Measurements of Solar Vector Magnetic Fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J. (Editor)
1985-01-01
Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.
Magnetic vector field tag and seal
Johnston, Roger G.; Garcia, Anthony R.
2004-08-31
One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.
Vector Magnetic Field in Emerging Flux Regions
NASA Astrophysics Data System (ADS)
Schmieder, B.; Pariat, E.
A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):
Mapping the magnetic field vector in a fountain clock
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Spectral Analysis of Vector Magnetic Field Profiles
NASA Technical Reports Server (NTRS)
Parker, Robert L.; OBrien, Michael S.
1997-01-01
We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.
Magnetic-field-compensation optical vector magnetometer.
Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio
2016-02-01
A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D_{2} line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed. PMID:26836097
Deriving Potential Coronal Magnetic Fields from Vector Magnetograms
NASA Astrophysics Data System (ADS)
Welsch, Brian T.; Fisher, George H.
2016-08-01
The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampère's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used with available line-of-sight magnetic field measurements, which approximate the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid, "least-squares" potential field, which minimizes the integrated square of the residual between the potential and actual fields. We also explore weighting the residuals in the fit by spatially uniform measurement uncertainties. This has advantages both in not overfitting the radial field used for the Neumann BC, and in maximizing consistency with the observations. We demonstrate our methods with SDO/HMI vector magnetic field observations of active region 11158, and find that residual discrepancies between the observed and potential fields are significant, and they are consistent with nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid-potential fields have significantly less energy than the Neumann fields in every case - by more than 10^{32} erg in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.
Deriving Potential Coronal Magnetic Fields from Vector Magnetograms
NASA Astrophysics Data System (ADS)
Welsch, Brian T.; Fisher, George H.
2016-06-01
The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampère's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used with available line-of-sight magnetic field measurements, which approximate the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid, "least-squares" potential field, which minimizes the integrated square of the residual between the potential and actual fields. We also explore weighting the residuals in the fit by spatially uniform measurement uncertainties. This has advantages both in not overfitting the radial field used for the Neumann BC, and in maximizing consistency with the observations. We demonstrate our methods with SDO/HMI vector magnetic field observations of active region 11158, and find that residual discrepancies between the observed and potential fields are significant, and they are consistent with nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid-potential fields have significantly less energy than the Neumann fields in every case - by more than 10^{32} erg in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.
Lifshitz effects on vector condensate induced by a magnetic field
NASA Astrophysics Data System (ADS)
Wu, Ya-Bo; Lu, Jun-Wang; Liu, Mo-Lin; Lu, Jian-Bo; Zhang, Cheng-Yuan; Yang, Zhuo-Qun
2014-05-01
By numerical and analytical methods, we study in detail the effects of the Lifshitz dynamical exponent z on the vector condensate induced by an applied magnetic field in the probe limit. Concretely, in the presence of the magnetic field, we obtain the Landau level independent of z, and we also find the critical value by coupling a Maxwell complex vector field and an SU(2) field into a (3+1)-dimensional Lifshitz black hole, respectively. The research results show that for the two models with the lowest Landau level, the increasing z improves the response of the critical temperature to the applied magnetic field even without the charge density, and the analytical results uphold the numerical results. In addition, we find that, even in the Lifshitz black hole, the Maxwell complex vector model is still a generalization of the SU(2) Yang-Mills model. Furthermore, we construct the square vortex lattice and discuss the implications of these results.
Magnetic field satellite /MAGSAT/ spacecraft vector magnetometer calibration
NASA Technical Reports Server (NTRS)
Hinkal, S. W.
1980-01-01
The low-flying MAGSAT spacecraft, launched October 30, 1979, included a Vector Magnetometer to accurately map the magnitude and direction of the magnetic field of the earth. Calibration of the magnetometer included arc-second precision determination of the relative orientations of the three sensor axes in a coordinate system defined by optical references. This determination began with laboratory measurements of the relative alignments of optical components mounted with the magnetometer. The actual calibration procedure then consisted basically of accurate and repeatable positioning of the Vector Magnetometer within a unique magnetic test facility which nulls the earth's magnetic field, then generates magnetic fields of various orientations and strengths. Analysis of the magnetometer sensor outputs together with the position and alignment data then gave the axes orientations. We used precision theodolites and methods related to surveying techniques to achieve the accurate positioning and optical component alignment measurements. The final calibration accuracy exceeded results previously achieved in the facility.
Quantifying solar superactive regions with vector magnetic field observations
NASA Astrophysics Data System (ADS)
Chen, A. Q.; Wang, J. X.
2012-07-01
Context. The vector magnetic field characteristics of superactive regions (SARs) hold the key for understanding why SARs are extremely active and provide the guidance in space weather prediction. Aims: We aim to quantify the characteristics of SARs using the vector magnetograms taken by the Solar Magnetic Field Telescope at Huairou Solar Observatory Station. Methods: The vector magnetic field characteristics of 14 SARs in solar cycles 22 and 23 were analyzed using the following four parameters: 1) the magnetic flux imbalance between opposite polarities; 2) the total photospheric free magnetic energy; 3) the length of the magnetic neutral line with its steep horizontal magnetic gradient; and 4) the area with strong magnetic shear. Furthermore, we selected another eight large and inactive active regions (ARs), which are called fallow ARs (FARs), to compare them with the SARs. Results: We found that most of the SARs have a net magnetic flux higher than 7.0 × 1021 Mx, a total photospheric free magnetic energy higher than 1.0 × 1024 erg cm-1, a magnetic neutral line with a steep horizontal magnetic gradient (≥300 G Mm-1) longer than 30 Mm, and an area with strong magnetic shear (shear angle ≥ 80°) greater than 100 Mm2. In contrast, the values of these parameters for the FARs are mostly very low. The Pearson χ2 test was used to examine the significance of the difference between the SARs and FARs, and the results indicate that these two types of ARs can be fairly distinguished by each of these parameters. The significance levels are 99.55%, 99.98%, 99.98%, and 99.96%, respectively. However, no single parameter can distinguish them perfectly. Therefore we propose a composite index based on these parameters, and find that the distinction between the two types of ARs is also significant with a significance level of 99.96%. These results are useful for a better physical understanding of the SAR and FAR.
Determination of coronal magnetic fields from vector magnetograms
NASA Technical Reports Server (NTRS)
Mikic, Zoran
1993-01-01
This report covers technical progress during the second year of the contract entitled 'Determination of Coronal Magnetic Fields from Vector Magnetograms,' NASW-4728, between NASA and Science Applications International Corporation, and covers the period January 1, 1993 to December 31, 1993. Under this contract SAIC has conducted research into the determination of coronal magnetic fields from vector magnetograms, including the development and application of algorithms to determine force-free coronal fields above selected observations of active regions. The contract began on June 30, 1992 and has a completion date of December 31, 1994. This contract is a continuation of work started in a previous contract, NASW-4571, which covered the period November 15, 1990 to December 14, 1991. During this second year we have concentrated on studying additional active regions and in using the estimated coronal magnetic fields to compare to coronal features inferred from observations.
Determination of Coronal Magnetic Fields from Vector Magnetograms
NASA Technical Reports Server (NTRS)
Mikic, Zoran
1997-01-01
During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that
Electromagnetic biaxial vector scanner using radial magnetic field.
Han, Aleum; Cho, Ah Ran; Ju, Suna; Ahn, Si-Hong; Bu, Jong-Uk; Ji, Chang-Hyeon
2016-07-11
We present an electromagnetic biaxial vector-graphic scanning micromirror. In contrast to conventional electromagnetic actuators using linear magnetic field, proposed device utilizes a radial magnetic field and uniquely designed current paths to enable the 2 degree-of-freedom scanning motion. As the radial field is generated by concentrically assembled magnets placed under the scanner die, large driving torque can be generated without the aid of hermetic packaging and relatively small device volume can be achieved. Mechanical half scan angle of 6.43° and 4.20° have been achieved at DC current of 250mA and 350mA for horizontal and vertical scans, respectively. Forced actuation along both scan axes has been realized by feedback control. PMID:27410851
Vector magnetic field observations of flux tube emergence
NASA Astrophysics Data System (ADS)
Schmieder, B.; Aulanier, G.; Pariat, E.; Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.
2002-10-01
With Flare Genesis Experiment (FGE), a balloon borne Observatory high spatial and temporal resolution vector magnetograms have been obtained in an emerging active region. The comparison of the observations (FGE and TRACE) with a linear force-free field analysis of the region shows where the region is non-force-free. An analysis of the magnetic topology furnishes insights into the existence of "bald patches" regions (BPs are regions where the vector field is tangential to the boundary (photosphere) along an inversion line). Magnetic reconnection is possible and local heating of the chromopshere is predicted near the BPs. Ellerman bombs (EBs) were found to coincide with few BPs computed from a linear force-free extrapolation of the observed longitudinal field. But when the actual observations of transverse fields were used to identify BPs, then the correspondence with EB positions improved significantly. We conclude that linear force-free extrapolations must be done with the true observed vertical fields, which require the measurement of the three components of the magnetic field.
Height Variation of the Vector Magnetic Field in Solar Spicules
NASA Astrophysics Data System (ADS)
Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.
2015-04-01
Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.
Daily Full-Disk SOLIS Inverted Vector Magnetic Field Data
NASA Astrophysics Data System (ADS)
Streander, Kim; Norton, A. A.; SOLIS Team
2009-05-01
Inverted vector magnetic field data from the SOLIS VSM (Synoptic Optical Long-term Investigations of the Sun Vector Spectromagnetograph) instrument are now available at:http://solis.nso.edu/. Both full-disk and smaller field-of-view data containing active regions are available. The inversion is based on the least-squares minimization FORTRAN code developed by the HAO group, initially used with Advanced Stokes Polarimeter data (Skumanich and Lites, 1987; Auer, Heasley and House, 1977). The main code modification is that a scattered light, or quiet-Sun profile, is simulated for every center-to-limb position on the disk. This simulated profile is used as the scattered light profile, instead of an observed profile averaged from pixels with low polarization within a small field of view. The data are inversions of Stokes I, Q, U and V profiles of the Fe I 630.1 and 630.2 nm lines using a Milne-Eddington (ME) model atmosphere. Stokes I, Q, U and V profile weights are 0.01, 1.0, 1.0 and 0.1, respectively. All the Milne-Eddington inverted data are corrected for the 180º ambiguity using the Non-Potential Field Calculation (NPFC) method developed by Manolis Georgoulis (Johns Hopkins). Note that data are only inverted if the observed polarization signal is above a certain threshold.Data are available daily (weather permitting) beginning April 1, 2009 onwards. Also available is a sample of data from March 2008 containing several active regions near the equator.
The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance
NASA Astrophysics Data System (ADS)
Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Sun, Xudong; Schou, Jesper; Couvidat, Sebastien; Norton, Aimee; Bobra, Monica; Centeno, Rebecca; Leka, K. D.; Barnes, Graham; Turmon, Michael
2014-09-01
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180∘ azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic
Vector magnetic field sensing by a single nitrogen vacancy center in diamond
NASA Astrophysics Data System (ADS)
Chen, X.-D.; Sun, F.-W.; Zou, C.-L.; Cui, J.-M.; Zhou, L.-M.; Guo, G.-C.
2013-03-01
In this letter, we proposed and experimentally demonstrated a method to detect the vector magnetic field with a single nitrogen vacancy (NV) center in diamond. The magnetic field in parallel with the axis of the NV center can be obtained by detecting the electron Zeeman shift, while the Larmor precession of an ancillary nuclear spin close to the NV center can be used to measure the field perpendicular to the axis. Experimentally, both the Zeeman shift and Larmor precession can be measured through the fluorescence from the NV center. By applying additional calibrated magnetic fields, complete information on the vector magnetic field can be achieved with such a method. This vector magnetic-field detection method is insensitive to temperature fluctuation and it can be applied to nanoscale magnetic measurements.
Kazachenko, Maria D.; Fisher, George H.; Welsch, Brian T.
2014-11-01
Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal decomposition (PTD) of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the 'PTD-Doppler-FLCT Ideal' (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the FISHPACK software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (ANMHD) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 1% error in the total Poynting flux and a 10% error in the helicity flux rate at a normal viewing angle (θ = 0) and less than 25% and 10% errors, respectively, at large viewing angles (θ < 60°). We compare our results with other inversion methods at zero viewing angle and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
NASA Technical Reports Server (NTRS)
Metcalf, Thomas R.
1994-01-01
I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.
The magnetic field vector of the Sun-as-a-star
NASA Astrophysics Data System (ADS)
Vidotto, A. A.
2016-06-01
Direct comparison between stellar and solar magnetic maps is hampered by their dramatic differences in resolution. Here, we present a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. Our approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well. For that, we self-consistently decompose the three-components of the vector field using spherical harmonics of different l degrees. By retaining the low l degrees in the decomposition, we are able to calculate the large-scale magnetic field vector. Using a synoptic map of the solar vector field at Carrington Rotation CR2109, we derive the solar magnetic field vector at a similar resolution level as that from stellar magnetic images. We demonstrate that the large-scale field of the Sun is not purely radial, as often assumed - at CR2109, 83 per cent of the magnetic energy is in the radial component, while 10 per cent is in the azimuthal and 7 per cent is in the meridional components. By separating the vector field into poloidal and toroidal components, we show that the solar magnetic energy at CR2109 is mainly (>90 per cent) poloidal. Our description is entirely consistent with the description adopted in several stellar studies. Our formalism can also be used to confront synoptic maps synthesized in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.
VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS
Kramar, M.; Inhester, B.; Lin, H.; Davila, J. E-mail: Joseph.M.Davila@nasa.gov E-mail: lin@ifa.hawaii.edu
2013-09-20
In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field.
NASA Astrophysics Data System (ADS)
Plaster, Brad
2012-10-01
We propose a new technique for the determination and monitoring of the interior vector magnetic field components during the operation of neutron EDM experiments. If a suitable three-dimensional volume surrounding the fiducial volume of an experiment can be defined which contains no interior currents or magnetization, each of the interior vector field components will satisfy the Laplace Equation within this volume. Therefore, if the field components can be measured on the boundary, the interior vector field components can be determined uniquely via numerical solution of the Laplace Equation. We discuss the applicability of this technique to the determination of the magnetic field components and magnetic field gradients in the fiducial volumes of neutron EDM experiments.
NASA Technical Reports Server (NTRS)
Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.
2014-01-01
Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.
Flare-related changes in pseudo-vector magnetic field derived from line-of-sight magnetograms
NASA Astrophysics Data System (ADS)
Burtseva, Olga; Gosain, Sanjay; Pevtsov, Alexei A.
2016-05-01
Longitudinal field is a projection of full vector field to the line-of-sight direction. Thus, it is possible to derive some information about the vector field from line-of-sight data in round sunspots, assuming that average properties of vector magnetic field in these sunspots depend mostly on distance from center of sunspot. Under this assumption, one can reconstruct vertical, radial, and tangential components of vector magnetic field using azimuthal averaging. This technique can be useful for investigation of twist and inclination in magnetic field in particular in flaring regions when vector data are not available. In this study we validate the cylindrical symmetry technique on example of a simple round sunspot. Then we attempt to study changes in (pseudo-vector) magnetic fields in isolated and round sunspots associated with flare events using SDO/HMI longitudinal magnetograms. We compare the pseudo-vector results with vector data.
NASA Astrophysics Data System (ADS)
Kramar, M.; Lin, H.; Tomczyk, S.
2016-03-01
We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.
Calculating Non-Potentiality in Solar Active Regions Using SDO/HMI Vector Magnetic Field Data
NASA Astrophysics Data System (ADS)
Bobra, M.; Hoeksema, J. T.
2010-12-01
Non-potential magnetic fields in solar active regions are thought to be associated with flare occurrence. In this study, we parametrize the non-potentiality of several active regions, using data from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO), and correlate these parameters with flare occurrence. In particular, we focus on a parameter that we call the Gradient-Weighted Inversion Line Length (GWILL). Using data from SOHO/MDI, Mason et al. found that GWILL generally tends to increase before a solar flare. We investigate whether extending the analysis of Mason et. al. to a three-dimensional field enables us to derive better near real-time indicators of flare occurrence. Before HMI, the availability of vector magnetograms was sparse at best. HMI provides continuous vector magnetogram data at a 12-minute cadence. As such, this study represents the first parametrization of non-potentiality in solar active regions using continuous vector magnetic field data.
NASA Astrophysics Data System (ADS)
Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir
2016-05-01
We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.
Vector magnetic field and vector current density in and around the δ-spot NOAA 10808†
NASA Astrophysics Data System (ADS)
Bommier, Véronique; Landi Degl'Innocenti, Egidio; Schmieder, Brigitte; Gelly, Bernard
2011-08-01
The context is that of the so-called ``fundamental ambiguity'' (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the ``simulated annealing'' algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line (Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).
NASA Astrophysics Data System (ADS)
Plattner, A.; Simons, F. J.
2015-12-01
When inverting for a planetary magnetic potential from vector-valued satellite magnetic field data we need to take into account that the recorded data also contain fields not stemming from the planet but from outer sources in space. In classical global spherical-harmonic analysis this is done by fitting, in addition to the inner sources potential field, a linear combination of outer-source spherical harmonics to the data. This approach has been successfully applied to data with global homogeneous coverage and quality but is not suited for purely regional data. In many situations a local method would be beneficial to take full advantage of data with regionally varying quality or coverage, or to avoid ringing artifacts from sharp intensity contrasts. Here we present a local method that allows such a magnetic source separation. We simultaneously create inner-source and outer-source altitude vector Slepian functions by solving an optimization problem that considers the satellite altitude, the upper radial limit of the satellite trajectory, and the maximum spherical-harmonic degree we want to resolve. This new dual-source altitude vector Slepian system allows to invert for both inner-source and outer-source magnetic potential fields from regional data in a computationally efficient manner, as we show with a series of examples for Earth, the Moon, and terrestrial planets.
NASA Technical Reports Server (NTRS)
Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.
1987-01-01
The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.
Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles
NASA Astrophysics Data System (ADS)
Landolfi, M.; Landi Degl'Innocenti, E.
1982-06-01
The influence of magnetooptical effects in analytical solutions of the radiative transfer equations for polarized radiation is studied in terms of the single approximations contained in Unno's (1956) solutions. It is shown that the procedures adopted by Auer et al. (1977) for finding the magnetic field vector from Stokes profile data results in large errors in the magnetic field azimuth due to neglect of the magnetooptical effects. The magnetooptical effects are demonstrated to have a larger influence on the linear polarization profiles than other Stokes parameters.
Infrared Dual-line Hanle diagnostic of the Coronal Vector Magnetic Field
NASA Astrophysics Data System (ADS)
Dima, Gabriel; Kuhn, Jeffrey; Berdyugina, Svetlana
2016-04-01
Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g. ~4G at a height of 0.1Rsun above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 um line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 Rsun. Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 um forbidden line with linear polarization observations of the HeI 1.0830 um permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step towards interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.
NASA Astrophysics Data System (ADS)
Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils
2015-04-01
One of the main goals of the Swarm three-satellite constellation mission is to determine the lithospheric field globally with the best possible resolution. To achieve that, explicit advantage of the constellation aspect of Swarm has to be taken by using gradient estimates. We derive lithospheric field models using more than one year of East-West and North-South magnetic gradient data, approximated by first differences of field vector data between the two lower Swarm satellites and along each satellite orbit, respectively. Despite the current relatively high altitude of 450 km of the Swarm satellites, the results are promising. We find that Swarm gradient data are less sensitive to large-scale external field fluctuations and enhance the resolution of the determined lithospheric field compared to only vector data. The derived models agree very well with previous models derived from CHAMP data, serving as an initial validation of the Swarm mission.
Stokes profile analysis and vector magnetic fields. I - Inversion of photospheric lines
NASA Astrophysics Data System (ADS)
Skumanich, A.; Lites, B. W.
1987-11-01
The authors consider improvements to the Auer, Heasley, and House method for the analytic inversion of Stokes profiles via nonlinear least squares. In the application of this method to actual sunspot observations, the authors have found that its simplifications often yield erroneous solutions or nonconvergent behavior. By including damping wings and magneto-optical birefringence and by decoupling the intensity profile from the three-vector polarization profile in the analysis, the authors develop a more robust inversion method that provides a more reliable and accurate estimate of sunspot vector magnetic fields without significant loss of economy.
He i Vector Magnetic Field Maps of a Sunspot and Its Superpenumbral Fine-Structure
NASA Astrophysics Data System (ADS)
Schad, T. A.; Penn, M. J.; Lin, H.; Tritschler, A.
2015-06-01
Advanced inversions of high-resolution spectropolarimetric observations of the He i triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions because superpenumbral Stokes profiles are dominated by atomic-level polarization, while sunspot profiles are Zeeman-dominated, but also exhibit signatures that might be induced by symmetry-breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere and furthermore show that the superpenumbral magnetic field does not appear to be finely structured, unlike the observed intensity structure. This suggests that fibrils are not concentrations of magnetic flux, but are instead distinguished by individualized thermalization. We also directly compare our inverted values with a current-free extrapolation of the chromospheric field. With improved measurements in the future, the average shear angle between the inferred magnetic field and the potential field may offer a means to quantify the non-potentiality of the chromospheric magnetic field to study the onset of explosive solar phenomena.
Interior Vector Magnetic Field Monitoring for the SNS Neutron EDM Experiment
NASA Astrophysics Data System (ADS)
Nouri, Nima; Plaster, Brad
2014-09-01
A concept has been developed which provides for a real-time determination of the spatial dependence of the vector components of the magnetic field (and, hence, the ∂Bi / ∂xj field gradients) within the interior fiducial volume of the SNS neutron EDM experiment solely from exterior measurements at fixed discrete locations. This technique will be especially important during the operation of the experiment, when direct measurements of the field gradients present within the fiducial volume will not be physically possible. Our method, which is based on the solution to the Laplace Equation, is completely general and does not require the field to possess any type of symmetry. We describe the concept and our systematic approach for optimizing the locations of these exterior measurements. We also present results from prototyping studies of a field monitoring system deployed within a half-scale prototype of the experiment's magnetic field environment. A concept has been developed which provides for a real-time determination of the spatial dependence of the vector components of the magnetic field (and, hence, the ∂Bi / ∂xj field gradients) within the interior fiducial volume of the SNS neutron EDM experiment solely from exterior measurements at fixed discrete locations. This technique will be especially important during the operation of the experiment, when direct measurements of the field gradients present within the fiducial volume will not be physically possible. Our method, which is based on the solution to the Laplace Equation, is completely general and does not require the field to possess any type of symmetry. We describe the concept and our systematic approach for optimizing the locations of these exterior measurements. We also present results from prototyping studies of a field monitoring system deployed within a half-scale prototype of the experiment's magnetic field environment. This work was supported in part by the U.S. Department of Energy Office of
On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields
NASA Technical Reports Server (NTRS)
Debergh, Nathalie; Beckers, Jules
1995-01-01
Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.
An Automated Ambiguity-Resolution Code for Hinode/SP Vector Magnetic Field Data
NASA Astrophysics Data System (ADS)
Leka, K. D.; Barnes, G.; Crouch, A.
2009-12-01
A fast, automated algorithm is presented for use in resolving the 180° ambiguity in vector magnetic field data, including those data from Hinode/Spectropolarimeter. The Fortran-based code is loosely based on the Minimum Energy Algorithm, and is distributed to provide ambiguity-resolved data for the general user community. Here we generally describe the released code (available at http://www.cora.nwra.com/AMBIG), examples of its performance and usage for Hinode/SP data.
Angular Distribution of Solar Wind Magnetic Field Vector at 1 AU
NASA Astrophysics Data System (ADS)
Xu, F.; Li, G.; Zhao, L.; Zhang, Y.; Khabarova, O.; Miao, B.; le Roux, J.
2015-03-01
We study the angular distribution of the solar wind magnetic field vector at 1 AU and its solar cycle dependence using ACE observations. A total of twelve 27.27 day (the duration of a solar rotation) intervals during the solar maximum, the solar minimum, as well as the ascending and descending phases of solar cycle 23 are examined. For all selected intervals, we obtain the angular distribution function {{f}τ }(α ), where α is the angle between the instantaneous solar wind magnetic field vector and the average background magnetic field vector, and τ is the period length for the averaging. Our results show that in all periods {{f}τ }(α ) has two populations, one at small angles and one at large angles. We suggest that the second population is due to the presence of current sheets in the solar wind. The solar-cycle dependence of {{f}τ }(α ) and a τ-scaling property of the second population of {{f}τ }(α ) are discussed. The τ scaling shows a clear dependence on the solar wind type. The implication of {{f}τ }(α ) for particle acceleration at interplanetary shocks driven by coronal mass ejections, such as those in solar energetic particle events, is also discussed.
NASA Astrophysics Data System (ADS)
Bobra, M. G.; Sun, X.; Hoeksema, J. T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K. D.
2014-09-01
A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches ( SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.
NASA Astrophysics Data System (ADS)
Nouri, Nima; Brown, Michael; Carr, Robert; Filippone, Bradley; Osthelder, Charles; Plaster, Bradley; Slutsky, Simon; Swank, Christopher
2015-10-01
A prototype of a magnetic field monitoring system designed to reconstruct the vector magnetic field components (and, hence, all nine of the ∂Bi / ∂xj field gradients) within the interior measurement fiducial volume solely from external measurements is under development for the SNS neutron EDM experiment. A first-generation room-temperature prototype array has already been tested. A second-generation prototype array consisting of 12 cryogenic-compatible fluxgate magnetometer probes will be deployed within the cold region of the experiment's 1 / 3 -scale cryogenic magnet testing apparatus. We will report progress towards the development of this second-generation prototype. This work was supported in part by the U. S. Department of Energy Office of Nuclear Physics under Award No. DE-FG02-08ER41557.
Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T.
2013-05-20
Photospheric magnetic vector maps from two different instruments are used to model the nonlinear force-free coronal magnetic field above an active region. We use vector maps inferred from polarization measurements of the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (HMI) and the Solar Optical Telescope's Spectropolarimeter (SP) on board Hinode. Besides basing our model calculations on HMI data, we use both SP data of original resolution and scaled down to the resolution of HMI. This allows us to compare the model results based on data from different instruments and to investigate how a binning of high-resolution data affects the model outcome. The resulting three-dimensional magnetic fields are compared in terms of magnetic energy content and magnetic topology. We find stronger magnetic fields in the SP data, translating into a higher total magnetic energy of the SP models. The net Lorentz forces of the HMI and SP lower boundaries verify their force-free compatibility. We find substantial differences in the absolute estimates of the magnetic field energy but similar relative estimates, e.g., the fraction of excess energy and of the flux shared by distinct areas. The location and extension of neighboring connectivity domains differ and the SP model fields tend to be higher and more vertical. Hence, conclusions about the magnetic connectivity based on force-free field models are to be drawn with caution. We find that the deviations of the model solution when based on the lower-resolution SP data are small compared to the differences of the solutions based on data from different instruments.
Photospheric Vector Magnetic Field Evolution of NOAA Active Region 11504 and the Ensuing CME
NASA Astrophysics Data System (ADS)
James, Alexander; Green, Lucie; Valori, Gherardo; van Driel-Gesztelyi, Lidia; Baker, Deborah; Brooks, David; Palmerio, Erika
2016-05-01
Coronal mass ejections (CMEs) are eruptions of billions of tonnes of plasma from the Sun that drive the most severe space weather effects we observe. In order to be able to produce forecasts of space weather with lead times of the order of days, accurate predictions of the occurrence of CMEs must be developed. The eruptive active-region studied in this work (NOAA 11504) is complex, featuring fragmentation of penumbral magnetic field in the days prior to eruption, as well as rotation of the leading sunspot. SDO/HMI vector photospheric magnetic field measurements are utilised alongside SDO/AIA multi-wavelength extreme ultra-violet (EUV) observations to study the dynamics of the photospheric and coronal structures, as well as Hinode/EIS spectroscopic measurements, including elemental composition data. The EUV data show flare ribbons as well as coronal dimmings, which are used to infer the orientation of the erupting flux rope. This flux rope orientation is then compared to in situ measurements of the flux rope. The vector magnetic field data is used to determine the possible contributions the field fragmentation and sunspot rotation may have made to the formation of the flux rope and the triggering of the CME.
Changes in measured vector magnetic fields when transformed into heliographic coordinates
NASA Technical Reports Server (NTRS)
Hagyard, M. J.
1987-01-01
The changes that occur in measured magnetic fields when they are transformed into a heliographic coordinate system are investigated. To carry out this investigation, measurements of the vector magnetic field of an active region that was observed at 1/3 the solar radius from disk center are taken, and the observed field is transformed into heliographic coordinates. Differences in the calculated potential field that occur when the heliographic normal component of the field is used as the boundary condition rather than the observed line-of-sight component are also examined. The results of this analysis show: (1) that the observed fields of sunspots more closely resemble the generally accepted picture of the distribution of umbral fields if they are displayed in heliographic coordinates; (2) that the differences in the potential calculations are less than 200 G in field strength and 20 deg in field azimuth outside sunspots; and (3) that differences in the two potential calculations in the sunspot areas are no more than 400 G in field strength but range from 60 to 80 deg in field azimuth in localized umbral areas.
OBSERVATIONAL EVIDENCE OF CHANGING PHOTOSPHERIC VECTOR MAGNETIC FIELDS ASSOCIATED WITH SOLAR FLARES
Su, J. T.; Jing, J.; Wang, H. M.; Mao, X. J.; Wang, X. F.; Zhang, H. Q.; Deng, Y. Y.; Guo, J.; Wang, G. P.
2011-06-01
Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with major flares. As a result, the Lorentz force (LF) acting on the solar photosphere and solar interior could be perturbed, and the change of LF is always nearly in the downward direction. However, these rapid and permanent changes have not been systematically investigated, yet, using vector magnetograms. In this paper, we analyze photospheric vector magnetograms covering five flares to study the evolution of photospheric magnetic fields. In particular, we investigate two-dimensional spatial distributions of the changing LF. Around the major flaring polarity inversion line, the net change of the LF is directed downward in an area of {approx}10{sup 19} cm{sup 2} for X-class flares. For all events, the white-light observations show that sunspots darken in this location after flares, and magnetic fields become more inclined, which is consistent with the ideas put forward by Hudson et al. and Fisher et al., and observations.
Vector meson masses from a hidden local symmetry in a constant magnetic field
NASA Astrophysics Data System (ADS)
Kawaguchi, Mamiya; Matsuzaki, Shinya
2016-06-01
We discuss the magnetic responses of vector meson masses based on the hidden local symmetry (HLS) model in a constant magnetic field, described by the lightest two-flavor system including the pion, rho and omega mesons in the spectrum. The effective masses influenced under the magnetic field are evaluated according to the derivative or chiral expansion established in the HLS model. At the leading order O (p2), the g factor of the charged rho meson is fixed to be 2, implying that the rho meson at this order is treated just like a pointlike spin-1 particle. Beyond the leading order, one finds anomalous magnetic interactions of the charged rho meson, involving the anomalous magnetic moment, which give corrections to the effective mass. It is then suggested that up to O (p4) the charged rho meson tends to become massless. Of interest is that nontrivial magnetic dependence of neutral mesons emerges to give rise to the significant mixing among neutral mesons. Consequently, it leads to the dramatic enhancement of the omega meson mass, which is testable in future lattice simulations. Corrections from terms beyond O (p4) are also addressed.
The Quiet Sun Magnetic Field Structure Derived from a Full Vector Determination
NASA Astrophysics Data System (ADS)
Bommier, V.
2011-04-01
The magnetic field vector of the quiet Sun has been first determined by usual Milne-Eddington inversion of ZIMPOL/THEMIS data. But such an inversion provides the local average field only, i.e. the product of the field strength by the magnetic filling factor. To discriminate between both quantities, an additional method has to be provided. We proposed a direct but approached determination of the filling factor in the spectropolarimetric data themselves. Then we were able to derive the inhomogeneous magnetic field strength (i.e. disambiguated from the filling factor). The methods and results from the ZIMPOL/THEMIS data are now published (Bommier et al. 2009). The present paper is intended to show that the THEMIS/THEMIS data, 10 times more numerous, give the same results, validating thus the THEMIS polarimeter results with the ZIMPOL ones. But the main new result is that finally the inhomogeneous field strength is found clearly dependent on the field inclination angle, thus ruling out the hypothesis of a turbulent field. The corresponding field organization could be: thin scattered vertical tubes of strong field opening and weakening with height (in the photosphere). Thus the weak fields would be horizontally (2D) distributed rather than following their generally admitted 3D turbulent structure. This distribution is not incompatible with the Hanle effect observations, because the Hanle effect is insensitive to the vertical field. The distribution of the thin opening tubes remains to be quantized, but spatial horizontal correlations were observed, which suggests that their size would not be very small with respect to the observation pixel size of 0.2-0.5 arcsec.
Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations
Connerney, J.E.P.; Acuna, M.H.; Ness, N.F.
1984-05-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-01-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
The Z3 model of Saturn's magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-01-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1 percent) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
Real time tests for long lead-time forecasting of the magnetic field vectors within CMEs
NASA Astrophysics Data System (ADS)
Savani, Neel; Vourlidas, Angelos; Pulkkinen, Antti; Wold, Alexandra M.
2016-07-01
The direction of magnetic vectors within coronal mass ejections, CMEs, has significant importance for forecasting terrestrial behavior. We have developed a technique to estimate the time-varying magnetic field at Earth for periods within CMEs (Savani et al 2015, 2016). This technique reduces the complex dynamics in order to create a reliable prediction methodology to operate everyday under robust conditions. In this presentation, we focus on the results and skill scores of the forecasting technique calculated from 40 historical CME events from the pre-STEREO mission. Since these results provided substantial improvements in the long lead-time Kp index forecasts, we have now begun testing under real-time conditions. We will also show the preliminary results of our methodology under these real-time conditions within the CCMC hosted at NASA Goddard Space Flight Center.
SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM
Bobra, M. G.; Couvidat, S.
2015-01-10
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.
NASA Astrophysics Data System (ADS)
Costa, Pedro
2016-06-01
The location of the critical end point (CEP) and the isentropic trajectories in the QCD phase diagram are investigated. We use the (2 +1 ) Nambu-Jona-Lasinio model with the Polyakov loop coupling for different scenarios, namely by imposing zero strange quark density, which is the case in the ultrarelativistic heavy ion collisions, and β equilibrium. The influence of strong magnetic fields and of the vector interaction on the isentropic trajectories around the CEP is discussed. It is shown that the vector interaction and the magnetic field, having opposite effects on the first-order transition, affect the isentropic trajectories differently: as the vector interaction increases, the first-order transition becomes weaker and the isentropes become smoother; when a strong magnetic field is considered, the first-order transition is strengthened and the isentropes are pushed to higher temperatures. No focusing of isentropes in region towards the CEP is seen.
Observations of vector magnetic fields with a magneto-optic filter
NASA Technical Reports Server (NTRS)
Cacciani, Alessandro; Varsik, John; Zirin, Harold
1990-01-01
The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.
Martin, James E; Solis, Kyle J
2016-01-28
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry-breaking rational fields-consists of three mutually orthogonal fields, two alternating and one dc, and the second type-rational triads-consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude of the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. These orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes. PMID:26549438
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude of the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less
NASA Astrophysics Data System (ADS)
Du, Jinsong; Chen, Chao; Lesur, Vincent; Lane, Richard; Wang, Huilin
2015-06-01
We examined the mathematical and computational aspects of the magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system (SCS). This work is relevant for 3-D modelling that is performed with lithospheric vertical scales and global, continent or large regional horizontal scales. The curvature of the Earth is significant at these scales and hence, a SCS is more appropriate than the usual Cartesian coordinate system (CCS). The 3-D arrays of spherical prisms (SP; `tesseroids') can be used to model the response of volumes with variable magnetic properties. Analytical solutions do not exist for these model elements and numerical or mixed numerical and analytical solutions must be employed. We compared various methods for calculating the response in terms of accuracy and computational efficiency. The methods were (1) the spherical coordinate magnetic dipole method (MD), (2) variants of the 3-D Gauss-Legendre quadrature integration method (3-D GLQI) with (i) different numbers of nodes in each of the three directions, and (ii) models where we subdivided each SP into a number of smaller tesseroid volume elements, (3) a procedure that we term revised Gauss-Legendre quadrature integration (3-D RGLQI) where the magnetization direction which is constant in a SCS is assumed to be constant in a CCS and equal to the direction at the geometric centre of each tesseroid, (4) the Taylor's series expansion method (TSE) and (5) the rectangular prism method (RP). In any realistic application, both the accuracy and the computational efficiency factors must be considered to determine the optimum approach to employ. In all instances, accuracy improves with increasing distance from the source. It is higher in the percentage terms for potential than the vector or tensor response. The tensor errors are the largest, but they decrease more quickly with distance from the source. In our comparisons of relative computational efficiency, we found
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485
NASA Astrophysics Data System (ADS)
Zu, Dong-Lin; Guo, Hua; Song, Xiao-Yu; Bao, Shang-Lian
2002-10-01
The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4×6 layers of superconducting wires is designed. The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/B0 in the single-solenoid magnet is 30% lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.
Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244
NASA Technical Reports Server (NTRS)
Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.
1986-01-01
The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.
NASA Astrophysics Data System (ADS)
Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard
2008-10-01
In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.
NASA Astrophysics Data System (ADS)
Silva, Nicolas
2012-09-01
Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.
ERIC Educational Resources Information Center
Curjel, C. R.
1990-01-01
Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)
Gosain, S.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.
2013-07-20
We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, H{sub c} , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., H{sub c} is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30 Degree-Sign {<=} {theta} {<=} 30 Degree-Sign ) separately for weak (100 G < |B{sub r} | < 500 G) and strong (|B{sub r} | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., {theta} {center_dot} H{sub c} < 0), H{sub c} of weak fields exhibits an inverse hemispheric behavior (i.e., {theta} {center_dot} H{sub c} > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.
GLOBAL TWIST OF SUNSPOT MAGNETIC FIELDS OBTAINED FROM HIGH-RESOLUTION VECTOR MAGNETOGRAMS
Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Sankarasubramanian, K. E-mail: pvk@prl.res.in
2009-09-10
The presence of fine structures in sunspot vector magnetic fields has been confirmed from Hinode as well as other earlier observations. We studied 43 sunspots based on the data sets taken from ASP/DLSP, Hinode (SOT/SP), and SVM (USO). In this Letter, (1) we introduce the concept of signed shear angle (SSA) for sunspots and establish its importance for non-force-free fields. (2) We find that the sign of global {alpha} (force-free parameter) is well correlated with that of the global SSA and the photospheric chirality of sunspots. (3) Local {alpha} patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local {alpha} in the umbra is typically of the order of the global {alpha} of the sunspot. (4) We find that the local {alpha} is distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local {alpha} in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and {alpha} in the penumbra cancel each other giving almost no contribution for their global values for the whole sunspot. (5) Arc-like structures (partial rings) with a sign opposite to that of the dominant sign of {alpha} of the umbral region are seen at the umbral-penumbral boundaries of some sunspots. (6) Most of the sunspots studied belong to the minimum epoch of the 23rd solar cycle and do not follow the so-called hemispheric helicity rule.
Ainsbury, Elizabeth A; Conein, Emma; Henshaw, Denis L
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 +/- 0.02 microT across all residences. In contrast, background field ellipticities were high, on average 47 +/- 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 +/- 21% and 21 +/- 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. PMID:15972990
NASA Astrophysics Data System (ADS)
Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.
NASA Astrophysics Data System (ADS)
Tivey, Maurice A.; Johnson, H. Paul; Salmi, Marie S.; Hutnak, Michael
2014-10-01
High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle Jason over the Raven hydrothermal vent field (47°57.3'N 129°5.75'W) located north of Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization associated with both active and inactive hydrothermal vent deposits that also show high conductive heat flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components computed from vector magnetic data improve the resolution of the magnetic anomaly source and indicate that the hydrothermally altered zone directly beneath the Raven site is approximately 15 × 106 m3 in volume.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.; Secunde, R.
1992-01-01
A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.
NASA Astrophysics Data System (ADS)
Kramar, Maxim; Lin, H.; Inhester, B.; Davila, J.
2010-05-01
Magnetic fields are the dominant fields that determine the static and dynamic properties of the solar corona. The coronal mass ejections (CMEs) involve the release of the magnetic energy stored in the magnetic field. Therefore, analyzing the magnetic field could help to understand the nature of CMEs. One of the more promising coronal magnetic field measurement methods that have been successfully demonstrated is the spectropolarimetric observations of the Fe XIII 10747 A forbidden emission line (Lin, Penn & Tomczyk 2000; Lin, Kuhn & Coulter 2004; Tomczyk et al. 2007) formed due to Hanle and Zeeman effects. However, these measurements are integrated over line-of-sight (LOS). Therefore it is impossible to determine the configuration of the coronal magnetic field from a single observation (single viewing direction). Vector tomography based on polarimetric observations of the forbidden coronal emission lines can reconstruct the coronal magnetic field when the observations are obtained from several viewing directions. As the tomography method requires observations from many directions, a rigid rotation of the coronal structures during a half of solar rotation is assumed. However, many pre-CME magnetic configurations evolve more rapidly causing significant reduce in the number of available observing directions. Here we study the sensitivity of the vector tomographic inversion to possible pre-CME coronal magnetic field configurations and the number of available observing directions. We show that the vector tomography techniques has the potential to resolve the 3D coronal non-potential magnetic field structure.
NASA Astrophysics Data System (ADS)
Hayashi, K.; Hoeksema, J. T.; Liu, Y.; Bobra, M. G.; Sun, X. D.; Norton, A. A.
2015-05-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
NASA Astrophysics Data System (ADS)
Vershovskii, A. K.; Dmitriev, A. K.
2015-11-01
We used synchronous radio-frequency excitation of three components of a hyperfine resonance line in the scheme of the vector sensor of a magnetic field based on optically detected magnetic resonance in the nitrogen-vacancy centers in diamond crystal. As a result, for the first time, the sensitivity of order 1.5 nT Hz-1/2 in the frequency range of 0-100 Hz was reached in the crystal with a volume of 0.01 mm3 glued to the end of an optical fiber.
NASA Astrophysics Data System (ADS)
Mein, P.; Uitenbroek, H.; Mein, N.; Bommier, V.; Faurobert, M.
2016-06-01
Context. In the case of unresolved solar structures or stray light contamination, inversion techniques using four Stokes parameters of Zeeman profiles cannot disentangle the combined contributions of magnetic and nonmagnetic areas to the observed Stokes I. Aims: In the framework of a two-component model atmosphere with filling factor f, we propose an inversion method restricting input data to Q , U, and V profiles, thus overcoming ambiguities from stray light and spatial mixing. Methods: The V-moments inversion (VMI) method uses shifts SV derived from moments of V-profiles and integrals of Q2, U2, and V2 to determine the strength B and inclination ψ of a magnetic field vector through least-squares polynomial fits and with very few iterations. Moment calculations are optimized to reduce data noise effects. To specify the model atmosphere of the magnetic component, an additional parameter δ, deduced from the shape of V-profiles, is used to interpolate between expansions corresponding to two basic models. Results: We perform inversions of HINODE SOT/SP data for inclination ranges 0 <ψ< 60° and 120 <ψ< 180° for the 630.2 nm Fe i line. A damping coefficient is fitted to take instrumental line broadening into account. We estimate errors from data noise. Magnetic field strengths and inclinations deduced from VMI inversion are compared with results from the inversion codes UNNOFIT and MERLIN. Conclusions: The VMI inversion method is insensitive to the dependence of Stokes I profiles on the thermodynamic structure in nonmagnetic areas. In the range of Bf products larger than 200 G, mean field strengths exceed 1000 G and there is not a very significant departure from the UNNOFIT results because of differences between magnetic and nonmagnetic model atmospheres. Further improvements might include additional parameters deduced from the shape of Stokes V profiles and from large sets of 3D-MHD simulations, especially for unresolved magnetic flux tubes.
Mariappan, Leo; Hu, Gang; He, Bin
2014-01-01
Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction. PMID:24506649
Mariappan, Leo; Hu, Gang; He, Bin
2014-02-15
Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.; Stark, B. A.; Venkatakrishnan, P.
1998-01-01
A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region.
Experiments With Magnetic Vector Potential
ERIC Educational Resources Information Center
Skinner, J. W.
1975-01-01
Describes the experimental apparatus and method for the study of magnetic vector potential (MVP). Includes a discussion of inherent errors in the calculations involved, precision of the results, and further applications of MVP. (GS)
NASA Astrophysics Data System (ADS)
Ilonidis, Stathis; Bobra, Monica G.; Couvidat, Sebastien
2015-04-01
This project is motivated by the need to understand the physical mechanisms that generate solar flares, and assess whether reliable data-driven flare forecasts are possible. We build a flare forecasting model that takes into account the temporal evolution of the active regions and provides improved forecasts for the next 24 hours. We use SDO/HMI vector magnetic field data for all the flaring regions with magnitude M1.0 or higher that have been observed with HMI and several thousand non-flaring regions. Each region is characterized by hundreds of features, including physical properties, such as the current helicity and the Lorentz force, as well as parameters that describe the temporal evolution of these properties over a two-day interval, starting 3 days and ending 1 day before the flare eruption. All of these features were used to train a Support Vector Machine (SVM), which is a supervised machine learning method used in classification problems. The results show that the SVM algorithm can achieve a True Skill Statistic of 0.91, an accuracy of 0.985, and a Heidke skill score of 0.861, improving the results of Bobra and Couvidat (2015).
NASA Technical Reports Server (NTRS)
Wang, Ren H.
1991-01-01
A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.
NASA Technical Reports Server (NTRS)
Skumanich, A.; Lites, B. W.
1985-01-01
The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.
NASA Astrophysics Data System (ADS)
Honsho, Chie; Ura, Tamaki; Kim, Kangsoo
2013-10-01
We conducted deep-sea magnetic measurements using autonomous underwater vehicles in the Bayonnaise knoll caldera, the Izu-Ogasawara island arc, which hosts the large Hakurei hydrothermal field. We improved the conventional correction method applied for removing the effect of vehicle magnetization, thus greatly enhancing the precision of the resulting vector anomalies. The magnetization distribution obtained from the vector anomaly data shows a ˜2 km wide belt of high magnetization, trending NNW-SSE going through the caldera, and a low-magnetization zone ˜300 m by ˜500 m in area, extending over the Hakurei site. Comparison between the results obtained using the vector anomaly and the total intensity anomaly shows that the magnetic field is determined more accurately, especially in areas of sparse data distribution, when the vector anomaly rather than the total intensity anomaly is used. We suggest a geologically motivated model that basaltic volcanism associated with the back-arc rifting occurred after the formation of the caldera, resulting in the formation of the high-magnetization belt underneath the silicic caldera. The Hakurei hydrothermal field lies in the intersection of the basaltic volcanism belt and the caldera wall fault, suggesting a mechanism that hot water generated by the heat of the volcanic activity has been spouting out through the caldera wall fault. The deposit apparently extends beyond the low-magnetization zone, climbing up the caldera wall. This may indicate that hot water rising from the deep through the alteration zone is transported laterally when it comes near the seafloor along fissures and fractures in the caldera wall.
NASA Astrophysics Data System (ADS)
Rother, Martin; Lesur, Vincent
2010-05-01
An important, but challenging task for the preparation of a reliable satellite magnetic field vector data set is the handling of the attitude information. Additionally to the Star Camera readings itself, the determination of the rotation between the system of coordinates linked to the magnetic field sensors and the attitude reference system of coordinates (i.e. Star Cameras) is essential. In principal the rotation angles should not vary with time, but it has been found for CHAMP that slightly adjusting these angles in time leads to an improved quality data set. These angles are usually expressed in Euler angles, but rotations can alternatively be described in a quaternion representation. Starting from the well established inversion scheme of the GRIMM geomagnetic model family, the calculation of the unknown rotation between an arbitrary system of coordinates linked to the magnetic data and the reference system of coordinates of the Star Cameras has been introduced using the plain quaternion representation. The quaternion representation is chosen because it avoids multiple solutions and is expected to improve numerical stability. The implementation is flexible enough to cover either only a rotation estimation given a magnetic field model, or a co-estimation of the rotation and the magnetic field model through an iterative approach. First we applied this upgraded scheme to noise free synthetic vector field data as a proof of concept. Then we applied the scheme to CHAMP vector magnetic field readings. The rotation estimation scheme, its convergence and stability have been evaluated. The agreement between our results and those of other modelers has been checked. With CHAMP in orbit for almost 10 years the full range of solar activity levels have been covered. The influence of local time and other environmental (i.e. solar activity) conditions have been investigated.
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet's principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet's principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies. PMID:26740335
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies. PMID:26740335
NASA Astrophysics Data System (ADS)
Loewenhaupt, M.; Geselbracht, P.; Faulhaber, E.; Rotter, M.; Doerr, M.; Schmalzl, K.; Schneidewind, A.
CeCu2Ge2, the counterpart of the heavy-fermion superconductor CeCu2Si2, exhibits an in-commensurate antiferromagnetically long-range ordered ground state with τ = (0.28 0.28 0.54) below TN = 4.15K. The magnetism is strongly affected by a Kondo screening of the Ce 4f-moments by conduction electrons. The similar energy scale of both, Kondo and exchange interactions, results in a complex magnetic phase diagram and gives rise to potential quantum critical phenomena at very low temperatures. We present elastic neutron diffraction data obtained on a CeCu2Ge2 single crystal employing the cold triple axis spectrometer PANDA at MLZ and the diffractometer D23 at ILL. The field dependence of the magnetic propagation vector was measured at T ≤ 400 mK in the [110]/[001] plane with vertical magnetic fields applied along [1¯10]. We observe a low-field incommensurate magnetic phase AF1, a first order phase transition around 7.8 T with the coexistence of two phases AF1 and AF2 with slightly different propagation vectors, the disappearance of AF1 at 8 T and the existence of AF2 up to 12 T with a possible modification at 10 T. At 12.6 T, yet still well below the value of 26 T of the saturation for magnetic fields in [110] direction, the AF2-type magnetic order is lost and magnetic intensities are not to be found at incommensurate positions in the [110]/[001] plane any more. These new results contradict a previously suggested scenario with a QCP located at 8 T and contribute new information to the B - T phase diagram of CeCu2Ge2 in [110] direction.
NASA Astrophysics Data System (ADS)
Li, Dandan; Liu, Fugui; Li, Yongjian; Zhao, Zhigang; Zhang, Changgeng; Yang, Qingxin
2014-05-01
A 2-D vector hybrid hysteresis model for a soft magnetic composite (SMC) material is established, which is combined with classical Preisach model and Stoner-Wohlfarth (S-W) model. The rotational magnetic properties of SMC materials were studied using the vector model, and the computed results were compared with the experimental measurement. It is shown that the vector hybrid model can effectively simulate the rotational magnetic properties under low magnetization fields.
Jiang, Chaowei; Wu, S. T.; Hu, Qiang; Feng, Xueshang E-mail: wus@uah.edu E-mail: fengx@spaceweather.ac.cn
2014-05-10
Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.
NASA Astrophysics Data System (ADS)
Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang
2014-05-01
Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength <~ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.
NASA Astrophysics Data System (ADS)
Bommier, V.; Landi Degl'Innocenti, E.; Schmieder, B.; Gelly, B.
2011-04-01
The context is that of the so-called “fundamental ambiguity” (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the “simulated annealing” algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).
Initial vector magnetic anomaly map from Magsat
NASA Technical Reports Server (NTRS)
Langel, R. A.; Schnetzler, C. C.; Phillips, J. D.; Horner, R. J.
1982-01-01
Global magnetic component anomaly field maps have been derived from the Magsat vector magnetometer data obtained from November 1979 through May 1980. The amplitude of variations of the components over the maps are between 10 and 15 nT, well above the noise in the data. Averaged data, in 2-by-2 deg blocks, exhibit standard errors of the mean of about 1 nT over most of the X and Z maps, and about 2 nT over most of the Y maps. Errors rise to about twice these amounts near the auroral belts. Most of the anomalies in the component data are consistent with a crustal magnetization model which incorporates dipoles aligned only in the direction of the main field. However, there appear to be some regions which require dipoles aligned in some other direction i.e., remanent magnetization.
NASA Astrophysics Data System (ADS)
Dima, G. I.; Kuhn, J. R.; Mickey, D.
2014-12-01
Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (~4 G at a height of 0.1 Rsun above an active region) and the large thermal broadening of coronal emission lines. Current methods deduce either the direction of the magnetic field or the magnetic flux density. We propose using concurrent linear polarization measurements in the near IR of forbidden and permitted lines to calculate the coronal vector magnetic field. The effect of the magnetic field on the polarization properties of emitted light is encapsulated in the Hanle effect. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while for saturated Hanle the polarization is insensitive to the strength of the field. Coronal forbidden lines are always in the saturated Hanle regime so the linear polarization holds no information on the strength of the field. By pairing measurements of both forbidden and permitted lines we would be able to obtain both the direction and strength of the field. The near-IR region of the spectrum offers the opportunity to study this problem from the ground. The FeXIII 1.075 um and SiX 1.431 um forbidden lines are strongly polarizable and are sufficiently bright over a large field of view (out to 1.5 Rsun). Measurements of both these lines can be paired up with the recently observed coronal HeI 1.083 um permitted line. The first data set used to test this technique was taken during the March 29, 2006 total solar eclipse and consisted of near-IR spectra covering the spectral region 0.9-1.8 um, with a field of view of 3 x 3 Rsun. The data revealed unexpectedly strong SiX emission compared to FeXIII. Using the HAO FORWARD suite of codes we produced simulated emission maps from a global HMD model for the day of the eclipse. Comparing the intensity variation of the measurements and the model we predict that SiX emission is more extended for
Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector
NASA Astrophysics Data System (ADS)
Peng, Shi-Guo; Tan, Shina; Jiang, Kaijun
2014-03-01
It is well known that the magnetic Feshbach resonances of cold atoms are sensitive to the magnitude of the external magnetic field. Much less attention has been paid to the direction of such a field. In this work we calculate the scattering properties of spin polarized fermionic atoms in reduced dimensions, near a p-wave Feshbach resonance. Because of spatial anisotropy of the p-wave interaction, the scattering has nontrivial dependence on both the magnitude and the direction of the magnetic field. In addition, we identify an inelastic scattering process which is impossible in the isotropic-interaction model; the rate of this process depends considerably on the direction of the magnetic field. Significantly, an EPR entangled pair of identical fermions may be produced during this inelastic collision. This work opens a new method to manipulate resonant cold atomic interactions. CPSF (Grant No. 2012M510187), Special Financial Grant from CPSF (Grant No. 2013T60762), the NSFC projects (Grant No. 11004224 and No.11204355) and the NFRP- China (Grant No. 2011CB921601), NSF (Grant No. PHY-1068511), Alfred P. Sloan Foundation
Satellite to study earth's magnetic field
NASA Technical Reports Server (NTRS)
1979-01-01
The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.
NASA Astrophysics Data System (ADS)
Farrugia, Charles
While there are many approximations describing the flow of the solar wind past the mag-netosphere in the magnetosheath, the case of perfectly aligned (parallel or anti-parallel) in-terplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in an magnetohydrodynamic (MHD) approach (Spreiter and Rizzi, 1974). In this work we examine a case of nearly-opposed (to within 15 deg) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X -13 Re) geomagnetic tail and subsequently made a 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spre-iter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely causeis a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer.
Representation of magnetic fields in space
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.
Vector fields in holographic cosmology
NASA Astrophysics Data System (ADS)
B. Hartle, James; Hawking, S. W.; Hertog, Thomas
2013-11-01
We extend the holographic formulation of the semiclassical no-boundary wave function (NBWF) to models with Maxwell vector fields. It is shown that the familiar saddle points of the NBWF have a representation in which a regular, Euclidean asymptotic AdS geometry smoothly joins onto a Lorentzian asymptotically de Sitter universe through a complex transition region. The tree level probabilities of Lorentzian histories are fully specified by the action of the AdS region of the saddle points. The scalar and vector matter profiles in this region are complex from an AdS viewpoint, with universal asymptotic phases. The dual description of the semiclassical NBWF thus involves complex deformations of Euclidean CFTs.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Vector field theories in cosmology
Tartaglia, A.; Radicella, N.
2007-10-15
Recently proposed theories based on the cosmic presence of a vectorial field are compared and contrasted. In particular the so-called Einstein aether theory is discussed in parallel with a recent proposal of a strained space-time theory (cosmic defect theory). We show that the latter fits reasonably well the cosmic observed data with only one, or at most two, adjustable parameters, while other vector theories use much more. The Newtonian limits are also compared. Finally we show that the cosmic defect theory may be considered as a special case of the aether theories, corresponding to a more compact and consistent paradigm.
Introduction to Vector Field Visualization
NASA Technical Reports Server (NTRS)
Kao, David; Shen, Han-Wei
2010-01-01
Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.
NASA Astrophysics Data System (ADS)
Cygorek, M.; Tamborenea, P. I.; Axt, V. M.
2016-05-01
Quantum kinetic equations of motion for carrier and impurity spins in paramagnetic II-VI diluted magnetic semiconductors in a k -dependent effective magnetic field are derived, where the carrier-impurity correlations are taken into account. In the Markov limit, rates for the electron-impurity spin transfer can be derived for electron spins parallel and perpendicular to the impurity spins corresponding to measurable decay rates in Kerr experiments in Faraday and Voigt geometry. Our rigorous microscopic quantum kinetic treatment automatically accounts for the fact that, in an individual spin flip-flop scattering process, a spin flip of an electron is necessarily accompanied by a flop of an impurity spin in the opposite direction and the corresponding change of the impurity Zeeman energy influences the final energy of the electron after the scattering event. This shift in the electron energies after a spin flip-flop scattering process, which usually has been overlooked in the literature, turns out to be especially important in the case of extremely diluted magnetic semiconductors in an external magnetic field. As a specific example for a k -dependent effective magnetic field the effects of a Rashba field on the dynamics of the carrier-impurity correlations in a Hg1 -x -yCdyMnxTe quantum well are described. It is found that, although accounting for the Rashba interaction in the dynamics of the correlations leads to a modified k -space dynamics, the time evolution of the total carrier spin is not significantly influenced. Furthermore, a connection between the present theory and the description of collective carrier-impurity precession modes is presented.
Analysis of lithospheric magnetization in vector spherical harmonics
NASA Astrophysics Data System (ADS)
Gubbins, D.; Ivers, D.; Masterton, S. M.; Winch, D. E.
2011-10-01
The lithospheric contribution to the geomagnetic field arises from magnetized rocks in a thin shell at the Earth's surface. The lithospheric field can be calculated as an integral of the distribution of magnetization using standard results from potential theory. Inversion of the magnetic field for the magnetization suffers from a fundamental non-uniqueness: many important distributions of magnetization yield no potential magnetic field outside the shell. We represent the vertically integrated magnetization (VIM) in terms of vector spherical harmonics that are new to geomagnetism. These vector functions are orthogonal and complete over the sphere: one subset (?) represents the part of the magnetization that produces a potential field outside the shell, the observed field; another subset (?) produces a potential field exclusively inside the shell; and a third, toroidal, subset (?) produces no potential field at all. ? and ? together span the null space of the inverse problem for magnetization with perfect, complete data. We apply the theory to a recent global model of VIM, give an efficient algorithm for finding the lithospheric field, and show that our model of magnetization is dominated by ?, the part producing a potential field inside the shell. This is largely because, to a first approximation, the model was formed by magnetizing a shell with a substantial uniform component by an potential field originating inside the shell. The null space for inversion of lithospheric magnetic anomaly data for VIM is therefore huge. It can be reduced if the magnetization is assumed to be induced by a known inducing field, but the null space for susceptibility is not so easily recovered.
Hysteresis in rotation magnetic field
NASA Astrophysics Data System (ADS)
Ivanyi, Amalia
2000-01-01
The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.
The magnetic field investigation on Cluster
NASA Technical Reports Server (NTRS)
Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.
1988-01-01
The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.
The MAVEN Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2015-12-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.
The MAVEN Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
Interpolation of vector fields from human cardiac DT-MRI
NASA Astrophysics Data System (ADS)
Yang, F.; Zhu, Y. M.; Rapacchi, S.; Luo, J. H.; Robini, M.; Croisille, P.
2011-03-01
There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.
Ellipsoid flowed around by a harmonic vector field
NASA Astrophysics Data System (ADS)
Savchenko, A. O.; Savchenko, O. Ya.
2012-03-01
We consider the screening of an external magnetic field in which a superconducting ellipsoid is inserted and a change in the velocity distribution in an ideal liquid flowing around an ellipsoid inserted in it. In both cases, the solution is given by a harmonic vector field parallel to the surface near the ellipsoid.
Clifford Fourier transform on vector fields.
Ebling, Julia; Scheuermann, Gerik
2005-01-01
Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space. PMID:16138556
Preflare magnetic and velocity fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.
1986-01-01
A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares
Vector fields and Loop Quantum Cosmology
Artymowski, Michał; Lalak, Zygmunt E-mail: Zygmunt.Lalak@fuw.edu.pl
2011-09-01
In the context of the Loop Quantum Cosmology we have analysed the holonomy correction to the classical evolution of the simplified Bianchi I model in the presence of vector fields. For the Universe dominated by a massive vector field or by a combination of a scalar field and a vector field a smooth transition between Kasner-like and Kasner-unlike solutions for a Bianchi I model has been demonstrated. In this case a lack of initial curvature singularity and a finite maximal energy density appear already at the level of General Relativity, which simulates a classical Big Bounce.
Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV
NASA Astrophysics Data System (ADS)
Isezaki, N.; Matsuo, J.; Sayanagi, K.
2012-04-01
The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ɛT= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises
Magsat vector magnetometer calibration using Magsat geomagnetic field measurements
NASA Technical Reports Server (NTRS)
Lancaster, E. R.; Jennings, T.; Morrissey, M.; Langel, R. A.
1980-01-01
From the time of its launch on Oct. 30, 1979 into a nearly polar, Sun synchronous orbit, until it reentered the Earth's atmosphere on June 11, 1980, Magsat measured and transmitted more than three complete sets of global magnetic field data. The data obtained from the mission will be used primarily to compute a currently accurate model of the Earth's main magnetic field, to update and refine world and regional magnetic charts, and to develop a global scalar and vector crustal magnetic anomaly map. The in-flight calibration procecure used for 39 vector magnetometer system parameters is described as well as results obtained from some data sets and the numerical studies designed to evaluate the results.
Imaging vector fields using Line Integral Convolution
Cabral, B.; Leedom, L.C.
1993-03-01
Imaging vector fields has applications in science, art, image processing and special effects. An effective new approach is to use linear and curvilinear filtering techniques to locally blur textures along a vector field. This approach builds on several previous texture generation and filtering techniques. It is, however, unique because it is local, one-dimensional and independent of any predefined geometry or texture. The technique is general and capable of imaging arbitrary two- and three-dimensional vector fields. The local one-dimensional nature of the algorithm lends itself to highly parallel and efficient implementations. Furthermore, the curvilinear filter is capable of rendering detail on very intricate vector fields. Combining this technique with other rendering and image processing techniques -- like periodic motion filtering -- results in richly informative and striking images. The technique can also produce novel special effects.
Killing vector fields and harmonic superfield theories
NASA Astrophysics Data System (ADS)
Groeger, Josua
2014-09-01
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Killing vector fields and harmonic superfield theories
Groeger, Josua
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer
NASA Astrophysics Data System (ADS)
Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James
2012-06-01
The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.
Solar Vector Magnetic Field Research
NASA Astrophysics Data System (ADS)
Rust, David M.
1997-02-01
The principal effort was development and flight of the Flare Genesis Experiment (FGE). The FGE is a balloon borne solar telescope that can provide the sharpest view ever of the evolution of activity on the Sun. The goal of the FGE is to obtain the observations needed for a breakthrough in solar flare research both sooner and at significantly lower cost than either a satellite or adaptive optics can offer. The FGE flight was a historic first. This effort has shown that a meter class solar telescope can take advantage of the modern long duration ballooning program in Antarctica to achieve science goals that are central to solar activity research.
PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS
Yamamoto, Tetsuya T.; Kusano, K.
2012-06-20
Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.
A Flexible Turbulent Vector Field Generator
NASA Astrophysics Data System (ADS)
Benassi, A.; Davis, A.
2004-12-01
Analysis and generation of turbulent vector fields is a necessity in many areas, such as Atmospheric Science. A candidate model of vector field must be flexible enough to tune some features, such as the spacial distribution of vortices, sinks and sources, according to physical measures. To achieve that goal, we propose a model that depends upon a given matricial function called "topolet" and a law of random vectors family. This model has a hierarchical structure. Its spinal column is a tree: the encoding tree of the domain where the vector field lives. The sets of vortices, sinks and sources are driven by some Bernouilli subtrees, directly giving their fractal dimension. At each node of the tree is attached a rate of energy loose giving the spectral slope. All those quantities are independantly identifiable on the base of mathematical proofs. A primitive version of this model have been proposed for generating clouds.
Magnetic field observations in Comet Halley's coma
NASA Astrophysics Data System (ADS)
Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.
1986-05-01
During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.
Magnetoconvection in sheared magnetic fields
Bian, N. H.; Garcia, O. E.
2008-10-15
The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.
NASA Technical Reports Server (NTRS)
Howard, R.
1972-01-01
Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.
Magnetic Gradiometer and Vector Magnetometer Survey of the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Granot, R.
2014-12-01
Some of the fundamental tectonic problems of the Eastern Mediterranean remain unresolved due to the extremely thick sedimentary cover (~15 km) and the lack of accurate magnetic anomaly data. We conducted a magnetic survey of the Herodotus and Levant Basins (Eastern Mediterranean) to study the nature and age of the underlying igneous crust. The towed magnetometer array consisted of two Overhauser sensors recording the total magnetic field in a longitudinal gradiometer mode, and a marine vector magnetometer. Accurate navigation together with the gradiometer data allows the separation of the magnetic signature of the lithosphere from the contributions of the external magnetic field and the geomagnetic field. Total field data in the Herodotus Basin reveal a sequence of long-wavelength NE-SW lineated anomalies (~80 nT) suggesting a deep (~20 km) 2D magnetic source layer. Analysis of the vector data shows a steady azimuth of lineations that is generally consistent with the total field anomalies. The sequence of anomalies is rather short and does not allow a unique identification. However, the continuous northward motion of the African Plate during the Paleozoic and Mesozoic result in predictable anomaly skewness patterns for the different time periods. Forward magnetic modeling best fit the observed anomalies when using Early Permian remanence directions. Altogether, these observations and analysis suggest that a Neo-Tethyan Permian oceanic crust underlies the Herodotus Basin. Two short-wavelengths and strong (~400 nT) anomalies are found in the Levant Basin, proposing rather shallow (~7 km) magnetic sources there. These anomalies spatially coincide with Mesozoic uplifted continental structures (Eratosthenes and Jonah Highs).
Magnetic vector data from the western Caribbean reveal possible origin
NASA Astrophysics Data System (ADS)
Barckhausen, U.; Engels, U.
2013-12-01
During a cruise with RV Meteor in the spring of 2010, magnetic measurements were carried out in the central and western Caribbean with up to six magnetic sensors deployed at the same time. These were i) a towed gradiometer consisting of two Overhauser sensors, ii) two towed vector magnetometers, and iii) two shipboard oriented vector magnetometers. While the gradiometer data provide total field magnetic anomalies free from external variations, the vector data can be analyzed with different methods in the space and wavenumber domains. In the case of the towed vector data, attitude control is challenging whereas shipboard data require a very thorough compensation for the ship's magnetic field. The data were analyzed with the goal to gain insight into the origin of the basement rocks especially of the western Caribbean. Position and strike direction of magnetic anomalies in the Columbia basin possibly hold the key to distinguish between an origin of the crust in the Pacific ocean and an alternative in situ formation between the Americas. On six long profiles in the Columbia basin and adjacent regions we find consistently strike directions of the magnetic anomalies around N100°E which seems to be incompatible with a Pacific origin of the crust. Three Project Magnet aeromagnetic vector profiles crossing the research area at different angles were analyzed with the same method and yield very similar results. In our interpretation, the crust underlying the Columbia basin formed during the Cretaceous at a roughly E-W trending spreading center between the Americas. Since the crust likely formed during the Cretaceous Superchron (C 34), the strike direction we find in our data probably does not represent typical seafloor spreading anomalies. Instead we believe it is related to changes in the intensity of the Earth's magnetic field which are known to have left correlated traces in oceanic crust formed during this period. The analysis methods we used are sensitive to intensity
Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.
Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I
2015-08-28
We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1 mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings. PMID:26371682
The magnetic helicity spectrum from solar vector magnetograms
NASA Astrophysics Data System (ADS)
Brandenburg, Axel; Zhang, Hongqi; Sokoloff, Dmitry
2016-05-01
The gauge-invariant (or relative) magnetic helicity is often measured to characterize the degree of magnetic complexity of active regions. However, magnetic helicity is expected to have different signs on different length scales that can be identified with the large- and small-scale fields used in dynamo theory. To address this, it is important to determine magnetic helicity spectra as functions of wavenumber. These spectra are defined such that the integral over all wavenumbers gives the usual magnetic helicity density in a particular patch of interest. Using vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory for active region NOAA 11515, which was on the southern hemisphere, we show that the magnetic helicity spectrum has positive sign on scales below 30 Mm, but negative sign on larger scales. This active region was rather complex and its magnetic helicity was within 26% of its theoretical maximum value. This is much more than that of NOAA 11158, which was also rather complex, but only within 5% of its theoretical maximum value. Since the contribution of larger length scales turned out to be important in the case of NOAA 11515, its total magnetic helicity is dominated by the negative values from large length scales, which explains the unusual sign for the southern hemisphere. Measuring magnetic helicity spectra with DKIST may become an important tool to learn about the workings of the underlying dynamo.
Krienin, Frank
1990-01-01
A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.
Constraints on primordial magnetic fields from inflation
NASA Astrophysics Data System (ADS)
Green, Daniel; Kobayashi, Takeshi
2016-03-01
We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as Treh lesssim 102 MeV can magnetic fields of 10-15 G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.
Construction of a 3He magnetic force microscope with a vector magnet
NASA Astrophysics Data System (ADS)
Yang, Jinho; Yang, Ilkyu; Kim, Yun Won; Shin, Dongwoo; Jeong, Juyoung; Wulferding, Dirk; Yeom, Han Woong; Kim, Jeehoon
2016-02-01
We constructed a 3He magnetic force microscope operating at the base temperature of 300 mK under a vector magnetic field of 2-2-9 T in the x-y-z direction. Fiber optic interferometry as a detection scheme is employed in which two home-built fiber walkers are used for the alignment between the cantilever and the optical fiber. The noise level of the laser interferometer is close to its thermodynamic limit. The capabilities of the sub-Kelvin and vector field are demonstrated by imaging the coexistence of magnetism and superconductivity in a ferromagnetic superconductor (ErNi2B2C) at T = 500 mK and by probing a dipole shape of a single Abrikosov vortex with an in-plane tip magnetization.
NASA Astrophysics Data System (ADS)
Florido, E.; Battaner, E.
2010-12-01
Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452
Acoustic vector fields in underwater waveguides
NASA Astrophysics Data System (ADS)
Rapids, Brian
2005-09-01
The ability to compute the sound pressure level as well as the vectors associated with the acoustic particle motion has existed for some time. However, propagation studies and ambient noise investigations have typically focused only upon the sound pressure levels that would be observed by an omnidirectional hydrophone or array of hydrophones. Recent interest in geophones and accelerometers for use as vector and dyadic sensors should encourage the investigation and analysis of the underlying vector fields contributing to the acoustic intensity and energy density fields. The frequency domain properties of the acoustic vector field generated by monopole sources having frequencies <1kHz in a simple iso-velocity waveguide are presented in order to build a fundamental understanding of the related quantities. Subsequently, similar field quantities computed for more realistic environments such as downward refracting profiles and deep-water profiles supporting convergence zone propagation will be discussed. Regions and phenomena associated with perturbations in the energy flux density will be highlighted.
Circular Conditional Autoregressive Modeling of Vector Fields*
Modlin, Danny; Fuentes, Montse; Reich, Brian
2013-01-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452
NASA Astrophysics Data System (ADS)
Beck, Rainer
Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.
Vector magnetic properties of Fe-based amorphous sheets under alternating flux condition
NASA Astrophysics Data System (ADS)
Ueno, S.; Todaka, T.; Enokizono, M.
2012-04-01
This paper presents measured vector magnetic properties of Fe-based amorphous sheets under alternating flux conditions in arbitrary direction. It is well known that amorphous material has usually isotropic magnetic property; however it is changeable by heat-treatment and shows complicated aspects. In this paper, the relationship between the magnetic flux density and field strength vector and iron loss under alternating flux conditions is measured by using a vector magnetic property measurement system. Moreover, the iron losses depending on the exciting frequency are discussed. The results show a weak anisotropy in plane and the frequency dependence of the iron losses shows different tendency in each direction.
GlyphSea: Visualizing Vector Fields
NASA Astrophysics Data System (ADS)
McQuinn, Emmett; Chourasia, Amit; Schulze, Jürgen P.; Minster, Jean-Bernard
2013-12-01
Understanding vector fields is important in many science and engineering domains. Often glyphs are used to represent vector data as arrows, cones, ellipsoids, and other geometric shapes. When implemented using traditional 3D graphics, these glyphs have drawbacks of being view dependent, orientation ambiguous, and requiring specific geometric resolution. We propose a straightforward new method of procedural dipole texturing of glyph shapes, which overcomes these drawbacks and can enhance existing methods. We demonstrate our method with an interactive application (GlyphSea), which incorporates additional features such as screen space ambient occlusion, glyph displacement, lattices, halos and other contextual visual cues. We also discuss the results and informal feedback from scientists on insights gained by exploring time varying vector datasets in astrophysics and seismology.
Multifractal vector fields and stochastic Clifford algebra
NASA Astrophysics Data System (ADS)
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Multifractal vector fields and stochastic Clifford algebra
Schertzer, Daniel Tchiguirinskaia, Ioulia
2015-12-15
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Multifractal vector fields and stochastic Clifford algebra.
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality. PMID:26723166
Magnetic vectoring of magnetically responsive nanoparticles within the murine peritoneum
NASA Astrophysics Data System (ADS)
Klostergaard, Jim; Bankson, James; Auzenne, Edmond; Gibson, Don; Yuill, William; Seeney, Charles E.
2007-04-01
Magnetically responsive nanoparticles (MNPs) might be candidates for pro-drug formulations for intraperitoneal (i.p.) treatment of ovarian cancer. We conducted feasibility experiments in an i.p. human ovarian carcinoma xenograft model to determine whether MNPs can be effectively vectored within this environment. Our initial results based on magnetic resonance imaging (MRI) indicate that i.p.-injected ˜15 nm magnetite-based MNPs can in fact migrate toward NdFeB magnets externally juxtaposed to the peritoneal cavity above the xenografts growing in the anterior abdominal wall. MNP localization to the tumor/peri-tumoral environment occurs. Further development of this MNP pro-drug strategy is underway.
Efficient morse decompositions of vector fields.
Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Zhang, Eugene
2008-01-01
Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually results in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets. PMID:18467759
Magnetic field dosimeter development
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1980-09-01
In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Chiba, Masashi
The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.
How the geomagnetic field vector reverses polarity
Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.
1985-01-01
A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.
CMB non-gaussianity from vector fields
Peloso, Marco
2014-01-01
The Planck satellite has recently measured the CMB temperature anisotropies with unprecedented accuracy, and it has provided strong bounds on primordial non-gaussianity. Such bounds constrain models of inflation, and mechanisms that produce the primordial perturbations. We discuss the non-gaussian signatures from the interactions of the inflation φ with spin-1 fields. We study the two different cases in which the inflaton is (i) a pseudo-scalar field with a (φ)/(fa) F·F interaction with a vector field, and (ii) a scalar field with a f (φ)F² interaction. In the first case we obtain the strong limit f{sub a} ≥ 10¹⁶GeV on the decay constant. In the second case, specific choices of the function f (φ) can lead to a non-gaussianity with a characteristic shape not encountered in standard models of scalar field inflation, and which has also been constrained by Planck.
NASA Technical Reports Server (NTRS)
Smith, E. J.
1995-01-01
The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.
Improved determination of vector lithospheric magnetic anomalies from MAGSAT data
NASA Technical Reports Server (NTRS)
Ravat, Dhananjay
1993-01-01
Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).
Intermittent Vector Fields: A Challenge for Mathematical Geophysics?
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Tchiguirinskaia, I.
2014-12-01
Geophysical fields display strong intermittency over a wide range of scales. Multifractals has become a standard tool to analyze and simulate this key phenomenon for scalar fields. However, fields of interest, e.g. the velocity and the magnetic fields are vector fields. Some time ago, "Lie cascades" were introduced to deal with such fields by considering exponentiation from a stochastic element of a Lie algebra to its corresponding Lie group of transformations. The concerned transformation corresponds to the fine graining/downscaling of the field to higher and higher resolution. Unfortunately, developments were paused due to the possible large number of degrees of freedom of the latter, in particular with respect to the information that can be easily extracted from a d-dimensional vector field. In short, some physics was missing. In this communication, we point out the interest of the Clifford algebra Clp,q to make concrete progress. Ironically, these algebra were mentioned at once as rather straightforward generalizations of the scalar complex cascades, but they were not investigated. On the contrary, the particular case of the "pseudo-quaternions" l(2,R)=Cl2,0=Cl1,1 has been often used to generate generalized scales to analyse and simulate anistropic scaling (scalar) fields. The latter is in fact illustrative of the basic property of the Clifford algebra Clp,q to be generated by a quadratic form Q whose signature (p,q) is fundamental.
Magnetic Field Measurement System
Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter
2007-01-19
A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.
2006-01-01
The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.
Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M
1989-12-15
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field. PMID:26907066
NASA Astrophysics Data System (ADS)
Leka, K. D.; Barnes, Graham; Gary, G. Allen; Crouch, A. D.; Liu, Y.
2012-02-01
We address points recently discussed in Georgoulis (2011, Solar Phys., doi:10.1007/s11207-011-9819-1) in reference to Leka et al. (2009, Solar Phys. 260, 83). Most importantly, we find that the results of Georgoulis (2011) a conclusion of Leka et al. (2009) that limited spatial resolution and the presence of unresolved magnetic structures can challenge ambiguity-resolution algorithms. Moreover, the findings of both Metcalf et al. (2006, Solar Phys. 237, 267) and Leka et al. (2009b) are confirmed in Georgoulis (2011): a method’s performance can be diminished when the observed field fails to conform to that method’s assumptions. The implication of boundaries in models of solar magnetic structures is discussed; we confirm that the distribution of the field components in the model used in Leka et al. (2009) is closer to what is observed on the Sun than what is proposed in Georgoulis (2011). It is also shown that method does matter with regards to simulating limited spatial resolution and avoiding an inadvertent introduction of bias. Finally, the assignment of categories to data-analysis algorithms is revisited; we argue that assignments are only useful and elucidating when used appropriately.
NASA Astrophysics Data System (ADS)
Zhang, Zhaochuan; Guo, Tuan; Liu, Fu; Wu, Qiang; Li, Jie; Cheng, Linghao; Guan, Bai-Ou
2015-09-01
A vector magnetic field sensor based on surface plasmon resonance (SPR) of a 15° tilted fiber Bragg grating (TFBG) and magnetic fluid is proposed and experimentally demonstrated. Both the orientation and the amplitude of the magnetic fields can be determined unambiguously via the wavelength and intensity monitoring of the SPR, which is essentially dominated by the arrayed Fe3O4 nanoparticles over the nanometric-film of fiber surface.
He I VECTOR MAGNETOMETRY OF FIELD-ALIGNED SUPERPENUMBRAL FIBRILS
Schad, T. A.; Penn, M. J.; Lin, H.
2013-05-10
Atomic-level polarization and Zeeman effect diagnostics in the neutral helium triplet at 10830 A in principle allow full vector magnetometry of fine-scaled chromospheric fibrils. We present high-resolution spectropolarimetric observations of superpenumbral fibrils in the He I triplet with sufficient polarimetric sensitivity to infer their full magnetic field geometry. He I observations from the Facility Infrared Spectropolarimeter are paired with high-resolution observations of the H{alpha} 6563 A and Ca II 8542 A spectral lines from the Interferometric Bidimensional Spectrometer from the Dunn Solar Telescope in New Mexico. Linear and circular polarization signatures in the He I triplet are measured and described, as well as analyzed with the advanced inversion capability of the ''Hanle and Zeeman Light'' modeling code. Our analysis provides direct evidence for the often assumed field alignment of fibril structures. The projected angle of the fibrils and the inferred magnetic field geometry align within an error of {+-}10 Degree-Sign . We describe changes in the inclination angle of these features that reflect their connectivity with the photospheric magnetic field. Evidence for an accelerated flow ({approx}40 m s{sup -2}) along an individual fibril anchored at its endpoints in the strong sunspot and weaker plage in part supports the magnetic siphon flow mechanism's role in the inverse Evershed effect. However, the connectivity of the outer endpoint of many of the fibrils cannot be established.
An Extraordinary Magnetic Field Map of Mars
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.
2004-01-01
The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.
High field superconducting magnets
NASA Technical Reports Server (NTRS)
Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)
2011-01-01
A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
The interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Davis, L., Jr.
1972-01-01
Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.
Vertical gradients of sunspot magnetic fields
NASA Astrophysics Data System (ADS)
Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.
1983-04-01
The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.
Vertical gradients of sunspot magnetic fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.
1983-01-01
The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.
Bubble nucleation of spatial vector fields
NASA Astrophysics Data System (ADS)
Masoumi, Ali; Xiao, Xiao; Yang, I.-Sheng
2013-02-01
We study domain walls and bubble nucleation in a nonrelativistic vector field theory with different longitudinal and transverse speeds of sound. We describe analytical and numerical methods to calculate the orientation-dependent domain-wall tension σ(θ). We then use this tension to calculate the critical bubble shape and show that the tunneling exponent is modified by a factor of sound speed ratio. This implies a big modification in the tunneling rate. The longitudinally oriented domain wall tends to be the heaviest and sometime suffers an instability. It can spontaneously break into zigzag segments. In this case, the critical bubble develops kinks, and its energy, and therefore the tunneling rate, scales with the sound speeds very differently than what would be expected for a smooth bubble.
Robust point matching via vector field consensus.
Jiayi Ma; Ji Zhao; Jinwen Tian; Yuille, Alan L; Zhuowen Tu
2014-04-01
In this paper, we propose an efficient algorithm, called vector field consensus, for establishing robust point correspondences between two sets of points. Our algorithm starts by creating a set of putative correspondences which can contain a very large number of false correspondences, or outliers, in addition to a limited number of true correspondences (inliers). Next, we solve for correspondence by interpolating a vector field between the two point sets, which involves estimating a consensus of inlier points whose matching follows a nonparametric geometrical constraint. We formulate this a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose nonparametric geometrical constraints on the correspondence, as a prior distribution, using Tikhonov regularizers in a reproducing kernel Hilbert space. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation). We illustrate this method on data sets in 2D and 3D and demonstrate that it is robust to a very large number of outliers (even up to 90%). We also show that in the special case where there is an underlying parametric geometrical model (e.g., the epipolar line constraint) that we obtain better results than standard alternatives like RANSAC if a large number of outliers are present. This suggests a two-stage strategy, where we use our nonparametric model to reduce the size of the putative set and then apply a parametric variant of our approach to estimate the geometric parameters. Our algorithm is computationally efficient and we provide code for others to use it. In addition, our approach is general and can be applied to other problems, such as learning with a badly corrupted training data set. PMID:24808341
Casimir effect of massive vector fields
Teo, L. P.
2010-11-15
We study the Casimir effect due to a massive vector field in a system of two parallel plates made of real materials, in an arbitrary magnetodielectric background. The plane waves satisfying the Proca equations are classified into transverse modes and longitudinal modes which have different dispersion relations. Transverse modes are further divided into type I and type II corresponding to TE and TM modes in the massless case. For general magnetodielectric media, we argue that the correct boundary conditions are the continuities of H{sub ||}, {phi}, A, and {partial_derivative}{sub x}A{sub x}, where x is the direction normal to the plates. Although there are type I transverse modes that satisfy all the boundary conditions, it is impossible to find type II transverse modes or longitudinal modes that satisfy all the boundary conditions. To circumvent this problem, type II transverse modes and longitudinal modes have to be considered together. We call the contribution to the Casimir energy from type I transverse modes TE contribution, and the contribution from the superposition of type II transverse modes and longitudinal modes TM contribution. Their massless limits give, respectively, the TE and TM contributions to the Casimir energy of a massless vector field. The limit where the plates become perfectly conducting is discussed in detail. For the special case where the background has a unity refractive index, it is shown that the TM contribution to the Casimir energy can be written as a sum of contributions from two different types of modes, corresponding to type II discrete modes and type III continuum modes discussed by Barton and Dombey [G. Barton and N. Dombey, Ann. Phys. (N.Y.) 162, 231 (1985).]. For general background, this splitting does not work. The limit where both plates become infinitely permeable and the limit where one plate becomes perfectly conducting and one plate becomes infinitely permeable are also investigated.
An educational path for the magnetic vector potential and its physical implications
NASA Astrophysics Data System (ADS)
Barbieri, S.; Cavinato, M.; Giliberti, M.
2013-09-01
We present an educational path for the magnetic vector potential A aimed at undergraduate students and pre-service physics teachers. Starting from the generalized Ampère-Laplace law, in the framework of a slowly varying time-dependent field approximation, the magnetic vector potential is written in terms of its empirical references, i.e. the conduction currents. Therefore, once the currents are known, our approach allows for a clear and univocal physical determination of A, overcoming the mathematical indeterminacy due to the gauge transformations. We have no need to fix a gauge, since for slowly varying time-dependent electric and magnetic fields, the ‘natural’ gauge for A is the Coulomb one. We stress the difference between our approach and those usually presented in the literature. Finally, a physical interpretation of the magnetic vector potential is discussed and some examples of the calculation of A are analysed.
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; Ravat, D.; Frawley, James J.
1999-01-01
Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.
Magnetization dynamics using ultrashort magnetic field pulses
NASA Astrophysics Data System (ADS)
Tudosa, Ioan
Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic
Magnetic space-based field measurements
NASA Technical Reports Server (NTRS)
Langel, R. A.
1981-01-01
Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.
Multiscale vector fields for image pattern recognition
NASA Technical Reports Server (NTRS)
Low, Kah-Chan; Coggins, James M.
1990-01-01
A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.
Primordial magnetic fields from the string network
NASA Astrophysics Data System (ADS)
Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi
2016-08-01
Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.
NASA Astrophysics Data System (ADS)
Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete
2015-07-01
Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.
The history of polarisation measurements: their role in studies of magnetic fields
NASA Astrophysics Data System (ADS)
Wielebinski, R.
2015-03-01
Radio astronomy gave us new methods to study magnetic fields. Synchrotron radiation, the main cause of comic radio waves, is highly linearly polarised with the `E' vector normal to the magnetic field. The Faraday Effect rotates the `E' vector in thermal regions by the magnetic field in the line of sight. Also the radio Zeeman Effect has been observed.
Magnetic Gradiometer and Vector Magnetometer Survey of the Galapagos Triple Junction
NASA Astrophysics Data System (ADS)
Gee, J.; Cande, S. C.; Parker, R. L.; Lonsdale, P. F.; Bowles, J.
2004-05-01
Several fundamental tectonic problems of the equatorial Pacific remain unsolved due to the lack of magnetic anomaly data. A basic limitation encountered with the use of the standard proton precession magnetometer (or any total field instrument) is that total field anomalies over approximately N/S striking bodies are very small at low magnetic latitudes. Another problem encountered with magnetic surveys near the magnetic equator are the diurnal variations associated with the external field. Measurements of the vector anomalous field and total field gradient offer ways to overcome these limitations. Total field gradiometer data allow recognition and removal of time dependent external field variations. Vector magnetic anomalies provide two distinct advantages over total field measurements. Although the total field anomalies are small (typically 50 nT) over most of the equatorial Pacific, the vertical and horizontal components of the anomalous field are 2-5 times larger. In addition, vector anomaly data can be used to evaluate the two dimensionality of the magnetic source since the along track and vertical anomalies are related by a 90o phase shift for a perfectly two dimensional source. To evaluate the advantages of these systems, we conducted a survey of the trails of the Galapagos triple junction using both a high resolution total field gradiometer and a vector magnetometer. The longitudinal gradiometer system consists of two Overhauser sensors (0.01 nT sensitivity) towed 350 and 450m behind the survey vessel. The towed vector magnetometer utilizes a commercial motion reference sensor (0.02o orientation accuracy with three fluxgate sensors) suitable for measuring horizontal and vertical anomalies as small as 30-50 nT. Vector anomalies across Cocos-Nazca crust corroborate the high degree of linearity of these E/W lineations; horizontal and vertical anomalies exhibit high coherence (>0.9) and the expected 90o phase relationship at wavelengths longer than ~8km. Vector
Slow decay of magnetic fields in open Friedmann universes
Barrow, John D.; Tsagas, Christos G.
2008-05-15
Magnetic fields in Friedmann universes can experience superadiabatic growth without departing from conventional electromagnetism. The reason is the relativistic coupling between vector fields and spacetime geometry, which slows down the decay of large-scale magnetic fields in open universes, compared to that seen in perfectly flat models. The result is a large relative gain in magnetic strength that can lead to astrophysically interesting B fields, even if our Universe is only marginally open today.
NASA Astrophysics Data System (ADS)
Campanelli, Leonardo
2016-03-01
We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.
Magnetic Field Topology in Jets
NASA Technical Reports Server (NTRS)
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
Low field magnetic resonance imaging
Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.
2010-07-13
A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.; Etters, R. D.
1982-01-01
A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.
Ray vector fields, prismatic effect, and thick astigmatic optical systems.
Harris, W F
1996-06-01
The application of the concept of ray vector fields to optical systems is reexamined. Paraxial or linear optics defines a four-dimensional ray vector field for any optical system: the vector field maps the incident ray vector into the emergent ray vector. In the case of thin systems, including thin astigmatic lenses, one can define a vector field of reduced dimensionality: the vector field is two-dimensional and maps the ray's incident position into the change in reduced direction. When the index of refraction is the same before and after a thin system, the change in reduced direction is the reduced deflection through the system or the reduced prismatic effect. Contrary to what has recently been claimed, this type of two-dimensional vector field does not apply in general to thick systems. However, a number of different types of two-dimensional vector fields can be defined for various particular classes of optical systems. Thick systems differ qualitatively from thin systems. They do not have equivalent thin lenses and cannot generally be replaced by thin lenses. Equations are derived for the change in reduced direction and deflection for a ray through optical systems in general and through separated two- and three-lens systems in particular. PMID:8807654
Magnetic Field Analysis of a Permanent-Magnet Induction Generator
NASA Astrophysics Data System (ADS)
Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio
The permanent-magnet induction generator (PMIG) is a new type of induction machine that has a permanent-magnet rotor inside a squirrel-cage rotor. In this paper, a new technique for the magnetic field analysis of the PMIG is proposed. The proposed technique is based on the PMIG's equivalent circuit and the two-dimensional finite-element analysis (2D-FEA). To execute the 2D-FEA, the phasors of primary and secondary currents are calculated from the equivalent circuit, and the input data for the 2D-FEA is found by converting these phasors into the space vectors. As a result, the internal magnetic fields of the PMIG can be easily analyzed without complicated calculations.
Reconnection of Magnetic Fields
NASA Technical Reports Server (NTRS)
1984-01-01
Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.
NASA Technical Reports Server (NTRS)
Hildebrand, Roger H.
1988-01-01
The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.
Video-rate terahertz electric-field vector imaging
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu; Tachizaki, Takehiro; Yasumatsu, Naoya; Watanabe, Shinichi
2014-10-13
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to be useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.
Juno and Jupiter's Magnetic Field (Invited)
NASA Astrophysics Data System (ADS)
Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.
2013-12-01
The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.
On the Computation of Integral Curves in Adaptive Mesh Refinement Vector Fields
Deines, Eduard; Weber, Gunther H.; Garth, Christoph; Van Straalen, Brian; Borovikov, Sergey; Martin, Daniel F.; Joy, Kenneth I.
2011-06-27
Integral curves, such as streamlines, streaklines, pathlines, and timelines, are an essential tool in the analysis of vector field structures, offering straightforward and intuitive interpretation of visualization results. While such curves have a long-standing tradition in vector field visualization, their application to Adaptive Mesh Refinement (AMR) simulation results poses unique problems. AMR is a highly effective discretization method for a variety of physical simulation problems and has recently been applied to the study of vector fields in flow and magnetohydrodynamic applications. The cell-centered nature of AMR data and discontinuities in the vector field representation arising from AMR level boundaries complicate the application of numerical integration methods to compute integral curves. In this paper, we propose a novel approach to alleviate these problems and show its application to streamline visualization in an AMR model of the magnetic field of the solar system as well as to a simulation of two incompressible viscous vortex rings merging.
Polar Magnetic Field Experiment
NASA Technical Reports Server (NTRS)
Russell, C. T.
1999-01-01
This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.
Photonic Magnetic Field Sensor
NASA Astrophysics Data System (ADS)
Wyntjes, Geert
2002-02-01
Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.
The Curl of a Vector Field: Beyond the Formula
ERIC Educational Resources Information Center
Burch, Kimberly Jordan; Choi, Youngna
2006-01-01
It has been widely acknowledged that there is some discrepancy in the teaching of vector calculus in mathematics courses and other applied fields. The curl of a vector field is one topic many students can calculate without understanding its significance. In this paper, we explain the origin of the curl after presenting the standard mathematical…
NASA Astrophysics Data System (ADS)
Tominaga, Masako; Tivey, Maurice A.; MacLeod, Christopher J.; Morris, Antony; Lissenberg, C. Johan; Shillington, Donna J.; Ferrini, Vicki
2016-06-01
Marine magnetic anomalies are a powerful tool for detecting geomagnetic polarity reversals, lithological boundaries, topographic contrasts, and alteration fronts in the oceanic lithosphere. Our aim here is to detect lithological contacts in fast-spreading lower crust and shallow mantle by characterizing magnetic anomalies and investigating their origins. We conducted a high-resolution, near-bottom, vector magnetic survey of crust exposed in the Hess Deep "tectonic window" using the remotely operated vehicle (ROV) Isis during RRS James Cook cruise JC21 in 2008. Hess Deep is located at the western tip of the propagating rift of the Cocos-Nazca plate boundary near the East Pacific Rise (EPR) (2°15'N, 101°30'W). ROV Isis collected high-resolution bathymetry and near-bottom magnetic data as well as seafloor samples to determine the in situ lithostratigraphy and internal structure of a section of EPR lower crust and mantle exposed on the steep (~20°dipping) south facing slope just north of the Hess Deep nadir. Ten magnetic profiles were collected up the slope using a three-axis fluxgate magnetometer mounted on ROV Isis. We develop and extend the vertical magnetic profile (VMP) approach of Tivey (1996) by incorporating, for the first time, a three-dimensional vector analysis, leading to what we here termed as "vector vertical magnetic profiling" approach. We calculate the source magnetization distribution, the deviation from two dimensionality, and the strike of magnetic boundaries using both the total field Fourier-transform inversion approach and a modified differential vector magnetic analysis. Overall, coherent, long-wavelength total field anomalies are present with a strong magnetization contrast between the upper and lower parts of the slope. The total field anomalies indicate a coherently magnetized source at depth. The upper part of the slope is weakly magnetized and magnetic structure follows the underlying slope morphology, including a "bench" and lobe
Magnetic Fields: Visible and Permanent.
ERIC Educational Resources Information Center
Winkeljohn, Dorothy R.; Earl, Robert D.
1983-01-01
Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)
NASA Technical Reports Server (NTRS)
Galliher, S. C.; Mayhew, M. A.
1982-01-01
Magnetic anomaly component data measured by Magsat is compared with synthetic anomaly component fields arising from an equivalent source dipole array at the earth's surface generated from total field anomaly data alone. It is found that the synthetic components fit the component data regardless of the dipole orientation assigned to the equivalent sources and of the dipole spacing. Tentative conclusions are: (1) over the U.S., vector anomaly fields can be determined to the accuracy of the measurements from the total field anomaly data alone; and (2) the equivalent source technique is not useful for determining the direction of large-scale crustal magnetization.
NASA Astrophysics Data System (ADS)
Savani, N. P.; Vourlidas, A.; Szabo, A.; Mays, M. L.; Richardson, I. G.; Thompson, B. J.; Pulkkinen, A.; Evans, R.; Nieves-Chinchilla, T.
2015-06-01
The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earth's magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Unfortunately, forecasting magnetic vectors within coronal mass ejections remain elusive. Here we report how, by combining a statistically robust helicity rule for a CME's solar origin with a simplified flux rope topology, the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and 2014) have been investigated. With a focus on the large false alarm of January 2014, this work highlights the importance of including the early evolutionary effects of a CME for forecasting purposes. The angular rotation in the predicted magnetic field closely follows the broad rotational structure seen within the in situ data. This time-varying field estimate is implemented into a process to quantitatively predict a time-varying Kp index that is described in detail in paper II. Future statistical work, quantifying the uncertainties in this process, may improve the more heuristic approach used by early forecasting systems.
Tracking Vector Magnetograms with the Magnetic Induction Equation
NASA Technical Reports Server (NTRS)
Schuck, P.
2009-01-01
The differential affine velocity estimator (DAVE) that we developed in 2006 for estimating velocities from line-of-sight magnetograms is modified to directly incorporate horizontal magnetic fields to produce a differential affine velocity estimator for vector magnetograms (DAVE4VM). The DAVE4VM's performance is demonstrated on the synthetic data from the anelastic pseudospectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques by Welsch and coworkers. The DAVE4VM predicts roughly 95% of the helicity rate and 75% of the power transmitted through the simulation slice. Intercomparison between DAVE4VM and DAVE and further analysis of the DAVE method demonstrates that line-of-sight tracking methods capture the shearing motion of magnetic footpoints but are insensitive to flux emergence - the velocities determined from line-of-sight methods are more consistent with horizontal plasma velocities than with flux transport velocities. These results suggest that previous studies that rely on velocities determined from line-of-sight methods such as the DAVE or local correlation tracking may substantially misrepresent the total helicity rates and power through the photosphere.
Simplified solutions to predicting the magnetic vectors within CMEs
NASA Astrophysics Data System (ADS)
Savani, Neel; Vourlidas, Angelos; Pulkinnen, Antti
2016-04-01
The direction of magnetic vectors within coronal mass ejections, CMEs, has significant importance for forecasting terrestrial behavior. We have developed a technique to estimate the time-varying magnetic field at the Earth for periods within CMEs. This technique uses solar observational data and empirical relationships along with a constant alpha flux rope model to make the predictions. The technique can be more simply treated as the aggregate from two significant contributions: 1) Estimating the initial topological structure of the CME and 2) Estimating the hypothetical Earth-trajectory after CME evolutionary effects have been considered. In this presentation, we focus on how the evolutionary effects during interplanetary propagation affect the prediction made. We focus on how reliable the predictions are for CME events when the structural shape of the CME is well defined through triangulation of multi-point observations. We show that in such cases of reliable triangulation, the predictions are relatively well constrained to perturbations in the hypothetical Earth trajectory. However, we show how the predictions can be drastically different for cases where the CME direction and orientation remain ambiguous by removing the off Sun-Earth line observations.
Statistical anisotropy of the curvature perturbation from vector field perturbations
Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co
2009-05-15
The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.
Observations of galactic magnetic fields
NASA Astrophysics Data System (ADS)
Beck, Rainer
Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.
Fast superconducting magnetic field switch
Goren, Y.; Mahale, N.K.
1996-08-06
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.
Fast superconducting magnetic field switch
Goren, Yehuda; Mahale, Narayan K.
1996-01-01
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.
Martian external magnetic field proxies
NASA Astrophysics Data System (ADS)
Langlais, Benoit; Civet, Francois
2015-04-01
Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.
The magnetic field of a permanent hollow cylindrical magnet
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.
2015-12-01
Based on the rational version of Muc(AXWELL)'s equations according to Tuc(RUESDELL) and Tuc(OUPIN) or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider Muc(AXWELL)'s equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.
Cyclical magnetic field flow fractionation
NASA Astrophysics Data System (ADS)
Tasci, T. O.; Johnson, W. P.; Gale, B. K.
2012-04-01
In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.
Magnetic field modification of optical magnetic dipoles.
Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David
2015-03-11
Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869
Exposure guidelines for magnetic fields.
Miller, G
1987-12-01
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538
Exposure guidelines for magnetic fields
Miller, G.
1987-12-01
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.
[Magnetic fields and fish behavior].
Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A
2013-01-01
In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567
[Magnetic fields and fish behavior].
2013-01-01
In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.
2007-01-01
The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.
Computation of solar magnetic fields from photospheric observations
NASA Technical Reports Server (NTRS)
Hannakam, L.; Gary, G. A.; Teuber, D. L.
1984-01-01
The observational difficulties of obtaining the magnetic field distribution in the chromosphere and corona of the sun has led to methods of extending photospheric magnetic mesurements into the solar atmosphere by mathematical procedures. A new approach to this problem presented here is that a constant alpha force-free field can be uniquely determined from the tangential components of the measured photospheric flux alone. The vector magnetographs now provide measurements of both the solar photospheric tangential and the longitudinal magnetic field. This paper presents derivations for the computation of the solar magnetic field from these type of measurements. The fields considered are assumed to be a constant alpha force-free fields or equivalent, producing vanishing Lorentz forces. Consequently, magnetic field lines and currents are related by a constant and hence show an identical distribution. The magnetic field above simple solar regions are described from the solution of the field equations.
Computation of solar magnetic fields from photospheric observations
NASA Astrophysics Data System (ADS)
Hannakam, L.; Gary, G. A.; Teuber, D. L.
1984-09-01
The observational difficulties of obtaining the magnetic field distribution in the chromosphere and corona of the sun has led to methods of extending photospheric magnetic mesurements into the solar atmosphere by mathematical procedures. A new approach to this problem presented here is that a constant alpha force-free field can be uniquely determined from the tangential components of the measured photospheric flux alone. The vector magnetographs now provide measurements of both the solar photospheric tangential and the longitudinal magnetic field. This paper presents derivations for the computation of the solar magnetic field from these type of measurements. The fields considered are assumed to be a constant alpha force-free fields or equivalent, producing vanishing Lorentz forces. Consequently, magnetic field lines and currents are related by a constant and hence show an identical distribution. The magnetic field above simple solar regions are described from the solution of the field equations.
Simplified solutions to predicting the magnetic vectors within CMEs.
NASA Astrophysics Data System (ADS)
Savani, N.
2015-12-01
The direction of magnetic vectors within coronal mass ejections, CMEs, has significant importance for forecasting terrestrial behavior. However forecasting these vectors remains largely elusive and lies predominately with the difficulty in disassociating the predictive skill of the magnetic configuration during the initiation process with the skill of understanding the evolutionary effects of the topology during propagation. Here, we discuss a simplified system for predicting the magnetic vector within CMEs, driven by observations and empirical relationships. We suggest a modification to a CME helicity rule by Bothmer & Schwenn (1998) can improve the skills with the initiation problem near the solar surface, and accurate triangulation methods of the CME with recent observational studies can improve the predictions of the evolutionary effects. Both tools in conjunction can provide the first steps to providing operationally reliable estimates of the magnetic vectors for all possible CMEs and include scope to improve individual modules within the forecasting scheme. By focusing on Earth-directed CMEs, we can develop forecasting skill scores for multiple CMEs using NOAA definitions for geomagnetic storms. We will present the skill scores of predicted CMEs in relation to their associated Kp values at Earth for CMEs that were predicted in a real-time setting at NASA Space Weather Research Center.
Magnetic fields in nearby spirals
NASA Astrophysics Data System (ADS)
Sun, Xiaohui; Lenc, Emil
2013-10-01
Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.
Magnetization curves and probability angular distribution of the magnetization vector in Er2Fe14Si3
NASA Astrophysics Data System (ADS)
Sobh, Hala A.; Aly, Samy H.; Shabara, Reham M.; Yehia, Sherif
2016-01-01
Specific magnetic and magneto-thermal properties of Er2Fe14Si3, in the temperature range of 80-300 K, have been investigated using basic laws of classical statistical mechanics in a simple model. In this model, the constructed partition function was used to derive, and therefore calculate the temperature and/or field dependence of a host of physical properties. Examples of these properties are: the magnetization, magnetic heat capacity, magnetic susceptibility, probability angular distribution of the magnetization vector, and the associated angular dependence of energy. We highlight a correlation between the energy of the system, its magnetization behavior and the angular location of the magnetization vector. Our results show that Er2Fe14Si3 is an easy-axis system in the temperature range 80-114 K, but switches to an easy-plane system at T≥114 K. This transition is also supported by both of the temperature dependence of the magnetic heat capacity, which develops a peak at a temperature ~114 K, and the probability landscape which shows, in zero magnetic field, a prominent peak in the basal plane at T=113.5 K.
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Astrophysics Data System (ADS)
Makarov, V. V.; Murphy, D. W.
2007-07-01
the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2+/-0.9 km s-1 kpc-1 and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
), but here we surmise its existence in the thin disk at z less than 200 pc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2 +/- 0.9 km s(exp -1) kpc(exp -1) and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
Vestibular stimulation by magnetic fields
Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.
2015-01-01
Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662
Magnetic fields around evolved stars
NASA Astrophysics Data System (ADS)
Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.
2014-04-01
A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.
Visualization of 3 Dimensional Seismic Vector Fields
NASA Astrophysics Data System (ADS)
McQuinn, E.; Chourasia, A.; Minster, J. H.; Schulze, J.
2009-12-01
Earthquake simulations produce vast amounts of surface and volumetric temporal data. We have implemented methods to visualize scalar and vector data that allows comprehension of the large amount of information. We leverage advances in graphics processors to draw oriented and textured geometry interactively. We have developed four glyphs to depict the underlying vector data: spheres, ellipsoids, lines, and voxels. The glyphs can be switched interactively and offer multiple visual representations where each glyph enhances different underlying property. Additionally, we have developed highlighting mechanisms to enhance comprehension of direction of vector data. For instance, a sphere would ordinarily not provide directional cues but with our method of highlight the sphere can indicate the direction. We have also developed interactively tunable methods to resolve occlusion of volumetric data. We present multimodal visual representations that provide an array of interactive and flexible visualization techniques to the scientists for scientific investigation through visualization. The visualization tool can be run on a laptop, desktop or virtual reality (VR) environment. We are leveraging one such state-of-the-art system called “StarCAVE”. The StarCAVE surrounds the user with seamless, immersive and stereoscopic virtual environment. This VR environment provides the capability to view the volumetric data from inside the volume in an immersive manner, which is similar to witnessing the earthquake event from inside earth from any vantage point. Interactive visualization of the Terashake simulation allows scientists to flexibly explore existing data intuitively. This is a crop of the Terashake simulation containing the San Andreas near San Bernadino. Color represents velocity magnitude, while direction is that of the displacement vector.
IMP F and G phase 1 magnetic field analysis
NASA Technical Reports Server (NTRS)
Mish, W. H.
1972-01-01
The program developed to analyze magnetic field data from the magnetic field experiment flown in IMP F is reported. The analysis converts the raw X, Y, Z sensor data as received on the magnetic field experiment tape into vector measurements of the ambient magnetic field observed by the experiment. These data are computed for four frames of reference -- apparent, payload, solar ecliptic and solar magnetospheric. In addition 20.45 second statistics are computed for the last three coordinate systems. Finally, a summary tape is produced containing detailed data and sequence statistics as well as the output from the autocorrelation computer, trajectory data and identification information.
Wave-vector dependence of magnetic-turbulence spectra in the solar wind.
Narita, Y; Glassmeier, K-H; Sahraoui, F; Goldstein, M L
2010-04-30
Using four-point measurements of the Cluster spacecraft, the energy distribution was determined for magnetic field fluctuations in the solar wind directly in the three-dimensional wave-vector domain in the range |k|
The Capacitive Magnetic Field Sensor
NASA Astrophysics Data System (ADS)
Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.
2016-01-01
The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.
Origin of cosmic magnetic fields.
Campanelli, Leonardo
2013-08-01
We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12) G if the energy scale of inflation is few×10(16) GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556
Measurements of magnetic field alignment
Kuchnir, M.; Schmidt, E.E.
1987-11-06
The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.
Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.
2008-05-15
The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.
Magnetic fields in young galaxies
NASA Astrophysics Data System (ADS)
Nordlund, Åke; Rögnvaldsson, Örnólfur
We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.
Vector Field Visual Data Analysis Technologies for Petascale Computational Science
Garth, Christoph; Deines, Eduard; Joy, Kenneth I.; Bethel, E. Wes; Childs, Hank; Weber, Gunther; Ahern, Sean; Pugmire, Dave; Sanderson, Allen; Johnson, Chris
2009-11-13
State-of-the-art computational science simulations generate large-scale vector field data sets. Visualization and analysis is a key aspect of obtaining insight into these data sets and represents an important challenge. This article discusses possibilities and challenges of modern vector field visualization and focuses on methods and techniques developed in the SciDAC Visualization and Analytics Center for Enabling Technologies (VACET) and deployed in the open-source visualization tool, VisIt.
Inflation with a massive vector field nonminimally coupled to gravity
NASA Astrophysics Data System (ADS)
Bertolami, O.; Bessa, V.; Páramos, J.
2016-03-01
We study the possibility that inflation is driven by a massive vector field with S O (3 ) global symmetry nonminimally coupled to gravity. From an E3-invariant Robertson-Walker metric we propose an Ansatz for the vector field, allowing us to study the evolution of the system. We study the behavior of the equations of motion using the methods of the theory of dynamical systems and find exponential inflationary regimes.
Cosmic Magnetic Fields - An Overview
NASA Astrophysics Data System (ADS)
Wielebinski, Richard; Beck, Rainer
Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
NASA Astrophysics Data System (ADS)
Gerrits, Th.; Silva, T. J.; Nibarger, J. P.; Rasing, Th.
2004-12-01
We examine the relationship between nonlinear magnetic responses and the change in the Gilbert damping parameter α for patterned and unpatterned thin Permalloy films when subjected to pulsed magnetic fields. An improved magnetization-vector-resolved technique utilizing magnetization-induced optical second-harmonic generation was used to measure magnetization dynamics after pulsed-field excitation. The magnetization excitations were achieved with pulsed fields aligned parallel to the hard axis of thin permalloy (Ni80Fe20) films while a dc bias field is applied along the easy axis. At low bias fields, α was inversely related to the bias field, but there was no significant reduction in the absolute value of the magnetization, as might be expected if there was significant spin-wave generation during the damping process. We discuss the discrepancies between data obtained by ferromagnetic resonance, whereby spin-wave generation is prevalent, and pulsed-field studies, with the conclusion that fundamental differences between the two techniques for the excitation of the ferromagnetic spin system might explain the different proclivities toward spin-wave generation manifest in these two experimental methods.
Animation of orthogonal texture patterns for vector field visualization.
Bachthaler, Sven; Weiskopf, Daniel
2008-01-01
This paper introduces orthogonal vector field visualization on 2D manifolds: a representation by lines that are perpendicular to the input vector field. Line patterns are generated by line integral convolution (LIC). This visualization is combined with animation based on motion along the vector field. This decoupling of the line direction from the direction of animation allows us to choose the spatial frequencies along the direction of motion independently from the length scales along the LIC line patterns. Vision research indicates that local motion detectors are tuned to certain spatial frequencies of textures, and the above decoupling enables us to generate spatial frequencies optimized for motion perception. Furthermore, we introduce a combined visualization that employs orthogonal LIC patterns together with conventional, tangential streamline LIC patterns in order to benefit from the advantages of these two visualization approaches. In addition, a filtering process is described to achieve a consistent and temporally coherent animation of orthogonal vector field visualization. Different filter kernels and filter methods are compared and discussed in terms of visualization quality and speed. We present respective visualization algorithms for 2D planar vector fields and tangential vector fields on curved surfaces, and demonstrate that those algorithms lend themselves to efficient and interactive GPU implementations. PMID:18467751
NASA Astrophysics Data System (ADS)
Masterton, S.; Gubbins, D.; Ivers, D.; Müller, D.; Winch, D.
2009-12-01
High resolution lithospheric magnetic field anomaly maps derived from satellite data now offer immense opportunities to interpret crustal magnetic properties such as susceptibility, depth to Curie isotherm, magnetisation type and intensity. We present a method in which a vector spherical harmonic formulation allows the natural separation of 3 types of lithospheric magnetisation: one responsible for the observed potential field external to the crust, one responsible for the field inside the Earth that is not observed, and a toroidal magnetisation associated with a radial electric current responsible for a non-potential field. The latter two constitute the annihilator in the inverse problem for magnetisation using magnetic field data. Starting from a model of vertically integrated lithospheric magnetisation based on geology, we compute all 3 types of magnetisation and discuss implications of the 2 annihilators for inversion studies. We adopt a forward-modelling approach in which lithospheric magnetisation is estimated independently of satellite data, with particular emphasis on the oceans. Induced and remanent contributions are determined separately. Remanent magnetisation is derived from a combination of magnetic crustal thickness, a remanence intensity-age profile superimposed onto a geomagnetic polarity timescale and a digital age grid of the ocean floor, and magnetisation directions derived from the implementation of updated plate reconstruction models. Induced magnetisation is derived from a combination of magnetic crustal thickness and standard magnetic susceptibilities associated with major geological units. We present comparisons between magnetic anomalies predicted from magnetisation estimates and lithospheric magnetic field models.
Magnetic field synthesis for microwave magnetics
NASA Astrophysics Data System (ADS)
Morgenthaler, F. R.
1982-04-01
The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.
Magnetic field structure evolution in rotating magnetic field plasmas
Petrov, Yuri; Yang Xiaokang; Huang, T.-S.
2008-07-15
A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.
Three axis vector magnet set-up for cryogenic scanning probe microscopy
Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.; and others
2015-01-15
We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.
Three axis vector magnet set-up for cryogenic scanning probe microscopy.
Galvis, J A; Herrera, E; Guillamón, I; Azpeitia, J; Luccas, R F; Munuera, C; Cuenca, M; Higuera, J A; Díaz, N; Pazos, M; García-Hernandez, M; Buendía, A; Vieira, S; Suderow, H
2015-01-01
We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi2Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert. PMID:25638089
Measuring Earth's Local Magnetic Field Using a Helmholtz Coil
NASA Astrophysics Data System (ADS)
Williams, Jonathan E.
2014-04-01
In this paper, I present a low-cost interactive experiment for measuring the strength of Earth's local magnetic field. This activity can be done in most high schools or two-year physics laboratories with limited resources, yet will have a tremendous learning impact. This experiment solidifies the three-dimensional nature of Earth's magnetic field vector and helps reinforce the aspect of the vertical component of Earth's magnetic field. Students should realize that Earth's magnetic field is not fully horizontal (except at the magnetic equator) and that a compass simply indicates the direction of the horizontal component of Earth's magnetic field. A magnetic dip needle compass can be used to determine the angle (known as the "dip angle" or "inclination angle") measured from the direction in which Earth's magnetic field vector points to the horizontal. In this activity, students will be able to determine the horizontal component of the field using a Helmholtz coil and, knowing the dip angle, the Earth's magnetic field strength can be determined.
Full vector spherical harmonic analysis of the Holocene geomagnetic field
NASA Astrophysics Data System (ADS)
Richardson, Marcia
High-quality time-series paleomagnetic measurements have been used to derive spherical harmonic models of Earth's magnetic field for the past 2,000 years. A newly-developed data compilation, PSVMOD2.0 consists of time-series directional and intensity records that significantly improve the data quality and global distribution used to develop previous spherical harmonic models. PSVMOD2.0 consists of 185 paleomagnetic time series records from 85 global sites, including 30 full-vector records (inclination, declination and intensity). It includes data from additional sites in the Southern Hemisphere and Arctic and includes globally distributed sediment relative paleointensity records, significantly improving global coverage over previous models. PSVMOD2.0 records have been assessed in a series of 7 regional intercomparison studies, four in the Northern Hemisphere and 3 in the southern hemisphere. Comparisons on a regional basis have improved the quality and chronology of the data and allowed investigation of spatial coherence and the scale length associated with paleomagnetic secular variation (PSV) features. We have developed a modeling methodology based on nonlinear inversion of the PSVMOD2.0 directional and intensity records. Models of the geomagnetic field in 100-year snapshots have been derived for the past 2,000 with the ultimate goal of developing models spanning the past 8,000 years. We validate the models and the methodology by comparing with the GUFM1 historical models during the 400-year period of overlap. We find that the spatial distribution of sites and quality of data are sufficient to derive models that agree with GUFM1 in the large-scale characteristics of the field. We use the the models derived in this study to downward continue the field to the core-mantle boundary and examine characteristics of the large-scale structure of the magnetic field at the source region. The derived models are temporally consistent from one epoch to the next and exhibit
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
Project MAGNET High-level Vector Survey Data Reduction
NASA Technical Reports Server (NTRS)
Coleman, Rachel J.
1992-01-01
Since 1951, the U.S. Navy, under its Project MAGNET program, has been continuously collecting vector aeromagnetic survey data to support the U.S. Defense Mapping Agency's world magnetic and charting program. During this forty-year period, a variety of survey platforms and instrumentation configurations have been used. The current Project MAGNET survey platform is a Navy Orion RP-3D aircraft which has been specially modified and specially equipped with a redundant suite of navigational positioning, attitude, and magnetic sensors. A review of the survey data collection procedures and calibration and editing techniques applied to the data generated by this suite of instrumentation will be presented. Among the topics covered will be the determination of its parameters from the low-level calibration maneuvers flown over geomagnetic observatories.
Magnetic Field of Strange Dwarfs
NASA Astrophysics Data System (ADS)
Baghdasaryan, D. S.
2016-03-01
The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.
Magnetic fields and scintillator performance
Green, D.; Ronzhin, A.; Hagopian, V.
1995-06-01
Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.
AC photovoltaic module magnetic fields
Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.
1997-12-31
Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.
Bioluminescence under static magnetic fields
NASA Astrophysics Data System (ADS)
Iwasaka, M.; Ueno, S.
1998-06-01
In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.
Magnetic field structure of Mercury
NASA Astrophysics Data System (ADS)
Hiremath, K. M.
2012-04-01
Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during
Magnetic Field Generation in Stars
NASA Astrophysics Data System (ADS)
Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan
2015-10-01
Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.
VECTUM. Irregular 2D Velocity Vector Field Plotting Package
McClurg, F.R.; Mousseau, V.A.
1992-05-04
VECTUM is a NCAR Graphics based package, for generating a plot of an irregular 2D velocity vector field. The program reads an ASCII database of x, y, u, v, data pairs and produces a plot in Computer Graphics Metafile (CGM) format. The program also uses an ASCII parameter file for controlling annotation details such as the plot title, arrowhead style, scale of vectors, windowing, etc. Simple geometry (i.e. lines, arcs, splines) can be defined to be included with the velocity vectors. NCAR Graphics drivers can be used to display the CGM file into PostScript, HPGL, HDF, etc, output.
Vector optical fields broken in the spatial frequency domain
NASA Astrophysics Data System (ADS)
Gao, Xu-Zhen; Pan, Yue; Li, Si-Min; Wang, Dan; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-03-01
We theoretically and experimentally explore the redistribution of polarization states and orbital angular momentum (OAM) in the output plane, induced by the symmetry breaking in the spatial frequency domain. When the vector fields are obstructed by sector-shaped filters in the spatial frequency domain, the local polarization states in the output plane undergo an abrupt transition from linear to circular polarization. The results reveal the polarization-dependent splitting and the appearance of a series of opposite OAMs in the output plane. We also find the self-healing effect of the vector fields broken in the spatial frequency domain and further explore its potential application. If the vector optical fields are used for information transferring or for imaging, even if the optical field carrying the information or image is partially blocked, the complete information or image can still be obtained, implying that which may increase the robustness of the information transferring and the imaging.
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Neuber, S.; Schnabel, A.; Burghoff, M.; Haueisen, J.
2015-05-15
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
Mariappan, Leo; He, Bin
2013-03-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761
Mariappan, Leo; He, Bin
2013-01-01
Magneto acoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761
Evolution of magnetic field inclination in a forming penumbra
NASA Astrophysics Data System (ADS)
Jurčák, Jan; Bello González, Nazaret; Schlichenmaier, Rolf; Rezaei, Reza
2014-12-01
As a sunspot penumbra forms, the magnetic field vector at the outer boundary of the protospot undergoes a transformation. We study the changes of the magnetic field vector at this boundary as a penumbral segment forms. We analyze a set of spectropolarimetric maps covering 2 hr during the formation of a sunspot in NOAA 11024. The data were recorded with the GFPI instrument attached to the German VTT. We observe a stationary umbra/quiet Sun boundary, where the magnetic field becomes more horizontal with time. The magnetic field inclination increases by 5°, reaching a maximum value of about 59°. The maximum inclination coincides with the onset of filament formation. In time, the penumbra filaments become longer and the penumbral bright grains protrude into the umbra, where the magnetic field is stronger and more vertical. Consequently, we observe a decrease in the magnetic field inclination at the boundary as the penumbra grows. In summary, in order to initiate the formation of the penumbra, the magnetic field at the umbral (protospot) boundary becomes more inclined. As the penumbra grows, the umbra/penumbra boundary migrates inwards, and at this boundary the magnetic field turns more vertical again, while it remains inclined in the outer penumbra.
Measuring Earth's Magnetic Field Simply.
ERIC Educational Resources Information Center
Stewart, Gay B.
2000-01-01
Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)
Computation of Surface Integrals of Curl Vector Fields
ERIC Educational Resources Information Center
Hu, Chenglie
2007-01-01
This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…
Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C
2015-05-22
Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. PMID:25953822
NASA Technical Reports Server (NTRS)
Ness, N. F.
1977-01-01
The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Magsat: A satellite for measuring near earth magnetic fields
NASA Technical Reports Server (NTRS)
Langel, R. A.; Regan, R. D.; Murphy, J. P.
1977-01-01
Magsat, designed for making measurements of the geomagnetic vector field, is evaluated. For accurate vector measurements the attitude of the fluxgate magnetometer will be determined to about 15 arc-seconds. Expected measurement accuracy will be 6 (gamma) in each component and 3 in magnitude. The Magsat data will be applied to solid earth studies including modeling of the Earth's main magnetic field, delineation of regional magnetic anomalies of crustal origin, and interpretation of those anomalies in terms of geologic and geophysical models. An opportunity will be presented to the scientific community to participate in data use investigations.
Simulation of Pedestrian Dynamic Using a Vector Floor Field Model
NASA Astrophysics Data System (ADS)
Yang, Jun; Hou, Zhongsheng; Zhan, Minghui
2013-04-01
Simulation of complex scenarios and multi-direction pedestrian flow is a main challenge to microscopic model of pedestrian movement. It is an issue to simulate real pedestrian traffic with great fidelity while keeping its computational cost at an acceptable level. This paper reports on an improved floor field model called vector floor field model to simulate pedestrian flows in some basic scenarios. In this model, vectorization of static floor field and dynamic floor field are used to indicate preference directions and the pedestrian flow tendency, respectively. Pedestrian transition depends on both their preference directions and tendency. The simulations in some basic scenarios are conducted, quantitative comparison to the record of practical experiments and standard floor field model is given as well, and the results indicate the effectivity of this model. An adjusted static vector floor field is also proposed to simulate pedestrian flow in turning scenario. The vector floor field model is also sufficient to simulate some essential features in pedestrian dynamic, such as lane formation. This model can be widely used in the simulation of multi-direction pedestrian at turning, crossing and other junctions.
Cosmological perturbations: Vorticity, isocurvature and magnetic fields
NASA Astrophysics Data System (ADS)
Christopherson, Adam J.
2014-10-01
In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.
Magnetic field induced dynamical chaos
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra
2013-12-15
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.
The scientific case for magnetic field satellites
NASA Technical Reports Server (NTRS)
Backus, George E. (Editor); Benton, Edward R.; Harrison, Christopher G. A.; Heirtzler, James R.
1987-01-01
To make full use of modern magnetic data and the paleomagnetic record, we must greatly improve our understanding of how the geodynamo system works. It is clearly nonlinear, probably chaotic, and its dimensionless parameters cannot yet be reproduced on a laboratory scale. It is accessible only to theory and to measurements made at and above the earth's surface. These measurements include essentially all geophysical types. Gravity and seismology give evidence for undulations in the core-mantle boundary (CMB) and for temperature variations in the lower mantle which can affect core convection and hence the dynamo. VLBI measurements of the variations in the Chandler wobble and length of day are affected by, among other things, the electromagnetic and mechanical transfer of angular momentum across the CMB. Finally, measurements of the vector magnetic field, its intensity, or its direction, give the most direct access to the core dynamo and the electrical conductivity of the lower mantle. The 120 gauss coefficients of degrees up to 10 probably come from the core, with only modest interference by mantle conductivity and crustal magnetization. By contrast, only three angular accelerations enter the problem of angular momentum transfer across the CMB. Satellite measurements of the vector magnetic field are uniquely able to provide the spatial coverage required for extrapolation to the CMB, and to isolate and measure certain magnetic signals which to the student of the geodynamo represent noise, but which are of great interest elsewhere in geophysics. Here, these claims are justified and the mission parameters likely to be scientifically most useful for observing the geodynamo system are described.
Concircular vector fields for plane-symmetric static spacetimes
NASA Astrophysics Data System (ADS)
Ali, Ahmad Tawfik; Khan, Suhail
2016-04-01
In this paper, we investigate concircular vector fields (CVFs) of static plane symmetric four-dimensional Lorentzian manifold. Ten conformal Killing equations and their general form of conformal Killing vector fields (CKVFs) are derived along with their conformal factor. These CKVFs are then placed into the conformal Ricci collineation equations to obtain the final form of CVFs. The existence of concircular symmetry imposes restrictions on the metric functions. The conditions imposing restrictions on these metric functions are obtained as a set of integrability conditions. It is shown that plane-symmetric static spacetimes admit four, six, seven or fifteen-dimensional concircular vector fields. Analysis of our results are also given in the light of some established results in the literature.
NASA Astrophysics Data System (ADS)
Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.
2015-08-01
Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new
Magnetic fields in quiescent prominences
NASA Technical Reports Server (NTRS)
Van Ballegooijen, A. A.; Martens, P. C. H.
1990-01-01
The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.
Modeling and vector control of planar magnetic levitator
Kim, W.; Trumper, D.L.; Lang, J.H.
1998-11-01
The authors designed and implemented a magnetically levitated stage with large planar motion capability. This planar magnetic levitator employs four novel permanent-magnet linear motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive. These linear levitation motors can be used as building blocks in the general class of multi-degree-of-freedom motion stages. In this paper, the authors discuss electromechanical modeling and real-time vector control of such a permanent-magnet levitator. They describe the dynamics in a dq frame introduced to decouple the forces acting on the magnetically levitated moving part, namely, the platen. A transformation similar to the Blondel-Park transformation is derived for commutation of the stator phase currents. The authors provide test results on step responses of the magnetically levitated stage. It shows 5-nm rms positioning noise in x and y, which demonstrates the applicability of such stages in the next-generation photolithography in semiconductor manufacturing.
Magnetic fields in ring galaxies
NASA Astrophysics Data System (ADS)
Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.
2016-07-01
Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.
The handedness of Lissajous singularities in polychromatic vector optical fields
NASA Astrophysics Data System (ADS)
Chen, Haitao; Huang, Weigang; Gao, Zenghui; Wang, Wanqing
2016-05-01
Starting from the basic definition, the explicit expression for the handedness of Lissajous singularities in polychromatic vector optical fields is derived, which is illustrated and used to study the handedness of Lissajous singularities in free space and propagation through an astigmatic lens. It is found that the handedness is not only related to the Stokes parameters S3i (i = 1, 2, ……, n) of constituting components of the polychromatic vector electric field, but also to their frequencies and the amplitude factors.
Magnetic Fields in Stellar Jets
NASA Astrophysics Data System (ADS)
Hartigan, Patrick; Frank, Adam; Varniére, Peggy; Blackman, Eric G.
2007-06-01
Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B~n0.5 for a steady state conical flow with a toroidal field, so the Alfvén speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1>p>0.5. Because p>0.5, the Alfvén speed in rarefactions decreases on average as the jet propagates away from the star. Hence, a typical Alfvén velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. Typical velocity perturbations, which form shocks at large distances, will produce only magnetic waves close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30-40 km s-1 no longer produce shocks is ~300 AU from the source.
NASA Astrophysics Data System (ADS)
Costa, Pedro; Ferreira, Márcio; Menezes, Débora P.; Moreira, João; Providência, Constança
2015-08-01
The effect of a strong magnetic field on the location of the critical end point (CEP) in the QCD phase diagram is discussed under different scenarios. In particular, we consider the contribution of the vector interaction and take into account the inverse magnetic catalysis obtained in lattice QCD calculations at zero chemical potential. The discussion is realized within the (2 +1 ) Polyakov-Nambu-Jona-Lasinio model. It is shown that the vector interaction and the magnetic field have opposite competing effects, and that the winning effect depends strongly on the intensity of the magnetic field. The inverse magnetic catalysis at zero chemical potential has two distinct effects for magnetic fields above ≳0.3 GeV2: it shifts the CEP to lower chemical potentials, hinders the increase of the CEP temperature and prevents a too large increase of the baryonic density at the CEP. For fields e B <0.1 GeV2 the competing effects between the vector contribution and the magnetic field can move the CEP to regions of temperature and density in the phase diagram that could be more easily accessible to experiments.
MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.
JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.
2004-10-03
Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.
Improved magnetic field analysis of induction motor models
Enokizono, Masato; Sadanaga, Yuichiro
1998-09-01
This paper presents an improved magnetic field analysis for induction motor models. In the analysis with the conventional numerical modeling of magnetic materials, the vector relations between the flux density and the field intensity under a rotating field cannot be expressed exactly. In this paper, the authors derived the tensor magnetic reluctivity from the data measured with two-dimensional measurement method. This expression is applied to analyze a three-phase induction motor model core. The examples show that the calculated results obtained by the new method are different from those of the conventional modeling.
Relation between photospheric flow fields and the magnetic field distribution on the solar surface
Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.
1988-04-01
Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.
Magnetically-Responsive Nanoparticles for Vectored Delivery of Cancer Therapeutics
NASA Astrophysics Data System (ADS)
Klostergaard, Jim; Bankson, James; Woodward, Wendy; Gibson, Don; Seeney, Charles
2010-12-01
We propose that physical targeting of therapeutics to tumors using magnetically-responsive nanoparticles (MNPs) will enhance intratumoral drug levels compared to free drugs in an effort to overcome tumor resistance. We evaluated the feasibility of magnetic enhancement of tumor extravasation of systemically-administered MNPs in human xenografts implanted in the mammary fatpads of nude mice. Mice with orthotopic tumors were injected systemically with MNPs, with a focused magnetic field juxtaposed over the tumor. Magnetic resonance imaging and scanning electron microscopy both indicated successful tumor localization of MNPs. Next, MNPs were modified with poly-ethylene-glycol (PEG) and their clearance compared by estimating signal attenuation in liver due to iron accumulation. The results suggested that PEG substitution could retard the rate of MNP plasma clearance, which may allow greater magnetically-enhanced tumor localization. We propose that this technology is clinically scalable to many types of both superficial as well as some viscerable tumors with existing magnetic technology.
DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. I
Hildebrand, Roger H.; Kirby, Larry; Dotson, Jessie L.; Houde, Martin; Vaillancourt, John E.
2009-05-01
We describe a method for determining the dispersion of magnetic field vectors about large-scale fields in turbulent molecular clouds. The method is designed to avoid inaccurate estimates of magnetohydrodynamic or turbulent dispersion-and help avoiding inaccurate estimates of field strengths-due to a large-scale, nonturbulent field structure when using the well known method of Chandrasekhar and Fermi. Our method also provides accurate, independent estimates of the turbulent to large-scale magnetic field strength ratio. We discuss applications to the molecular clouds OMC-1, M17, and DR21(Main)
Scattering detection of a solenoidal Poynting vector field.
Fardad, Shima; Salandrino, Alessandro; Samadi, Akbar; Heinrich, Matthias; Chen, Zhigang; Christodoulides, Demetrios N
2016-08-01
The Poynting vector S plays a central role in electrodynamics as it is directly related to the power and the momentum carried by an electromagnetic wave. In the presence of multiple electromagnetic waves with different polarizations and propagation directions, the Poynting vector may exhibit solenoidal components which are not associated to any power flow. Here, we demonstrate theoretically and experimentally that the presence of such solenoidal components has physical consequences, and it is not a mere artifact of the gauge invariance of S. In particular, we identify a simple field configuration displaying solenoidal components of S and theoretically show that a judiciously designed scatterer can act as a "Poynting vector detector" which when immersed in such field distribution would experience a transverse optical force orthogonal to the incidence plane. We experimentally validate our theoretical predictions by observing a pronounced asymmetry in the scattering pattern of a spherical nanoparticle. PMID:27472632
Magnetic fields of the solar system: A comparative planetology toolkit
NASA Astrophysics Data System (ADS)
Nicholas, J. B.; Purucker, M. E.; Johnson, C. L.; Sabaka, T. J.; Olsen, N.; Sun, Z.; Al Asad, M.; Anderson, B. J.; Korth, H.; Slavin, J. A.; Alexeev, I. I.; Belenkaya, E. S.; Phillips, R. J.; Solomon, S. C.; Lillis, R. J.; Langlais, B.; Winslow, R. M.; Russell, C. T.; Dougherty, M. K.; Zuber, M. T.
2011-12-01
Magnetic fields within the solar system provide a strong organizing force for processes active both within a planet or moon, and outside of it. In the interest of stimulating research and education in the field of comparative planetology, we present documented Fortran and MATLAB source codes and benchmarks to the latest models for planets and satellites that host internal magnetic fields. This presentation is made in the context of an interactive website: http://planetary-mag.net. Models are included for Earth (Comprehensive model CM4 of Sabaka et al., 2004, Geophysics J. Int.), Mercury (Anderson et al, 2011, Science), the Moon (Purucker and Nicholas, 2010, JGR), Mars (Lillis et al., 2010, JGR), and the outer planets Jupiter, Saturn, Uranus, and Neptune (Russell and Dougherty, 2010, Space Science Reviews). All models include magnetic fields of internal origin, and fields of external origin are included in the models for Mercury, the Earth, and the Moon. As models evolve, we intend to include magnetic fields of external origin for the other planets and moons. The website allows the user to select a coordinate system, such as planet-centered, heliocentric, or boundary normal, and the location within that coordinate system, and the vector magnetic field due to each of the component source fields at that location is then calculated and presented. Alternatively, the user can input a range as well as a grid spacing, and the vector magnetic field will be calculated for all points on that grid and be made available as a file for downloading.
Introduction to power-frequency electric and magnetic fields.
Kaune, W T
1993-01-01
This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045
Deep-sea Vector Magnetic Anomalies over the Bayonnaise Knoll Caldera (Izu-Ogasawara Arc) (Invited)
NASA Astrophysics Data System (ADS)
Honsho, C.; Ura, T.; Kim, K.
2013-12-01
The Bayonnaise Knoll caldera is located on the eastern margin of the backarc rift zone of the Izu-Ogasawara island arc. The caldera rim is ~3 km in diameter and 100-200 m high from the caldera floor 840-920 m deep. A large active hydrothermal field associated with sulfide deposit, called the Hakurei site, has been found at the foot of the southeastern caldera wall. We conducted deep-sea magnetic measurements using autonomous underwater vehicles to map ~75 % of an area 3 km by 4 km in the caldera. The magnetic vector field data were collected at 40-150 m altitude along the survey lines spaced 80-200 m apart. We improved the conventional correction method applied for removing the effect of vehicle magnetization, which greatly enhanced the precision of the resulting vector anomalies and allowed us to use the vector anomaly instead of the total intensity anomaly for inversion analysis. The magnetization distribution obtained using the vector anomaly was significantly different from the one obtained using the total intensity anomaly, especially in areas where the survey tracks were widely spaced. The aliasing effect appears in areas of sparse data distribution, and the magnetic field is more correctly calculated from the vector anomaly than the total intensity anomaly. The magnetization distribution in the caldera has two major features: a ~1.5-km wide belt of high magnetization, trending NNW-SSE through the caldera, and a clear low magnetization zone, ~300 m x ~500 m wide, extending over the Hakurei site. The high magnetization belt is considered to reflect basaltic volcanism associated with the backarc rifting that occurred after the formation of the Bayonnaise Knoll. The low magnetization zone is interpreted as the alteration zone resulting from the hydrothermal activity. Several zones of localized high magnetization are recognized within the high magnetization belt, some of them in the caldera wall adjacent to the low magnetization zone of the Hakurei site. We
Magnetic field of Jupiter: A generalized inverse approach
Connerney, J.E.P.
1981-09-01
The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model non-uniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.
PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS
Krumholz, Mark R.; Crutcher, Richard M.; Hull, Charles L. H.
2013-04-10
The gas from which stars form is magnetized, and strong magnetic fields can efficiently transport angular momentum. Most theoretical models of this phenomenon find that it should prevent formation of large (>100 AU), rotationally supported disks around most protostars, even when non-ideal magnetohydrodynamic (MHD) effects that allow the field and gas to decouple are taken into account. Using recent observations of magnetic field strengths and orientations in protostellar cores, we show that this conclusion is incorrect. The distribution of magnetic field strengths is very broad, and alignments between fields and angular momentum vectors within protostellar cores are essentially random. By combining the field strength and misalignment data with MHD simulations showing that disk formation is expected for both weak and misaligned fields, we show that these observations imply that we should expect disk fractions of {approx}10%-50% even when protostars are still deeply embedded in their parent cores, and even if the gas is governed by ideal MHD.
Magnetic field of Jupiter: A generalized inverse approach
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.
1981-01-01
The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model nonuniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.
The magnetic field of Jupiter - A generalized inverse approach
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.
1981-01-01
The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model non-uniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.
Magnetic field fluctuations during substorms
NASA Technical Reports Server (NTRS)
Fairfield, D. H.
1971-01-01
Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.
Properties of the Acoustic Vector Field in Underwater Waveguides
NASA Astrophysics Data System (ADS)
Dall'Osto, David R.
This thesis focuses on the description and measurement of the underwater acoustic field, based on vector properties of acoustic particle velocity. The specific goal is to interpret vector sensor measurements in underwater waveguides, in particular those measurements made in littoral (shallow) waters. To that end, theoretical models, which include the effects of reflections from the waveguide boundaries, are developed for the acoustic intensity, i.e. the product of acoustic pressure and acoustic particle velocity. Vector properties of acoustic intensity are shown to correspond to a non-dimensional vector property of acoustic particle velocity, its degree of circularity, which describes the trajectory of particle motion. Both experimental measurements and simulations of this non-dimensional vector property are used to analyze characteristics of sound propagation in underwater waveguides. Two measurement techniques are utilized in the experiments described in this thesis. In the first, particle velocity is obtained indirectly by time integration of the measured pressure gradient between two closely spaced (with respect to an acoustic wavelength) conventional pressure sensitive hydrophones. This method was used in ocean experiments conducted with vertical line arrays of hydrophones. In the second technique, particle velocity is measured directly by time integration of the signal generated by an accelerometer. An additional pressure measurement from a co-located hydrophone forms what is known as a "combined sensor" in the Russian literature, which allows for estimation of the vector acoustic intensity. This method was utilized mainly in laboratory experiments.
Classical and quantum mechanical motion in magnetic fields
NASA Astrophysics Data System (ADS)
Franklin, J.; Cole Newton, K.
2016-04-01
We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and we demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically, using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum-mechanical solution, there are also differences, and we demonstrate some of these.
Classical and Quantum Mechanical Motion in Magnetic Fields
NASA Astrophysics Data System (ADS)
Newton, K. Cole; Franklin, Joel
2016-03-01
We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum mechanical solution, there are also differences, and we demonstrate some of these.
Analysis of Recurrent Patterns in Toroidal Magnetic Fields
Tricoche, Xavier; Kruger, Scott E; Breslau, Joshua
2010-01-01
In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincare map of the sampled fieldlines in a Poincare section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.
Indoor localization using magnetic fields
NASA Astrophysics Data System (ADS)
Pathapati Subbu, Kalyan Sasidhar
Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing
Chromospheric magnetic fields of an active region filament
NASA Astrophysics Data System (ADS)
Xu, Z.; Solanki, S.; Lagg, A.
2012-06-01
Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.
Evolution of field line helicity during magnetic reconnection
Russell, A. J. B. Hornig, G.; Wilmot-Smith, A. L.; Yeates, A. R.
2015-03-15
We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.
NASA Astrophysics Data System (ADS)
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws
Solar Polarimetry and Magnetic Field Measurements
NASA Astrophysics Data System (ADS)
del Toro Iniesta, J. C.
2001-05-01
The magnetic nature of most solar (spatially resolved or unresolved) structures is amply recognized. Magnetic fields of the Sun play a paramount rôle in the overall thermodynamic and dynamic state of our star. The main observable manifestation of solar magnetic fields is the polarization of light either through the Zeeman effect on spectral lines or through the Hanle effect (depolarization by very weak magnetic fields of light previously polarized by scattering). Hence, one can easily understand the increasing importance that polarimetry is experimenting continuously in solar physics. Under the title of this contribution a six-hour course was given during the summer school. Clearly, the limited extension allocated for the notes in these proceedings avoids an extensive account of the several topics discussed: 1) a description of light as an electromagnetic wave and the polarization properties of monochromatic, time-harmonic, plane waves; 2) the polarization properties of polychromatic light and, in particular, of quasi-monochromatic light; 3) the transformations of (partially) polarized light by linear optical systems and a description of the ways we measure the Stokes parameters by spatially and/or temporally modulating the polarimetric signal; 4) a discussion on specific problems relevant to solar polarimetry like seeing-induced and instrumental polarization, or modulation and demodulation, along with a brief description of current solar polarimeters; 5) the vector radiative transfer equation for polarized light and its links to the scalar one for unpolarized light, together with a summary of the Zeeman effect and its consequences on line formation in a magnetized stellar atmosphere; 7) an introduction of the paramount astrophysical problem, i.e., that of finding diagnostics that enable the solar physicist to interpret the observables in terms of the solar atmospheric quantities, including a discussion on contribution and response functions; and 8) a brief
Orientation and Magnitude of Mars' Magnetic Field
NASA Technical Reports Server (NTRS)
1997-01-01
This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).
The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).
Gary, S Peter; Narita, Y; Glassmeier, K H; Goldstein, M L; Safraoui, F; Treumann, R A
2009-01-01
Using four-point measurements of the CLUSTER spacecraft, the energy distribution of magnetic field fluctuations in the solar wind is determined directly in the three-dimensional wave vector domain in the range 3 x 10{sup -4} rad/km < k < 3 x 10{sup -3} rad/km. The analysis method takes account of a regular tetrahedron configuration of CLUSTER and the Doppler effect. The energy distribution in the flow rest frame is anisotropic, characterized by two distinct extended structures perpendicular to the mean magnetic field and furthermore perpendicular to the flow direction. The three-dimensional distribution is averaged around the direction of the mean magnetic field direction, and then is further reduced to one-dimensional distributions in the wave number domain parallel and perpendicular to the mean magnetic field. The one-dimensional energy spectra are characterized by the power law with the index -5/3 and furthermore very close energy density between parallel and perpendicular directions to the mean magnetic field at the same wave numbers. Though the distributions and the spectra are not covered in a wide range of wave vectors, our measurements suggest that the solar wind fluctuation is anisotropic in the three-dimensional wave vector space. It is, however, rather isotropic when reduced into the parallel and perpendicular wave vector geometries due to the second anisotropy imposed by the flow direction.
Observations of Mercury's magnetic field
NASA Technical Reports Server (NTRS)
Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.
1975-01-01
Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.
Galactic and Intergalactic Magnetic Fields
NASA Astrophysics Data System (ADS)
Klein, U.; Fletcher, A.
This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.
Mars Crustal Magnetic Field Remnants
NASA Technical Reports Server (NTRS)
2001-01-01
The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.
This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.
The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.
These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.
Preparation and characterization of magnetic gene vectors for targeting gene delivery
NASA Astrophysics Data System (ADS)
Zheng, S. W.; Liu, G.; Hong, R. Y.; Li, H. Z.; Li, Y. G.; Wei, D. G.
2012-10-01
The PEI-CMD-MNPs were successfully prepared by the surface modification of magnetic Fe3O4 nanoparticles with carboxymethyl dextran (CMD) and polyethyleneimine (PEI). The PEI-CMD-MNPs polyplexes exhibited a typical superparamagnetic behavior and were well stable over the entire range of pH and NaCl concentration. These PEI-CMD-MNPs were used as magnetic gene vectors for targeting gene delivery. The prepared MNPs at different surface modification stages were characterized using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), field emissions canning electron microscopy (FE-SEM), powder X-ray diffraction (XRD) and dynamic laser light scattering (DLS) analysis. The magnetic properties were studied by vibrating sample magnetometer (VSM). To evaluate the performance of the magnetic nanoparticles as gene transfer vector, the PEI-CMD-MNPs were used to delivery green fluorescent protein (GFP) gene into BHK21 cells. The expression of GFP gene was detected by fluorescence microscope. DNA-PEI-CMD-MNPs polyplexes absorbed by the cells were also monitored by Magnetic resonance imaging (MRI). The transfection efficiency and gene expression efficiency of that transfected with a magnet were much higher than that of standard transfection.
The magnetic field of the Milky Way
NASA Astrophysics Data System (ADS)
Reid, Mark J.
Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.
Description of dark energy and dark matter by vector fields
NASA Astrophysics Data System (ADS)
Meierovich, Boris E.
A simple Lagrangian (with squared covariant divergence of a vector field as a kinetic term) turned out an adequate tool for oscopic description of dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the Universe. In particular, the singular "big bang" turns into a regular inflation-like transition from contraction to expansion with accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions (in the absence of vector fields). The simplicity of the general covariant expression for the energy-momentum tensor allows analyzing the main properties of the dark sector analytically, avoiding unnecessary model assumptions.
Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry
Morrison, C. Miles, J. J.; Thomson, T.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.
2015-05-07
Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.
Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry
NASA Astrophysics Data System (ADS)
Morrison, C.; Miles, J. J.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.; Thomson, T.
2015-05-01
Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.
Off disk-center potential field calculations using vector magnetograms
NASA Technical Reports Server (NTRS)
Venkatakrishnan, P.; Gary, G. Allen
1989-01-01
A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.
Method and means for measuring the anisotropy of a plasma in a magnetic field
Shohet, J.L.; Greene, D.G.S.
1973-10-23
Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)
Magnetic space-based field measurements
NASA Technical Reports Server (NTRS)
Langel, R. A.
1981-01-01
Because the near Earth magnetic field is a complex combination of fields from outside the Earth of fields from its core and of fields from its crust, measurements from space prove to be the only practical way to obtain timely, global surveys. Due to difficulty in making accurate vector measurements, early satellites such as Sputnik and Vanguard measured only the magnitude survey. The attitude accuracy was 20 arc sec. Both the Earth's core fields and the fields arising from its crust were mapped from satellite data. The standard model of the core consists of a scalar potential represented by a spherical harmonics series. Models of the crustal field are relatively new. Mathematical representation is achieved in localized areas by arrays of dipoles appropriately located in the Earth's crust. Measurements of the Earth's field are used in navigation, to map charged particles in the magnetosphere, to study fluid properties in the Earth's core, to infer conductivity of the upper mantels, and to delineate regional scale geological features.
Helicity of the Solar Magnetic Field
NASA Astrophysics Data System (ADS)
Tiwari, Sanjiv Kumar
2009-11-01
Magnetic helicity is a physical quantity that measures the degree of linkages and twistedness in the field lines. It is given by a volume integral over the scalar product of magnetic field B and its vector potential A. Direct computation of magnetic helicity in the solar atmosphere is not possible due to two reasons. First, we do not have the observations at different heights in the solar atmosphere to compute the volume integral. Second, the vector potential A is non-unique owing to gauge variance. Many researchers incorrectly inferred twist, a component of magnetic helicity, from the force-free parameter Î±. We clarified the physical meaning of Î± and its relation with the magnetic helicity. Also, a direct method is proposed for the computation of global Î± values of sunspots. An analytical bipole was generated to study the effect of polarimetric noise on the estimation of various magnetic parameters. We find that the effect of polarimetric noise, present in the recent vector magnetograms e.g., from Hinode (Solar Optical Telescope/Spectro- Polarimeter (SOT/SP)), on the magnetic parameters like Î± and magnetic energy, is negligible. We examined the fine structures of local current and Î± in the sunspots. Local Î± patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local Î± in the umbra is typically of the order of the global Î± of the sunspot. We find that the local Î± and current are distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local Î± in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and Î± in the penumbra cancel each other giving almost no contribution for their global values for whole sunspot. We have introduced the concept of signed shear angle (SSA) for sunspots and establish its importance for non force
Photospheric and coronal magnetic fields
Sheeley, N.R., Jr. )
1991-01-01
Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.
A filament supported by different magnetic field configurations
NASA Astrophysics Data System (ADS)
Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.
2011-08-01
A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.
Cosmological magnetic fields from inflation
NASA Astrophysics Data System (ADS)
Motta, Leonardo
In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single field slow- roll inflation is assumed together with a coupling of the form eφ/nuF μnuFμnu between the inflaton φ and the electrodynamical field strength Fμnu. For certain choice of parameters, the model produces a scale-invariant power spectrum that can be as high as 10-12 G at cosmological scales at present time. Finally, we compute the correlation between the magnetic field energy density and scalar metric fluctuations at tree-level from which the shape of the resulting non-gaussianity is analyzed.We show that the corresponding bispectrum is of order 10-5 times the power spectrum of magnetic fields.
Nonlinear spin-wave excitations at low magnetic bias fields
NASA Astrophysics Data System (ADS)
Woltersdorf, Georg
We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.
Full-vector archeomagnetic and rock-magnetic results from Portuguese kilns
NASA Astrophysics Data System (ADS)
Gomez-Paccard, Miriam; Tema, Evdokia; McIntosh, Gregg; Letaio, Manuela; Calado, Marco; Botelho, Paulo
2014-05-01
Despite the increase in archeomagnetic studies in the past few years, the number of reliable archeointensity data is still limited. At present Europe is the most widely covered region, although the variation in geomagnetic field intensity is not completely known for the last millennia and the occurrence and behaviour of various rapid geomagnetic field changes is under discussion. In this context, new high-reliable full-geomagnetic field vector determinations from unexplored regions are crucial in order to improve our knowledge of past geomagnetic field changes at regional scales. In Portugal, despite the rich cultural heritage and the abundance of archaeological excavations, archaeomagnetic research is still in its infancy. To our knowledge, up to now the only available directional data obtained from more or less well-dated materials come from the study of a Late Bronze Age vitrified wall close to the city of Serpa, southern Portugal, while only two more studies have been published including archaeointesity results from Portuguese pottery. We present here the first full-vector archeomagnetic results (declination, inclination and intensity) from two kilns excavated at two archaeological sites at Lisboa (Portugal). The first structure corresponds to the Largo das Alcaçarias Islamic pottery production workshop located in the eastern suburb Luxbona (current Alfama) and its abandonment has been dated as the 12th century AD. The second kiln was excavated in the Encosta Santana archeological medieval site and was abandoned during the 12th or 13th centuries AD according to archeological evidence. Detailed archaeomagnetic and rock magnetic studies have been carried out in order to determine the magnetic mineralogy and investigate the thermal stability of the phases carrying the archaeomagnetic signal. Both kilns exhibited thermally stability magnetic phases. The magnetic properties of the Largo kiln are dominated by a mixture of magnetite/cation-substituted magnetite and
Absolute magnetic helicity and the cylindrical magnetic field
NASA Astrophysics Data System (ADS)
Low, B. C.
2011-05-01
The different magnetic helicities conserved under conditions of perfect electrical conductivity are expressions of the fundamental property that every evolving fluid surface conserves its net magnetic flux. This basic hydromagnetic point unifies the well known Eulerian helicities with the Lagrangian helicity defined by the conserved fluxes frozen into a prescribed set of disjoint toroidal tubes of fluid flowing as a permanent partition of the entire fluid [B. C. Low, Astrophys. J. 649, 1064 (2006)]. This unifying theory is constructed from first principles, beginning with an analysis of the Eulerian and Lagrangian descriptions of fluids, separating the ideas of fluid and magnetic-flux tubes and removing the complication of the magnetic vector potential's free gauge from the concept of helicity. The analysis prepares for the construction of a conserved Eulerian helicity, without that gauge complication, to describe a 3D anchored flux in an upright cylindrical domain, this helicity called absolute to distinguish it from the well known relative helicity. In a version of the Chandrasekhar-Kendall representation, the evolving field at any instant is a unique superposition of a writhed, untwisted axial flux with a circulating flux of field lines all closed and unlinked within the cylindrical domain. The absolute helicity is then a flux-weighted sum of the writhe of that axial flux and its mutual linkage with the circulating flux. The absolute helicity is also conserved if the frozen-in field and its domain are continuously deformed by changing the separation between the rigid cylinder-ends with no change of cylinder radius. This hitherto intractable cylindrical construction closes a crucial conceptual gap for the fundamentals to be complete at last. The concluding discussion shows the impact of this development on our understanding of helicity, covering (i) the helicities of wholly contained and anchored fields; (ii) the Eulerian and Lagrangian descriptions of field
Transverse Magnetic Field Propellant Isolator
NASA Technical Reports Server (NTRS)
Foster, John E.
2000-01-01
An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.
Crystal field and magnetic properties
NASA Technical Reports Server (NTRS)
Flood, D. J.
1977-01-01
Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.
Deriving a Core Magnetic Field Model from Swarm Satellite Data
NASA Astrophysics Data System (ADS)
Lesur, V.; Rother, M.; Wardinski, I.
2014-12-01
A model of the Earth's core magnetic field has been built using Swarm satellite mission data and observatory quasi-definitive data. The satellite data processing scheme, which was used to derive previous satellite field models (i.e. GRIMM series), has been modified to handle discrepancies between the satellite total intensity data derived from the vector fluxgate magnetometer and the absolute scalar instrument. Further, the Euler angles, i.e. the angles between the vector magnetometer and the satellite reference frame, have been recalculated on a series of 30-day windows to obtain an accurate model of the core field for 2014. Preliminary derivations of core magnetic field and SV models for 2014 present the same characteristics as during the CHAMP era. The acceleration (i.e. the field second time derivative) has shown a rapid evolution over the last few years, and is present in the current model, which confirms previous observations.
Low-frequency fluctuations in plasma magnetic fields
Cable, S.; Tajima, T.
1992-02-01
It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.
Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature
Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.
2009-12-15
We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), and (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.
NASA Technical Reports Server (NTRS)
Schuler, James J.; Felippa, Carlos A.
1991-01-01
Electromagnetic finite elements are extended based on a variational principle that uses the electromagnetic four potential as primary variable. The variational principle is extended to include the ability to predict a nonlinear current distribution within a conductor. The extension of this theory is first done on a normal conductor and tested on two different problems. In both problems, the geometry remains the same, but the material properties are different. The geometry is that of a 1-D infinite wire. The first problem is merely a linear control case used to validate the new theory. The second problem is made up of linear conductors with varying conductivities. Both problems perform well and predict current densities that are accurate to within a few ten thousandths of a percent of the exact values. The fourth potential is then removed, leaving only the magnetic vector potential, and the variational principle is further extended to predict magnetic potentials, magnetic fields, the number of charge carriers, and the current densities within a superconductor. The new element produces good results for the mean magnetic field, the vector potential, and the number of superconducting charge carriers despite a relatively high system condition number. The element did not perform well in predicting the current density. Numerical problems inherent to this formulation are explored and possible remedies to produce better current predicting finite elements are presented.
NASA Astrophysics Data System (ADS)
Purucker, M.; Sabaka, T.; Le, G.; Slavin, J. A.; Strangeway, R. J.; Busby, C.
2007-12-01
We report the development of a new technique (magnetic gradiometry) for satellite-based remote sensing of the lithosphere. The measurements reported here represent the first systematic measurements of lithospheric magnetic field gradients, and were collected from a spinning spacecraft. The three-satellite ST-5 mission collected vector magnetic field observations at 300-800+ km altitudes over mid and high-northern latitudes in 2006. Away from the auroral oval, and over the continents, the gradients of the low altitude (<400 km) total anomaly field are dominated by lithospheric magnetic fields. Using a seismic starting model, and magnetic field observations from ST-5 and other recent satellite missions, we demonstrate how these techniques can be used to improve our knowledge of the processes involved in the thickened crust of the Colorado Plateau and the Sierra Madre Occidental.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Krause, Marita
2015-03-01
The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1974-01-01
The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.
Large scale reconstruction of the solar coronal magnetic field
NASA Astrophysics Data System (ADS)
Amari, T.; Aly, J.-J.; Chopin, P.; Canou, A.; Mikic, Z.
2014-10-01
It is now becoming necessary to access the global magnetic structure of the solar low corona at a large scale in order to understand its physics and more particularly the conditions of energization of the magnetic fields and the multiple connections between distant active regions (ARs) which may trigger eruptive events in an almost coordinated way. Various vector magnetographs, either on board spacecraft or ground-based, currently allow to obtain vector synoptic maps, composite magnetograms made of multiple interactive ARs, and full disk magnetograms. We present a method recently developed for reconstructing the global solar coronal magnetic field as a nonlinear force-free magnetic field in spherical geometry, generalizing our previous results in Cartesian geometry. This method is implemented in the new code XTRAPOLS, which thus appears as an extension of our active region scale code XTRAPOL. We apply our method by performing a reconstruction at a specific time for which we dispose of a set of composite data constituted of a vector magnetogram provided by SDO/HMI, embedded in a larger full disk vector magnetogram provided by the same instrument, finally embedded in a synoptic map provided by SOLIS. It turns out to be possible to access the large scale structure of the corona and its energetic contents, and also the AR scale, at which we recover the presence of a twisted flux rope in equilibrium.
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1976-01-01
The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.
NASA Astrophysics Data System (ADS)
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws
Oxide superconductors under magnetic field
NASA Technical Reports Server (NTRS)
Kitazawa, K.
1990-01-01
One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.
Oxide superconductors under magnetic field
NASA Technical Reports Server (NTRS)
Kitazawa, K.
1991-01-01
One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.
New techniques in 3D scalar and vector field visualization
Max, N.; Crawfis, R.; Becker, B.
1993-05-05
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.
Vector field models of modified gravity and the dark sector
NASA Astrophysics Data System (ADS)
Zuntz, J.; Zlosnik, T. G.; Bourliot, F.; Ferreira, P. G.; Starkman, G. D.
2010-05-01
We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory’s kinetic index parameter nae can differ significantly from its ΛCDM value.
Vector field models of modified gravity and the dark sector
Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.
2010-05-15
We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.
NASA Astrophysics Data System (ADS)
Du, J.; Chen, C.; Lesur, V.; Wang, L.
2015-07-01
General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees/orders are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the third-order partial derivatives of the magnetic potential field in the local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (GFZ Reference Internal Magnetic Model, version 0.0) with spherical harmonic degrees 16-90. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the magnetic potential field.
A dc magnetic field distribution transducer (abstract)
NASA Astrophysics Data System (ADS)
Hristoforou, E.
1991-04-01
A new way of measuring magnetic field distribution is proposed, based on the change of the response of a magnetostrictive delay line (MDL) to varying dc magnetic field. The principal idea runs as follows: an array of wires Ci, transmitting pulsed current Ie, crosses at 45° an array of MDL Lj. The resulting pulsed field at the crossing points Pij excites an acoustic pulses in the lines, detected by short coils placed close to one end, in terms of voltage Voij. If a dc magnetic field Hdc is applied at the point Pij, the acoustic pulse and hence Voij change. Experimental results are given, showing the dependence of V0 on the applied dc field under various values of Ie for the case of a 1 mm wide Metglas 2605SC MDL. The function of Vom vs Hdc under various values of Ie is also given, where Vom is the maximum value of the absolute positive and negative peaks of V0. The first derivative of this function equals zero for two values of Hdc, corresponding to approximately equal positive and negative peaks of V0. So, having divided this function in 4 parts, comparison of these two peaks and experimental data are used to find the orientation and magnitude of the dc field on the MDL axis. It was also found that V0, corresponding to an Hdc applied at an angle v to the MDL equals the response of a dc field having a magnitude Hdc cos(v) and applied along the length of the line. So, by having another array of delay lines L'i identical but orthogonal to the previous MDL array Lj and crossing in 45° the conducting wires array Ci, we can keep the same number of crossing points. Hence, measurements from two delay lines Li and L'i corresponding to Pij, give a 2-d vector of the dc magnetic field applied at this point. The uniformity and the resolution of such a transducer can be improved by using the recently developed FeSiB wires after stress annealing. Future work is to be done to increase the frequency and the range of the measurable dc field.
Triaxial fiber optic magnetic field sensor for MRI applications
NASA Astrophysics Data System (ADS)
Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea
2016-05-01
In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.
Electric field vector measurements in a surface ionization wave discharge
NASA Astrophysics Data System (ADS)
Goldberg, Benjamin M.; Böhm, Patrick S.; Czarnetzki, Uwe; Adamovich, Igor V.; Lempert, Walter R.
2015-10-01
This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ~100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns-1. The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (~100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ~1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85-95 Td, consistent with dc breakdown field estimated from the Paschen curve for
A survey of long term interplanetary magnetic field variations
NASA Technical Reports Server (NTRS)
King, J. H.
1975-01-01
Interplanetary magnetic field data from 10 IMP, AIMP, and HEOS spacecraft were merged into a composite data set spanning 1963 to 1974. A consideration of the mutual consistency of the individual data sets reveals agreement typically to within 0.2 gamma. Composite data set analysis reveals: (1) whereas the yearly averaged magnitudes of all field vectors show virtually no solar cycle variation, the yearly averaged magnitudes of positive- and negative-polarity field vectors show separate solar cycle variations, consistent with variations in the average azimuthal angles of positive- and negative-polarity field vectors, (2) there is no heliolatitude dependence of long time average field magnitudes, (3) field vectors parallel to the earth-sun line are on the average 1 gamma less in magnitude than field vectors perpendicular to this line, and (4) the heliolatitude-dependent dominant polarity effect exhibits a complex sign reversal in the 1968 to 1971 period and a measure of symmetry in 1972 to 1974 not found in earlier data.
A survey of long-term interplanetary magnetic field variations
NASA Technical Reports Server (NTRS)
King, J. H.
1976-01-01
Interplanetary-magnetic-field data from the IMP-10, IMP-A, and Heos spacecraft have been merged into a composite data set spanning the period from 1963 to 1974. Consideration of the mutual consistency of the individual data sets reveals agrement typically to within 0.2 gamma. Analysis of the composite data set reveals the following: (1) although the yearly averaged magnitudes of all field vectors show virtually no solar-cycle variation, the yearly averaged magnitudes of positive- and negative-polarity field vectors show separate solar-cycle variations consistent with variations in the average azimuthal angles of positive- and negative-polarity field vectors; (2) there is no solar latitude dependence of long-time average field magnitudes; (3) field vectors parallel to the earth-sun line are on the average 1 gamma less in magnitude than field vectors perpendicular to this line; and (4) the solar latitude-dependent dominant polarity effect exhibits a complex sign reversal in the period from 1968 to 1971 and a measure of symmetry in 1972 through 1974 not found in earlier data.
Texture splats for 3D vector and scalar field visualization
Crawfis, R.A.; Max, N.
1993-04-06
Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.
Relic vector field and CMB large scale anomalies
Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk
2014-10-01
We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.
Bicrossed products induced by Poisson vector fields and their integrability
NASA Astrophysics Data System (ADS)
Djiba, Samson Apourewagne; Wade, Aïssa
2016-01-01
First we show that, associated to any Poisson vector field E on a Poisson manifold (M,π), there is a canonical Lie algebroid structure on the first jet bundle J1M which, depends only on the cohomology class of E. We then introduce the notion of a cosymplectic groupoid and we discuss the integrability of the first jet bundle into a cosymplectic groupoid. Finally, we give applications to Atiyah classes and L∞-algebras.
ENERGY INJECTION VIA FLUX EMERGENCE ON THE SUN DEPENDING ON THE GEOMETRIC SHAPE OF MAGNETIC FIELD
Magara, T.
2011-04-20
Flux emergence is a complicated process involving flow and magnetic field, which provides a way of injecting magnetic energy into the solar atmosphere. We show that energy injection via this complicated process is characterized by a physical quantity called the emergence velocity, which is determined by the spatial relationship between the flow velocity and magnetic field vectors. By using this quantity, we demonstrate that the geometric shape of magnetic field might play an important role in the energy injection via flux emergence.
NASA Astrophysics Data System (ADS)
Son, Vo Thanh; Anandakumar, S.; Kim, CheolGi; Jeong, Jong-Ruyl
2011-12-01
In this study, we have investigated real-time decoding feasibility of magnetic micro-barcodes in a microfluidic channel by using numerical analysis of magnetic field distribution of the micro-barcodes. The vector potential model based on a molecular current has been used to obtain magnetic stray field distribution of ferromagnetic bars which consisting of the micro-barcodes. It reveals that the stray field distribution of the micro-barcodes strongly depends on the geometries of the ferromagnetic bar. Interestingly enough, we have found that one can avoide the miniaturization process of a magnetic sensor device needed to increase the sensitivity by optimizing the geometries of micro-barcodes. We also estimate a magnetic sensor response depending on flying height and lateral misalignment of the micro-barcodes over the sensor position and found that control of the flying height is crucial factor to enhance the detection sensitivity and reproducibility of a magnetic sensor signal in the suspension assay technology.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Technical Reports Server (NTRS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T.
2011-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the 2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Technical Reports Server (NTRS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T.
2010-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed
Linear optical response of carbon nanotubes under axial magnetic field
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Chegel, Raad; Behzad, Somayeh
2010-04-01
We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.
Closed expressions for the magnetic field of toroidal multipole configurations
Sheffield, G.V.
1983-04-01
Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration.
NASA Astrophysics Data System (ADS)
Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei
2016-03-01
We investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansätze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixing effects almost completely saturate the mass shifts obtained in our sum rule analysis.
Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei
2016-03-15
In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixingmore » effects almost completely saturate the mass shifts obtained in our sum rule analysis.« less
Field errors in superconducting magnets
Barton, M. Q.
1982-01-01
The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.
Magnetic fields in irregular galaxies
NASA Astrophysics Data System (ADS)
Chyzy, Krzysztof T.
Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.
Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment
NASA Technical Reports Server (NTRS)
Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.
2005-01-01
Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.
Helical cosmological magnetic fields from extra-dimensions
NASA Astrophysics Data System (ADS)
Atmjeet, Kumar; Seshadri, T. R.; Subramanian, Kandaswamy
2015-05-01
We study the inflationary generation of helical cosmological magnetic fields in a higher-dimensional generalization of the electromagnetic theory. For this purpose, we also include a parity breaking piece to the electromagnetic action. The evolution of an extra-dimensional scale factor allows the breaking of conformal invariance of the effective electromagnetic action in 1 +3 dimensions required for such generation. Analytical solutions for the vector potential can be obtained in terms of Coulomb wave-functions for some special cases. We also present numerical solutions for the vector potential evolution in more general cases. In the presence of a higher-dimensional cosmological constant there exist solutions for the scale factors in which both normal and extra dimensional space either inflate or deflate simultaneously with the same rate. In such a scenario, with the number of extra dimensions D =4 , a scale invariant spectrum of helical magnetic field is obtained. The net helicity arises, as one helical mode comes to dominate over the other at the superhorizon scales. A magnetic field strength of the order of 10-9 G can be obtained for the inflationary scale H ≃1 0-3 Mpl . Weaker fields will be generated for lower scales of inflation. Magnetic fields generated in this model respects the bounds on magnetic fields by Planck and γ -ray observations (i.e., 10-16 G
NASA Astrophysics Data System (ADS)
Haag, D.; Auweter-Kurtz, M.; Fertig, M.
2004-10-01
In this paper, the plasma flow in applied field magneto-plasmadynamic (AFMPD) thrusters is described by conservation equations for heavy particles, electrons and the magnetic field for thermal and chemical non-equilibrium. To take into account the effects of the applied magnetic field a quasi-three dimensional approach with vanishing azimuthal derivatives is used for the velocity and magnetic field. The vector potential formulation has been chosen for the description of the applied magnetic field to handle the influences of solenoidal coils and induced azimuthal current density on the magnetic field. The numerical scheme is based on a two-dimensional, axisymmetric finite volume method on unstructured, adaptive meshes.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
NASA Astrophysics Data System (ADS)
Tsunakawa, Hideo; Takahashi, Futoshi; Shimizu, Hisayoshi; Shibuya, Hidetoshi; Matsushima, Masaki
2015-06-01
We have provided preliminary global maps of three components of the lunar magnetic anomaly on the surface applying the surface vector mapping (SVM) method. The data used in the present study consist of about 5 million observations of the lunar magnetic field at 10-45 km altitudes by Kaguya and Lunar Prospector. The lunar magnetic anomalies were mapped at 0.2° equi-distance points on the surface by the SVM method, showing the highest intensity of 718 nT in the Crisium antipodal region. Overall features on the SVM maps indicate that elongating magnetic anomalies are likely to be dominant on the Moon except for the young large basins with the impact demagnetization. Remarkable demagnetization features suggested by previous studies are also recognized at Hertzsprung and Kolorev craters on the farside. These features indicate that demagnetized areas extend to about 1-2 radii of the basins/craters. There are well-isolated central magnetic anomalies at four craters: Leibnitz, Aitken, Jules Verne, and Grimaldi craters. Their magnetic poles through the dipole source approximation suggest occurrence of the polar wander prior to 3.3-3.5 Ga. When compared with high-albedo markings at several magnetic anomalies such as the Reiner Gamma anomalies, three-dimensional structures of the magnetic field on/near the surface are well correlated with high-albedo areas. These results indicate that the global SVM maps are useful for the study of the lunar magnetic anomalies in comparison with various geological and geophysical data.
Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip
2012-07-01
The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high-spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF with its positive polarity closer to the negative penumbra formed, accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow ({<=}2 km s{sup -1}) was detected at the positive polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observations provide a clear intensity counterpart of the observed MMF in the photosphere, and strong evidence of the connection between the MMF and the penumbral filament as a serpentine field.
Comparing Magnetic Fields on Earth and Mars
This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...
Field quality aspects of CBA superconducting magnets
Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.
1983-01-01
A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.
Anisotropic Magnetism in Field-Structured Composites
Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene
1999-06-24
Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.
NASA Astrophysics Data System (ADS)
Masterton, S.; Gubbins, D.; Hemant, K.; Ivers, D.; Muller, D.; Winch, D.
2009-04-01
High resolution lithospheric magnetic field anomaly maps derived from satellite data now offer immense opportunities to interpret anomalies in terms of crustal magnetic properties such as susceptibility, magnetic crustal thickness, magnetisation type and intensity. We present a new method in which the magnetic field at satellite altitude is found by solving an inverse problem using our magnetisation estimates as data. This avoids the need for magnetisation estimates on a uniform grid and allows proper estimation of error propagation. A vector spherical harmonic formulation allows proper estimation of the annihilators, those parts of the magnetisation that produce internal and non-potential fields. These yield zero potential field at satellite altitude for perfect data (i.e. perfect and complete magnetisation estimates) but will contaminate the satellite field when the magnetisation estimates are inaccurate and incomplete. A major limitation in the interpretation of such anomalies is the inherent difficulty in separating and evaluating the relative contributions of induced and remanent magnetisation using standard inversion techniques. This is particularly relevant over oceanic regions, where lithospheric anomalies contain a significant remanence signature. Furthermore, it is difficult to separate the core field from the crustal contribution, particularly over continents, where magnetisation estimates are poorly constrained. We approach the scale-separation problem by forward modelling the satellite field using separate estimates of lithospheric magnetisation that do not depend on satellite data, with particular emphasis on the oceans. Induced and remanent contributions are determined separately. Remanent magnetisation is derived from a combination of magnetic crustal thickness, a remanence-age profile superimposed onto a geomagnetic polarity timescale, and magnetisation directions derived from the implementation of updated plate reconstruction models. Induced
Magnetic holes in the solar wind. [(interplanetary magnetic fields)
NASA Technical Reports Server (NTRS)
Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.
1976-01-01
An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.
Properties of mesons in a strong magnetic field
NASA Astrophysics Data System (ADS)
Zhang, Rui; Fu, Wei-jie; Liu, Yu-xin
2016-06-01
By extending the Φ -derivable approach in the Nambu-Jona-Lasinio model to a finite magnetic field we calculate the properties of pion, σ , and ρ mesons in a magnetic field at finite temperature not only in the quark-antiquark bound state scheme but also in the pion-pion scattering resonant state scenario. Our calculation as a result makes manifest that the masses of π 0 and σ meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing magnetic field strength, and the π ^{± } mass ascends suddenly at almost the same critical temperature. Meanwhile the ρ mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated clearly with increasing temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase transition and find that the pseudo-critical temperature of the chiral phase cross, T_c^{χ }, is always enhanced by the magnetic field. Moreover, our calculations indicate that the ρ mesons will get melted as the chiral symmetry has not yet been restored, but the σ meson does not disassociate even at very high temperature. Particularly, it is the first to show that there does not exist a vector meson condensate in the QCD vacuum in the pion-pion scattering scheme.
Swarm: ESA's Magnetic Field Mission
NASA Astrophysics Data System (ADS)
Haagmans, R.; Menard, Y.; Floberghagen, R.; Plank, G.; Drinkwater, M. R.
2010-12-01
Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth’s interior and near-Earth electro-magnetic environment. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission aims to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the development phase, will be addressed. The mission is scheduled for launch in 2012.
Rotating copper plasmoid in external magnetic field
Pandey, Pramod K.; Thareja, Raj K.
2013-02-15
Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.
Magnetic properties prediction of NdFeB magnets by using support vector regression
NASA Astrophysics Data System (ADS)
Cheng, Wende
2014-09-01
A novel model using support vector regression (SVR) combined with particle swarm optimization (PSO) was employed to construct mathematical model for prediction of the magnetic properties of the NdFeB magnets. The leave-one-out cross-validation (LOOCV) test results strongly supports that the generalization ability of SVR is high enough. Predicted results show that the mean absolute percentage error for magnetic remanence Br, coercivity Hcj and maximum magnetic energy product (BH)max are 0.53%, 3.90%, 1.73%, and the correlation coefficient (R2) is as high as 0.839, 0.967 and 0.940, respectively. This investigation suggests that the PSO-SVR is not only an effective and practical method to simulate the properties of NdFeB, but also a powerful tool to optimatize designing or controlling the experimental process.
Magnetic field experiment on the Freja Satellite
NASA Astrophysics Data System (ADS)
Freja Magnetic Field Experiment Team
1994-11-01
Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600×1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth, language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth's magnetic field taken at 128 vector samples s-1 and digitized to 16 bit, resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis ‘AC’ channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (˜40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (˜160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users
Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field
Mauel, M; Ryutov, D; Kesner, J
2003-12-02
In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.
Primordial magnetic field limits from cosmological data
Kahniashvili, Tina; Tevzadze, Alexander G.; Sethi, Shiv K.; Pandey, Kanhaiya; Ratra, Bharat
2010-10-15
We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.
Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops
NASA Astrophysics Data System (ADS)
Sun, Fei; He, Sailing
2015-09-01
A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.
NASA Astrophysics Data System (ADS)
Jahn, Kornél; Bokor, Nándor
2013-02-01
A technique using vector Slepian harmonics and vector Slepian multipole fields is presented for a general treatment of the inverse problem of high numerical aperture focusing. A prescribed intensity distribution or electric field distribution in the focal volume is approximated using numerical optimization and the corresponding illuminating field at the entrance pupil is constructed. Three examples from the recent literature are chosen to illustrate the method.
Dynamics of molecular superrotors in an external magnetic field
NASA Astrophysics Data System (ADS)
Korobenko, Aleksey; Milner, Valery
2015-08-01
We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.
Interaction Forces Between Multiple Bodies in a Magnetic Field
NASA Technical Reports Server (NTRS)
Joffe, Benjamin
1996-01-01
Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.
NASA Astrophysics Data System (ADS)
Vlaskou, Dialechti; Pradhan, Pallab; Bergemann, Christian; Klibanov, Alexander L.; Hensel, Karin; Schmitz, Georg; Plank, Christian; Mykhaylyk, Olga
2010-12-01
Based on the concept of magnetofection, we prepared lipid shell microbubbles loaded with highly positively charged iron oxide magnetic nanoparticles through electrostatic and matrix affinity interactions. These magnetic microbubbles showed strong ultrasound contrast. When the magnetic microbubbles were mixed with plasmid DNA encoding a reporter gene, gene delivery to HeLa cells was achieved only when ultrasound was applied. Gene transfer efficiency strongly depended on the application of a gradient magnetic field. Treatment of HeLa cells with the microbubbles and ultrasound resulted in strong concentration-dependent cytotoxic effects, whereas ultrasound alone, lipid microbubbles alone, magnetic nanoparticles or magnetic microbubbles alone did not significantly affect cell viability. These magnetic microbubbles could be used as magnetically targeted diagnostic agents for real-time ultrasound imaging or for cancer therapy, therapy of vascular thrombosis and gene therapy.
Interplanetary magnetic field data book
NASA Technical Reports Server (NTRS)
King, J. H.
1975-01-01
An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.
The Giotto magnetic field investigation
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.
1983-01-01
The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.
Length of magnetic field lines in turbulent plasmas.
Nunez, Manuel
2002-06-01
An estimation of the length of any magnetic field line in a two-dimensional periodic magnetohydrodynamic problem is provided. This is done by using some classical function theory results on the analytic extension of the vector potential. The essential parameter, the maximum of this extension, may be analyzed in the case of turbulent plasmas by admitting the Iroshnikov-Kraichnan statistics, establishing in this way a relation between the length of any magnetic field line and the energy dissipation scale. (c) 2002 American Institute of Physics. PMID:12779559
Magnetic field and electric current structure in the chromosphere
NASA Technical Reports Server (NTRS)
Dravins, D.
1974-01-01
The three-dimensional vector magnetic field structure in the chromosphere above an active region is deduced by using high-resolution H-alpha filtergrams together with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing field lines that outline the H-alpha structure. The height extent of the field is determined from vertical field-gradient observations around sunspots, from observed fibril heights, and from an assumption that the sources of the field are largely local. The computed electric currents (typically 10 mA/sq m) are found to flow in patterns not similar to observed features and not parallel to magnetic fields. Force structures correspond to observed solar features; the dynamics to be expected include: downward motion in bipolar areas in the lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions, and motion of arch filament systems.
Magsat - A new satellite to survey the earth's magnetic field
NASA Technical Reports Server (NTRS)
Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.
1980-01-01
The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.
Statistics of anisotropies in inflation with spectator vector fields
Thorsrud, Mikjel; Mota, David F.; Urban, Federico R. E-mail: furban@ulb.ac.be
2014-04-01
We study the statistics of the primordial power spectrum in models where massless gauge vectors are coupled to the inflaton, paying special attention to observational implications of having fundamental or effective horizons embedded in a bath of infrared fluctuations. As quantum infrared modes cross the horizon, they classicalize and build a background vector field. We find that the vector experiences a statistical precession phenomenon. Implications for primordial correlators and the interpretation thereof are considered. Firstly, we show how in general two, not only one, additional observables, a quadrupole amplitude and an intrinsic shape parameter, are necessary to fully describe the correction to the curvature power spectrum, and develop a unique parametrization for them. Secondly, we show that the observed anisotropic amplitude and the associated preferred direction depend on the volume of the patch being probed. We calculate non-zero priors for the expected deviations between detections based on microwave background data (which probes the entire Hubble patch) and large scale structure (which only probes a fraction of it)
Statistics of anisotropies in inflation with spectator vector fields
NASA Astrophysics Data System (ADS)
Thorsrud, Mikjel; Urban, Federico R.; Mota, David F.
2014-04-01
We study the statistics of the primordial power spectrum in models where massless gauge vectors are coupled to the inflaton, paying special attention to observational implications of having fundamental or effective horizons embedded in a bath of infrared fluctuations. As quantum infrared modes cross the horizon, they classicalize and build a background vector field. We find that the vector experiences a statistical precession phenomenon. Implications for primordial correlators and the interpretation thereof are considered. Firstly, we show how in general two, not only one, additional observables, a quadrupole amplitude and an intrinsic shape parameter, are necessary to fully describe the correction to the curvature power spectrum, and develop a unique parametrization for them. Secondly, we show that the observed anisotropic amplitude and the associated preferred direction depend on the volume of the patch being probed. We calculate non-zero priors for the expected deviations between detections based on microwave background data (which probes the entire Hubble patch) and large scale structure (which only probes a fraction of it).
Activity recognition using a mixture of vector fields.
Nascimento, Jacinto C; Figueiredo, Mário A T; Marques, Jorge S
2013-05-01
The analysis of moving objects in image sequences (video) has been one of the major themes in computer vision. In this paper, we focus on video-surveillance tasks; more specifically, we consider pedestrian trajectories and propose modeling them through a small set of motion/vector fields together with a space-varying switching mechanism. Despite the diversity of motion patterns that can occur in a given scene, we show that it is often possible to find a relatively small number of typical behaviors, and model each of these behaviors by a "simple" motion field. We increase the expressiveness of the formulation by allowing the trajectories to switch from one motion field to another, in a space-dependent manner. We present an expectation-maximization algorithm to learn all the parameters of the model, and apply it to trajectory classification tasks. Experiments with both synthetic and real data support the claims about the performance of the proposed approach. PMID:23193235
Auroral vector electric field and particle comparisons. II - Electrodynamics of an arc
NASA Technical Reports Server (NTRS)
Evans, D. S.; Maynard, N. C.; Troim, J.; Jacobsen, T.; Egeland, A.
1977-01-01
The paper reports the results of energetic auroral electron and vector electric field measurements taken near and above a discrete auroral form and discusses their electrodynamic implications. Height-integrated Hall and Pedersen conductivities are computed in a quantitative fashion along the rocket payload trajectory. These conductivities, together with the electric fields, are used to describe the local auroral electrojet current system and to demonstrate an inverse relationship between the local electric field intensity and the height-integrated Pedersen conductivity. An analysis is presented of the divergence of both the electric field and the horizontal current as an effort to infer space charge densities and magnetic-field-aligned electrical currents near an auroral arc.
Antonov, N V; Gulitskiy, N M
2015-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ(t-t')/k(⊥)(d-1+ξ), where k(⊥)=|k(⊥)| and k(⊥) is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")--the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990)]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order. PMID:25679703
Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields.
Cai, Meng-Qiang; Li, Ping-Ping; Feng, Dan; Pan, Yue; Qian, Sheng-Xia; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-04-01
We have presented and demonstrated a method for the fabrication of various complicated microstructures based on dynamically controlled patterned vector optical fields (PVOFs). We design and generate dynamic PVOFs by loading patterned holograms displayed on the spatial light modulator and moving traces of focuses with different patterns. We experimentally fabricate the various microstructures in z-cut lithium niobate plates. The method we present has some benefits such as no motion of the fabricated samples and high efficiency due to its parallel feature. Moreover, our approach is able to fabricate three-dimensional microstructures. PMID:27192265
Cyclicity of a fake saddle inside the quadratic vector fields
NASA Astrophysics Data System (ADS)
De Maesschalck, P.; Rebollo-Perdomo, S.; Torregrosa, J.
2015-01-01
This paper concerns the study of small-amplitude limit cycles that appear in the phase portrait near an unfolded fake saddle singularity. This degenerate singularity is also known as an impassable grain. The canonical form of the unperturbed vector field is like a degenerate flow box. Near the singularity, the phase portrait consists of parallel fibers, all but one of which have no singular points, and at the singular fiber, there is one node. We demonstrate different techniques in order to show that the cyclicity is bigger than or equal to two when the canonical form is quadratic.
Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
NASA Astrophysics Data System (ADS)
Cantarella, Jason; DeTurck, Dennis; Gluck, Herman; Teytel, Mikhail
2000-08-01
The helicity of a smooth vector field defined on a domain in three-space is the standard measure of the extent to which the field lines wrap and coil around one another. It plays important roles in fluid mechanics, magnetohydrodynamics, and plasma physics. The isoperimetric problem in this setting is to maximize helicity among all divergence-free vector fields of given energy, defined on and tangent to the boundary of all domains of given volume in three-space. The Biot-Savart operator starts with a divergence-free vector field defined on and tangent to the boundary of a domain in three-space, regards it as a distribution of electric current, and computes its magnetic field. Restricting the magnetic field to the given domain, we modify it by subtracting a gradient vector field so as to keep it divergence-free while making it tangent to the boundary of the domain. The resulting operator, when extended to the L2 completion of this family of vector fields, is compact and self-adjoint, and thus has a largest eigenvalue, whose corresponding eigenfields are smooth by elliptic regularity. The isoperimetric problem for this modified Biot-Savart operator is to maximize its largest eigenvalue among all domains of given volume in three-space. The curl operator, when restricted to the image of the modified Biot-Savart operator, is its inverse, and the isoperimetric problem for this restriction of the curl is to minimize its smallest positive eigenvalue among all domains of given volume in three-space. These three isoperimetric problems are equivalent to one another. In this paper, we will derive the first variation formulas appropriate to these problems, and use them to constrain the nature of any possible solution. For example, suppose that the vector field V, defined on the compact, smoothly bounded domain Ω, maximizes helicity among all divergence-free vector fields of given nonzero energy, defined on and tangent to the boundary of all such domains of given volume. We will
Weighted averages of magnetization from magnetic field measurements: A fast interpretation tool
NASA Astrophysics Data System (ADS)
Fedi, Maurizio
2003-08-01
Magnetic anomalies may be interpreted in terms of weighted averages of magnetization (WAM) by a simple transformation. The WAM transformation consists of dividing at each measurement point the experimental magnetic field by a normalizing field, computed from a source volume with a homogeneous unit-magnetization. The transformation yields a straightforward link among source and field position vectors. A main WAM outcome is that sources at different depths appear well discriminated. Due to the symmetry of the problem, the higher the considered field altitude, the deeper the sources outlined by the transformation. This is shown for single and multi-source synthetic cases as well as for real data. We analyze the real case of Mt. Vulture volcano (Southern Italy), where the related anomaly strongly interferes with that from deep intrusive sources. The volcanic edifice is well identified. The deep source is estimated at about 9 km depth, in agreement with other results.
Single-point inversion of the coronal magnetic field
Plowman, Joseph
2014-09-01
The Fe XIII 10747 and 10798 Å lines observed in the solar corona are sensitive to the coronal magnetic field in such a way that, in principle, the full vector field at a point on the line of sight can be inferred from their combined polarization signals. This paper presents analytical inversion formulae for the field parameters and analyzes the uncertainty of magnetic field measurements made from such observations, assuming emission dominated by a single region along the line of sight. We consider the case of the current Coronal Multi-channel Polarimeter (CoMP) instrument as well as the future Coronal Solar Magnetism Observatory (COSMO) and Advanced Technology Solar Telescope (ATST) instruments. Uncertainties are estimated with a direct analytic inverse and with a Markov Chain Monte Carlo algorithm. We find that (in effect) two components of the vector field can be recovered with CoMP, and well recovered with COSMO or ATST, but that the third component can only be recovered when the solar magnetic field is strong and optimally oriented.
Suppression of magnetic relaxation by a transverse alternating magnetic field
Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.
2007-07-15
The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.
Magnetic field sources and their threat to magnetic media
NASA Technical Reports Server (NTRS)
Jewell, Steve
1993-01-01
Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.
NASA Astrophysics Data System (ADS)
MacLeod, C. J.; Tominaga, M.; Tivey, M.; Morris, A.; Shillington, D. J.
2010-12-01
Marine magnetic anomalies are a powerful tool in detecting not only geomagnetic polarity reversals but also lithological boundaries, topographic contrasts, and alteration fronts in the oceanic lithosphere. Recent progress in marine magnetic studies shows that the lower oceanic crust is an integral part of the magnetic source layer and a complete understanding of oceanic crustal magnetization must incorporate knowledge of this lower crust as well as the extrusive upper crust. To fully investigate the possible origins of magnetic anomalies in fast-spreading lower crust, we analyzed high-resolution, near-bottom, 3-component magnetic data acquired at the Hess Deep “tectonic window” by RRS James Cook cruise JC-21. Hess Deep is located at the western tip of the propagation rift of the Cocos-Nazca plate boundary near the East Pacific Rise (2° 15’N, 101° 30’W). Remotely Operated Vehicle (ROV) ISIS collected high-resolution bathymetry and magnetic data as well as seafloor samples to determine the in situ lithology of the Hess Deep crust. Magnetic study is focused on a south-facing slope with the total area of 3 x 1.6 km2. Rock samples indicate that the western part of the slope is primarily composed of gabbros while the eastern part is mainly dikes, although the location of the lithological boundary is ambiguous from the sampling and observations alone. A total of 10 magnetic profiles along the slope were collected by a magnetometer mounted on ISIS. The raw magnetic data were corrected for the ROV motion and external field variations, and then merged with navigation data. We used a geometrical transformation to project the magnetic data into a rotated horizotal scarp face and then calculated the source magnetization distribution, 3D indices and strikes of possible magnetic boundaries using both the total-field Fourier-transform inversion approach and a modified differential vector magnetic analysis respectively. A strong magnetization contrast is found between the
Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro.
Mykhaylyk, Olga; Sanchez-Antequera, Yolanda; Vlaskou, Dialechti; Cerda, Maria Belen; Bokharaei, Mehrdad; Hammerschmid, Edelburga; Anton, Martina; Plank, Christian
2015-01-01
This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type. PMID:25319646
NASA Astrophysics Data System (ADS)
Du, J.; Chen, C.; Lesur, V.; Wang, L.
2014-12-01
General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees and orders, are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the higher-order partial derivatives of the magnetic field in local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (version 0.0) and the main magnetic field model of IGRF11. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the potential field.
Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization
Doughty, Frank C.; Spencer, John E.
2000-12-19
In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.
Determination of the Earth's lithospheric magnetic field with satellite data
NASA Astrophysics Data System (ADS)
Kotsiaros, Stavros; Olsen, Nils; Finlay, Christopher
2016-07-01
Satellites such as Magsat, Ørsted, CHAMP and Swarm provide the most effective means of determining on a global scale the Earth's lithospheric magnetic field. In particular, the Swarm three-satellite constellation mission aims at capturing the smallest-scale features of the lithospheric field that have ever been captured from space. To achieve that, explicit advantage of the constellation aspect of Swarm has to be taken by using gradient estimates. We derive lithospheric field models using more than one year of magnetic gradient data, which are approximated by first differences of field vector data between the two lower Swarm satellites and along each satellite orbit, respectively. We find that gradient data are less sensitive to large-scale external field fluctuations. Moreover, gradient data appear to be a very efficient way of increasing the resolution of lithospheric field models and thus providing an initial validation of the gradient concept underlying the Swarm mission.
Conversion of magnetic field energy into kinetic energy in the solar wind
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1972-01-01
The outflow of the solar magnetic field energy (the radial component of the Poynting vector) per steradian is inversely proportional to the solar wind velocity. It is a decreasing function of the heliocentric distance. When the magnetic field effect is included in the one-fluid model of the solar wind, the transformation of magnetic field energy into kinetic energy during the expansion process increases the solar wind velocity at 1 AU by 17 percent.
Chiral plasmons without magnetic field.
Song, Justin C W; Rudner, Mark S
2016-04-26
Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090
Chiral plasmons without magnetic field
NASA Astrophysics Data System (ADS)
Song, Justin C. W.
2016-04-01
Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.
Magnetic Fields in Irregular Galaxies: NGC 4214
NASA Astrophysics Data System (ADS)
Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.
2006-12-01
Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.
Analysis on Sound Field Recorded with Vector Sensors
NASA Astrophysics Data System (ADS)
Li, Fenghua; Sun, Mei; Zhang, Renhe
2010-09-01
From data collected with vector sensors at several sites, the transmission losses of particle velocities and pressures are examined. In particular, the components of the particle velocity fields both normal and tangential to the horizontal plane are studied. Theoretical and experimental results show that both vertical and horizontal particle velocities can be regarded as the summation of normal modes. The lower modes dominate for the horizontal particle velocity, while higher modes are relatively important for the vertical particle velocity. The intensity of the vertical velocity decreases faster than that of the horizontal particle velocity. The experimental results also show that the same modes of the horizontal and vertical particle velocity have similar losses, but different amplitudes and phases. Theoretical analyses indicate that the difference of the mode amplitudes between horizontal particle velocity and vertical particle velocity depends on the eigenvalue and receiver depths, which can provide information on the estimation of bottom parameters. A geo-inversion scheme by the matched-field processing with a vector array is developed. The theoretical and experimental results indicate that the proposed inversion method can decrease the uncertainty of inversion in comparison with that by hydrophone arrays.
Report of the panel on geopotential fields: Magnetic field, section 9
NASA Technical Reports Server (NTRS)
Achache, Jose J.; Backus, George E.; Benton, Edward R.; Harrison, Christopher G. A.; Langel, Robert A.
1991-01-01
The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions.
Modelling of solar magnetic field and prominence structures
NASA Technical Reports Server (NTRS)
Wu, Shi Tsan
1988-01-01
Using plasma theory, the interaction is studied between high frequency and magnetohydrodynamic (MHD) waves from which a set of coupling equations resulted. On the basis of this formalism, the modulation instabilities of an electromagnetic soliton in a current sheet are examined, and it is shown that there is a resistive instability at the onset of the magnetic field reconnection. This mechanism could be used to explain the onset of solar flares and prominences. To improve the resolution of vector magnetic fields at the sun's surface, state-of-the-art optics is examined to improve the design and fabrication of a new spaceborne solar vector magnetograph as part of the SAMEX (Solar Active Measurements Experiment) program.
Taub-NUT dynamics with a magnetic field
NASA Astrophysics Data System (ADS)
Jante, Rogelio; Schroers, Bernd J.
2016-06-01
We study classical and quantum dynamics on the Euclidean Taub-NUT geometry coupled to an abelian gauge field with self-dual curvature and show that, even though Taub-NUT has neither bounded orbits nor quantum bound states, the magnetic binding via the gauge field produces both. The conserved Runge-Lenz vector of Taub-NUT dynamics survives, in a modified form, in the gauged model and allows for an essentially algebraic computation of classical trajectories and energies of quantum bound states. We also compute scattering cross sections and find a surprising electric-magnetic duality. Finally, we exhibit the dynamical symmetry behind the conserved Runge-Lenz and angular momentum vectors in terms of a twistorial formulation of phase space.
Near-Field Magnetic Dipole Moment Analysis
NASA Technical Reports Server (NTRS)
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1994-01-01
The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.
Petrie, G. J. D.
2012-11-01
We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.
View-dependent streamlines for 3D vector fields.
Marchesin, Stéphane; Chen, Cheng-Kai; Ho, Chris; Ma, Kwan-Liu
2010-01-01
This paper introduces a new streamline placement and selection algorithm for 3D vector fields. Instead of considering the problem as a simple feature search in data space, we base our work on the observation that most streamline fields generate a lot of self-occlusion which prevents proper visualization. In order to avoid this issue, we approach the problem in a view-dependent fashion and dynamically determine a set of streamlines which contributes to data understanding without cluttering the view. Since our technique couples flow characteristic criteria and view-dependent streamline selection we are able achieve the best of both worlds: relevant flow description and intelligible, uncluttered pictures. We detail an efficient GPU implementation of our algorithm, show comprehensive visual results on multiple datasets and compare our method with existing flow depiction techniques. Our results show that our technique greatly improves the readability of streamline visualizations on different datasets without requiring user intervention. PMID:20975200
Multiresolution and Explicit Methods for Vector Field Analysis and Visualization
NASA Technical Reports Server (NTRS)
Nielson, Gregory M.
1997-01-01
This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.
Magnetic field effects on microwave absorbing materials
NASA Technical Reports Server (NTRS)
Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.
1991-01-01
The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.
Deformation of Water by a Magnetic Field
ERIC Educational Resources Information Center
Chen, Zijun; Dahlberg, E. Dan
2011-01-01
After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…
Exploring Magnetic Fields with a Compass
ERIC Educational Resources Information Center
Lunk, Brandon; Beichner, Robert
2011-01-01
A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…
Magnetic field effect on charged Brownian swimmers
NASA Astrophysics Data System (ADS)
Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.
2016-01-01
We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.
Magnetic field calculation and measurement of active magnetic bearings
NASA Astrophysics Data System (ADS)
Ding, Guoping; Zhou, Zude; Hu, Yefa
2006-11-01
Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.
Magnetic Trapping of Bacteria at Low Magnetic Fields
NASA Astrophysics Data System (ADS)
Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.
2016-06-01
A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.
Magnetic Trapping of Bacteria at Low Magnetic Fields.
Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V
2016-01-01
A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771
Magnetic Trapping of Bacteria at Low Magnetic Fields
Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.
2016-01-01
A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771
Tangled magnetic fields and CMBR signal from reionization epoch
Gopal, Rajesh; Sethi, Shiv K.
2005-11-15
We compute the secondary cosmic microwave background radiation (CMBR) anisotropy signal from the reionization of the Universe in the presence of tangled magnetic fields. We consider the tangled-magnetic-field-induced scalar, vector, and tensor modes for our analysis. The most interesting signal for l < or approx. 100 arises from tensor perturbations. In particular, we show that the enhancement observed by Wilkinson microwave anisotropy probe (WMAP) in the TE cross-correlation signal for l < or approx. 10 could be explained by tensor TE cross correlation from tangled magnetic fields generated during the inflationary epoch for magnetic field strength B{sub 0}{approx_equal}4.5x10{sup -9} G and magnetic field power spectrum spectral index n{approx_equal}-2.9. Alternatively, a mixture of tensor mode signal with primordial scalar modes gives weaker bounds on the value of the optical depth to the reionization surface, {tau}{sub reion}: {tau}{sub reion}=0.11{+-}0.02. This analysis can also be translated to a limit on magnetic field strength of {approx_equal}5x10{sup -9} G for wave numbers < or approx. 0.05 Mpc{sup -1}.
Magnetic Pressure as a Scalar Representation of Field Effects in Magnetic Suspensions.
Zborowski, Maciej; Moore, Lee R; Williams, P Stephen; Chalmers, Jeffrey J
2010-01-01
Magnetic microsphere suspensions undergo complex motion when exposed to finite sources of the magnetic field, such as small permanent magnets. The computational complexity is compounded by a difficulty in choosing a suitable choice of visualization tools because this often requires using the magnetic force vector field in three dimensions. Here we present a potentially simpler approach by using the magnetic pressure. It is a scalar quantity, pm = B (2)/2μ 0, and its usefulness has been already demonstrated in applications to magnetohydrodynamics and ferrohydrodynamics (where B is the applied field and μ 0 = 4π×10(-7) T.m/A). The equilibrium distribution of the magnetic bead plug in aqueous suspension is calculated as an isosurface of the magnitude of the magnetic pressure pm = const, in the field of two permanent magnet blocks calculated from closed formulas. The geometry was adapted from a publication on the magnetic bead suspensions in microsystems and the predicted bead plug distribution is shown to agree remarkably well with the experiment. PMID:25382882
Analysis of magnetic field levels at KSC
NASA Technical Reports Server (NTRS)
Christodoulou, Christos G.
1994-01-01
The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.
NASA Astrophysics Data System (ADS)
N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.
A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.
Magnetic field concentrator for probing optical magnetic metamaterials.
Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz
2010-12-01
Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials. PMID:21164936
Frustrated magnets in high magnetic fields-selected examples.
Wosnitza, J; Zvyagin, S A; Zherlitsyn, S
2016-07-01
An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed. PMID:27310818
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
NASA Astrophysics Data System (ADS)
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-03-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.
Abnormal magnetic field effects on electrogenerated chemiluminescence.
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-01-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-01-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580
On the alignment of plasma anisotropies and the magnetic field direction in the solar wind
NASA Technical Reports Server (NTRS)
Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Ness, N. F.
1977-01-01
One year's Imp 6 solar wind plasma and magnetic field data are examined to determine whether anisotropies in particle velocity distributions are aligned with the measured interplanetary magnetic field vector. Alignment of components in the analysis plane was generally found to be excellent whenever plasma parameter magnitudes were larger than determination uncertainties, although some spread exists (typical rms approximately equal to 10 deg). By assuming cylindrical symmetry about the simultaneously measured magnetic field vector during the 1-year interval under study, three-dimensional values of selected solar wind plasma thermal parameters were constructed from the two-dimensional plasma measurements, and the statistical properties of their distributions have been tabulated.
Bipolar pulse field for magnetic refrigeration
Lubell, M.S.
1994-10-25
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.
Bipolar pulse field for magnetic refrigeration
Lubell, Martin S.
1994-01-01
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.
Application peculiarities of magnetic materials for protection from magnetic fields
NASA Astrophysics Data System (ADS)
Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.
2016-02-01
In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.
A New Method for Coronal Magnetic Field Reconstruction
NASA Astrophysics Data System (ADS)
Yi, Sibaek; Choe, Gwangson; Lim, Daye
2015-08-01
We present a new, simple, variational method for reconstruction of coronal force-free magnetic fields based on vector magnetogram data. Our method employs vector potentials for magnetic field description in order to ensure the divergence-free condition. As boundary conditions, it only requires the normal components of magnetic field and current density so that the boundary conditions are not over-specified as in many other methods. The boundary normal current distribution is initially fixed once and for all and does not need continual adjustment as in stress-and-relax type methods. We have tested the computational code based on our new method in problems with known solutions and those with actual photospheric data. When solutions are fully given at all boundaries, the accuracy of our method is almost comparable to best performing methods in the market. When magnetic field data are given only at the photospheric boundary, our method excels other methods in most “figures of merit” devised by Schrijver et al. (2006). Furthermore the residual force in the solution is at least an order of magnitude smaller than that of any other method. It can also accommodate the source-surface boundary condition at the top boundary. Our method is expected to contribute to the real time monitoring of the sun required for future space weather forecasts.
Field bioefficacy of deltamethrin residual spraying against dengue vectors.
Rozilawati, H; Lee, H L; Mohd Masri, S; Mohd Noor, I; Rosman, S
2005-12-01
Field bioefficacy of residual-sprayed deltamethrin against Aedes vectors was evaluated in an urban residential area in Kuala Lumpur. The trial area consisted of single storey wood-brick houses and a block of flat. The houses were treated with outdoor residual spraying while the flat was used as an untreated control. Initial pre-survey using ovitrap surveillance indicated high Aedes population in the area. Deltamethrin WG was sprayed at a dosage of 25mg/m2 using a compression sprayer. The effectiveness of deltamethrin was determined by wall bioassay and ovitrap surveillance. The residual activity of 25mg/m2 deltamethrin was still effective for 6 weeks after treatment, based on biweekly bioassay results. Bioassay also indicated that both Aedes aegypti and Aedes albopictus were more susceptible on the wooden surfaces than on brick. Aedes aegypti was more susceptible than Ae. albopictus against deltamethrin. Residual spraying of deltamethrin was not very effective against Aedes in this study since the Aedes population in the study area did not reduce as indicated by the total number of larvae collected using the ovitrap (Wilcoxon Sign Test, p> 0.05). Further studies are required to improve the effectiveness of residual spraying against Aedes vectors. PMID:16883280
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1991-01-01
The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.
Construction of Solar-Wind-Like Magnetic Fields
NASA Technical Reports Server (NTRS)
Roberts, Dana Aaron
2012-01-01
Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.
Construction of solar-wind-like magnetic fields.
Roberts, D Aaron
2012-12-01
Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfvén waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This Letter provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations; the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the "random" character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes ("discontinuities"), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles. PMID:23368180
Derivative self-interactions for a massive vector field
NASA Astrophysics Data System (ADS)
Beltrán Jiménez, Jose; Heisenberg, Lavinia
2016-06-01
In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi-Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley-Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.
Anomalous variations of lithosphere magnetic field before several earthquakes
NASA Astrophysics Data System (ADS)
Ni, Z.; Chen, B.
2015-12-01
Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.
Semiconductor Crystal Growth in Static and Rotating Magnetic fields
NASA Technical Reports Server (NTRS)
Volz, Martin
2004-01-01
Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a
Anisotropic Turbulent Advection of a Passive Vector Field: Effects of the Finite Correlation Time
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2016-02-01
The turbulent passive advection under the environment (velocity) field with finite correlation time is studied. Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is investigated by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and prescribed pair correlation function. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to nontrivial fixed points of the RG equations and depend on the relation between the exponents in the energy energy spectrum ɛ ∝ k⊥1-ξ and the dispersion law ω ∝ k⊥2-η . The corresponding anomalous exponents are associated with the critical dimensions of tensor composite operators built solely of the passive vector field itself. In contrast to the well-known isotropic Kraichnan model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. Due to the presence of the anisotropy in the model, all multiloop diagrams are equal to zero, thus this result is exact.
DC-based magnetic field controller
Kotter, D.K.; Rankin, R.A.; Morgan, J.P.
1994-05-31
A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.
DC-based magnetic field controller
Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.
1994-01-01
A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.
Static uniform magnetic fields and amoebae
Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.
1997-03-01
Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.
Black holes with a single Killing vector field: black resonators
NASA Astrophysics Data System (ADS)
Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson
2015-12-01
We numerically construct asymptotically anti-de Sitter (AdS) black holes in four dimensions that contain only a single Killing vector field. These solutions, which we coin black resonators, link the superradiant instability of Kerr-AdS to the nonlinear weakly turbulent instability of AdS by connecting the onset of the superradiance instability to smooth, horizonless geometries called geons. Furthermore, they demonstrate non-uniqueness of Kerr-AdS by sharing asymptotic charges. Where black resonators coexist with Kerr-AdS, we find that the black resonators have higher entropy. Nevertheless, we show that black resonators are unstable and comment on the implications for the endpoint of the superradiant instability.
Conducting object in the presence of a variable magnetic field
NASA Astrophysics Data System (ADS)
Savchenko, A. O.; Savchenko, O. Ya.
2015-07-01
A numerical method is proposed to determine vector potential and gradient of scalar potential inside a conductor in the presence of a magnetic field that exhibits harmonic variations with time. The problem is reduced to the solution of the Helmholtz equation in a conducting object under the condition that the normal component of the right-hand side of equation on the conducting surface is zero. An iterative procedure is proposed for the solution of the original problem. First, the surface charge distribution that satisfies the boundary condition for the vector potential on the conducting surface is found, and, then, the next approximation for the vector potential is obtained with the aid of the Poisson equation. The method is illustrated using numerical experiments.
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields
NASA Astrophysics Data System (ADS)
Soto-Aquino, D.; Rinaldi, C.
2015-11-01
The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.
Artificial magnetic field induced by an evanescent wave
Mochol, Małgorzata; Sacha, Krzysztof
2015-01-01
Cold atomic gases are perfect laboratories for realization of quantum simulators. In order to simulate solid state systems in the presence of magnetic fields special effort has to be made because atoms are charge neutral. There are different methods for realization of artificial magnetic fields, that is the creation of specific conditions so that the motion of neutral particles mimics the dynamics of charged particles in an effective magnetic field. Here, we consider adiabatic motion of atoms in the presence of an evanescent wave. Theoretical description of the adiabatic motion involves artificial vector and scalar potentials related to the Berry phases. Due to the large gradient of the evanescent field amplitude, the potentials can be strong enough to induce measurable effects in cold atomic gases. We show that the resulting artificial magnetic field is able to induce vortices in a Bose-Einstein condensate trapped close to a surface of a prism where the evanescent wave is created. We also analyze motion of an atomic cloud released from a magneto-optical trap that falls down on the surface of the prism. The artificial magnetic field is able to reflect falling atoms that can be observed experimentally. PMID:25567430
Artificial magnetic field induced by an evanescent wave.
Mochol, Małgorzata; Sacha, Krzysztof
2015-01-01
Cold atomic gases are perfect laboratories for realization of quantum simulators. In order to simulate solid state systems in the presence of magnetic fields special effort has to be made because atoms are charge neutral. There are different methods for realization of artificial magnetic fields, that is the creation of specific conditions so that the motion of neutral particles mimics the dynamics of charged particles in an effective magnetic field. Here, we consider adiabatic motion of atoms in the presence of an evanescent wave. Theoretical description of the adiabatic motion involves artificial vector and scalar potentials related to the Berry phases. Due to the large gradient of the evanescent field amplitude, the potentials can be strong enough to induce measurable effects in cold atomic gases. We show that the resulting artificial magnetic field is able to induce vortices in a Bose-Einstein condensate trapped close to a surface of a prism where the evanescent wave is created. We also analyze motion of an atomic cloud released from a magneto-optical trap that falls down on the surface of the prism. The artificial magnetic field is able to reflect falling atoms that can be observed experimentally. PMID:25567430
Minimizing magnetic fields for precision experiments
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-21
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Operating a magnetic nozzle helicon thruster with strong magnetic field
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira
2016-03-01
A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.
Bats Respond to Very Weak Magnetic Fields
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944
Ferroelectric Cathodes in Transverse Magnetic Fields
Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch
2002-07-29
Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.
Magnetic fields of the spinning bodies
NASA Astrophysics Data System (ADS)
Trenčevski, Kostadin
2015-03-01
In this paper we show that the Thomas precession of the spinning bodies, which is in general case constrained in all rigid bodies, induces magnetic field of the spinning bodies. This is one of the main reasons for the magnetic field of the spinning bodies. The general formula for this magnetic field is deduced and if it is applied to the Earth, its magnetic field changes between 0.295 G at the equator and 0.59 G at the poles, assuming that the density inside the Earth is uniform.
Flow Transitions in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
1996-01-01
Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.
Rydberg EIT in High Magnetic Field
NASA Astrophysics Data System (ADS)
Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg
2016-05-01
We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.
Free oscillations of magnetic fluid in strong magnetic field
NASA Astrophysics Data System (ADS)
Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.
2016-05-01
The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.
Nonhelical inverse transfer of a decaying turbulent magnetic field.
Brandenburg, Axel; Kahniashvili, Tina; Tevzadze, Alexander G
2015-02-20
In the presence of magnetic helicity, inverse transfer from small to large scales is well known in magnetohydrodynamic (MHD) turbulence and has applications in astrophysics, cosmology, and fusion plasmas. Using high resolution direct numerical simulations of magnetically dominated self-similarly decaying MHD turbulence, we report a similar inverse transfer even in the absence of magnetic helicity. We compute for the first time spectral energy transfer rates to show that this inverse transfer is about half as strong as with helicity, but in both cases the magnetic gain at large scales results from velocity at similar scales interacting with smaller-scale magnetic fields. This suggests that both inverse transfers are a consequence of universal mechanisms for magnetically dominated turbulence. Possible explanations include inverse cascading of the mean squared vector potential associated with local near two dimensionality and the shallower k^{2} subinertial range spectrum of kinetic energy forcing the magnetic field with a k^{4} subinertial range to attain larger-scale coherence. The inertial range shows a clear k^{-2} spectrum and is the first example of fully isotropic magnetically dominated MHD turbulence exhibiting weak turbulence scaling. PMID:25763960
Reversible "triple-Q" elastic field structures in a chiral magnet.
Hu, Yangfan; Wang, Biao
2016-01-01
The analytical solution of the periodic elastic fields in chiral magnets caused by presence of periodically distributed eigenstrains is obtained. For the skyrmion phase, both the periodic displacement field and the stress field are composed of three "triple-Q" structures with different wave numbers. The periodic displacement field, obtained by combining the three "triple-Q" displacement structures, is found to have the same lattice vectors with the magnetic skyrmion lattice. We find that for increasing external magnetic field, one type of "triple-Q" displacement structure and stress structure undergo a "configurational reversal", where the initial and the final field configuration share similar pattern but with opposite direction of all the field vectors. The solution obtained is of fundamental significance for understanding the emergent mechanical properties of skyrmions in chiral magnets. PMID:27457629
Reversible “triple-Q” elastic field structures in a chiral magnet
Hu, Yangfan; Wang, Biao
2016-01-01
The analytical solution of the periodic elastic fields in chiral magnets caused by presence of periodically distributed eigenstrains is obtained. For the skyrmion phase, both the periodic displacement field and the stress field are composed of three “triple-Q” structures with different wave numbers. The periodic displacement field, obtained by combining the three “triple-Q” displacement structures, is found to have the same lattice vectors with the magnetic skyrmion lattice. We find that for increasing external magnetic field, one type of “triple-Q” displacement structure and stress structure undergo a “configurational reversal”, where the initial and the final field configuration share similar pattern but with opposite direction of all the field vectors. The solution obtained is of fundamental significance for understanding the emergent mechanical properties of skyrmions in chiral magnets. PMID:27457629
Reducing Field Distortion in Magnetic Resonance Imaging
NASA Technical Reports Server (NTRS)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2010-01-01
A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T
Magnetic field evolution in interacting galaxies
NASA Astrophysics Data System (ADS)
Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.
2011-09-01
Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to
Cosmic Magnetic Fields (IAU S259)
NASA Astrophysics Data System (ADS)
Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.
2009-06-01
Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.
Development of marine magnetic vector measurement system using AUV and deep-towed vehicle
NASA Astrophysics Data System (ADS)
Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.; Nishimura, K.; Baba, H.
2012-04-01
Marine magnetic survey is one of useful methods in order to investigate the nature of the oceanic crust. Most of the data are, however, intensity of the geomagnetic field without its direction. Therefore we cannot properly apply a physical formula describing the relation between magnetic field and magnetization to analyses of the data. With this problem, Isezaki (1986) developed a shipboard three-component magnetometer which measures the geomagnetic vector at the sea. On the other hand, geophysical surveys near the seafloor have been more and more necessary in order to show the details of the oceanic crust. For instance, development of seabed resources like hydrothermal deposits needs higher resolution surveys compared with conventional surveys at the sea for accurate estimation of abundance of the resources. From these viewpoints, we have been developing a measurement system of the deep-sea geomagnetic vector using AUV and deep-towed vehicle. The measurement system consists of two 3-axis flux-gate magnetometers, an Overhauser magnetometer, an optical fiber gyro, a main unit (control, communication, recording), and an onboard unit. These devices except for the onboard unit are installed in pressure cases (depth limit: 6000m). Thus this measurement system can measure three components and intensity of the geomagnetic field in the deep-sea. In 2009, the first test of the measurement system was carried out in the Kumano Basin using AUV Urashima and towing vehicle Yokosuka Deep-Tow during the R/V Yokosuka YK09-09 cruise. In this test, we sank a small magnetic target to the seafloor, and examined how the system worked. As a result, we successfully detected magnetic anomaly of the target to confirm the expected performance of that in the sea. In 2010, the measurement system was tested in the Bayonnaise Knoll area both using a titanium towing frame during the R/V Bosei-maru cruise and using AUV Urashima during the R/V Yokosuka YK10-17 cruise. The purpose of these tests was
NASA Astrophysics Data System (ADS)
Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.
2011-12-01
Bayonnaise Knoll is a submarine caldera with an outer rim of 2.5-3 km and a floor of 840-920 m, which is located in the Izu-Ogasawara arc. A large hydrothermal deposit, Hakurei deposit, lies in the southeast part of the caldera. In the R/V Bosei-maru cruise, we observed three components of magnetic anomalies at depths of 400-570 m along SE-NW and WE tracks across the caldera. In the R/V Yokosuka YK10-17 cruise, we observed three components and total intensity of magnetic anomalies at altitudes of 60-100 m around the Hakurei deposit and at depth of 500 m above the caldera. The analysis of these data is now energetically pushed forward. A 3D gridded data set of the vector magnetic anomaly in the latter cruise was made by solving the Laplace's equation in the areas where observation data were not available, which is the unique procedure for analysis of the vector anomalies. Several magnetization solutions have been so far obtained by successive approximation and inversion methods. We will here present the measurement of the geomagnetic field and analysis of magnetization structure in Bayonnaise Knoll caldera. Note that this study has been supported by the Ministry of Education, Culture, Sports, Science & Technology (MEXT).
The AGN origin of cluster magnetic fields
NASA Astrophysics Data System (ADS)
Xu, Hao
The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high
Three Dimensional Probability Distributions of the Interplanetary Magnetic Field
NASA Astrophysics Data System (ADS)
Podesta, J. J.
2014-12-01
Empirical probability density functions (PDFs) of the interplanetary magnetic field (IMF) have been derived from spacecraft data since the early years of the space age. A survey of the literature shows that past studies have investigated the separate Cartesian components of the magnetic field, the vector magnitude, and the direction of the IMF by means of one-dimensional or two-dimensional PDFs. But, to my knowledge, there exist no studies which investigate the three dimensional nature of the IMF by means of three dimensional PDFs, either in (Bx,By,Bz)(B_x,B_y,B_z)-coordinates or (BR,BT,BN)(B_R,B_T,B_N)-coordinates or some other appropriate system of coordinates. Likewise, there exist no studies which investigate three dimensional PDFs of magnetic field fluctuations, that is, vector differences bmB(t+τ)-bmB(t)bm{B}(t+tau)-bm{B}(t). In this talk, I shall present examples of three dimensional PDFs obtained from spacecraft data that demonstrate the solar wind magnetic field possesses a very interesting spatial structure that, to my knowledge, has not previously been identified. Perhaps because of the well known model of Barnes (1981) in which the magnitude of the IMF remains constant, it may be commonly believed that there is nothing new to learn from a full three dimensional PDF. To the contrary, there is much to learn from the investigation of three dimensional PDFs of the solar wind plasma velocity and the magnetic field, as well as three dimensional PDFs of their fluctuations. Knowledge of these PDFs will not only improve understanding of solar wind physics, it is an essential prerequisite for the construction of realistic models of the stochastic time series measured by a single spacecraft, one of the longstanding goals of space physics research. In addition, three dimensional PDFs contain valuable information about the anisotropy of solar wind fluctuations in three dimensional physical space, information that may help identify the reason why the three
Low-degree Structure in Mercury's Planetary Magnetic Field
NASA Technical Reports Server (NTRS)
Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.
2012-01-01
The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.
A Study of Magnetic Fields on Bright-Rimmed Clouds
NASA Astrophysics Data System (ADS)
Kusune, Takayoshi; Sugitani, Koji
2015-08-01
Bright-rimmed clouds (BRCs), which are located at periphery of HII regions, are considered to be potential sites for induced star formation by UV radiation from nearby massive stars. Many theorists have developed 2D/3D hydrodynamical models to understand dynamical evolution of such molecular clouds. Most simulations, however, did not always include the magnetic field effect, which is of importance in the astrophysics. This is because that there are few observation results examining the magnetic field configuration of BRCs in detail. In order to obtain information on magnetic field in and around BRCs, we have made near-infrared (JHKs) imaging polarimetry toward 24 BRCs showing strong interaction with HII region (Urquhart et al. 2009). We used the imaging polarimeter SIRPOL/SIRIUS (FOV ~7.7’ x 7.7’) mounted on IRSF 1.4 m telescope at the South African Astronomical Observatory.We found that polarization vectors, i.e., magnetic fields inside the clouds, follow the curved bright rim just behind the bright rim for almost all of the observed BRCs. Our investigation into the relation between the ambient magnetic field direction and the UV radiation direction suggests a following tendency. In the case that the ambient magnetic field is perpendicular to the direction of incident UV radiation, the clouds are likely to have bright rims with small curvatures. On the other hand, in the case that the ambient field is parallel to the UV radiation, they would have those with larger curvatures. In this presentation, we will present the physical quantities for these BRCs (i.e., magnetic field strength, the post shock pressure by the ionization front, etc.) as well as these morphological results.
Magnetic field decay in model SSC dipoles
Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.
1988-08-01
We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.
Coronal magnetic fields and the solar wind
NASA Technical Reports Server (NTRS)
Newkirk, G., Jr.
1972-01-01
Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.
The Evolution of the Earth's Magnetic Field.
ERIC Educational Resources Information Center
Bloxham, Jeremy; Gubbins, David
1989-01-01
Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)
A Swarm lithospheric magnetic field model to SH degree 80
NASA Astrophysics Data System (ADS)
Thébault, Erwan; Vigneron, Pierre; Langlais, Benoit; Hulot, Gauthier
2016-07-01
The Swarm constellation of satellites was launched in November 2013 and since then has delivered high-quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency to provide a number of scientific products to be made available to the scientific community on a regular basis. In this study, we present the dedicated lithospheric field inversion model. It uses carefully selected magnetic field scalar and vector measurements from the three Swarm satellites between March 2014 and December 2015 and directly benefits from the explicit expression of the magnetic field gradients by the lower pair of Swarm satellites. The modeling scheme is a two-step one and relies first on a regional modeling approach that is very sensitive to small spatial scales and weak signals which we seek to describe. The final model is built from adjacent regional solutions and consists in a global spherical harmonics model expressed between degrees 16 and 80. The quality of the derived model is assessed through a comparison with independent models based on Swarm and the CHAMP satellites. This comparison emphasizes the high level of accuracy of the current model after only 2 years of measurements but also highlights the possible improvements which will be possible once the lowest two satellites reach lower altitudes.
Control of magnetism by electric fields.
Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo
2015-03-01
The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field. PMID:25740132
Crutcher, Richard M.; Wandelt, Benjamin; Heiles, Carl; Falgarone, Edith
2010-12-10
The only direct measurements of interstellar magnetic field strengths depend on the Zeeman effect, which samples the line-of-sight component B{sub z} of the magnetic vector. In this paper, we use a Bayesian approach to analyze the observed probability density function (PDF) of B{sub z} from Zeeman surveys of H I, OH, and CN spectral lines in order to infer a density-dependent stochastic model of the total field strength B in diffuse and molecular clouds. We find that at n < 300 cm{sup -3} (in the diffuse interstellar medium sampled by H I lines), B does not scale with density. This suggests that diffuse clouds are assembled by flows along magnetic field lines, which would increase the density but not the magnetic field strength. We further find strong evidence for B in molecular clouds being randomly distributed between very small values and a maximum that scales with volume density n as B {proportional_to} n {sup 0.65} for n>300 cm{sup -3}, with an uncertainty at the 50% level in the power-law exponent of about {+-}0.05. This break-point density could be interpreted as the average density at which parsec-scale clouds become self-gravitating. Both the uniform PDF of total field strengths and the scaling with density suggest that magnetic fields in molecular clouds are often too weak to dominate the star formation process. The stochasticity of the total field strength B implies that many fields are so weak that the mass/flux ratio in many clouds must be significantly supercritical. A two-thirds power law comes from isotropic contraction of gas too weakly magnetized for the magnetic field to affect the morphology of the collapse. On the other hand, our study does not rule out some clouds having strong magnetic fields with critical mass/flux ratios.
Magnetic fields in Neutron Stars
NASA Astrophysics Data System (ADS)
Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.
2015-05-01
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.
Coronal magnetic fields produced by photospheric shear
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Yang, W.-H.
1987-01-01
The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.
Quadrupole magnet field mapping for FRIB
NASA Astrophysics Data System (ADS)
Portillo, M.; Amthor, A. M.; Chouhan, S.; Cooper, K.; Gehring, A.; Hausmann, M.; Hitchcock, S.; Kwarsick, J.; Manikonda, S.; Sumithrarachchi, C.
2013-12-01
Extensive magnetic field map measurements have been done on a newly built superconducting quadrupole triplet with sextupole and octupole coils nested within every quadrupole. The magnetic field multipole composition and fringe field distributions have been analyzed and an improved parameterization of the field has been developed within the beam transport simulation framework. Parameter fits yielding standard deviations as low as 0.3% between measured and modeled values are reported here.
Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field
NASA Astrophysics Data System (ADS)
Maynou, R.; López, J.; Granados, X.; Torres, R.; Bosch, R.
The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.
Vector spin modeling for magnetic tunnel junctions with voltage dependent effects
NASA Astrophysics Data System (ADS)
Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.
2014-05-01
Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.
Vector spin modeling for magnetic tunnel junctions with voltage dependent effects
Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.
2014-05-07
Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.
Magnetic isotope and magnetic field effects on the DNA synthesis
Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.
2013-01-01
Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636
Current-Produced Magnetic Field Effects on Current Collection
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Stone, N. H.; Whitaker, Ann F. (Technical Monitor)
2002-01-01
Current collection by an infinitely long, conducting cylinder in a magnetized plasma, taking into account the magnetic field of the collected current, is discussed. A region of closed magnetic surfaces disconnects the cylinder from infinity. Due to this, the collected current depends on the ratio between this region and the plasma sheath region and, under some conditions, current reduction arises. The current collection along a realistic "bare wire" space tether is considered. A number of factors are taken into account, including the resistance of the wire and shielding resulting from the current-induced magnetic field produced by current flow in the tether. The plasma density, tether length and radius, the geomagnetic field strength and angle to the orbital velocity vector were all used as parameters in the study. It is shown that magnetic shielding for certain tether system configurations, when combined with particular values of the governing parameters, significantly reduces the collected current. Specifically, it is shown that an electrodynamic tether in the "thruster" mode suffers greater reduction from magnetic shielding than a tether with the same characteristics deployed in the "generator" mode. We find that, for both modes, current-induced magnetic shielding becomes more significant as plasma density and wire radius increase. The same is true for the dependence on the angle of the geomagnetic field to the orbital velocity vector and the motion-induced electric field for the generator mode For the thruster mode, the effect is larger for smaller angles. In both operating modes, the shielding is more important for smaller angles between the tether and magnetic field. In addition to the above dependencies, the effect for the thruster mode essentially depends on the tether length. In general, any parametric change that increases tether current, relative to the strength of the electric field between the tether and the ambient plasma, will increase the shielding
Cosmic microwave background polarization signals from tangled magnetic fields.
Seshadri, T R; Subramanian, K
2001-09-01
Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500
NASA Astrophysics Data System (ADS)
Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.
2015-01-01
Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.
Two-axis magnetic field sensor
NASA Technical Reports Server (NTRS)
Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)
2006-01-01
A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.
Diffusion of magnetic field via turbulent reconnection
NASA Astrophysics Data System (ADS)
Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon
2010-05-01
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the
Fluctuating magnetic field induced resonant activation
Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra
2014-12-14
In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.
Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Martin, S.; Kujawski, J.; Uribe, P.; Fourre, R.; McCarthy, M.; Maynard, N.; Berthelier, J.-J.; Steigies, C.
2009-01-01
Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to I3 x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's to 100's of km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (< 8 Hz) magnetic field broadband irregularities have been detected, suggestive of filamentary currents, although there is no one-to-one correspondence of these waves with the observed plasma density depletions, at least within the data examined thus far. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence
Magnetic Fields at the Center of Coils
ERIC Educational Resources Information Center
Binder, Philippe; Hui, Kaleonui; Goldman, Jesse
2014-01-01
In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…
Paramagnetic ellipsoidal microswimmer in a magnetic field
NASA Astrophysics Data System (ADS)
Sandoval, Mario; Fan, Louis; Pak, On Shun
We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low-Reynolds-number and subject to a magnetic field. Its corresponding mean-square displacement tensor showing the effect of particles's shape, activity and magnetic field, on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain excellent agreement.
Solar Magnetic Field: Zeeman and Hanle Effects
NASA Astrophysics Data System (ADS)
Stenflo, J.; Murdin, P.
2001-10-01
An external magnetic field causes the atomic energy levels to split into different sublevels, and the emitted radiation becomes polarized. This phenomenon is called the ZEEMAN EFFECT. When atoms in a magnetic field scatter radiation via bound-bound transitions, the phase relations or quantum interferences between the Zeeman-split sublevels give rise to POLARIZATION phenomena that go under the nam...
Modeling the evolution of galactic magnetic fields
Yar-Mukhamedov, D.
2015-04-15
An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.
Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Barouch, E.
1974-01-01
The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.
Auroral vector electric field and particle comparisons. 1: Pre-midnight convection topology
NASA Technical Reports Server (NTRS)
Maynard, N. C.; Evans, D. S.; Maehlum, B.; Egeland, A.
1976-01-01
Polar 3 was launched in northern Norway on January 27, 1974. Traversing nearly 3 deg latitude, the rocket crossed over a stable IBC II auroral arc in the positive bay region and continued north to a convection boundary which was identified as the Harang discontinuity. Measurement of the complete electric field vector, of energetic electrons and of the auroral N+2 and OI emissions were used to study the convection topology in the pre-magnetic-midnight region. A strong anticorrelation was observed between the electric field and the precipitating energetic electrons. The inverted V nature of the electron precipitations at the convection boundary, compared with the lack of such structure over the arc which was within the positive bay region, leads to the conclusion that auroral arcs are likely to be associated with inverted V type precipitation only at or poleward of convection boundaries and their eddy structures.
Permanent magnet edge-field quadrupole
Tatchyn, Roman O.
1997-01-01
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.
Permanent magnet edge-field quadrupole
Tatchyn, R.O.
1997-01-21
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.
Magnetic diode for measurement of magnetic-field strength
Fedotov, S.I.; Zalkind, V.M.
1988-02-01
The accuracy of fabrication and assembly of the elements of the magnetic systems of thermonuclear installations of the stellarator type is checked by study of the topography of the confining magnetic field and is determined by the space resolution and accuracy of the measuring apparatus. A magnetometer with a galvanomagnetic sensor is described that is used to adjust the magnetic system of the Uragan-3 stellarator. The magnetometer measure magnetic-field induction in the range of 6 x 10/sup -7/-10/sup -2/ T with high space resolution.
Levitation of a magnet by an alternating magnetic field
NASA Astrophysics Data System (ADS)
Gough, W.; Hunt, M. O.; Summerskill, W. S. H.
2013-01-01
An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.