5-element annular array. The second is a transducer with a 5-strip electrode; its multilobed focused beam is designed to efficiently produce broad, paddle-shaped lesions. The beam patterns of these transducers were computed using a variety of excitation patterns for electronic focusing of the annular array and variation of lesion size for the strip-electrode transducer. A range of intensities was studied to determine how nonlinear propagation affects the beam shape, constituent frequency content, grating lobes, etc. These 3D computations used a finite-amplitude beam propagation model that combined the angular spectrum method and Burger's equation to compute the diffraction and nonlinear effects, respectively. Computed beam patterns were compared with hydrophone measurements for each transducer. The linear and nonlinear beam patterns were used to compute the absorbed thermal dose, and the bioheat equation was evaluated to calculate 3D temperature rises and geometry of induced lesions. Computed lesion sizes and shapes were compared to in vitro lesions created by each HIFU transducer. [Work supported by NCI and NHLBI Grant 5R01 CA84588.
Miller, Brian; Dawson, Stephen; Vennell, Ross
2013-10-01
Observations are presented of the vocal behavior and three dimensional (3D) underwater movements of sperm whales measured with a passive acoustic array off the coast of Kaikoura, New Zealand. Visual observations and vocal behaviors of whales were used to divide dive tracks into different phases, and depths and movements of whales are reported for each of these phases. Diving depths and movement information from 75 3D tracks of whales in Kaikoura are compared to one and two dimensional tracks of whales studied in other oceans. While diving, whales in Kaikoura had a mean swimming speed of 1.57 m/s, and, on average, dived to a depth of 427 m (SD = 117 m), spending most of their time at depths between 300 and 600 m. Creak vocalizations, assumed to be the prey capture phase of echolocation, occurred throughout the water column from sea surface to sea floor, but most occurred at depths of 400-550 m. Three dimensional measurement of tracking revealed several different "foraging" strategies, including active chasing of prey, lining up slow-moving or unsuspecting prey, and foraging on demersal or benthic prey. These movements provide the first 3D descriptions underwater behavior of whales at Kaikoura.
Kjeldsen, Henrik D.; Kaiser, Marcus; Whittington, Miles A.
2015-01-01
Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. PMID:26026581
Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A
2015-09-30
Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Microaftershock survey of the 1978 Bermuda rise earthquake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishenko, S.P.; Purdy, G.M.; Ewing, J.I.
1982-12-10
On March 24, 1978, a magnitude 6.0 intraplate earthquake occurred 380 km southwest of Bermuda near magnetic anomaly M4 (roughly-equal118 m.y.B.P.). A catalog of seismicity for the Bermuda rise indicates that this is an area of significant intraplate seismicity in the western North Atlantic Ocean. The fault plane solution for the 1978 event is of thrust type and strikes 340/sup 0/, in an intermediate direction to the trends of major fracture zones (300/sup 0/) and abyssal hill topography (035/sup 0/) in the area. The P axis of this mechanism is nearly horizontal and trends 259/sup 0/, subparallel to the absolutemore » plate motion vector for North America. Aftershock activity was detected teleseismically for approximately 8 months after March 24, and the entire sequence is best described as a prolonged mainshock-aftershock series. During June 18--28, 1978, we conducted a microaftershock survey of the area using ocean bottom hydrophones and recorded 250 events (0« less
Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C
2010-01-01
Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947
1998-09-01
potential of the surface wave electromagnetic field; ea is the unit of the polarization vectors : ex = ela. = e2x= (qx/\\q\\)\\/L\\q\\/(ei + e0), ely... polarization basis of the incident wave: EB°=eB^(/kr), (1) where e„ is the cyclic unit vector , n = ±1, k is the wave vector . The equation describing...rectangular grid. From the direction determined by wave vector k0, the plane electromagnetic wave of linear polarization incidents onto the array. It
NASA Astrophysics Data System (ADS)
Goslin, J.; Bazin, S.; Dziak, R. P.; Fox, C.; Fowler, M.; Haxel, J.; Lourenco, N.; Luis, J.; Martin, C.; Matsumoto, H.; Perrot, J.; Royer, J.
2004-12-01
The seismicity of the North Atlantic was recorded by two networks of hydrophones moored in the SOFAR channel, north and south of the Azores Plateau. The interpretation of the hydro-acoustic signals recorded during the first six-month common period of operation of the two networks (June 2002 to Nov. 2002) provides a unique data set on the spatial and time distributions of the numerous low-magnitude earthquakes which occurred along the Mid-Atlantic Ridge. Close to 2000 events were localized during this six-month period between latitudes 15° N and 63° N, 501 of which are localized within the SIRENA network (40° N-51° N) and 692 within the wider South Azores network (17° N-33° N). Using hydrophones to locate seafloor earthquakes by interpreting T-wave signals lowers the detection threshold of Mid-Atlantic Ridge events to 3.0 mb from the 4.7 mb of global seismic networks. This represents an average thirty-fold increase in the number of events: 62 events were detected by global seismological networks within the same area during the same period. An along-ridge spatial distribution of the seismicity is obtained by computing the cumulated numbers of events in 1° -wide latitudinal bins. When plotted vs. latitude, this first-order distribution shows remarkable long-wavelength patterns: the seismicity rate is low when approaching the Azores and Iceland (reaching values as low as 10 events/d° ), while it peaks to 70 events/d° in the vicinity of the Gibbs FZ. Moreover, the latitudinal distribution of the seismicity hints at an asymmetric influence of the Azores hotpot on the MAR. Finally, the spatial distribution of the seismicity anti-correlates well at long wavelengths with the zero-age depths along the MAR and correlates with the zero-age Mantle Bouguer (MBA) anomaly values and the Vs velocity anomalies at 100 km in the upper mantle. It is thus proposed that the seismicity level would be partly tied to the rheology and thickness of the brittle layer and be thus dependant on the thermal regime of the upper mantle. The seismicity distribution could then be used as an additional tool to characterize the along-ridge influence of the Azores and Iceland hotspots on the MAR slow-spreading center.
Simplicity and Typical Rank Results for Three-Way Arrays
ERIC Educational Resources Information Center
ten Berge, Jos M. F.
2011-01-01
Matrices can be diagonalized by singular vectors or, when they are symmetric, by eigenvectors. Pairs of square matrices often admit simultaneous diagonalization, and always admit block wise simultaneous diagonalization. Generalizing these possibilities to more than two (non-square) matrices leads to methods of simplifying three-way arrays by…
Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo
2011-01-01
This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587
Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins
Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.
2006-01-01
The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Yokoyama, Ryouta; Yagi, Shin-ichi; Tamura, Kiyoshi; Sato, Masakazu
2009-07-01
Ultrahigh speed dynamic elastography has promising potential capabilities in applying clinical diagnosis and therapy of living soft tissues. In order to realize the ultrahigh speed motion tracking at speeds of over thousand frames per second, synthetic aperture (SA) array signal processing technology must be introduced. Furthermore, the overall system performance should overcome the fine quantitative evaluation in accuracy and variance of echo phase changes distributed across a tissue medium. On spatial evaluation of local phase changes caused by pulsed excitation on a tissue phantom, investigation was made with the proposed SA signal system utilizing different virtual point sources that were generated by an array transducer to probe each component of local tissue displacement vectors. The final results derived from the cross-correlation method (CCM) brought about almost the same performance as obtained by the constrained least square method (LSM) extended to successive echo frames. These frames were reconstructed by SA processing after the real-time acquisition triggered by the pulsed irradiation from a point source. The continuous behavior of spatial motion vectors demonstrated the dynamic generation and traveling of the pulsed shear wave at a speed of one thousand frames per second.
NASA Astrophysics Data System (ADS)
Yoshioka, Masahiro; Sato, Sojun; Kikuchi, Tsuneo; Matsuda, Yoichi
2006-05-01
In this study, the influence of ultrasonic nonlinear propagation on hydrophone calibration by the two-transducer reciprocity method is investigated quantitatively using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. It is proposed that the correction for the diffraction and attenuation of ultrasonic waves used in two-transducer reciprocity calibration can be derived using the KZK equation to remove the influence of nonlinear propagation. The validity of the correction is confirmed by comparing the sensitivities calibrated by the two-transducer reciprocity method and laser interferometry.
USDA-ARS?s Scientific Manuscript database
The entomologists at the Arthropod-Borne Animal Diseases Research Unit at USDA-Agricultural Research Service are tasked with protecting the nation’s livestock from domestic, foreign and emerging vector-borne diseases. To accomplish this task, a vast array of molecular techniques are being used in pr...
Methods for monitoring hydroacoustic events using direct and reflected T waves in the Indian Ocean
NASA Astrophysics Data System (ADS)
Hanson, Jeffrey A.; Bowman, J. Roger
2006-02-01
The recent installation of permanent, three-element hydrophone arrays in the Indian Ocean offshore Diego Garcia and Cape Leeuwin, Australia, provides an opportunity to study hydroacoustic sources in more detail than previously possible. We developed and applied methods for coherent processing of the array data, for automated association of signals detected at more than one array, and for source location using only direct arrivals and using signals reflected from coastlines and other bathymetric features. During the 286-day study, 4725 hydroacoustic events were defined and located in the Indian and Southern oceans. Events fall into two classes: tectonic earthquakes and ice-related noise. The tectonic earthquakes consist of mid-ocean ridge, trench, and intraplate earthquakes. Mid-ocean ridge earthquakes are the most common tectonic events and often occur in clusters along transform offsets. Hydroacoustic signal levels for earthquakes in a standard catalog suggest that the hydroacoustic processing threshold for ridge events is one magnitude below the seismic network. Fewer earthquakes are observed along the Java Trench than expected because the large bathymetric relief of the source region complicates coupling between seismic and hydroacoustic signals, leading to divergent signal characteristics at different stations. We located 1843 events along the Antarctic coast resulting from various ice noises, most likely thermal fracturing and ice ridge forming events. Reflectors of signals from earthquakes are observed along coastlines, the mid-Indian Ocean and Ninety East ridges, and other bathymetric features. Reflected signals are used as synthetic stations to reduce location uncertainty and to enable event location with a single station.
Advances in Mixed Signal Processing for Regional and Teleseismic Arrays
2006-08-15
1: Mixture of signals from two earthquakes from south of Africa and the Philippines observed at USAEDS long-period seismic array in Korea. Correct...window where the detector will miss valid signals . 2 Approaches to detecting signals on arrays all focus on the basic model that expresses the observed...possible use in detecting infrasound signals . The approach is based on orthogonal- ity properties of the eigen vectors of the spectral matrix under a
2008-09-01
of magnetic UXO. The prototype STAR Sensor comprises: a) A cubic array of eight fluxgate magnetometers . b) A 24-channel data acquisition/signal...array (shaded boxes) of eight low noise Triaxial Fluxgate Magnetometers (TFM) develops 24 channels of vector B- field data. Processor hardware
Divide and Recombine for Large Complex Data
2017-12-01
Empirical Methods in Natural Language Processing , October 2014 Keywords Enter keywords for the publication. URL Enter the URL...low-latency data processing systems. Declarative Languages for Interactive Visualization: The Reactive Vega Stack Another thread of XDATA research...for array processing operations embedded in the R programming language . Vector virtual machines work well for long vectors. One of the most
NASA Astrophysics Data System (ADS)
Ndaw, Joseph D.; Faye, Andre; Maïga, Amadou S.
2017-05-01
Artificial neural networks (ANN)-based models are efficient ways of source localisation. However very large training sets are needed to precisely estimate two-dimensional Direction of arrival (2D-DOA) with ANN models. In this paper we present a fast artificial neural network approach for 2D-DOA estimation with reduced training sets sizes. We exploit the symmetry properties of Uniform Circular Arrays (UCA) to build two different datasets for elevation and azimuth angles. Linear Vector Quantisation (LVQ) neural networks are then sequentially trained on each dataset to separately estimate elevation and azimuth angles. A multilevel training process is applied to further reduce the training sets sizes.
Phased-array vector velocity estimation using transverse oscillations.
Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A
2012-12-01
A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.
NASA Technical Reports Server (NTRS)
Liu, Kuojuey Ray
1990-01-01
Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.
Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu
2016-03-11
This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.
Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu
2016-01-01
This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361
Joint Bearing and Range Estimation of Multiple Objects from Time-Frequency Analysis.
Liu, Jeng-Cheng; Cheng, Yuang-Tung; Hung, Hsien-Sen
2018-01-19
Direction-of-arrival (DOA) and range estimation is an important issue of sonar signal processing. In this paper, a novel approach using Hilbert-Huang transform (HHT) is proposed for joint bearing and range estimation of multiple targets based on a uniform linear array (ULA) of hydrophones. The structure of this ULA based on micro-electro-mechanical systems (MEMS) technology, and thus has attractive features of small size, high sensitivity and low cost, and is suitable for Autonomous Underwater Vehicle (AUV) operations. This proposed target localization method has the following advantages: only a single snapshot of data is needed and real-time processing is feasible. The proposed algorithm transforms a very complicated nonlinear estimation problem to a simple nearly linear one via time-frequency distribution (TFD) theory and is verified with HHT. Theoretical discussions of resolution issue are also provided to facilitate the design of a MEMS sensor with high sensitivity. Simulation results are shown to verify the effectiveness of the proposed method.
Variation in harbour porpoise activity in response to seismic survey noise
Pirotta, Enrico; Brookes, Kate L.; Graham, Isla M.; Thompson, Paul M.
2014-01-01
Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891
Farny, Caleb H.; Clement, Gregory T.
2009-01-01
Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380
Environmentally adaptive processing for shallow ocean applications: A sequential Bayesian approach.
Candy, J V
2015-09-01
The shallow ocean is a changing environment primarily due to temperature variations in its upper layers directly affecting sound propagation throughout. The need to develop processors capable of tracking these changes implies a stochastic as well as an environmentally adaptive design. Bayesian techniques have evolved to enable a class of processors capable of performing in such an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean environment. A solution to this problem is addressed by developing a sequential Bayesian processor capable of providing a joint solution to the modal function tracking and environmental adaptivity problem. Here, the focus is on the development of both a particle filter and an unscented Kalman filter capable of providing reasonable performance for this problem. These processors are applied to hydrophone measurements obtained from a vertical array. The adaptivity problem is attacked by allowing the modal coefficients and/or wavenumbers to be jointly estimated from the noisy measurement data along with tracking of the modal functions while simultaneously enhancing the noisy pressure-field measurements.
Matthews, Leanna P; Parks, Susan E; Fournet, Michelle E H; Gabriele, Christine M; Womble, Jamie N; Klinck, Holger
2017-03-01
Source levels of harbor seal breeding vocalizations were estimated using a three-element planar hydrophone array near the Beardslee Islands in Glacier Bay National Park and Preserve, Alaska. The average source level for these calls was 144 dB RMS re 1 μPa at 1 m in the 40-500 Hz frequency band. Source level estimates ranged from 129 to 149 dB RMS re 1 μPa. Four call parameters, including minimum frequency, peak frequency, total duration, and pulse duration, were also measured. These measurements indicated that breeding vocalizations of harbor seals near the Beardslee Islands of Glacier Bay National Park are similar in duration (average total duration: 4.8 s, average pulse duration: 3.0 s) to previously reported values from other populations, but are 170-220 Hz lower in average minimum frequency (78 Hz).
1982-06-15
tiers d’octave, le nombre de mesures de bruit etait limite a trois . On a prefere etudier 1’influence de 1’immersion avec des hydrophones om...bateaux presents dans le secteur . Un minimum serait la reproduction d’un scope radar donnant le nombre et les positions des bruiteurs. Rien d’em...d’environnement pour la pluie, le vent, 1’interception radar (fig.2). 5.2. Ligne sous-marine (fig.3) . Les trois hydrophones et le reseau de
Range estimates of whale signals recorded by triplets of hydrophones.
NASA Astrophysics Data System (ADS)
Le Bras, R. J.; Nielsen, P.
2017-12-01
The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization includes a hydroacoustic network as one of the monitoring technologies. The underwater part of this network includes six stations and is now complete with the recent installation of the HA04 station located in the Southern Ocean island of Crozet (France). A large number of calls emanating from marine mammals are recorded by the hydrophones, and we present examples where the animals are sufficiently close that a range estimate can be attempted. We also present examples of scattered arrivals and related interpretations.
A multi-hypothesis tracker for clicking whales.
Baggenstoss, Paul M
2015-05-01
This paper describes a tracker specially designed to track clicking beaked whales using widely spaced bottom-mounted hydrophones, although it can be adapted to different species and sensors. The input to the tracker is a sequence of static localization solutions obtained using time difference of arrival information at widely spaced hydrophones. To effectively handle input localizations with high ambiguity, the tracker is based on multi-hypothesis tracker concepts, so it considers all potential association hypotheses and keeps a large number of potential tracks in memory. The method is demonstrated on actual data and shown to successfully track multiple beaked whales at depth.
Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun
2017-01-01
This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431
Preconditioned MoM Solutions for Complex Planar Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasenfest, B J; Jackson, D; Champagne, N
2004-01-23
The numerical analysis of large arrays is a complex problem. There are several techniques currently under development in this area. One such technique is the FAIM (Faster Adaptive Integral Method). This method uses a modification of the standard AIM approach which takes into account the reusability properties of matrices that arise from identical array elements. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basis functions, such as the RWG basis. These bases are then projected onto a regular grid of interpolating polynomials. This grid can then be used in a 2D ormore » 3D FFT to accelerate the matrix-vector product used in an iterative solver. The method has been proven to greatly reduce solve time by speeding the matrix-vector product computation. The FAIM approach also reduces fill time and memory requirements, since only the near element interactions need to be calculated exactly. The present work extends FAIM by modifying it to allow for layered material Green's Functions and dielectrics. In addition, a preconditioner is implemented to greatly reduce the number of iterations required for a solution. The general scheme of the FAIM method is reported in; this contribution is limited to presenting new results.« less
An integrated analysis-synthesis array system for spatial sound fields.
Bai, Mingsian R; Hua, Yi-Hsin; Kuo, Chia-Hao; Hsieh, Yu-Hao
2015-03-01
An integrated recording and reproduction array system for spatial audio is presented within a generic framework akin to the analysis-synthesis filterbanks in discrete time signal processing. In the analysis stage, a microphone array "encodes" the sound field by using the plane-wave decomposition. Direction of arrival of plane-wave components that comprise the sound field of interest are estimated by multiple signal classification. Next, the source signals are extracted by using a deconvolution procedure. In the synthesis stage, a loudspeaker array "decodes" the sound field by reconstructing the plane-wave components obtained in the analysis stage. This synthesis stage is carried out by pressure matching in the interior domain of the loudspeaker array. The deconvolution problem is solved by truncated singular value decomposition or convex optimization algorithms. For high-frequency reproduction that suffers from the spatial aliasing problem, vector panning is utilized. Listening tests are undertaken to evaluate the deconvolution method, vector panning, and a hybrid approach that combines both methods to cover frequency ranges below and above the spatial aliasing frequency. Localization and timbral attributes are considered in the subjective evaluation. The results show that the hybrid approach performs the best in overall preference. In addition, there is a trade-off between reproduction performance and the external radiation.
Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun
2017-04-27
This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.
is performed using the MUSIC algorithm on the signals received on the non-uniform phased array, and the ESPRIT algorithm is used on the signals...received on the non-colocated vector sensor. The simulation results show that the MUSIC algorithm using 2D Bi-SQUIDs is able to differentiate two signals
Iterative color-multiplexed, electro-optical processor.
Psaltis, D; Casasent, D; Carlotto, M
1979-11-01
A noncoherent optical vector-matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.
3-D Vector Flow Estimation With Row-Column-Addressed Arrays.
Holbek, Simon; Christiansen, Thomas Lehrmann; Stuart, Matthias Bo; Beers, Christopher; Thomsen, Erik Vilain; Jensen, Jorgen Arendt
2016-11-01
Simulation and experimental results from 3-D vector flow estimations for a 62 + 62 2-D row-column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3-MHz RC array is developed and validated. First, a parametric simulation study is conducted, where flow direction, ensemble length, number of pulse cycles, steering angles, transmit/receive apodization, and TO apodization profiles and spacing are varied, to find the optimal parameter configuration. The performance of the estimator is evaluated with respect to relative mean bias ~B and mean standard deviation ~σ . Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight-vessel phantom with a pulsating flow are presented. Both an M-mode and a steered transmit sequence are applied. The 3-D vector flow is estimated in the flow rig for four representative flow directions. In the setup with 90° beam-to-flow angle, the relative mean bias across the entire velocity profile is (-4.7, -0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for ( v x , v y , v z ). The estimated peak velocity is 48.5 ± 3 cm/s giving a -3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow rig at a 90° beam-to-flow angle. The estimated mean flow rate in this setup is 91.2 ± 3.1 L/h corresponding to a bias of -11.1%. In a pulsating flow setup, flow rate measured during five cycles is 2.3 ± 0.1 mL/stroke giving a negative 9.7% bias. It is concluded that accurate 3-D vector flow estimation can be obtained using a 2-D RC-addressed array.
Ten Years of Observatory Science from Saanich Inlet on the VENUS Cabled Ocean Observatory
NASA Astrophysics Data System (ADS)
Dewey, R. K.; Tunnicliffe, V.; Macoun, P.; Round, A.
2016-02-01
The Saanich Inlet array of the VENUS cabled ocean observatory, maintained and operated by Ocean Networks Canada, was installed in February 2006, and in 2016 will have supported ten years of comprehensive interactive science. Representing the first in the present generation of cabled observing technologies, this coastal array has provided continuous high power and broadband communications to a variety of instrument platforms, hundreds of sensors, and enabled dozens of short, medium, and long-term studies. Saanich Inlet is a protected fjord with limited tidal action, resulting in an extremely productive environment, with strong seasonal chemical variations driven by episodic deep water renewal events and oxygen reduction processes. The breadth of the research has included microbial and benthic community dynamics, biogeochemical cycles, forensics, quantifying inter-annual variations, benthic-pelagic coupling, sensor testing, plankton dynamics, and bio-turbulence. Observatory measurements include core water properties (CTD & O2) and water-column echo-sounder records, as well as experiment-oriented deployments utilizing cameras, Gliders, Dopplers, hydrophones, and a variety of biogeochemical sensors. With a recently installed Buoy Profiler System for monitoring the entire water column, community plans continue with a dedicated Redox experiment through the 2016-17 seasons. Highlights from the dozens of research papers and theses will be presented to demonstrate the achievements enabled by a comprehensive coastal cabled observing system.
Sounds and source levels from bowhead whales off Pt. Barrow, Alaska.
Cummings, W C; Holliday, D V
1987-09-01
Sounds were recorded from bowhead whales migrating past Pt. Barrow, AK, to the Canadian Beaufort Sea. They mainly consisted of various low-frequency (25- to 900-Hz) moans and well-defined sound sequences organized into "song" (20-5000 Hz) recorded with our 2.46-km hydrophone array suspended from the ice. Songs were composed of up to 20 repeated phrases (mean, 10) which lasted up to 146 s (mean, 66.3). Several bowhead whales often were within acoustic range of the array at once, but usually only one sang at a time. Vocalizations exhibited diurnal peaks of occurrence (0600-0800, 1600-1800 h). Sounds which were located in the horizontal plane had peak source spectrum levels as follows--44 moans: 129-178 dB re: 1 microPa, 1 m (median, 159); 3 garglelike utterances: 152, 155, and 169 dB; 33 songs: 158-189 dB (median, 177), all presumably from different whales. Based on ambient noise levels, measured total propagation loss, and whale sound source levels, our detection of whale sounds was theoretically noise-limited beyond 2.5 km (moans) and beyond 10.7 km (songs), a model supported by actual localizations. This study showed that over much of the shallow Arctic and sub-Arctic waters, underwater communications of the bowhead whale would be limited to much shorter ranges than for other large whales in lower latitude, deep-water regions.
Clark, C W; Ellison, W T
2000-06-01
Between 1984 and 1993, visual and acoustic methods were combined to census the Bering-Chukchi-Beaufort bowhead whale, Balaena mysticetus, population. Passive acoustic location was based on arrival-time differences of transient bowhead sounds detected on sparse arrays of three to five hydrophones distributed over distances of 1.5-4.5 km along the ice edge. Arrival-time differences were calculated from either digital cross correlation of spectrograms (old method), or digital cross correlation of time waveforms (new method). Acoustic calibration was conducted in situ in 1985 at five sites with visual site position determined by triangulation using two theodolites. The discrepancy between visual and acoustic locations was <1%-5% of visual range and less than 0.7 degrees of visual bearing for either method. Comparison of calibration results indicates that the new method yielded slightly more precise and accurate positions than the old method. Comparison of 217 bowhead whale call locations from both acoustic methods showed that the new method was more precise, with location errors 3-4 times smaller than the old method. Overall, low-frequency bowhead transients were reliably located out to ranges of 3-4 times array size. At these ranges in shallow water, signal propagation appears to be dominated by the fundamental mode and is not corrupted by multipath.
Three dimensional stress vector sensor array and method therefor
Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery
2005-07-05
A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.
NASA Astrophysics Data System (ADS)
Li, Dan; Xu, Feng; Jiang, Jing Fei; Zhang, Jian Qiu
2017-12-01
In this paper, a biquaternion beamspace, constructed by projecting the original data of an electromagnetic vector-sensor array into a subspace of a lower dimension via a quaternion transformation matrix, is first proposed. To estimate the direction and polarization angles of sources, biquaternion beamspace multiple signal classification (BB-MUSIC) estimators are then formulated. The analytical results show that the biquaternion beamspaces offer us some additional degrees of freedom to simultaneously achieve three goals. One is to save the memory spaces for storing the data covariance matrix and reduce the computation efforts of the eigen-decomposition. Another is to decouple the estimations of the sources' polarization parameters from those of their direction angles. The other is to blindly whiten the coherent noise of the six constituent antennas in each vector-sensor. It is also shown that the existing biquaternion multiple signal classification (BQ-MUSIC) estimator is a specific case of our BB-MUSIC ones. The simulation results verify the correctness and effectiveness of the analytical ones.
Vector intensity reconstruction using the data completion method.
Langrenne, Christophe; Garcia, Alexandre
2013-04-01
This paper presents an application of the data completion method (DCM) for vector intensity reconstructions. A mobile array of 36 pressure-pressure probes (72 microphones) is used to perform measurements near a planar surface. Nevertheless, since the proposed method is based on integral formulations, DCM can be applied with any kind of geometry. This method requires the knowledge of Cauchy data (pressure and velocity) on a part of the boundary of an empty domain in order to evaluate pressure and velocity on the remaining part of the boundary. Intensity vectors are calculated in the interior domain surrounded by the measurement array. This inverse acoustic problem requires the use of a regularization method to obtain a realistic solution. An experiment in a closed wooden car trunk mock-up excited by a shaker and two loudspeakers is presented. In this case, where the volume of the mock-up is small (0.61 m(3)), standing-waves and fluid structure interactions appear and show that DCM is a powerful tool to identify sources in a confined space.
NASA Astrophysics Data System (ADS)
Le Bras, R. J.; Kuzma, H.
2013-12-01
Falling as they do into the frequency range of continuously recording hydrophones (15-100Hz), blue and fin whale songs are a significant source of noise on the hydro-acoustic monitoring array of the International Monitoring System (IMS) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). One researcher's noise, however, can be a very interesting signal in another field of study. The aim of the Baleakanta Project (www.baleakanta.org) is to flag and catalogue these songs, using the azimuth and slowness of the signal measured at multiple hydrophones to solve for the approximate location of singing whales. Applying techniques borrowed from human speaker identification, it may even be possible to recognize the songs of particular individuals. The result will be a dynamic database of whale locations and songs with known individuals noted. This database will be of great value to marine biologists studying cetaceans, as there is no existing dataset which spans the globe over many years (more than 15 years of data have been collected by the IMS). Current whale song datasets from other sources are limited to detections made on small, temporary listening devices. The IMS song catalogue will make it possible to study at least some aspects of the global migration patterns of whales, changes in their songs over time, and the habits of individuals. It is believed that about 10 blue whale 'cultures' exist with distinct vocal patterns; the IMS song catalogue will test that number. Results and a subset of the database (delayed in time to mitigate worries over whaling and harassment of the animals) will be released over the web. A traveling museum exhibit is planned which will not only educate the public about whale songs, but will also make the CTBTO and its achievements more widely known. As a testament to the public's enduring fascination with whales, initial funding for this project has been crowd-sourced through an internet campaign.
Evaluation of a dense seismic array for acquisition of high quality data in the ACROSS observation
NASA Astrophysics Data System (ADS)
Tsuruga, K.; Kunitomo, T.; Hasada, Y.; Kumazawa, M.; Shigeta, N.; Kasahara, J.
2004-12-01
ACROSS is an active monitoring methodology to detect any subtle temporal change of physical properties in the Earth's interior. We demonstrate the potentiality of the ACROSS observation with a dense sensor array. We have conducted a dense seismic array observation at the distance of 1 km from the ACROSS source since 2003. The array is composed of 36 three-component velocity seismometers buried at 1.8 m deep in an area 25 m square. All the data are recorded accurately referring to a GPS clock. We derived and analyzed a transfer function (TF) from the source to a receiver by the following steps: (1) evaluating a force vector as source characteristics, (2) converting the observed data to the displacement vectors by incorporating all the corrections of the instruments, (3) stacking the observed data for an enough time to suppress the temporal noise, (4) extracting ACROSS signal and evaluating noise level, (5) representing TF in a tensor form with the estimated errors, (6) slant-stacking with variable ray parameters, (7) estimating the travel times and amplitudes of the wave arrivals by Sompi Event Analysis (Hasada et al., 2001) and representing the result by a pulse sequence, and (8) deriving the polarization vector for each arrival to identify all the wave modes. We analyzed TF of SH-wave component from 16 to 20 Hz as an example. We obtained good quality TF with S/N ratio up to 104 by stacking for 12 days at the step (3). The spatial noise originated from the local heterogeneity around the array was eliminated by the step (6). Several arrivals were recognized within the time windows from 0.6 to 1.8 s. The maximum amplitude of event traces was detected at the travel time of 1.064 s with a ray parameter of 7.9x10-4 s/m. We also found the scattered waves probably generated by the heterogeneities around the array. The ACROSS dense array observation would provide a lot of information on the underground heterogeneities. Consequently, we have the important and challenging subjects: (1) optimum designing of ACROSS array to acquire the better data and (2) development of new theoretical method to deal with the variable types of the wave.
The Design of a Templated C++ Small Vector Class for Numerical Computing
NASA Technical Reports Server (NTRS)
Moran, Patrick J.
2000-01-01
We describe the design and implementation of a templated C++ class for vectors. The vector class is templated both for vector length and vector component type; the vector length is fixed at template instantiation time. The vector implementation is such that for a vector of N components of type T, the total number of bytes required by the vector is equal to N * size of (T), where size of is the built-in C operator. The property of having a size no bigger than that required by the components themselves is key in many numerical computing applications, where one may allocate very large arrays of small, fixed-length vectors. In addition to the design trade-offs motivating our fixed-length vector design choice, we review some of the C++ template features essential to an efficient, succinct implementation. In particular, we highlight some of the standard C++ features, such as partial template specialization, that are not supported by all compilers currently. This report provides an inventory listing the relevant support currently provided by some key compilers, as well as test code one can use to verify compiler capabilities.
Principle of Magnetodynamics for Composite Magnetic Pole
NASA Astrophysics Data System (ADS)
Animalu, Alexander
2014-03-01
It is shown in this paper that geometry provides the key to the new magnetodynamics principle of operation of the machine (invented by Dr. Ezekiel Izuogu) which has an unexpected feature of driving a motor with static magnetic field. Essentially, because an array of like magnetic poles of the machine is arranged in a half circular array of a cylindrical geometry, the array creates a non-pointlike magnet pole that may be represented by a ``magnetic current loop'' at the position of the pivot of the movable arm. As a result, in three-dimensional space, it is possible to characterize the symmetry of the stator magnetic field B and the magnetic current loop J as a cube-hexagon system by a 6-vector (J,B) (with J.B ≠0) comprising a 4x4 antisymmetric tensor analogous to the conventional electric and magnetic 6-vector (E,B) (with E.B ≠0) comprising the 4x4 antisymmetric tensor of classical electrodynamics The implications are discussed. Supported by International Centre for Basic Research, Abuja, Nigeria.
3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar.
Li, Ying-Chun; Choi, Byunggil; Chong, Jong-Wha; Oh, Daegun
2018-05-20
In this paper, a modified 3D multiple signal classification (MUSIC) algorithm is proposed for joint estimation of range, azimuth, and elevation angles of K-band radar with a small 2 × 2 horn antenna array. Three channels of the 2 × 2 horn antenna array are utilized as receiving channels, and the other one is a transmitting antenna. The proposed modified 3D MUSIC is designed to make use of a stacked autocorrelation matrix, whose element matrices are related to each other in the spatial domain. An augmented 2D steering vector based on the stacked autocorrelation matrix is proposed for the modified 3D MUSIC, instead of the conventional 3D steering vector. The effectiveness of the proposed modified 3D MUSIC is verified through implementation with a K-band frequency-modulated continuous-wave (FMCW) radar with the 2 × 2 horn antenna array through a variety of experiments in a chamber.
The Sequential Implementation of Array Processors when there is Directional Uncertainty
1975-08-01
University of Washington kindly supplied office space and ccputing facilities. -The author hat, benefited greatly from discussions with several other...if i Q- inverse of Q I L general observation space R general vector of observation _KR general observation vector of dimension K Exiv] "Tf -- ’ -"-T’T...7" i ’i ’:"’ - ’ ; ’ ’ ’ ’ ’ ’" ’"- Glossary of Symbols (continued) R. ith observation 1 Rm real vector space of dimension m R(T) autocorrelation
Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M
2013-11-01
This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.
Bowhead whale localization using asynchronous hydrophones in the Chukchi Sea.
Warner, Graham A; Dosso, Stan E; Hannay, David E; Dettmer, Jan
2016-07-01
This paper estimates bowhead whale locations and uncertainties using non-linear Bayesian inversion of their modally-dispersed calls recorded on asynchronous recorders in the Chukchi Sea, Alaska. Bowhead calls were recorded on a cluster of 7 asynchronous ocean-bottom hydrophones that were separated by 0.5-9.2 km. A warping time-frequency analysis is used to extract relative mode arrival times as a function of frequency for nine frequency-modulated whale calls that dispersed in the shallow water environment. Each call was recorded on multiple hydrophones and the mode arrival times are inverted for: the whale location in the horizontal plane, source instantaneous frequency (IF), water sound-speed profile, seabed geoacoustic parameters, relative recorder clock drifts, and residual error standard deviations, all with estimated uncertainties. A simulation study shows that accurate prior environmental knowledge is not required for accurate localization as long as the inversion treats the environment as unknown. Joint inversion of multiple recorded calls is shown to substantially reduce uncertainties in location, source IF, and relative clock drift. Whale location uncertainties are estimated to be 30-160 m and relative clock drift uncertainties are 3-26 ms.
Acoustic Propagation Studies For Sperm Whale Phonation Analysis During LADC Experiments
NASA Astrophysics Data System (ADS)
Sidorovskaia, Natalia A.; Ioup, George E.; Ioup, Juliette W.; Caruthers, Jerald W.
2004-11-01
The Littoral Acoustic Demonstration Center (LADC) conducted a series of passive acoustic experiments in the Northern Gulf of Mexico and the Ligurian Sea in 2001 and 2002. Environmental and acoustic moorings were deployed in areas of large concentrations of marine mammals (mainly, sperm whales). Recordings and analysis of whale phonations are among the objectives of the project. Each mooring had a single autonomously recording hydrophone (Environmental Acoustic Recording System (EARS)) obtained from the U.S. Naval Oceanographic Office after modification to record signals up to 5,859 Hz in the Gulf of Mexico and up to 12,500 Hz in the Ligurian Sea. Self-recording environmental sensors, attached to the moorings, and concurrent environmental ship surveys provided the environmental data for the experiments. The results of acoustic simulations of long-range propagation of the broad-band (500-6,000 Hz) phonation pulses from a hypothetical whale location to the recording hydrophone in the experimental environments are presented. The utilization of the simulation results for an interpretation of the spectral features observed in whale clicks and for the development of tracking algorithms from single hydrophone recordings based on the identification of direct and surface and bottom reflected arrivals are discussed. [Research supported by ONR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haxel, Joe H; Henkel, Sarah K
Ecosystem impacts resulting from elevated underwater noise levels generated by anthropogenic activities in the coastal ocean are poorly understood and remain difficult to address as a result of a significant gap in knowledge for existing nearshore sound levels. Ambient noise is an important habitat component for marine mammals and fish that use sound for essential functions such as communication, navigation, and foraging. Questions surrounding the amplitudes, frequency distributions, and durations of noise emissions from renewable wave energy conversion (WEC) projects during their construction and operation present concerns for long-term consequences in marine habitats. Oregon’s dynamic nearshore environment presents significant challengesmore » for passive acoustic monitoring that include flow noise contamination from wave orbital motions, turbulence from breaking surf, equipment burial, and fishing pressure from sport and commercial crabbers. This project included 2 techniques for passive acoustic data collection: 1) campaign style deployments of fixed hydrophone lander stations to capture temporal variations in noise levels and 2) a drifting hydrophone system to record spatial variations within the project site. The hydrophone lander deployments were effective and economically feasible for enabling robust temporal measurements of ambient noise levels in a variety of sea state conditions. Limiting factors for the fixed stations included 1) a flow shield mitigation strategy failure in the first deployment resulting in significant wideband data contamination and 2) flow noise contamination of the unshielded sensors restricting valuable analysis to frequencies above 500 Hz for subsequent deployments. Drifting hydrophone measurements were also effective and economically feasible (although logistically challenging in the beginning of the project due to vessel time constraints) providing a spatial distribution of sound levels, comparisons of noise levels in varying levels of vessel traffic during similar sea states, and reducing the frequencies contaminated by flow noise to f < 50 Hz by an effective drifting hydrophone system design strategy. Results from this project can still assist regulatory agencies and WEC developers in permitting and licensing, reducing project costs overall and assisting the economic development of the WEC industry, thus furthering the MHK energy industry and easing the U.S. reliance on foreign oil for energy production. Additionally, results from this project can be used to help inform coastal resource managers and regulatory agencies on existing baseline noise level variability and ecosystem health.« less
NASA Astrophysics Data System (ADS)
Goslin, J.; Perrot, J.; Royer, J.-Y.; Martin, C.; LourençO, N.; Luis, J.; Dziak, R. P.; Matsumoto, H.; Haxel, J.; Fowler, M. J.; Fox, C. G.; Lau, A. T.-K.; Bazin, S.
2012-02-01
The seismicity of the North Atlantic was monitored from May 2002 to September 2003 by the `SIRENA array' of autonomous hydrophones. The hydroacoustic signals provide a unique data set documenting numerous low-magnitude earthquakes along the section of the Mid-Atlantic Ridge (MAR) located in a ridge-hot spot interaction context. During the experiment, 1696 events were detected along the MAR axis between 40°N and 51°N, with a magnitude of completeness level ofmb≈ 2.4. Inside the array, location errors are in the order of 2 km, and errors in the origin time are less than 1 s. From this catalog, 15 clusters were detected. The distribution of source level (SL) versus time within each cluster is used to discriminate clusters occurring in a tectonic context from those attributed to non-tectonic (i.e. volcanic or hydrothermal) processes. The location of tectonic and non-tectonic sequences correlates well with regions with positive and negative Mantle Bouguer Anomalies (MBAs), indicating the presence of thinner/colder and thicker/warmer crust respectively. At the scale of the entire array, both the complete and declustered catalogs derived from the hydroacoustic signals show an increase of the seismicity rate from the Azores up to 43°30'N suggesting a diminishing influence of the Azores hot spot on the ridge-axis temperature, and well correlated with a similar increase in the along-axis MBAs. The comparison of the MAR seismicity with the Residual MBA (RMBA) at different scales leads us to think that the low-magnitude seismicity rates are directly related to along-axis variations in lithosphere rheology and temperatures.
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Ford, John K. B.; Horne, John K.; Allman, Kelly A. Newman
2004-02-01
Fish-eating ``resident''-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re:1 μPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.
Au, Whitlow W L; Ford, John K B; Horne, John K; Allman, Kelly A Newman
2004-02-01
Fish-eating "resident"-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re: 1 microPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.
NASA Astrophysics Data System (ADS)
Tsang-Hin-Sun, E.; Perrot, J.; Royer, J. Y.
2015-12-01
The seismicity of the ultra-slow spreading Southwest (14 mm/y) and intermediate spreading Southeast (60 mm/y) Indian ridges was monitored from February 2012 to March 2013 by the OHASISBIO array of 7 autonomous hydrophones. A total of 1471 events were located with 4 instruments or more, inside the array, with a median location uncertainty < 5 km and a completeness magnitude of mb = 3. Both ridges display similar average rates of seismicity, suggesting that there is no systematic relationship between seismicity and spreading rates. Accretion modes do differ, however, by the along-axis distribution of the seismic events. Along the ultra-slow Southwest Indian Ridge, events are sparse but regularly spaced and scattered up to 50 km off-axis. Along the fast Southeast Indian Ridge, events are irregularly distributed, focusing in narrow regions near the ridge axis at segment ends and along transform faults, whereas ridge-segment centers generally appear as seismic gaps (at the level of completeness of the array). Only two clusters, 6 months apart, are identified in a segment-center at 29°S. From the temporal distribution of the clustered events and comparisons with observations in similar mid-oceanic ridge setting, both clusters seem to have a volcanic origin and to be related to a dike emplacement or a possible eruption on the seafloor. Their onset time and migration rate are comparable to volcanic swarms recorded along the Juan de Fuca Ridge. Overall, the rate of seismicity along the two Indian spreading ridges correlates with the large-scale variations in the bathymetry and shear-wave velocity anomaly in the upper mantle, suggesting that the distribution of the low-magnitude seismicity is mainly controlled by along-axis variations in the lithosphere rheology and temperature.
Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael
2009-01-01
An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized non invasively through the direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows the precise estimation of the phase and amplitude aberrations and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2π). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from σ = 1.89 before correction to σ = 0.53 following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be −7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of −0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This technique could have important implications in the field of High Intensity Focused Ultrasound even in complex configurations such as transcranial, transcostal or deep seated organs. PMID:19942526
Classification of subsurface objects using singular values derived from signal frames
Chambers, David H; Paglieroni, David W
2014-05-06
The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.
MISR Level 2 TOA/Cloud Versioning
Atmospheric Science Data Center
2017-10-11
... public release. Add trap singular matrix condition. Add test for invalid look vectors. Use different metadata to test for validity of time tags. Fix incorrectly addressed array. Introduced bug ...
Self-Consistent Physical Properties of Carbon Nanotubes in Composite Materials
NASA Technical Reports Server (NTRS)
Pipes, R. B.; Frankland, S. J. V.; Hubert, P.; Saether, E.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
A set of relationships is developed for selected physical properties of single-walled carbon nanotubes (SWCN) and their hexagonal arrays as a function of nanotube size in terms of the chiral vector integer pair, (n,m). Properties include density, principal Young's modulus, and specific Young's modulus. Relationships between weight fraction and volume fraction of SWCN and their arrays are developed for polymeric mixtures.
NASA Technical Reports Server (NTRS)
Gentzsch, W.
1982-01-01
Problems which can arise with vector and parallel computers are discussed in a user oriented context. Emphasis is placed on the algorithms used and the programming techniques adopted. Three recently developed supercomputers are examined and typical application examples are given in CRAY FORTRAN, CYBER 205 FORTRAN and DAP (distributed array processor) FORTRAN. The systems performance is compared. The addition of parts of two N x N arrays is considered. The influence of the architecture on the algorithms and programming language is demonstrated. Numerical analysis of magnetohydrodynamic differential equations by an explicit difference method is illustrated, showing very good results for all three systems. The prognosis for supercomputer development is assessed.
Francisella tularensis: an arthropod-borne pathogen
Petersen, Jeannine M.; Mead, Paul S.; Schriefer, Martin E.
2009-01-01
Arthropod transmission of tularemia occurs throughout the northern hemisphere. Few pathogens show the adaptability of Francisella tularensis to such a wide array of arthropod vectors. Nonetheless, arthropod transmission of F. tularensis was last actively investigated in the first half of the 20th century. This review will focus on arthropod transmission to humans with respect to vector species, modes of transmission, geographic differences and F. tularensis subspecies and clades. PMID:18950590
An alternative subspace approach to EEG dipole source localization
NASA Astrophysics Data System (ADS)
Xu, Xiao-Liang; Xu, Bobby; He, Bin
2004-01-01
In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.
Photovoltaic array space power plus diagnostics experiment
NASA Technical Reports Server (NTRS)
Guidice, Donald A.
1990-01-01
The objective of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment is to measure the effects of the interaction of the low- to mid-altitude space environment on the performance of a diverse set of small solar-cell arrays (planar and concentrator, representative of present and future military technologies) under differing conditions of velocity-vector orientation and simulated (by biasing) high-voltage operation. Solar arrays to be tested include Si and GaAs planar arrays and several types of GaAs concentrator arrays. Diagnostics (a Langmuir probe and a pressure gauge) and a transient pulse monitor (to measure radiated and conducted EMI during arcing) will be used to determine the impact of the environment on array operation to help verify various interactions models. Results from a successful PASP Plus flight will furnish answers to important interactions questions and provide inputs for design and test standards for photovoltaic space-power subsystems.
A Fast MoM Solver (GIFFT) for Large Arrays of Microstrip and Cavity-Backed Antennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasenfest, B J; Capolino, F; Wilton, D
2005-02-02
A straightforward numerical analysis of large arrays of arbitrary contour (and possibly missing elements) requires large memory storage and long computation times. Several techniques are currently under development to reduce this cost. One such technique is the GIFFT (Green's function interpolation and FFT) method discussed here that belongs to the class of fast solvers for large structures. This method uses a modification of the standard AIM approach [1] that takes into account the reusability properties of matrices that arise from identical array elements. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basismore » functions, such as the RWG basis. The Green's function is then projected onto a sparse regular grid of separable interpolating polynomials. This grid can then be used in a 2D or 3D FFT to accelerate the matrix-vector product used in an iterative solver [2]. The method has been proven to greatly reduce solve time by speeding up the matrix-vector product computation. The GIFFT approach also reduces fill time and memory requirements, since only the near element interactions need to be calculated exactly. The present work extends GIFFT to layered material Green's functions and multiregion interactions via slots in ground planes. In addition, a preconditioner is implemented to greatly reduce the number of iterations required for a solution. The general scheme of the GIFFT method is reported in [2]; this contribution is limited to presenting new results for array antennas made of slot-excited patches and cavity-backed patch antennas.« less
Zampolli, Mario; Nijhof, Marten J J; de Jong, Christ A F; Ainslie, Michael A; Jansen, Erwin H W; Quesson, Benoit A J
2013-01-01
The acoustic radiation from a pile being driven into the sediment by a sequence of hammer strikes is studied with a linear, axisymmetric, structural acoustic frequency domain finite element model. Each hammer strike results in an impulsive sound that is emitted from the pile and then propagated in the shallow water waveguide. Measurements from accelerometers mounted on the head of a test pile and from hydrophones deployed in the water are used to validate the model results. Transfer functions between the force input at the top of the anvil and field quantities, such as acceleration components in the structure or pressure in the fluid, are computed with the model. These transfer functions are validated using accelerometer or hydrophone measurements to infer the structural forcing. A modeled hammer forcing pulse is used in the successive step to produce quantitative predictions of sound exposure at the hydrophones. The comparison between the model and the measurements shows that, although several simplifying assumptions were made, useful predictions of noise levels based on linear structural acoustic models are possible. In the final part of the paper, the model is used to characterize the pile as an acoustic radiator by analyzing the flow of acoustic energy.
Au, Whitlow W L; Branstetter, Brian; Moore, Patrick W; Finneran, James J
2012-08-01
Biosonar signals radiated along the beam axis of an Atlantic bottlenose dolphin resemble short transient oscillations. As the azimuth of the measuring hydrophones in the horizontal plane progressively increases with respect to the beam axis the signals become progressively distorted. At approximately ±45°, the signals begin to divide into two components with the time difference between the components increasing with increasing angles. At ±90° or normal to the longitudinal axis of the animal, the time difference between the two pulses measured by the hydrophone on the right side of the dolphin's head is, on average, ∼11.9 μs larger than the time differences observed by the hydrophone on the left side of the dolphin's head. The center frequency of the first pulse is generally lower, by 33-47 kHz, than the center frequency of the second pulse. When considering the relative locations of the two phonic lips, the data suggest that the signals are being produced by one of the phonic lips and the second pulse resulting from a reflection within the head of the animal. The generation of biosonar signals is a complex process and the propagation pathways through the dolphin's head are not well understood.
Bowhead whale localization using time-difference-of-arrival data from asynchronous recorders.
Warner, Graham A; Dosso, Stan E; Hannay, David E
2017-03-01
This paper estimates bowhead whale locations and uncertainties using nonlinear Bayesian inversion of the time-difference-of-arrival (TDOA) of low-frequency whale calls recorded on onmi-directional asynchronous recorders in the shallow waters of the northeastern Chukchi Sea, Alaska. A Y-shaped cluster of seven autonomous ocean-bottom hydrophones, separated by 0.5-9.2 km, was deployed for several months over which time their clocks drifted out of synchronization. Hundreds of recorded whale calls are manually associated between recorders. The TDOA between hydrophone pairs are calculated from filtered waveform cross correlations and depend on the whale locations, hydrophone locations, relative recorder clock offsets, and effective waveguide sound speed. A nonlinear Bayesian inversion estimates all of these parameters and their uncertainties as well as data error statistics. The problem is highly nonlinear and a linearized inversion did not produce physically realistic results. Whale location uncertainties from nonlinear inversion can be low enough to allow accurate tracking of migrating whales that vocalize repeatedly over several minutes. Estimates of clock drift rates are obtained from inversions of TDOA data over two weeks and agree with corresponding estimates obtained from long-time averaged ambient noise cross correlations. The inversion is suitable for application to large data sets of manually or automatically detected whale calls.
Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods
NASA Astrophysics Data System (ADS)
Civale, John; Rivens, Ian; Shaw, Adam; ter Haar, Gail
2018-03-01
Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and consequently gives improved confidence in estimating spatial peak intensity from measurement of acoustic power.
NASA Astrophysics Data System (ADS)
Yang, T.; Le, B. M.; passive-Source Seismic Team, S.
2016-12-01
What would happen when a mid-ocean-ridge stops spreading? Global occurrences of such ridges appear to indicate that magmatic activities had continued for million years after ridges were abandoned and often formed seamount chains over ridges. The extinct ridge and the seamount chain at the South China Sea represent one classic example of such ridges. To understand this unique process and the lithospheric and deep mantle structure, we carry out a Rayleigh wave phase velocity tomography using data from a passive-source OBS array experiment in South China Sea from 2012 to 2013. We correct OBS clock errors by using Scholte waves retrieved through cross-correlating hydrophone records of each OBS pair. 60 regional and teleseismic events with high quality Rayleigh waves are selected and their dispersion curves at the OBS array are used to inverse the phase velocities of periods from 15 s to 100 s. The shear wave velocity model derived from phase velocities of all periods shows a strong low-velocity zone situated beneath the seamounts starting at about 30 km depth. The lithosphere thickness of the extinct ridge inferred from this model provide insights on the cooling process and magmatism at this unique oceanic setting. In addition, our model images the tear of the subducting South China Sea plate beneath the Manila trench and Luzon island, which is clearly generated by the subduction of the extinct ridge and overriding seamounts.
Maruggi, Giulietta; Porcellini, Simona; Facchini, Giulia; Perna, Serena K; Cattoglio, Claudia; Sartori, Daniela; Ambrosi, Alessandro; Schambach, Axel; Baum, Christopher; Bonini, Chiara; Bovolenta, Chiara; Mavilio, Fulvio; Recchia, Alessandra
2009-01-01
The integration characteristics of retroviral (RV) vectors increase the probability of interfering with the regulation of cellular genes, and account for a tangible risk of insertional mutagenesis in treated patients. To assess the potential genotoxic risk of conventional or self-inactivating (SIN) γ-RV and lentiviral (LV) vectors independently from the biological consequences of the insertion event, we developed a quantitative assay based on real-time reverse transcriptase—PCR on low-density arrays to evaluate alterations of gene expression in individual primary T-cell clones. We show that the Moloney leukemia virus long terminal repeat (LTR) enhancer has the strongest activity in both a γ-RV and a LV vector context, while an internal cellular promoter induces deregulation of gene expression less frequently, at a shorter range and to a lower extent in both vector types. Downregulation of gene expression was observed only in the context of LV vectors. This study indicates that insertional gene activation is determined by the characteristics of the transcriptional regulatory elements carried by the vector, and is largely independent from the vector type or design. PMID:19293778
Research on characteristics of radiated noise of large cargo ship in shallow water
NASA Astrophysics Data System (ADS)
Liu, Yongdong; Zhang, Liang
2017-01-01
With the rapid development of the shipping industry, the number of the world's ship is gradually increasing. The characteristics of the radiated noise of the ship are also of concern. Since the noise source characteristics of multichannel interference, the surface wave and the sea temperature microstructure and other reasons, the sound signal received in the time-frequency domain has varying characteristics. The signal of the radiated noise of the large cargo ship JOCHOH from horizontal hydrophone array in some shallow water of China is processed and analyzed in the summer of 2015, and the results show that a large cargo ship JOCHOH has a number of noise sources in the direction of the ship's bow and stern lines, such as host, auxiliary and propellers. The radiating sound waves generated by these sources do not meet the spherical wave law at lower frequency in the ocean, and its radiated noise has inherent spatial distribution, the variation characteristics of the radiated noise the large cargo ship in time and frequency domain are given. The research method and results are of particular importance.
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
Ibsen, Stuart D; Nachtigall, Paul E; Krause-Nehring, Jacqueline; Kloepper, Laura; Breese, Marlee; Li, Songhai; Vlachos, Stephanie
2012-08-01
A two-dimensional array of 16 hydrophones was created to map the spatial distribution of different frequencies within the echolocation beam of a Tursiops truncatus and a Pseudorca crassidens. It was previously shown that both the Tursiops and Pseudorca only paid attention to frequencies between 29 and 42 kHz while echolocating. Both individuals tightly focused the 30 kHz frequency and the spatial location of the focus was consistently pointed toward the target. At 50 kHz the beam was less focused and less precisely pointed at the target. At 100 kHz the focus was often completely lost and was not pointed at the target. This indicates that these individuals actively focused the beam toward the target only in the frequency range they paid attention to. Frequencies outside this range were left unfocused and undirected. This focusing was probably achieved through sensorimotor control of the melon morphology and nasal air sacs. This indicates that both morphologically different species can control the spatial distribution of different frequency ranges within the echolocation beam to create consistent ensonation of desired targets.
Yamamoto, Yukiko; Akamatsu, Tomonari; da Silva, Vera M F; Yoshida, Yayoi; Kohshima, Shiro
2015-08-01
Odontoceti emit broadband high-frequency clicks on echolocation for orientation or prey detection. In the Amazon Basin, two odontoceti species, boto (Amazon River dolphin, Inia geoffrensis) and tucuxi (Sotalia fluviatilis), live sympatrically. The acoustic characteristics of the echolocation clicks of free-ranging botos and tucuxis were measured with a hydrophone array consisting of a full-band and an acoustic event recorder (A-tag). The clicks of the two species were short-duration broadband signals. The apparent source level was 201 dB 1 μPa peak-to-peak at 1 m in the botos and 181 dB 1 μPa peak-to-peak at 1 m in the tucuxis, and the centroid frequency was 82.3 kHz in the botos and 93.1 kHz in the tucuxis. The high apparent source level and low centroid frequency are possibly due to the difference in body size or sound production organs, especially the nasal structure, the sound source of clicks in odontoceti.
Stereotypical rapid source level regulation in the harbour porpoise biosonar
NASA Astrophysics Data System (ADS)
Linnenschmidt, Meike; Kloepper, Laura N.; Wahlberg, Magnus; Nachtigall, Paul E.
2012-09-01
Some odontocetes and bats vary both click intensity and receiver sensitivity during echolocation, depending on target range. It is not known how this so-called automatic gain control is regulated by the animal. The source level of consecutive echolocation clicks from a harbour porpoise was measured with a hydrophone array while the animal detected an aluminium cylinder at 2, 4 or 8 m distance in a go/no-go paradigm. On-axis clicks had source levels of 145-174 dB re 1 μPa peak-to-peak. During target-present trials the click trains reached comparable source levels independent of the range to the target after three clicks. After an additional click, the source level was reduced for the 2 and 4 m trials until it equalled the one-way transmission loss. During target-absent trials, the source level remained high throughout the entire click train. Given typical values of harbour porpoise inter-click intervals, the source level reduction commenced within a few 100 ms from the first click in the click train. This may indicate a sub-cortically regulated source level regulation in the harbour porpoise.
He, Chengbing; Xi, Rui; Wang, Han; Jing, Lianyou; Shi, Wentao; Zhang, Qunfei
2017-01-01
Phase-coherent underwater acoustic (UWA) communication systems typically employ multiple hydrophones in the receiver to achieve spatial diversity gain. However, small underwater platforms can only carry a single transducer which can not provide spatial diversity gain. In this paper, we propose single-carrier with frequency domain equalization (SC-FDE) for phase-coherent synthetic aperture acoustic communications in which a virtual array is generated by the relative motion between the transmitter and the receiver. This paper presents synthetic aperture acoustic communication results using SC-FDE through data collected during a lake experiment in January 2016. The performance of two receiver algorithms is analyzed and compared, including the frequency domain equalizer (FDE) and the hybrid time frequency domain equalizer (HTFDE). The distances between the transmitter and the receiver in the experiment were about 5 km. The bit error rate (BER) and output signal-to-noise ratio (SNR) performances with different receiver elements and transmission numbers were presented. After combining multiple transmissions, error-free reception using a convolution code with a data rate of 8 kbps was demonstrated. PMID:28684683
Characteristic Analysis of Air-gun Source Wavelet based on the Vertical Cable Data
NASA Astrophysics Data System (ADS)
Xing, L.
2016-12-01
Air guns are important sources for marine seismic exploration. Far-field wavelets of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.
Integrated Dual Imaging Detector
NASA Technical Reports Server (NTRS)
Rust, David M.
1999-01-01
A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.
Establishment of an AAV Reverse Infection-Based Array
Wang, Gang; Dong, Zheyue; Shen, Wei; Zheng, Gang; Wu, Xiaobing; Xue, Jinglun; Wang, Yue; Chen, Jinzhong
2010-01-01
Background The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited. Principal Findings We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments. Conclusions/Significance Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays. PMID:20976058
NASA Astrophysics Data System (ADS)
Neretti, Gabriele; Cristofolini, Andrea; Borghi, Carlo A.
2014-04-01
The Electro-Hydro-Dynamics (EHD) interaction, induced in atmospheric pressure still air by a surface dielectric barrier discharge (DBD) actuator, had been experimentally studied. A plasma aerodynamic actuator array, able to produce a vectorized jet, with the induced airflow oriented toward the desired direction, had been developed. The array was constituted by a sequence of single surface DBD actuators with kapton as dielectric material. An ac voltage in the range of 0-6 kV peak at 15 kHz had been used. The vectorization had been obtained by feeding the upper electrodes with different voltages and by varying the electrical connections. The lower electrodes had been connected either to ground or to the high voltage source, to produce the desired jet orientation and to avoid plasma formation acting in an undesired direction. Voltage and current measurements had been carried out to evaluate waveforms and to estimate the active power delivered to the discharge. Schlieren imaging allowed to visualize the induced jet and to estimate its orientation. Pitot measurements had been performed to obtain velocity profiles for all jet configurations. A proportional relation between the jet deflection angle and the applied voltage had been found. Moreover, a linear relation had been obtained between the maximum speed in the jet direction and the applied voltage. The active power of the discharge is approximated by both a power law function and an exponential function of the applied voltage.
NASA Astrophysics Data System (ADS)
Dougherty, Andrew W.
Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor responses in the time, gas and temperature domains, and the dual representation of the support vector regression solution is shown to provide insight into the sensor's sensitivity and potential orthogonality. Finally, the dual weights of the support vector regression solution to the sensor's response are suggested as a fitness function for a genetic algorithm, or some other method for efficiently searching large parameter spaces.
Photonic Breast Tomography and Tumor Aggressiveness Assessment
2010-07-01
removal of breast tumours (Specific Aim 4). While the TROT approach [7] has been introduced in other areas, such as, array processing for acoustic and...to the time-reversal matrix used in the general area of array processing for acoustic and radar time-reversal imaging [15]. The eigenvalue equation...spectrum [Eq.(1) in Ref. 8] is calculated directly for all voxels in the sample using the vector subspace method, Multiple Signal Classification ( MUSIC
Optimum Array Processing for Detecting Binary Signals Corrupted by Directional Interference.
1972-12-01
specific cases. Two different series representations of a vector random process are discussed in Van Trees [3]. These two methods both require the... spaci ~ng d, etc.) its detection error represents a lower bound for the performance that might be obtained with other types of array processing (such...Middleton, Introduction to Statistical Communication Theory, New York: McGraw-Hill, 1960. 3. H.L. Van Trees , Detection, Estimation, and Modulation Theory
2017-04-07
considerations. Experimental Astronomy , 2015.304 Dicke, R. H. The Measurement of Thermal Radiation at Microwave Frequencies. Review305 of Scientific Instruments...17, 7, 268, 1946.306 12 M. Knapp et al. Ellingson, S. W. Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy .307 IEEE Transactions on...Morris, M. Silver, S. Klein, and314 S. Seager. Vector antenna and maximum likelihood imaging for radio astronomy . In315 IEEE Aerospace Conference
Spin wave filtering and guiding in Permalloy/iron nanowires
NASA Astrophysics Data System (ADS)
Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.
2018-03-01
We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Russlee; Farley, M.; Hansen, Gabriel
In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse. In response to finding high entrainment at Grand Coulee Dam, the Independent Scientific Review Panel (ISRP) recommended investigating themore » use of strobe lights to repel fish from the forebay of the third powerhouse. Therefore, our study focused on the third powerhouse and how strobe lights affected fish behavior in this area. The primary objective of our study was to assess the behavioral response of kokanee and rainbow trout to strobe lights using 3D acoustic telemetry, which yields explicit spatial locations of fish in three dimensions. Our secondary objectives were to (1) use a 3D acoustic system to mobile track tagged fish in the forebay and upriver of Grand Coulee Dam and (2) determine the feasibility of detecting fish using a hydrophone mounted in the tailrace of the third powerhouse. Within the fixed hydrophone array located in the third powerhouse cul-de-sac, we detected 50 kokanee and 30 rainbow trout, accounting for 47% and 45% respectively, of the fish released. Kokanee had a median residence time of 0.20 h and rainbow trout had a median residence time of 1.07 h. We detected more kokanee in the array at night compared to the day, and we detected more rainbow trout during the day compared to the night. In general, kokanee and rainbow trout approached along the eastern shore and the relative frequency of kokanee and rainbow trout detections was highest along the eastern shoreline of the 3D array. However, because we released fish near the eastern shore, this approach pattern may have resulted from our release location. A high percentage of rainbow trout (60%) approached within 35 m of the eastern shore, while fewer kokanee (40%) approached within 35 m of the eastern shore and were more evenly distributed across the entrance to the third powerhouse cul-de-sac area. During each of the strobe light treatments there were very few fish detected within 25 m of the strobe lights. The spatial distribution of fish detections showed relatively few tagged fish swam through the center of the array where the strobe lights were located. We detected 11 kokanee and 12 rainbow trout within 25 m of the strobe lights, accounting for 10% and 18% respectively, of the fish released. Both species exhibited very short residence times within 25 m of the strobe lights No attraction or repulsion behavior was observed within 25 m of the strobe lights. Directional vectors of both kokanee and rainbow trout indicate that both species passed the strobe lights by moving in a downstream direction and slightly towards the third powerhouse. We statistically analyzed fish behavior during treatments using a randomization to compare the mean distance fish were detected from the strobe lights. We compared treatments separately for day and night and with the data constrained to three distances from the strobe light (< 85m, < 50 m, and < 25 m). For kokanee, the only significant randomization test (of 10 tests) occurred with kokanee during the day for the 3-On treatment constrained to within 85 m of the strobe lights, where kokanee were significantly further away from the strobe lights than during the Off treatment (randomization test, P < 0.004, Table 1.5). However, one other test had a low P-value (P = 0.064) where kokanee were closer to the lights during the 3-On treatment at night within 85 m of the strobe lights compared to the Off treatment. For rainbow trout, none of the 11 tests were significant, but one test had a low P-value (P = 0.04), and fish were further away from the strobe lights during the 6-On treatment, within 50 m, during the day (Table 1.5). During 2002, it is unclear whether tagged fish truly had little response to the strobe lights, or whether too few fish near the strobe lights and short residence times prevented us from detecting a behavioral response to the strobe lights. Although fish tended to be slightly further away from the strobe lights during 3-On and 6-On treatments compared to the Off treatment, only one of the 21 statistical tests indicated that these differences were significant. However, within 25 m of the strobe lights we may have had little power to detect a difference due to the few fish available for statistical comparison. We detected 32 kokanee and 7 rainbow trout in the tailrace of Grand Coulee Dam, accounting for 30% and 12%, respectively of the fish released.« less
2018-01-01
Although the signal space separation (SSS) method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG) signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG) applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type) array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor) on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis. PMID:29854364
Visualization of Underfill Flow in Ball Grid Array (BGA) using Particle Image Velocimetry (PIV)
NASA Astrophysics Data System (ADS)
Ng, Fei Chong; Abas, Aizat; Abustan, Ismail; Remy Rozainy, Z. Mohd; Abdullah, MZ; Jamaludin, Ali b.; Kon, Sharon Melissa
2018-05-01
This paper presents the experimental methodology using particle image velocimetry (PIV) to study the underfill process of ball grid array (BGA) chip package. PIV is a non-intrusive approach to visualize the flow behavior of underfill across the solder ball array. The BGA model of three different configurations – perimeter, middle empty and full array – were studied in current research. Through PIV experimental works, the underfill velocity distribution and vector fields for each BGA models were successfully obtained. It is found that perimeter has the shortest filling time resulting to a higher underfill velocity. Therefore, it is concluded that the flow behavior of underfill in BGA can be justified thoroughly with the aid of PIV.
Generation of tunable radially polarized array beams by controllable coherence
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Jipeng; Zhu, Shijun; Li, Zhenhua
2017-05-01
In this paper, a new method for converting a single radial polarization beam into an arbitrary radially polarized array (RPA) beam such as a radial or rectangular symmetry array in the focal plane by modulating a periodic correlation structure is introduced. The realizability conditions for such source and the beam condition for radiation generated by such source are derived. It is illustrated that both the amplitude and the polarization are controllable by means of initial correlation structure and coherence parameter. Furthermore, by designing the source correlation structure, a tunable NUST-shaped RPA beam is demonstrated, which can find widespread applications in micro-nano engineering. Such a method for generation of arbitrary vector array beams is useful in beam shaping and optical tweezers.
2012-07-03
of white noise vectors with square sumable coefficients and components with finite fourth order moments (Shumway et al., 1999). Here, the infrasonic...center in a star -like configuration for reducing the background noise from wind activity along the boundary layer. Sensor data is recorded by 24-bit...the PMCC Algorithm In Figure 19, under the assumption that the source (red star ) is far from the arrays, PMCC starts coherence processing using
Adaptive Array for Weak Interfering Signals: Geostationary Satellite Experiments. M.S. Thesis
NASA Technical Reports Server (NTRS)
Steadman, Karl
1989-01-01
The performance of an experimental adaptive array is evaluated using signals from an existing geostationary satellite interference environment. To do this, an earth station antenna was built to receive signals from various geostationary satellites. In these experiments the received signals have a frequency of approximately 4 GHz (C-band) and have a bandwidth of over 35 MHz. These signals are downconverted to a 69 MHz intermediate frequency in the experimental system. Using the downconverted signals, the performance of the experimental system for various signal scenarios is evaluated. In this situation, due to the inherent thermal noise, qualitative instead of quantitative test results are presented. It is shown that the experimental system can null up to two interfering signals well below the noise level. However, to avoid the cancellation of the desired signal, the use a steering vector is needed. Various methods to obtain an estimate of the steering vector are proposed.
Bleul, Christiane; Baumann-Klausener, Franziska; Labhart, Thomas; Dickinson, Michael H.
2016-01-01
Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. SIGNIFICANCE STATEMENT The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called polarization vision. Because skylight is polarized in an orientation that is rigidly determined by the position of the sun, this cue provides compass information. Behavioral experiments have shown that many species use the polarization pattern in the sky to direct locomotion. Here we describe the input stage of the fly's polarization-vision system. PMID:27170135
A Parallel Vector Machine for the PM Programming Language
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2016-04-01
PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.
Feasibility of RACT for 3D dose measurement and range verification in a water phantom.
Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M
2015-02-01
The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.
Infrared solar physics from the South Pole
NASA Technical Reports Server (NTRS)
Deming, Drake
1989-01-01
Infrared (IR) observations of the sun could greatly benefit from the quality of the South Pole as an IR site, and the potential for multi-day sequences of uninterrupted observations. A nearly continuous picture of the evolution of the magnetic field in solar active regions could be obtained using vector magnetographs, especially vector magnetographs which incorporate IR array detectors. Observations of the sun over a range of wavelengths in the IR continuum could also be used to study the vertical propagation characteristics of the solar p-mode oscillations.
Recent advances in phlebotomine sand fly research related to leishmaniasis control.
Bates, Paul A; Depaquit, Jerôme; Galati, Eunice A B; Kamhawi, Shaden; Maroli, Michele; McDowell, Mary Ann; Picado, Albert; Ready, Paul D; Salomón, O Daniel; Shaw, Jeffrey J; Traub-Csekö, Yara M; Warburg, Alon
2015-02-27
Phlebotomine sand flies are the subject of much research because of the role of their females as the only proven natural vectors of Leishmania species, the parasitic protozoans that are the causative agents of the neglected tropical disease leishmaniasis. Activity in this field was highlighted by the eighth International Symposium on Phlebotomine Sand flies (ISOPS) held in September 2014, which prompted this review focusing on vector control. Topics reviewed include: Taxonomy and phylogenetics, Vector competence, Genetics, genomics and transcriptomics, Eco-epidemiology, and Vector control. Research on sand flies as leishmaniasis vectors has revealed a diverse array of zoonotic and anthroponotic transmission cycles, mostly in subtropical and tropical regions of Africa, Asia and Latin America, but also in Mediterranean Europe. The challenge is to progress beyond descriptive eco-epidemiology, in order to separate vectors of biomedical importance from the sand fly species that are competent vectors but lack the vectorial capacity to cause much human disease. Transmission modelling is required to identify the vectors that are a public health priority, the ones that must be controlled as part of the integrated control of leishmaniasis. Effective modelling of transmission will require the use of entomological indices more precise than those usually reported in the leishmaniasis literature.
Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina
NASA Astrophysics Data System (ADS)
Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.
2008-07-01
In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.
Potential sound production by a deep-sea fish
NASA Astrophysics Data System (ADS)
Mann, David A.; Jarvis, Susan M.
2004-05-01
Swimbladder sonic muscles of deep-sea fishes were described over 35 years ago. Until now, no recordings of probable deep-sea fish sounds have been published. A sound likely produced by a deep-sea fish has been isolated and localized from an analysis of acoustic recordings made at the AUTEC test range in the Tongue of the Ocean, Bahamas, from four deep-sea hydrophones. This sound is typical of a fish sound in that it is pulsed and relatively low frequency (800-1000 Hz). Using time-of-arrival differences, the sound was localized to 548-696-m depth, where the bottom was 1620 m. The ability to localize this sound in real-time on the hydrophone range provides a great advantage for being able to identify the sound-producer using a remotely operated vehicle.
Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor
NASA Astrophysics Data System (ADS)
Kagawa, Naoki; Wada, Osami; Koga, Ryuji
1999-05-01
This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.
Handbook of Listeria monocytogenes
USDA-ARS?s Scientific Manuscript database
Once feared as a deadly intracellular bacterium with the extraordinary capacity to survive a wide array of arduous external stressors, Listeria monocytogenes is increasingly recognized as a preferred vector for delivering anti-infective and anti-cancer vaccine molecules. A reliable, single-source re...
Development of software for the MSFC solar vector magnetograph
NASA Technical Reports Server (NTRS)
Kineke, Jack
1996-01-01
The Marshall Space Flight Center Solar Vector Magnetograph is a special purpose telescope used to measure the vector magnetic field in active areas on the surface of the sun. This instrument measures the linear and circular polarization intensities (the Stokes vectors Q, U and V) produced by the Zeeman effect on a specific spectral line due to the solar magnetic field from which the longitudinal and transverse components of the magnetic field may be determined. Beginning in 1990 as a Summer Faculty Fellow in project JOVE and continuing under NASA Grant NAG8-1042, the author has been developing computer software to perform these computations, first using a DEC MicroVAX system equipped with a high speed array processor, and more recently using a DEC AXP/OSF system. This summer's work is a continuation of this development.
NASA Technical Reports Server (NTRS)
Niebur, D.; Germond, A.
1993-01-01
This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in this report, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.
Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver
2015-01-01
The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Working with and Visualizing Big Data Efficiently with Python for the DARPA XDATA Program
2017-08-01
same function to be used with scalar inputs, input arrays of the same shape, or even input arrays of dimensionality in some cases. Most of the math ... math operations on values ● Split-apply-combine: similar to group-by operations in databases ● Join: combine two datasets using common columns 4.3.3...Numba - Continue to increase SIMD performance with support for fast math flags and improved support for AVX, Intel’s large vector
A Covariance Modeling Approach to Adaptive Beamforming and Detection
1991-07-30
to achieve the main results of this report. I would especially like to thank Dr. E. J. Kelly for the support he has given me during the past years . His...direction of propagation A,, 0 S, Figure 4. Plane wace propagating through array. The array steering vector d(, E) is d~w d d2 ... dN]T (10) with...the covariance matrix to form a matched-filter beamformer that adapts to the interference environment. This was one of the first papers to propose using
Re-establishment of the IMS Hydroacoustic Station HA03, Robinson Crusoe Island, Chile
NASA Astrophysics Data System (ADS)
Haralabus, Georgios; Stanley, Jerry; Zampolli, Mario; Pautet, Lucie
2015-04-01
Water column hydrophone stations of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) International Monitoring System (IMS) comprise typically two triplets of moored hydrophones deployed on both sides of an island. Triplet distances vary approximately between 50 - 200 km from the island, with each triplet connected to the receiving shore equipment by fibre-optic submarine data cables. Once deployed, the systems relay underwater acoustic waveforms in the band 1 - 100 Hz in real time to Vienna via a shore based satellite link. The design life of hydroacoustic (HA) stations is at least 20 years, without need for any maintenance of the underwater system (UWS). The re-establishment of hydrophone station HA03 at Robinson Crusoe Island (670 km West of the Chilean mainland) is presented here. The station was destroyed in February 2010 by a Tsunami induced by an 8.8 magnitude earthquake. After a major engineering and logistical undertaking HA03 is now back in operation since April 2014. The main phases of the project are presented: (i) the installation of a shore facility for the reception of the hydrophone data from the UWS, which also relays the data back to the CTBTO International Data Center (IDC) in Vienna via a real-time satellite connection, (ii) the manufacturing and testing of the system to meet the stringent requirements of the Nuclear-Test-Ban Treaty, and (iii) the installation of the UWS with a state-of-the-art cable ship. Examples of data acquired by HA03 are also presented. These include hydroacoustic signals from the 1 April 2014 magnitude 8.2 earthquake in Northern Chile, bursting underwater bubbles from a submarine volcano near the Mariana Islands (15,000 Km away from the station), and vocalizations from the numerous marine mammals which transit in the vicinity of HA03. The use of CTBTO data for scientific purposes is possible via the virtual Data Exploitation Centre (vDEC), which is a platform that enables registered researchers to access archived monitoring data and processing software, or via the National Data Centres (NDCs).
Potential of minicomputer/array-processor system for nonlinear finite-element analysis
NASA Technical Reports Server (NTRS)
Strohkorb, G. A.; Noor, A. K.
1983-01-01
The potential of using a minicomputer/array-processor system for the efficient solution of large-scale, nonlinear, finite-element problems is studied. A Prime 750 is used as the host computer, and a software simulator residing on the Prime is employed to assess the performance of the Floating Point Systems AP-120B array processor. Major hardware characteristics of the system such as virtual memory and parallel and pipeline processing are reviewed, and the interplay between various hardware components is examined. Effective use of the minicomputer/array-processor system for nonlinear analysis requires the following: (1) proper selection of the computational procedure and the capability to vectorize the numerical algorithms; (2) reduction of input-output operations; and (3) overlapping host and array-processor operations. A detailed discussion is given of techniques to accomplish each of these tasks. Two benchmark problems with 1715 and 3230 degrees of freedom, respectively, are selected to measure the anticipated gain in speed obtained by using the proposed algorithms on the array processor.
Obstacle-avoiding navigation system
Borenstein, Johann; Koren, Yoram; Levine, Simon P.
1991-01-01
A system for guiding an autonomous or semi-autonomous vehicle through a field of operation having obstacles thereon to be avoided employs a memory for containing data which defines an array of grid cells which correspond to respective subfields in the field of operation of the vehicle. Each grid cell in the memory contains a value which is indicative of the likelihood, or probability, that an obstacle is present in the respectively associated subfield. The values in the grid cells are incremented individually in response to each scan of the subfields, and precomputation and use of a look-up table avoids complex trigonometric functions. A further array of grid cells is fixed with respect to the vehicle form a conceptual active window which overlies the incremented grid cells. Thus, when the cells in the active window overly grid cell having values which are indicative of the presence of obstacles, the value therein is used as a multiplier of the precomputed vectorial values. The resulting plurality of vectorial values are summed vectorially in one embodiment of the invention to produce a virtual composite repulsive vector which is then summed vectorially with a target-directed vector for producing a resultant vector for guiding the vehicle. In an alternative embodiment, a plurality of vectors surrounding the vehicle are computed, each having a value corresponding to obstacle density. In such an embodiment, target location information is used to select between alternative directions of travel having low associated obstacle densities.
R/V EWING seismic source array calibrations: 2003
NASA Astrophysics Data System (ADS)
Diebold, J.; Webb, S.; Tolstoy, M.; Rawson, M.; Holmes, C.; Bohnenstiehl, D.; Chapp, E.
2003-12-01
In the Northern Gulf of Mexico, May, 2003, an NSF-funded effort was carried out to obtain calibrated measurements of the various airgun arrays deployed by R/V EWING during its seismic surveys. The motivations for this were several: to ground-truth the modeling upon which safety radii for marine mammal mitigation are established; to obtain broadband digitized signals which will accurately define the full spectral content of airgun signatures; to investigate the effects of seafloor interactions and their contribution to the acoustic noise levels from seismic sources. For this purpose, a digital, remotely telemetering spar buoy was designed and assembled; affording interactive control over the choice of two hydrophone channels, four fixed gain settings and four digitizing rates [6,250 - 50,000 Hz.] Three deployments were planned: a deep-water site, suitable for comparison of actual signals with modeled results; a shallow-water [25 - 50m] site where the effects of bottom interaction would be strongest; and a continental-slope site, which represents the favored habitat of many cetacean species. Methodology was developed which enabled the sequential discharge of four subarrays of 6, 10, 12 and 20 airguns. A separate run was made with two "GI" airguns, the favored high resolution survey source. An Incidental Harassment Authorization and a Biological Opinion, including an Incidental Take Statement were issued for the project by National Marine Fisheries, and a suite of marine mammal observation and mitigation procedures was followed. The deep and shallow water sites were occupied, and some 440 airgun signals were recorded. The slope site work was cancelled due to weather too poor for accurate marine mammal observation, but calibration was subsequently carried out with an exploration industry source vessel in a similar environment. Preliminary results indicate that the mitigation modeling is accurate, though somewhat conservative; that the radiated energy from airgun arrays, known to be strongest at very low frequencies, continues to diminish as frequencies increase up to 25 kHz, and that interactions with the seafloor, while complex, are understandable.
Remote environmental sensor array system
NASA Astrophysics Data System (ADS)
Hall, Geoffrey G.
This thesis examines the creation of an environmental monitoring system for inhospitable environments. It has been named The Remote Environmental Sensor Array System or RESA System for short. This thesis covers the development of RESA from its inception, to the design and modeling of the hardware and software required to make it functional. Finally, the actual manufacture, and laboratory testing of the finished RESA product is discussed and documented. The RESA System is designed as a cost-effective way to bring sensors and video systems to the underwater environment. It contains as water quality probe with sensors such as dissolved oxygen, pH, temperature, specific conductivity, oxidation-reduction potential and chlorophyll a. In addition, an omni-directional hydrophone is included to detect underwater acoustic signals. It has a colour, high-definition and a low-light, black and white camera system, which it turn are coupled to a laser scaling system. Both high-intensity discharge and halogen lighting system are included to illuminate the video images. The video and laser scaling systems are manoeuvred using pan and tilt units controlled from an underwater computer box. Finally, a sediment profile imager is included to enable profile images of sediment layers to be acquired. A control and manipulation system to control the instruments and move the data across networks is integrated into the underwater system while a power distribution node provides the correct voltages to power the instruments. Laboratory testing was completed to ensure that the different instruments associated with the RESA performed as designed. This included physical testing of the motorized instruments, calibration of the instruments, benchmark performance testing and system failure exercises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peng; Ji, Wei; Wei, Bing-Yan
Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promisingmore » optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices.« less
Tomkins, Melissa; Kliot, Adi; Marée, Athanasius Fm; Hogenhout, Saskia A
2018-03-13
Members of the Candidatus genus Phytoplasma are small bacterial pathogens that hijack their plant hosts via the secretion of virulence proteins (effectors) leading to a fascinating array of plant phenotypes, such as witch's brooms (stem proliferations) and phyllody (retrograde development of flowers into vegetative tissues). Phytoplasma depend on insect vectors for transmission, and interestingly, these insect vectors were found to be (in)directly attracted to plants with these phenotypes. Therefore, phytoplasma effectors appear to reprogram plant development and defence to lure insect vectors, similarly to social engineering malware, which employs tricks to lure people to infected computers and webpages. A multi-layered mechanistic modelling approach will enable a better understanding of how phytoplasma effector-mediated modulations of plant host development and insect vector behaviour contribute to phytoplasma spread, and ultimately to predict the long reach of phytoplasma effector genes. Copyright © 2018. Published by Elsevier Ltd.
Field tests of acoustic telemetry for a portable coastal observatory
Martini, M.; Butman, B.; Ware, J.; Frye, D.
2006-01-01
Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.
Nonlinear Acoustics in Ultrasound Metrology and other Selected Applications.
Lewin, Peter A
2010-01-01
A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of "point-receiver" hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard "biofilm" that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.
High-frequency harmonic imaging of the eye.
Silverman, Ronald H; Coleman, D Jackson; Ketterling, Jeffrey A; Lizzi, Frederic L
2005-01-01
PURPOSE: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. METHODS: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. RESULTS: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. CONCLUSION: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.
High-frequency harmonic imaging of the eye
NASA Astrophysics Data System (ADS)
Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.
2005-04-01
Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.
Optical stimulation of the hearing and deaf cochlea under thermal and stress confinement condition
NASA Astrophysics Data System (ADS)
Schultz, M.; Baumhoff, P.; Kallweit, N.; Sato, M.; Krüger, A.; Ripken, T.; Lenarz, T.; Kral, A.
2014-03-01
There is a controversy, to which extend cochlear stimulation with near infrared laser pulses at a wavelength of 1860 nm is based on optoacoustic stimulation of intact hair cells or -in contrast- is based on direct stimulation of the nerve cells in absence of functional hair cells. Thermal and stress confinement conditions apply, because of the pulse duration range (5 ns, 10 μs-20 ms) of the two lasers used. The dependency of the signal characteristics on pulse peak power and pulse duration was investigated in this study. The compound action potential (CAP) was measured during stimulation of the cochlea of four anaesthetized guinea pigs, which were hearing at first and afterwards acutely deafened using intracochlear neomycin-rinsing. For comparison hydrophone measurements in a water tank were performed to investigate the optoacoustic signals at different laser interaction regimes. With rising pulse peak power CAPs of the hearing animals showed first a threshold, then a positively correlated and finally a saturating dependency. CAPs also showed distinct responses at laser onset and offset separated with the pulse duration. At pulse durations shorter than physiological response times the signals merged. Basically the same signal characteristics were observed in the optoacoustic hydrophone measurements, scaled with the sensitivity and response time of the hydrophone. Taking together the qualitative correspondence in the signal response and the absence of any CAPs in deafened animals our results speak in favor of an optoacoustic stimulation of intact hair cells rather than a direct stimulation of nerve cells.
Nonlinear acoustics in ultrasound metrology and other selected applications
NASA Astrophysics Data System (ADS)
Lewin, Peter A.
2010-01-01
A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of 'point-receiver' hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard 'biofilm' that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, T.; Imhof, A.; Ingold, G.
To vary the polarization vector of an APPLE II undulator continuously from 0 - 180 deg., all four magnet arrays need to be movable. Following the adjustable-phase undulator approach by R. Carr, a 3.4 m long fixed gap undulator for SLS with a gap of 11.6 mm has been constructed. It will be installed in fall 2006. The gap drive is replaced by a pair-wise shift of the magnet arrays to change the energy, while the polarization is changed by shifts of diagonal arrays. The high injection efficiency and standard operation top-up mode at the SLS allows this simplified undulatormore » design. The design as well as the operational aspects will be discussed.« less
NASA Astrophysics Data System (ADS)
Seo, Sung-Won; Kim, Young-Hyun; Lee, Jung-Ho; Choi, Jang-Young
2018-05-01
This paper presents analytical torque calculation and experimental verification of synchronous permanent magnet couplings (SPMCs) with Halbach arrays. A Halbach array is composed of various numbers of segments per pole; we calculate and compare the magnetic torques for 2, 3, and 4 segments. Firstly, based on the magnetic vector potential, and using a 2D polar coordinate system, we obtain analytical solutions for the magnetic field. Next, through a series of processes, we perform magnetic torque calculations using the derived solutions and a Maxwell stress tensor. Finally, the analytical results are verified by comparison with the results of 2D and 3D finite element analysis and the results of an experiment.
A wideband software reconfigurable modem
NASA Astrophysics Data System (ADS)
Turner, J. H., Jr.; Vickers, H.
A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.
Implementation and Assessment of Advanced Analog Vector-Matrix Processor
NASA Technical Reports Server (NTRS)
Gary, Charles K.; Bualat, Maria G.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
This paper discusses the design and implementation of an analog optical vecto-rmatrix coprocessor with a throughput of 128 Mops for a personal computer. Vector matrix calculations are inherently parallel, providing a promising domain for the use of optical calculators. However, to date, digital optical systems have proven too cumbersome to replace electronics, and analog processors have not demonstrated sufficient accuracy in large scale systems. The goal of the work described in this paper is to demonstrate a viable optical coprocessor for linear operations. The analog optical processor presented has been integrated with a personal computer to provide full functionality and is the first demonstration of an optical linear algebra processor with a throughput greater than 100 Mops. The optical vector matrix processor consists of a laser diode source, an acoustooptical modulator array to input the vector information, a liquid crystal spatial light modulator to input the matrix information, an avalanche photodiode array to read out the result vector of the vector matrix multiplication, as well as transport optics and the electronics necessary to drive the optical modulators and interface to the computer. The intent of this research is to provide a low cost, highly energy efficient coprocessor for linear operations. Measurements of the analog accuracy of the processor performing 128 Mops are presented along with an assessment of the implications for future systems. A range of noise sources, including cross-talk, source amplitude fluctuations, shot noise at the detector, and non-linearities of the optoelectronic components are measured and compared to determine the most significant source of error. The possibilities for reducing these sources of error are discussed. Also, the total error is compared with that expected from a statistical analysis of the individual components and their relation to the vector-matrix operation. The sufficiency of the measured accuracy of the processor is compared with that required for a range of typical problems. Calculations resolving alloy concentrations from spectral plume data of rocket engines are implemented on the optical processor, demonstrating its sufficiency for this problem. We also show how this technology can be easily extended to a 100 x 100 10 MHz (200 Cops) processor.
Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi
2017-01-01
Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm 2 . The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control.
Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi
2017-01-01
Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm2. The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control. PMID:28442997
Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun
2014-10-20
In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.
Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun
2017-01-01
In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result. PMID:29072588
Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun
2017-10-26
In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.
Lockaby, Graeme; Noori, Navideh; Morse, Wayde; Zipperer, Wayne; Kalin, Latif; Governo, Robin; Sawant, Rajesh; Ricker, Matthew
2016-12-01
The integrated effects of the many risk factors associated with West Nile virus (WNV) incidence are complex and not well understood. We studied an array of risk factors in and around Atlanta, GA, that have been shown to be linked with WNV in other locations. This array was comprehensive and included climate and meteorological metrics, vegetation characteristics, land use / land cover analyses, and socioeconomic factors. Data on mosquito abundance and WNV mosquito infection rates were obtained for 58 sites and covered 2009-2011, a period following the combined storm water - sewer overflow remediation in that city. Risk factors were compared to mosquito abundance and the WNV vector index (VI) using regression analyses individually and in combination. Lagged climate variables, including soil moisture and temperature, were significantly correlated (positively) with vector index as were forest patch size and percent pine composition of patches (both negatively). Socioeconomic factors that were most highly correlated (positively) with the VI included the proportion of low income households and homes built before 1960 and housing density. The model selected through stepwise regression that related risk factors to the VI included (in the order of decreasing influence) proportion of houses built before 1960, percent of pine in patches, and proportion of low income households. © 2016 The Society for Vector Ecology.
Diel and spatial patterns in the singing behavior of humpback whales off Oahu, Hawaii
NASA Astrophysics Data System (ADS)
Lammers, Marc O.; Stimpert, Alison K.; Au, Whitlow W. L.; Mooney, T. Aran
2005-09-01
The singing behavior of male humpback whales on the winter breeding grounds is still a poorly understood phenomenon. Previous work indicates that the chorusing levels of singing whales off west Maui are higher at night than during the day. However, the cause of this variation is not known. To investigate whether more whales sing at night or whether the same number simply move closer to near-shore recorders following sunset, the abundance and location of singing whales off Kaena Point, Oahu was examined. A bottom-moored recording system was used to establish that the same diel pattern observed off Maui also occurs off Oahu. The location of singing whales was determined by localizing singers along a preset transect track using a towed hydrophone array. More whales were found singing along the coastline examined at night than during the day. There was no indication of a shoreward migration. These results suggest that, at night, singing displays may be a more effective behavioral tactic than direct competition in a pod. Also, more singers were found along the northern part of the coastline, which is dominated by a shallow bank, indicating that singers were selective with respect to where they chose to sing.
Stereotypical rapid source level regulation in the harbour porpoise biosonar.
Linnenschmidt, Meike; Kloepper, Laura N; Wahlberg, Magnus; Nachtigall, Paul E
2012-09-01
Some odontocetes and bats vary both click intensity and receiver sensitivity during echolocation, depending on target range. It is not known how this so-called automatic gain control is regulated by the animal. The source level of consecutive echolocation clicks from a harbour porpoise was measured with a hydrophone array while the animal detected an aluminium cylinder at 2, 4 or 8 m distance in a go/no-go paradigm. On-axis clicks had source levels of 145-174 dB re 1 μPa peak-to-peak. During target-present trials the click trains reached comparable source levels independent of the range to the target after three clicks. After an additional click, the source level was reduced for the 2 and 4 m trials until it equalled the one-way transmission loss. During target-absent trials, the source level remained high throughout the entire click train. Given typical values of harbour porpoise inter-click intervals, the source level reduction commenced within a few 100 ms from the first click in the click train. This may indicate a sub-cortically regulated source level regulation in the harbour porpoise.
Localization of marine mammals near Hawaii using an acoustic propagation model
NASA Astrophysics Data System (ADS)
Tiemann, Christopher O.; Porter, Michael B.; Frazer, L. Neil
2004-06-01
Humpback whale songs were recorded on six widely spaced receivers of the Pacific Missile Range Facility (PMRF) hydrophone network near Hawaii during March of 2001. These recordings were used to test a new approach to localizing the whales that exploits the time-difference of arrival (time lag) of their calls as measured between receiver pairs in the PMRF network. The usual technique for estimating source position uses the intersection of hyperbolic curves of constant time lag, but a drawback of this approach is its assumption of a constant wave speed and straight-line propagation to associate acoustic travel time with range. In contrast to hyperbolic fixing, the algorithm described here uses an acoustic propagation model to account for waveguide and multipath effects when estimating travel time from hypothesized source positions. A comparison between predicted and measured time lags forms an ambiguity surface, or visual representation of the most probable whale position in a horizontal plane around the array. This is an important benefit because it allows for automated peak extraction to provide a location estimate. Examples of whale localizations using real and simulated data in algorithms of increasing complexity are provided.
Baleen whale infrasonic sounds: Natural variability and function
NASA Astrophysics Data System (ADS)
Clark, Christopher W.
2004-05-01
Blue and fin whales (Balaenoptera musculus and B. physalus) produce very intense, long, patterned sequences of infrasonic sounds. The acoustic characteristics of these sounds suggest strong selection for signals optimized for very long-range propagation in the deep ocean as first hypothesized by Payne and Webb in 1971. This hypothesis has been partially validated by very long-range detections using hydrophone arrays in deep water. Humpback songs recorded in deep water contain units in the 20-l00 Hz range, and these relatively simple song components are detectable out to many hundreds of miles. The mid-winter peak in the occurrence of 20-Hz fin whale sounds led Watkins to hypothesize a reproductive function similar to humpback (Megaptera novaeangliae) song, and by default this function has been extended to blue whale songs. More recent evidence shows that blue and fin whales produce infrasonic calls in high latitudes during the feeding season, and that singing is associated with areas of high productivity where females congregate to feed. Acoustic sampling over broad spatial and temporal scales for baleen species is revealing higher geographic and seasonal variability in the low-frequency vocal behaviors than previously reported, suggesting that present explanations for baleen whale sounds are too simplistic.
Divergence of a stereotyped call in northern resident killer whales.
Grebner, Dawn M; Parks, Susan E; Bradley, David L; Miksis-Olds, Jennifer L; Capone, Dean E; Ford, John K B
2011-02-01
Northern resident killer whale pods (Orcinus orca) have distinctive stereotyped pulsed call repertoires that can be used to distinguish groups acoustically. Repertoires are generally stable, with the same call types comprising the repertoire of a given pod over a period of years to decades. Previous studies have shown that some discrete pulsed calls can be subdivided into variants or subtypes. This study suggests that new stereotyped calls may result from the gradual modification of existing call types through subtypes. Vocalizations of individuals and small groups of killer whales were collected using a bottom-mounted hydrophone array in Johnstone Strait, British Columbia in 2006 and 2007. Discriminant analysis of slope variations of a predominant call type, N4, revealed the presence of four distinct call subtypes. Similar to previous studies, there was a divergence of the N4 call between members of different matrilines of the same pod. However, this study reveals that individual killer whales produced multiple subtypes of the N4 call, indicating that divergence in the N4 call is not the result of individual differences, but rather may indicate the gradual evolution of a new stereotyped call.
Determination of West Indian manatee vocalization levels and rate
NASA Astrophysics Data System (ADS)
Phillips, Richard; Niezrecki, Christopher; Beusse, Diedrich
2004-05-01
The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, based upon the vocalizations of manatees, could potentially reduce these boat collisions. The feasibility of this warning system would depend mainly upon two factors: the rate at which manatees vocalize and the distance in which the manatees can be detected. The research presented in this paper verifies that the average vocalization rate of the West Indian manatee is approximately one to two times per 5-min period. Several different manatee vocalization recordings were broadcast to the manatees and their response was observed. It was found that during the broadcast periods, the vocalization rates for the manatees increased substantially when compared with the average vocalization rates during nonbroadcast periods. An array of four hydrophones was used while recording the manatees. This allowed for position estimation techniques to be used to determine the location of the vocalizing manatee. Knowing the position of the manatee, the source level was determined and it was found that the mean source level of the manatee vocalizations is approximately 112 dB (re:1 Pa) @ 1 m.
Determination of West Indian manatee vocalization levels and rate
NASA Astrophysics Data System (ADS)
Phillips, Richard; Niezrecki, Christopher; Beusse, Diedrich O.
2004-01-01
The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, based upon the vocalizations of manatees, could potentially reduce these boat collisions. The feasibility of this warning system would depend mainly upon two factors: the rate at which manatees vocalize and the distance in which the manatees can be detected. The research presented in this paper verifies that the average vocalization rate of the West Indian manatee is approximately one to two times per 5-min period. Several different manatee vocalization recordings were broadcast to the manatees and their response was observed. It was found that during the broadcast periods, the vocalization rates for the manatees increased substantially when compared with the average vocalization rates during nonbroadcast periods. An array of four hydrophones was used while recording the manatees. This allowed for position estimation techniques to be used to determine the location of the vocalizing manatee. Knowing the position of the manatee, the source level was determined and it was found that the mean source level of the manatee vocalizations is approximately 112 dB (re 1 μPa) @ 1 m.
A data management system for engineering and scientific computing
NASA Technical Reports Server (NTRS)
Elliot, L.; Kunii, H. S.; Browne, J. C.
1978-01-01
Data elements and relationship definition capabilities for this data management system are explicitly tailored to the needs of engineering and scientific computing. System design was based upon studies of data management problems currently being handled through explicit programming. The system-defined data element types include real scalar numbers, vectors, arrays and special classes of arrays such as sparse arrays and triangular arrays. The data model is hierarchical (tree structured). Multiple views of data are provided at two levels. Subschemas provide multiple structural views of the total data base and multiple mappings for individual record types are supported through the use of a REDEFINES capability. The data definition language and the data manipulation language are designed as extensions to FORTRAN. Examples of the coding of real problems taken from existing practice in the data definition language and the data manipulation language are given.
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Rodemich, E. R.
1990-01-01
A real-time digital signal combining system for use with Ka-band feed arrays is proposed. The combining system attempts to compensate for signal-to-noise ratio (SNR) loss resulting from antenna deformations induced by gravitational and atmospheric effects. The combining weights are obtained directly from the observed samples by using a sliding-window implementation of a vector maximum-likelihood parameter estimator. It is shown that with averaging times of about 0.1 second, combining loss for a seven-element array can be limited to about 0.1 dB in a realistic operational environment. This result suggests that the real-time combining system proposed here is capable of recovering virtually all of the signal power captured by the feed array, even in the presence of severe wind gusts and similar disturbances.
Calibration Test Set for a Phase-Comparison Digital Tracker
NASA Technical Reports Server (NTRS)
Boas, Amy; Li, Samuel; McMaster, Robert
2007-01-01
An apparatus that generates four signals at a frequency of 7.1 GHz having precisely controlled relative phases and equal amplitudes has been designed and built. This apparatus is intended mainly for use in computer-controlled automated calibration and testing of a phase-comparison digital tracker (PCDT) that measures the relative phases of replicas of the same X-band signal received by four antenna elements in an array. (The relative direction of incidence of the signal on the array is then computed from the relative phases.) The present apparatus can also be used to generate precisely phased signals for steering a beam transmitted from a phased antenna array. The apparatus (see figure) includes a 7.1-GHz signal generator, the output of which is fed to a four-way splitter. Each of the four splitter outputs is attenuated by 10 dB and fed as input to a vector modulator, wherein DC bias voltages are used to control the in-phase (I) and quadrature (Q) signal components. The bias voltages are generated by digital-to-analog- converter circuits on a control board that receives its digital control input from a computer running a LabVIEW program. The outputs of the vector modulators are further attenuated by 10 dB, then presented at high-grade radio-frequency connectors. The attenuation reduces the effects of changing mismatch and reflections. The apparatus was calibrated in a process in which the bias voltages were first stepped through all possible IQ settings. Then in a reverse interpolation performed by use of MATLAB software, a lookup table containing 3,600 IQ settings, representing equal amplitude and phase increments of 0.1 , was created for each vector modulator. During operation of the apparatus, these lookup tables are used in calibrating the PCDT.
Cluster Computing For Real Time Seismic Array Analysis.
NASA Astrophysics Data System (ADS)
Martini, M.; Giudicepietro, F.
A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by a pro- gram which reads data from disk files and send them to a remote host by using the Internet protocols.
Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence
NASA Astrophysics Data System (ADS)
Eslami, Mohammed; Wu, Chensheng; Rzasa, John; Davis, Christopher C.
2012-10-01
Ideally, as planar wave fronts travel through an imaging system, all rays, or vectors pointing in the direction of the propagation of energy are parallel, and thus the wave front is focused to a particular point. If the wave front arrives at an imaging system with energy vectors that point in different directions, each part of the wave front will be focused at a slightly different point on the sensor plane and result in a distorted image. The Hartmann test, which involves the insertion of a series of pinholes between the imaging system and the sensor plane, was developed to sample the wavefront at different locations and measure the distortion angles at different points in the wave front. An adaptive optic system, such as a deformable mirror, is then used to correct for these distortions and allow the planar wave front to focus at the point desired on the sensor plane, thereby correcting the distorted image. The apertures of a pinhole array limit the amount of light that reaches the sensor plane. By replacing the pinholes with a microlens array each bundle of rays is focused to brighten the image. Microlens arrays are making their way into newer imaging technologies, such as "light field" or "plenoptic" cameras. In these cameras, the microlens array is used to recover the ray information of the incoming light by using post processing techniques to focus on objects at different depths. The goal of this paper is to demonstrate the use of these plenoptic cameras to recover the distortions in wavefronts. Taking advantage of the microlens array within the plenoptic camera, CODE-V simulations show that its performance can provide more information than a Shack-Hartmann sensor. Using the microlens array to retrieve the ray information and then backstepping through the imaging system provides information about distortions in the arriving wavefront.
Weir, Peter T; Henze, Miriam J; Bleul, Christiane; Baumann-Klausener, Franziska; Labhart, Thomas; Dickinson, Michael H
2016-05-11
Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called polarization vision. Because skylight is polarized in an orientation that is rigidly determined by the position of the sun, this cue provides compass information. Behavioral experiments have shown that many species use the polarization pattern in the sky to direct locomotion. Here we describe the input stage of the fly's polarization-vision system. Copyright © 2016 the authors 0270-6474/16/365397-08$15.00/0.
1976-08-31
SSH, (1-1) where H viands for conjugate transpose, and S is the total signal vector recorded at an array of sensors, defined by: S...time delay, and a = a scale constant (for convenience, yet without loss of gen- erality, les us assume (|a(<l) ), The complex cepstrum x(n
Optimized Infrastructure for the Earth System Prediction Capability
2013-09-30
for referencing memory between its native coupling datatype (MCT Attribute Vectors) and ESMF Arrays. This will reduce the copies required and will...introduced ability within CESM to share memory between ESMF and MCT datatypes makes using both tools together much easier. Using both is appealing
Self-powered thin-film motion vector sensor
Jing, Qingshen; Xie, Yannan; Zhu, Guang; Han, Ray P. S.; Wang, Zhong Lin
2015-01-01
Harnessing random micromeso-scale ambient energy is not only clean and sustainable, but it also enables self-powered sensors and devices to be realized. Here we report a robust and self-powered kinematic vector sensor fabricated using highly pliable organic films that can be bent to spread over curved and uneven surfaces. The device derives its operational energy from a close-proximity triboelectrification of two surfaces: a polytetrafluoroethylene film coated with a two-column array of copper electrodes that constitutes the mover and a polyimide film with the top and bottom surfaces coated with a two-column aligned array of copper electrodes that comprises the stator. During relative reciprocations, the electrodes in the mover generate electric signals of ±5 V to attain a peak power density of ≥65 mW m−2 at a speed of 0.3 ms−1. From our 86,000 sliding motion tests of kinematic measurements, the sensor exhibits excellent stability, repeatability and strong signal durability. PMID:26271603
Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.
1992-01-01
The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Wilcock, W. S.
2011-12-01
As part of an active source land-sea tomography experiment, ocean bottom seismometers (OBSs) were deployed at Deception Island Volcano, Antarctica, in January 2005. Following the tomography study, three OBSs were left for a month inside the flooded caldera and ten on the outer slopes of the volcano to record seismo-volcanic signals. The OBS sensor package included three-orthogonal 1-Hz geophones but no hydrophone. The OBSs were deployed in water depths of 125 to 143 m inside the caldera and at depths of 119 to 475 m on the volcano's flanks. Only two volcano-tectonic earthquakes and three long period events were recorded by the network. However, the OBSs inside the caldera recorded over 4,500 unusual seismic events. These were detected by only one station at a time and were completely absent from OBSs on the flank of the volcano and from land stations deployed on the island. The signals had a dominant frequency of 5 Hz and were one to ten seconds long. Event activity in the caldera was variable with the number of events per hour ranging from 0 up to 60 and the level of activity decreasing slightly over the study period. We categorize the signals into three types based on waveform characteristics. Type 1 events have an impulsive onset and last 1 to 2 s with characteristics that are consistent with the impulse response of a poorly coupled OBS. Type 2 events typically last 2 to 4 s and comprise a low amplitude initial arrival followed less than a second later by a more energetic second phase that looks a Type 1 event. Type 3 events last up to 10 s and have more complex waveforms that appear to comprise several arrivals of varying amplitudes. Type 1 events are similar to the 'fish-bump' signals reported from previous studies that attributed them to biological activity. The consistent timing and relative amplitudes of the two arrivals for Type 2 events are difficult to explain by animals randomly touching the OBSs. Type 3 events are quite similar in frequency, duration, and signal characteristics to long-period seismic events recorded by an onshore seismic array deployed in an earlier study at Deception Island. Particle motions suggest that Type 3 events may be surface waves while the particle motions for Type 1 and Type 2 events are ambiguous and unlike any signals recorded by land arrays at the volcano. Binomial tests of the event distribution show no significant changes in the rate of events with time of day that would be indicative of a biological source. Since the events are entirely absent in biologically productive waters outside the caldera, we postulate that they may be volcanic signals related to hydrothermal flow across the seafloor in the flooded caldera of Deception Island. Future OBS deployments at Deception Island should include a hydrophone to discriminate unambiguously between biological and volcanic signals.
NASA Astrophysics Data System (ADS)
Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.
2010-03-01
Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.
Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone
NASA Astrophysics Data System (ADS)
Thanh Nguyen, Tam; Asakura, Yoshiyuki; Okada, Nagaya; Koda, Shinobu; Yasuda, Keiji
2017-07-01
Effect of ultrasonic cavitation on sound pressure at the fundamental, second harmonic, and first ultraharmonic frequencies was investigated from low to high ultrasonic intensities. The driving frequencies were 22, 304, and 488 kHz. Sound pressure was measured using a needle-type hydrophone and ultrasonic cavitation was estimated from the broadband integrated pressure (BIP). With increasing square root of electric power applied to a transducer, the sound pressure at the fundamental frequency linearly increased initially, dropped at approximately the electric power of cavitation inception, and afterward increased again. The sound pressure at the second harmonic frequency was detected just below the electric power of cavitation inception. The first ultraharmonic component appeared at around the electric power of cavitation inception at 304 and 488 kHz. However, at 22 kHz, the first ultraharmonic component appeared at a higher electric power than that of cavitation inception.
Design and development of a brushless, direct drive solar array reorientation system
NASA Technical Reports Server (NTRS)
Jessee, R. D.
1972-01-01
This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.
NASA Technical Reports Server (NTRS)
Young, Leighton E.
1993-01-01
Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.
Review on structured optical field generated from array beams
NASA Astrophysics Data System (ADS)
Hou, Tianyue; Zhou, Pu; Ma, Yanxing; Zhi, Dong
2018-03-01
Structured optical field (SOF), which includes vortex beams, non-diffraction beams, cylindrical vector beams and so on, has been under intensive investigation theoretically and experimentally in recent years. Generally, current research focus on the extraordinary properties (non-diffraction propagation, helical wavefront, rotation of electrical field, et al), which can be widely applied in micro-particle manipulation, super-resolution imaging, free-space communication and so on. There are mainly two technical routes, that is, inner-cavity and outer-cavity (spatial light modulators, diffractive phase holograms, q-plates). To date, most of the SOFs generated from both technical routes involves with single monolithic beam. As a novel technical route, SOF based on array beams has the advantage in more flexible freedom degree and power scaling potential. In this paper, research achievements in SOF generation based on array beams are arranged and discussed in detail. Moreover, experiment of generating exotic beam by array beams is introduced, which illustrates that SOF generated from array beams is theoretically valid and experimentally feasible. SOF generated from array beams is also beneficial for capacity increasing and data receiving for free-space optical communication systems at long distance.
Radio Observations of the Ionosphere From an Imaging Array and a CubeSat
NASA Astrophysics Data System (ADS)
Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.
2017-12-01
The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the radio data received by GimmeRF in the topside ionosphere, with the goal of better understanding the geometry and therefore the mechanisms of the radio emission processes.
Plasmonic nanopatch array for optical integrated circuit applications.
Qu, Shi-Wei; Nie, Zai-Ping
2013-11-08
Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.
Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.
Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2016-11-01
The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Leahy, R.M.
A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles,more » the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.« less
Submarine cable OBS using a retired submarine telecommunication cable: GeO-TOC program
NASA Astrophysics Data System (ADS)
Kasahara, Junzo; Utada, Hisashi; Sato, Toshinori; Kinoshita, Hajimu
1998-06-01
In order to study the Earth's structure and subduction zone tectonics, seismic data from the oceanic region are extremely important. The present seismograph distribution in the oceanic region, however, provides a very poor coverage. To improve this poor seismic coverage, a cable OBS system using a retired submarine telecommunication cable is proposed. The GeO-TOC cable runs from Ninomiya, Japan, to Guam through the Izu-Bonin forearc and the Marina Trough. The total length of the cable is 2659 km. An OBS, IZU, using the GeO-TOC cable, was successfully installed at the landward slope of the Izu-Bonin Trench in January 1997. The IZU OBS is located approximately 400 km south of Tokyo. The installation method is similar to repair work on submarine cables. The IZU OBS is equipped with three accelerometers, a hydrophone, a quartz pressure gauge, and a quartz precision thermometer with a few temperature sensors to monitor overheating of the internal electronics. After installation, the voltage increase is 90 V when the current is maintained at a constant 370 mA. Data from accelerometers are digitized by 24-bit A/D converters and sent to Ninomiya at 9600 bps for each component. Hydrophone data are sent to Ninomiya as analog signals using the AM (Amplitude Modulation) method for safety reasons. Hydrophone data are digitized at the shore station. Other slow-rate data are multiplexed and sent to the shore at 9600 bps. The instrument can be controlled by a shore computer. All data will be transmitted from Ninomiya to Tokyo and combined with other existing seismic data.
FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification
Lin, Shiow-Jyu; Hwang, Wen-Jyi; Lee, Wei-Hao
2012-01-01
This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance and low area costs. PMID:22778640
Efficient k-Winner-Take-All Competitive Learning Hardware Architecture for On-Chip Learning
Ou, Chien-Min; Li, Hui-Ya; Hwang, Wen-Jyi
2012-01-01
A novel k-winners-take-all (k-WTA) competitive learning (CL) hardware architecture is presented for on-chip learning in this paper. The architecture is based on an efficient pipeline allowing k-WTA competition processes associated with different training vectors to be performed concurrently. The pipeline architecture employs a novel codeword swapping scheme so that neurons failing the competition for a training vector are immediately available for the competitions for the subsequent training vectors. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for realtime on-chip learning. Experimental results show that the SOPC has significantly lower training time than that of other k-WTA CL counterparts operating with or without hardware support.
Rapid Assembly of Customized TALENs into Multiple Delivery Systems
Zhang, Zhengxing; Zhang, Siliang; Huang, Xin; Orwig, Kyle E.; Sheng, Yi
2013-01-01
Transcriptional activator-like effector nucleases (TALENs) have become a powerful tool for genome editing. Here we present an efficient TALEN assembly approach in which TALENs are assembled by direct Golden Gate ligation into Gateway® Entry vectors from a repeat variable di-residue (RVD) plasmid array. We constructed TALEN pairs targeted to mouse Ddx3 subfamily genes, and demonstrated that our modified TALEN assembly approach efficiently generates accurate TALEN moieties that effectively introduce mutations into target genes. We generated “user friendly” TALEN Entry vectors containing TALEN expression cassettes with fluorescent reporter genes that can be efficiently transferred via Gateway (LR) recombination into different delivery systems. We demonstrated that the TALEN Entry vectors can be easily transferred to an adenoviral delivery system to expand application to cells that are difficult to transfect. Since TALENs work in pairs, we also generated a TALEN Entry vector set that combines a TALEN pair into one PiggyBac transposon-based destination vector. The approach described here can also be modified for construction of TALE transcriptional activators, repressors or other functional domains. PMID:24244669
Jones, Charles H; Hakansson, Anders P; Pfeifer, Blaine A
2014-01-01
The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2015-02-28
To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
Volumetric Acoustic Vector Intensity Probe
NASA Technical Reports Server (NTRS)
Klos, Jacob
2006-01-01
A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.
Almendros, J.; Chouet, B.; Dawson, P.
2001-01-01
We present a probabilistic method to locate the source of seismic events using seismic antennas. The method is based on a comparison of the event azimuths and slownesses derived from frequency-slowness analyses of array data, with a slowness vector model. Several slowness vector models are considered including both homogeneous and horizontally layered half-spaces and also a more complex medium representing the actual topography and three-dimensional velocity structure of the region under study. In this latter model the slowness vector is obtained from frequency-slowness analyses of synthetic signals. These signals are generated using the finite difference method and include the effects of topography and velocity structure to reproduce as closely as possible the behavior of the observed wave fields. A comparison of these results with those obtained with a homogeneous half-space demonstrates the importance of structural and topographic effects, which, if ignored, lead to a bias in the source location. We use synthetic seismograms to test the accuracy and stability of the method and to investigate the effect of our choice of probability distributions. We conclude that this location method can provide the source position of shallow events within a complex volcanic structure such as Kilauea Volcano with an error of ??200 m. Copyright 2001 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2016-06-29
To address the critical site characterization and monitoring needs for Enhance Geothermal Systems (EGS) programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2011 a contract to design, build and test a high temperature fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying a large number of 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor podmore » design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-4.0 at frequencies over 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The data telemetry fibers used for the seismic vector sensors in the system are also used to simultaneously record Distributed Temperature Sensor (DTS) and Distributed Acoustic Sensor (DAS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, J.; Pulli, J.; Gibson, R.; Upton, Z.
2005-05-01
We present an analysis of the acoustic signals from the December 26, 2004 Sumatra earthquakes, in conjunction with the seismic and tide gauge information from the event. The M9.0 mainshock and its aftershocks were recorded by a suite of seismic sensors around the globe, giving us information on its location and the source process. Recently installed sensor assets in the Indian Ocean have enabled us to study additional features of this significant event. Hydroacoustic signals were recorded by three hydrophone arrays, and the direction finding capability of these arrays allows us to examine the location, time and extent of the T-wave generation process. We detect a clear variation of the back-azimuth that is consistent with the spatial extent of the source rupture. Recordings from nearly co-located seismometers provide insights into the acoustic-to-seismic conversion process for T-waves at islands, along with the variation in signal characteristics with source size. Two separate infrasound arrays detect the atmospheric signals generated by the event, along with additional observations of the seismic surface wave and the T-phase. We will present a comparison of the signals from the mainshock, as a function of location and size, with those from aftershocks and similar events in the nearby region. Our acoustic observations compare favorably with model predictions of wave propagation in the region. For the hydroacoustic data, the azimuth, arrival time, and signal blockage characteristics, from three separate arrays, associate the onset of the signal with the mainshock and with a time extent consistent with the rupture propagation. Our analysis of the T-phase travel times suggests that the seismic-to-acoustic conversion occurs more than 100 km from the epicenter. The infrasound signal's arrival time and signal duration are consistent with both stratospheric and thermospheric propagation from a source region near the mainshock. We use the tide gauge data from stations around the Indian Ocean to identify the arrival time of the Tsunami. The acoustic and seismic signals associated with the earthquakes arrive at the remote stations significantly ahead of the Tsunami. We combine the information from the various sensors to investigate the ability of the acoustic stations to detect the Tsunami.
Vertical Cable Seismic Survey for Hydrothermal Deposit
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.
2012-04-01
The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques. We have carried out two field surveys in FY2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, the VCS will become a practical exploration tool for the exploration of seafloor hydrothermal deposits.
NASA Astrophysics Data System (ADS)
Hammond, S. R.; Dziak, R. P.; Fox, C. G.
2012-12-01
Monitoring of regional seismic activity in the Northeast Pacific has been accomplished for the past 21 years using US Navy's Sound Surveillance System (SOSUS) hydrophone arrays. Seafloor seismic activity in this region occurs along the spreading center and transform boundaries between the Juan de Fuca, Pacific and North American plates. During the time span, from 1991 through 2011, nearly 50,000 earthquakes were detected and located. The majority of these events were associated with these tectonic boundaries but sections of several plate boundaries were largely aseismic during the this time span. While most of the earthquakes were associated with geological structures revealed in bathymetric maps of the region, there were also less easily explained intraplate events including a swarm of events within the interior of the southern portion of the Juan de Fuca plate. The location and sequential timing of events on portions of the plate boundaries also suggests ordered patterns of stress release. Among the most scientifically significant outcomes of acoustic monitoring was the discovery that deep seafloor magmatic activity can be accompanied by intense (> 1000 events/day) earthquake swarms. The first swarm detected by SOSUS, in 1993, was confirmed to have been associated with an extrusive volcanic eruption which occurred along a segment of the Juan de Fuca spreading center. Notably, this was the first deep spreading center eruption detected, located, and studied while it was active. Subsequently, two more swarms were confirmed to have been associated with volcanic eruptions, one on the Gorda spreading center in 1996 and the other at Axial volcano in 1998. One characteristic of these swarm events is migration of their earthquake locations 10s of km along the ridge axis tracking the movement of magma down-rift. The most rapid magma propagation events have been shown to be associated with seafloor eruptions and dramatic, transient changes in hydrothermal circulation as well as discharges of large volumes of hot water, i.e., megaplumes. Hydroacoustic monitoring using SOSUS, and now augmented with hydrophones deployed on stationary moorings as well as mobile platforms (e.g. gliders), provides a unique means for gaining knowledge concerning a broad diversity of present-day topics of scientific importance including, sources and fate of carbon in the deep ocean, deep ocean micro- and macro-ecosystems, and changes in ocean ambient noise levels.
Tyo, J Scott; LaCasse, Charles F; Ratliff, Bradley M
2009-10-15
Microgrid polarimeters operate by integrating a focal plane array with an array of micropolarizers. The Stokes parameters are estimated by comparing polarization measurements from pixels in a neighborhood around the point of interest. The main drawback is that the measurements used to estimate the Stokes vector are made at different locations, leading to a false polarization signature owing to instantaneous field-of-view (IFOV) errors. We demonstrate for the first time, to our knowledge, that spatially band limited polarization images can be ideally reconstructed with no IFOV error by using a linear system framework.
Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard
2015-01-01
The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909
Liu, Yi-Hung; Chen, Yan-Jen
2011-01-01
Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms. PMID:22016625
Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard
2015-05-26
The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.
Liu, Yi-Hung; Chen, Yan-Jen
2011-01-01
Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms.
Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones
NASA Technical Reports Server (NTRS)
Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.
2010-01-01
In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubbiotti, G.; Tacchi, S.; Montoncello, F.
2015-06-29
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained bymore » dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.« less
NASA Astrophysics Data System (ADS)
Yan, Feng-Gang; Cao, Bin; Rong, Jia-Jia; Shen, Yi; Jin, Ming
2016-12-01
A new technique is proposed to reduce the computational complexity of the multiple signal classification (MUSIC) algorithm for direction-of-arrival (DOA) estimate using a uniform linear array (ULA). The steering vector of the ULA is reconstructed as the Kronecker product of two other steering vectors, and a new cost function with spatial aliasing at hand is derived. Thanks to the estimation ambiguity of this spatial aliasing, mirror angles mathematically relating to the true DOAs are generated, based on which the full spectral search involved in the MUSIC algorithm is highly compressed into a limited angular sector accordingly. Further complexity analysis and performance studies are conducted by computer simulations, which demonstrate that the proposed estimator requires an extremely reduced computational burden while it shows a similar accuracy to the standard MUSIC.
USDA-ARS?s Scientific Manuscript database
Until recently, most Electrical Penetration Graph (EPG) studies have emphasized small-bodied sternorrhynchans, auchenorrhynchans, and thrips. EPG holds the potential to significantly improve research on a wider array of species, such as large heteropterans and blood-sucking vectors of medical/veteri...
3D Navier-Stokes Flow Analysis for a Large-Array Multiprocessor
1989-04-17
computer, Alliant’s FX /8, Intel’s Hypercube, and Encore’s Multimax. Unfortunately, the current algorithms have been developed pri- marily for SISD machines...Reversing and Thrust-Vectoring Nozzle Flows," Ph.D. Dissertation in the Dept. of Aero. and Astro ., Univ. of Wash., Washington, 1986. [11] Anderson
Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.
Bell, Peter; Vandenberghe, Luk H; Wilson, James M
2014-06-01
Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.
UTOOLS: microcomputer software for spatial analysis and landscape visualization.
Alan A. Ager; Robert J. McGaughey
1997-01-01
UTOOLS is a collection of programs designed to integrate various spatial data in a way that allows versatile spatial analysis and visualization. The programs were designed for watershed-scale assessments in which a wide array of resource data must be integrated, analyzed, and interpreted. UTOOLS software combines raster, attribute, and vector data into "spatial...
A microfluidic separation platform using an array of slanted ramps
NASA Astrophysics Data System (ADS)
Risbud, Sumedh; Bernate, Jorge; Drazer, German
2013-03-01
The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.
Umchid, S.; Gopinath, R.; Srinivasan, K.; Lewin, P. A.; Daryoush, A. S.; Bansal, L.; El-Sherif, M.
2009-01-01
The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (High Intensity Focused Ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth. PMID:19110289
Sonoluminescence and acoustic emission spectra at different stages of cavitation zone development.
Dezhkunov, N V; Francescutto, A; Serpe, L; Canaparo, R; Cravotto, G
2018-01-01
The way in which a cavitation zone develops in a focused pulsed ultrasound field is studied in this work. Sonoluminescence (SL), total hydrophone output and cavitation noise spectra have been recorded across a gradual, smooth increase in applied voltage. It is shown that the cavitation zone passes through a number of stages of evolution, according to increasing ultrasound intensity, decreasing pulse period and increasing ultrasound pulse duration. Sonoluminescence is absent in the first phase and the hydrophone output spectra consists of a main line with two or three harmonics whose intensity is much lower than that of the main (fundamental) line. The second stage sees the onset of SL whose intensity increases smoothly and is accompanied by the appearance of higher harmonics and subharmonics in the cavitation noise spectra. In some cases, the wide-band (WBN) component can be seen in noise spectra during the final part of the second stage. In the third stage, SL intensity increases significantly and often quite sharply, while WBN intensity increases in the same manner. This is accompanied by a synchronous increase in the absorption of ultrasound by the cavitation zone, which is manifested in a sharp decrease in the hydrophone output. In the fourth stage, both SL and WBN intensities tend to decrease despite the increased voltage applied to the transducer. Furthermore, the fundamental line tends to decrease in strength as well, despite the increasing ultrasound intensity. The obtained results clearly identify the different stages of cavitation zone development using cavitation noise spectra analyses. We then hypothesize that three of the above stages may be responsible for three known types of ultrasound action on biological cells: damping viability, reversible cell damage (sonoporation) and irreversible damage/cytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
A Robust Sound Source Localization Approach for Microphone Array with Model Errors
NASA Astrophysics Data System (ADS)
Xiao, Hua; Shao, Huai-Zong; Peng, Qi-Cong
In this paper, a robust sound source localization approach is proposed. The approach retains good performance even when model errors exist. Compared with previous work in this field, the contributions of this paper are as follows. First, an improved broad-band and near-field array model is proposed. It takes array gain, phase perturbations into account and is based on the actual positions of the elements. It can be used in arbitrary planar geometry arrays. Second, a subspace model errors estimation algorithm and a Weighted 2-Dimension Multiple Signal Classification (W2D-MUSIC) algorithm are proposed. The subspace model errors estimation algorithm estimates unknown parameters of the array model, i. e., gain, phase perturbations, and positions of the elements, with high accuracy. The performance of this algorithm is improved with the increasing of SNR or number of snapshots. The W2D-MUSIC algorithm based on the improved array model is implemented to locate sound sources. These two algorithms compose the robust sound source approach. The more accurate steering vectors can be provided for further processing such as adaptive beamforming algorithm. Numerical examples confirm effectiveness of this proposed approach.
Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.
Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun
2018-05-08
Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.
Morgenstern, Hai; Rafaely, Boaz; Zotter, Franz
2015-11-01
Spatial attributes of room acoustics have been widely studied using microphone and loudspeaker arrays. However, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have only been studied to a limited degree in this context. These systems can potentially provide a powerful tool for room acoustics analysis due to the ability to simultaneously control both arrays. This paper offers a theoretical framework for the spatial analysis of enclosed sound fields using a MIMO system comprising spherical loudspeaker and microphone arrays. A system transfer function is formulated in matrix form for free-field conditions, and its properties are studied using tools from linear algebra. The system is shown to have unit-rank, regardless of the array types, and its singular vectors are related to the directions of arrival and radiation at the microphone and loudspeaker arrays, respectively. The formulation is then generalized to apply to rooms, using an image source method. In this case, the rank of the system is related to the number of significant reflections. The paper ends with simulation studies, which support the developed theory, and with an extensive reflection analysis of a room impulse response, using the platform of a MIMO system.
DOA Finding with Support Vector Regression Based Forward-Backward Linear Prediction.
Pan, Jingjing; Wang, Yide; Le Bastard, Cédric; Wang, Tianzhen
2017-05-27
Direction-of-arrival (DOA) estimation has drawn considerable attention in array signal processing, particularly with coherent signals and a limited number of snapshots. Forward-backward linear prediction (FBLP) is able to directly deal with coherent signals. Support vector regression (SVR) is robust with small samples. This paper proposes the combination of the advantages of FBLP and SVR in the estimation of DOAs of coherent incoming signals with low snapshots. The performance of the proposed method is validated with numerical simulations in coherent scenarios, in terms of different angle separations, numbers of snapshots, and signal-to-noise ratios (SNRs). Simulation results show the effectiveness of the proposed method.
Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.
2016-01-01
Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging. PMID:27087711
The implications of developments on the Atlantic Frontier for marine mammals
NASA Astrophysics Data System (ADS)
Harwood, John; Wilson, Ben
2001-05-01
We review the available information on the distribution and abundance of marine mammals in the Atlantic Frontier area, and the literature on the potential effects of oil exploration and extraction on these species. Reliable estimates of seal abundance are only available for two species (grey and harbour seals). For grey seals and hooded seals there is also information from telemetry studies on their distribution at sea. Data on cetaceans comes from a variety of sources including whaling statistics, dedicated surveys, observers placed on vessels of opportunity, and from bottom-mounted hydrophone arrays. These indicate that the Atlantic Frontier region is of national, and possibly international, importance for a number of cetacean species. The most abundant small cetacean is likely to be the white-sided dolphin; however, smaller numbers of large whales, including endangered blue, right, fin and sei whales, and vulnerable humpback and sperm whales are also likely to be present in summer. There is growing evidence that a number of marine mammal species respond to the acoustic and physical disturbance associated with exploration for oil and gas resources, although the ecological impact of these responses is unclear. We describe how risk assessment frameworks, initially developed for evaluating the environmental impacts of hazardous chemicals, can be used to address this problem.
Design and first tests of an acoustic positioning and detection system for KM3NeT
NASA Astrophysics Data System (ADS)
Simeone, F.; Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium
2012-01-01
In a deep-sea neutrino telescope it is mandatory to locate the position of the optical sensors with a precision of about 10 cm. To achieve this requirement, an innovative Acoustic Positioning System (APS) has been designed in the frame work of the KM3NeT neutrino telescope. The system will also be able to provide an acoustic guide during the deployment of the telescope’s components and seafloor infrastructures (junction boxes, cables, etc.). A prototype of the system based on the successful acoustic systems of ANTARES and NEMO is being developed. It will consist of an array of hydrophones and a network of acoustic transceivers forming the Long Baseline. All sensors are connected to the telescope data acquisition system and are in phase and synchronised with the telescope master clock. Data from the acoustic sensors, continuously sampled at 192 kHz, will be sent to shore where signal recognition and analysis will be carried out. The design and first tests of the system elements will be presented. This new APS is expected to have better precision compared to the systems used in ANTARES and NEMO, and can also be used as a real-time monitor of acoustic sources and environmental noise in deep sea.
The biosonar field around an Atlantic bottlenose dolphin (Tursiops truncatus).
Au, Whitlow W L; Branstetter, Brian; Moore, Patrick W; Finneran, James J
2012-01-01
The use of remote autonomous passive acoustic recorders (PAR) to determine the distribution of dolphins at a given locations has become very popular. Some investigators are using echolocation clicks to gather information on the presence of dolphins and to identify species. However, in all of these cases, the PAR probably recorded mainly off-axis clicks, even some from behind the animals. Yet there is a very poor understanding of the beam pattern and the click waveform and spectrum from different azimuths around the animal's body. The beam pattern completely around an echo locating dolphin was measured at 16 different but equally spaced angles in the horizontal plane using an 8-hydrophone array in sequence. Eight channels of data were digitized simultaneously at a sampling rate of 500 kHz. The resulting beam patterns in both planes showed a continuous drop off in sound pressure with azimuth around the animal and reached levels below -50 dB relative to the signal recorded on the beam axis. The signals began to break up into two components at angles greater than ± 45° in the horizontal plane. The center frequency dropped off from its maximum at 0° in a non-uniform matter. © 2012 Acoustical Society of America.
Characteristics of biosonar signals from the northern bottlenose whale, Hyperoodon ampullatus.
Wahlberg, Magnus; Beedholm, Kristian; Heerfordt, Anders; Møhl, Bertel
2011-11-01
The biosonar pulses from free-ranging northern bottlenose whales (Hyperoodon ampullatus) were recorded with a linear hydrophone array. Signals fulfilling criteria for being recorded close to the acoustic axis of the animal (a total of 10 clicks) had a frequency upsweep from 20 to 55 kHz and durations of 207 to 377 μs (measured as the time interval containing 95% of the signal energy). The source level of these signals, denoted pulses, was 175-202 dB re 1 μPa rms at 1 m. The pulses had a directionality index of at least 18 dB. Interpulse intervals ranged from 73 to 949 ms (N = 856). Signals of higher repetition rates had interclick intervals of 5.8-13.1 ms (two sequences, made up of 59 and 410 clicks, respectively). These signals, denoted clicks, had a shorter duration (43-200 μs) and did not have the frequency upsweep characterizing the pulses of low repetition rates. The data show that the northern bottlenose whale emits signals similar to three other species of beaked whale. These signals are distinct from the three other types of biosonar signals of toothed whales. It remains unclear why the signals show this grouping, and what consequences it has on echolocation performance.
NASA Astrophysics Data System (ADS)
Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.
2015-10-01
Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.