Sample records for vector machine classifiers

  1. Currency crisis indication by using ensembles of support vector machine classifiers

    NASA Astrophysics Data System (ADS)

    Ramli, Nor Azuana; Ismail, Mohd Tahir; Wooi, Hooy Chee

    2014-07-01

    There are many methods that had been experimented in the analysis of currency crisis. However, not all methods could provide accurate indications. This paper introduces an ensemble of classifiers by using Support Vector Machine that's never been applied in analyses involving currency crisis before with the aim of increasing the indication accuracy. The proposed ensemble classifiers' performances are measured using percentage of accuracy, root mean squared error (RMSE), area under the Receiver Operating Characteristics (ROC) curve and Type II error. The performances of an ensemble of Support Vector Machine classifiers are compared with the single Support Vector Machine classifier and both of classifiers are tested on the data set from 27 countries with 12 macroeconomic indicators for each country. From our analyses, the results show that the ensemble of Support Vector Machine classifiers outperforms single Support Vector Machine classifier on the problem involving indicating a currency crisis in terms of a range of standard measures for comparing the performance of classifiers.

  2. Testing of the Support Vector Machine for Binary-Class Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew

    2011-01-01

    The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results

  3. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  4. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.

    PubMed

    Xu, Yan; Wang, Xiao-Bo; Ding, Jun; Wu, Ling-Yun; Deng, Nai-Yang

    2010-05-07

    Lysine acetylation is an essentially reversible and high regulated post-translational modification which regulates diverse protein properties. Experimental identification of acetylation sites is laborious and expensive. Hence, there is significant interest in the development of computational methods for reliable prediction of acetylation sites from amino acid sequences. In this paper we use an ensemble of support vector machine classifiers to perform this work. The experimentally determined acetylation lysine sites are extracted from Swiss-Prot database and scientific literatures. Experiment results show that an ensemble of support vector machine classifiers outperforms single support vector machine classifier and other computational methods such as PAIL and LysAcet on the problem of predicting acetylation lysine sites. The resulting method has been implemented in EnsemblePail, a web server for lysine acetylation sites prediction available at http://www.aporc.org/EnsemblePail/. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. An assessment of support vector machines for land cover classification

    USGS Publications Warehouse

    Huang, C.; Davis, L.S.; Townshend, J.R.G.

    2002-01-01

    The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.

  6. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  7. An implementation of support vector machine on sentiment classification of movie reviews

    NASA Astrophysics Data System (ADS)

    Yulietha, I. M.; Faraby, S. A.; Adiwijaya; Widyaningtyas, W. C.

    2018-03-01

    With technological advances, all information about movie is available on the internet. If the information is processed properly, it will get the quality of the information. This research proposes to the classify sentiments on movie review documents. This research uses Support Vector Machine (SVM) method because it can classify high dimensional data in accordance with the data used in this research in the form of text. Support Vector Machine is a popular machine learning technique for text classification because it can classify by learning from a collection of documents that have been classified previously and can provide good result. Based on number of datasets, the 90-10 composition has the best result that is 85.6%. Based on SVM kernel, kernel linear with constant 1 has the best result that is 84.9%

  8. Support vector machines classifiers of physical activities in preschoolers

    USDA-ARS?s Scientific Manuscript database

    The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a s...

  9. Fabric wrinkle characterization and classification using modified wavelet coefficients and optimized support-vector-machine classifier

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...

  10. Quantum Support Vector Machine for Big Data Classification

    NASA Astrophysics Data System (ADS)

    Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth

    2014-09-01

    Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

  11. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    NASA Astrophysics Data System (ADS)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  12. Research on bearing fault diagnosis of large machinery based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    2018-04-01

    To study the automatic diagnosis of large machinery fault based on support vector machine, combining the four common faults of the large machinery, the support vector machine is used to classify and identify the fault. The extracted feature vectors are entered. The feature vector is trained and identified by multi - classification method. The optimal parameters of the support vector machine are searched by trial and error method and cross validation method. Then, the support vector machine is compared with BP neural network. The results show that the support vector machines are short in time and high in classification accuracy. It is more suitable for the research of fault diagnosis in large machinery. Therefore, it can be concluded that the training speed of support vector machines (SVM) is fast and the performance is good.

  13. Optimization of Support Vector Machine (SVM) for Object Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.

  14. Combined empirical mode decomposition and texture features for skin lesion classification using quadratic support vector machine.

    PubMed

    Wahba, Maram A; Ashour, Amira S; Napoleon, Sameh A; Abd Elnaby, Mustafa M; Guo, Yanhui

    2017-12-01

    Basal cell carcinoma is one of the most common malignant skin lesions. Automated lesion identification and classification using image processing techniques is highly required to reduce the diagnosis errors. In this study, a novel technique is applied to classify skin lesion images into two classes, namely the malignant Basal cell carcinoma and the benign nevus. A hybrid combination of bi-dimensional empirical mode decomposition and gray-level difference method features is proposed after hair removal. The combined features are further classified using quadratic support vector machine (Q-SVM). The proposed system has achieved outstanding performance of 100% accuracy, sensitivity and specificity compared to other support vector machine procedures as well as with different extracted features. Basal Cell Carcinoma is effectively classified using Q-SVM with the proposed combined features.

  15. Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning.

    PubMed

    Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A

    2017-06-01

    Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.

  16. An ultra low power feature extraction and classification system for wearable seizure detection.

    PubMed

    Page, Adam; Pramod Tim Oates, Siddharth; Mohsenin, Tinoosh

    2015-01-01

    In this paper we explore the use of a variety of machine learning algorithms for designing a reliable and low-power, multi-channel EEG feature extractor and classifier for predicting seizures from electroencephalographic data (scalp EEG). Different machine learning classifiers including k-nearest neighbor, support vector machines, naïve Bayes, logistic regression, and neural networks are explored with the goal of maximizing detection accuracy while minimizing power, area, and latency. The input to each machine learning classifier is a 198 feature vector containing 9 features for each of the 22 EEG channels obtained over 1-second windows. All classifiers were able to obtain F1 scores over 80% and onset sensitivity of 100% when tested on 10 patients. Among five different classifiers that were explored, logistic regression (LR) proved to have minimum hardware complexity while providing average F-1 score of 91%. Both ASIC and FPGA implementations of logistic regression are presented and show the smallest area, power consumption, and the lowest latency when compared to the previous work.

  17. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  18. A low cost implementation of multi-parameter patient monitor using intersection kernel support vector machine classifier

    NASA Astrophysics Data System (ADS)

    Mohan, Dhanya; Kumar, C. Santhosh

    2016-03-01

    Predicting the physiological condition (normal/abnormal) of a patient is highly desirable to enhance the quality of health care. Multi-parameter patient monitors (MPMs) using heart rate, arterial blood pressure, respiration rate and oxygen saturation (S pO2) as input parameters were developed to monitor the condition of patients, with minimum human resource utilization. The Support vector machine (SVM), an advanced machine learning approach popularly used for classification and regression is used for the realization of MPMs. For making MPMs cost effective, we experiment on the hardware implementation of the MPM using support vector machine classifier. The training of the system is done using the matlab environment and the detection of the alarm/noalarm condition is implemented in hardware. We used different kernels for SVM classification and note that the best performance was obtained using intersection kernel SVM (IKSVM). The intersection kernel support vector machine classifier MPM has outperformed the best known MPM using radial basis function kernel by an absoute improvement of 2.74% in accuracy, 1.86% in sensitivity and 3.01% in specificity. The hardware model was developed based on the improved performance system using Verilog Hardware Description Language and was implemented on Altera cyclone-II development board.

  19. Vowel Imagery Decoding toward Silent Speech BCI Using Extreme Learning Machine with Electroencephalogram

    PubMed Central

    Kim, Jongin; Park, Hyeong-jun

    2016-01-01

    The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128

  20. Power line identification of millimeter wave radar based on PCA-GS-SVM

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Guifeng; Cheng, Yansheng

    2017-12-01

    Aiming at the problem that the existing detection method can not effectively solve the security of UAV's ultra low altitude flight caused by power line, a power line recognition method based on grid search (GS) and the principal component analysis and support vector machine (PCA-SVM) is proposed. Firstly, the candidate line of Hough transform is reduced by PCA, and the main feature of candidate line is extracted. Then, upport vector machine (SVM is) optimized by grid search method (GS). Finally, using support vector machine classifier optimized parameters to classify the candidate line. MATLAB simulation results show that this method can effectively identify the power line and noise, and has high recognition accuracy and algorithm efficiency.

  1. A hybrid approach to select features and classify diseases based on medical data

    NASA Astrophysics Data System (ADS)

    AbdelLatif, Hisham; Luo, Jiawei

    2018-03-01

    Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms

  2. Identifying saltcedar with hyperspectral data and support vector machines

    USDA-ARS?s Scientific Manuscript database

    Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover t...

  3. Breast cancer risk assessment and diagnosis model using fuzzy support vector machine based expert system

    NASA Astrophysics Data System (ADS)

    Dheeba, J.; Jaya, T.; Singh, N. Albert

    2017-09-01

    Classification of cancerous masses is a challenging task in many computerised detection systems. Cancerous masses are difficult to detect because these masses are obscured and subtle in mammograms. This paper investigates an intelligent classifier - fuzzy support vector machine (FSVM) applied to classify the tissues containing masses on mammograms for breast cancer diagnosis. The algorithm utilises texture features extracted using Laws texture energy measures and a FSVM to classify the suspicious masses. The new FSVM treats every feature as both normal and abnormal samples, but with different membership. By this way, the new FSVM have more generalisation ability to classify the masses in mammograms. The classifier analysed 219 clinical mammograms collected from breast cancer screening laboratory. The tests made on the real clinical mammograms shows that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and Laws texture features, the area under the Receiver operating characteristic curve reached .95, which corresponds to a sensitivity of 93.27% with a specificity of 87.17%. The results suggest that detecting masses using FSVM contribute to computer-aided detection of breast cancer and as a decision support system for radiologists.

  4. Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary Study

    PubMed Central

    Burgansky-Eliash, Zvia; Wollstein, Gadi; Chu, Tianjiao; Ramsey, Joseph D.; Glymour, Clark; Noecker, Robert J.; Ishikawa, Hiroshi; Schuman, Joel S.

    2007-01-01

    Purpose Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Methods Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] ≥ −6 dB) and 20 had advanced glaucoma (MD < −6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. Results The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Conclusions Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. PMID:16249492

  5. The maximum vector-angular margin classifier and its fast training on large datasets using a core vector machine.

    PubMed

    Hu, Wenjun; Chung, Fu-Lai; Wang, Shitong

    2012-03-01

    Although pattern classification has been extensively studied in the past decades, how to effectively solve the corresponding training on large datasets is a problem that still requires particular attention. Many kernelized classification methods, such as SVM and SVDD, can be formulated as the corresponding quadratic programming (QP) problems, but computing the associated kernel matrices requires O(n2)(or even up to O(n3)) computational complexity, where n is the size of the training patterns, which heavily limits the applicability of these methods for large datasets. In this paper, a new classification method called the maximum vector-angular margin classifier (MAMC) is first proposed based on the vector-angular margin to find an optimal vector c in the pattern feature space, and all the testing patterns can be classified in terms of the maximum vector-angular margin ρ, between the vector c and all the training data points. Accordingly, it is proved that the kernelized MAMC can be equivalently formulated as the kernelized Minimum Enclosing Ball (MEB), which leads to a distinctive merit of MAMC, i.e., it has the flexibility of controlling the sum of support vectors like v-SVC and may be extended to a maximum vector-angular margin core vector machine (MAMCVM) by connecting the core vector machine (CVM) method with MAMC such that the corresponding fast training on large datasets can be effectively achieved. Experimental results on artificial and real datasets are provided to validate the power of the proposed methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Ship localization in Santa Barbara Channel using machine learning classifiers.

    PubMed

    Niu, Haiqiang; Ozanich, Emma; Gerstoft, Peter

    2017-11-01

    Machine learning classifiers are shown to outperform conventional matched field processing for a deep water (600 m depth) ocean acoustic-based ship range estimation problem in the Santa Barbara Channel Experiment when limited environmental information is known. Recordings of three different ships of opportunity on a vertical array were used as training and test data for the feed-forward neural network and support vector machine classifiers, demonstrating the feasibility of machine learning methods to locate unseen sources. The classifiers perform well up to 10 km range whereas the conventional matched field processing fails at about 4 km range without accurate environmental information.

  7. Analysis of spectrally resolved autofluorescence images by support vector machines

    NASA Astrophysics Data System (ADS)

    Mateasik, A.; Chorvat, D.; Chorvatova, A.

    2013-02-01

    Spectral analysis of the autofluorescence images of isolated cardiac cells was performed to evaluate and to classify the metabolic state of the cells in respect to the responses to metabolic modulators. The classification was done using machine learning approach based on support vector machine with the set of the automatically calculated features from recorded spectral profile of spectral autofluorescence images. This classification method was compared with the classical approach where the individual spectral components contributing to cell autofluorescence were estimated by spectral analysis, namely by blind source separation using non-negative matrix factorization. Comparison of both methods showed that machine learning can effectively classify the spectrally resolved autofluorescence images without the need of detailed knowledge about the sources of autofluorescence and their spectral properties.

  8. Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjiao; Lai, Xiaoping; Zeng, Qiuyao; Li, Linfang; Lin, Lin; Li, Shaoxin; Liu, Zhiming; Su, Chengkang; Qi, Minni; Guo, Zhouyi

    2018-03-01

    This study aims to classify low-grade and high-grade bladder cancer (BC) patients using serum surface-enhanced Raman scattering (SERS) spectra and support vector machine (SVM) algorithms. Serum SERS spectra are acquired from 88 serum samples with silver nanoparticles as the SERS-active substrate. Diagnostic accuracies of 96.4% and 95.4% are obtained when differentiating the serum SERS spectra of all BC patients versus normal subjects and low-grade versus high-grade BC patients, respectively, with optimal SVM classifier models. This study demonstrates that the serum SERS technique combined with SVM has great potential to noninvasively detect and classify high-grade and low-grade BC patients.

  9. Detection of distorted frames in retinal video-sequences via machine learning

    NASA Astrophysics Data System (ADS)

    Kolar, Radim; Liberdova, Ivana; Odstrcilik, Jan; Hracho, Michal; Tornow, Ralf P.

    2017-07-01

    This paper describes detection of distorted frames in retinal sequences based on set of global features extracted from each frame. The feature vector is consequently used in classification step, in which three types of classifiers are tested. The best classification accuracy 96% has been achieved with support vector machine approach.

  10. Using the Relevance Vector Machine Model Combined with Local Phase Quantization to Predict Protein-Protein Interactions from Protein Sequences.

    PubMed

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming

    2016-01-01

    We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.

  11. SVM Classifier - a comprehensive java interface for support vector machine classification of microarray data.

    PubMed

    Pirooznia, Mehdi; Deng, Youping

    2006-12-12

    Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1-BRCA2 samples with RBF kernel of SVM. We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at http://mfgn.usm.edu/ebl/svm/.

  12. Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image

    PubMed Central

    Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei

    2013-01-01

    Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016

  13. A comparative study of machine learning models for ethnicity classification

    NASA Astrophysics Data System (ADS)

    Trivedi, Advait; Bessie Amali, D. Geraldine

    2017-11-01

    This paper endeavours to adopt a machine learning approach to solve the problem of ethnicity recognition. Ethnicity identification is an important vision problem with its use cases being extended to various domains. Despite the multitude of complexity involved, ethnicity identification comes naturally to humans. This meta information can be leveraged to make several decisions, be it in target marketing or security. With the recent development of intelligent systems a sub module to efficiently capture ethnicity would be useful in several use cases. Several attempts to identify an ideal learning model to represent a multi-ethnic dataset have been recorded. A comparative study of classifiers such as support vector machines, logistic regression has been documented. Experimental results indicate that the logical classifier provides a much accurate classification than the support vector machine.

  14. Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier.

    PubMed

    Amin, Morteza Moradi; Kermani, Saeed; Talebi, Ardeshir; Oghli, Mostafa Ghelich

    2015-01-01

    Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is acquired for convenient detection of Acute lymphoblastic leukemia. Microscopic images are acquired from blood and bone marrow smears of patients with Acute lymphoblastic leukemia and normal cases. After applying image preprocessing, cells nuclei are segmented by k-means algorithm. Then geometric and statistical features are extracted from nuclei and finally these cells are classified to cancerous and noncancerous cells by means of support vector machine classifier with 10-fold cross validation. These cells are also classified into their sub-types by multi-Support vector machine classifier. Classifier is evaluated by these parameters: Sensitivity, specificity, and accuracy which values for cancerous and noncancerous cells 98%, 95%, and 97%, respectively. These parameters are also used for evaluation of cell sub-types which values in mean 84.3%, 97.3%, and 95.6%, respectively. The results show that proposed algorithm could achieve an acceptable performance for the diagnosis of Acute lymphoblastic leukemia and its sub-types and can be used as an assistant diagnostic tool for pathologists.

  15. A support vector machine approach for classification of welding defects from ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  16. A Bag of Concepts Approach for Biomedical Document Classification Using Wikipedia Knowledge.

    PubMed

    Mouriño-García, Marcos A; Pérez-Rodríguez, Roberto; Anido-Rifón, Luis E

    2017-01-01

    The ability to efficiently review the existing literature is essential for the rapid progress of research. This paper describes a classifier of text documents, represented as vectors in spaces of Wikipedia concepts, and analyses its suitability for classification of Spanish biomedical documents when only English documents are available for training. We propose the cross-language concept matching (CLCM) technique, which relies on Wikipedia interlanguage links to convert concept vectors from the Spanish to the English space. The performance of the classifier is compared to several baselines: a classifier based on machine translation, a classifier that represents documents after performing Explicit Semantic Analysis (ESA), and a classifier that uses a domain-specific semantic an- notator (MetaMap). The corpus used for the experiments (Cross-Language UVigoMED) was purpose-built for this study, and it is composed of 12,832 English and 2,184 Spanish MEDLINE abstracts. The performance of our approach is superior to any other state-of-the art classifier in the benchmark, with performance increases up to: 124% over classical machine translation, 332% over MetaMap, and 60 times over the classifier based on ESA. The results have statistical significance, showing p-values < 0.0001. Using knowledge mined from Wikipedia to represent documents as vectors in a space of Wikipedia concepts and translating vectors between language-specific concept spaces, a cross-language classifier can be built, and it performs better than several state-of-the-art classifiers. Schattauer GmbH.

  17. A Bag of Concepts Approach for Biomedical Document Classification Using Wikipedia Knowledge*. Spanish-English Cross-language Case Study.

    PubMed

    Mouriño-García, Marcos A; Pérez-Rodríguez, Roberto; Anido-Rifón, Luis E

    2017-10-26

    The ability to efficiently review the existing literature is essential for the rapid progress of research. This paper describes a classifier of text documents, represented as vectors in spaces of Wikipedia concepts, and analyses its suitability for classification of Spanish biomedical documents when only English documents are available for training. We propose the cross-language concept matching (CLCM) technique, which relies on Wikipedia interlanguage links to convert concept vectors from the Spanish to the English space. The performance of the classifier is compared to several baselines: a classifier based on machine translation, a classifier that represents documents after performing Explicit Semantic Analysis (ESA), and a classifier that uses a domain-specific semantic annotator (MetaMap). The corpus used for the experiments (Cross-Language UVigoMED) was purpose-built for this study, and it is composed of 12,832 English and 2,184 Spanish MEDLINE abstracts. The performance of our approach is superior to any other state-of-the art classifier in the benchmark, with performance increases up to: 124% over classical machine translation, 332% over MetaMap, and 60 times over the classifier based on ESA. The results have statistical significance, showing p-values < 0.0001. Using knowledge mined from Wikipedia to represent documents as vectors in a space of Wikipedia concepts and translating vectors between language-specific concept spaces, a cross-language classifier can be built, and it performs better than several state-of-the-art classifiers.

  18. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    PubMed Central

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a Bayesian-derived probability of glaucoma as an output. These results suggest that these machine learning classifiers show good potential for glaucoma diagnosis. PMID:15790898

  19. Combination of support vector machine, artificial neural network and random forest for improving the classification of convective and stratiform rain using spectral features of SEVIRI data

    NASA Astrophysics Data System (ADS)

    Lazri, Mourad; Ameur, Soltane

    2018-05-01

    A model combining three classifiers, namely Support vector machine, Artificial neural network and Random forest (SAR) is designed for improving the classification of convective and stratiform rain. This model (SAR model) has been trained and then tested on a datasets derived from MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager). Well-classified, mid-classified and misclassified pixels are determined from the combination of three classifiers. Mid-classified and misclassified pixels that are considered unreliable pixels are reclassified by using a novel training of the developed scheme. In this novel training, only the input data corresponding to the pixels in question to are used. This whole process is repeated a second time and applied to mid-classified and misclassified pixels separately. Learning and validation of the developed scheme are realized against co-located data observed by ground radar. The developed scheme outperformed different classifiers used separately and reached 97.40% of overall accuracy of classification.

  20. Estimation of Teacher Practices Based on Text Transcripts of Teacher Speech Using a Support Vector Machine Algorithm

    ERIC Educational Resources Information Center

    Araya, Roberto; Plana, Francisco; Dartnell, Pablo; Soto-Andrade, Jorge; Luci, Gina; Salinas, Elena; Araya, Marylen

    2012-01-01

    Teacher practice is normally assessed by observers who watch classes or videos of classes. Here, we analyse an alternative strategy that uses text transcripts and a support vector machine classifier. For each one of the 710 videos of mathematics classes from the 2005 Chilean National Teacher Assessment Programme, a single 4-minute slice was…

  1. Progressive Classification Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user can halt this reclassification process at any point, thereby obtaining the best possible result for a given amount of computation time. Alternatively, the results can be displayed as they are generated, providing the user with real-time feedback about the current accuracy of classification.

  2. Multi-view L2-SVM and its multi-view core vector machine.

    PubMed

    Huang, Chengquan; Chung, Fu-lai; Wang, Shitong

    2016-03-01

    In this paper, a novel L2-SVM based classifier Multi-view L2-SVM is proposed to address multi-view classification tasks. The proposed Multi-view L2-SVM classifier does not have any bias in its objective function and hence has the flexibility like μ-SVC in the sense that the number of the yielded support vectors can be controlled by a pre-specified parameter. The proposed Multi-view L2-SVM classifier can make full use of the coherence and the difference of different views through imposing the consensus among multiple views to improve the overall classification performance. Besides, based on the generalized core vector machine GCVM, the proposed Multi-view L2-SVM classifier is extended into its GCVM version MvCVM which can realize its fast training on large scale multi-view datasets, with its asymptotic linear time complexity with the sample size and its space complexity independent of the sample size. Our experimental results demonstrated the effectiveness of the proposed Multi-view L2-SVM classifier for small scale multi-view datasets and the proposed MvCVM classifier for large scale multi-view datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Real-data comparison of data mining methods in prediction of diabetes in iran.

    PubMed

    Tapak, Lily; Mahjub, Hossein; Hamidi, Omid; Poorolajal, Jalal

    2013-09-01

    Diabetes is one of the most common non-communicable diseases in developing countries. Early screening and diagnosis play an important role in effective prevention strategies. This study compared two traditional classification methods (logistic regression and Fisher linear discriminant analysis) and four machine-learning classifiers (neural networks, support vector machines, fuzzy c-mean, and random forests) to classify persons with and without diabetes. The data set used in this study included 6,500 subjects from the Iranian national non-communicable diseases risk factors surveillance obtained through a cross-sectional survey. The obtained sample was based on cluster sampling of the Iran population which was conducted in 2005-2009 to assess the prevalence of major non-communicable disease risk factors. Ten risk factors that are commonly associated with diabetes were selected to compare the performance of six classifiers in terms of sensitivity, specificity, total accuracy, and area under the receiver operating characteristic (ROC) curve criteria. Support vector machines showed the highest total accuracy (0.986) as well as area under the ROC (0.979). Also, this method showed high specificity (1.000) and sensitivity (0.820). All other methods produced total accuracy of more than 85%, but for all methods, the sensitivity values were very low (less than 0.350). The results of this study indicate that, in terms of sensitivity, specificity, and overall classification accuracy, the support vector machine model ranks first among all the classifiers tested in the prediction of diabetes. Therefore, this approach is a promising classifier for predicting diabetes, and it should be further investigated for the prediction of other diseases.

  4. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder.

    PubMed

    Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas

    2012-05-01

    Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.

  5. Extraction and classification of 3D objects from volumetric CT data

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.

    2016-05-01

    We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.

  6. Monitoring Hitting Load in Tennis Using Inertial Sensors and Machine Learning.

    PubMed

    Whiteside, David; Cant, Olivia; Connolly, Molly; Reid, Machar

    2017-10-01

    Quantifying external workload is fundamental to training prescription in sport. In tennis, global positioning data are imprecise and fail to capture hitting loads. The current gold standard (manual notation) is time intensive and often not possible given players' heavy travel schedules. To develop an automated stroke-classification system to help quantify hitting load in tennis. Nineteen athletes wore an inertial measurement unit (IMU) on their wrist during 66 video-recorded training sessions. Video footage was manually notated such that known shot type (serve, rally forehand, slice forehand, forehand volley, rally backhand, slice backhand, backhand volley, smash, or false positive) was associated with the corresponding IMU data for 28,582 shots. Six types of machine-learning models were then constructed to classify true shot type from the IMU signals. Across 10-fold cross-validation, a cubic-kernel support vector machine classified binned shots (overhead, forehand, or backhand) with an accuracy of 97.4%. A second cubic-kernel support vector machine achieved 93.2% accuracy when classifying all 9 shot types. With a view to monitoring external load, the combination of miniature inertial sensors and machine learning offers a practical and automated method of quantifying shot counts and discriminating shot types in elite tennis players.

  7. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  8. Human action recognition with group lasso regularized-support vector machine

    NASA Astrophysics Data System (ADS)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  9. Feature selection using a one dimensional naïve Bayes' classifier increases the accuracy of support vector machine classification of CDR3 repertoires.

    PubMed

    Cinelli, Mattia; Sun, Yuxin; Best, Katharine; Heather, James M; Reich-Zeliger, Shlomit; Shifrut, Eric; Friedman, Nir; Shawe-Taylor, John; Chain, Benny

    2017-04-01

    Somatic DNA recombination, the hallmark of vertebrate adaptive immunity, has the potential to generate a vast diversity of antigen receptor sequences. How this diversity captures antigen specificity remains incompletely understood. In this study we use high throughput sequencing to compare the global changes in T cell receptor β chain complementarity determining region 3 (CDR3β) sequences following immunization with ovalbumin administered with complete Freund's adjuvant (CFA) or CFA alone. The CDR3β sequences were deconstructed into short stretches of overlapping contiguous amino acids. The motifs were ranked according to a one-dimensional Bayesian classifier score comparing their frequency in the repertoires of the two immunization classes. The top ranking motifs were selected and used to create feature vectors which were used to train a support vector machine. The support vector machine achieved high classification scores in a leave-one-out validation test reaching >90% in some cases. The study describes a novel two-stage classification strategy combining a one-dimensional Bayesian classifier with a support vector machine. Using this approach we demonstrate that the frequency of a small number of linear motifs three amino acids in length can accurately identify a CD4 T cell response to ovalbumin against a background response to the complex mixture of antigens which characterize Complete Freund's Adjuvant. The sequence data is available at www.ncbi.nlm.nih.gov/sra/?term¼SRP075893 . The Decombinator package is available at github.com/innate2adaptive/Decombinator . The R package e1071 is available at the CRAN repository https://cran.r-project.org/web/packages/e1071/index.html . b.chain@ucl.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  10. Ischemic stroke lesion segmentation in multi-spectral MR images with support vector machine classifiers

    NASA Astrophysics Data System (ADS)

    Maier, Oskar; Wilms, Matthias; von der Gablentz, Janina; Krämer, Ulrike; Handels, Heinz

    2014-03-01

    Automatic segmentation of ischemic stroke lesions in magnetic resonance (MR) images is important in clinical practice and for neuroscientific trials. The key problem is to detect largely inhomogeneous regions of varying sizes, shapes and locations. We present a stroke lesion segmentation method based on local features extracted from multi-spectral MR data that are selected to model a human observer's discrimination criteria. A support vector machine classifier is trained on expert-segmented examples and then used to classify formerly unseen images. Leave-one-out cross validation on eight datasets with lesions of varying appearances is performed, showing our method to compare favourably with other published approaches in terms of accuracy and robustness. Furthermore, we compare a number of feature selectors and closely examine each feature's and MR sequence's contribution.

  11. Breast Cancer Recognition Using a Novel Hybrid Intelligent Method

    PubMed Central

    Addeh, Jalil; Ebrahimzadeh, Ata

    2012-01-01

    Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. This paper presents a novel hybrid intelligent method for recognition of breast cancer tumors. The proposed method includes three main modules: the feature extraction module, the classifier module, and the optimization module. In the feature extraction module, fuzzy features are proposed as the efficient characteristic of the patterns. In the classifier module, because of the promising generalization capability of support vector machines (SVM), a SVM-based classifier is proposed. In support vector machine training, the hyperparameters have very important roles for its recognition accuracy. Therefore, in the optimization module, the bees algorithm (BA) is proposed for selecting appropriate parameters of the classifier. The proposed system is tested on Wisconsin Breast Cancer database and simulation results show that the recommended system has a high accuracy. PMID:23626945

  12. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    PubMed

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  13. Using Support Vector Machines to Automatically Extract Open Water Signatures from POLDER Multi-Angle Data Over Boreal Regions

    NASA Technical Reports Server (NTRS)

    Pierce, J.; Diaz-Barrios, M.; Pinzon, J.; Ustin, S. L.; Shih, P.; Tournois, S.; Zarco-Tejada, P. J.; Vanderbilt, V. C.; Perry, G. L.; Brass, James A. (Technical Monitor)

    2002-01-01

    This study used Support Vector Machines to classify multiangle POLDER data. Boreal wetland ecosystems cover an estimated 90 x 10(exp 6) ha, about 36% of global wetlands, and are a major source of trace gases emissions to the atmosphere. Four to 20 percent of the global emission of methane to the atmosphere comes from wetlands north of 4 degrees N latitude. Large uncertainties in emissions exist because of large spatial and temporal variation in the production and consumption of methane. Accurate knowledge of the areal extent of open water and inundated vegetation is critical to estimating magnitudes of trace gas emissions. Improvements in land cover mapping have been sought using physical-modeling approaches, neural networks, and active microwave, examples that demonstrate the difficulties of separating open water, inundated vegetation and dry upland vegetation. Here we examine the feasibility of using a support vector machine to classify POLDER data representing open water, inundated vegetation and dry upland vegetation.

  14. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.

    PubMed

    Hassanpour, Saeed; Langlotz, Curtis P; Amrhein, Timothy J; Befera, Nicholas T; Lungren, Matthew P

    2017-04-01

    The purpose of this study is to evaluate the performance of a natural language processing (NLP) system in classifying a database of free-text knee MRI reports at two separate academic radiology practices. An NLP system that uses terms and patterns in manually classified narrative knee MRI reports was constructed. The NLP system was trained and tested on expert-classified knee MRI reports from two major health care organizations. Radiology reports were modeled in the training set as vectors, and a support vector machine framework was used to train the classifier. A separate test set from each organization was used to evaluate the performance of the system. We evaluated the performance of the system both within and across organizations. Standard evaluation metrics, such as accuracy, precision, recall, and F1 score (i.e., the weighted average of the precision and recall), and their respective 95% CIs were used to measure the efficacy of our classification system. The accuracy for radiology reports that belonged to the model's clinically significant concept classes after training data from the same institution was good, yielding an F1 score greater than 90% (95% CI, 84.6-97.3%). Performance of the classifier on cross-institutional application without institution-specific training data yielded F1 scores of 77.6% (95% CI, 69.5-85.7%) and 90.2% (95% CI, 84.5-95.9%) at the two organizations studied. The results show excellent accuracy by the NLP machine learning classifier in classifying free-text knee MRI reports, supporting the institution-independent reproducibility of knee MRI report classification. Furthermore, the machine learning classifier performed well on free-text knee MRI reports from another institution. These data support the feasibility of multiinstitutional classification of radiologic imaging text reports with a single machine learning classifier without requiring institution-specific training data.

  15. Application of machine learning on brain cancer multiclass classification

    NASA Astrophysics Data System (ADS)

    Panca, V.; Rustam, Z.

    2017-07-01

    Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.

  16. Research on intrusion detection based on Kohonen network and support vector machine

    NASA Astrophysics Data System (ADS)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  17. Speech sound classification and detection of articulation disorders with support vector machines and wavelets.

    PubMed

    Georgoulas, George; Georgopoulos, Voula C; Stylios, Chrysostomos D

    2006-01-01

    This paper proposes a novel integrated methodology to extract features and classify speech sounds with intent to detect the possible existence of a speech articulation disorder in a speaker. Articulation, in effect, is the specific and characteristic way that an individual produces the speech sounds. A methodology to process the speech signal, extract features and finally classify the signal and detect articulation problems in a speaker is presented. The use of support vector machines (SVMs), for the classification of speech sounds and detection of articulation disorders is introduced. The proposed method is implemented on a data set where different sets of features and different schemes of SVMs are tested leading to satisfactory performance.

  18. A Prototype SSVEP Based Real Time BCI Gaming System

    PubMed Central

    Martišius, Ignas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel. PMID:27051414

  19. A Prototype SSVEP Based Real Time BCI Gaming System.

    PubMed

    Martišius, Ignas; Damaševičius, Robertas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.

  20. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach.

    PubMed

    Hussain, Lal

    2018-06-01

    Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.

  1. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods.

    PubMed

    Polat, Huseyin; Danaei Mehr, Homay; Cetin, Aydin

    2017-04-01

    As Chronic Kidney Disease progresses slowly, early detection and effective treatment are the only cure to reduce the mortality rate. Machine learning techniques are gaining significance in medical diagnosis because of their classification ability with high accuracy rates. The accuracy of classification algorithms depend on the use of correct feature selection algorithms to reduce the dimension of datasets. In this study, Support Vector Machine classification algorithm was used to diagnose Chronic Kidney Disease. To diagnose the Chronic Kidney Disease, two essential types of feature selection methods namely, wrapper and filter approaches were chosen to reduce the dimension of Chronic Kidney Disease dataset. In wrapper approach, classifier subset evaluator with greedy stepwise search engine and wrapper subset evaluator with the Best First search engine were used. In filter approach, correlation feature selection subset evaluator with greedy stepwise search engine and filtered subset evaluator with the Best First search engine were used. The results showed that the Support Vector Machine classifier by using filtered subset evaluator with the Best First search engine feature selection method has higher accuracy rate (98.5%) in the diagnosis of Chronic Kidney Disease compared to other selected methods.

  2. Classification of sodium MRI data of cartilage using machine learning.

    PubMed

    Madelin, Guillaume; Poidevin, Frederick; Makrymallis, Antonios; Regatte, Ravinder R

    2015-11-01

    To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data. © 2014 Wiley Periodicals, Inc.

  3. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    DTIC Science & Technology

    2014-03-27

    intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File

  4. Applying six classifiers to airborne hyperspectral imagery for detecting giant reed

    USDA-ARS?s Scientific Manuscript database

    This study evaluated and compared six different image classifiers, including minimum distance (MD), Mahalanobis distance (MAHD), maximum likelihood (ML), spectral angle mapper (SAM), mixture tuned matched filtering (MTMF) and support vector machine (SVM), for detecting and mapping giant reed (Arundo...

  5. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.

    PubMed

    Jaya, T; Dheeba, J; Singh, N Albert

    2015-12-01

    Diabetic retinopathy is a major cause of vision loss in diabetic patients. Currently, there is a need for making decisions using intelligent computer algorithms when screening a large volume of data. This paper presents an expert decision-making system designed using a fuzzy support vector machine (FSVM) classifier to detect hard exudates in fundus images. The optic discs in the colour fundus images are segmented to avoid false alarms using morphological operations and based on circular Hough transform. To discriminate between the exudates and the non-exudates pixels, colour and texture features are extracted from the images. These features are given as input to the FSVM classifier. The classifier analysed 200 retinal images collected from diabetic retinopathy screening programmes. The tests made on the retinal images show that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and features sets, the area under the receiver operating characteristic curve reached 0.9606, which corresponds to a sensitivity of 94.1% with a specificity of 90.0%. The results suggest that detecting hard exudates using FSVM contribute to computer-assisted detection of diabetic retinopathy and as a decision support system for ophthalmologists.

  6. Lamb wave based damage detection using Matching Pursuit and Support Vector Machine classifier

    NASA Astrophysics Data System (ADS)

    Agarwal, Sushant; Mitra, Mira

    2014-03-01

    In this paper, the suitability of using Matching Pursuit (MP) and Support Vector Machine (SVM) for damage detection using Lamb wave response of thin aluminium plate is explored. Lamb wave response of thin aluminium plate with or without damage is simulated using finite element. Simulations are carried out at different frequencies for various kinds of damage. The procedure is divided into two parts - signal processing and machine learning. Firstly, MP is used for denoising and to maintain the sparsity of the dataset. In this study, MP is extended by using a combination of time-frequency functions as the dictionary and is deployed in two stages. Selection of a particular type of atoms lead to extraction of important features while maintaining the sparsity of the waveform. The resultant waveform is then passed as input data for SVM classifier. SVM is used to detect the location of the potential damage from the reduced data. The study demonstrates that SVM is a robust classifier in presence of noise and more efficient as compared to Artificial Neural Network (ANN). Out-of-sample data is used for the validation of the trained and tested classifier. Trained classifiers are found successful in detection of the damage with more than 95% detection rate.

  7. Recognition and Classification of Road Condition on the Basis of Friction Force by Using a Mobile Robot

    NASA Astrophysics Data System (ADS)

    Watanabe, Tatsuhito; Katsura, Seiichiro

    A person operating a mobile robot in a remote environment receives realistic visual feedback about the condition of the road on which the robot is moving. The categorization of the road condition is necessary to evaluate the conditions for safe and comfortable driving. For this purpose, the mobile robot should be capable of recognizing and classifying the condition of the road surfaces. This paper proposes a method for recognizing the type of road surfaces on the basis of the friction between the mobile robot and the road surfaces. This friction is estimated by a disturbance observer, and a support vector machine is used to classify the surfaces. The support vector machine identifies the type of the road surface using feature vector, which is determined using the arithmetic average and variance derived from the torque values. Further, these feature vectors are mapped onto a higher dimensional space by using a kernel function. The validity of the proposed method is confirmed by experimental results.

  8. Impact of corpus domain for sentiment classification: An evaluation study using supervised machine learning techniques

    NASA Astrophysics Data System (ADS)

    Karsi, Redouane; Zaim, Mounia; El Alami, Jamila

    2017-07-01

    Thanks to the development of the internet, a large community now has the possibility to communicate and express its opinions and preferences through multiple media such as blogs, forums, social networks and e-commerce sites. Today, it becomes clearer that opinions published on the web are a very valuable source for decision-making, so a rapidly growing field of research called “sentiment analysis” is born to address the problem of automatically determining the polarity (Positive, negative, neutral,…) of textual opinions. People expressing themselves in a particular domain often use specific domain language expressions, thus, building a classifier, which performs well in different domains is a challenging problem. The purpose of this paper is to evaluate the impact of domain for sentiment classification when using machine learning techniques. In our study three popular machine learning techniques: Support Vector Machines (SVM), Naive Bayes and K nearest neighbors(KNN) were applied on datasets collected from different domains. Experimental results show that Support Vector Machines outperforms other classifiers in all domains, since it achieved at least 74.75% accuracy with a standard deviation of 4,08.

  9. Applying a machine learning model using a locally preserving projection based feature regeneration algorithm to predict breast cancer risk

    NASA Astrophysics Data System (ADS)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin

    2018-03-01

    Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p < 0.05) and odds ratio was 4.60 with a 95% confidence interval of [3.16, 6.70]. Study demonstrated that this new LPP-based feature regeneration approach enabled to produce an optimal feature vector and yield improved performance in assisting to predict risk of women having breast cancer detected in the next subsequent mammography screening.

  10. Improvements on ν-Twin Support Vector Machine.

    PubMed

    Khemchandani, Reshma; Saigal, Pooja; Chandra, Suresh

    2016-07-01

    In this paper, we propose two novel binary classifiers termed as "Improvements on ν-Twin Support Vector Machine: Iν-TWSVM and Iν-TWSVM (Fast)" that are motivated by ν-Twin Support Vector Machine (ν-TWSVM). Similar to ν-TWSVM, Iν-TWSVM determines two nonparallel hyperplanes such that they are closer to their respective classes and are at least ρ distance away from the other class. The significant advantage of Iν-TWSVM over ν-TWSVM is that Iν-TWSVM solves one smaller-sized Quadratic Programming Problem (QPP) and one Unconstrained Minimization Problem (UMP); as compared to solving two related QPPs in ν-TWSVM. Further, Iν-TWSVM (Fast) avoids solving a smaller sized QPP and transforms it as a unimodal function, which can be solved using line search methods and similar to Iν-TWSVM, the other problem is solved as a UMP. Due to their novel formulation, the proposed classifiers are faster than ν-TWSVM and have comparable generalization ability. Iν-TWSVM also implements structural risk minimization (SRM) principle by introducing a regularization term, along with minimizing the empirical risk. The other properties of Iν-TWSVM, related to support vectors (SVs), are similar to that of ν-TWSVM. To test the efficacy of the proposed method, experiments have been conducted on a wide range of UCI and a skewed variation of NDC datasets. We have also given the application of Iν-TWSVM as a binary classifier for pixel classification of color images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Support vector machines-based fault diagnosis for turbo-pump rotor

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Fa; Chu, Fu-Lei

    2006-05-01

    Most artificial intelligence methods used in fault diagnosis are based on empirical risk minimisation principle and have poor generalisation when fault samples are few. Support vector machines (SVM) is a new general machine-learning tool based on structural risk minimisation principle that exhibits good generalisation even when fault samples are few. Fault diagnosis based on SVM is discussed. Since basic SVM is originally designed for two-class classification, while most of fault diagnosis problems are multi-class cases, a new multi-class classification of SVM named 'one to others' algorithm is presented to solve the multi-class recognition problems. It is a binary tree classifier composed of several two-class classifiers organised by fault priority, which is simple, and has little repeated training amount, and the rate of training and recognition is expedited. The effectiveness of the method is verified by the application to the fault diagnosis for turbo pump rotor.

  13. Predicting Flavonoid UGT Regioselectivity

    PubMed Central

    Jackson, Rhydon; Knisley, Debra; McIntosh, Cecilia; Pfeiffer, Phillip

    2011-01-01

    Machine learning was applied to a challenging and biologically significant protein classification problem: the prediction of avonoid UGT acceptor regioselectivity from primary sequence. Novel indices characterizing graphical models of residues were proposed and found to be widely distributed among existing amino acid indices and to cluster residues appropriately. UGT subsequences biochemically linked to regioselectivity were modeled as sets of index sequences. Several learning techniques incorporating these UGT models were compared with classifications based on standard sequence alignment scores. These techniques included an application of time series distance functions to protein classification. Time series distances defined on the index sequences were used in nearest neighbor and support vector machine classifiers. Additionally, Bayesian neural network classifiers were applied to the index sequences. The experiments identified improvements over the nearest neighbor and support vector machine classifications relying on standard alignment similarity scores, as well as strong correlations between specific subsequences and regioselectivities. PMID:21747849

  14. Discontinuity Detection in the Shield Metal Arc Welding Process

    PubMed Central

    Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros

    2017-01-01

    This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors—a microphone and piezoelectric—that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system’s high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries. PMID:28489045

  15. Discontinuity Detection in the Shield Metal Arc Welding Process.

    PubMed

    Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros

    2017-05-10

    This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors-a microphone and piezoelectric-that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system's high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries.

  16. Activity Recognition in Egocentric video using SVM, kNN and Combined SVMkNN Classifiers

    NASA Astrophysics Data System (ADS)

    Sanal Kumar, K. P.; Bhavani, R., Dr.

    2017-08-01

    Egocentric vision is a unique perspective in computer vision which is human centric. The recognition of egocentric actions is a challenging task which helps in assisting elderly people, disabled patients and so on. In this work, life logging activity videos are taken as input. There are 2 categories, first one is the top level and second one is second level. Here, the recognition is done using the features like Histogram of Oriented Gradients (HOG), Motion Boundary Histogram (MBH) and Trajectory. The features are fused together and it acts as a single feature. The extracted features are reduced using Principal Component Analysis (PCA). The features that are reduced are provided as input to the classifiers like Support Vector Machine (SVM), k nearest neighbor (kNN) and combined Support Vector Machine (SVM) and k Nearest Neighbor (kNN) (combined SVMkNN). These classifiers are evaluated and the combined SVMkNN provided better results than other classifiers in the literature.

  17. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  18. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    PubMed Central

    2011-01-01

    Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043

  19. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    NASA Astrophysics Data System (ADS)

    Wardaya, P. D.

    2014-02-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result.

  20. Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine

    PubMed Central

    Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian

    2013-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380

  1. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.

    PubMed

    Faradji, Farhad; Ward, Rabab K; Birch, Gary E

    2009-06-15

    The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.

  2. Feature selection using a one dimensional naïve Bayes’ classifier increases the accuracy of support vector machine classification of CDR3 repertoires

    PubMed Central

    Cinelli, Mattia; Sun, , Yuxin; Best, Katharine; Heather, James M.; Reich-Zeliger, Shlomit; Shifrut, Eric; Friedman, Nir; Shawe-Taylor, John; Chain, Benny

    2017-01-01

    Abstract Motivation: Somatic DNA recombination, the hallmark of vertebrate adaptive immunity, has the potential to generate a vast diversity of antigen receptor sequences. How this diversity captures antigen specificity remains incompletely understood. In this study we use high throughput sequencing to compare the global changes in T cell receptor β chain complementarity determining region 3 (CDR3β) sequences following immunization with ovalbumin administered with complete Freund’s adjuvant (CFA) or CFA alone. Results: The CDR3β sequences were deconstructed into short stretches of overlapping contiguous amino acids. The motifs were ranked according to a one-dimensional Bayesian classifier score comparing their frequency in the repertoires of the two immunization classes. The top ranking motifs were selected and used to create feature vectors which were used to train a support vector machine. The support vector machine achieved high classification scores in a leave-one-out validation test reaching >90% in some cases. Summary: The study describes a novel two-stage classification strategy combining a one-dimensional Bayesian classifier with a support vector machine. Using this approach we demonstrate that the frequency of a small number of linear motifs three amino acids in length can accurately identify a CD4 T cell response to ovalbumin against a background response to the complex mixture of antigens which characterize Complete Freund’s Adjuvant. Availability and implementation: The sequence data is available at www.ncbi.nlm.nih.gov/sra/?term¼SRP075893. The Decombinator package is available at github.com/innate2adaptive/Decombinator. The R package e1071 is available at the CRAN repository https://cran.r-project.org/web/packages/e1071/index.html. Contact: b.chain@ucl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073756

  3. On the use of feature selection to improve the detection of sea oil spills in SAR images

    NASA Astrophysics Data System (ADS)

    Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo

    2017-03-01

    Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.

  4. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2012-09-30

    floor 1176 Howell St Newport RI 02842 phone: (401) 832-5749 fax: (401) 832-4441 email: David.Moretti@navy.mil Steve W. Martin SPAWAR...multiclass support vector machine (SVM) classifier was previously developed ( Jarvis et al. 2008). This classifier both detects and classifies echolocation...whales. Here Moretti’s group, especially S. Jarvis , will improve the SVM classifier by resolving confusion between species whose clicks overlap in

  5. Machine Learning in Intrusion Detection

    DTIC Science & Technology

    2005-07-01

    machine learning tasks. Anomaly detection provides the core technology for a broad spectrum of security-centric applications. In this dissertation, we examine various aspects of anomaly based intrusion detection in computer security. First, we present a new approach to learn program behavior for intrusion detection. Text categorization techniques are adopted to convert each process to a vector and calculate the similarity between two program activities. Then the k-nearest neighbor classifier is employed to classify program behavior as normal or intrusive. We demonstrate

  6. Anytime query-tuned kernel machine classifiers via Cholesky factorization

    NASA Technical Reports Server (NTRS)

    DeCoste, D.

    2002-01-01

    We recently demonstrated 2 to 64-fold query-time speedups of Support Vector Machine and Kernel Fisher classifiers via a new computational geometry method for anytime output bounds (DeCoste,2002). This new paper refines our approach in two key ways. First, we introduce a simple linear algebra formulation based on Cholesky factorization, yielding simpler equations and lower computational overhead. Second, this new formulation suggests new methods for achieving additional speedups, including tuning on query samples. We demonstrate effectiveness on benchmark datasets.

  7. Machine Learning for Biological Trajectory Classification Applications

    NASA Technical Reports Server (NTRS)

    Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros

    2002-01-01

    Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.

  8. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma.

    PubMed

    Kunimatsu, Akira; Kunimatsu, Natsuko; Yasaka, Koichiro; Akai, Hiroyuki; Kamiya, Kouhei; Watadani, Takeyuki; Mori, Harushi; Abe, Osamu

    2018-05-16

    Although advanced MRI techniques are increasingly available, imaging differentiation between glioblastoma and primary central nervous system lymphoma (PCNSL) is sometimes confusing. We aimed to evaluate the performance of image classification by support vector machine, a method of traditional machine learning, using texture features computed from contrast-enhanced T 1 -weighted images. This retrospective study on preoperative brain tumor MRI included 76 consecutives, initially treated patients with glioblastoma (n = 55) or PCNSL (n = 21) from one institution, consisting of independent training group (n = 60: 44 glioblastomas and 16 PCNSLs) and test group (n = 16: 11 glioblastomas and 5 PCNSLs) sequentially separated by time periods. A total set of 67 texture features was computed on routine contrast-enhanced T 1 -weighted images of the training group, and the top four most discriminating features were selected as input variables to train support vector machine classifiers. These features were then evaluated on the test group with subsequent image classification. The area under the receiver operating characteristic curves on the training data was calculated at 0.99 (95% confidence interval [CI]: 0.96-1.00) for the classifier with a Gaussian kernel and 0.87 (95% CI: 0.77-0.95) for the classifier with a linear kernel. On the test data, both of the classifiers showed prediction accuracy of 75% (12/16) of the test images. Although further improvement is needed, our preliminary results suggest that machine learning-based image classification may provide complementary diagnostic information on routine brain MRI.

  9. Applications of Support Vector Machines In Chemo And Bioinformatics

    NASA Astrophysics Data System (ADS)

    Jayaraman, V. K.; Sundararajan, V.

    2010-10-01

    Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.

  10. Using Neural Networks to Classify Digitized Images of Galaxies

    NASA Astrophysics Data System (ADS)

    Goderya, S. N.; McGuire, P. C.

    2000-12-01

    Automated classification of Galaxies into Hubble types is of paramount importance to study the large scale structure of the Universe, particularly as survey projects like the Sloan Digital Sky Survey complete their data acquisition of one million galaxies. At present it is not possible to find robust and efficient artificial intelligence based galaxy classifiers. In this study we will summarize progress made in the development of automated galaxy classifiers using neural networks as machine learning tools. We explore the Bayesian linear algorithm, the higher order probabilistic network, the multilayer perceptron neural network and Support Vector Machine Classifier. The performance of any machine classifier is dependant on the quality of the parameters that characterize the different groups of galaxies. Our effort is to develop geometric and invariant moment based parameters as input to the machine classifiers instead of the raw pixel data. Such an approach reduces the dimensionality of the classifier considerably, and removes the effects of scaling and rotation, and makes it easier to solve for the unknown parameters in the galaxy classifier. To judge the quality of training and classification we develop the concept of Mathews coefficients for the galaxy classification community. Mathews coefficients are single numbers that quantify classifier performance even with unequal prior probabilities of the classes.

  11. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  12. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morshed, Nader; Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Echols, Nathaniel, E-mail: nechols@lbl.gov

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here,more » the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  13. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review.

    PubMed

    Marucci-Wellman, Helen R; Corns, Helen L; Lehto, Mark R

    2017-01-01

    Injury narratives are now available real time and include useful information for injury surveillance and prevention. However, manual classification of the cause or events leading to injury found in large batches of narratives, such as workers compensation claims databases, can be prohibitive. In this study we compare the utility of four machine learning algorithms (Naïve Bayes, Single word and Bi-gram models, Support Vector Machine and Logistic Regression) for classifying narratives into Bureau of Labor Statistics Occupational Injury and Illness event leading to injury classifications for a large workers compensation database. These algorithms are known to do well classifying narrative text and are fairly easy to implement with off-the-shelf software packages such as Python. We propose human-machine learning ensemble approaches which maximize the power and accuracy of the algorithms for machine-assigned codes and allow for strategic filtering of rare, emerging or ambiguous narratives for manual review. We compare human-machine approaches based on filtering on the prediction strength of the classifier vs. agreement between algorithms. Regularized Logistic Regression (LR) was the best performing algorithm alone. Using this algorithm and filtering out the bottom 30% of predictions for manual review resulted in high accuracy (overall sensitivity/positive predictive value of 0.89) of the final machine-human coded dataset. The best pairings of algorithms included Naïve Bayes with Support Vector Machine whereby the triple ensemble NB SW =NB BI-GRAM =SVM had very high performance (0.93 overall sensitivity/positive predictive value and high accuracy (i.e. high sensitivity and positive predictive values)) across both large and small categories leaving 41% of the narratives for manual review. Integrating LR into this ensemble mix improved performance only slightly. For large administrative datasets we propose incorporation of methods based on human-machine pairings such as we have done here, utilizing readily-available off-the-shelf machine learning techniques and resulting in only a fraction of narratives that require manual review. Human-machine ensemble methods are likely to improve performance over total manual coding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2013-09-30

    N0001411WX21394 Steve W. Martin SPAWAR Systems Center Pacific 53366 Front St. San Diego, CA 92152-6551 phone: (619) 553-9882 email: Steve.W.Martin...multiclass support vector machine (SVM) classifier was previously developed ( Jarvis et al. 2008). This classifier both detects and classifies echolocation...whales. Here Moretti’s group, particularly S. Jarvis , will improve the SVM classifier by resolving confusion between species whose clicks overlap in

  15. Predicting healthcare associated infections using patients' experiences

    NASA Astrophysics Data System (ADS)

    Pratt, Michael A.; Chu, Henry

    2016-05-01

    Healthcare associated infections (HAI) are a major threat to patient safety and are costly to health systems. Our goal is to predict the HAI performance of a hospital using the patients' experience responses as input. We use four classifiers, viz. random forest, naive Bayes, artificial feedforward neural networks, and the support vector machine, to perform the prediction of six types of HAI. The six types include blood stream, urinary tract, surgical site, and intestinal infections. Experiments show that the random forest and support vector machine perform well across the six types of HAI.

  16. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Gender classification of running subjects using full-body kinematics

    NASA Astrophysics Data System (ADS)

    Williams, Christina M.; Flora, Jeffrey B.; Iftekharuddin, Khan M.

    2016-05-01

    This paper proposes novel automated gender classification of subjects while engaged in running activity. The machine learning techniques include preprocessing steps using principal component analysis followed by classification with linear discriminant analysis, and nonlinear support vector machines, and decision-stump with AdaBoost. The dataset consists of 49 subjects (25 males, 24 females, 2 trials each) all equipped with approximately 80 retroreflective markers. The trials are reflective of the subject's entire body moving unrestrained through a capture volume at a self-selected running speed, thus producing highly realistic data. The classification accuracy using leave-one-out cross validation for the 49 subjects is improved from 66.33% using linear discriminant analysis to 86.74% using the nonlinear support vector machine. Results are further improved to 87.76% by means of implementing a nonlinear decision stump with AdaBoost classifier. The experimental findings suggest that the linear classification approaches are inadequate in classifying gender for a large dataset with subjects running in a moderately uninhibited environment.

  18. Color image segmentation with support vector machines: applications to road signs detection.

    PubMed

    Cyganek, Bogusław

    2008-08-01

    In this paper we propose efficient color segmentation method which is based on the Support Vector Machine classifier operating in a one-class mode. The method has been developed especially for the road signs recognition system, although it can be used in other applications. The main advantage of the proposed method comes from the fact that the segmentation of characteristic colors is performed not in the original but in the higher dimensional feature space. By this a better data encapsulation with a linear hypersphere can be usually achieved. Moreover, the classifier does not try to capture the whole distribution of the input data which is often difficult to achieve. Instead, the characteristic data samples, called support vectors, are selected which allow construction of the tightest hypersphere that encloses majority of the input data. Then classification of a test data simply consists in a measurement of its distance to a centre of the found hypersphere. The experimental results show high accuracy and speed of the proposed method.

  19. Support vector machine for the diagnosis of malignant mesothelioma

    NASA Astrophysics Data System (ADS)

    Ushasukhanya, S.; Nithyakalyani, A.; Sivakumar, V.

    2018-04-01

    Harmful mesothelioma is an illness in which threatening (malignancy) cells shape in the covering of the trunk or stomach area. Being presented to asbestos can influence the danger of threatening mesothelioma. Signs and side effects of threatening mesothelioma incorporate shortness of breath and agony under the rib confine. Tests that inspect within the trunk and belly are utilized to recognize (find) and analyse harmful mesothelioma. Certain elements influence forecast (shot of recuperation) and treatment choices. In this review, Support vector machine (SVM) classifiers were utilized for Mesothelioma sickness conclusion. SVM output is contrasted by concentrating on Mesothelioma’s sickness and findings by utilizing similar information set. The support vector machine algorithm gives 92.5% precision acquired by means of 3-overlap cross-approval. The Mesothelioma illness dataset were taken from an organization reports from Turkey.

  20. Generative Models for Similarity-based Classification

    DTIC Science & Technology

    2007-01-01

    NC), local nearest centroid (local NC), k-nearest neighbors ( kNN ), and condensed nearest neighbors (CNN) are all similarity-based classifiers which...vector machine to the k nearest neighbors of the test sample [80]. The SVM- KNN method was developed to address the robustness and dimensionality...concerns that afflict nearest neighbors and SVMs. Similarly to the nearest-means classifier, the SVM- KNN is a hybrid local and global classifier developed

  1. Prediction of cell penetrating peptides by support vector machines.

    PubMed

    Sanders, William S; Johnston, C Ian; Bridges, Susan M; Burgess, Shane C; Willeford, Kenneth O

    2011-07-01

    Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.

  2. Decision support system for diabetic retinopathy using discrete wavelet transform.

    PubMed

    Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V

    2013-03-01

    Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis.

  3. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.

    PubMed

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Li, Li-Ping; Huang, De-Shuang; Yan, Gui-Ying; Nie, Ru; Huang, Yu-An

    2017-04-04

    Identification of protein-protein interactions (PPIs) is of critical importance for deciphering the underlying mechanisms of almost all biological processes of cell and providing great insight into the study of human disease. Although much effort has been devoted to identifying PPIs from various organisms, existing high-throughput biological techniques are time-consuming, expensive, and have high false positive and negative results. Thus it is highly urgent to develop in silico methods to predict PPIs efficiently and accurately in this post genomic era. In this article, we report a novel computational model combining our newly developed discriminative vector machine classifier (DVM) and an improved Weber local descriptor (IWLD) for the prediction of PPIs. Two components, differential excitation and orientation, are exploited to build evolutionary features for each protein sequence. The main characteristics of the proposed method lies in introducing an effective feature descriptor IWLD which can capture highly discriminative evolutionary information from position-specific scoring matrixes (PSSM) of protein data, and employing the powerful and robust DVM classifier. When applying the proposed method to Yeast and H. pylori data sets, we obtained excellent prediction accuracies as high as 96.52% and 91.80%, respectively, which are significantly better than the previous methods. Extensive experiments were then performed for predicting cross-species PPIs and the predictive results were also pretty promising. To further validate the performance of the proposed method, we compared it with the state-of-the-art support vector machine (SVM) classifier on Human data set. The experimental results obtained indicate that our method is highly effective for PPIs prediction and can be taken as a supplementary tool for future proteomics research.

  4. Comparative Analysis of Automatic Exudate Detection between Machine Learning and Traditional Approaches

    NASA Astrophysics Data System (ADS)

    Sopharak, Akara; Uyyanonvara, Bunyarit; Barman, Sarah; Williamson, Thomas

    To prevent blindness from diabetic retinopathy, periodic screening and early diagnosis are neccessary. Due to lack of expert ophthalmologists in rural area, automated early exudate (one of visible sign of diabetic retinopathy) detection could help to reduce the number of blindness in diabetic patients. Traditional automatic exudate detection methods are based on specific parameter configuration, while the machine learning approaches which seems more flexible may be computationally high cost. A comparative analysis of traditional and machine learning of exudates detection, namely, mathematical morphology, fuzzy c-means clustering, naive Bayesian classifier, Support Vector Machine and Nearest Neighbor classifier are presented. Detected exudates are validated with expert ophthalmologists' hand-drawn ground-truths. The sensitivity, specificity, precision, accuracy and time complexity of each method are also compared.

  5. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data

    PubMed Central

    Hepworth, Philip J.; Nefedov, Alexey V.; Muchnik, Ilya B.; Morgan, Kenton L.

    2012-01-01

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide. PMID:22319115

  6. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    PubMed

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  7. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  8. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  9. Evaluation and recognition of skin images with aging by support vector machine

    NASA Astrophysics Data System (ADS)

    Hu, Liangjun; Wu, Shulian; Li, Hui

    2016-10-01

    Aging is a very important issue not only in dermatology, but also cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The evaluation and classification of aging is an important issue with the medical cosmetology workers nowadays. The purpose of this study is to assess chronological-age-related and photo-age-related of human skin. The texture features of skin surface skin, such as coarseness, contrast were analyzed by Fourier transform and Tamura. And the aim of it is to detect the object hidden in the skin texture in difference aging skin. Then, Support vector machine was applied to train the texture feature. The different age's states were distinguished by the support vector machine (SVM) classifier. The results help us to further understand the mechanism of different aging skin from texture feature and help us to distinguish the different aging states.

  10. Scattering transform and LSPTSVM based fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Ma, Shangjun; Cheng, Bo; Shang, Zhaowei; Liu, Geng

    2018-05-01

    This paper proposes an algorithm for fault diagnosis of rotating machinery to overcome the shortcomings of classical techniques which are noise sensitive in feature extraction and time consuming for training. Based on the scattering transform and the least squares recursive projection twin support vector machine (LSPTSVM), the method has the advantages of high efficiency and insensitivity for noise signal. Using the energy of the scattering coefficients in each sub-band, the features of the vibration signals are obtained. Then, an LSPTSVM classifier is used for fault diagnosis. The new method is compared with other common methods including the proximal support vector machine, the standard support vector machine and multi-scale theory by using fault data for two systems, a motor bearing and a gear box. The results show that the new method proposed in this study is more effective for fault diagnosis of rotating machinery.

  11. Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhong-bao, Liu; Wen-ai, Song; Jing, Zhang; Wen-juan, Zhao

    2017-06-01

    Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher's Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.

  12. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Implementation of support vector machine for classification of speech marked hijaiyah letters based on Mel frequency cepstrum coefficient feature extraction

    NASA Astrophysics Data System (ADS)

    Adhi Pradana, Wisnu; Adiwijaya; Novia Wisesty, Untari

    2018-03-01

    Support Vector Machine or commonly called SVM is one method that can be used to process the classification of a data. SVM classifies data from 2 different classes with hyperplane. In this study, the system was built using SVM to develop Arabic Speech Recognition. In the development of the system, there are 2 kinds of speakers that have been tested that is dependent speakers and independent speakers. The results from this system is an accuracy of 85.32% for speaker dependent and 61.16% for independent speakers.

  14. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning

    PubMed Central

    Roh, Jongryun; Park, Hyeong-jun; Lee, Kwang Jin; Hyeong, Joonho; Kim, Sayup

    2018-01-01

    Sitting posture monitoring systems (SPMSs) help assess the posture of a seated person in real-time and improve sitting posture. To date, SPMS studies reported have required many sensors mounted on the backrest plate and seat plate of a chair. The present study, therefore, developed a system that measures a total of six sitting postures including the posture that applied a load to the backrest plate, with four load cells mounted only on the seat plate. Various machine learning algorithms were applied to the body weight ratio measured by the developed SPMS to identify the method that most accurately classified the actual sitting posture of the seated person. After classifying the sitting postures using several classifiers, average and maximum classification rates of 97.20% and 97.94%, respectively, were obtained from nine subjects with a support vector machine using the radial basis function kernel; the results obtained by this classifier showed a statistically significant difference from the results of multiple classifications using other classifiers. The proposed SPMS was able to classify six sitting postures including the posture with loading on the backrest and showed the possibility of classifying the sitting posture even though the number of sensors is reduced. PMID:29329261

  15. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry.

    PubMed

    Silva, Fabrício R; Vidotti, Vanessa G; Cremasco, Fernanda; Dias, Marcelo; Gomi, Edson S; Costa, Vital P

    2013-01-01

    To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

  16. Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach

    NASA Astrophysics Data System (ADS)

    Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios

    A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.

  17. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  18. Support Vector Machines to improve physiologic hot flash measures: application to the ambulatory setting.

    PubMed

    Thurston, Rebecca C; Hernandez, Javier; Del Rio, Jose M; De La Torre, Fernando

    2011-07-01

    Most midlife women have hot flashes. The conventional criterion (≥2 μmho rise/30 s) for classifying hot flashes physiologically has shown poor performance. We improved this performance in the laboratory with Support Vector Machines (SVMs), a pattern classification method. We aimed to compare conventional to SVM methods to classify hot flashes in the ambulatory setting. Thirty-one women with hot flashes underwent 24 h of ambulatory sternal skin conductance monitoring. Hot flashes were quantified with conventional (≥2 μmho/30 s) and SVM methods. Conventional methods had low sensitivity (sensitivity=.57, specificity=.98, positive predictive value (PPV)=.91, negative predictive value (NPV)=.90, F1=.60), with performance lower with higher body mass index (BMI). SVMs improved this performance (sensitivity=.87, specificity=.97, PPV=.90, NPV=.96, F1=.88) and reduced BMI variation. SVMs can improve ambulatory physiologic hot flash measures. Copyright © 2010 Society for Psychophysiological Research.

  19. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  20. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery

    PubMed Central

    Thanh Noi, Phan; Kappas, Martin

    2017-01-01

    In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification using Sentinel-2 image data. An area of 30 × 30 km2 within the Red River Delta of Vietnam with six land use/cover types was classified using 14 different training sample sizes, including balanced and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA (over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or representing an area of approximately 0.25% of the total study area. The high accuracy was achieved with both imbalanced and balanced datasets. PMID:29271909

  1. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery.

    PubMed

    Thanh Noi, Phan; Kappas, Martin

    2017-12-22

    In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification using Sentinel-2 image data. An area of 30 × 30 km² within the Red River Delta of Vietnam with six land use/cover types was classified using 14 different training sample sizes, including balanced and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA (over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or representing an area of approximately 0.25% of the total study area. The high accuracy was achieved with both imbalanced and balanced datasets.

  2. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  3. The construction of support vector machine classifier using the firefly algorithm.

    PubMed

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.

  4. The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

    PubMed Central

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511

  5. Support Vector Machines for Differential Prediction

    PubMed Central

    Kuusisto, Finn; Santos Costa, Vitor; Nassif, Houssam; Burnside, Elizabeth; Page, David; Shavlik, Jude

    2015-01-01

    Machine learning is continually being applied to a growing set of fields, including the social sciences, business, and medicine. Some fields present problems that are not easily addressed using standard machine learning approaches and, in particular, there is growing interest in differential prediction. In this type of task we are interested in producing a classifier that specifically characterizes a subgroup of interest by maximizing the difference in predictive performance for some outcome between subgroups in a population. We discuss adapting maximum margin classifiers for differential prediction. We first introduce multiple approaches that do not affect the key properties of maximum margin classifiers, but which also do not directly attempt to optimize a standard measure of differential prediction. We next propose a model that directly optimizes a standard measure in this field, the uplift measure. We evaluate our models on real data from two medical applications and show excellent results. PMID:26158123

  6. Support Vector Machines for Differential Prediction.

    PubMed

    Kuusisto, Finn; Santos Costa, Vitor; Nassif, Houssam; Burnside, Elizabeth; Page, David; Shavlik, Jude

    Machine learning is continually being applied to a growing set of fields, including the social sciences, business, and medicine. Some fields present problems that are not easily addressed using standard machine learning approaches and, in particular, there is growing interest in differential prediction . In this type of task we are interested in producing a classifier that specifically characterizes a subgroup of interest by maximizing the difference in predictive performance for some outcome between subgroups in a population. We discuss adapting maximum margin classifiers for differential prediction. We first introduce multiple approaches that do not affect the key properties of maximum margin classifiers, but which also do not directly attempt to optimize a standard measure of differential prediction. We next propose a model that directly optimizes a standard measure in this field, the uplift measure. We evaluate our models on real data from two medical applications and show excellent results.

  7. An Improved TA-SVM Method Without Matrix Inversion and Its Fast Implementation for Nonstationary Datasets.

    PubMed

    Shi, Yingzhong; Chung, Fu-Lai; Wang, Shitong

    2015-09-01

    Recently, a time-adaptive support vector machine (TA-SVM) is proposed for handling nonstationary datasets. While attractive performance has been reported and the new classifier is distinctive in simultaneously solving several SVM subclassifiers locally and globally by using an elegant SVM formulation in an alternative kernel space, the coupling of subclassifiers brings in the computation of matrix inversion, thus resulting to suffer from high computational burden in large nonstationary dataset applications. To overcome this shortcoming, an improved TA-SVM (ITA-SVM) is proposed using a common vector shared by all the SVM subclassifiers involved. ITA-SVM not only keeps an SVM formulation, but also avoids the computation of matrix inversion. Thus, we can realize its fast version, that is, improved time-adaptive core vector machine (ITA-CVM) for large nonstationary datasets by using the CVM technique. ITA-CVM has the merit of asymptotic linear time complexity for large nonstationary datasets as well as inherits the advantage of TA-SVM. The effectiveness of the proposed classifiers ITA-SVM and ITA-CVM is also experimentally confirmed.

  8. A comparison of graph- and kernel-based -omics data integration algorithms for classifying complex traits.

    PubMed

    Yan, Kang K; Zhao, Hongyu; Pang, Herbert

    2017-12-06

    High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.

  9. Adiabatic Quantum Anomaly Detection and Machine Learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen; Lidar, Daniel

    2012-02-01

    We present methods of anomaly detection and machine learning using adiabatic quantum computing. The machine learning algorithm is a boosting approach which seeks to optimally combine somewhat accurate classification functions to create a unified classifier which is much more accurate than its components. This algorithm then becomes the first part of the larger anomaly detection algorithm. In the anomaly detection routine, we first use adiabatic quantum computing to train two classifiers which detect two sets, the overlap of which forms the anomaly class. We call this the learning phase. Then, in the testing phase, the two learned classification functions are combined to form the final Hamiltonian for an adiabatic quantum computation, the low energy states of which represent the anomalies in a binary vector space.

  10. Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine

    PubMed Central

    Mourão-Miranda, Janaina; Hardoon, David R.; Hahn, Tim; Marquand, Andre F.; Williams, Steve C.R.; Shawe-Taylor, John; Brammer, Michael

    2011-01-01

    Pattern recognition approaches, such as the Support Vector Machine (SVM), have been successfully used to classify groups of individuals based on their patterns of brain activity or structure. However these approaches focus on finding group differences and are not applicable to situations where one is interested in accessing deviations from a specific class or population. In the present work we propose an application of the one-class SVM (OC-SVM) to investigate if patterns of fMRI response to sad facial expressions in depressed patients would be classified as outliers in relation to patterns of healthy control subjects. We defined features based on whole brain voxels and anatomical regions. In both cases we found a significant correlation between the OC-SVM predictions and the patients' Hamilton Rating Scale for Depression (HRSD), i.e. the more depressed the patients were the more of an outlier they were. In addition the OC-SVM split the patient groups into two subgroups whose membership was associated with future response to treatment. When applied to region-based features the OC-SVM classified 52% of patients as outliers. However among the patients classified as outliers 70% did not respond to treatment and among those classified as non-outliers 89% responded to treatment. In addition 89% of the healthy controls were classified as non-outliers. PMID:21723950

  11. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification

    PubMed Central

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs). PMID:26985826

  12. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.

    PubMed

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs).

  13. Comparison Analysis of Recognition Algorithms of Forest-Cover Objects on Hyperspectral Air-Borne and Space-Borne Images

    NASA Astrophysics Data System (ADS)

    Kozoderov, V. V.; Kondranin, T. V.; Dmitriev, E. V.

    2017-12-01

    The basic model for the recognition of natural and anthropogenic objects using their spectral and textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing. The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical decision making in machine-learning methods of pattern recognition. The principal component method is implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions. Application examples are shown of various modifications of the Bayesian classifier and Support Vector Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates on finding the minimal Euclidean distance between different points and sets in the multidimensional feature space. A comparison is also carried out with the " K-weighted neighbors" method that is close to the nonparametric Bayesian classifier.

  14. Fall Detection Using Smartphone Audio Features.

    PubMed

    Cheffena, Michael

    2016-07-01

    An automated fall detection system based on smartphone audio features is developed. The spectrogram, mel frequency cepstral coefficents (MFCCs), linear predictive coding (LPC), and matching pursuit (MP) features of different fall and no-fall sound events are extracted from experimental data. Based on the extracted audio features, four different machine learning classifiers: k-nearest neighbor classifier (k-NN), support vector machine (SVM), least squares method (LSM), and artificial neural network (ANN) are investigated for distinguishing between fall and no-fall events. For each audio feature, the performance of each classifier in terms of sensitivity, specificity, accuracy, and computational complexity is evaluated. The best performance is achieved using spectrogram features with ANN classifier with sensitivity, specificity, and accuracy all above 98%. The classifier also has acceptable computational requirement for training and testing. The system is applicable in home environments where the phone is placed in the vicinity of the user.

  15. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  16. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features

    PubMed Central

    Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-01-01

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282

  17. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.

    PubMed

    Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-07-18

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.

  18. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.

    PubMed

    Mazumder, Oishee; Kundu, Ananda Sankar; Lenka, Prasanna Kumar; Bhaumik, Subhasis

    2016-10-01

    Ambulatory activity classification is an active area of research for controlling and monitoring state initiation, termination, and transition in mobility assistive devices such as lower-limb exoskeletons. State transition of lower-limb exoskeletons reported thus far are achieved mostly through the use of manual switches or state machine-based logic. In this paper, we propose a postural activity classifier using a 'dendogram-based support vector machine' (DSVM) which can be used to control a lower-limb exoskeleton. A pressure sensor-based wearable insole and two six-axis inertial measurement units (IMU) have been used for recognising two static and seven dynamic postural activities: sit, stand, and sit-to-stand, stand-to-sit, level walk, fast walk, slope walk, stair ascent and stair descent. Most of the ambulatory activities are periodic in nature and have unique patterns of response. The proposed classification algorithm involves the recognition of activity patterns on the basis of the periodic shape of trajectories. Polynomial coefficients extracted from the hip angle trajectory and the centre-of-pressure (CoP) trajectory during an activity cycle are used as features to classify dynamic activities. The novelty of this paper lies in finding suitable instrumentation, developing post-processing techniques, and selecting shape-based features for ambulatory activity classification. The proposed activity classifier is used to identify the activity states of a lower-limb exoskeleton. The DSVM classifier algorithm achieved an overall classification accuracy of 95.2%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. T-ray relevant frequencies for osteosarcoma classification

    NASA Astrophysics Data System (ADS)

    Withayachumnankul, W.; Ferguson, B.; Rainsford, T.; Findlay, D.; Mickan, S. P.; Abbott, D.

    2006-01-01

    We investigate the classification of the T-ray response of normal human bone cells and human osteosarcoma cells, grown in culture. Given the magnitude and phase responses within a reliable spectral range as features for input vectors, a trained support vector machine can correctly classify the two cell types to some extent. Performance of the support vector machine is deteriorated by the curse of dimensionality, resulting from the comparatively large number of features in the input vectors. Feature subset selection methods are used to select only an optimal number of relevant features for inputs. As a result, an improvement in generalization performance is attainable, and the selected frequencies can be used for further describing different mechanisms of the cells, responding to T-rays. We demonstrate a consistent classification accuracy of 89.6%, while the only one fifth of the original features are retained in the data set.

  20. Transportation Modes Classification Using Sensors on Smartphones.

    PubMed

    Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu

    2016-08-19

    This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user's transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.

  1. Transportation Modes Classification Using Sensors on Smartphones

    PubMed Central

    Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu

    2016-01-01

    This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes. PMID:27548182

  2. Applying machine-learning techniques to Twitter data for automatic hazard-event classification.

    NASA Astrophysics Data System (ADS)

    Filgueira, R.; Bee, E. J.; Diaz-Doce, D.; Poole, J., Sr.; Singh, A.

    2017-12-01

    The constant flow of information offered by tweets provides valuable information about all sorts of events at a high temporal and spatial resolution. Over the past year we have been analyzing in real-time geological hazards/phenomenon, such as earthquakes, volcanic eruptions, landslides, floods or the aurora, as part of the GeoSocial project, by geo-locating tweets filtered by keywords in a web-map. However, not all the filtered tweets are related with hazard/phenomenon events. This work explores two classification techniques for automatic hazard-event categorization based on tweets about the "Aurora". First, tweets were filtered using aurora-related keywords, removing stop words and selecting the ones written in English. For classifying the remaining between "aurora-event" or "no-aurora-event" categories, we compared two state-of-art techniques: Support Vector Machine (SVM) and Deep Convolutional Neural Networks (CNN) algorithms. Both approaches belong to the family of supervised learning algorithms, which make predictions based on labelled training dataset. Therefore, we created a training dataset by tagging 1200 tweets between both categories. The general form of SVM is used to separate two classes by a function (kernel). We compared the performance of four different kernels (Linear Regression, Logistic Regression, Multinomial Naïve Bayesian and Stochastic Gradient Descent) provided by Scikit-Learn library using our training dataset to build the SVM classifier. The results shown that the Logistic Regression (LR) gets the best accuracy (87%). So, we selected the SVM-LR classifier to categorise a large collection of tweets using the "dispel4py" framework.Later, we developed a CNN classifier, where the first layer embeds words into low-dimensional vectors. The next layer performs convolutions over the embedded word vectors. Results from the convolutional layer are max-pooled into a long feature vector, which is classified using a softmax layer. The CNN's accuracy is lower (83%) than the SVM-LR, since the algorithm needs a bigger training dataset to increase its accuracy. We used TensorFlow framework for applying CNN classifier to the same collection of tweets.In future we will modify both classifiers to work with other geo-hazards, use larger training datasets and apply them in real-time.

  3. Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification.

    PubMed

    Wang, Hsin-Wei; Lin, Ya-Chi; Pai, Tun-Wen; Chang, Hao-Teng

    2011-01-01

    Epitopes are antigenic determinants that are useful because they induce B-cell antibody production and stimulate T-cell activation. Bioinformatics can enable rapid, efficient prediction of potential epitopes. Here, we designed a novel B-cell linear epitope prediction system called LEPS, Linear Epitope Prediction by Propensities and Support Vector Machine, that combined physico-chemical propensity identification and support vector machine (SVM) classification. We tested the LEPS on four datasets: AntiJen, HIV, a newly generated PC, and AHP, a combination of these three datasets. Peptides with globally or locally high physicochemical propensities were first identified as primitive linear epitope (LE) candidates. Then, candidates were classified with the SVM based on the unique features of amino acid segments. This reduced the number of predicted epitopes and enhanced the positive prediction value (PPV). Compared to four other well-known LE prediction systems, the LEPS achieved the highest accuracy (72.52%), specificity (84.22%), PPV (32.07%), and Matthews' correlation coefficient (10.36%).

  4. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2011-09-30

    Newport RI 02842 phone: (401) 832-5749 fax: (401) 832-4441 email: David.Moretti@navy.mil Steve W. Martin SPAWAR Systems Center Pacific...APPROACH Odontocete click detection and classification. A multiclass support vector machine (SVM) classifier was previously developed ( Jarvis et...beaked whales, Risso’s dolphins, short-finned pilot whales, and sperm whales. Here Moretti’s group, especially S. Jarvis , will improve the SVM classifier

  5. A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees

    NASA Astrophysics Data System (ADS)

    Hui, Jianan; Aragon, Miguel; Cui, Xinping; Flegal, James M.

    2018-04-01

    The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here, we present a machine learning approach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of 93 per cent. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine (SVM) to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time, and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for SVM.

  6. A Novel Approach for Lie Detection Based on F-Score and Extreme Learning Machine

    PubMed Central

    Gao, Junfeng; Wang, Zhao; Yang, Yong; Zhang, Wenjia; Tao, Chunyi; Guan, Jinan; Rao, Nini

    2013-01-01

    A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time. PMID:23755136

  7. Hidden Markov Model and Support Vector Machine based decoding of finger movements using Electrocorticography

    PubMed Central

    Wissel, Tobias; Pfeiffer, Tim; Frysch, Robert; Knight, Robert T.; Chang, Edward F.; Hinrichs, Hermann; Rieger, Jochem W.; Rose, Georg

    2013-01-01

    Objective Support Vector Machines (SVM) have developed into a gold standard for accurate classification in Brain-Computer-Interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of Hidden Markov Models (HMM)for online BCIs and discuss strategies to improve their performance. Approach We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from the Electrocorticograms of four subjects doing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online brain-computer interfaces. PMID:24045504

  8. N-gram support vector machines for scalable procedure and diagnosis classification, with applications to clinical free text data from the intensive care unit.

    PubMed

    Marafino, Ben J; Davies, Jason M; Bardach, Naomi S; Dean, Mitzi L; Dudley, R Adams

    2014-01-01

    Existing risk adjustment models for intensive care unit (ICU) outcomes rely on manual abstraction of patient-level predictors from medical charts. Developing an automated method for abstracting these data from free text might reduce cost and data collection times. To develop a support vector machine (SVM) classifier capable of identifying a range of procedures and diagnoses in ICU clinical notes for use in risk adjustment. We selected notes from 2001-2008 for 4191 neonatal ICU (NICU) and 2198 adult ICU patients from the MIMIC-II database from the Beth Israel Deaconess Medical Center. Using these notes, we developed an implementation of the SVM classifier to identify procedures (mechanical ventilation and phototherapy in NICU notes) and diagnoses (jaundice in NICU and intracranial hemorrhage (ICH) in adult ICU). On the jaundice classification task, we also compared classifier performance using n-gram features to unigrams with application of a negation algorithm (NegEx). Our classifier accurately identified mechanical ventilation (accuracy=0.982, F1=0.954) and phototherapy use (accuracy=0.940, F1=0.912), as well as jaundice (accuracy=0.898, F1=0.884) and ICH diagnoses (accuracy=0.938, F1=0.943). Including bigram features improved performance on the jaundice (accuracy=0.898 vs 0.865) and ICH (0.938 vs 0.927) tasks, and outperformed NegEx-derived unigram features (accuracy=0.898 vs 0.863) on the jaundice task. Overall, a classifier using n-gram support vectors displayed excellent performance characteristics. The classifier generalizes to diverse patient populations, diagnoses, and procedures. SVM-based classifiers can accurately identify procedure status and diagnoses among ICU patients, and including n-gram features improves performance, compared to existing methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations

    PubMed Central

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions. PMID:26089862

  10. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations.

    PubMed

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  11. Classification of older adults with/without a fall history using machine learning methods.

    PubMed

    Lin Zhang; Ou Ma; Fabre, Jennifer M; Wood, Robert H; Garcia, Stephanie U; Ivey, Kayla M; McCann, Evan D

    2015-01-01

    Falling is a serious problem in an aged society such that assessment of the risk of falls for individuals is imperative for the research and practice of falls prevention. This paper introduces an application of several machine learning methods for training a classifier which is capable of classifying individual older adults into a high risk group and a low risk group (distinguished by whether or not the members of the group have a recent history of falls). Using a 3D motion capture system, significant gait features related to falls risk are extracted. By training these features, classification hypotheses are obtained based on machine learning techniques (K Nearest-neighbour, Naive Bayes, Logistic Regression, Neural Network, and Support Vector Machine). Training and test accuracies with sensitivity and specificity of each of these techniques are assessed. The feature adjustment and tuning of the machine learning algorithms are discussed. The outcome of the study will benefit the prediction and prevention of falls.

  12. Prediction and Identification of Krüppel-Like Transcription Factors by Machine Learning Method.

    PubMed

    Liao, Zhijun; Wang, Xinrui; Chen, Xingyong; Zou, Quan

    2017-01-01

    The Krüppel-like factors (KLFs) are a family of containing Zn finger(ZF) motif transcription factors with 18 members in human genome, among them, KLF18 is predicted by bioinformatics. KLFs possess various physiological function involving in a number of cancers and other diseases. Here we perform a binary-class classification of KLFs and non-KLFs by machine learning methods. The protein sequences of KLFs and non-KLFs were searched from UniProt and randomly separate them into training dataset(containing positive and negative sequences) and test dataset(containing only negative sequences), after extracting the 188-dimensional(188D) feature vectors we carry out category with four classifiers(GBDT, libSVM, RF, and k-NN). On the human KLFs, we further dig into the evolutionary relationship and motif distribution, and finally we analyze the conserved amino acid residue of three zinc fingers. The classifier model from training dataset were well constructed, and the highest specificity(Sp) was 99.83% from a library for support vector machine(libSVM) and all the correctly classified rates were over 70% for 10-fold cross-validation on test dataset. The 18 human KLFs can be further divided into 7 groups and the zinc finger domains were located at the carboxyl terminus, and many conserved amino acid residues including Cysteine and Histidine, and the span and interval between them were consistent in the three ZF domains. Two classification models for KLFs prediction have been built by novel machine learning methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Enhancement of plant metabolite fingerprinting by machine learning.

    PubMed

    Scott, Ian M; Vermeer, Cornelia P; Liakata, Maria; Corol, Delia I; Ward, Jane L; Lin, Wanchang; Johnson, Helen E; Whitehead, Lynne; Kular, Baldeep; Baker, John M; Walsh, Sean; Dave, Anuja; Larson, Tony R; Graham, Ian A; Wang, Trevor L; King, Ross D; Draper, John; Beale, Michael H

    2010-08-01

    Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by (1)H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to individual pathways). Among fingerprint techniques, (1)H-nuclear magnetic resonance discriminated the most mutant phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms, namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another, were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible software for use of ML in plant physiology is highlighted.

  14. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

    PubMed

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

  15. Full-motion video analysis for improved gender classification

    NASA Astrophysics Data System (ADS)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  16. The employment of Support Vector Machine to classify high and low performance archers based on bio-physiological variables

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Amirul Abdullah, Muhammad; Hasnun Arif Hassan, Mohd; Khalil, Zubair

    2018-04-01

    The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.

  17. A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine.

    PubMed

    Malar, E; Kandaswamy, A; Chakravarthy, D; Giri Dharan, A

    2012-09-01

    The objective of this paper is to reveal the effectiveness of wavelet based tissue texture analysis for microcalcification detection in digitized mammograms using Extreme Learning Machine (ELM). Microcalcifications are tiny deposits of calcium in the breast tissue which are potential indicators for early detection of breast cancer. The dense nature of the breast tissue and the poor contrast of the mammogram image prohibit the effectiveness in identifying microcalcifications. Hence, a new approach to discriminate the microcalcifications from the normal tissue is done using wavelet features and is compared with different feature vectors extracted using Gray Level Spatial Dependence Matrix (GLSDM) and Gabor filter based techniques. A total of 120 Region of Interests (ROIs) extracted from 55 mammogram images of mini-Mias database, including normal and microcalcification images are used in the current research. The network is trained with the above mentioned features and the results denote that ELM produces relatively better classification accuracy (94%) with a significant reduction in training time than the other artificial neural networks like Bayesnet classifier, Naivebayes classifier, and Support Vector Machine. ELM also avoids problems like local minima, improper learning rate, and over fitting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Extracting features from protein sequences to improve deep extreme learning machine for protein fold recognition.

    PubMed

    Ibrahim, Wisam; Abadeh, Mohammad Saniee

    2017-05-21

    Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine.

    PubMed

    Lao, Zhiqiang; Shen, Dinggang; Liu, Dengfeng; Jawad, Abbas F; Melhem, Elias R; Launer, Lenore J; Bryan, R Nick; Davatzikos, Christos

    2008-03-01

    Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. In this article, we present a computer-assisted WML segmentation method, based on local features extracted from multiparametric magnetic resonance imaging (MRI) sequences (ie, T1-weighted, T2-weighted, proton density-weighted, and fluid attenuation inversion recovery MRI scans). A support vector machine classifier is first trained on expert-defined WMLs, and is then used to classify new scans. Postprocessing analysis further reduces false positives by using anatomic knowledge and measures of distance from the training set. Cross-validation on a population of 35 patients from three different imaging sites with WMLs of varying sizes, shapes, and locations tests the robustness and accuracy of the proposed segmentation method, compared with the manual segmentation results from two experienced neuroradiologists.

  20. Tuning support vector machines for minimax and Neyman-Pearson classification.

    PubMed

    Davenport, Mark A; Baraniuk, Richard G; Scott, Clayton D

    2010-10-01

    This paper studies the training of support vector machine (SVM) classifiers with respect to the minimax and Neyman-Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a cost-sensitive SVM. In practice, however, because these criteria require especially accurate error estimation, standard techniques for tuning SVM parameters, such as cross-validation, can lead to poor classifier performance. To address this issue, we first prove that the usual cost-sensitive SVM, here called the 2C-SVM, is equivalent to another formulation called the 2nu-SVM. We then exploit a characterization of the 2nu-SVM parameter space to develop a simple yet powerful approach to error estimation based on smoothing. In an extensive experimental study, we demonstrate that smoothing significantly improves the accuracy of cross-validation error estimates, leading to dramatic performance gains. Furthermore, we propose coordinate descent strategies that offer significant gains in computational efficiency, with little to no loss in performance.

  1. Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells

    NASA Astrophysics Data System (ADS)

    Bielecki, Christiane; Bocklitz, Thomas W.; Schmitt, Michael; Krafft, Christoph; Marquardt, Claudio; Gharbi, Akram; Knösel, Thomas; Stallmach, Andreas; Popp, Juergen

    2012-07-01

    We report on a Raman microspectroscopic characterization of the inflammatory bowel diseases (IBD) Crohn's disease (CD) and ulcerative colitis (UC). Therefore, Raman maps of human colon tissue sections were analyzed by utilizing innovative chemometric approaches. First, support vector machines were applied to highlight the tissue morphology (=Raman spectroscopic histopathology). In a second step, the biochemical tissue composition has been studied by analyzing the epithelium Raman spectra of sections of healthy control subjects (n=11), subjects with CD (n=14), and subjects with UC (n=13). These three groups exhibit significantly different molecular specific Raman signatures, allowing establishment of a classifier (support-vector-machine). By utilizing this classifier it was possible to separate between healthy control patients, patients with CD, and patients with UC with an accuracy of 98.90%. The automatic design of both classification steps (visualization of the tissue morphology and molecular classification of IBD) paves the way for an objective clinical diagnosis of IBD by means of Raman spectroscopy in combination with chemometric approaches.

  2. A method of neighbor classes based SVM classification for optical printed Chinese character recognition.

    PubMed

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR.

  3. Heidelberg Retina Tomograph 3 machine learning classifiers for glaucoma detection

    PubMed Central

    Townsend, K A; Wollstein, G; Danks, D; Sung, K R; Ishikawa, H; Kagemann, L; Gabriele, M L; Schuman, J S

    2010-01-01

    Aims To assess performance of classifiers trained on Heidelberg Retina Tomograph 3 (HRT3) parameters for discriminating between healthy and glaucomatous eyes. Methods Classifiers were trained using HRT3 parameters from 60 healthy subjects and 140 glaucomatous subjects. The classifiers were trained on all 95 variables and smaller sets created with backward elimination. Seven types of classifiers, including Support Vector Machines with radial basis (SVM-radial), and Recursive Partitioning and Regression Trees (RPART), were trained on the parameters. The area under the ROC curve (AUC) was calculated for classifiers, individual parameters and HRT3 glaucoma probability scores (GPS). Classifier AUCs and leave-one-out accuracy were compared with the highest individual parameter and GPS AUCs and accuracies. Results The highest AUC and accuracy for an individual parameter were 0.848 and 0.79, for vertical cup/disc ratio (vC/D). For GPS, global GPS performed best with AUC 0.829 and accuracy 0.78. SVM-radial with all parameters showed significant improvement over global GPS and vC/ D with AUC 0.916 and accuracy 0.85. RPART with all parameters provided significant improvement over global GPS with AUC 0.899 and significant improvement over global GPS and vC/D with accuracy 0.875. Conclusions Machine learning classifiers of HRT3 data provide significant enhancement over current methods for detection of glaucoma. PMID:18523087

  4. Identification of cigarette smoke inhalations from wearable sensor data using a Support Vector Machine classifier.

    PubMed

    Lopez-Meyer, Paulo; Tiffany, Stephen; Sazonov, Edward

    2012-01-01

    This study presents a subject-independent model for detection of smoke inhalations from wearable sensors capturing characteristic hand-to-mouth gestures and changes in breathing patterns during cigarette smoking. Wearable sensors were used to detect the proximity of the hand to the mouth and to acquire the respiratory patterns. The waveforms of sensor signals were used as features to build a Support Vector Machine classification model. Across a data set of 20 enrolled participants, precision of correct identification of smoke inhalations was found to be >87%, and a resulting recall >80%. These results suggest that it is possible to analyze smoking behavior by means of a wearable and non-invasive sensor system.

  5. [MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique].

    PubMed

    Chen, Zhiru; Hong, Wenxue

    2016-02-01

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

  6. Structural analysis of online handwritten mathematical symbols based on support vector machines

    NASA Astrophysics Data System (ADS)

    Simistira, Foteini; Papavassiliou, Vassilis; Katsouros, Vassilis; Carayannis, George

    2013-01-01

    Mathematical expression recognition is still a very challenging task for the research community mainly because of the two-dimensional (2d) structure of mathematical expressions (MEs). In this paper, we present a novel approach for the structural analysis between two on-line handwritten mathematical symbols of a ME, based on spatial features of the symbols. We introduce six features to represent the spatial affinity of the symbols and compare two multi-class classification methods that employ support vector machines (SVMs): one based on the "one-against-one" technique and one based on the "one-against-all", in identifying the relation between a pair of symbols (i.e. subscript, numerator, etc). A dataset containing 1906 spatial relations derived from the Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) 2012 training dataset is constructed to evaluate the classifiers and compare them with the rule-based classifier of the ILSP-1 system participated in the contest. The experimental results give an overall mean error rate of 2.61% for the "one-against-one" SVM approach, 6.57% for the "one-against-all" SVM technique and 12.31% error rate for the ILSP-1 classifier.

  7. Effects of cultural characteristics on building an emotion classifier through facial expression analysis

    NASA Astrophysics Data System (ADS)

    da Silva, Flávio Altinier Maximiano; Pedrini, Helio

    2015-03-01

    Facial expressions are an important demonstration of humanity's humors and emotions. Algorithms capable of recognizing facial expressions and associating them with emotions were developed and employed to compare the expressions that different cultural groups use to show their emotions. Static pictures of predominantly occidental and oriental subjects from public datasets were used to train machine learning algorithms, whereas local binary patterns, histogram of oriented gradients (HOGs), and Gabor filters were employed to describe the facial expressions for six different basic emotions. The most consistent combination, formed by the association of HOG filter and support vector machines, was then used to classify the other cultural group: there was a strong drop in accuracy, meaning that the subtle differences of facial expressions of each culture affected the classifier performance. Finally, a classifier was trained with images from both occidental and oriental subjects and its accuracy was higher on multicultural data, evidencing the need of a multicultural training set to build an efficient classifier.

  8. Machinery Bearing Fault Diagnosis Using Variational Mode Decomposition and Support Vector Machine as a Classifier

    NASA Astrophysics Data System (ADS)

    Rama Krishna, K.; Ramachandran, K. I.

    2018-02-01

    Crack propagation is a major cause of failure in rotating machines. It adversely affects the productivity, safety, and the machining quality. Hence, detecting the crack’s severity accurately is imperative for the predictive maintenance of such machines. Fault diagnosis is an established concept in identifying the faults, for observing the non-linear behaviour of the vibration signals at various operating conditions. In this work, we find the classification efficiencies for both original and the reconstructed vibrational signals. The reconstructed signals are obtained using Variational Mode Decomposition (VMD), by splitting the original signal into three intrinsic mode functional components and framing them accordingly. Feature extraction, feature selection and feature classification are the three phases in obtaining the classification efficiencies. All the statistical features from the original signals and reconstructed signals are found out in feature extraction process individually. A few statistical parameters are selected in feature selection process and are classified using the SVM classifier. The obtained results show the best parameters and appropriate kernel in SVM classifier for detecting the faults in bearings. Hence, we conclude that better results were obtained by VMD and SVM process over normal process using SVM. This is owing to denoising and filtering the raw vibrational signals.

  9. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    NASA Astrophysics Data System (ADS)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  10. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors.

    PubMed

    Rodriguez Gutierrez, D; Awwad, A; Meijer, L; Manita, M; Jaspan, T; Dineen, R A; Grundy, R G; Auer, D P

    2014-05-01

    Qualitative radiologic MR imaging review affords limited differentiation among types of pediatric posterior fossa brain tumors and cannot detect histologic or molecular subtypes, which could help to stratify treatment. This study aimed to improve current posterior fossa discrimination of histologic tumor type by using support vector machine classifiers on quantitative MR imaging features. This retrospective study included preoperative MRI in 40 children with posterior fossa tumors (17 medulloblastomas, 16 pilocytic astrocytomas, and 7 ependymomas). Shape, histogram, and textural features were computed from contrast-enhanced T2WI and T1WI and diffusivity (ADC) maps. Combinations of features were used to train tumor-type-specific classifiers for medulloblastoma, pilocytic astrocytoma, and ependymoma types in separation and as a joint posterior fossa classifier. A tumor-subtype classifier was also produced for classic medulloblastoma. The performance of different classifiers was assessed and compared by using randomly selected subsets of training and test data. ADC histogram features (25th and 75th percentiles and skewness) yielded the best classification of tumor type (on average >95.8% of medulloblastomas, >96.9% of pilocytic astrocytomas, and >94.3% of ependymomas by using 8 training samples). The resulting joint posterior fossa classifier correctly assigned >91.4% of the posterior fossa tumors. For subtype classification, 89.4% of classic medulloblastomas were correctly classified on the basis of ADC texture features extracted from the Gray-Level Co-Occurence Matrix. Support vector machine-based classifiers using ADC histogram features yielded very good discrimination among pediatric posterior fossa tumor types, and ADC textural features show promise for further subtype discrimination. These findings suggest an added diagnostic value of quantitative feature analysis of diffusion MR imaging in pediatric neuro-oncology. © 2014 by American Journal of Neuroradiology.

  11. Optimal classification for the diagnosis of duchenne muscular dystrophy images using support vector machines.

    PubMed

    Zhang, Ming-Huan; Ma, Jun-Shan; Shen, Ying; Chen, Ying

    2016-09-01

    This study aimed to investigate the optimal support vector machines (SVM)-based classifier of duchenne muscular dystrophy (DMD) magnetic resonance imaging (MRI) images. T1-weighted (T1W) and T2-weighted (T2W) images of the 15 boys with DMD and 15 normal controls were obtained. Textural features of the images were extracted and wavelet decomposed, and then, principal features were selected. Scale transform was then performed for MRI images. Afterward, SVM-based classifiers of MRI images were analyzed based on the radical basis function and decomposition levels. The cost (C) parameter and kernel parameter [Formula: see text] were used for classification. Then, the optimal SVM-based classifier, expressed as [Formula: see text]), was identified by performance evaluation (sensitivity, specificity and accuracy). Eight of 12 textural features were selected as principal features (eigenvalues [Formula: see text]). The 16 SVM-based classifiers were obtained using combination of (C, [Formula: see text]), and those with lower C and [Formula: see text] values showed higher performances, especially classifier of [Formula: see text]). The SVM-based classifiers of T1W images showed higher performance than T1W images at the same decomposition level. The T1W images in classifier of [Formula: see text]) at level 2 decomposition showed the highest performance of all, and its overall correct sensitivity, specificity, and accuracy reached 96.9, 97.3, and 97.1 %, respectively. The T1W images in SVM-based classifier [Formula: see text] at level 2 decomposition showed the highest performance of all, demonstrating that it was the optimal classification for the diagnosis of DMD.

  12. Comparison of the MPP with other supercomputers for LANDSAT data processing

    NASA Technical Reports Server (NTRS)

    Ozga, Martin

    1987-01-01

    The massively parallel processor is compared to the CRAY X-MP and the CYBER-205 for LANDSAT data processing. The maximum likelihood classification algorithm is the basis for comparison since this algorithm is simple to implement and vectorizes very well. The algorithm was implemented on all three machines and tested by classifying the same full scene of LANDSAT multispectral scan data. Timings are compared as well as features of the machines and available software.

  13. Development of a ten-signature classifier using a support vector machine integrated approach to subdivide the M1 stage into M1a and M1b stages of nasopharyngeal carcinoma with synchronous metastases to better predict patients' survival.

    PubMed

    Jiang, Rou; You, Rui; Pei, Xiao-Qing; Zou, Xiong; Zhang, Meng-Xia; Wang, Tong-Min; Sun, Rui; Luo, Dong-Hua; Huang, Pei-Yu; Chen, Qiu-Yan; Hua, Yi-Jun; Tang, Lin-Quan; Guo, Ling; Mo, Hao-Yuan; Qian, Chao-Nan; Mai, Hai-Qiang; Hong, Ming-Huang; Cai, Hong-Min; Chen, Ming-Yuan

    2016-01-19

    The aim of this study was to develop a prognostic classifier and subdivided the M1 stage for nasopharyngeal carcinoma patients with synchronous metastases (mNPC). A retrospective cohort of 347 mNPC patients was recruited between January 2000 and December 2010. Thirty hematological markers and 11 clinical characteristics were collected, and the association of these factors with overall survival (OS) was evaluated. Advanced machine learning schemes of a support vector machine (SVM) were used to select a subset of highly informative factors and to construct a prognostic model (mNPC-SVM). The mNPC-SVM classifier identified ten informative variables, including three clinical indexes and seven hematological markers. The median survival time for low-risk patients (M1a) as identified by the mNPC-SVM classifier was 38.0 months, and survival time was dramatically reduced to 13.8 months for high-risk patients (M1b) (P < 0.001). Multivariate adjustment using prognostic factors revealed that the mNPC-SVM classifier remained a powerful predictor of OS (M1a vs. M1b, hazard ratio, 3.45; 95% CI, 2.59 to 4.60, P < 0.001). Moreover, combination treatment of systemic chemotherapy and loco-regional radiotherapy was associated with significantly better survival outcomes than chemotherapy alone (the 5-year OS, 47.0% vs. 10.0%, P < 0.001) in the M1a subgroup but not in the M1b subgroup (12.0% vs. 3.0%, P = 0.101). These findings were validated by a separate cohort. In conclusion, the newly developed mNPC-SVM classifier led to more precise risk definitions that offer a promising subdivision of the M1 stage and individualized selection for future therapeutic regimens in mNPC patients.

  14. Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine

    NASA Technical Reports Server (NTRS)

    Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.

  15. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier.

    PubMed

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-11-10

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF₆ HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.

  16. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier

    PubMed Central

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-01-01

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods. PMID:27834902

  17. Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC.

    PubMed

    Zhai, Jing-Xuan; Cao, Tian-Jie; An, Ji-Yong; Bian, Yong-Tao

    2017-11-07

    It is a challenging task for fundamental research whether proteins can interact with their partners. Protein self-interaction (SIP) is a special case of PPIs, which plays a key role in the regulation of cellular functions. Due to the limitations of experimental self-interaction identification, it is very important to develop an effective biological tool for predicting SIPs based on protein sequences. In the study, we developed a novel computational method called RVM-AB that combines the Relevance Vector Machine (RVM) model and Average Blocks (AB) for detecting SIPs from protein sequences. Firstly, Average Blocks (AB) feature extraction method is employed to represent protein sequences on a Position Specific Scoring Matrix (PSSM). Secondly, Principal Component Analysis (PCA) method is used to reduce the dimension of AB vector for reducing the influence of noise. Then, by employing the Relevance Vector Machine (RVM) algorithm, the performance of RVM-AB is assessed and compared with the state-of-the-art support vector machine (SVM) classifier and other exiting methods on yeast and human datasets respectively. Using the fivefold test experiment, RVM-AB model achieved very high accuracies of 93.01% and 97.72% on yeast and human datasets respectively, which are significantly better than the method based on SVM classifier and other previous methods. The experimental results proved that the RVM-AB prediction model is efficient and robust. It can be an automatic decision support tool for detecting SIPs. For facilitating extensive studies for future proteomics research, the RVMAB server is freely available for academic use at http://219.219.62.123:8888/SIP_AB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Integrating support vector machines and random forests to classify crops in time series of Worldview-2 images

    NASA Astrophysics Data System (ADS)

    Zafari, A.; Zurita-Milla, R.; Izquierdo-Verdiguier, E.

    2017-10-01

    Crop maps are essential inputs for the agricultural planning done at various governmental and agribusinesses agencies. Remote sensing offers timely and costs efficient technologies to identify and map crop types over large areas. Among the plethora of classification methods, Support Vector Machine (SVM) and Random Forest (RF) are widely used because of their proven performance. In this work, we study the synergic use of both methods by introducing a random forest kernel (RFK) in an SVM classifier. A time series of multispectral WorldView-2 images acquired over Mali (West Africa) in 2014 was used to develop our case study. Ground truth containing five common crop classes (cotton, maize, millet, peanut, and sorghum) were collected at 45 farms and used to train and test the classifiers. An SVM with the standard Radial Basis Function (RBF) kernel, a RF, and an SVM-RFK were trained and tested over 10 random training and test subsets generated from the ground data. Results show that the newly proposed SVM-RFK classifier can compete with both RF and SVM-RBF. The overall accuracies based on the spectral bands only are of 83, 82 and 83% respectively. Adding vegetation indices to the analysis result in the classification accuracy of 82, 81 and 84% for SVM-RFK, RF, and SVM-RBF respectively. Overall, it can be observed that the newly tested RFK can compete with SVM-RBF and RF classifiers in terms of classification accuracy.

  19. A machine learning approach for classification of anatomical coverage in CT

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Lo, Pechin; Ramakrishna, Bharath; Goldin, Johnathan; Brown, Matthew

    2016-03-01

    Automatic classification of anatomical coverage of medical images is critical for big data mining and as a pre-processing step to automatically trigger specific computer aided diagnosis systems. The traditional way to identify scans through DICOM headers has various limitations due to manual entry of series descriptions and non-standardized naming conventions. In this study, we present a machine learning approach where multiple binary classifiers were used to classify different anatomical coverages of CT scans. A one-vs-rest strategy was applied. For a given training set, a template scan was selected from the positive samples and all other scans were registered to it. Each registered scan was then evenly split into k × k × k non-overlapping blocks and for each block the mean intensity was computed. This resulted in a 1 × k3 feature vector for each scan. The feature vectors were then used to train a SVM based classifier. In this feasibility study, four classifiers were built to identify anatomic coverages of brain, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans. Each classifier was trained and tested using a set of 300 scans from different subjects, composed of 150 positive samples and 150 negative samples. Area under the ROC curve (AUC) of the testing set was measured to evaluate the performance in a two-fold cross validation setting. Our results showed good classification performance with an average AUC of 0.96.

  20. Classification of burn wounds using support vector machines

    NASA Astrophysics Data System (ADS)

    Acha, Begona; Serrano, Carmen; Palencia, Sergio; Murillo, Juan Jose

    2004-05-01

    The purpose of this work is to improve a previous method developed by the authors for the classification of burn wounds into their depths. The inputs of the system are color and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. Our previous work consisted in segmenting the burn wound from the rest of the image and classifying the burn into its depth. In this paper we focus on the classification problem only. We already proposed to use a Fuzzy-ARTMAP neural network (NN). However, we may take advantage of new powerful classification tools such as Support Vector Machines (SVM). We apply the five-folded cross validation scheme to divide the database into training and validating sets. Then, we apply a feature selection method for each classifier, which will give us the set of features that yields the smallest classification error for each classifier. Features used to classify are first-order statistical parameters extracted from the L*, u* and v* color components of the image. The feature selection algorithms used are the Sequential Forward Selection (SFS) and the Sequential Backward Selection (SBS) methods. As data of the problem faced here are not linearly separable, the SVM was trained using some different kernels. The validating process shows that the SVM method, when using a Gaussian kernel of variance 1, outperforms classification results obtained with the rest of the classifiers, yielding an error classification rate of 0.7% whereas the Fuzzy-ARTMAP NN attained 1.6 %.

  1. SVM-based feature extraction and classification of aflatoxin contaminated corn using fluorescence hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    Support Vector Machine (SVM) was used in the Genetic Algorithms (GA) process to select and classify a subset of hyperspectral image bands. The method was applied to fluorescence hyperspectral data for the detection of aflatoxin contamination in Aspergillus flavus infected single corn kernels. In the...

  2. Symbolic rule-based classification of lung cancer stages from free-text pathology reports.

    PubMed

    Nguyen, Anthony N; Lawley, Michael J; Hansen, David P; Bowman, Rayleen V; Clarke, Belinda E; Duhig, Edwina E; Colquist, Shoni

    2010-01-01

    To classify automatically lung tumor-node-metastases (TNM) cancer stages from free-text pathology reports using symbolic rule-based classification. By exploiting report substructure and the symbolic manipulation of systematized nomenclature of medicine-clinical terms (SNOMED CT) concepts in reports, statements in free text can be evaluated for relevance against factors relating to the staging guidelines. Post-coordinated SNOMED CT expressions based on templates were defined and populated by concepts in reports, and tested for subsumption by staging factors. The subsumption results were used to build logic according to the staging guidelines to calculate the TNM stage. The accuracy measure and confusion matrices were used to evaluate the TNM stages classified by the symbolic rule-based system. The system was evaluated against a database of multidisciplinary team staging decisions and a machine learning-based text classification system using support vector machines. Overall accuracy on a corpus of pathology reports for 718 lung cancer patients against a database of pathological TNM staging decisions were 72%, 78%, and 94% for T, N, and M staging, respectively. The system's performance was also comparable to support vector machine classification approaches. A system to classify lung TNM stages from free-text pathology reports was developed, and it was verified that the symbolic rule-based approach using SNOMED CT can be used for the extraction of key lung cancer characteristics from free-text reports. Future work will investigate the applicability of using the proposed methodology for extracting other cancer characteristics and types.

  3. Learning atoms for materials discovery.

    PubMed

    Zhou, Quan; Tang, Peizhe; Liu, Shenxiu; Pan, Jinbo; Yan, Qimin; Zhang, Shou-Cheng

    2018-06-26

    Exciting advances have been made in artificial intelligence (AI) during recent decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition, and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player has already beat human world champions convincingly with and without learning from the human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high-dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy. Copyright © 2018 the Author(s). Published by PNAS.

  4. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  5. Semantic classification of business images

    NASA Astrophysics Data System (ADS)

    Erol, Berna; Hull, Jonathan J.

    2006-01-01

    Digital cameras are becoming increasingly common for capturing information in business settings. In this paper, we describe a novel method for classifying images into the following semantic classes: document, whiteboard, business card, slide, and regular images. Our method is based on combining low-level image features, such as text color, layout, and handwriting features with high-level OCR output analysis. Several Support Vector Machine Classifiers are combined for multi-class classification of input images. The system yields 95% accuracy in classification.

  6. Comparison of Classifiers for Decoding Sensory and Cognitive Information from Prefrontal Neuronal Populations

    PubMed Central

    Astrand, Elaine; Enel, Pierre; Ibos, Guilhem; Dominey, Peter Ford; Baraduc, Pierre; Ben Hamed, Suliann

    2014-01-01

    Decoding neuronal information is important in neuroscience, both as a basic means to understand how neuronal activity is related to cerebral function and as a processing stage in driving neuroprosthetic effectors. Here, we compare the readout performance of six commonly used classifiers at decoding two different variables encoded by the spiking activity of the non-human primate frontal eye fields (FEF): the spatial position of a visual cue, and the instructed orientation of the animal's attention. While the first variable is exogenously driven by the environment, the second variable corresponds to the interpretation of the instruction conveyed by the cue; it is endogenously driven and corresponds to the output of internal cognitive operations performed on the visual attributes of the cue. These two variables were decoded using either a regularized optimal linear estimator in its explicit formulation, an optimal linear artificial neural network estimator, a non-linear artificial neural network estimator, a non-linear naïve Bayesian estimator, a non-linear Reservoir recurrent network classifier or a non-linear Support Vector Machine classifier. Our results suggest that endogenous information such as the orientation of attention can be decoded from the FEF with the same accuracy as exogenous visual information. All classifiers did not behave equally in the face of population size and heterogeneity, the available training and testing trials, the subject's behavior and the temporal structure of the variable of interest. In most situations, the regularized optimal linear estimator and the non-linear Support Vector Machine classifiers outperformed the other tested decoders. PMID:24466019

  7. Enhancement of Plant Metabolite Fingerprinting by Machine Learning1[W

    PubMed Central

    Scott, Ian M.; Vermeer, Cornelia P.; Liakata, Maria; Corol, Delia I.; Ward, Jane L.; Lin, Wanchang; Johnson, Helen E.; Whitehead, Lynne; Kular, Baldeep; Baker, John M.; Walsh, Sean; Dave, Anuja; Larson, Tony R.; Graham, Ian A.; Wang, Trevor L.; King, Ross D.; Draper, John; Beale, Michael H.

    2010-01-01

    Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by 1H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to individual pathways). Among fingerprint techniques, 1H-nuclear magnetic resonance discriminated the most mutant phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms, namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another, were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible software for use of ML in plant physiology is highlighted. PMID:20566707

  8. LANDMARK-BASED SPEECH RECOGNITION: REPORT OF THE 2004 JOHNS HOPKINS SUMMER WORKSHOP.

    PubMed

    Hasegawa-Johnson, Mark; Baker, James; Borys, Sarah; Chen, Ken; Coogan, Emily; Greenberg, Steven; Juneja, Amit; Kirchhoff, Katrin; Livescu, Karen; Mohan, Srividya; Muller, Jennifer; Sonmez, Kemal; Wang, Tianyu

    2005-01-01

    Three research prototype speech recognition systems are described, all of which use recently developed methods from artificial intelligence (specifically support vector machines, dynamic Bayesian networks, and maximum entropy classification) in order to implement, in the form of an automatic speech recognizer, current theories of human speech perception and phonology (specifically landmark-based speech perception, nonlinear phonology, and articulatory phonology). All three systems begin with a high-dimensional multiframe acoustic-to-distinctive feature transformation, implemented using support vector machines trained to detect and classify acoustic phonetic landmarks. Distinctive feature probabilities estimated by the support vector machines are then integrated using one of three pronunciation models: a dynamic programming algorithm that assumes canonical pronunciation of each word, a dynamic Bayesian network implementation of articulatory phonology, or a discriminative pronunciation model trained using the methods of maximum entropy classification. Log probability scores computed by these models are then combined, using log-linear combination, with other word scores available in the lattice output of a first-pass recognizer, and the resulting combination score is used to compute a second-pass speech recognition output.

  9. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers

    PubMed Central

    García-Gonzalo, Esperanza; Fernández-Muñiz, Zulima; García Nieto, Paulino José; Bernardo Sánchez, Antonio; Menéndez Fernández, Marta

    2016-01-01

    The mining industry relies heavily on empirical analysis for design and prediction. An empirical design method, called the critical span graph, was developed specifically for rock stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill mining in Canada. This empirical span design chart plots the critical span against rock mass rating for the observed case histories and has been accepted by many mining operations for the initial span design of cut and fill stopes. Different types of analysis have been used to classify the observed cases into stable, potentially unstable and unstable groups. The main purpose of this paper is to present a new method for defining rock stability areas of the critical span graph, which applies machine learning classifiers (support vector machine and extreme learning machine). The results show a reasonable correlation with previous guidelines. These machine learning methods are good tools for developing empirical methods, since they make no assumptions about the regression function. With this software, it is easy to add new field observations to a previous database, improving prediction output with the addition of data that consider the local conditions for each mine. PMID:28773653

  10. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers.

    PubMed

    García-Gonzalo, Esperanza; Fernández-Muñiz, Zulima; García Nieto, Paulino José; Bernardo Sánchez, Antonio; Menéndez Fernández, Marta

    2016-06-29

    The mining industry relies heavily on empirical analysis for design and prediction. An empirical design method, called the critical span graph, was developed specifically for rock stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill mining in Canada. This empirical span design chart plots the critical span against rock mass rating for the observed case histories and has been accepted by many mining operations for the initial span design of cut and fill stopes. Different types of analysis have been used to classify the observed cases into stable, potentially unstable and unstable groups. The main purpose of this paper is to present a new method for defining rock stability areas of the critical span graph, which applies machine learning classifiers (support vector machine and extreme learning machine). The results show a reasonable correlation with previous guidelines. These machine learning methods are good tools for developing empirical methods, since they make no assumptions about the regression function. With this software, it is easy to add new field observations to a previous database, improving prediction output with the addition of data that consider the local conditions for each mine.

  11. Fall classification by machine learning using mobile phones.

    PubMed

    Albert, Mark V; Kording, Konrad; Herrmann, Megan; Jayaraman, Arun

    2012-01-01

    Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls-left and right lateral, forward trips, and backward slips-while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls.

  12. Recognizing human activities using appearance metric feature and kinematics feature

    NASA Astrophysics Data System (ADS)

    Qian, Huimin; Zhou, Jun; Lu, Xinbiao; Wu, Xinye

    2017-05-01

    The problem of automatically recognizing human activities from videos through the fusion of the two most important cues, appearance metric feature and kinematics feature, is considered. And a system of two-dimensional (2-D) Poisson equations is introduced to extract the more discriminative appearance metric feature. Specifically, the moving human blobs are first detected out from the video by background subtraction technique to form a binary image sequence, from which the appearance feature designated as the motion accumulation image and the kinematics feature termed as centroid instantaneous velocity are extracted. Second, 2-D discrete Poisson equations are employed to reinterpret the motion accumulation image to produce a more differentiated Poisson silhouette image, from which the appearance feature vector is created through the dimension reduction technique called bidirectional 2-D principal component analysis, considering the balance between classification accuracy and time consumption. Finally, a cascaded classifier based on the nearest neighbor classifier and two directed acyclic graph support vector machine classifiers, integrated with the fusion of the appearance feature vector and centroid instantaneous velocity vector, is applied to recognize the human activities. Experimental results on the open databases and a homemade one confirm the recognition performance of the proposed algorithm.

  13. A Method of Neighbor Classes Based SVM Classification for Optical Printed Chinese Character Recognition

    PubMed Central

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR. PMID:23536777

  14. Analysis of miRNA expression profile based on SVM algorithm

    NASA Astrophysics Data System (ADS)

    Ting-ting, Dai; Chang-ji, Shan; Yan-shou, Dong; Yi-duo, Bian

    2018-05-01

    Based on mirna expression spectrum data set, a new data mining algorithm - tSVM - KNN (t statistic with support vector machine - k nearest neighbor) is proposed. the idea of the algorithm is: firstly, the feature selection of the data set is carried out by the unified measurement method; Secondly, SVM - KNN algorithm, which combines support vector machine (SVM) and k - nearest neighbor (k - nearest neighbor) is used as classifier. Simulation results show that SVM - KNN algorithm has better classification ability than SVM and KNN alone. Tsvm - KNN algorithm only needs 5 mirnas to obtain 96.08 % classification accuracy in terms of the number of mirna " tags" and recognition accuracy. compared with similar algorithms, tsvm - KNN algorithm has obvious advantages.

  15. Bayesian anomaly detection in monitoring data applying relevance vector machine

    NASA Astrophysics Data System (ADS)

    Saito, Tomoo

    2011-04-01

    A method for automatically classifying the monitoring data into two categories, normal and anomaly, is developed in order to remove anomalous data included in the enormous amount of monitoring data, applying the relevance vector machine (RVM) to a probabilistic discriminative model with basis functions and their weight parameters whose posterior PDF (probabilistic density function) conditional on the learning data set is given by Bayes' theorem. The proposed framework is applied to actual monitoring data sets containing some anomalous data collected at two buildings in Tokyo, Japan, which shows that the trained models discriminate anomalous data from normal data very clearly, giving high probabilities of being normal to normal data and low probabilities of being normal to anomalous data.

  16. Rapid authentication of adulteration of olive oil by near-infrared spectroscopy using support vector machines

    NASA Astrophysics Data System (ADS)

    Wu, Jingzhu; Dong, Jingjing; Dong, Wenfei; Chen, Yan; Liu, Cuiling

    2016-10-01

    A classification method of support vector machines with linear kernel was employed to authenticate genuine olive oil based on near-infrared spectroscopy. There were three types of adulteration of olive oil experimented in the study. The adulterated oil was respectively soybean oil, rapeseed oil and the mixture of soybean and rapeseed oil. The average recognition rate of second experiment was more than 90% and that of the third experiment was reach to 100%. The results showed the method had good performance in classifying genuine olive oil and the adulteration with small variation range of adulterated concentration and it was a promising and rapid technique for the detection of oil adulteration and fraud in the food industry.

  17. Multiclass Classification of Cardiac Arrhythmia Using Improved Feature Selection and SVM Invariants.

    PubMed

    Mustaqeem, Anam; Anwar, Syed Muhammad; Majid, Muahammad

    2018-01-01

    Arrhythmia is considered a life-threatening disease causing serious health issues in patients, when left untreated. An early diagnosis of arrhythmias would be helpful in saving lives. This study is conducted to classify patients into one of the sixteen subclasses, among which one class represents absence of disease and the other fifteen classes represent electrocardiogram records of various subtypes of arrhythmias. The research is carried out on the dataset taken from the University of California at Irvine Machine Learning Data Repository. The dataset contains a large volume of feature dimensions which are reduced using wrapper based feature selection technique. For multiclass classification, support vector machine (SVM) based approaches including one-against-one (OAO), one-against-all (OAA), and error-correction code (ECC) are employed to detect the presence and absence of arrhythmias. The SVM method results are compared with other standard machine learning classifiers using varying parameters and the performance of the classifiers is evaluated using accuracy, kappa statistics, and root mean square error. The results show that OAO method of SVM outperforms all other classifiers by achieving an accuracy rate of 81.11% when used with 80/20 data split and 92.07% using 90/10 data split option.

  18. An ensemble of SVM classifiers based on gene pairs.

    PubMed

    Tong, Muchenxuan; Liu, Kun-Hong; Xu, Chungui; Ju, Wenbin

    2013-07-01

    In this paper, a genetic algorithm (GA) based ensemble support vector machine (SVM) classifier built on gene pairs (GA-ESP) is proposed. The SVMs (base classifiers of the ensemble system) are trained on different informative gene pairs. These gene pairs are selected by the top scoring pair (TSP) criterion. Each of these pairs projects the original microarray expression onto a 2-D space. Extensive permutation of gene pairs may reveal more useful information and potentially lead to an ensemble classifier with satisfactory accuracy and interpretability. GA is further applied to select an optimized combination of base classifiers. The effectiveness of the GA-ESP classifier is evaluated on both binary-class and multi-class datasets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  20. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    PubMed

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  1. Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data.

    PubMed

    Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos

    2017-04-13

    Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.

  2. Classification of large-sized hyperspectral imagery using fast machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Xia, Junshi; Yokoya, Naoto; Iwasaki, Akira

    2017-07-01

    We present a framework of fast machine learning algorithms in the context of large-sized hyperspectral images classification from the theoretical to a practical viewpoint. In particular, we assess the performance of random forest (RF), rotation forest (RoF), and extreme learning machine (ELM) and the ensembles of RF and ELM. These classifiers are applied to two large-sized hyperspectral images and compared to the support vector machines. To give the quantitative analysis, we pay attention to comparing these methods when working with high input dimensions and a limited/sufficient training set. Moreover, other important issues such as the computational cost and robustness against the noise are also discussed.

  3. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms.

    PubMed

    Amaral, Jorge L M; Lopes, Agnaldo J; Jansen, José M; Faria, Alvaro C D; Melo, Pedro L

    2013-12-01

    The purpose of this study was to develop an automatic classifier to increase the accuracy of the forced oscillation technique (FOT) for diagnosing early respiratory abnormalities in smoking patients. The data consisted of FOT parameters obtained from 56 volunteers, 28 healthy and 28 smokers with low tobacco consumption. Many supervised learning techniques were investigated, including logistic linear classifiers, k nearest neighbor (KNN), neural networks and support vector machines (SVM). To evaluate performance, the ROC curve of the most accurate parameter was established as baseline. To determine the best input features and classifier parameters, we used genetic algorithms and a 10-fold cross-validation using the average area under the ROC curve (AUC). In the first experiment, the original FOT parameters were used as input. We observed a significant improvement in accuracy (KNN=0.89 and SVM=0.87) compared with the baseline (0.77). The second experiment performed a feature selection on the original FOT parameters. This selection did not cause any significant improvement in accuracy, but it was useful in identifying more adequate FOT parameters. In the third experiment, we performed a feature selection on the cross products of the FOT parameters. This selection resulted in a further increase in AUC (KNN=SVM=0.91), which allows for high diagnostic accuracy. In conclusion, machine learning classifiers can help identify early smoking-induced respiratory alterations. The use of FOT cross products and the search for the best features and classifier parameters can markedly improve the performance of machine learning classifiers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. LBP and SIFT based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Sumer, Omer; Gunes, Ece O.

    2015-02-01

    This study compares the performance of local binary patterns (LBP) and scale invariant feature transform (SIFT) with support vector machines (SVM) in automatic classification of discrete facial expressions. Facial expression recognition is a multiclass classification problem and seven classes; happiness, anger, sadness, disgust, surprise, fear and comtempt are classified. Using SIFT feature vectors and linear SVM, 93.1% mean accuracy is acquired on CK+ database. On the other hand, the performance of LBP-based classifier with linear SVM is reported on SFEW using strictly person independent (SPI) protocol. Seven-class mean accuracy on SFEW is 59.76%. Experiments on both databases showed that LBP features can be used in a fairly descriptive way if a good localization of facial points and partitioning strategy are followed.

  5. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images

    PubMed Central

    Srinivasan, Pratul P.; Kim, Leo A.; Mettu, Priyatham S.; Cousins, Scott W.; Comer, Grant M.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases. PMID:25360373

  6. Decoding grating orientation from microelectrode array recordings in monkey cortical area V4.

    PubMed

    Manyakov, Nikolay V; Van Hulle, Marc M

    2010-04-01

    We propose an invasive brain-machine interface (BMI) that decodes the orientation of a visual grating from spike train recordings made with a 96 microelectrodes array chronically implanted into the prelunate gyrus (area V4) of a rhesus monkey. The orientation is decoded irrespective of the grating's spatial frequency. Since pyramidal cells are less prominent in visual areas, compared to (pre)motor areas, the recordings contain spikes with smaller amplitudes, compared to the noise level. Hence, rather than performing spike decoding, feature selection algorithms are applied to extract the required information for the decoder. Two types of feature selection procedures are compared, filter and wrapper. The wrapper is combined with a linear discriminant analysis classifier, and the filter is followed by a radial-basis function support vector machine classifier. In addition, since we have a multiclass classification problen, different methods for combining pairwise classifiers are compared.

  7. Complex extreme learning machine applications in terahertz pulsed signals feature sets.

    PubMed

    Yin, X-X; Hadjiloucas, S; Zhang, Y

    2014-11-01

    This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Leveraging Wikipedia knowledge to classify multilingual biomedical documents.

    PubMed

    Antonio Mouriño García, Marcos; Pérez Rodríguez, Roberto; Anido Rifón, Luis

    2018-05-02

    This article presents a classifier that leverages Wikipedia knowledge to represent documents as vectors of concepts weights, and analyses its suitability for classifying biomedical documents written in any language when it is trained only with English documents. We propose the cross-language concept matching technique, which relies on Wikipedia interlanguage links to convert concept vectors between languages. The performance of the classifier is compared to a classifier based on machine translation, and two classifiers based on MetaMap. To perform the experiments, we created two multilingual corpus. The first one, Multi-Lingual UVigoMED (ML-UVigoMED) is composed of 23,647 Wikipedia documents about biomedical topics written in English, German, French, Spanish, Italian, Galician, Romanian, and Icelandic. The second one, English-French-Spanish-German UVigoMED (EFSG-UVigoMED) is composed of 19,210 biomedical abstract extracted from MEDLINE written in English, French, Spanish, and German. The performance of the approach proposed is superior to any of the state-of-the art classifier in the benchmark. We conclude that leveraging Wikipedia knowledge is of great advantage in tasks of multilingual classification of biomedical documents. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier.

    PubMed

    Nanthagopal, A Padma; Rajamony, R Sukanesh

    2012-07-01

    The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.

  10. Morphological and wavelet features towards sonographic thyroid nodules evaluation.

    PubMed

    Tsantis, Stavros; Dimitropoulos, Nikos; Cavouras, Dionisis; Nikiforidis, George

    2009-03-01

    This paper presents a computer-based classification scheme that utilized various morphological and novel wavelet-based features towards malignancy risk evaluation of thyroid nodules in ultrasonography. The study comprised 85 ultrasound images-patients that were cytological confirmed (54 low-risk and 31 high-risk). A set of 20 features (12 based on nodules boundary shape and 8 based on wavelet local maxima located within each nodule) has been generated. Two powerful pattern recognition algorithms (support vector machines and probabilistic neural networks) have been designed and developed in order to quantify the power of differentiation of the introduced features. A comparative study has also been held, in order to estimate the impact speckle had onto the classification procedure. The diagnostic sensitivity and specificity of both classifiers was made by means of receiver operating characteristics (ROC) analysis. In the speckle-free feature set, the area under the ROC curve was 0.96 for the support vector machines classifier whereas for the probabilistic neural networks was 0.91. In the feature set with speckle, the corresponding areas under the ROC curves were 0.88 and 0.86 respectively for the two classifiers. The proposed features can increase the classification accuracy and decrease the rate of missing and misdiagnosis in thyroid cancer control.

  11. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE PAGES

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  12. Overview of existing algorithms for emotion classification. Uncertainties in evaluations of accuracies.

    NASA Astrophysics Data System (ADS)

    Avetisyan, H.; Bruna, O.; Holub, J.

    2016-11-01

    A numerous techniques and algorithms are dedicated to extract emotions from input data. In our investigation it was stated that emotion-detection approaches can be classified into 3 following types: Keyword based / lexical-based, learning based, and hybrid. The most commonly used techniques, such as keyword-spotting method, Support Vector Machines, Naïve Bayes Classifier, Hidden Markov Model and hybrid algorithms, have impressive results in this sphere and can reach more than 90% determining accuracy.

  13. Incremental classification learning for anomaly detection in medical images

    NASA Astrophysics Data System (ADS)

    Giritharan, Balathasan; Yuan, Xiaohui; Liu, Jianguo

    2009-02-01

    Computer-aided diagnosis usually screens thousands of instances to find only a few positive cases that indicate probable presence of disease.The amount of patient data increases consistently all the time. In diagnosis of new instances, disagreement occurs between a CAD system and physicians, which suggests inaccurate classifiers. Intuitively, misclassified instances and the previously acquired data should be used to retrain the classifier. This, however, is very time consuming and, in some cases where dataset is too large, becomes infeasible. In addition, among the patient data, only a small percentile shows positive sign, which is known as imbalanced data.We present an incremental Support Vector Machines(SVM) as a solution for the class imbalance problem in classification of anomaly in medical images. The support vectors provide a concise representation of the distribution of the training data. Here we use bootstrapping to identify potential candidate support vectors for future iterations. Experiments were conducted using images from endoscopy videos, and the sensitivity and specificity were close to that of SVM trained using all samples available at a given incremental step with significantly improved efficiency in training the classifier.

  14. Remote distinction of a noxious weed (musk thistle: Carduus nutans) using airborne hyperspectral imagery and the support vector machine classifier

    USDA-ARS?s Scientific Manuscript database

    Remote detection of invasive plant species using geospatial imagery may significantly improve monitoring, planning, and management practices by eliminating shortfalls such as observer bias and accessibility involved in ground-based surveys. The use of remote sensing for accurate mapping invasion ex...

  15. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    NASA Astrophysics Data System (ADS)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  16. Automated detection of pulmonary nodules in CT images with support vector machines

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Liu, Wanyu; Sun, Xiaoming

    2008-10-01

    Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  17. Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review

    NASA Astrophysics Data System (ADS)

    Quitadamo, L. R.; Cavrini, F.; Sbernini, L.; Riillo, F.; Bianchi, L.; Seri, S.; Saggio, G.

    2017-02-01

    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.

  18. Automatic Gleason grading of prostate cancer using SLIM and machine learning

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Sridharan, Shamira; Marcias, Virgilia; Balla, Andre K.; Do, Minh N.; Popescu, Gabriel

    2016-03-01

    In this paper, we present an updated automatic diagnostic procedure for prostate cancer using quantitative phase imaging (QPI). In a recent report [1], we demonstrated the use of Random Forest for image segmentation on prostate cores imaged using QPI. Based on these label maps, we developed an algorithm to discriminate between regions with Gleason grade 3 and 4 prostate cancer in prostatectomy tissue. The Area-Under-Curve (AUC) of 0.79 for the Receiver Operating Curve (ROC) can be obtained for Gleason grade 4 detection in a binary classification between Grade 3 and Grade 4. Our dataset includes 280 benign cases and 141 malignant cases. We show that textural features in phase maps have strong diagnostic values since they can be used in combination with the label map to detect presence or absence of basal cells, which is a strong indicator for prostate carcinoma. A support vector machine (SVM) classifier trained on this new feature vector can classify cancer/non-cancer with an error rate of 0.23 and an AUC value of 0.83.

  19. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao

    2014-09-01

    This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.

  20. Terminator Detection by Support Vector Machine Utilizing aStochastic Context-Free Grammar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis-Lyon, Patricia; Cristianini, Nello; Holbrook, Stephen

    2006-12-30

    A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to incorporate energy affects of base pairing. The parameters from this inferred structure aremore » passed to the SVM classifier, which distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix, stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found to be 96.4% successful during testing.« less

  1. Support Vector Machine Model for Automatic Detection and Classification of Seismic Events

    NASA Astrophysics Data System (ADS)

    Barros, Vesna; Barros, Lucas

    2016-04-01

    The automated processing of multiple seismic signals to detect, localize and classify seismic events is a central tool in both natural hazards monitoring and nuclear treaty verification. However, false detections and missed detections caused by station noise and incorrect classification of arrivals are still an issue and the events are often unclassified or poorly classified. Thus, machine learning techniques can be used in automatic processing for classifying the huge database of seismic recordings and provide more confidence in the final output. Applied in the context of the International Monitoring System (IMS) - a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) - we propose a fully automatic method for seismic event detection and classification based on a supervised pattern recognition technique called the Support Vector Machine (SVM). According to Kortström et al., 2015, the advantages of using SVM are handleability of large number of features and effectiveness in high dimensional spaces. Our objective is to detect seismic events from one IMS seismic station located in an area of high seismicity and mining activity and classify them as earthquakes or quarry blasts. It is expected to create a flexible and easily adjustable SVM method that can be applied in different regions and datasets. Taken a step further, accurate results for seismic stations could lead to a modification of the model and its parameters to make it applicable to other waveform technologies used to monitor nuclear explosions such as infrasound and hydroacoustic waveforms. As an authorized user, we have direct access to all IMS data and bulletins through a secure signatory account. A set of significant seismic waveforms containing different types of events (e.g. earthquake, quarry blasts) and noise is being analysed to train the model and learn the typical pattern of the signal from these events. Moreover, comparing the performance of the support-vector network to various classical learning algorithms used before in seismic detection and classification is an essential final step to analyze the advantages and disadvantages of the model.

  2. Support vector machine classification and characterization of age-related reorganization of functional brain networks

    PubMed Central

    Meier, Timothy B.; Desphande, Alok S.; Vergun, Svyatoslav; Nair, Veena A.; Song, Jie; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Prabhakaran, Vivek

    2012-01-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5 mm3 radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual’s three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. PMID:22227886

  3. Support vector machine classification and characterization of age-related reorganization of functional brain networks.

    PubMed

    Meier, Timothy B; Desphande, Alok S; Vergun, Svyatoslav; Nair, Veena A; Song, Jie; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2012-03-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5mm(3) radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual's three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    PubMed Central

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-01-01

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514

  5. Force sensor based tool condition monitoring using a heterogeneous ensemble learning model.

    PubMed

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-11-14

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.

  6. Using an object-based grid system to evaluate a newly developed EP approach to formulate SVMs as applied to the classification of organophosphate nerve agents

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun

    2004-04-01

    This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.

  7. Predicting High Imaging Utilization Based on Initial Radiology Reports: A Feasibility Study of Machine Learning.

    PubMed

    Hassanpour, Saeed; Langlotz, Curtis P

    2016-01-01

    Imaging utilization has significantly increased over the last two decades, and is only recently showing signs of moderating. To help healthcare providers identify patients at risk for high imaging utilization, we developed a prediction model to recognize high imaging utilizers based on their initial imaging reports. The prediction model uses a machine learning text classification framework. In this study, we used radiology reports from 18,384 patients with at least one abdomen computed tomography study in their imaging record at Stanford Health Care as the training set. We modeled the radiology reports in a vector space and trained a support vector machine classifier for this prediction task. We evaluated our model on a separate test set of 4791 patients. In addition to high prediction accuracy, in our method, we aimed at achieving high specificity to identify patients at high risk for high imaging utilization. Our results (accuracy: 94.0%, sensitivity: 74.4%, specificity: 97.9%, positive predictive value: 87.3%, negative predictive value: 95.1%) show that a prediction model can enable healthcare providers to identify in advance patients who are likely to be high utilizers of imaging services. Machine learning classifiers developed from narrative radiology reports are feasible methods to predict imaging utilization. Such systems can be used to identify high utilizers, inform future image ordering behavior, and encourage judicious use of imaging. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine.

    PubMed

    Kazemi, Fatemeh; Najafabadi, Tooraj Abbasian; Araabi, Babak Nadjar

    2016-01-01

    Acute myelogenous leukemia (AML) is a subtype of acute leukemia, which is characterized by the accumulation of myeloid blasts in the bone marrow. Careful microscopic examination of stained blood smear or bone marrow aspirate is still the most significant diagnostic methodology for initial AML screening and considered as the first step toward diagnosis. It is time-consuming and due to the elusive nature of the signs and symptoms of AML; wrong diagnosis may occur by pathologists. Therefore, the need for automation of leukemia detection has arisen. In this paper, an automatic technique for identification and detection of AML and its prevalent subtypes, i.e., M2-M5 is presented. At first, microscopic images are acquired from blood smears of patients with AML and normal cases. After applying image preprocessing, color segmentation strategy is applied for segmenting white blood cells from other blood components and then discriminative features, i.e., irregularity, nucleus-cytoplasm ratio, Hausdorff dimension, shape, color, and texture features are extracted from the entire nucleus in the whole images containing multiple nuclei. Images are classified to cancerous and noncancerous images by binary support vector machine (SVM) classifier with 10-fold cross validation technique. Classifier performance is evaluated by three parameters, i.e., sensitivity, specificity, and accuracy. Cancerous images are also classified into their prevalent subtypes by multi-SVM classifier. The results show that the proposed algorithm has achieved an acceptable performance for diagnosis of AML and its common subtypes. Therefore, it can be used as an assistant diagnostic tool for pathologists.

  9. Differentiation of several interstitial lung disease patterns in HRCT images using support vector machine: role of databases on performance

    NASA Astrophysics Data System (ADS)

    Kale, Mandar; Mukhopadhyay, Sudipta; Dash, Jatindra K.; Garg, Mandeep; Khandelwal, Niranjan

    2016-03-01

    Interstitial lung disease (ILD) is complicated group of pulmonary disorders. High Resolution Computed Tomography (HRCT) considered to be best imaging technique for analysis of different pulmonary disorders. HRCT findings can be categorised in several patterns viz. Consolidation, Emphysema, Ground Glass Opacity, Nodular, Normal etc. based on their texture like appearance. Clinician often find it difficult to diagnosis these pattern because of their complex nature. In such scenario computer-aided diagnosis system could help clinician to identify patterns. Several approaches had been proposed for classification of ILD patterns. This includes computation of textural feature and training /testing of classifier such as artificial neural network (ANN), support vector machine (SVM) etc. In this paper, wavelet features are calculated from two different ILD database, publically available MedGIFT ILD database and private ILD database, followed by performance evaluation of ANN and SVM classifiers in terms of average accuracy. It is found that average classification accuracy by SVM is greater than ANN where trained and tested on same database. Investigation continued further to test variation in accuracy of classifier when training and testing is performed with alternate database and training and testing of classifier with database formed by merging samples from same class from two individual databases. The average classification accuracy drops when two independent databases used for training and testing respectively. There is significant improvement in average accuracy when classifiers are trained and tested with merged database. It infers dependency of classification accuracy on training data. It is observed that SVM outperforms ANN when same database is used for training and testing.

  10. Balanced VS Imbalanced Training Data: Classifying Rapideye Data with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.

    2016-06-01

    The accuracy of supervised image classification is highly dependent upon several factors such as the design of training set (sample selection, composition, purity and size), resolution of input imagery and landscape heterogeneity. The design of training set is still a challenging issue since the sensitivity of classifier algorithm at learning stage is different for the same dataset. In this paper, the classification of RapidEye imagery with balanced and imbalanced training data for mapping the crop types was addressed. Classification with imbalanced training data may result in low accuracy in some scenarios. Support Vector Machines (SVM), Maximum Likelihood (ML) and Artificial Neural Network (ANN) classifications were implemented here to classify the data. For evaluating the influence of the balanced and imbalanced training data on image classification algorithms, three different training datasets were created. Two different balanced datasets which have 70 and 100 pixels for each class of interest and one imbalanced dataset in which each class has different number of pixels were used in classification stage. Results demonstrate that ML and NN classifications are affected by imbalanced training data in resulting a reduction in accuracy (from 90.94% to 85.94% for ML and from 91.56% to 88.44% for NN) while SVM is not affected significantly (from 94.38% to 94.69%) and slightly improved. Our results highlighted that SVM is proven to be a very robust, consistent and effective classifier as it can perform very well under balanced and imbalanced training data situations. Furthermore, the training stage should be precisely and carefully designed for the need of adopted classifier.

  11. Accuracy comparison among different machine learning techniques for detecting malicious codes

    NASA Astrophysics Data System (ADS)

    Narang, Komal

    2016-03-01

    In this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Naïve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.

  12. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.

    PubMed

    Sørensen, Lauge; Nielsen, Mads

    2018-05-15

    The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Improving Classification of Cancer and Mining Biomarkers from Gene Expression Profiles Using Hybrid Optimization Algorithms and Fuzzy Support Vector Machine

    PubMed Central

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Garshasbi, Masoud

    2018-01-01

    Background: Gene expression data are characteristically high dimensional with a small sample size in contrast to the feature size and variability inherent in biological processes that contribute to difficulties in analysis. Selection of highly discriminative features decreases the computational cost and complexity of the classifier and improves its reliability for prediction of a new class of samples. Methods: The present study used hybrid particle swarm optimization and genetic algorithms for gene selection and a fuzzy support vector machine (SVM) as the classifier. Fuzzy logic is used to infer the importance of each sample in the training phase and decrease the outlier sensitivity of the system to increase the ability to generalize the classifier. A decision-tree algorithm was applied to the most frequent genes to develop a set of rules for each type of cancer. This improved the abilities of the algorithm by finding the best parameters for the classifier during the training phase without the need for trial-and-error by the user. The proposed approach was tested on four benchmark gene expression profiles. Results: Good results have been demonstrated for the proposed algorithm. The classification accuracy for leukemia data is 100%, for colon cancer is 96.67% and for breast cancer is 98%. The results show that the best kernel used in training the SVM classifier is the radial basis function. Conclusions: The experimental results show that the proposed algorithm can decrease the dimensionality of the dataset, determine the most informative gene subset, and improve classification accuracy using the optimal parameters of the classifier with no user interface. PMID:29535919

  14. Classification of Alzheimer's disease patients with hippocampal shape wrapper-based feature selection and support vector machine

    NASA Astrophysics Data System (ADS)

    Young, Jonathan; Ridgway, Gerard; Leung, Kelvin; Ourselin, Sebastien

    2012-02-01

    It is well known that hippocampal atrophy is a marker of the onset of Alzheimer's disease (AD) and as a result hippocampal volumetry has been used in a number of studies to provide early diagnosis of AD and predict conversion of mild cognitive impairment patients to AD. However, rates of atrophy are not uniform across the hippocampus making shape analysis a potentially more accurate biomarker. This study studies the hippocampi from 226 healthy controls, 148 AD patients and 330 MCI patients obtained from T1 weighted structural MRI images from the ADNI database. The hippocampi are anatomically segmented using the MAPS multi-atlas segmentation method, and the resulting binary images are then processed with SPHARM software to decompose their shapes as a weighted sum of spherical harmonic basis functions. The resulting parameterizations are then used as feature vectors in Support Vector Machine (SVM) classification. A wrapper based feature selection method was used as this considers the utility of features in discriminating classes in combination, fully exploiting the multivariate nature of the data and optimizing the selected set of features for the type of classifier that is used. The leave-one-out cross validated accuracy obtained on training data is 88.6% for classifying AD vs controls and 74% for classifying MCI-converters vs MCI-stable with very compact feature sets, showing that this is a highly promising method. There is currently a considerable fall in accuracy on unseen data indicating that the feature selection is sensitive to the data used, however feature ensemble methods may overcome this.

  15. Online Artifact Removal for Brain-Computer Interfaces Using Support Vector Machines and Blind Source Separation

    PubMed Central

    Halder, Sebastian; Bensch, Michael; Mellinger, Jürgen; Bogdan, Martin; Kübler, Andrea; Birbaumer, Niels; Rosenstiel, Wolfgang

    2007-01-01

    We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm (AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic (EOG) artifacts into individual components. An implementation of the selected BSS/ICA method with SVMs trained to classify EMG and EOG artifacts, which enables the usage of the method as a filter in measurements with online feedback, is described. This filter is evaluated on three BCI datasets as a proof-of-concept of the method. PMID:18288259

  16. Online artifact removal for brain-computer interfaces using support vector machines and blind source separation.

    PubMed

    Halder, Sebastian; Bensch, Michael; Mellinger, Jürgen; Bogdan, Martin; Kübler, Andrea; Birbaumer, Niels; Rosenstiel, Wolfgang

    2007-01-01

    We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm (AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic (EOG) artifacts into individual components. An implementation of the selected BSS/ICA method with SVMs trained to classify EMG and EOG artifacts, which enables the usage of the method as a filter in measurements with online feedback, is described. This filter is evaluated on three BCI datasets as a proof-of-concept of the method.

  17. Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA

    PubMed Central

    Ma, Xiaoqi

    2015-01-01

    A novel method is proposed to establish the pancreatic cancer classifier. Firstly, the concept of quantum and fruit fly optimal algorithm (FOA) are introduced, respectively. Then FOA is improved by quantum coding and quantum operation, and a new smell concentration determination function is defined. Finally, the improved FOA is used to optimize the parameters of support vector machine (SVM) and the classifier is established by optimized SVM. In order to verify the effectiveness of the proposed method, SVM and other classification methods have been chosen as the comparing methods. The experimental results show that the proposed method can improve the classifier performance and cost less time. PMID:26543867

  18. Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization

    PubMed Central

    Nalluri, MadhuSudana Rao; K., Kannan; M., Manisha

    2017-01-01

    With the widespread adoption of e-Healthcare and telemedicine applications, accurate, intelligent disease diagnosis systems have been profoundly coveted. In recent years, numerous individual machine learning-based classifiers have been proposed and tested, and the fact that a single classifier cannot effectively classify and diagnose all diseases has been almost accorded with. This has seen a number of recent research attempts to arrive at a consensus using ensemble classification techniques. In this paper, a hybrid system is proposed to diagnose ailments using optimizing individual classifier parameters for two classifier techniques, namely, support vector machine (SVM) and multilayer perceptron (MLP) technique. We employ three recent evolutionary algorithms to optimize the parameters of the classifiers above, leading to six alternative hybrid disease diagnosis systems, also referred to as hybrid intelligent systems (HISs). Multiple objectives, namely, prediction accuracy, sensitivity, and specificity, have been considered to assess the efficacy of the proposed hybrid systems with existing ones. The proposed model is evaluated on 11 benchmark datasets, and the obtained results demonstrate that our proposed hybrid diagnosis systems perform better in terms of disease prediction accuracy, sensitivity, and specificity. Pertinent statistical tests were carried out to substantiate the efficacy of the obtained results. PMID:29065626

  19. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.

    PubMed

    Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram

    2015-08-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

  20. Prediction of antiepileptic drug treatment outcomes using machine learning.

    PubMed

    Colic, Sinisa; Wither, Robert G; Lang, Min; Zhang, Liang; Eubanks, James H; Bardakjian, Berj L

    2017-02-01

    Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC ) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  1. Prediction of antiepileptic drug treatment outcomes using machine learning

    NASA Astrophysics Data System (ADS)

    Colic, Sinisa; Wither, Robert G.; Lang, Min; Zhang, Liang; Eubanks, James H.; Bardakjian, Berj L.

    2017-02-01

    Objective. Antiepileptic drug (AED) treatments produce inconsistent outcomes, often necessitating patients to go through several drug trials until a successful treatment can be found. This study proposes the use of machine learning techniques to predict epilepsy treatment outcomes of commonly used AEDs. Approach. Machine learning algorithms were trained and evaluated using features obtained from intracranial electroencephalogram (iEEG) recordings of the epileptiform discharges observed in Mecp2-deficient mouse model of the Rett Syndrome. Previous work have linked the presence of cross-frequency coupling (I CFC) of the delta (2-5 Hz) rhythm with the fast ripple (400-600 Hz) rhythm in epileptiform discharges. Using the I CFC to label post-treatment outcomes we compared support vector machines (SVMs) and random forest (RF) machine learning classifiers for providing likelihood scores of successful treatment outcomes. Main results. (a) There was heterogeneity in AED treatment outcomes, (b) machine learning techniques could be used to rank the efficacy of AEDs by estimating likelihood scores for successful treatment outcome, (c) I CFC features yielded the most effective a priori identification of appropriate AED treatment, and (d) both classifiers performed comparably. Significance. Machine learning approaches yielded predictions of successful drug treatment outcomes which in turn could reduce the burdens of drug trials and lead to substantial improvements in patient quality of life.

  2. Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients.

    PubMed

    Park, Eunjeong; Chang, Hyuk-Jae; Nam, Hyo Suk

    2017-04-18

    The pronator drift test (PDT), a neurological examination, is widely used in clinics to measure motor weakness of stroke patients. The aim of this study was to develop a PDT tool with machine learning classifiers to detect stroke symptoms based on quantification of proximal arm weakness using inertial sensors and signal processing. We extracted features of drift and pronation from accelerometer signals of wearable devices on the inner wrists of 16 stroke patients and 10 healthy controls. Signal processing and feature selection approach were applied to discriminate PDT features used to classify stroke patients. A series of machine learning techniques, namely support vector machine (SVM), radial basis function network (RBFN), and random forest (RF), were implemented to discriminate stroke patients from controls with leave-one-out cross-validation. Signal processing by the PDT tool extracted a total of 12 PDT features from sensors. Feature selection abstracted the major attributes from the 12 PDT features to elucidate the dominant characteristics of proximal weakness of stroke patients using machine learning classification. Our proposed PDT classifiers had an area under the receiver operating characteristic curve (AUC) of .806 (SVM), .769 (RBFN), and .900 (RF) without feature selection, and feature selection improves the AUCs to .913 (SVM), .956 (RBFN), and .975 (RF), representing an average performance enhancement of 15.3%. Sensors and machine learning methods can reliably detect stroke signs and quantify proximal arm weakness. Our proposed solution will facilitate pervasive monitoring of stroke patients. ©Eunjeong Park, Hyuk-Jae Chang, Hyo Suk Nam. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.04.2017.

  3. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

    PubMed

    Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.

  4. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    PubMed

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-01-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform.

  5. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology.

    PubMed

    Zhang, Jieru; Ju, Ying; Lu, Huijuan; Xuan, Ping; Zou, Quan

    2016-01-01

    Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  6. Comparison of SVM RBF-NN and DT for crop and weed identification based on spectral measurement over corn fields

    USDA-ARS?s Scientific Manuscript database

    It is important to find an appropriate pattern-recognition method for in-field plant identification based on spectral measurement in order to classify the crop and weeds accurately. In this study, the method of Support Vector Machine (SVM) was evaluated and compared with two other methods, Decision ...

  7. Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine.

    PubMed

    Linn, Kristin A; Gaonkar, Bilwaj; Satterthwaite, Theodore D; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T

    2016-05-15

    Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We study our proposed approach in the context of group classification using structural MRI data. We show that control-based normalization leads to better reproducibility of estimated multivariate disease patterns and improves the classifier performance in many cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology.

    PubMed

    Heinson, Ashley I; Gunawardana, Yawwani; Moesker, Bastiaan; Hume, Carmen C Denman; Vataga, Elena; Hall, Yper; Stylianou, Elena; McShane, Helen; Williams, Ann; Niranjan, Mahesan; Woelk, Christopher H

    2017-02-01

    Reverse vaccinology (RV) is a bioinformatics approach that can predict antigens with protective potential from the protein coding genomes of bacterial pathogens for subunit vaccine design. RV has become firmly established following the development of the BEXSERO® vaccine against Neisseria meningitidis serogroup B. RV studies have begun to incorporate machine learning (ML) techniques to distinguish bacterial protective antigens (BPAs) from non-BPAs. This research contributes significantly to the RV field by using permutation analysis to demonstrate that a signal for protective antigens can be curated from published data. Furthermore, the effects of the following on an ML approach to RV were also assessed: nested cross-validation, balancing selection of non-BPAs for subcellular localization, increasing the training data, and incorporating greater numbers of protein annotation tools for feature generation. These enhancements yielded a support vector machine (SVM) classifier that could discriminate BPAs (n = 200) from non-BPAs (n = 200) with an area under the curve (AUC) of 0.787. In addition, hierarchical clustering of BPAs revealed that intracellular BPAs clustered separately from extracellular BPAs. However, no immediate benefit was derived when training SVM classifiers on data sets exclusively containing intra- or extracellular BPAs. In conclusion, this work demonstrates that ML classifiers have great utility in RV approaches and will lead to new subunit vaccines in the future.

  9. A survey of supervised machine learning models for mobile-phone based pathogen identification and classification

    NASA Astrophysics Data System (ADS)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Tseng, Derek; Benien, Parul; Ozcan, Aydogan

    2017-03-01

    Giardia lamblia causes a disease known as giardiasis, which results in diarrhea, abdominal cramps, and bloating. Although conventional pathogen detection methods used in water analysis laboratories offer high sensitivity and specificity, they are time consuming, and need experts to operate bulky equipment and analyze the samples. Here we present a field-portable and cost-effective smartphone-based waterborne pathogen detection platform that can automatically classify Giardia cysts using machine learning. Our platform enables the detection and quantification of Giardia cysts in one hour, including sample collection, labeling, filtration, and automated counting steps. We evaluated the performance of three prototypes using Giardia-spiked water samples from different sources (e.g., reagent-grade, tap, non-potable, and pond water samples). We populated a training database with >30,000 cysts and estimated our detection sensitivity and specificity using 20 different classifier models, including decision trees, nearest neighbor classifiers, support vector machines (SVMs), and ensemble classifiers, and compared their speed of training and classification, as well as predicted accuracies. Among them, cubic SVM, medium Gaussian SVM, and bagged-trees were the most promising classifier types with accuracies of 94.1%, 94.2%, and 95%, respectively; we selected the latter as our preferred classifier for the detection and enumeration of Giardia cysts that are imaged using our mobile-phone fluorescence microscope. Without the need for any experts or microbiologists, this field-portable pathogen detection platform can present a useful tool for water quality monitoring in resource-limited-settings.

  10. Detecting falls with wearable sensors using machine learning techniques.

    PubMed

    Özdemir, Ahmet Turan; Barshan, Billur

    2014-06-18

    Falls are a serious public health problem and possibly life threatening for people in fall risk groups. We develop an automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions. Each unit comprises three tri-axial devices (accelerometer, gyroscope, and magnetometer/compass). Fourteen volunteers perform a standardized set of movements including 20 voluntary falls and 16 activities of daily living (ADLs), resulting in a large dataset with 2520 trials. To reduce the computational complexity of training and testing the classifiers, we focus on the raw data for each sensor in a 4 s time window around the point of peak total acceleration of the waist sensor, and then perform feature extraction and reduction. Most earlier studies on fall detection employ rule-based approaches that rely on simple thresholding of the sensor outputs. We successfully distinguish falls from ADLs using six machine learning techniques (classifiers): the k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural networks (ANNs). We compare the performance and the computational complexity of the classifiers and achieve the best results with the k-NN classifier and LSM, with sensitivity, specificity, and accuracy all above 99%. These classifiers also have acceptable computational requirements for training and testing. Our approach would be applicable in real-world scenarios where data records of indeterminate length, containing multiple activities in sequence, are recorded.

  11. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.

    PubMed

    An, Ji-Yong; You, Zhu-Hong; Meng, Fan-Rong; Xu, Shu-Juan; Wang, Yin

    2016-05-18

    Protein-Protein Interactions (PPIs) play essential roles in most cellular processes. Knowledge of PPIs is becoming increasingly more important, which has prompted the development of technologies that are capable of discovering large-scale PPIs. Although many high-throughput biological technologies have been proposed to detect PPIs, there are unavoidable shortcomings, including cost, time intensity, and inherently high false positive and false negative rates. For the sake of these reasons, in silico methods are attracting much attention due to their good performances in predicting PPIs. In this paper, we propose a novel computational method known as RVM-AB that combines the Relevance Vector Machine (RVM) model and Average Blocks (AB) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the AB feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We performed five-fold cross-validation experiments on yeast and Helicobacter pylori datasets, and achieved very high accuracies of 92.98% and 95.58% respectively, which is significantly better than previous works. In addition, we also obtained good prediction accuracies of 88.31%, 89.46%, 91.08%, 91.55%, and 94.81% on other five independent datasets C. elegans, M. musculus, H. sapiens, H. pylori, and E. coli for cross-species prediction. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM-AB method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool. To facilitate extensive studies for future proteomics research, we developed a freely available web server called RVMAB-PPI in Hypertext Preprocessor (PHP) for predicting PPIs. The web server including source code and the datasets are available at http://219.219.62.123:8888/ppi_ab/.

  12. MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V3)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day].

  13. Machine Learning Methods for Attack Detection in the Smart Grid.

    PubMed

    Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent

    2016-08-01

    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

  14. CNN universal machine as classificaton platform: an art-like clustering algorithm.

    PubMed

    Bálya, David

    2003-12-01

    Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.

  15. A Machine-Learning Algorithm Toward Color Analysis for Chronic Liver Disease Classification, Employing Ultrasound Shear Wave Elastography.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C

    2017-09-01

    The purpose of the present study was to employ a computer-aided diagnosis system that classifies chronic liver disease (CLD) using ultrasound shear wave elastography (SWE) imaging, with a stiffness value-clustering and machine-learning algorithm. A clinical data set of 126 patients (56 healthy controls, 70 with CLD) was analyzed. First, an RGB-to-stiffness inverse mapping technique was employed. A five-cluster segmentation was then performed associating corresponding different-color regions with certain stiffness value ranges acquired from the SWE manufacturer-provided color bar. Subsequently, 35 features (7 for each cluster), indicative of physical characteristics existing within the SWE image, were extracted. A stepwise regression analysis toward feature reduction was used to derive a reduced feature subset that was fed into the support vector machine classification algorithm to classify CLD from healthy cases. The highest accuracy in classification of healthy to CLD subject discrimination from the support vector machine model was 87.3% with sensitivity and specificity values of 93.5% and 81.2%, respectively. Receiver operating characteristic curve analysis gave an area under the curve value of 0.87 (confidence interval: 0.77-0.92). A machine-learning algorithm that quantifies color information in terms of stiffness values from SWE images and discriminates CLD from healthy cases is introduced. New objective parameters and criteria for CLD diagnosis employing SWE images provided by the present study can be considered an important step toward color-based interpretation, and could assist radiologists' diagnostic performance on a daily basis after being installed in a PC and employed retrospectively, immediately after the examination. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. An exploratory study of a text classification framework for Internet-based surveillance of emerging epidemics

    PubMed Central

    Torii, Manabu; Yin, Lanlan; Nguyen, Thang; Mazumdar, Chand T.; Liu, Hongfang; Hartley, David M.; Nelson, Noele P.

    2014-01-01

    Purpose Early detection of infectious disease outbreaks is crucial to protecting the public health of a society. Online news articles provide timely information on disease outbreaks worldwide. In this study, we investigated automated detection of articles relevant to disease outbreaks using machine learning classifiers. In a real-life setting, it is expensive to prepare a training data set for classifiers, which usually consists of manually labeled relevant and irrelevant articles. To mitigate this challenge, we examined the use of randomly sampled unlabeled articles as well as labeled relevant articles. Methods Naïve Bayes and Support Vector Machine (SVM) classifiers were trained on 149 relevant and 149 or more randomly sampled unlabeled articles. Diverse classifiers were trained by varying the number of sampled unlabeled articles and also the number of word features. The trained classifiers were applied to 15 thousand articles published over 15 days. Top-ranked articles from each classifier were pooled and the resulting set of 1337 articles was reviewed by an expert analyst to evaluate the classifiers. Results Daily averages of areas under ROC curves (AUCs) over the 15-day evaluation period were 0.841 and 0.836, respectively, for the naïve Bayes and SVM classifier. We referenced a database of disease outbreak reports to confirm that this evaluation data set resulted from the pooling method indeed covered incidents recorded in the database during the evaluation period. Conclusions The proposed text classification framework utilizing randomly sampled unlabeled articles can facilitate a cost-effective approach to training machine learning classifiers in a real-life Internet-based biosurveillance project. We plan to examine this framework further using larger data sets and using articles in non-English languages. PMID:21134784

  17. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    PubMed Central

    2013-01-01

    Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200

  18. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine.

    PubMed

    Li, Yunhai; Lee, Kee Khoon; Walsh, Sean; Smith, Caroline; Hadingham, Sophie; Sorefan, Karim; Cawley, Gavin; Bevan, Michael W

    2006-03-01

    Establishing transcriptional regulatory networks by analysis of gene expression data and promoter sequences shows great promise. We developed a novel promoter classification method using a Relevance Vector Machine (RVM) and Bayesian statistical principles to identify discriminatory features in the promoter sequences of genes that can correctly classify transcriptional responses. The method was applied to microarray data obtained from Arabidopsis seedlings treated with glucose or abscisic acid (ABA). Of those genes showing >2.5-fold changes in expression level, approximately 70% were correctly predicted as being up- or down-regulated (under 10-fold cross-validation), based on the presence or absence of a small set of discriminative promoter motifs. Many of these motifs have known regulatory functions in sugar- and ABA-mediated gene expression. One promoter motif that was not known to be involved in glucose-responsive gene expression was identified as the strongest classifier of glucose-up-regulated gene expression. We show it confers glucose-responsive gene expression in conjunction with another promoter motif, thus validating the classification method. We were able to establish a detailed model of glucose and ABA transcriptional regulatory networks and their interactions, which will help us to understand the mechanisms linking metabolism with growth in Arabidopsis. This study shows that machine learning strategies coupled to Bayesian statistical methods hold significant promise for identifying functionally significant promoter sequences.

  19. Deep neural mapping support vector machines.

    PubMed

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  1. Machine learning approach to automatic exudate detection in retinal images from diabetic patients

    NASA Astrophysics Data System (ADS)

    Sopharak, Akara; Dailey, Matthew N.; Uyyanonvara, Bunyarit; Barman, Sarah; Williamson, Tom; Thet Nwe, Khine; Aye Moe, Yin

    2010-01-01

    Exudates are among the preliminary signs of diabetic retinopathy, a major cause of vision loss in diabetic patients. Early detection of exudates could improve patients' chances to avoid blindness. In this paper, we present a series of experiments on feature selection and exudates classification using naive Bayes and support vector machine (SVM) classifiers. We first fit the naive Bayes model to a training set consisting of 15 features extracted from each of 115,867 positive examples of exudate pixels and an equal number of negative examples. We then perform feature selection on the naive Bayes model, repeatedly removing features from the classifier, one by one, until classification performance stops improving. To find the best SVM, we begin with the best feature set from the naive Bayes classifier, and repeatedly add the previously-removed features to the classifier. For each combination of features, we perform a grid search to determine the best combination of hyperparameters ν (tolerance for training errors) and γ (radial basis function width). We compare the best naive Bayes and SVM classifiers to a baseline nearest neighbour (NN) classifier using the best feature sets from both classifiers. We find that the naive Bayes and SVM classifiers perform better than the NN classifier. The overall best sensitivity, specificity, precision, and accuracy are 92.28%, 98.52%, 53.05%, and 98.41%, respectively.

  2. Characterization and classification of seven citrus herbs by liquid chromatography-quadrupole time-of-flight mass spectrometry and genetic algorithm optimized support vector machines.

    PubMed

    Duan, Li; Guo, Long; Liu, Ke; Liu, E-Hu; Li, Ping

    2014-04-25

    Citrus herbs have been widely used in traditional medicine and cuisine in China and other countries since the ancient time. However, the authentication and quality control of Citrus herbs has always been a challenging task due to their similar morphological characteristics and the diversity of the multi-components existed in the complicated matrix. In the present investigation, we developed a novel strategy to characterize and classify seven Citrus herbs based on chromatographic analysis and chemometric methods. Firstly, the chemical constituents in seven Citrus herbs were globally characterized by liquid chromatography combined with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Based on their retention time, UV spectra and MS fragmentation behavior, a total of 75 compounds were identified or tentatively characterized in these herbal medicines. Secondly, a segmental monitoring method based on LC-variable wavelength detection was developed for simultaneous quantification of ten marker compounds in these Citrus herbs. Thirdly, based on the contents of the ten analytes, genetic algorithm optimized support vector machines (GA-SVM) was employed to differentiate and classify the 64 samples covering these seven herbs. The obtained classifier showed good prediction performance and the overall prediction accuracy reached 96.88%. The proposed strategy is expected to provide new insight for authentication and quality control of traditional herbs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China

    PubMed Central

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-01-01

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%–19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides. PMID:27187430

  4. Comparative evaluation of support vector machine classification for computer aided detection of breast masses in mammography

    NASA Astrophysics Data System (ADS)

    Lesniak, J. M.; Hupse, R.; Blanc, R.; Karssemeijer, N.; Székely, G.

    2012-08-01

    False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.

  5. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China.

    PubMed

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-05-11

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%-19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.

  6. Comparisons and Selections of Features and Classifiers for Short Text Classification

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Zhou, Zhi; Jin, Shan; Liu, Debin; Lu, Mi

    2017-10-01

    Short text is considerably different from traditional long text documents due to its shortness and conciseness, which somehow hinders the applications of conventional machine learning and data mining algorithms in short text classification. According to traditional artificial intelligence methods, we divide short text classification into three steps, namely preprocessing, feature selection and classifier comparison. In this paper, we have illustrated step-by-step how we approach our goals. Specifically, in feature selection, we compared the performance and robustness of the four methods of one-hot encoding, tf-idf weighting, word2vec and paragraph2vec, and in the classification part, we deliberately chose and compared Naive Bayes, Logistic Regression, Support Vector Machine, K-nearest Neighbor and Decision Tree as our classifiers. Then, we compared and analysed the classifiers horizontally with each other and vertically with feature selections. Regarding the datasets, we crawled more than 400,000 short text files from Shanghai and Shenzhen Stock Exchanges and manually labeled them into two classes, the big and the small. There are eight labels in the big class, and 59 labels in the small class.

  7. Developing a radiomics framework for classifying non-small cell lung carcinoma subtypes

    NASA Astrophysics Data System (ADS)

    Yu, Dongdong; Zang, Yali; Dong, Di; Zhou, Mu; Gevaert, Olivier; Fang, Mengjie; Shi, Jingyun; Tian, Jie

    2017-03-01

    Patient-targeted treatment of non-small cell lung carcinoma (NSCLC) has been well documented according to the histologic subtypes over the past decade. In parallel, recent development of quantitative image biomarkers has recently been highlighted as important diagnostic tools to facilitate histological subtype classification. In this study, we present a radiomics analysis that classifies the adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). We extract 52-dimensional, CT-based features (7 statistical features and 45 image texture features) to represent each nodule. We evaluate our approach on a clinical dataset including 324 ADCs and 110 SqCCs patients with CT image scans. Classification of these features is performed with four different machine-learning classifiers including Support Vector Machines with Radial Basis Function kernel (RBF-SVM), Random forest (RF), K-nearest neighbor (KNN), and RUSBoost algorithms. To improve the classifiers' performance, optimal feature subset is selected from the original feature set by using an iterative forward inclusion and backward eliminating algorithm. Extensive experimental results demonstrate that radiomics features achieve encouraging classification results on both complete feature set (AUC=0.89) and optimal feature subset (AUC=0.91).

  8. Quantitative change of EEG and respiration signals during mindfulness meditation.

    PubMed

    Ahani, Asieh; Wahbeh, Helane; Nezamfar, Hooman; Miller, Meghan; Erdogmus, Deniz; Oken, Barry

    2014-05-14

    This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies.

  9. Quantitative change of EEG and respiration signals during mindfulness meditation

    PubMed Central

    2014-01-01

    Background This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. Methods EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Results Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Conclusion Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies. PMID:24939519

  10. Health Problems Discovery from Motion-Capture Data of Elderly

    NASA Astrophysics Data System (ADS)

    Pogorelc, B.; Gams, M.

    Rapid aging of the population of the developed countries could exceed the society's capacity for taking care for them. In order to help solving this problem, we propose a system for automatic discovery of health problems from motion-capture data of gait of elderly. The gait of the user is captured with the motion capture system, which consists of tags attached to the body and sensors situated in the apartment. Position of the tags is acquired by the sensors and the resulting time series of position coordinates are analyzed with machine learning algorithms in order to identify the specific health problem. We propose novel features for training a machine learning classifier that classifies the user's gait into: i) normal, ii) with hemiplegia, iii) with Parkinson's disease, iv) with pain in the back and v) with pain in the leg. Results show that naive Bayes needs more tags and less noise to reach classification accuracy of 98 % than support vector machines for 99 %.

  11. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Steven

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robustmore » principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.« less

  12. Brain-machine interfaces for assistive smart homes: A feasibility study with wearable near-infrared spectroscopy.

    PubMed

    Ogawa, Takeshi; Hirayama, Jun-Ichiro; Gupta, Pankaj; Moriya, Hiroki; Yamaguchi, Shumpei; Ishikawa, Akihiro; Inoue, Yoshihiro; Kawanabe, Motoaki; Ishii, Shin

    2015-08-01

    Smart houses for elderly or physically challenged people need a method to understand residents' intentions during their daily-living behaviors. To explore a new possibility, we here developed a novel brain-machine interface (BMI) system integrated with an experimental smart house, based on a prototype of a wearable near-infrared spectroscopy (NIRS) device, and verified the system in a specific task of controlling of the house's equipments with BMI. We recorded NIRS signals of three participants during typical daily-living actions (DLAs), and classified them by linear support vector machine. In our off-line analysis, four DLAs were classified at about 70% mean accuracy, significantly above the chance level of 25%, in every participant. In an online demonstration in the real smart house, one participant successfully controlled three target appliances by BMI at 81.3% accuracy. Thus we successfully demonstrated the feasibility of using NIRS-BMI in real smart houses, which will possibly enhance new assistive smart-home technologies.

  13. Wavelet images and Chou's pseudo amino acid composition for protein classification.

    PubMed

    Nanni, Loris; Brahnam, Sheryl; Lumini, Alessandra

    2012-08-01

    The last decade has seen an explosion in the collection of protein data. To actualize the potential offered by this wealth of data, it is important to develop machine systems capable of classifying and extracting features from proteins. Reliable machine systems for protein classification offer many benefits, including the promise of finding novel drugs and vaccines. In developing our system, we analyze and compare several feature extraction methods used in protein classification that are based on the calculation of texture descriptors starting from a wavelet representation of the protein. We then feed these texture-based representations of the protein into an Adaboost ensemble of neural network or a support vector machine classifier. In addition, we perform experiments that combine our feature extraction methods with a standard method that is based on the Chou's pseudo amino acid composition. Using several datasets, we show that our best approach outperforms standard methods. The Matlab code of the proposed protein descriptors is available at http://bias.csr.unibo.it/nanni/wave.rar .

  14. Detection of correct and incorrect measurements in real-time continuous glucose monitoring systems by applying a postprocessing support vector machine.

    PubMed

    Leal, Yenny; Gonzalez-Abril, Luis; Lorencio, Carol; Bondia, Jorge; Vehi, Josep

    2013-07-01

    Support vector machines (SVMs) are an attractive option for detecting correct and incorrect measurements in real-time continuous glucose monitoring systems (RTCGMSs), because their learning mechanism can introduce a postprocessing strategy for imbalanced datasets. The proposed SVM considers the geometric mean to obtain a more balanced performance between sensitivity and specificity. To test this approach, 23 critically ill patients receiving insulin therapy were monitored over 72 h using an RTCGMS, and a dataset of 537 samples, classified according to International Standards Organization (ISO) criteria (372 correct and 165 incorrect measurements), was obtained. The results obtained were promising for patients with septic shock or with sepsis, for which the proposed system can be considered as reliable. However, this approach cannot be considered suitable for patients without sepsis.

  15. A Support Vector Machine-Based Gender Identification Using Speech Signal

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Hwan; Kang, Sang-Ick; Kim, Deok-Hwan; Chang, Joon-Hyuk

    We propose an effective voice-based gender identification method using a support vector machine (SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model (GMM)-based method using the mel frequency cepstral coefficients (MFCC). A novel approach of incorporating a features fusion scheme based on a combination of the MFCC and the fundamental frequency is proposed with the aim of improving the performance of gender identification. Experimental results demonstrate that the gender identification performance using the SVM is significantly better than that of the GMM-based scheme. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

  16. Support Vector Machines for Hyperspectral Remote Sensing Classification

    NASA Technical Reports Server (NTRS)

    Gualtieri, J. Anthony; Cromp, R. F.

    1998-01-01

    The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new approach, and demonstrate its application to classification of an agriculture scene.

  17. Novelty Detection Classifiers in Weed Mapping: Silybum marianum Detection on UAV Multispectral Images.

    PubMed

    Alexandridis, Thomas K; Tamouridou, Afroditi Alexandra; Pantazi, Xanthoula Eirini; Lagopodi, Anastasia L; Kashefi, Javid; Ovakoglou, Georgios; Polychronos, Vassilios; Moshou, Dimitrios

    2017-09-01

    In the present study, the detection and mapping of Silybum marianum (L.) Gaertn. weed using novelty detection classifiers is reported. A multispectral camera (green-red-NIR) on board a fixed wing unmanned aerial vehicle (UAV) was employed for obtaining high-resolution images. Four novelty detection classifiers were used to identify S. marianum between other vegetation in a field. The classifiers were One Class Support Vector Machine (OC-SVM), One Class Self-Organizing Maps (OC-SOM), Autoencoders and One Class Principal Component Analysis (OC-PCA). As input features to the novelty detection classifiers, the three spectral bands and texture were used. The S. marianum identification accuracy using OC-SVM reached an overall accuracy of 96%. The results show the feasibility of effective S. marianum mapping by means of novelty detection classifiers acting on multispectral UAV imagery.

  18. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.

    PubMed

    Weng, Wei-Hung; Wagholikar, Kavishwar B; McCray, Alexa T; Szolovits, Peter; Chueh, Henry C

    2017-12-01

    The medical subdomain of a clinical note, such as cardiology or neurology, is useful content-derived metadata for developing machine learning downstream applications. To classify the medical subdomain of a note accurately, we have constructed a machine learning-based natural language processing (NLP) pipeline and developed medical subdomain classifiers based on the content of the note. We constructed the pipeline using the clinical NLP system, clinical Text Analysis and Knowledge Extraction System (cTAKES), the Unified Medical Language System (UMLS) Metathesaurus, Semantic Network, and learning algorithms to extract features from two datasets - clinical notes from Integrating Data for Analysis, Anonymization, and Sharing (iDASH) data repository (n = 431) and Massachusetts General Hospital (MGH) (n = 91,237), and built medical subdomain classifiers with different combinations of data representation methods and supervised learning algorithms. We evaluated the performance of classifiers and their portability across the two datasets. The convolutional recurrent neural network with neural word embeddings trained-medical subdomain classifier yielded the best performance measurement on iDASH and MGH datasets with area under receiver operating characteristic curve (AUC) of 0.975 and 0.991, and F1 scores of 0.845 and 0.870, respectively. Considering better clinical interpretability, linear support vector machine-trained medical subdomain classifier using hybrid bag-of-words and clinically relevant UMLS concepts as the feature representation, with term frequency-inverse document frequency (tf-idf)-weighting, outperformed other shallow learning classifiers on iDASH and MGH datasets with AUC of 0.957 and 0.964, and F1 scores of 0.932 and 0.934 respectively. We trained classifiers on one dataset, applied to the other dataset and yielded the threshold of F1 score of 0.7 in classifiers for half of the medical subdomains we studied. Our study shows that a supervised learning-based NLP approach is useful to develop medical subdomain classifiers. The deep learning algorithm with distributed word representation yields better performance yet shallow learning algorithms with the word and concept representation achieves comparable performance with better clinical interpretability. Portable classifiers may also be used across datasets from different institutions.

  19. Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment.

    PubMed

    Alahmadi, Hanin H; Shen, Yuan; Fouad, Shereen; Luft, Caroline Di B; Bentham, Peter; Kourtzi, Zoe; Tino, Peter

    2016-01-01

    Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.

  20. Component Pin Recognition Using Algorithms Based on Machine Learning

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  1. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    PubMed

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  2. Feature weighting using particle swarm optimization for learning vector quantization classifier

    NASA Astrophysics Data System (ADS)

    Dongoran, A.; Rahmadani, S.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses and proposes a method of feature weighting in classification assignments on competitive learning artificial neural network LVQ. The weighting feature method is the search for the weight of an attribute using the PSO so as to give effect to the resulting output. This method is then applied to the LVQ-Classifier and tested on the 3 datasets obtained from the UCI Machine Learning repository. Then an accuracy analysis will be generated by two approaches. The first approach using LVQ1, referred to as LVQ-Classifier and the second approach referred to as PSOFW-LVQ, is a proposed model. The result shows that the PSO algorithm is capable of finding attribute weights that increase LVQ-classifier accuracy.

  3. Automated assessment of cognitive health using smart home technologies.

    PubMed

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2013-01-01

    The goal of this work is to develop intelligent systems to monitor the wellbeing of individuals in their home environments. This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve=0.80, g-mean=0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained.

  4. Automated Assessment of Cognitive Health Using Smart Home Technologies

    PubMed Central

    Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2014-01-01

    BACKGROUND The goal of this work is to develop intelligent systems to monitor the well being of individuals in their home environments. OBJECTIVE This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. METHODS This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. RESULTS Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. CONCLUSIONS The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained. PMID:23949177

  5. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study.

    PubMed

    Mourao-Miranda, J; Reinders, A A T S; Rocha-Rego, V; Lappin, J; Rondina, J; Morgan, C; Morgan, K D; Fearon, P; Jones, P B; Doody, G A; Murray, R M; Kapur, S; Dazzan, P

    2012-05-01

    To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode. One hundred patients at their first psychotic episode and 91 healthy controls had an MRI scan. Patients were re-evaluated 6.2 years (s.d.=2.3) later, and were classified as having a continuous, episodic or intermediate illness course. Twenty-eight subjects with a continuous course were compared with 28 patients with an episodic course and with 28 healthy controls. We trained each SVM classifier independently for the following contrasts: continuous versus episodic, continuous versus healthy controls, and episodic versus healthy controls. At baseline, patients with a continuous course were already distinguishable, with significance above chance level, from both patients with an episodic course (p=0.004, sensitivity=71, specificity=68) and healthy individuals (p=0.01, sensitivity=71, specificity=61). Patients with an episodic course could not be distinguished from healthy individuals. When patients with an intermediate outcome were classified according to the discriminating pattern episodic versus continuous, 74% of those who did not develop other episodes were classified as episodic, and 65% of those who did develop further episodes were classified as continuous (p=0.035). We provide preliminary evidence of MRI application in the individualized prediction of future illness course, using a simple and automated SVM pipeline. When replicated and validated in larger groups, this could enable targeted clinical decisions based on imaging data.

  6. Ensemble based on static classifier selection for automated diagnosis of Mild Cognitive Impairment.

    PubMed

    Nanni, Loris; Lumini, Alessandra; Zaffonato, Nicolò

    2018-05-15

    Alzheimer's disease (AD) is the most common cause of neurodegenerative dementia in the elderly population. Scientific research is very active in the challenge of designing automated approaches to achieve an early and certain diagnosis. Recently an international competition among AD predictors has been organized: "A Machine learning neuroimaging challenge for automated diagnosis of Mild Cognitive Impairment" (MLNeCh). This competition is based on pre-processed sets of T1-weighted Magnetic Resonance Images (MRI) to be classified in four categories: stable AD, individuals with MCI who converted to AD, individuals with MCI who did not convert to AD and healthy controls. In this work, we propose a method to perform early diagnosis of AD, which is evaluated on MLNeCh dataset. Since the automatic classification of AD is based on the use of feature vectors of high dimensionality, different techniques of feature selection/reduction are compared in order to avoid the curse-of-dimensionality problem, then the classification method is obtained as the combination of Support Vector Machines trained using different clusters of data extracted from the whole training set. The multi-classifier approach proposed in this work outperforms all the stand-alone method tested in our experiments. The final ensemble is based on a set of classifiers, each trained on a different cluster of the training data. The proposed ensemble has the great advantage of performing well using a very reduced version of the data (the reduction factor is more than 90%). The MATLAB code for the ensemble of classifiers will be publicly available 1 to other researchers for future comparisons. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study

    PubMed Central

    Mourao-Miranda, J.; Reinders, A. A. T. S.; Rocha-Rego, V.; Lappin, J.; Rondina, J.; Morgan, C.; Morgan, K. D.; Fearon, P.; Jones, P. B.; Doody, G. A.; Murray, R. M.; Kapur, S.; Dazzan, P.

    2012-01-01

    Background To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode. Method One hundred patients at their first psychotic episode and 91 healthy controls had an MRI scan. Patients were re-evaluated 6.2 years (s.d.=2.3) later, and were classified as having a continuous, episodic or intermediate illness course. Twenty-eight subjects with a continuous course were compared with 28 patients with an episodic course and with 28 healthy controls. We trained each SVM classifier independently for the following contrasts: continuous versus episodic, continuous versus healthy controls, and episodic versus healthy controls. Results At baseline, patients with a continuous course were already distinguishable, with significance above chance level, from both patients with an episodic course (p=0.004, sensitivity=71, specificity=68) and healthy individuals (p=0.01, sensitivity=71, specificity=61). Patients with an episodic course could not be distinguished from healthy individuals. When patients with an intermediate outcome were classified according to the discriminating pattern episodic versus continuous, 74% of those who did not develop other episodes were classified as episodic, and 65% of those who did develop further episodes were classified as continuous (p=0.035). Conclusions We provide preliminary evidence of MRI application in the individualized prediction of future illness course, using a simple and automated SVM pipeline. When replicated and validated in larger groups, this could enable targeted clinical decisions based on imaging data. PMID:22059690

  8. Semi-supervised vibration-based classification and condition monitoring of compressors

    NASA Astrophysics Data System (ADS)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  9. Support Vector Machine Classification of Major Depressive Disorder Using Diffusion-Weighted Neuroimaging and Graph Theory

    PubMed Central

    Sacchet, Matthew D.; Prasad, Gautam; Foland-Ross, Lara C.; Thompson, Paul M.; Gotlib, Ian H.

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on “support vector machines” to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities. PMID:25762941

  10. Classifying Physical Morphology of Cocoa Beans Digital Images using Multiclass Ensemble Least-Squares Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lawi, Armin; Adhitya, Yudhi

    2018-03-01

    The objective of this research is to determine the quality of cocoa beans through morphology of their digital images. Samples of cocoa beans were scattered on a bright white paper under a controlled lighting condition. A compact digital camera was used to capture the images. The images were then processed to extract their morphological parameters. Classification process begins with an analysis of cocoa beans image based on morphological feature extraction. Parameters for extraction of morphological or physical feature parameters, i.e., Area, Perimeter, Major Axis Length, Minor Axis Length, Aspect Ratio, Circularity, Roundness, Ferret Diameter. The cocoa beans are classified into 4 groups, i.e.: Normal Beans, Broken Beans, Fractured Beans, and Skin Damaged Beans. The model of classification used in this paper is the Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM), a proposed improvement model of SVM using ensemble method in which the separate hyperplanes are obtained by least square approach and the multiclass procedure uses One-Against- All method. The result of our proposed model showed that the classification with morphological feature input parameters were accurately as 99.705% for the four classes, respectively.

  11. A discrete wavelet based feature extraction and hybrid classification technique for microarray data analysis.

    PubMed

    Bennet, Jaison; Ganaprakasam, Chilambuchelvan Arul; Arputharaj, Kannan

    2014-01-01

    Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN), naive Bayes, and support vector machine (SVM). Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT) and moving window technique (MWT) is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  12. Arbitrary norm support vector machines.

    PubMed

    Huang, Kaizhu; Zheng, Danian; King, Irwin; Lyu, Michael R

    2009-02-01

    Support vector machines (SVM) are state-of-the-art classifiers. Typically L2-norm or L1-norm is adopted as a regularization term in SVMs, while other norm-based SVMs, for example, the L0-norm SVM or even the L(infinity)-norm SVM, are rarely seen in the literature. The major reason is that L0-norm describes a discontinuous and nonconvex term, leading to a combinatorially NP-hard optimization problem. In this letter, motivated by Bayesian learning, we propose a novel framework that can implement arbitrary norm-based SVMs in polynomial time. One significant feature of this framework is that only a sequence of sequential minimal optimization problems needs to be solved, thus making it practical in many real applications. The proposed framework is important in the sense that Bayesian priors can be efficiently plugged into most learning methods without knowing the explicit form. Hence, this builds a connection between Bayesian learning and the kernel machines. We derive the theoretical framework, demonstrate how our approach works on the L0-norm SVM as a typical example, and perform a series of experiments to validate its advantages. Experimental results on nine benchmark data sets are very encouraging. The implemented L0-norm is competitive with or even better than the standard L2-norm SVM in terms of accuracy but with a reduced number of support vectors, -9.46% of the number on average. When compared with another sparse model, the relevance vector machine, our proposed algorithm also demonstrates better sparse properties with a training speed over seven times faster.

  13. TU-H-CAMPUS-JeP2-03: Machine-Learning-Based Delineation Framework of GTV Regions of Solid and Ground Glass Opacity Lung Tumors at Datasets of Planning CT and PET/CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikushima, K; Arimura, H; Jin, Z

    Purpose: In radiation treatment planning, delineation of gross tumor volume (GTV) is very important, because the GTVs affect the accuracies of radiation therapy procedure. To assist radiation oncologists in the delineation of GTV regions while treatment planning for lung cancer, we have proposed a machine-learning-based delineation framework of GTV regions of solid and ground glass opacity (GGO) lung tumors following by optimum contour selection (OCS) method. Methods: Our basic idea was to feed voxel-based image features around GTV contours determined by radiation oncologists into a machine learning classifier in the training step, after which the classifier produced the degree ofmore » GTV for each voxel in the testing step. Ten data sets of planning CT and PET/CT images were selected for this study. The support vector machine (SVM), which learned voxel-based features which include voxel value and magnitudes of image gradient vector that obtained from each voxel in the planning CT and PET/CT images, extracted initial GTV regions. The final GTV regions were determined using the OCS method that was able to select a global optimum object contour based on multiple active delineations with a level set method around the GTV. To evaluate the results of proposed framework for ten cases (solid:6, GGO:4), we used the three-dimensional Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs delineated by radiation oncologists and the proposed framework. Results: The proposed method achieved an average three-dimensional DSC of 0.81 for ten lung cancer patients, while a standardized uptake value-based method segmented GTV regions with the DSC of 0.43. The average DSCs for solid and GGO were 0.84 and 0.76, respectively, obtained by the proposed framework. Conclusion: The proposed framework with the support vector machine may be useful for assisting radiation oncologists in delineating solid and GGO lung tumors.« less

  14. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes.

  15. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity complexes. PMID:26681483

  16. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China

    PubMed Central

    Hao, Pengyu; Wang, Li; Niu, Zheng

    2015-01-01

    A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern. PMID:26360597

  17. The assisted prediction modelling frame with hybridisation and ensemble for business risk forecasting and an implementation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie

    2015-08-01

    The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.

  18. Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers

    PubMed Central

    Racette, Lyne; Chiou, Christine Y.; Hao, Jiucang; Bowd, Christopher; Goldbaum, Michael H.; Zangwill, Linda M.; Lee, Te-Won; Weinreb, Robert N.; Sample, Pamela A.

    2009-01-01

    Purpose To investigate whether combining optic disc topography and short-wavelength automated perimetry (SWAP) data improves the diagnostic accuracy of relevance vector machine (RVM) classifiers for detecting glaucomatous eyes compared to using each test alone. Methods One eye of 144 glaucoma patients and 68 healthy controls from the Diagnostic Innovations in Glaucoma Study were included. RVM were trained and tested with cross-validation on optimized (backward elimination) SWAP features (thresholds plus age; pattern deviation (PD); total deviation (TD)) and on Heidelberg Retina Tomograph II (HRT) optic disc topography features, independently and in combination. RVM performance was also compared to two HRT linear discriminant functions (LDF) and to SWAP mean deviation (MD) and pattern standard deviation (PSD). Classifier performance was measured by the area under the receiver operating characteristic curves (AUROCs) generated for each feature set and by the sensitivities at set specificities of 75%, 90% and 96%. Results RVM trained on combined HRT and SWAP thresholds plus age had significantly higher AUROC (0.93) than RVM trained on HRT (0.88) and SWAP (0.76) alone. AUROCs for the SWAP global indices (MD: 0.68; PSD: 0.72) offered no advantage over SWAP thresholds plus age, while the LDF AUROCs were significantly lower than RVM trained on the combined SWAP and HRT feature set and on HRT alone feature set. Conclusions Training RVM on combined optimized HRT and SWAP data improved diagnostic accuracy compared to training on SWAP and HRT parameters alone. Future research may identify other combinations of tests and classifiers that can also improve diagnostic accuracy. PMID:19528827

  19. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT.

    PubMed

    Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel

    2010-02-01

    To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.

  20. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    PubMed Central

    2010-01-01

    Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480

  1. Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy.

    PubMed

    Ranjith, G; Parvathy, R; Vikas, V; Chandrasekharan, Kesavadas; Nair, Suresh

    2015-04-01

    With the advent of new imaging modalities, radiologists are faced with handling increasing volumes of data for diagnosis and treatment planning. The use of automated and intelligent systems is becoming essential in such a scenario. Machine learning, a branch of artificial intelligence, is increasingly being used in medical image analysis applications such as image segmentation, registration and computer-aided diagnosis and detection. Histopathological analysis is currently the gold standard for classification of brain tumors. The use of machine learning algorithms along with extraction of relevant features from magnetic resonance imaging (MRI) holds promise of replacing conventional invasive methods of tumor classification. The aim of the study is to classify gliomas into benign and malignant types using MRI data. Retrospective data from 28 patients who were diagnosed with glioma were used for the analysis. WHO Grade II (low-grade astrocytoma) was classified as benign while Grade III (anaplastic astrocytoma) and Grade IV (glioblastoma multiforme) were classified as malignant. Features were extracted from MR spectroscopy. The classification was done using four machine learning algorithms: multilayer perceptrons, support vector machine, random forest and locally weighted learning. Three of the four machine learning algorithms gave an area under ROC curve in excess of 0.80. Random forest gave the best performance in terms of AUC (0.911) while sensitivity was best for locally weighted learning (86.1%). The performance of different machine learning algorithms in the classification of gliomas is promising. An even better performance may be expected by integrating features extracted from other MR sequences. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.

    PubMed

    Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G

    2017-09-01

    To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.

  3. Onboard Classifiers for Science Event Detection on a Remote Sensing Spacecraft

    NASA Technical Reports Server (NTRS)

    Castano, Rebecca; Mazzoni, Dominic; Tang, Nghia; Greeley, Ron; Doggett, Thomas; Cichy, Ben; Chien, Steve; Davies, Ashley

    2006-01-01

    Typically, data collected by a spacecraft is downlinked to Earth and pre-processed before any analysis is performed. We have developed classifiers that can be used onboard a spacecraft to identify high priority data for downlink to Earth, providing a method for maximizing the use of a potentially bandwidth limited downlink channel. Onboard analysis can also enable rapid reaction to dynamic events, such as flooding, volcanic eruptions or sea ice break-up. Four classifiers were developed to identify cryosphere events using hyperspectral images. These classifiers include a manually constructed classifier, a Support Vector Machine (SVM), a Decision Tree and a classifier derived by searching over combinations of thresholded band ratios. Each of the classifiers was designed to run in the computationally constrained operating environment of the spacecraft. A set of scenes was hand-labeled to provide training and testing data. Performance results on the test data indicate that the SVM and manual classifiers outperformed the Decision Tree and band-ratio classifiers with the SVM yielding slightly better classifications than the manual classifier.

  4. An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection.

    PubMed

    Putra, I Putu Edy Suardiyana; Brusey, James; Gaura, Elena; Vesilo, Rein

    2017-12-22

    The fixed-size non-overlapping sliding window (FNSW) and fixed-size overlapping sliding window (FOSW) approaches are the most commonly used data-segmentation techniques in machine learning-based fall detection using accelerometer sensors. However, these techniques do not segment by fall stages (pre-impact, impact, and post-impact) and thus useful information is lost, which may reduce the detection rate of the classifier. Aligning the segment with the fall stage is difficult, as the segment size varies. We propose an event-triggered machine learning (EvenT-ML) approach that aligns each fall stage so that the characteristic features of the fall stages are more easily recognized. To evaluate our approach, two publicly accessible datasets were used. Classification and regression tree (CART), k -nearest neighbor ( k -NN), logistic regression (LR), and the support vector machine (SVM) were used to train the classifiers. EvenT-ML gives classifier F-scores of 98% for a chest-worn sensor and 92% for a waist-worn sensor, and significantly reduces the computational cost compared with the FNSW- and FOSW-based approaches, with reductions of up to 8-fold and 78-fold, respectively. EvenT-ML achieves a significantly better F-score than existing fall detection approaches. These results indicate that aligning feature segments with fall stages significantly increases the detection rate and reduces the computational cost.

  5. A new discriminative kernel from probabilistic models.

    PubMed

    Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert

    2002-10-01

    Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.

  6. Semi-supervised protein subcellular localization.

    PubMed

    Xu, Qian; Hu, Derek Hao; Xue, Hong; Yu, Weichuan; Yang, Qiang

    2009-01-30

    Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational method. The location information can indicate key functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the prediction of protein function and genome annotation, as well as the identification of drug targets. Computational methods based on machine learning, such as support vector machine approaches, have already been widely used in the prediction of protein subcellular localization. However, a major drawback of these machine learning-based approaches is that a large amount of data should be labeled in order to let the prediction system learn a classifier of good generalization ability. However, in real world cases, it is laborious, expensive and time-consuming to experimentally determine the subcellular localization of a protein and prepare instances of labeled data. In this paper, we present an approach based on a new learning framework, semi-supervised learning, which can use much fewer labeled instances to construct a high quality prediction model. We construct an initial classifier using a small set of labeled examples first, and then use unlabeled instances to refine the classifier for future predictions. Experimental results show that our methods can effectively reduce the workload for labeling data using the unlabeled data. Our method is shown to enhance the state-of-the-art prediction results of SVM classifiers by more than 10%.

  7. Face recognition using total margin-based adaptive fuzzy support vector machines.

    PubMed

    Liu, Yi-Hung; Chen, Yen-Ting

    2007-01-01

    This paper presents a new classifier called total margin-based adaptive fuzzy support vector machines (TAF-SVM) that deals with several problems that may occur in support vector machines (SVMs) when applied to the face recognition. The proposed TAF-SVM not only solves the overfitting problem resulted from the outlier with the approach of fuzzification of the penalty, but also corrects the skew of the optimal separating hyperplane due to the very imbalanced data sets by using different cost algorithm. In addition, by introducing the total margin algorithm to replace the conventional soft margin algorithm, a lower generalization error bound can be obtained. Those three functions are embodied into the traditional SVM so that the TAF-SVM is proposed and reformulated in both linear and nonlinear cases. By using two databases, the Chung Yuan Christian University (CYCU) multiview and the facial recognition technology (FERET) face databases, and using the kernel Fisher's discriminant analysis (KFDA) algorithm to extract discriminating face features, experimental results show that the proposed TAF-SVM is superior to SVM in terms of the face-recognition accuracy. The results also indicate that the proposed TAF-SVM can achieve smaller error variances than SVM over a number of tests such that better recognition stability can be obtained.

  8. Detection of surface cracking in steel pipes based on vibration data using a multi-class support vector machine classifier

    NASA Astrophysics Data System (ADS)

    Mustapha, S.; Braytee, A.; Ye, L.

    2017-04-01

    In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.

  9. An ensemble of dissimilarity based classifiers for Mackerel gender determination

    NASA Astrophysics Data System (ADS)

    Blanco, A.; Rodriguez, R.; Martinez-Maranon, I.

    2014-03-01

    Mackerel is an infravalored fish captured by European fishing vessels. A manner to add value to this specie can be achieved by trying to classify it attending to its sex. Colour measurements were performed on Mackerel females and males (fresh and defrozen) extracted gonads to obtain differences between sexes. Several linear and non linear classifiers such as Support Vector Machines (SVM), k Nearest Neighbors (k-NN) or Diagonal Linear Discriminant Analysis (DLDA) can been applied to this problem. However, theyare usually based on Euclidean distances that fail to reflect accurately the sample proximities. Classifiers based on non-Euclidean dissimilarities misclassify a different set of patterns. We combine different kind of dissimilarity based classifiers. The diversity is induced considering a set of complementary dissimilarities for each model. The experimental results suggest that our algorithm helps to improve classifiers based on a single dissimilarity.

  10. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees.

    PubMed

    Anam, Khairul; Al-Jumaily, Adel

    2017-01-01

    The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input weights randomly and output weights analytically. Therefore, it can accelerate the training time of SLFNs. In addition to the classifier evaluation, this paper evaluates various feature combinations to improve the performance of M-PR and investigate some feature projections to improve the class separability of the features. Different from other studies on the implementation of ELM in the myoelectric controller, this paper presents a complete and thorough investigation of various types of ELMs including the node-based and kernel-based ELM. Furthermore, this paper provides comparisons of ELMs and other well-known classifiers such as linear discriminant analysis (LDA), k-nearest neighbour (kNN), support vector machine (SVM) and least-square SVM (LS-SVM). The experimental results show the most accurate ELM classifier is radial basis function ELM (RBF-ELM). The comparison of RBF-ELM and other well-known classifiers shows that RBF-ELM is as accurate as SVM and LS-SVM but faster than the SVM family; it is superior to LDA and kNN. The experimental results also indicate that the accuracy gap of the M-PR on the amputees and non-amputees is not too much with the accuracy of 98.55% on amputees and 99.5% on the non-amputees using six electromyography (EMG) channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    PubMed

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves monitored at post-veraison and harvest was also built up, reaching a 77.08% of correctly classified samples. The outcomes obtained demonstrate the capability of using a reliable method for fast, in-field, non-destructive grapevine varietal classification that could be very useful in viticulture and wine industry, either global or site-specific.

  12. Cervical cancer survival prediction using hybrid of SMOTE, CART and smooth support vector machine

    NASA Astrophysics Data System (ADS)

    Purnami, S. W.; Khasanah, P. M.; Sumartini, S. H.; Chosuvivatwong, V.; Sriplung, H.

    2016-04-01

    According to the WHO, every two minutes there is one patient who died from cervical cancer. The high mortality rate is due to the lack of awareness of women for early detection. There are several factors that supposedly influence the survival of cervical cancer patients, including age, anemia status, stage, type of treatment, complications and secondary disease. This study wants to classify/predict cervical cancer survival based on those factors. Various classifications methods: classification and regression tree (CART), smooth support vector machine (SSVM), three order spline SSVM (TSSVM) were used. Since the data of cervical cancer are imbalanced, synthetic minority oversampling technique (SMOTE) is used for handling imbalanced dataset. Performances of these methods are evaluated using accuracy, sensitivity and specificity. Results of this study show that balancing data using SMOTE as preprocessing can improve performance of classification. The SMOTE-SSVM method provided better result than SMOTE-TSSVM and SMOTE-CART.

  13. Cosmic string detection with tree-based machine learning

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-07-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9'-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  14. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine.

    PubMed

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research.

  15. Cosmic String Detection with Tree-Based Machine Learning

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-05-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9΄-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  16. Detection of periods of food intake using Support Vector Machines.

    PubMed

    Lopez-Meyer, Paulo; Schuckers, Stephanie; Makeyev, Oleksandr; Sazonov, Edward

    2010-01-01

    Studies of obesity and eating disorders need objective tools of Monitoring of Ingestive Behavior (MIB) that can detect and characterize food intake. In this paper we describe detection of food intake by a Support Vector Machine classifier trained on time history of chews and swallows. The training was performed on data collected from 18 subjects in 72 experiments involving eating and other activities (for example, talking). The highest accuracy of detecting food intake (94%) was achieved in configuration where both chews and swallows were used as predictors. Using only swallowing as a predictor resulted in 80% accuracy. Experimental results suggest that these two predictors may be used for differentiation between periods of resting and food intake with a resolution of 30 seconds. Proposed methods may be utilized for development of an accurate, inexpensive, and non-intrusive methodology to objectively monitor food intake in free living conditions.

  17. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  18. A Method for Extracting Important Segments from Documents Using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Suzuki, Daisuke; Utsumi, Akira

    In this paper we propose an extraction-based method for automatic summarization. The proposed method consists of two processes: important segment extraction and sentence compaction. The process of important segment extraction classifies each segment in a document as important or not by Support Vector Machines (SVMs). The process of sentence compaction then determines grammatically appropriate portions of a sentence for a summary according to its dependency structure and the classification result by SVMs. To test the performance of our method, we conducted an evaluation experiment using the Text Summarization Challenge (TSC-1) corpus of human-prepared summaries. The result was that our method achieved better performance than a segment-extraction-only method and the Lead method, especially for sentences only a part of which was included in human summaries. Further analysis of the experimental results suggests that a hybrid method that integrates sentence extraction with segment extraction may generate better summaries.

  19. Soft Computing Application in Fault Detection of Induction Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  20. The epidural needle guidance with an intelligent and automatic identification system for epidural anesthesia

    NASA Astrophysics Data System (ADS)

    Kao, Meng-Chun; Ting, Chien-Kun; Kuo, Wen-Chuan

    2018-02-01

    Incorrect placement of the needle causes medical complications in the epidural block, such as dural puncture or spinal cord injury. This study proposes a system which combines an optical coherence tomography (OCT) imaging probe with an automatic identification (AI) system to objectively identify the position of the epidural needle tip. The automatic identification system uses three features as image parameters to distinguish the different tissue by three classifiers. Finally, we found that the support vector machine (SVM) classifier has highest accuracy, specificity, and sensitivity, which reached to 95%, 98%, and 92%, respectively.

  1. Color Image Classification Using Block Matching and Learning

    NASA Astrophysics Data System (ADS)

    Kondo, Kazuki; Hotta, Seiji

    In this paper, we propose block matching and learning for color image classification. In our method, training images are partitioned into small blocks. Given a test image, it is also partitioned into small blocks, and mean-blocks corresponding to each test block are calculated with neighbor training blocks. Our method classifies a test image into the class that has the shortest total sum of distances between mean blocks and test ones. We also propose a learning method for reducing memory requirement. Experimental results show that our classification outperforms other classifiers such as support vector machine with bag of keypoints.

  2. Prominent feature extraction for review analysis: an empirical study

    NASA Astrophysics Data System (ADS)

    Agarwal, Basant; Mittal, Namita

    2016-05-01

    Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.

  3. Feature generation using genetic programming with application to fault classification.

    PubMed

    Guo, Hong; Jack, Lindsay B; Nandi, Asoke K

    2005-02-01

    One of the major challenges in pattern recognition problems is the feature extraction process which derives new features from existing features, or directly from raw data in order to reduce the cost of computation during the classification process, while improving classifier efficiency. Most current feature extraction techniques transform the original pattern vector into a new vector with increased discrimination capability but lower dimensionality. This is conducted within a predefined feature space, and thus, has limited searching power. Genetic programming (GP) can generate new features from the original dataset without prior knowledge of the probabilistic distribution. In this paper, a GP-based approach is developed for feature extraction from raw vibration data recorded from a rotating machine with six different conditions. The created features are then used as the inputs to a neural classifier for the identification of six bearing conditions. Experimental results demonstrate the ability of GP to discover autimatically the different bearing conditions using features expressed in the form of nonlinear functions. Furthermore, four sets of results--using GP extracted features with artificial neural networks (ANN) and support vector machines (SVM), as well as traditional features with ANN and SVM--have been obtained. This GP-based approach is used for bearing fault classification for the first time and exhibits superior searching power over other techniques. Additionaly, it significantly reduces the time for computation compared with genetic algorithm (GA), therefore, makes a more practical realization of the solution.

  4. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques.

    PubMed

    Eitrich, T; Kless, A; Druska, C; Meyer, W; Grotendorst, J

    2007-01-01

    In this paper, we study the classifications of unbalanced data sets of drugs. As an example we chose a data set of 2D6 inhibitors of cytochrome P450. The human cytochrome P450 2D6 isoform plays a key role in the metabolism of many drugs in the preclinical drug discovery process. We have collected a data set from annotated public data and calculated physicochemical properties with chemoinformatics methods. On top of this data, we have built classifiers based on machine learning methods. Data sets with different class distributions lead to the effect that conventional machine learning methods are biased toward the larger class. To overcome this problem and to obtain sensitive but also accurate classifiers we combine machine learning and feature selection methods with techniques addressing the problem of unbalanced classification, such as oversampling and threshold moving. We have used our own implementation of a support vector machine algorithm as well as the maximum entropy method. Our feature selection is based on the unsupervised McCabe method. The classification results from our test set are compared structurally with compounds from the training set. We show that the applied algorithms enable the effective high throughput in silico classification of potential drug candidates.

  5. Detection of Splice Sites Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika

    Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.

  6. Localization of thermal anomalies in electrical equipment using Infrared Thermography and support vector machine

    NASA Astrophysics Data System (ADS)

    Laib dit Leksir, Y.; Mansour, M.; Moussaoui, A.

    2018-03-01

    Analysis and processing of databases obtained from infrared thermal inspections made on electrical installations require the development of new tools to obtain more information to visual inspections. Consequently, methods based on the capture of thermal images show a great potential and are increasingly employed in this field. However, there is a need for the development of effective techniques to analyse these databases in order to extract significant information relating to the state of the infrastructures. This paper presents a technique explaining how this approach can be implemented and proposes a system that can help to detect faults in thermal images of electrical installations. The proposed method classifies and identifies the region of interest (ROI). The identification is conducted using support vector machine (SVM) algorithm. The aim here is to capture the faults that exist in electrical equipments during an inspection of some machines using A40 FLIR camera. After that, binarization techniques are employed to select the region of interest. Later the comparative analysis of the obtained misclassification errors using the proposed method with Fuzzy c means and Ostu, has also be addressed.

  7. Stroke localization and classification using microwave tomography with k-means clustering and support vector machine.

    PubMed

    Guo, Lei; Abbosh, Amin

    2018-05-01

    For any chance for stroke patients to survive, the stroke type should be classified to enable giving medication within a few hours of the onset of symptoms. In this paper, a microwave-based stroke localization and classification framework is proposed. It is based on microwave tomography, k-means clustering, and a support vector machine (SVM) method. The dielectric profile of the brain is first calculated using the Born iterative method, whereas the amplitude of the dielectric profile is then taken as the input to k-means clustering. The cluster is selected as the feature vector for constructing and testing the SVM. A database of MRI-derived realistic head phantoms at different signal-to-noise ratios is used in the classification procedure. The performance of the proposed framework is evaluated using the receiver operating characteristic (ROC) curve. The results based on a two-dimensional framework show that 88% classification accuracy, with a sensitivity of 91% and a specificity of 87%, can be achieved. Bioelectromagnetics. 39:312-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb-Robertson, Bobbie-Jo M.

    Accurate identification of peptides is a current challenge in mass spectrometry (MS) based proteomics. The standard approach uses a search routine to compare tandem mass spectra to a database of peptides associated with the target organism. These database search routines yield multiple metrics associated with the quality of the mapping of the experimental spectrum to the theoretical spectrum of a peptide. The structure of these results make separating correct from false identifications difficult and has created a false identification problem. Statistical confidence scores are an approach to battle this false positive problem that has led to significant improvements in peptidemore » identification. We have shown that machine learning, specifically support vector machine (SVM), is an effective approach to separating true peptide identifications from false ones. The SVM-based peptide statistical scoring method transforms a peptide into a vector representation based on database search metrics to train and validate the SVM. In practice, following the database search routine, a peptides is denoted in its vector representation and the SVM generates a single statistical score that is then used to classify presence or absence in the sample« less

  9. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.

    PubMed

    Sakr, Sherif; Elshawi, Radwa; Ahmed, Amjad M; Qureshi, Waqas T; Brawner, Clinton A; Keteyian, Steven J; Blaha, Michael J; Al-Mallah, Mouaz H

    2017-12-19

    Prior studies have demonstrated that cardiorespiratory fitness (CRF) is a strong marker of cardiovascular health. Machine learning (ML) can enhance the prediction of outcomes through classification techniques that classify the data into predetermined categories. The aim of this study is to present an evaluation and comparison of how machine learning techniques can be applied on medical records of cardiorespiratory fitness and how the various techniques differ in terms of capabilities of predicting medical outcomes (e.g. mortality). We use data of 34,212 patients free of known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems Between 1991 and 2009 and had a complete 10-year follow-up. Seven machine learning classification techniques were evaluated: Decision Tree (DT), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Naïve Bayesian Classifier (BC), Bayesian Network (BN), K-Nearest Neighbor (KNN) and Random Forest (RF). In order to handle the imbalanced dataset used, the Synthetic Minority Over-Sampling Technique (SMOTE) is used. Two set of experiments have been conducted with and without the SMOTE sampling technique. On average over different evaluation metrics, SVM Classifier has shown the lowest performance while other models like BN, BC and DT performed better. The RF classifier has shown the best performance (AUC = 0.97) among all models trained using the SMOTE sampling. The results show that various ML techniques can significantly vary in terms of its performance for the different evaluation metrics. It is also not necessarily that the more complex the ML model, the more prediction accuracy can be achieved. The prediction performance of all models trained with SMOTE is much better than the performance of models trained without SMOTE. The study shows the potential of machine learning methods for predicting all-cause mortality using cardiorespiratory fitness data.

  10. Comparison of Machine Learning Methods for the Arterial Hypertension Diagnostics

    PubMed Central

    Belo, David; Gamboa, Hugo

    2017-01-01

    The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components. PMID:28831239

  11. Classifier transfer with data selection strategies for online support vector machine classification with class imbalance

    NASA Astrophysics Data System (ADS)

    Krell, Mario Michael; Wilshusen, Nils; Seeland, Anett; Kim, Su Kyoung

    2017-04-01

    Objective. Classifier transfers usually come with dataset shifts. To overcome dataset shifts in practical applications, we consider the limitations in computational resources in this paper for the adaptation of batch learning algorithms, like the support vector machine (SVM). Approach. We focus on data selection strategies which limit the size of the stored training data by different inclusion, exclusion, and further dataset manipulation criteria like handling class imbalance with two new approaches. We provide a comparison of the strategies with linear SVMs on several synthetic datasets with different data shifts as well as on different transfer settings with electroencephalographic (EEG) data. Main results. For the synthetic data, adding only misclassified samples performed astoundingly well. Here, balancing criteria were very important when the other criteria were not well chosen. For the transfer setups, the results show that the best strategy depends on the intensity of the drift during the transfer. Adding all and removing the oldest samples results in the best performance, whereas for smaller drifts, it can be sufficient to only add samples near the decision boundary of the SVM which reduces processing resources. Significance. For brain-computer interfaces based on EEG data, models trained on data from a calibration session, a previous recording session, or even from a recording session with another subject are used. We show, that by using the right combination of data selection criteria, it is possible to adapt the SVM classifier to overcome the performance drop from the transfer.

  12. Development of a sugar-binding residue prediction system from protein sequences using support vector machine.

    PubMed

    Banno, Masaki; Komiyama, Yusuke; Cao, Wei; Oku, Yuya; Ueki, Kokoro; Sumikoshi, Kazuya; Nakamura, Shugo; Terada, Tohru; Shimizu, Kentaro

    2017-02-01

    Several methods have been proposed for protein-sugar binding site prediction using machine learning algorithms. However, they are not effective to learn various properties of binding site residues caused by various interactions between proteins and sugars. In this study, we classified sugars into acidic and nonacidic sugars and showed that their binding sites have different amino acid occurrence frequencies. By using this result, we developed sugar-binding residue predictors dedicated to the two classes of sugars: an acid sugar binding predictor and a nonacidic sugar binding predictor. We also developed a combination predictor which combines the results of the two predictors. We showed that when a sugar is known to be an acidic sugar, the acidic sugar binding predictor achieves the best performance, and showed that when a sugar is known to be a nonacidic sugar or is not known to be either of the two classes, the combination predictor achieves the best performance. Our method uses only amino acid sequences for prediction. Support vector machine was used as a machine learning algorithm and the position-specific scoring matrix created by the position-specific iterative basic local alignment search tool was used as the feature vector. We evaluated the performance of the predictors using five-fold cross-validation. We have launched our system, as an open source freeware tool on the GitHub repository (https://doi.org/10.5281/zenodo.61513). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.

    PubMed

    Chen, Zhenyu; Li, Jianping; Wei, Liwei

    2007-10-01

    Recently, gene expression profiling using microarray techniques has been shown as a promising tool to improve the diagnosis and treatment of cancer. Gene expression data contain high level of noise and the overwhelming number of genes relative to the number of available samples. It brings out a great challenge for machine learning and statistic techniques. Support vector machine (SVM) has been successfully used to classify gene expression data of cancer tissue. In the medical field, it is crucial to deliver the user a transparent decision process. How to explain the computed solutions and present the extracted knowledge becomes a main obstacle for SVM. A multiple kernel support vector machine (MK-SVM) scheme, consisting of feature selection, rule extraction and prediction modeling is proposed to improve the explanation capacity of SVM. In this scheme, we show that the feature selection problem can be translated into an ordinary multiple parameters learning problem. And a shrinkage approach: 1-norm based linear programming is proposed to obtain the sparse parameters and the corresponding selected features. We propose a novel rule extraction approach using the information provided by the separating hyperplane and support vectors to improve the generalization capacity and comprehensibility of rules and reduce the computational complexity. Two public gene expression datasets: leukemia dataset and colon tumor dataset are used to demonstrate the performance of this approach. Using the small number of selected genes, MK-SVM achieves encouraging classification accuracy: more than 90% for both two datasets. Moreover, very simple rules with linguist labels are extracted. The rule sets have high diagnostic power because of their good classification performance.

  14. Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.

    PubMed

    Lakshmi, Priya G G; Domnic, S

    2014-12-01

    Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.

  15. Classifier utility modeling and analysis of hypersonic inlet start/unstart considering training data costs

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Hu, Qinghua; Yu, Daren; Bao, Wen

    2011-11-01

    Start/unstart detection is one of the most important issues of hypersonic inlets and is also the foundation of protection control of scramjet. The inlet start/unstart detection can be attributed to a standard pattern classification problem, and the training sample costs have to be considered for the classifier modeling as the CFD numerical simulations and wind tunnel experiments of hypersonic inlets both cost time and money. To solve this problem, the CFD simulation of inlet is studied at first step, and the simulation results could provide the training data for pattern classification of hypersonic inlet start/unstart. Then the classifier modeling technology and maximum classifier utility theories are introduced to analyze the effect of training data cost on classifier utility. In conclusion, it is useful to introduce support vector machine algorithms to acquire the classifier model of hypersonic inlet start/unstart, and the minimum total cost of hypersonic inlet start/unstart classifier can be obtained by the maximum classifier utility theories.

  16. Machine learning in soil classification.

    PubMed

    Bhattacharya, B; Solomatine, D P

    2006-03-01

    In a number of engineering problems, e.g. in geotechnics, petroleum engineering, etc. intervals of measured series data (signals) are to be attributed a class maintaining the constraint of contiguity and standard classification methods could be inadequate. Classification in this case needs involvement of an expert who observes the magnitude and trends of the signals in addition to any a priori information that might be available. In this paper, an approach for automating this classification procedure is presented. Firstly, a segmentation algorithm is developed and applied to segment the measured signals. Secondly, the salient features of these segments are extracted using boundary energy method. Based on the measured data and extracted features to assign classes to the segments classifiers are built; they employ Decision Trees, ANN and Support Vector Machines. The methodology was tested in classifying sub-surface soil using measured data from Cone Penetration Testing and satisfactory results were obtained.

  17. An efficient ensemble learning method for gene microarray classification.

    PubMed

    Osareh, Alireza; Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  18. Software platform for managing the classification of error- related potentials of observers

    NASA Astrophysics Data System (ADS)

    Asvestas, P.; Ventouras, E.-C.; Kostopoulos, S.; Sidiropoulos, K.; Korfiatis, V.; Korda, A.; Uzunolglu, A.; Karanasiou, I.; Kalatzis, I.; Matsopoulos, G.

    2015-09-01

    Human learning is partly based on observation. Electroencephalographic recordings of subjects who perform acts (actors) or observe actors (observers), contain a negative waveform in the Evoked Potentials (EPs) of the actors that commit errors and of observers who observe the error-committing actors. This waveform is called the Error-Related Negativity (ERN). Its detection has applications in the context of Brain-Computer Interfaces. The present work describes a software system developed for managing EPs of observers, with the aim of classifying them into observations of either correct or incorrect actions. It consists of an integrated platform for the storage, management, processing and classification of EPs recorded during error-observation experiments. The system was developed using C# and the following development tools and frameworks: MySQL, .NET Framework, Entity Framework and Emgu CV, for interfacing with the machine learning library of OpenCV. Up to six features can be computed per EP recording per electrode. The user can select among various feature selection algorithms and then proceed to train one of three types of classifiers: Artificial Neural Networks, Support Vector Machines, k-nearest neighbour. Next the classifier can be used for classifying any EP curve that has been inputted to the database.

  19. The effects of pre-processing strategies in sentiment analysis of online movie reviews

    NASA Astrophysics Data System (ADS)

    Zin, Harnani Mat; Mustapha, Norwati; Murad, Masrah Azrifah Azmi; Sharef, Nurfadhlina Mohd

    2017-10-01

    With the ever increasing of internet applications and social networking sites, people nowadays can easily express their feelings towards any products and services. These online reviews act as an important source for further analysis and improved decision making. These reviews are mostly unstructured by nature and thus, need processing like sentiment analysis and classification to provide a meaningful information for future uses. In text analysis tasks, the appropriate selection of words/features will have a huge impact on the effectiveness of the classifier. Thus, this paper explores the effect of the pre-processing strategies in the sentiment analysis of online movie reviews. In this paper, supervised machine learning method was used to classify the reviews. The support vector machine (SVM) with linear and non-linear kernel has been considered as classifier for the classification of the reviews. The performance of the classifier is critically examined based on the results of precision, recall, f-measure, and accuracy. Two different features representations were used which are term frequency and term frequency-inverse document frequency. Results show that the pre-processing strategies give a significant impact on the classification process.

  20. Automatic Detection of Regions in Spinach Canopies Responding to Soil Moisture Deficit Using Combined Visible and Thermal Imagery

    PubMed Central

    Raza, Shan-e-Ahmed; Smith, Hazel K.; Clarkson, Graham J. J.; Taylor, Gail; Thompson, Andrew J.; Clarkson, John; Rajpoot, Nasir M.

    2014-01-01

    Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and environmental conditions and can be confounded by variations in complex canopy structure. Therefore, in this work, instead of using stress indices, information from thermal and visible light imagery was combined along with machine learning techniques to identify regions of canopy showing a response to soil water deficit. Thermal and visible light images of a spinach canopy with different levels of soil moisture were captured. Statistical measurements from these images were extracted and used to classify between canopies growing in well-watered soil or under soil moisture deficit using Support Vector Machines (SVM) and Gaussian Processes Classifier (GPC) and a combination of both the classifiers. The classification results show a high correlation with soil moisture. We demonstrate that regions of a spinach crop responding to soil water deficit can be identified by using machine learning techniques with a high accuracy of 97%. This method could, in principle, be applied to any crop at a range of scales. PMID:24892284

  1. Combined data mining/NIR spectroscopy for purity assessment of lime juice

    NASA Astrophysics Data System (ADS)

    Shafiee, Sahameh; Minaei, Saeid

    2018-06-01

    This paper reports the data mining study on the NIR spectrum of lime juice samples to determine their purity (natural or synthetic). NIR spectra for 72 pure and synthetic lime juice samples were recorded in reflectance mode. Sample outliers were removed using PCA analysis. Different data mining techniques for feature selection (Genetic Algorithm (GA)) and classification (including the radial basis function (RBF) network, Support Vector Machine (SVM), and Random Forest (RF) tree) were employed. Based on the results, SVM proved to be the most accurate classifier as it achieved the highest accuracy (97%) using the raw spectrum information. The classifier accuracy dropped to 93% when selected feature vector by GA search method was applied as classifier input. It can be concluded that some relevant features which produce good performance with the SVM classifier are removed by feature selection. Also, reduced spectra using PCA do not show acceptable performance (total accuracy of 66% by RBFNN), which indicates that dimensional reduction methods such as PCA do not always lead to more accurate results. These findings demonstrate the potential of data mining combination with near-infrared spectroscopy for monitoring lime juice quality in terms of natural or synthetic nature.

  2. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

    PubMed

    Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang

    2018-06-14

    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.

  3. Behavioral Modeling for Mental Health using Machine Learning Algorithms.

    PubMed

    Srividya, M; Mohanavalli, S; Bhalaji, N

    2018-04-03

    Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.

  4. Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun

    2015-06-01

    Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.

  5. Machine learning algorithms for meteorological event classification in the coastal area using in-situ data

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Gengembre, Cyril; Dmitriev, Egor; Delbarre, Hervé

    2017-04-01

    The problem is considered of classification of local atmospheric meteorological events in the coastal area such as sea breezes, fogs and storms. The in-situ meteorological data as wind speed and direction, temperature, humidity and turbulence are used as predictors. Local atmospheric events of 2013-2014 were analysed manually to train classification algorithms in the coastal area of English Channel in Dunkirk (France). Then, ultrasonic anemometer data and LIDAR wind profiler data were used as predictors. A few algorithms were applied to determine meteorological events by local data such as a decision tree, the nearest neighbour classifier, a support vector machine. The comparison of classification algorithms was carried out, the most important predictors for each event type were determined. It was shown that in more than 80 percent of the cases machine learning algorithms detect the meteorological class correctly. We expect that this methodology could be applied also to classify events by climatological in-situ data or by modelling data. It allows estimating frequencies of each event in perspective of climate change.

  6. A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine

    PubMed Central

    Ye, Qing; Pan, Hao; Liu, Changhua

    2015-01-01

    This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717

  7. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  8. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns.

    PubMed

    Goodson, Summer G; White, Sarah; Stevans, Alicia M; Bhat, Sanjana; Kao, Chia-Yu; Jaworski, Scott; Marlowe, Tamara R; Kohlmeier, Martin; McMillan, Leonard; Zeisel, Steven H; O'Brien, Deborah A

    2017-11-01

    The ability to accurately monitor alterations in sperm motility is paramount to understanding multiple genetic and biochemical perturbations impacting normal fertilization. Computer-aided sperm analysis (CASA) of human sperm typically reports motile percentage and kinematic parameters at the population level, and uses kinematic gating methods to identify subpopulations such as progressive or hyperactivated sperm. The goal of this study was to develop an automated method that classifies all patterns of human sperm motility during in vitro capacitation following the removal of seminal plasma. We visually classified CASA tracks of 2817 sperm from 18 individuals and used a support vector machine-based decision tree to compute four hyperplanes that separate five classes based on their kinematic parameters. We then developed a web-based program, CASAnova, which applies these equations sequentially to assign a single classification to each motile sperm. Vigorous sperm are classified as progressive, intermediate, or hyperactivated, and nonvigorous sperm as slow or weakly motile. This program correctly classifies sperm motility into one of five classes with an overall accuracy of 89.9%. Application of CASAnova to capacitating sperm populations showed a shift from predominantly linear patterns of motility at initial time points to more vigorous patterns, including hyperactivated motility, as capacitation proceeds. Both intermediate and hyperactivated motility patterns were largely eliminated when sperm were incubated in noncapacitating medium, demonstrating the sensitivity of this method. The five CASAnova classifications are distinctive and reflect kinetic parameters of washed human sperm, providing an accurate, quantitative, and high-throughput method for monitoring alterations in motility. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Classification of THz pulse signals using two-dimensional cross-correlation feature extraction and non-linear classifiers.

    PubMed

    Siuly; Yin, Xiaoxia; Hadjiloucas, Sillas; Zhang, Yanchun

    2016-04-01

    This work provides a performance comparison of four different machine learning classifiers: multinomial logistic regression with ridge estimators (MLR) classifier, k-nearest neighbours (KNN), support vector machine (SVM) and naïve Bayes (NB) as applied to terahertz (THz) transient time domain sequences associated with pixelated images of different powder samples. The six substances considered, although have similar optical properties, their complex insertion loss at the THz part of the spectrum is significantly different because of differences in both their frequency dependent THz extinction coefficient as well as differences in their refractive index and scattering properties. As scattering can be unquantifiable in many spectroscopic experiments, classification solely on differences in complex insertion loss can be inconclusive. The problem is addressed using two-dimensional (2-D) cross-correlations between background and sample interferograms, these ensure good noise suppression of the datasets and provide a range of statistical features that are subsequently used as inputs to the above classifiers. A cross-validation procedure is adopted to assess the performance of the classifiers. Firstly the measurements related to samples that had thicknesses of 2mm were classified, then samples at thicknesses of 4mm, and after that 3mm were classified and the success rate and consistency of each classifier was recorded. In addition, mixtures having thicknesses of 2 and 4mm as well as mixtures of 2, 3 and 4mm were presented simultaneously to all classifiers. This approach provided further cross-validation of the classification consistency of each algorithm. The results confirm the superiority in classification accuracy and robustness of the MLR (least accuracy 88.24%) and KNN (least accuracy 90.19%) algorithms which consistently outperformed the SVM (least accuracy 74.51%) and NB (least accuracy 56.86%) classifiers for the same number of feature vectors across all studies. The work establishes a general methodology for assessing the performance of other hyperspectral dataset classifiers on the basis of 2-D cross-correlations in far-infrared spectroscopy or other parts of the electromagnetic spectrum. It also advances the wider proliferation of automated THz imaging systems across new application areas e.g., biomedical imaging, industrial processing and quality control where interpretation of hyperspectral images is still under development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Location=GLOBAL] [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=17.6 km; Longitude_Resolution=17.6 km; Horizontal_Resolution_Range=10 km - < 50 km or approximately .09 degree - < .5 degree; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=Daily - < Weekly, Daily - < Weekly].

  11. Using Impact Modulation to Identify Loose Bolts on a Satellite

    DTIC Science & Technology

    2011-10-21

    for public release; distribution is unlimited the literature to be an effective damage detection method for cracks, delamination, and fatigue in...to identify loose bolts and fatigue damage using optimized sensor locations using a Support Vector Machines algorithm to classify the dam- age. Finally...48] did preliminary work which showed that VM is effective in detecting fatigue cracks in engineering components despite changes in actuator location

  12. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2014-09-30

    floor 1176 Howell St Newport RI 02842 phone: (401) 832-5749 fax: (401) 832-4441 email: David.Moretti@navy.mil Steve W. Martin SPAWAR...APPROACH Odontocete click detection and classification. A multi-class support vector machine (SVM) classifier was previously developed ( Jarvis ...beaked whales, Risso’s dolphins, short-finned pilot whales, and sperm whales. Here Moretti’s group, particularly S. Jarvis , is improving the SVM

  13. An expert support system for breast cancer diagnosis using color wavelet features.

    PubMed

    Issac Niwas, S; Palanisamy, P; Chibbar, Rajni; Zhang, W J

    2012-10-01

    Breast cancer diagnosis can be done through the pathologic assessments of breast tissue samples such as core needle biopsy technique. The result of analysis on this sample by pathologist is crucial for breast cancer patient. In this paper, nucleus of tissue samples are investigated after decomposition by means of the Log-Gabor wavelet on HSV color domain and an algorithm is developed to compute the color wavelet features. These features are used for breast cancer diagnosis using Support Vector Machine (SVM) classifier algorithm. The ability of properly trained SVM is to correctly classify patterns and make them particularly suitable for use in an expert system that aids in the diagnosis of cancer tissue samples. The results are compared with other multivariate classifiers such as Naïves Bayes classifier and Artificial Neural Network. The overall accuracy of the proposed method using SVM classifier will be further useful for automation in cancer diagnosis.

  14. E-Nose Vapor Identification Based on Dempster-Shafer Fusion of Multiple Classifiers

    NASA Technical Reports Server (NTRS)

    Li, Winston; Leung, Henry; Kwan, Chiman; Linnell, Bruce R.

    2005-01-01

    Electronic nose (e-nose) vapor identification is an efficient approach to monitor air contaminants in space stations and shuttles in order to ensure the health and safety of astronauts. Data preprocessing (measurement denoising and feature extraction) and pattern classification are important components of an e-nose system. In this paper, a wavelet-based denoising method is applied to filter the noisy sensor measurements. Transient-state features are then extracted from the denoised sensor measurements, and are used to train multiple classifiers such as multi-layer perceptions (MLP), support vector machines (SVM), k nearest neighbor (KNN), and Parzen classifier. The Dempster-Shafer (DS) technique is used at the end to fuse the results of the multiple classifiers to get the final classification. Experimental analysis based on real vapor data shows that the wavelet denoising method can remove both random noise and outliers successfully, and the classification rate can be improved by using classifier fusion.

  15. Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine

    PubMed Central

    Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin

    2016-01-01

    This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox. PMID:26848665

  16. Beam-hardening correction by a surface fitting and phase classification by a least square support vector machine approach for tomography images of geological samples

    NASA Astrophysics Data System (ADS)

    Khan, F.; Enzmann, F.; Kersten, M.

    2015-12-01

    In X-ray computed microtomography (μXCT) image processing is the most important operation prior to image analysis. Such processing mainly involves artefact reduction and image segmentation. We propose a new two-stage post-reconstruction procedure of an image of a geological rock core obtained by polychromatic cone-beam μXCT technology. In the first stage, the beam-hardening (BH) is removed applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. The final BH-corrected image is extracted from the residual data, or the difference between the surface elevation values and the original grey-scale values. For the second stage, we propose using a least square support vector machine (a non-linear classifier algorithm) to segment the BH-corrected data as a pixel-based multi-classification task. A combination of the two approaches was used to classify a complex multi-mineral rock sample. The Matlab code for this approach is provided in the Appendix. A minor drawback is that the proposed segmentation algorithm may become computationally demanding in the case of a high dimensional training data set.

  17. Epileptic seizure detection from EEG signals with phase-amplitude cross-frequency coupling and support vector machine

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Jiang; Cai, Lihui; Chen, Yingyuan; Qin, Yingmei

    2018-03-01

    As a pattern of cross-frequency coupling (CFC), phase-amplitude coupling (PAC) depicts the interaction between the phase and amplitude of distinct frequency bands from the same signal, and has been proved to be closely related to the brain’s cognitive and memory activities. This work utilized PAC and support vector machine (SVM) classifier to identify the epileptic seizures from electroencephalogram (EEG) data. The entropy-based modulation index (MI) matrixes are used to express the strength of PAC, from which we extracted features as the input for classifier. Based on the Bonn database, which contains five datasets of EEG segments obtained from healthy volunteers and epileptic subjects, a 100% classification accuracy is achieved for identifying seizure ictal from healthy data, and an accuracy of 97.67% is reached in the classification of ictal EEG signals from inter-ictal EEGs. Based on the CHB-MIT database which is a group of continuously recorded epileptic EEGs by scalp electrodes, a 97.50% classification accuracy is obtained and a raising sign of MI value is found at 6s before seizure onset. The classification performance in this work is effective, and PAC can be considered as a useful tool for detecting and predicting the epileptic seizures and providing reference for clinical diagnosis.

  18. New support vector machine-based method for microRNA target prediction.

    PubMed

    Li, L; Gao, Q; Mao, X; Cao, Y

    2014-06-09

    MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model. The model supplies information of two binding sites (primary and secondary) for a radial basis function kernel as a similarity measure for SVM features. The information is categorized based on structural, thermodynamic, and sequence conservation. Using high-confidence datasets selected from public miRNA target databases, we obtained a human miRNA target SVM classifier model with high performance and provided an efficient tool for human miRNA target gene identification. Experiments have shown that our method is a reliable tool for miRNA target-gene prediction, and a successful application of an SVM classifier. Compared with other methods, the method proposed here improves the sensitivity and accuracy of miRNA prediction. Its performance can be further improved by providing more training examples.

  19. Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine.

    PubMed

    Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin

    2016-02-02

    This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox.

  20. Tensor manifold-based extreme learning machine for 2.5-D face recognition

    NASA Astrophysics Data System (ADS)

    Chong, Lee Ying; Ong, Thian Song; Teoh, Andrew Beng Jin

    2018-01-01

    We explore the use of the Gabor regional covariance matrix (GRCM), a flexible matrix-based descriptor that embeds the Gabor features in the covariance matrix, as a 2.5-D facial descriptor and an effective means of feature fusion for 2.5-D face recognition problems. Despite its promise, matching is not a trivial problem for GRCM since it is a special instance of a symmetric positive definite (SPD) matrix that resides in non-Euclidean space as a tensor manifold. This implies that GRCM is incompatible with the existing vector-based classifiers and distance matchers. Therefore, we bridge the gap of the GRCM and extreme learning machine (ELM), a vector-based classifier for the 2.5-D face recognition problem. We put forward a tensor manifold-compliant ELM and its two variants by embedding the SPD matrix randomly into reproducing kernel Hilbert space (RKHS) via tensor kernel functions. To preserve the pair-wise distance of the embedded data, we orthogonalize the random-embedded SPD matrix. Hence, classification can be done using a simple ridge regressor, an integrated component of ELM, on the random orthogonal RKHS. Experimental results show that our proposed method is able to improve the recognition performance and further enhance the computational efficiency.

  1. Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification

    NASA Astrophysics Data System (ADS)

    Charfi, Imen; Miteran, Johel; Dubois, Julien; Atri, Mohamed; Tourki, Rached

    2013-10-01

    We propose a supervised approach to detect falls in a home environment using an optimized descriptor adapted to real-time tasks. We introduce a realistic dataset of 222 videos, a new metric allowing evaluation of fall detection performance in a video stream, and an automatically optimized set of spatio-temporal descriptors which fed a supervised classifier. We build the initial spatio-temporal descriptor named STHF using several combinations of transformations of geometrical features (height and width of human body bounding box, the user's trajectory with her/his orientation, projection histograms, and moments of orders 0, 1, and 2). We study the combinations of usual transformations of the features (Fourier transform, wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using support vector machine and Adaboost classifiers. Automatic feature selection allows to show that the best tradeoff between classification performance and processing time is obtained by combining the original low-level features with their first derivative. Hence, we evaluate the robustness of the fall detection regarding location changes. We propose a realistic and pragmatic protocol that enables performance to be improved by updating the training in the current location with normal activities records.

  2. Use of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.

    PubMed

    Watson, Robert A

    2014-08-01

    To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.

  3. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features.

    PubMed

    Tripathy, Rajesh Kumar; Dandapat, Samarendra

    2017-04-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques.

  4. Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review.

    PubMed

    Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Carone, Guglielmo; Amato, Daniela Maria; Sansone, Carlo; Petrillo, Antonella

    2016-01-01

    We performed a systematic review of several pattern analysis approaches for classifying breast lesions using dynamic, morphological, and textural features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Several machine learning approaches, namely artificial neural networks (ANN), support vector machines (SVM), linear discriminant analysis (LDA), tree-based classifiers (TC), and Bayesian classifiers (BC), and features used for classification are described. The findings of a systematic review of 26 studies are presented. The sensitivity and specificity are respectively 91 and 83 % for ANN, 85 and 82 % for SVM, 96 and 85 % for LDA, 92 and 87 % for TC, and 82 and 85 % for BC. The sensitivity and specificity are respectively 82 and 74 % for dynamic features, 93 and 60 % for morphological features, 88 and 81 % for textural features, 95 and 86 % for a combination of dynamic and morphological features, and 88 and 84 % for a combination of dynamic, morphological, and other features. LDA and TC have the best performance. A combination of dynamic and morphological features gives the best performance.

  5. Arrogance analysis of several typical pattern recognition classifiers

    NASA Astrophysics Data System (ADS)

    Jing, Chen; Xia, Shengping; Hu, Weidong

    2007-04-01

    Various kinds of classification methods have been developed. However, most of these classical methods, such as Back-Propagation (BP), Bayesian method, Support Vector Machine(SVM), Self-Organizing Map (SOM) are arrogant. A so-called arrogance, for a human, means that his decision, which even is a mistake, overstates his actual experience. Accordingly, we say that he is a arrogant if he frequently makes arrogant decisions. Likewise, some classical pattern classifiers represent the similar characteristic of arrogance. Given an input feature vector, we say a classifier is arrogant in its classification if its veracity is high yet its experience is low. Typically, for a new sample which is distinguishable from original training samples, traditional classifiers recognize it as one of the known targets. Clearly, arrogance in classification is an undesirable attribute. Conversely, a classifier is non-arrogant in its classification if there is a reasonable balance between its veracity and its experience. Inquisitiveness is, in many ways, the opposite of arrogance. In nature, inquisitiveness is an eagerness for knowledge characterized by the drive to question, to seek a deeper understanding. The human capacity to doubt present beliefs allows us to acquire new experiences and to learn from our mistakes. Within the discrete world of computers, inquisitive pattern recognition is the constructive investigation and exploitation of conflict in information. Thus, we quantify this balance and discuss new techniques that will detect arrogance in a classifier.

  6. LDA boost classification: boosting by topics

    NASA Astrophysics Data System (ADS)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  7. Metal Oxide Gas Sensor Drift Compensation Using a Two-Dimensional Classifier Ensemble

    PubMed Central

    Liu, Hang; Chu, Renzhi; Tang, Zhenan

    2015-01-01

    Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied. PMID:25942640

  8. A machine learning approach for viral genome classification.

    PubMed

    Remita, Mohamed Amine; Halioui, Ahmed; Malick Diouara, Abou Abdallah; Daigle, Bruno; Kiani, Golrokh; Diallo, Abdoulaye Baniré

    2017-04-11

    Advances in cloning and sequencing technology are yielding a massive number of viral genomes. The classification and annotation of these genomes constitute important assets in the discovery of genomic variability, taxonomic characteristics and disease mechanisms. Existing classification methods are often designed for specific well-studied family of viruses. Thus, the viral comparative genomic studies could benefit from more generic, fast and accurate tools for classifying and typing newly sequenced strains of diverse virus families. Here, we introduce a virus classification platform, CASTOR, based on machine learning methods. CASTOR is inspired by a well-known technique in molecular biology: restriction fragment length polymorphism (RFLP). It simulates, in silico, the restriction digestion of genomic material by different enzymes into fragments. It uses two metrics to construct feature vectors for machine learning algorithms in the classification step. We benchmark CASTOR for the classification of distinct datasets of human papillomaviruses (HPV), hepatitis B viruses (HBV) and human immunodeficiency viruses type 1 (HIV-1). Results reveal true positive rates of 99%, 99% and 98% for HPV Alpha species, HBV genotyping and HIV-1 M subtyping, respectively. Furthermore, CASTOR shows a competitive performance compared to well-known HIV-1 specific classifiers (REGA and COMET) on whole genomes and pol fragments. The performance of CASTOR, its genericity and robustness could permit to perform novel and accurate large scale virus studies. The CASTOR web platform provides an open access, collaborative and reproducible machine learning classifiers. CASTOR can be accessed at http://castor.bioinfo.uqam.ca .

  9. A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.

    PubMed

    Sarrouti, Mourad; Ouatik El Alaoui, Said

    2017-05-18

    Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.

  10. Integrating machine learning techniques and high-resolution imagery to generate GIS-ready information for urban water consumption studies

    NASA Astrophysics Data System (ADS)

    Wolf, Nils; Hof, Angela

    2012-10-01

    Urban sprawl driven by shifts in tourism development produces new suburban landscapes of water consumption on Mediterranean coasts. Golf courses, ornamental, 'Atlantic' gardens and swimming pools are the most striking artefacts of this transformation, threatening the local water supply systems and exacerbating water scarcity. In the face of climate change, urban landscape irrigation is becoming increasingly important from a resource management point of view. This paper adopts urban remote sensing towards a targeted mapping approach using machine learning techniques and highresolution satellite imagery (WorldView-2) to generate GIS-ready information for urban water consumption studies. Swimming pools, vegetation and - as a subgroup of vegetation - turf grass are extracted as important determinants of water consumption. For image analysis, the complex nature of urban environments suggests spatial-spectral classification, i.e. the complementary use of the spectral signature and spatial descriptors. Multiscale image segmentation provides means to extract the spatial descriptors - namely object feature layers - which can be concatenated at pixel level to the spectral signature. This study assesses the value of object features using different machine learning techniques and amounts of labeled information for learning. The results indicate the benefit of the spatial-spectral approach if combined with appropriate classifiers like tree-based ensembles or support vector machines, which can handle high dimensionality. Finally, a Random Forest classifier was chosen to deliver the classified input data for the estimation of evaporative water loss and net landscape irrigation requirements.

  11. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty

    DOE PAGES

    Ling, Julia; Templeton, Jeremy Alan

    2015-08-04

    Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests.more » The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.« less

  12. Statistical analysis and machine learning algorithms for optical biopsy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Liu, Cheng-hui; Boydston-White, Susie; Beckman, Hugh; Sriramoju, Vidyasagar; Sordillo, Laura; Zhang, Chunyuan; Zhang, Lin; Shi, Lingyan; Smith, Jason; Bailin, Jacob; Alfano, Robert R.

    2018-02-01

    Analyzing spectral or imaging data collected with various optical biopsy methods is often times difficult due to the complexity of the biological basis. Robust methods that can utilize the spectral or imaging data and detect the characteristic spectral or spatial signatures for different types of tissue is challenging but highly desired. In this study, we used various machine learning algorithms to analyze a spectral dataset acquired from human skin normal and cancerous tissue samples using resonance Raman spectroscopy with 532nm excitation. The algorithms including principal component analysis, nonnegative matrix factorization, and autoencoder artificial neural network are used to reduce dimension of the dataset and detect features. A support vector machine with a linear kernel is used to classify the normal tissue and cancerous tissue samples. The efficacies of the methods are compared.

  13. Classifying Structures in the ISM with Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher; Goodman, A. A.; Williams, J. P.

    2011-01-01

    The processes which govern molecular cloud evolution and star formation often sculpt structures in the ISM: filaments, pillars, shells, outflows, etc. Because of their morphological complexity, these objects are often identified manually. Manual classification has several disadvantages; the process is subjective, not easily reproducible, and does not scale well to handle increasingly large datasets. We have explored to what extent machine learning algorithms can be trained to autonomously identify specific morphological features in molecular cloud datasets. We show that the Support Vector Machine algorithm can successfully locate filaments and outflows blended with other emission structures. When the objects of interest are morphologically distinct from the surrounding emission, this autonomous classification achieves >90% accuracy. We have developed a set of IDL-based tools to apply this technique to other datasets.

  14. Machine learning methods in chemoinformatics

    PubMed Central

    Mitchell, John B O

    2014-01-01

    Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160

  15. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    PubMed

    Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter Je; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong

    2017-11-01

    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.

  16. A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems

    NASA Astrophysics Data System (ADS)

    Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam

    2018-04-01

    Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.

  17. Beyond where to how: a machine learning approach for sensing mobility contexts using smartphone sensors.

    PubMed

    Guinness, Robert E

    2015-04-28

    This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (<5 s). We investigated a wide range of supervised learning techniques for classification, including decision trees (DT), support vector machines (SVM), naive Bayes classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural networks (ANN) and several instance-based classifiers (KStar, LWLand IBk). Applying ten-fold cross-validation, the best performers in terms of correct classification rate (i.e., recall) were DT (96.5%), BN (90.9%), LWL (95.5%) and KStar (95.6%). In particular, the DT-algorithm RandomForest exhibited the best overall performance. After a feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity.

  18. Beyond Where to How: A Machine Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors †

    PubMed Central

    Guinness, Robert E.

    2015-01-01

    This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (<5 s). We investigated a wide range of supervised learning techniques for classification, including decision trees (DT), support vector machines (SVM), naive Bayes classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural networks (ANN) and several instance-based classifiers (KStar, LWLand IBk). Applying ten-fold cross-validation, the best performers in terms of correct classification rate (i.e., recall) were DT (96.5%), BN (90.9%), LWL (95.5%) and KStar (95.6%). In particular, the DT-algorithm RandomForest exhibited the best overall performance. After a feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity. PMID:25928060

  19. Classification of small lesions on dynamic breast MRI: Integrating dimension reduction and out-of-sample extension into CADx methodology

    PubMed Central

    Nagarajan, Mahesh B.; Huber, Markus B.; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2014-01-01

    Objective While dimension reduction has been previously explored in computer aided diagnosis (CADx) as an alternative to feature selection, previous implementations of its integration into CADx do not ensure strict separation between training and test data required for the machine learning task. This compromises the integrity of the independent test set, which serves as the basis for evaluating classifier performance. Methods and Materials We propose, implement and evaluate an improved CADx methodology where strict separation is maintained. This is achieved by subjecting the training data alone to dimension reduction; the test data is subsequently processed with out-of-sample extension methods. Our approach is demonstrated in the research context of classifying small diagnostically challenging lesions annotated on dynamic breast magnetic resonance imaging (MRI) studies. The lesions were dynamically characterized through topological feature vectors derived from Minkowski functionals. These feature vectors were then subject to dimension reduction with different linear and non-linear algorithms applied in conjunction with out-of-sample extension techniques. This was followed by classification through supervised learning with support vector regression. Area under the receiver-operating characteristic curve (AUC) was evaluated as the metric of classifier performance. Results Of the feature vectors investigated, the best performance was observed with Minkowski functional ’perimeter’ while comparable performance was observed with ’area’. Of the dimension reduction algorithms tested with ’perimeter’, the best performance was observed with Sammon’s mapping (0.84 ± 0.10) while comparable performance was achieved with exploratory observation machine (0.82 ± 0.09) and principal component analysis (0.80 ± 0.10). Conclusions The results reported in this study with the proposed CADx methodology present a significant improvement over previous results reported with such small lesions on dynamic breast MRI. In particular, non-linear algorithms for dimension reduction exhibited better classification performance than linear approaches, when integrated into our CADx methodology. We also note that while dimension reduction techniques may not necessarily provide an improvement in classification performance over feature selection, they do allow for a higher degree of feature compaction. PMID:24355697

  20. Steganalysis using logistic regression

    NASA Astrophysics Data System (ADS)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  1. An automatic method for skeletal patterns classification using craniomaxillary variables on a Colombian population.

    PubMed

    Niño-Sandoval, Tania Camila; Guevara Perez, Sonia V; González, Fabio A; Jaque, Robinson Andrés; Infante-Contreras, Clementina

    2016-04-01

    The mandibular bone is an important part of the forensic facial reconstruction and it has the possibility of getting lost in skeletonized remains; for this reason, it is necessary to facilitate the identification process simulating the mandibular position only through craniomaxillary measures, for this task, different modeling techniques have been performed, but they only contemplate a straight facial profile that belong to skeletal pattern Class I, but the 24.5% corresponding to the Colombian skeletal patterns Class II and III are not taking into account, besides, craniofacial measures do not follow a parametric trend or a normal distribution. The aim of this study was to employ an automatic non-parametric method as the Support Vector Machines to classify skeletal patterns through craniomaxillary variables, in order to simulate the natural mandibular position on a contemporary Colombian sample. Lateral cephalograms (229) of Colombian young adults of both sexes were collected. Landmark coordinates protocols were used to create craniomaxillary variables. A Support Vector Machine with a linear kernel classifier model was trained on a subset of the available data and evaluated over the remaining samples. The weights of the model were used to select the 10 best variables for classification accuracy. An accuracy of 74.51% was obtained, defined by Pr-A-N, N-Pr-A, A-N-Pr, A-Te-Pr, A-Pr-Rhi, Rhi-A-Pr, Pr-A-Te, Te-Pr-A, Zm-A-Pr and PNS-A-Pr angles. The Class Precision and the Class Recall showed a correct distinction of the Class II from the Class III and vice versa. Support Vector Machines created an important model of classification of skeletal patterns using craniomaxillary variables that are not commonly used in the literature and could be applicable to the 24.5% of the contemporary Colombian sample. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Condition Assessment of Foundation Piles and Utility Poles Based on Guided Wave Propagation Using a Network of Tactile Transducers and Support Vector Machines

    PubMed Central

    Yu, Yang; Niederleithinger, Ernst; Li, Jianchun; Wiggenhauser, Herbert

    2017-01-01

    This paper presents a novel non-destructive testing and health monitoring system using a network of tactile transducers and accelerometers for the condition assessment and damage classification of foundation piles and utility poles. While in traditional pile integrity testing an impact hammer with broadband frequency excitation is typically used, the proposed testing system utilizes an innovative excitation system based on a network of tactile transducers to induce controlled narrow-band frequency stress waves. Thereby, the simultaneous excitation of multiple stress wave types and modes is avoided (or at least reduced), and targeted wave forms can be generated. The new testing system enables the testing and monitoring of foundation piles and utility poles where the top is inaccessible, making the new testing system suitable, for example, for the condition assessment of pile structures with obstructed heads and of poles with live wires. For system validation, the new system was experimentally tested on nine timber and concrete poles that were inflicted with several types of damage. The tactile transducers were excited with continuous sine wave signals of 1 kHz frequency. Support vector machines were employed together with advanced signal processing algorithms to distinguish recorded stress wave signals from pole structures with different types of damage. The results show that using fast Fourier transform signals, combined with principal component analysis as the input feature vector for support vector machine (SVM) classifiers with different kernel functions, can achieve damage classification with accuracies of 92.5% ± 7.5%. PMID:29258274

  3. Effectively identifying compound-protein interactions by learning from positive and unlabeled examples.

    PubMed

    Cheng, Zhanzhan; Zhou, Shuigeng; Wang, Yang; Liu, Hui; Guan, Jihong; Chen, Yi-Ping Phoebe

    2016-05-18

    Prediction of compound-protein interactions (CPIs) is to find new compound-protein pairs where a protein is targeted by at least a compound, which is a crucial step in new drug design. Currently, a number of machine learning based methods have been developed to predict new CPIs in the literature. However, as there is not yet any publicly available set of validated negative CPIs, most existing machine learning based approaches use the unknown interactions (not validated CPIs) selected randomly as the negative examples to train classifiers for predicting new CPIs. Obviously, this is not quite reasonable and unavoidably impacts the CPI prediction performance. In this paper, we simply take the unknown CPIs as unlabeled examples, and propose a new method called PUCPI (the abbreviation of PU learning for Compound-Protein Interaction identification) that employs biased-SVM (Support Vector Machine) to predict CPIs using only positive and unlabeled examples. PU learning is a class of learning methods that leans from positive and unlabeled (PU) samples. To the best of our knowledge, this is the first work that identifies CPIs using only positive and unlabeled examples. We first collect known CPIs as positive examples and then randomly select compound-protein pairs not in the positive set as unlabeled examples. For each CPI/compound-protein pair, we extract protein domains as protein features and compound substructures as chemical features, then take the tensor product of the corresponding compound features and protein features as the feature vector of the CPI/compound-protein pair. After that, biased-SVM is employed to train classifiers on different datasets of CPIs and compound-protein pairs. Experiments over various datasets show that our method outperforms six typical classifiers, including random forest, L1- and L2-regularized logistic regression, naive Bayes, SVM and k-nearest neighbor (kNN), and three types of existing CPI prediction models. Source code, datasets and related documents of PUCPI are available at: http://admis.fudan.edu.cn/projects/pucpi.html.

  4. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study

    PubMed Central

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640

  5. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer's Disease

    PubMed Central

    Yelshyna, Darya; Bicho, Estela

    2016-01-01

    The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090

  6. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer's Disease.

    PubMed

    Costa, Luís; Gago, Miguel F; Yelshyna, Darya; Ferreira, Jaime; David Silva, Hélder; Rocha, Luís; Sousa, Nuno; Bicho, Estela

    2016-01-01

    The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.

  7. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors.

    PubMed

    Zemp, Roland; Tanadini, Matteo; Plüss, Stefan; Schnüriger, Karin; Singh, Navrag B; Taylor, William R; Lorenzetti, Silvio

    2016-01-01

    Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user's sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders.

  8. Differentially Private Empirical Risk Minimization

    PubMed Central

    Chaudhuri, Kamalika; Monteleoni, Claire; Sarwate, Anand D.

    2011-01-01

    Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance. PMID:21892342

  9. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study.

    PubMed

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.

  10. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis

    PubMed Central

    Sohaib, Muhammad; Kim, Cheol-Hong; Kim, Jong-Myon

    2017-01-01

    Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement is still desirable to improve upon existing fault diagnosis techniques. Vibration acceleration signals collected from machine bearings exhibit nonstationary behavior due to variable working conditions and multiple fault severities. In the current work, a two-layered bearing fault diagnosis scheme is proposed for the identification of fault pattern and crack size for a given fault type. A hybrid feature pool is used in combination with sparse stacked autoencoder (SAE)-based deep neural networks (DNNs) to perform effective diagnosis of bearing faults of multiple severities. The hybrid feature pool can extract more discriminating information from the raw vibration signals, to overcome the nonstationary behavior of the signals caused by multiple crack sizes. More discriminating information helps the subsequent classifier to effectively classify data into the respective classes. The results indicate that the proposed scheme provides satisfactory performance in diagnosing bearing defects of multiple severities. Moreover, the results also demonstrate that the proposed model outperforms other state-of-the-art algorithms, i.e., support vector machines (SVMs) and backpropagation neural networks (BPNNs). PMID:29232908

  11. Black light - How sensors filter spectral variation of the illuminant

    NASA Technical Reports Server (NTRS)

    Brainard, David H.; Wandell, Brian A.; Cowan, William B.

    1989-01-01

    Visual sensor responses may be used to classify objects on the basis of their surface reflectance functions. In a color image, the image data are represented as a vector of sensor responses at each point in the image. This vector depends both on the surface reflectance functions and on the spectral power distribution of the ambient illumination. Algorithms designed to classify objects on the basis of their surface reflectance functions typically attempt to overcome the dependence of the sensor responses on the illuminant by integrating sensor data collected from multiple surfaces. In machine vision applications, it is shown that it is often possible to design the sensor spectral responsivities so that the vector direction of the sensor responses does not depend upon the illuminant. The conditions under which this is possible are given and an illustrative calculation is performed. In biological systems, where the sensor responsivities are fixed, it is shown that some changes in the illumination cause no change in the sensor responses. Such changes in illuminant are called black illuminants. It is possible to express any illuminant as the sum of two unique components. One component is a black illuminant. The second component is called the visible component. The visible component of an illuminant completely characterizes the effect of the illuminant on the vector of sensor responses.

  12. Testing the Potential of Vegetation Indices for Land Use/cover Classification Using High Resolution Data

    NASA Astrophysics Data System (ADS)

    Karakacan Kuzucu, A.; Bektas Balcik, F.

    2017-11-01

    Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.

  13. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data

    PubMed Central

    Navarro, Pedro J.; Fernández, Carlos; Borraz, Raúl; Alonso, Diego

    2016-01-01

    This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%). PMID:28025565

  14. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data.

    PubMed

    Navarro, Pedro J; Fernández, Carlos; Borraz, Raúl; Alonso, Diego

    2016-12-23

    This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).

  15. Webcam classification using simple features

    NASA Astrophysics Data System (ADS)

    Pramoun, Thitiporn; Choe, Jeehyun; Li, He; Chen, Qingshuang; Amornraksa, Thumrongrat; Lu, Yung-Hsiang; Delp, Edward J.

    2015-03-01

    Thousands of sensors are connected to the Internet and many of these sensors are cameras. The "Internet of Things" will contain many "things" that are image sensors. This vast network of distributed cameras (i.e. web cams) will continue to exponentially grow. In this paper we examine simple methods to classify an image from a web cam as "indoor/outdoor" and having "people/no people" based on simple features. We use four types of image features to classify an image as indoor/outdoor: color, edge, line, and text. To classify an image as having people/no people we use HOG and texture features. The features are weighted based on their significance and combined. A support vector machine is used for classification. Our system with feature weighting and feature combination yields 95.5% accuracy.

  16. Positive-unlabeled learning for disease gene identification

    PubMed Central

    Yang, Peng; Li, Xiao-Li; Mei, Jian-Ping; Kwoh, Chee-Keong; Ng, See-Kiong

    2012-01-01

    Background: Identifying disease genes from human genome is an important but challenging task in biomedical research. Machine learning methods can be applied to discover new disease genes based on the known ones. Existing machine learning methods typically use the known disease genes as the positive training set P and the unknown genes as the negative training set N (non-disease gene set does not exist) to build classifiers to identify new disease genes from the unknown genes. However, such kind of classifiers is actually built from a noisy negative set N as there can be unknown disease genes in N itself. As a result, the classifiers do not perform as well as they could be. Result: Instead of treating the unknown genes as negative examples in N, we treat them as an unlabeled set U. We design a novel positive-unlabeled (PU) learning algorithm PUDI (PU learning for disease gene identification) to build a classifier using P and U. We first partition U into four sets, namely, reliable negative set RN, likely positive set LP, likely negative set LN and weak negative set WN. The weighted support vector machines are then used to build a multi-level classifier based on the four training sets and positive training set P to identify disease genes. Our experimental results demonstrate that our proposed PUDI algorithm outperformed the existing methods significantly. Conclusion: The proposed PUDI algorithm is able to identify disease genes more accurately by treating the unknown data more appropriately as unlabeled set U instead of negative set N. Given that many machine learning problems in biomedical research do involve positive and unlabeled data instead of negative data, it is possible that the machine learning methods for these problems can be further improved by adopting PU learning methods, as we have done here for disease gene identification. Availability and implementation: The executable program and data are available at http://www1.i2r.a-star.edu.sg/∼xlli/PUDI/PUDI.html. Contact: xlli@i2r.a-star.edu.sg or yang0293@e.ntu.edu.sg Supplementary information: Supplementary Data are available at Bioinformatics online. PMID:22923290

  17. TU-C-12A-12: Differentiating Bone Lesions and Degenerative Joint Disease in NaF PET/CT Scans Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perk, T; Bradshaw, T; Muzahir, S

    2014-06-15

    Purpose: [F-18]NaF PET can be used to image bone metastases; however, tracer uptake in degenerative joint disease (DJD) often appears similar to metastases. This study aims to develop and compare different machine learning algorithms to automatically identify regions of [F-18]NaF scans that correspond to DJD. Methods: 10 metastatic prostate cancer patients received whole body [F-18]NaF PET/CT scans prior to treatment. Image segmentation resulted in 852 ROIs, 69 of which were identified by a nuclear medicine physician as DJD. For all ROIs, various PET and CT textural features were computed. ROIs were divided into training and testing sets used to trainmore » eight different machine learning classifiers. Classifiers were evaluated based on receiver operating characteristics area under the curve (AUC), sensitivity, specificity, and positive predictive value (PPV). We also assessed the added value of including CT features in addition to PET features for training classifiers. Results: The training set consisted of 37 DJD ROIs with 475 non-DJD ROIs, and the testing set consisted of 32 DJD ROIs with 308 non-DJD ROIs. Of all classifiers, generalized linear models (GLM), decision forests (DF), and support vector machines (SVM) had the best performance. AUCs of GLM (0.929), DF (0.921), and SVM (0.889) were significantly higher than the other models (p<0.001). GLM and DF, overall, had the best sensitivity, specificity, and PPV, and gave a significantly better performance (p<0.01) than all other models. PET/CT GLM classifiers had higher AUC than just PET or just CT. GLMs built using PET/CT information had superior or comparable sensitivities, specificities and PPVs to just PET or just CT. Conclusion: Machine learning algorithms trained with PET/CT features were able to identify some cases of DJD. GLM outperformed the other classification algorithms. Using PET and CT information together was shown to be superior to using PET or CT features alone. Research supported by the Prostate Cancer Foundation.« less

  18. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

    NASA Astrophysics Data System (ADS)

    Jegadeeshwaran, R.; Sugumaran, V.

    2015-02-01

    Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.

  19. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm

    PubMed Central

    Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2017-01-01

    Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer. PMID:28165388

  20. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm.

    PubMed

    Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2017-02-04

    Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH₃CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.

  1. Predicting asthma exacerbations using artificial intelligence.

    PubMed

    Finkelstein, Joseph; Wood, Jeffrey

    2013-01-01

    Modern telemonitoring systems identify a serious patient deterioration when it already occurred. It would be much more beneficial if the upcoming clinical deterioration were identified ahead of time even before a patient actually experiences it. The goal of this study was to assess artificial intelligence approaches which potentially can be used in telemonitoring systems for advance prediction of changes in disease severity before they actually occur. The study dataset was based on daily self-reports submitted by 26 adult asthma patients during home telemonitoring consisting of 7001 records. Two classification algorithms were employed for building predictive models: naïve Bayesian classifier and support vector machines. Using a 7-day window, a support vector machine was able to predict asthma exacerbation to occur on the day 8 with the accuracy of 0.80, sensitivity of 0.84 and specificity of 0.80. Our study showed that methods of artificial intelligence have significant potential in developing individualized decision support for chronic disease telemonitoring systems.

  2. Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung

    Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.

  3. Assessing the use of multiple sources in student essays.

    PubMed

    Hastings, Peter; Hughes, Simon; Magliano, Joseph P; Goldman, Susan R; Lawless, Kimberly

    2012-09-01

    The present study explored different approaches for automatically scoring student essays that were written on the basis of multiple texts. Specifically, these approaches were developed to classify whether or not important elements of the texts were present in the essays. The first was a simple pattern-matching approach called "multi-word" that allowed for flexible matching of words and phrases in the sentences. The second technique was latent semantic analysis (LSA), which was used to compare student sentences to original source sentences using its high-dimensional vector-based representation. Finally, the third was a machine-learning technique, support vector machines, which learned a classification scheme from the corpus. The results of the study suggested that the LSA-based system was superior for detecting the presence of explicit content from the texts, but the multi-word pattern-matching approach was better for detecting inferences outside or across texts. These results suggest that the best approach for analyzing essays of this nature should draw upon multiple natural language processing approaches.

  4. Feature Selection in Order to Extract Multiple Sclerosis Lesions Automatically in 3D Brain Magnetic Resonance Images Using Combination of Support Vector Machine and Genetic Algorithm.

    PubMed

    Khotanlou, Hassan; Afrasiabi, Mahlagha

    2012-10-01

    This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery (FLAIR) images are firstly preprocessed. In the next phase, effective features to extract MS lesions are selected by using a genetic algorithm (GA). The fitness function of the GA is the Similarity Index (SI) of a support vector machine (SVM) classifier. The results obtained on different types of lesions have been evaluated by comparison with manual segmentations. This algorithm is evaluated on 15 real 3D MR images using several measures. As a result, the SI between MS regions determined by the proposed method and radiologists was 87% on average. Experiments and comparisons with other methods show the effectiveness and the efficiency of the proposed approach.

  5. A comparison of machine learning techniques for survival prediction in breast cancer

    PubMed Central

    2011-01-01

    Background The ability to accurately classify cancer patients into risk classes, i.e. to predict the outcome of the pathology on an individual basis, is a key ingredient in making therapeutic decisions. In recent years gene expression data have been successfully used to complement the clinical and histological criteria traditionally used in such prediction. Many "gene expression signatures" have been developed, i.e. sets of genes whose expression values in a tumor can be used to predict the outcome of the pathology. Here we investigate the use of several machine learning techniques to classify breast cancer patients using one of such signatures, the well established 70-gene signature. Results We show that Genetic Programming performs significantly better than Support Vector Machines, Multilayered Perceptrons and Random Forests in classifying patients from the NKI breast cancer dataset, and comparably to the scoring-based method originally proposed by the authors of the 70-gene signature. Furthermore, Genetic Programming is able to perform an automatic feature selection. Conclusions Since the performance of Genetic Programming is likely to be improvable compared to the out-of-the-box approach used here, and given the biological insight potentially provided by the Genetic Programming solutions, we conclude that Genetic Programming methods are worth further investigation as a tool for cancer patient classification based on gene expression data. PMID:21569330

  6. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    NASA Astrophysics Data System (ADS)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  7. SVM and SVM Ensembles in Breast Cancer Prediction.

    PubMed

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  8. SVM and SVM Ensembles in Breast Cancer Prediction

    PubMed Central

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers. PMID:28060807

  9. Scoliosis curve type classification using kernel machine from 3D trunk image

    NASA Astrophysics Data System (ADS)

    Adankon, Mathias M.; Dansereau, Jean; Parent, Stefan; Labelle, Hubert; Cheriet, Farida

    2012-03-01

    Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.

  10. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  11. Predicting hepatotoxicity using ToxCast in vitro bioactivity and ...

    EPA Pesticide Factsheets

    Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors then used supervised machine learning to predict their hepatotoxic effects.Results: A set of 677 chemicals were represented by 711 in vitro bioactivity descriptors (from ToxCast assays), 4,376 chemical structure descriptors (from QikProp, OpenBabel, PADEL, and PubChem), and three hepatotoxicity categories (from animal studies). Hepatotoxicants were defined by rat liver histopathology observed after chronic chemical testing and grouped into hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built using six machine learning algorithms: linear discriminant analysis (LDA), Naïve Bayes (NB), support vector classification (SVM), classification and regression trees (CART), k-nearest neighbors (KNN) and an ensemble of classifiers (ENSMB). Classifiers of hepatotoxicity were built using chemical structure, ToxCast bioactivity, and a hybrid representation. Predictive performance was evaluated using 10-fold cross-validation testing and in-loop, filter-based, feature subset selection. Hybrid classifiers had the best balanced accuracy for predicting hypertrophy (0.78±0.08), injury (0.73±0.10) and proliferative lesions (0.72±0.09). Though chemical and bioactivity class

  12. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.

    PubMed

    Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane

    2016-12-01

    In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow's. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.

  13. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder.

    PubMed

    Schnyer, David M; Clasen, Peter C; Gonzalez, Christopher; Beevers, Christopher G

    2017-06-30

    Using MRI to diagnose mental disorders has been a long-term goal. Despite this, the vast majority of prior neuroimaging work has been descriptive rather than predictive. The current study applies support vector machine (SVM) learning to MRI measures of brain white matter to classify adults with Major Depressive Disorder (MDD) and healthy controls. In a precisely matched group of individuals with MDD (n =25) and healthy controls (n =25), SVM learning accurately (74%) classified patients and controls across a brain map of white matter fractional anisotropy values (FA). The study revealed three main findings: 1) SVM applied to DTI derived FA maps can accurately classify MDD vs. healthy controls; 2) prediction is strongest when only right hemisphere white matter is examined; and 3) removing FA values from a region identified by univariate contrast as significantly different between MDD and healthy controls does not change the SVM accuracy. These results indicate that SVM learning applied to neuroimaging data can classify the presence versus absence of MDD and that predictive information is distributed across brain networks rather than being highly localized. Finally, MDD group differences revealed through typical univariate contrasts do not necessarily reveal patterns that provide accurate predictive information. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems.

    PubMed

    Cho, Ming-Yuan; Hoang, Thi Thom

    2017-01-01

    Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.

  15. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.

    PubMed

    Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong

    2018-05-24

    This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  16. Automatic segmentation and classification of mycobacterium tuberculosis with conventional light microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui

    2015-12-01

    This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.

  17. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds.

    PubMed

    Cannon, Edward O; Amini, Ata; Bender, Andreas; Sternberg, Michael J E; Muggleton, Stephen H; Glen, Robert C; Mitchell, John B O

    2007-05-01

    We investigate the classification performance of circular fingerprints in combination with the Naive Bayes Classifier (MP2D), Inductive Logic Programming (ILP) and Support Vector Inductive Logic Programming (SVILP) on a standard molecular benchmark dataset comprising 11 activity classes and about 102,000 structures. The Naive Bayes Classifier treats features independently while ILP combines structural fragments, and then creates new features with higher predictive power. SVILP is a very recently presented method which adds a support vector machine after common ILP procedures. The performance of the methods is evaluated via a number of statistical measures, namely recall, specificity, precision, F-measure, Matthews Correlation Coefficient, area under the Receiver Operating Characteristic (ROC) curve and enrichment factor (EF). According to the F-measure, which takes both recall and precision into account, SVILP is for seven out of the 11 classes the superior method. The results show that the Bayes Classifier gives the best recall performance for eight of the 11 targets, but has a much lower precision, specificity and F-measure. The SVILP model on the other hand has the highest recall for only three of the 11 classes, but generally far superior specificity and precision. To evaluate the statistical significance of the SVILP superiority, we employ McNemar's test which shows that SVILP performs significantly (p < 5%) better than both other methods for six out of 11 activity classes, while being superior with less significance for three of the remaining classes. While previously the Bayes Classifier was shown to perform very well in molecular classification studies, these results suggest that SVILP is able to extract additional knowledge from the data, thus improving classification results further.

  18. Feature selection for elderly faller classification based on wearable sensors.

    PubMed

    Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2017-05-30

    Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.

  19. Semisupervised learning using Bayesian interpretation: application to LS-SVM.

    PubMed

    Adankon, Mathias M; Cheriet, Mohamed; Biem, Alain

    2011-04-01

    Bayesian reasoning provides an ideal basis for representing and manipulating uncertain knowledge, with the result that many interesting algorithms in machine learning are based on Bayesian inference. In this paper, we use the Bayesian approach with one and two levels of inference to model the semisupervised learning problem and give its application to the successful kernel classifier support vector machine (SVM) and its variant least-squares SVM (LS-SVM). Taking advantage of Bayesian interpretation of LS-SVM, we develop a semisupervised learning algorithm for Bayesian LS-SVM using our approach based on two levels of inference. Experimental results on both artificial and real pattern recognition problems show the utility of our method.

  20. Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B.

    PubMed

    Chen, Yang; Luo, Yan; Huang, Wei; Hu, Die; Zheng, Rong-Qin; Cong, Shu-Zhen; Meng, Fan-Kun; Yang, Hong; Lin, Hong-Jun; Sun, Yan; Wang, Xiu-Yan; Wu, Tao; Ren, Jie; Pei, Shu-Fang; Zheng, Ying; He, Yun; Hu, Yu; Yang, Na; Yan, Hongmei

    2017-10-01

    Hepatic fibrosis is a common middle stage of the pathological processes of chronic liver diseases. Clinical intervention during the early stages of hepatic fibrosis can slow the development of liver cirrhosis and reduce the risk of developing liver cancer. Performing a liver biopsy, the gold standard for viral liver disease management, has drawbacks such as invasiveness and a relatively high sampling error rate. Real-time tissue elastography (RTE), one of the most recently developed technologies, might be promising imaging technology because it is both noninvasive and provides accurate assessments of hepatic fibrosis. However, determining the stage of liver fibrosis from RTE images in a clinic is a challenging task. In this study, in contrast to the previous liver fibrosis index (LFI) method, which predicts the stage of diagnosis using RTE images and multiple regression analysis, we employed four classical classifiers (i.e., Support Vector Machine, Naïve Bayes, Random Forest and K-Nearest Neighbor) to build a decision-support system to improve the hepatitis B stage diagnosis performance. Eleven RTE image features were obtained from 513 subjects who underwent liver biopsies in this multicenter collaborative research. The experimental results showed that the adopted classifiers significantly outperformed the LFI method and that the Random Forest(RF) classifier provided the highest average accuracy among the four machine algorithms. This result suggests that sophisticated machine-learning methods can be powerful tools for evaluating the stage of hepatic fibrosis and show promise for clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models.

    PubMed

    Van Esbroeck, Alexander; Rubinfeld, Ilan; Hall, Bruce; Syed, Zeeshan

    2014-11-01

    To investigate the use of machine learning to empirically determine the risk of individual surgical procedures and to improve surgical models with this information. American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) data from 2005 to 2009 were used to train support vector machine (SVM) classifiers to learn the relationship between textual constructs in current procedural terminology (CPT) descriptions and mortality, morbidity, Clavien 4 complications, and surgical-site infections (SSI) within 30 days of surgery. The procedural risk scores produced by the SVM classifiers were validated on data from 2010 in univariate and multivariate analyses. The procedural risk scores produced by the SVM classifiers achieved moderate-to-high levels of discrimination in univariate analyses (area under receiver operating characteristic curve: 0.871 for mortality, 0.789 for morbidity, 0.791 for SSI, 0.845 for Clavien 4 complications). Addition of these scores also substantially improved multivariate models comprising patient factors and previously proposed correlates of procedural risk (net reclassification improvement and integrated discrimination improvement: 0.54 and 0.001 for mortality, 0.46 and 0.011 for morbidity, 0.68 and 0.022 for SSI, 0.44 and 0.001 for Clavien 4 complications; P < .05 for all comparisons). Similar improvements were noted in discrimination and calibration for other statistical measures, and in subcohorts comprising patients with general or vascular surgery. Machine learning provides clinically useful estimates of surgical risk for individual procedures. This information can be measured in an entirely data-driven manner and substantially improves multifactorial models to predict postoperative complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Using artificial intelligence strategies for process-related automated inspection in the production environment

    NASA Astrophysics Data System (ADS)

    Anding, K.; Kuritcyn, P.; Garten, D.

    2016-11-01

    In this paper a new method for the automatic visual inspection of metallic surfaces is proposed by using Convolutional Neural Networks (CNN). The different combinations of network parameters were developed and tested. The obtained results of CNN were analysed and compared with the results of our previous investigations with color and texture features as input parameters for a Support Vector Machine. Advantages and disadvantages of the different classifying methods are explained.

  3. Classification of change detection and change blindness from near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirokazu; Katura, Takusige

    2011-08-01

    Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.

  4. Chinese Sentence Classification Based on Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Gu, Chengwei; Wu, Ming; Zhang, Chuang

    2017-10-01

    Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.

  5. EEG-based emotion recognition in music listening.

    PubMed

    Lin, Yuan-Pin; Wang, Chi-Hong; Jung, Tzyy-Ping; Wu, Tien-Lin; Jeng, Shyh-Kang; Duann, Jeng-Ren; Chen, Jyh-Horng

    2010-07-01

    Ongoing brain activity can be recorded as electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study applied machine-learning algorithms to categorize EEG dynamics according to subject self-reported emotional states during music listening. A framework was proposed to optimize EEG-based emotion recognition by systematically 1) seeking emotion-specific EEG features and 2) exploring the efficacy of the classifiers. Support vector machine was employed to classify four emotional states (joy, anger, sadness, and pleasure) and obtained an averaged classification accuracy of 82.29% +/- 3.06% across 26 subjects. Further, this study identified 30 subject-independent features that were most relevant to emotional processing across subjects and explored the feasibility of using fewer electrodes to characterize the EEG dynamics during music listening. The identified features were primarily derived from electrodes placed near the frontal and the parietal lobes, consistent with many of the findings in the literature. This study might lead to a practical system for noninvasive assessment of the emotional states in practical or clinical applications.

  6. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.

    PubMed

    Fard, Mahtab J; Ameri, Sattar; Darin Ellis, R; Chinnam, Ratna B; Pandya, Abhilash K; Klein, Michael D

    2018-02-01

    Surgical skill assessment has predominantly been a subjective task. Recently, technological advances such as robot-assisted surgery have created great opportunities for objective surgical evaluation. In this paper, we introduce a predictive framework for objective skill assessment based on movement trajectory data. Our aim is to build a classification framework to automatically evaluate the performance of surgeons with different levels of expertise. Eight global movement features are extracted from movement trajectory data captured by a da Vinci robot for surgeons with two levels of expertise - novice and expert. Three classification methods - k-nearest neighbours, logistic regression and support vector machines - are applied. The result shows that the proposed framework can classify surgeons' expertise as novice or expert with an accuracy of 82.3% for knot tying and 89.9% for a suturing task. This study demonstrates and evaluates the ability of machine learning methods to automatically classify expert and novice surgeons using global movement features. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Machine learning-based assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system.

    PubMed

    Yeh, Shih-Ching; Huang, Ming-Chun; Wang, Pa-Chun; Fang, Te-Yung; Su, Mu-Chun; Tsai, Po-Yi; Rizzo, Albert

    2014-10-01

    Dizziness is a major consequence of imbalance and vestibular dysfunction. Compared to surgery and drug treatments, balance training is non-invasive and more desired. However, training exercises are usually tedious and the assessment tool is insufficient to diagnose patient's severity rapidly. An interactive virtual reality (VR) game-based rehabilitation program that adopted Cawthorne-Cooksey exercises, and a sensor-based measuring system were introduced. To verify the therapeutic effect, a clinical experiment with 48 patients and 36 normal subjects was conducted. Quantified balance indices were measured and analyzed by statistical tools and a Support Vector Machine (SVM) classifier. In terms of balance indices, patients who completed the training process are progressed and the difference between normal subjects and patients is obvious. Further analysis by SVM classifier show that the accuracy of recognizing the differences between patients and normal subject is feasible, and these results can be used to evaluate patients' severity and make rapid assessment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia

    NASA Astrophysics Data System (ADS)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc

    2018-02-01

    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  9. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator.

    PubMed

    Khazendar, S; Sayasneh, A; Al-Assam, H; Du, H; Kaijser, J; Ferrara, L; Timmerman, D; Jassim, S; Bourne, T

    2015-01-01

    Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered.

  10. Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.

    PubMed

    Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E

    2010-09-17

    Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nondestructive detection of pork comprehensive quality based on spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Peng, Yankun; Zhang, Leilei; Dhakal, Sagar; Wang, Caiping

    2014-05-01

    Pork is one of the highly consumed meat item in the world. With growing improvement of living standard, concerned stakeholders including consumers and regulatory body pay more attention to comprehensive quality of fresh pork. Different analytical-laboratory based technologies exist to determine quality attributes of pork. However, none of the technologies are able to meet industrial desire of rapid and non-destructive technological development. Current study used optical instrument as a rapid and non-destructive tool to classify 24 h-aged pork longissimus dorsi samples into three kinds of meat (PSE, Normal and DFD), on the basis of color L* and pH24. Total of 66 samples were used in the experiment. Optical system based on Vis/NIR spectral acquisition system (300-1100 nm) was self- developed in laboratory to acquire spectral signal of pork samples. Median smoothing filter (M-filter) and multiplication scatter correction (MSC) was used to remove spectral noise and signal drift. Support vector machine (SVM) prediction model was developed to classify the samples based on their comprehensive qualities. The results showed that the classification model is highly correlated with the actual quality parameters with classification accuracy more than 85%. The system developed in this study being simple and easy to use, results being promising, the system can be used in meat processing industry for real time, non-destructive and rapid detection of pork qualities in future.

  12. Mobile Phonocardiogram Diagnosis in Newborns Using Support Vector Machine

    PubMed Central

    Amiri, Amir Mohammad; Abtahi, Mohammadreza; Constant, Nick; Mankodiya, Kunal

    2017-01-01

    Phonocardiogram (PCG) monitoring on newborns is one of the most important and challenging tasks in the heart assessment in the early ages of life. In this paper, we present a novel approach for cardiac monitoring applied in PCG data. This basic system coupled with denoising, segmentation, cardiac cycle selection and classification of heart sound can be used widely for a large number of the data. This paper describes the problems and additional advantages of the PCG method including the possibility of recording heart sound at home, removing unwanted noises and data reduction on a mobile device, and an intelligent system to diagnose heart diseases on the cloud server. A wide range of physiological features from various analysis domains, including modeling, time/frequency domain analysis, an algorithm, etc., is proposed in order to extract features which will be considered as inputs for the classifier. In order to record the PCG data set from multiple subjects over one year, an electronic stethoscope was used for collecting data that was connected to a mobile device. In this study, we used different types of classifiers in order to distinguish between healthy and pathological heart sounds, and a comparison on the performances revealed that support vector machine (SVM) provides 92.2% accuracy and AUC = 0.98 in a time of 1.14 seconds for training, on a dataset of 116 samples. PMID:28335471

  13. Breast Cancer Detection with Reduced Feature Set.

    PubMed

    Mert, Ahmet; Kılıç, Niyazi; Bilgili, Erdem; Akan, Aydin

    2015-01-01

    This paper explores feature reduction properties of independent component analysis (ICA) on breast cancer decision support system. Wisconsin diagnostic breast cancer (WDBC) dataset is reduced to one-dimensional feature vector computing an independent component (IC). The original data with 30 features and reduced one feature (IC) are used to evaluate diagnostic accuracy of the classifiers such as k-nearest neighbor (k-NN), artificial neural network (ANN), radial basis function neural network (RBFNN), and support vector machine (SVM). The comparison of the proposed classification using the IC with original feature set is also tested on different validation (5/10-fold cross-validations) and partitioning (20%-40%) methods. These classifiers are evaluated how to effectively categorize tumors as benign and malignant in terms of specificity, sensitivity, accuracy, F-score, Youden's index, discriminant power, and the receiver operating characteristic (ROC) curve with its criterion values including area under curve (AUC) and 95% confidential interval (CI). This represents an improvement in diagnostic decision support system, while reducing computational complexity.

  14. (Machine-)Learning to analyze in vivo microscopy: Support vector machines.

    PubMed

    Wang, Michael F Z; Fernandez-Gonzalez, Rodrigo

    2017-11-01

    The development of new microscopy techniques for super-resolved, long-term monitoring of cellular and subcellular dynamics in living organisms is revealing new fundamental aspects of tissue development and repair. However, new microscopy approaches present several challenges. In addition to unprecedented requirements for data storage, the analysis of high resolution, time-lapse images is too complex to be done manually. Machine learning techniques are ideally suited for the (semi-)automated analysis of multidimensional image data. In particular, support vector machines (SVMs), have emerged as an efficient method to analyze microscopy images obtained from animals. Here, we discuss the use of SVMs to analyze in vivo microscopy data. We introduce the mathematical framework behind SVMs, and we describe the metrics used by SVMs and other machine learning approaches to classify image data. We discuss the influence of different SVM parameters in the context of an algorithm for cell segmentation and tracking. Finally, we describe how the application of SVMs has been critical to study protein localization in yeast screens, for lineage tracing in C. elegans, or to determine the developmental stage of Drosophila embryos to investigate gene expression dynamics. We propose that SVMs will become central tools in the analysis of the complex image data that novel microscopy modalities have made possible. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Data mining for the analysis of hippocampal zones in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Ovando Vázquez, Cesaré M.

    2012-02-01

    In this work, a methodology to classify people with Alzheimer's Disease (AD), Healthy Controls (HC) and people with Mild Cognitive Impairment (MCI) is presented. This methodology consists of an ensemble of Support Vector Machines (SVM) with the hippocampal boxes (HB) as input data, these hippocampal zones are taken from Magnetic Resonance (MRI) and Positron Emission Tomography (PET) images. Two ways of constructing this ensemble are presented, the first consists of linear SVM models and the second of non-linear SVM models. Results demonstrate that the linear models classify HBs more accurately than the non-linear models between HC and MCI and that there are no differences between HC and AD.

  16. Cancer classification through filtering progressive transductive support vector machine based on gene expression data

    NASA Astrophysics Data System (ADS)

    Lu, Xinguo; Chen, Dan

    2017-08-01

    Traditional supervised classifiers neglect a large amount of data which not have sufficient follow-up information, only work with labeled data. Consequently, the small sample size limits the advancement of design appropriate classifier. In this paper, a transductive learning method which combined with the filtering strategy in transductive framework and progressive labeling strategy is addressed. The progressive labeling strategy does not need to consider the distribution of labeled samples to evaluate the distribution of unlabeled samples, can effective solve the problem of evaluate the proportion of positive and negative samples in work set. Our experiment result demonstrate that the proposed technique have great potential in cancer prediction based on gene expression.

  17. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features

    PubMed Central

    Dandapat, Samarendra

    2017-01-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques. PMID:28894589

  18. Angiopoietin-1, Angiopoietin-2 and Bicarbonate as Diagnostic Biomarkers in Children with Severe Sepsis

    PubMed Central

    Wang, Kun; Bhandari, Vineet; Giuliano, John S.; O′Hern, Corey S.; Shattuck, Mark D.; Kirby, Michael

    2014-01-01

    Severe pediatric sepsis continues to be associated with high mortality rates in children. Thus, an important area of biomedical research is to identify biomarkers that can classify sepsis severity and outcomes. The complex and heterogeneous nature of sepsis makes the prospect of the classification of sepsis severity using a single biomarker less likely. Instead, we employ machine learning techniques to validate the use of a multiple biomarkers scoring system to determine the severity of sepsis in critically ill children. The study was based on clinical data and plasma samples provided by a tertiary care center's Pediatric Intensive Care Unit (PICU) from a group of 45 patients with varying sepsis severity at the time of admission. Canonical Correlation Analysis with the Forward Selection and Random Forests methods identified a particular set of biomarkers that included Angiopoietin-1 (Ang-1), Angiopoietin-2 (Ang-2), and Bicarbonate (HCO) as having the strongest correlations with sepsis severity. The robustness and effectiveness of these biomarkers for classifying sepsis severity were validated by constructing a linear Support Vector Machine diagnostic classifier. We also show that the concentrations of Ang-1, Ang-2, and HCO enable predictions of the time dependence of sepsis severity in children. PMID:25255212

  19. An Improved Ensemble Learning Method for Classifying High-Dimensional and Imbalanced Biomedicine Data.

    PubMed

    Yu, Hualong; Ni, Jun

    2014-01-01

    Training classifiers on skewed data can be technically challenging tasks, especially if the data is high-dimensional simultaneously, the tasks can become more difficult. In biomedicine field, skewed data type often appears. In this study, we try to deal with this problem by combining asymmetric bagging ensemble classifier (asBagging) that has been presented in previous work and an improved random subspace (RS) generation strategy that is called feature subspace (FSS). Specifically, FSS is a novel method to promote the balance level between accuracy and diversity of base classifiers in asBagging. In view of the strong generalization capability of support vector machine (SVM), we adopt it to be base classifier. Extensive experiments on four benchmark biomedicine data sets indicate that the proposed ensemble learning method outperforms many baseline approaches in terms of Accuracy, F-measure, G-mean and AUC evaluation criterions, thus it can be regarded as an effective and efficient tool to deal with high-dimensional and imbalanced biomedical data.

  20. A Novel Signal Modeling Approach for Classification of Seizure and Seizure-Free EEG Signals.

    PubMed

    Gupta, Anubha; Singh, Pushpendra; Karlekar, Mandar

    2018-05-01

    This paper presents a signal modeling-based new methodology of automatic seizure detection in EEG signals. The proposed method consists of three stages. First, a multirate filterbank structure is proposed that is constructed using the basis vectors of discrete cosine transform. The proposed filterbank decomposes EEG signals into its respective brain rhythms: delta, theta, alpha, beta, and gamma. Second, these brain rhythms are statistically modeled with the class of self-similar Gaussian random processes, namely, fractional Brownian motion and fractional Gaussian noises. The statistics of these processes are modeled using a single parameter called the Hurst exponent. In the last stage, the value of Hurst exponent and autoregressive moving average parameters are used as features to design a binary support vector machine classifier to classify pre-ictal, inter-ictal (epileptic with seizure free interval), and ictal (seizure) EEG segments. The performance of the classifier is assessed via extensive analysis on two widely used data set and is observed to provide good accuracy on both the data set. Thus, this paper proposes a novel signal model for EEG data that best captures the attributes of these signals and hence, allows to boost the classification accuracy of seizure and seizure-free epochs.

  1. CARSVM: a class association rule-based classification framework and its application to gene expression data.

    PubMed

    Kianmehr, Keivan; Alhajj, Reda

    2008-09-01

    In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.

  2. Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector-machine-based clustering and classification techniques.

    PubMed

    Yin, Zhong; Zhang, Jianhua

    2014-07-01

    Identifying the abnormal changes of mental workload (MWL) over time is quite crucial for preventing the accidents due to cognitive overload and inattention of human operators in safety-critical human-machine systems. It is known that various neuroimaging technologies can be used to identify the MWL variations. In order to classify MWL into a few discrete levels using representative MWL indicators and small-sized training samples, a novel EEG-based approach by combining locally linear embedding (LLE), support vector clustering (SVC) and support vector data description (SVDD) techniques is proposed and evaluated by using the experimentally measured data. The MWL indicators from different cortical regions are first elicited by using the LLE technique. Then, the SVC approach is used to find the clusters of these MWL indicators and thereby to detect MWL variations. It is shown that the clusters can be interpreted as the binary class MWL. Furthermore, a trained binary SVDD classifier is shown to be capable of detecting slight variations of those indicators. By combining the two schemes, a SVC-SVDD framework is proposed, where the clear-cut (smaller) cluster is detected by SVC first and then a subsequent SVDD model is utilized to divide the overlapped (larger) cluster into two classes. Finally, three-class MWL levels (low, normal and high) can be identified automatically. The experimental data analysis results are compared with those of several existing methods. It has been demonstrated that the proposed framework can lead to acceptable computational accuracy and has the advantages of both unsupervised and supervised training strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher's Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    PubMed Central

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-01-01

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837

  4. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.

    PubMed

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-07-24

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.

  5. Machine learning algorithms to classify spinal muscular atrophy subtypes.

    PubMed

    Srivastava, Tuhin; Darras, Basil T; Wu, Jim S; Rutkove, Seward B

    2012-07-24

    The development of better biomarkers for disease assessment remains an ongoing effort across the spectrum of neurologic illnesses. One approach for refining biomarkers is based on the concept of machine learning, in which individual, unrelated biomarkers are simultaneously evaluated. In this cross-sectional study, we assess the possibility of using machine learning, incorporating both quantitative muscle ultrasound (QMU) and electrical impedance myography (EIM) data, for classification of muscles affected by spinal muscular atrophy (SMA). Twenty-one normal subjects, 15 subjects with SMA type 2, and 10 subjects with SMA type 3 underwent EIM and QMU measurements of unilateral biceps, wrist extensors, quadriceps, and tibialis anterior. EIM and QMU parameters were then applied in combination using a support vector machine (SVM), a type of machine learning, in an attempt to accurately categorize 165 individual muscles. For all 3 classification problems, normal vs SMA, normal vs SMA 3, and SMA 2 vs SMA 3, use of SVM provided the greatest accuracy in discrimination, surpassing both EIM and QMU individually. For example, the accuracy, as measured by the receiver operating characteristic area under the curve (ROC-AUC) for the SVM discriminating SMA 2 muscles from SMA 3 muscles was 0.928; in comparison, the ROC-AUCs for EIM and QMU parameters alone were only 0.877 (p < 0.05) and 0.627 (p < 0.05), respectively. Combining EIM and QMU data categorizes individual SMA-affected muscles with very high accuracy. Further investigation of this approach for classifying and for following the progression of neuromuscular illness is warranted.

  6. Improving protein–protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model

    PubMed Central

    An, Ji‐Yong; Meng, Fan‐Rong; Chen, Xing; Yan, Gui‐Ying; Hu, Ji‐Pu

    2016-01-01

    Abstract Predicting protein–protein interactions (PPIs) is a challenging task and essential to construct the protein interaction networks, which is important for facilitating our understanding of the mechanisms of biological systems. Although a number of high‐throughput technologies have been proposed to predict PPIs, there are unavoidable shortcomings, including high cost, time intensity, and inherently high false positive rates. For these reasons, many computational methods have been proposed for predicting PPIs. However, the problem is still far from being solved. In this article, we propose a novel computational method called RVM‐BiGP that combines the relevance vector machine (RVM) model and Bi‐gram Probabilities (BiGP) for PPIs detection from protein sequences. The major improvement includes (1) Protein sequences are represented using the Bi‐gram probabilities (BiGP) feature representation on a Position Specific Scoring Matrix (PSSM), in which the protein evolutionary information is contained; (2) For reducing the influence of noise, the Principal Component Analysis (PCA) method is used to reduce the dimension of BiGP vector; (3) The powerful and robust Relevance Vector Machine (RVM) algorithm is used for classification. Five‐fold cross‐validation experiments executed on yeast and Helicobacter pylori datasets, which achieved very high accuracies of 94.57 and 90.57%, respectively. Experimental results are significantly better than previous methods. To further evaluate the proposed method, we compare it with the state‐of‐the‐art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM‐BiGP method is significantly better than the SVM‐based method. In addition, we achieved 97.15% accuracy on imbalance yeast dataset, which is higher than that of balance yeast dataset. The promising experimental results show the efficiency and robust of the proposed method, which can be an automatic decision support tool for future proteomics research. For facilitating extensive studies for future proteomics research, we developed a freely available web server called RVM‐BiGP‐PPIs in Hypertext Preprocessor (PHP) for predicting PPIs. The web server including source code and the datasets are available at http://219.219.62.123:8888/BiGP/. PMID:27452983

  7. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.

    PubMed

    Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X

    2018-01-05

    Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.

  8. A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

    PubMed Central

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928

  9. A neuro-fuzzy approach in the classification of students' academic performance.

    PubMed

    Do, Quang Hung; Chen, Jeng-Fung

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.

  10. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists.

    PubMed

    Bonet, Isis; Franco-Montero, Pedro; Rivero, Virginia; Teijeira, Marta; Borges, Fernanda; Uriarte, Eugenio; Morales Helguera, Aliuska

    2013-12-23

    A(2B) adenosine receptor antagonists may be beneficial in treating diseases like asthma, diabetes, diabetic retinopathy, and certain cancers. This has stimulated research for the development of potent ligands for this subtype, based on quantitative structure-affinity relationships. In this work, a new ensemble machine learning algorithm is proposed for classification and prediction of the ligand-binding affinity of A(2B) adenosine receptor antagonists. This algorithm is based on the training of different classifier models with multiple training sets (composed of the same compounds but represented by diverse features). The k-nearest neighbor, decision trees, neural networks, and support vector machines were used as single classifiers. To select the base classifiers for combining into the ensemble, several diversity measures were employed. The final multiclassifier prediction results were computed from the output obtained by using a combination of selected base classifiers output, by utilizing different mathematical functions including the following: majority vote, maximum and average probability. In this work, 10-fold cross- and external validation were used. The strategy led to the following results: i) the single classifiers, together with previous features selections, resulted in good overall accuracy, ii) a comparison between single classifiers, and their combinations in the multiclassifier model, showed that using our ensemble gave a better performance than the single classifier model, and iii) our multiclassifier model performed better than the most widely used multiclassifier models in the literature. The results and statistical analysis demonstrated the supremacy of our multiclassifier approach for predicting the affinity of A(2B) adenosine receptor antagonists, and it can be used to develop other QSAR models.

  11. An evaluation of consensus techniques for diagnostic interpretation

    NASA Astrophysics Data System (ADS)

    Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.

    2018-02-01

    Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.

  12. Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Yang, Sibo; Fan, Rongwei; Yu, Xin; Chen, Deying

    2018-06-01

    In this paper, discrimination of soft tissues using laser-induced breakdown spectroscopy (LIBS) in combination with multivariate statistical methods is presented. Fresh pork fat, skin, ham, loin and tenderloin muscle tissues are manually cut into slices and ablated using a 1064 nm pulsed Nd:YAG laser. Discrimination analyses between fat, skin and muscle tissues, and further between highly similar ham, loin and tenderloin muscle tissues, are performed based on the LIBS spectra in combination with multivariate statistical methods, including principal component analysis (PCA), k nearest neighbors (kNN) classification, and support vector machine (SVM) classification. Performances of the discrimination models, including accuracy, sensitivity and specificity, are evaluated using 10-fold cross validation. The classification models are optimized to achieve best discrimination performances. The fat, skin and muscle tissues can be definitely discriminated using both kNN and SVM classifiers, with accuracy of over 99.83%, sensitivity of over 0.995 and specificity of over 0.998. The highly similar ham, loin and tenderloin muscle tissues can also be discriminated with acceptable performances. The best performances are achieved with SVM classifier using Gaussian kernel function, with accuracy of 76.84%, sensitivity of over 0.742 and specificity of over 0.869. The results show that the LIBS technique assisted with multivariate statistical methods could be a powerful tool for online discrimination of soft tissues, even for tissues of high similarity, such as muscles from different parts of the animal body. This technique could be used for discrimination of tissues suffering minor clinical changes, thus may advance the diagnosis of early lesions and abnormalities.

  13. A regularization approach to hydrofacies delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlberg, Brendt; Tartakovsky, Daniel

    2009-01-01

    We consider an inverse problem of identifying complex internal structures of composite (geological) materials from sparse measurements of system parameters and system states. Two conceptual frameworks for identifying internal boundaries between constitutive materials in a composite are considered. A sequential approach relies on support vector machines, nearest neighbor classifiers, or geostatistics to reconstruct boundaries from measurements of system parameters and then uses system states data to refine the reconstruction. A joint approach inverts the two data sets simultaneously by employing a regularization approach.

  14. Engine classification using vibrations measured by Laser Doppler Vibrometer on different surfaces

    NASA Astrophysics Data System (ADS)

    Wei, J.; Liu, Chi-Him; Zhu, Zhigang; Vongsy, Karmon; Mendoza-Schrock, Olga

    2015-05-01

    In our previous studies, vehicle surfaces' vibrations caused by operating engines measured by Laser Doppler Vibrometer (LDV) have been effectively exploited in order to classify vehicles of different types, e.g., vans, 2-door sedans, 4-door sedans, trucks, and buses, as well as different types of engines, such as Inline-four engines, V-6 engines, 1-axle diesel engines, and 2-axle diesel engines. The results are achieved by employing methods based on an array of machine learning classifiers such as AdaBoost, random forests, neural network, and support vector machines. To achieve effective classification performance, we seek to find a more reliable approach to pick authentic vibrations of vehicle engines from a trustworthy surface. Compared with vibrations directly taken from the uncooperative vehicle surfaces that are rigidly connected to the engines, these vibrations are much weaker in magnitudes. In this work we conducted a systematic study on different types of objects. We tested different types of engines ranging from electric shavers, electric fans, and coffee machines among different surfaces such as a white board, cement wall, and steel case to investigate the characteristics of the LDV signals of these surfaces, in both the time and spectral domains. Preliminary results in engine classification using several machine learning algorithms point to the right direction on the choice of type of object surfaces to be planted for LDV measurements.

  15. Wire connector classification with machine vision and a novel hybrid SVM

    NASA Astrophysics Data System (ADS)

    Chauhan, Vedang; Joshi, Keyur D.; Surgenor, Brian W.

    2018-04-01

    A machine vision-based system has been developed and tested that uses a novel hybrid Support Vector Machine (SVM) in a part inspection application with clear plastic wire connectors. The application required the system to differentiate between 4 different known styles of connectors plus one unknown style, for a total of 5 classes. The requirement to handle an unknown class is what necessitated the hybrid approach. The system was trained with the 4 known classes and tested with 5 classes (the 4 known plus the 1 unknown). The hybrid classification approach used two layers of SVMs: one layer was semi-supervised and the other layer was supervised. The semi-supervised SVM was a special case of unsupervised machine learning that classified test images as one of the 4 known classes (to accept) or as the unknown class (to reject). The supervised SVM classified test images as one of the 4 known classes and consequently would give false positives (FPs). Two methods were tested. The difference between the methods was that the order of the layers was switched. The method with the semi-supervised layer first gave an accuracy of 80% with 20% FPs. The method with the supervised layer first gave an accuracy of 98% with 0% FPs. Further work is being conducted to see if the hybrid approach works with other applications that have an unknown class requirement.

  16. Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line.

    PubMed

    Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin

    2017-09-16

    In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.

  17. Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line

    PubMed Central

    Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin

    2017-01-01

    In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF2) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach. PMID:28926953

  18. LCD denoise and the vector mutual information method in the application of the gear fault diagnosis under different working conditions

    NASA Astrophysics Data System (ADS)

    Xiangfeng, Zhang; Hong, Jiang

    2018-03-01

    In this paper, the full vector LCD method is proposed to solve the misjudgment problem caused by the change of the working condition. First, the signal from different working condition is decomposed by LCD, to obtain the Intrinsic Scale Component (ISC)whose instantaneous frequency with physical significance. Then, calculate of the cross correlation coefficient between ISC and the original signal, signal denoising based on the principle of mutual information minimum. At last, calculate the sum of absolute Vector mutual information of the sample under different working condition and the denoised ISC as the characteristics to classify by use of Support vector machine (SVM). The wind turbines vibration platform gear box experiment proves that this method can identify fault characteristics under different working conditions. The advantage of this method is that it reduce dependence of man’s subjective experience, identify fault directly from the original data of vibration signal. It will has high engineering value.

  19. Optimal number of features as a function of sample size for various classification rules.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R

    2005-04-15

    Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.

  20. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features.

    PubMed

    Jongin Kim; Boreom Lee

    2017-07-01

    The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.

  1. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Tan, Kun; Xing, Xiaoshi

    2010-12-01

    Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.

  2. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-04-13

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  3. Recognition and Quantification of Area Damaged by Oligonychus Perseae in Avocado Leaves

    NASA Astrophysics Data System (ADS)

    Díaz, Gloria; Romero, Eduardo; Boyero, Juan R.; Malpica, Norberto

    The measure of leaf damage is a basic tool in plant epidemiology research. Measuring the area of a great number of leaves is subjective and time consuming. We investigate the use of machine learning approaches for the objective segmentation and quantification of leaf area damaged by mites in avocado leaves. After extraction of the leaf veins, pixels are labeled with a look-up table generated using a Support Vector Machine with a polynomial kernel of degree 3, on the chrominance components of YCrCb color space. Spatial information is included in the segmentation process by rating the degree of membership to a certain class and the homogeneity of the classified region. Results are presented on real images with different degrees of damage.

  4. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    PubMed

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  5. Machine learning-based methods for prediction of linear B-cell epitopes.

    PubMed

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  6. A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong

    Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.

  7. Classification of Multiple Chinese Liquors by Means of a QCM-based E-Nose and MDS-SVM Classifier.

    PubMed

    Li, Qiang; Gu, Yu; Jia, Jing

    2017-01-30

    Chinese liquors are internationally well-known fermentative alcoholic beverages. They have unique flavors attributable to the use of various bacteria and fungi, raw materials, and production processes. Developing a novel, rapid, and reliable method to identify multiple Chinese liquors is of positive significance. This paper presents a pattern recognition system for classifying ten brands of Chinese liquors based on multidimensional scaling (MDS) and support vector machine (SVM) algorithms in a quartz crystal microbalance (QCM)-based electronic nose (e-nose) we designed. We evaluated the comprehensive performance of the MDS-SVM classifier that predicted all ten brands of Chinese liquors individually. The prediction accuracy (98.3%) showed superior performance of the MDS-SVM classifier over the back-propagation artificial neural network (BP-ANN) classifier (93.3%) and moving average-linear discriminant analysis (MA-LDA) classifier (87.6%). The MDS-SVM classifier has reasonable reliability, good fitting and prediction (generalization) performance in classification of the Chinese liquors. Taking both application of the e-nose and validation of the MDS-SVM classifier into account, we have thus created a useful method for the classification of multiple Chinese liquors.

  8. Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods

    PubMed Central

    2013-01-01

    Background Machine learning techniques are becoming useful as an alternative approach to conventional medical diagnosis or prognosis as they are good for handling noisy and incomplete data, and significant results can be attained despite a small sample size. Traditionally, clinicians make prognostic decisions based on clinicopathologic markers. However, it is not easy for the most skilful clinician to come out with an accurate prognosis by using these markers alone. Thus, there is a need to use genomic markers to improve the accuracy of prognosis. The main aim of this research is to apply a hybrid of feature selection and machine learning methods in oral cancer prognosis based on the parameters of the correlation of clinicopathologic and genomic markers. Results In the first stage of this research, five feature selection methods have been proposed and experimented on the oral cancer prognosis dataset. In the second stage, the model with the features selected from each feature selection methods are tested on the proposed classifiers. Four types of classifiers are chosen; these are namely, ANFIS, artificial neural network, support vector machine and logistic regression. A k-fold cross-validation is implemented on all types of classifiers due to the small sample size. The hybrid model of ReliefF-GA-ANFIS with 3-input features of drink, invasion and p63 achieved the best accuracy (accuracy = 93.81%; AUC = 0.90) for the oral cancer prognosis. Conclusions The results revealed that the prognosis is superior with the presence of both clinicopathologic and genomic markers. The selected features can be investigated further to validate the potential of becoming as significant prognostic signature in the oral cancer studies. PMID:23725313

  9. Prediction of skin sensitization potency using machine learning approaches.

    PubMed

    Zang, Qingda; Paris, Michael; Lehmann, David M; Bell, Shannon; Kleinstreuer, Nicole; Allen, David; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Strickland, Judy

    2017-07-01

    The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy.

    PubMed

    Memarian, Negar; Kim, Sally; Dewar, Sandra; Engel, Jerome; Staba, Richard J

    2015-09-01

    This study sought to predict postsurgical seizure freedom from pre-operative diagnostic test results and clinical information using a rapid automated approach, based on supervised learning methods in patients with drug-resistant focal seizures suspected to begin in temporal lobe. We applied machine learning, specifically a combination of mutual information-based feature selection and supervised learning classifiers on multimodal data, to predict surgery outcome retrospectively in 20 presurgical patients (13 female; mean age±SD, in years 33±9.7 for females, and 35.3±9.4 for males) who were diagnosed with mesial temporal lobe epilepsy (MTLE) and subsequently underwent standard anteromesial temporal lobectomy. The main advantage of the present work over previous studies is the inclusion of the extent of ipsilateral neocortical gray matter atrophy and spatiotemporal properties of depth electrode-recorded seizures as training features for individual patient surgery planning. A maximum relevance minimum redundancy (mRMR) feature selector identified the following features as the most informative predictors of postsurgical seizure freedom in this study's sample of patients: family history of epilepsy, ictal EEG onset pattern (positive correlation with seizure freedom), MRI-based gray matter thickness reduction in the hemisphere ipsilateral to seizure onset, proportion of seizures that first appeared in ipsilateral amygdala to total seizures, age, epilepsy duration, delay in the spread of ipsilateral ictal discharges from site of onset, gender, and number of electrode contacts at seizure onset (negative correlation with seizure freedom). Using these features in combination with a least square support vector machine (LS-SVM) classifier compared to other commonly used classifiers resulted in very high surgical outcome prediction accuracy (95%). Supervised machine learning using multimodal compared to unimodal data accurately predicted postsurgical outcome in patients with atypical MTLE. Published by Elsevier Ltd.

  11. Functional connectivity analysis of resting-state fMRI networks in nicotine dependent patients

    NASA Astrophysics Data System (ADS)

    Smith, Aria; Ehtemami, Anahid; Fratte, Daniel; Meyer-Baese, Anke; Zavala-Romero, Olmo; Goudriaan, Anna E.; Schmaal, Lianne; Schulte, Mieke H. J.

    2016-03-01

    Brain imaging studies identified brain networks that play a key role in nicotine dependence-related behavior. Functional connectivity of the brain is dynamic; it changes over time due to different causes such as learning, or quitting a habit. Functional connectivity analysis is useful in discovering and comparing patterns between functional magnetic resonance imaging (fMRI) scans of patients' brains. In the resting state, the patient is asked to remain calm and not do any task to minimize the contribution of external stimuli. The study of resting-state fMRI networks have shown functionally connected brain regions that have a high level of activity during this state. In this project, we are interested in the relationship between these functionally connected brain regions to identify nicotine dependent patients, who underwent a smoking cessation treatment. Our approach is on the comparison of the set of connections between the fMRI scans before and after treatment. We applied support vector machines, a machine learning technique, to classify patients based on receiving the treatment or the placebo. Using the functional connectivity (CONN) toolbox, we were able to form a correlation matrix based on the functional connectivity between different regions of the brain. The experimental results show that there is inadequate predictive information to classify nicotine dependent patients using the SVM classifier. We propose other classification methods be explored to better classify the nicotine dependent patients.

  12. Thermography based diagnosis of ruptured anterior cruciate ligament (ACL) in canines

    NASA Astrophysics Data System (ADS)

    Lama, Norsang; Umbaugh, Scott E.; Mishra, Deependra; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph

    2016-09-01

    Anterior cruciate ligament (ACL) rupture in canines is a common orthopedic injury in veterinary medicine. Veterinarians use both imaging and non-imaging methods to diagnose the disease. Common imaging methods such as radiography, computed tomography (CT scan) and magnetic resonance imaging (MRI) have some disadvantages: expensive setup, high dose of radiation, and time-consuming. In this paper, we present an alternative diagnostic method based on feature extraction and pattern classification (FEPC) to diagnose abnormal patterns in ACL thermograms. The proposed method was experimented with a total of 30 thermograms for each camera view (anterior, lateral and posterior) including 14 disease and 16 non-disease cases provided from Long Island Veterinary Specialists. The normal and abnormal patterns in thermograms are analyzed in two steps: feature extraction and pattern classification. Texture features based on gray level co-occurrence matrices (GLCM), histogram features and spectral features are extracted from the color normalized thermograms and the computed feature vectors are applied to Nearest Neighbor (NN) classifier, K-Nearest Neighbor (KNN) classifier and Support Vector Machine (SVM) classifier with leave-one-out validation method. The algorithm gives the best classification success rate of 86.67% with a sensitivity of 85.71% and a specificity of 87.5% in ACL rupture detection using NN classifier for the lateral view and Norm-RGB-Lum color normalization method. Our results show that the proposed method has the potential to detect ACL rupture in canines.

  13. Diagnosis of Tempromandibular Disorders Using Local Binary Patterns.

    PubMed

    Haghnegahdar, A A; Kolahi, S; Khojastepour, L; Tajeripour, F

    2018-03-01

    Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment. CBCT images of 66 patients (132 joints) with TMD and 66 normal cases (132 joints) were collected and 2 coronal cut prepared from each condyle, although images were limited to head of mandibular condyle. In order to extract features of images, first we use LBP and then histogram of oriented gradients. To reduce dimensionality, the linear algebra Singular Value Decomposition (SVD) is applied to the feature vectors matrix of all images. For evaluation, we used K nearest neighbor (K-NN), Support Vector Machine, Naïve Bayesian and Random Forest classifiers. We used Receiver Operating Characteristic (ROC) to evaluate the hypothesis. K nearest neighbor classifier achieves a very good accuracy (0.9242), moreover, it has desirable sensitivity (0.9470) and specificity (0.9015) results, when other classifiers have lower accuracy, sensitivity and specificity. We proposed a fully automatic approach to detect TMD using image processing techniques based on local binary patterns and feature extraction. K-NN has been the best classifier for our experiments in detecting patients from healthy individuals, by 92.42% accuracy, 94.70% sensitivity and 90.15% specificity. The proposed method can help automatically diagnose TMD at its initial stages.

  14. The Identification of Hunger Behaviour of Lates Calcarifer through the Integration of Image Processing Technique and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Taha, Z.; Razman, M. A. M.; Adnan, F. A.; Ghani, A. S. Abdul; Majeed, A. P. P. Abdul; Musa, R. M.; Sallehudin, M. F.; Mukai, Y.

    2018-03-01

    Fish Hunger behaviour is one of the important element in determining the fish feeding routine, especially for farmed fishes. Inaccurate feeding routines (under-feeding or over-feeding) lead the fishes to die and thus, reduces the total production of fishes. The excessive food which is not eaten by fish will be dissolved in the water and thus, reduce the water quality (oxygen quantity in the water will be reduced). The reduction of oxygen (water quality) leads the fish to die and in some cases, may lead to fish diseases. This study correlates Barramundi fish-school behaviour with hunger condition through the hybrid data integration of image processing technique. The behaviour is clustered with respect to the position of the centre of gravity of the school of fish prior feeding, during feeding and after feeding. The clustered fish behaviour is then classified by means of a machine learning technique namely Support vector machine (SVM). It has been shown from the study that the Fine Gaussian variation of SVM is able to provide a reasonably accurate classification of fish feeding behaviour with a classification accuracy of 79.7%. The proposed integration technique may increase the usefulness of the captured data and thus better differentiates the various behaviour of farmed fishes.

  15. Detecting Dementia Through Interactive Computer Avatars

    PubMed Central

    Adachi, Hiroyoshi; Ukita, Norimichi; Ikeda, Manabu; Kazui, Hiroaki; Kudo, Takashi; Nakamura, Satoshi

    2017-01-01

    This paper proposes a new approach to automatically detect dementia. Even though some works have detected dementia from speech and language attributes, most have applied detection using picture descriptions, narratives, and cognitive tasks. In this paper, we propose a new computer avatar with spoken dialog functionalities that produces spoken queries based on the mini-mental state examination, the Wechsler memory scale-revised, and other related neuropsychological questions. We recorded the interactive data of spoken dialogues from 29 participants (14 dementia and 15 healthy controls) and extracted various audiovisual features. We tried to predict dementia using audiovisual features and two machine learning algorithms (support vector machines and logistic regression). Here, we show that the support vector machines outperformed logistic regression, and by using the extracted features they classified the participants into two groups with 0.93 detection performance, as measured by the areas under the receiver operating characteristic curve. We also newly identified some contributing features, e.g., gap before speaking, the variations of fundamental frequency, voice quality, and the ratio of smiling. We concluded that our system has the potential to detect dementia through spoken dialog systems and that the system can assist health care workers. In addition, these findings could help medical personnel detect signs of dementia. PMID:29018636

  16. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  17. Big genomics and clinical data analytics strategies for precision cancer prognosis.

    PubMed

    Ow, Ghim Siong; Kuznetsov, Vladimir A

    2016-11-07

    The field of personalized and precise medicine in the era of big data analytics is growing rapidly. Previously, we proposed our model of patient classification termed Prognostic Signature Vector Matching (PSVM) and identified a 37 variable signature comprising 36 let-7b associated prognostic significant mRNAs and the age risk factor that stratified large high-grade serous ovarian cancer patient cohorts into three survival-significant risk groups. Here, we investigated the predictive performance of PSVM via optimization of the prognostic variable weights, which represent the relative importance of one prognostic variable over the others. In addition, we compared several multivariate prognostic models based on PSVM with classical machine learning techniques such as K-nearest-neighbor, support vector machine, random forest, neural networks and logistic regression. Our results revealed that negative log-rank p-values provides more robust weight values as opposed to the use of other quantities such as hazard ratios, fold change, or a combination of those factors. PSVM, together with the classical machine learning classifiers were combined in an ensemble (multi-test) voting system, which collectively provides a more precise and reproducible patient stratification. The use of the multi-test system approach, rather than the search for the ideal classification/prediction method, might help to address limitations of the individual classification algorithm in specific situation.

  18. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.

    PubMed

    Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi

    2017-09-22

    DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.

  19. Supervised machine learning and active learning in classification of radiology reports.

    PubMed

    Nguyen, Dung H M; Patrick, Jon D

    2014-01-01

    This paper presents an automated system for classifying the results of imaging examinations (CT, MRI, positron emission tomography) into reportable and non-reportable cancer cases. This system is part of an industrial-strength processing pipeline built to extract content from radiology reports for use in the Victorian Cancer Registry. In addition to traditional supervised learning methods such as conditional random fields and support vector machines, active learning (AL) approaches were investigated to optimize training production and further improve classification performance. The project involved two pilot sites in Victoria, Australia (Lake Imaging (Ballarat) and Peter MacCallum Cancer Centre (Melbourne)) and, in collaboration with the NSW Central Registry, one pilot site at Westmead Hospital (Sydney). The reportability classifier performance achieved 98.25% sensitivity and 96.14% specificity on the cancer registry's held-out test set. Up to 92% of training data needed for supervised machine learning can be saved by AL. AL is a promising method for optimizing the supervised training production used in classification of radiology reports. When an AL strategy is applied during the data selection process, the cost of manual classification can be reduced significantly. The most important practical application of the reportability classifier is that it can dramatically reduce human effort in identifying relevant reports from the large imaging pool for further investigation of cancer. The classifier is built on a large real-world dataset and can achieve high performance in filtering relevant reports to support cancer registries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Accuracy of automated classification of major depressive disorder as a function of symptom severity.

    PubMed

    Ramasubbu, Rajamannar; Brown, Matthew R G; Cortese, Filmeno; Gaxiola, Ismael; Goodyear, Bradley; Greenshaw, Andrew J; Dursun, Serdar M; Greiner, Russell

    2016-01-01

    Growing evidence documents the potential of machine learning for developing brain based diagnostic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we investigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-Control diagnostic classifiers. Forty-five medication-free patients with DSM-IV defined MDD and 19 healthy controls participated in the study. Based on depression severity as determined by the Hamilton Rating Scale for Depression (HRSD), MDD patients were sorted into three groups: mild to moderate depression (HRSD 14-19), severe depression (HRSD 20-23), and very severe depression (HRSD ≥ 24). We collected functional magnetic resonance imaging (fMRI) data during both resting-state and an emotional-face matching task. Patients in each of the three severity groups were compared against controls in separate analyses, using either the resting-state or task-based fMRI data. We use each of these six datasets with linear support vector machine (SVM) binary classifiers for identifying individuals as patients or controls. The resting-state fMRI data showed statistically significant classification accuracy only for the very severe depression group (accuracy 66%, p = 0.012 corrected), while mild to moderate (accuracy 58%, p = 1.0 corrected) and severe depression (accuracy 52%, p = 1.0 corrected) were only at chance. With task-based fMRI data, the automated classifier performed at chance in all three severity groups. Binary linear SVM classifiers achieved significant classification of very severe depression with resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating patients with less severe depression from healthy controls.

  1. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine.

    PubMed

    Kim, Jongin; Lee, Boreom

    2018-05-07

    Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features. In detail, high-level representation was individually extracted from each of MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representation by fusing the high-level representations obtained from each modality. Finally, we classified joint hierarchical feature representation using a kernel-based extreme learning machine (KELM). The results of MSH-ELM were compared with those of conventional ELM, single kernel support vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing methods. In summary, the proposed algorithm exhibits consistently better performance than SK-SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs. HC). © 2018 Wiley Periodicals, Inc.

  2. Ischemia episode detection in ECG using kernel density estimation, support vector machine and feature selection

    PubMed Central

    2012-01-01

    Background Myocardial ischemia can be developed into more serious diseases. Early Detection of the ischemic syndrome in electrocardiogram (ECG) more accurately and automatically can prevent it from developing into a catastrophic disease. To this end, we propose a new method, which employs wavelets and simple feature selection. Methods For training and testing, the European ST-T database is used, which is comprised of 367 ischemic ST episodes in 90 records. We first remove baseline wandering, and detect time positions of QRS complexes by a method based on the discrete wavelet transform. Next, for each heart beat, we extract three features which can be used for differentiating ST episodes from normal: 1) the area between QRS offset and T-peak points, 2) the normalized and signed sum from QRS offset to effective zero voltage point, and 3) the slope from QRS onset to offset point. We average the feature values for successive five beats to reduce effects of outliers. Finally we apply classifiers to those features. Results We evaluated the algorithm by kernel density estimation (KDE) and support vector machine (SVM) methods. Sensitivity and specificity for KDE were 0.939 and 0.912, respectively. The KDE classifier detects 349 ischemic ST episodes out of total 367 ST episodes. Sensitivity and specificity of SVM were 0.941 and 0.923, respectively. The SVM classifier detects 355 ischemic ST episodes. Conclusions We proposed a new method for detecting ischemia in ECG. It contains signal processing techniques of removing baseline wandering and detecting time positions of QRS complexes by discrete wavelet transform, and feature extraction from morphology of ECG waveforms explicitly. It was shown that the number of selected features were sufficient to discriminate ischemic ST episodes from the normal ones. We also showed how the proposed KDE classifier can automatically select kernel bandwidths, meaning that the algorithm does not require any numerical values of the parameters to be supplied in advance. In the case of the SVM classifier, one has to select a single parameter. PMID:22703641

  3. Identifying interactions between chemical entities in biomedical text.

    PubMed

    Lamurias, Andre; Ferreira, João D; Couto, Francisco M

    2014-10-23

    Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, \\"Identifying Interactions between Chemical Entities\\" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to state-of-the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice.

  4. Identifying interactions between chemical entities in biomedical text.

    PubMed

    Lamurias, Andre; Ferreira, João D; Couto, Francisco M

    2014-12-01

    Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, "Identifying Interactions between Chemical Entities" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to stateof- the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice.

  5. Classification and Verification of Handwritten Signatures with Time Causal Information Theory Quantifiers.

    PubMed

    Rosso, Osvaldo A; Ospina, Raydonal; Frery, Alejandro C

    2016-01-01

    We present a new approach for handwritten signature classification and verification based on descriptors stemming from time causal information theory. The proposal uses the Shannon entropy, the statistical complexity, and the Fisher information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results are better than state-of-the-art online techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the training sample, and we also use it to classify the signatures into meaningful groups.

  6. Can-Evo-Ens: Classifier stacking based evolutionary ensemble system for prediction of human breast cancer using amino acid sequences.

    PubMed

    Ali, Safdar; Majid, Abdul

    2015-04-01

    The diagnostic of human breast cancer is an intricate process and specific indicators may produce negative results. In order to avoid misleading results, accurate and reliable diagnostic system for breast cancer is indispensable. Recently, several interesting machine-learning (ML) approaches are proposed for prediction of breast cancer. To this end, we developed a novel classifier stacking based evolutionary ensemble system "Can-Evo-Ens" for predicting amino acid sequences associated with breast cancer. In this paper, first, we selected four diverse-type of ML algorithms of Naïve Bayes, K-Nearest Neighbor, Support Vector Machines, and Random Forest as base-level classifiers. These classifiers are trained individually in different feature spaces using physicochemical properties of amino acids. In order to exploit the decision spaces, the preliminary predictions of base-level classifiers are stacked. Genetic programming (GP) is then employed to develop a meta-classifier that optimal combine the predictions of the base classifiers. The most suitable threshold value of the best-evolved predictor is computed using Particle Swarm Optimization technique. Our experiments have demonstrated the robustness of Can-Evo-Ens system for independent validation dataset. The proposed system has achieved the highest value of Area Under Curve (AUC) of ROC Curve of 99.95% for cancer prediction. The comparative results revealed that proposed approach is better than individual ML approaches and conventional ensemble approaches of AdaBoostM1, Bagging, GentleBoost, and Random Subspace. It is expected that the proposed novel system would have a major impact on the fields of Biomedical, Genomics, Proteomics, Bioinformatics, and Drug Development. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals

    PubMed Central

    2014-01-01

    Background Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database. Results The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique. The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are significantly different (p < 0.001). The classification accuracies of the SVM and K-nn classifiers were found to be 92.19% and 98.26%, respectively. Conclusion Although the data used to train and test the classifiers are limited, the classification accuracies found are satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals from pathological and normal subjects obtained from the RALE database. PMID:24970564

  8. A comparative study of the SVM and K-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals.

    PubMed

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2014-06-27

    Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database. The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique. The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are significantly different (p < 0.001). The classification accuracies of the SVM and K-nn classifiers were found to be 92.19% and 98.26%, respectively. Although the data used to train and test the classifiers are limited, the classification accuracies found are satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals from pathological and normal subjects obtained from the RALE database.

  9. A Pulsed Thermographic Imaging System for Detection and Identification of Cotton Foreign Matter

    PubMed Central

    Kuzy, Jesse; Li, Changying

    2017-01-01

    Detection of foreign matter in cleaned cotton is instrumental to accurately grading cotton quality, which in turn impacts the marketability of the cotton. Current grading systems return estimates of the amount of foreign matter present, but provide no information about the identity of the contaminants. This paper explores the use of pulsed thermographic analysis to detect and identify cotton foreign matter. The design and implementation of a pulsed thermographic analysis system is described. A sample set of 240 foreign matter and cotton lint samples were collected. Hand-crafted waveform features and frequency-domain features were extracted and analyzed for statistical significance. Classification was performed on these features using linear discriminant analysis and support vector machines. Using waveform features and support vector machine classifiers, detection of cotton foreign matter was performed with 99.17% accuracy. Using frequency-domain features and linear discriminant analysis, identification was performed with 90.00% accuracy. These results demonstrate that pulsed thermographic imaging analysis produces data which is of significant utility for the detection and identification of cotton foreign matter. PMID:28273848

  10. Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

    NASA Astrophysics Data System (ADS)

    Khan, Faisal; Enzmann, Frieder; Kersten, Michael

    2016-03-01

    Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.

  11. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  12. Gender classification from face images by using local binary pattern and gray-level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Uzbaş, Betül; Arslan, Ahmet

    2018-04-01

    Gender is an important step for human computer interactive processes and identification. Human face image is one of the important sources to determine gender. In the present study, gender classification is performed automatically from facial images. In order to classify gender, we propose a combination of features that have been extracted face, eye and lip regions by using a hybrid method of Local Binary Pattern and Gray-Level Co-Occurrence Matrix. The features have been extracted from automatically obtained face, eye and lip regions. All of the extracted features have been combined and given as input parameters to classification methods (Support Vector Machine, Artificial Neural Networks, Naive Bayes and k-Nearest Neighbor methods) for gender classification. The Nottingham Scan face database that consists of the frontal face images of 100 people (50 male and 50 female) is used for this purpose. As the result of the experimental studies, the highest success rate has been achieved as 98% by using Support Vector Machine. The experimental results illustrate the efficacy of our proposed method.

  13. Using Support Vector Machine Ensembles for Target Audience Classification on Twitter

    PubMed Central

    Lo, Siaw Ling; Chiong, Raymond; Cornforth, David

    2015-01-01

    The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA). A Support Vector Machine (SVM) ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space. PMID:25874768

  14. Identification and Mapping of Tree Species in Urban Areas Using WORLDVIEW-2 Imagery

    NASA Astrophysics Data System (ADS)

    Mustafa, Y. T.; Habeeb, H. N.; Stein, A.; Sulaiman, F. Y.

    2015-10-01

    Monitoring and mapping of urban trees are essential to provide urban forestry authorities with timely and consistent information. Modern techniques increasingly facilitate these tasks, but require the development of semi-automatic tree detection and classification methods. In this article, we propose an approach to delineate and map the crown of 15 tree species in the city of Duhok, Kurdistan Region of Iraq using WorldView-2 (WV-2) imagery. A tree crown object is identified first and is subsequently delineated as an image object (IO) using vegetation indices and texture measurements. Next, three classification methods: Maximum Likelihood, Neural Network, and Support Vector Machine were used to classify IOs using selected IO features. The best results are obtained with Support Vector Machine classification that gives the best map of urban tree species in Duhok. The overall accuracy was between 60.93% to 88.92% and κ-coefficient was between 0.57 to 0.75. We conclude that fifteen tree species were identified and mapped at a satisfactory accuracy in urban areas of this study.

  15. Using support vector machine ensembles for target audience classification on Twitter.

    PubMed

    Lo, Siaw Ling; Chiong, Raymond; Cornforth, David

    2015-01-01

    The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA). A Support Vector Machine (SVM) ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space.

  16. lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine.

    PubMed

    Sun, Lei; Liu, Hui; Zhang, Lin; Meng, Jia

    2015-01-01

    Functional long non-coding RNAs (lncRNAs) have been bringing novel insight into biological study, however it is still not trivial to accurately distinguish the lncRNA transcripts (LNCTs) from the protein coding ones (PCTs). As various information and data about lncRNAs are preserved by previous studies, it is appealing to develop novel methods to identify the lncRNAs more accurately. Our method lncRScan-SVM aims at classifying PCTs and LNCTs using support vector machine (SVM). The gold-standard datasets for lncRScan-SVM model training, lncRNA prediction and method comparison were constructed according to the GENCODE gene annotations of human and mouse respectively. By integrating features derived from gene structure, transcript sequence, potential codon sequence and conservation, lncRScan-SVM outperforms other approaches, which is evaluated by several criteria such as sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC) and area under curve (AUC). In addition, several known human lncRNA datasets were assessed using lncRScan-SVM. LncRScan-SVM is an efficient tool for predicting the lncRNAs, and it is quite useful for current lncRNA study.

  17. Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection

    PubMed Central

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-01-01

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629

  18. Study of support vector machine and serum surface-enhanced Raman spectroscopy for noninvasive esophageal cancer detection

    NASA Astrophysics Data System (ADS)

    Li, Shao-Xin; Zeng, Qiu-Yao; Li, Lin-Fang; Zhang, Yan-Jiao; Wan, Ming-Ming; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Liu, Song-Hao

    2013-02-01

    The ability of combining serum surface-enhanced Raman spectroscopy (SERS) with support vector machine (SVM) for improving classification esophageal cancer patients from normal volunteers is investigated. Two groups of serum SERS spectra based on silver nanoparticles (AgNPs) are obtained: one group from patients with pathologically confirmed esophageal cancer (n=30) and the other group from healthy volunteers (n=31). Principal components analysis (PCA), conventional SVM (C-SVM) and conventional SVM combination with PCA (PCA-SVM) methods are implemented to classify the same spectral dataset. Results show that a diagnostic accuracy of 77.0% is acquired for PCA technique, while diagnostic accuracies of 83.6% and 85.2% are obtained for C-SVM and PCA-SVM methods based on radial basis functions (RBF) models. The results prove that RBF SVM models are superior to PCA algorithm in classification serum SERS spectra. The study demonstrates that serum SERS in combination with SVM technique has great potential to provide an effective and accurate diagnostic schema for noninvasive detection of esophageal cancer.

  19. Online least squares one-class support vector machines-based abnormal visual event detection.

    PubMed

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-12-12

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.

  20. In silico toxicity prediction by support vector machine and SMILES representation-based string kernel.

    PubMed

    Cao, D-S; Zhao, J-C; Yang, Y-N; Zhao, C-X; Yan, J; Liu, S; Hu, Q-N; Xu, Q-S; Liang, Y-Z

    2012-01-01

    There is a great need to assess the harmful effects or toxicities of chemicals to which man is exposed. In the present paper, the simplified molecular input line entry specification (SMILES) representation-based string kernel, together with the state-of-the-art support vector machine (SVM) algorithm, were used to classify the toxicity of chemicals from the US Environmental Protection Agency Distributed Structure-Searchable Toxicity (DSSTox) database network. In this method, the molecular structure can be directly encoded by a series of SMILES substrings that represent the presence of some chemical elements and different kinds of chemical bonds (double, triple and stereochemistry) in the molecules. Thus, SMILES string kernel can accurately and directly measure the similarities of molecules by a series of local information hidden in the molecules. Two model validation approaches, five-fold cross-validation and independent validation set, were used for assessing the predictive capability of our developed models. The results obtained indicate that SVM based on the SMILES string kernel can be regarded as a very promising and alternative modelling approach for potential toxicity prediction of chemicals.

Top