Sample records for vector maxwell equations

  1. Maxwell Equations and the Redundant Gauge Degree of Freedom

    ERIC Educational Resources Information Center

    Wong, Chun Wa

    2009-01-01

    On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…

  2. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  3. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  4. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  5. Shock waves: The Maxwell-Cattaneo case.

    PubMed

    Uribe, F J

    2016-03-01

    Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈ M(1) < M < M(2) ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M>M_{2}) shock wave solutions can be found though they differ significantly from experiments.

  6. Electromagnetic potential vectors and the Lagrangian of a charged particle

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.

  7. Fierz bilinear formulation of the Maxwell-Dirac equations and symmetry reductions

    NASA Astrophysics Data System (ADS)

    Inglis, Shaun; Jarvis, Peter

    2014-09-01

    We study the Maxwell-Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell-Dirac equations, without any reference to gauge dependent quantities. We show how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell-Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form.

  8. Students' difficulties with vector calculus in electrodynamics

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-12-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.

  9. The Maxwell and Navier-Stokes equations that follow from Einstein equation in a spacetime containing a Killing vector field

    NASA Astrophysics Data System (ADS)

    Rodrigues, Fabio Grangeiro; Rodrigues, Waldyr Alves, Jr.; da Rocha, Roldão

    2012-10-01

    In this paper we are concerned to reveal that any spacetime structure , which is a model of a gravitational field in General Relativity generated by an energy-momentum tensor T - and which contains at least one nontrivial Killing vector field A - is such that the 2-form field F = dA (where A = g(A,)) satisfies a Maxwell like equation - with a well determined current that contains a term of the superconducting type- which follows directly from Einstein equation. Moreover, we show that the resulting Maxwell like equations, under an additional condition imposed to the Killing vector field, may be written as a Navier-Stokes like equation as well. As a result, we have a set consisting of Einstein, Maxwell and Navier-Stokes equations, that follows sequentially from the first one under precise mathematical conditions and once some identifications about field variables are evinced, as explained in details throughout the text. We compare and emulate our results with others on the same subject appearing in the literature. In Appendix A we fix our notation and recall some necessary material concerning the theory of differential forms, Lie derivatives and the Clifford bundle formalism used in this paper. Moreover, we comment in Appendix B on some analogies (and main differences) between our results to the ones obtained long ago by Bergmann and Kommar which are reviewed and briefly criticized.

  10. Solving the multi-frequency electromagnetic inverse source problem by the Fourier method

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Ma, Fuming; Guo, Yukun; Li, Jingzhi

    2018-07-01

    This work is concerned with an inverse problem of identifying the current source distribution of the time-harmonic Maxwell's equations from multi-frequency measurements. Motivated by the Fourier method for the scalar Helmholtz equation and the polarization vector decomposition, we propose a novel method for determining the source function in the full vector Maxwell's system. Rigorous mathematical justifications of the method are given and numerical examples are provided to demonstrate the feasibility and effectiveness of the method.

  11. Vector-beam solutions of Maxwell's wave equation.

    PubMed

    Hall, D G

    1996-01-01

    The Hermite-Gauss and Laguerre-Gauss modes are well-known beam solutions of the scalar Helmholtz equation in the paraxial limit. As such, they describe linearly polarized fields or single Cartesian components of vector fields. The vector wave equation admits, in the paraxial limit, of a family of localized Bessel-Gauss beam solutions that can describe the entire transverse electric field. Two recently reported solutions are members of this family of vector Bessel-Gauss beam modes.

  12. Qualitative investigation into students' use of divergence and curl in electromagnetism

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; Baily, Charles; De Cock, Mieke

    2016-12-01

    Many students struggle with the use of mathematics in physics courses. Although typically well trained in rote mathematical calculation, they often lack the ability to apply their acquired skills to physical contexts. Such student difficulties are particularly apparent in undergraduate electrodynamics, which relies heavily on the use of vector calculus. To gain insight into student reasoning when solving problems involving divergence and curl, we conducted eight semistructured individual student interviews. During these interviews, students discussed the divergence and curl of electromagnetic fields using graphical representations, mathematical calculations, and the differential form of Maxwell's equations. We observed that while many students attempt to clarify the problem by making a sketch of the electromagnetic field, they struggle to interpret graphical representations of vector fields in terms of divergence and curl. In addition, some students confuse the characteristics of field line diagrams and field vector plots. By interpreting our results within the conceptual blending framework, we show how a lack of conceptual understanding of the vector operators and difficulties with graphical representations can account for an improper understanding of Maxwell's equations in differential form. Consequently, specific learning materials based on a multiple representation approach are required to clarify Maxwell's equations.

  13. Maxwellians and the Remaking of Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Hunt, Bruce

    2012-02-01

    Although James Clerk Maxwell first formulated his theory of the electromagnetic field in the early 1860s, it went through important changes before it gained general acceptance in the 1890s. Those changes were largely the work of a group of younger physicists, the Maxwellians, led by G. F. FitzGerald in Ireland, Oliver Lodge and Oliver Heaviside in England, and Heinrich Hertz in Germany. Together, they extended, refined, tested, and confirmed Maxwell's theory, and recast it into the set of four vector equations known ever since as ``Maxwell's equations.'' By tracing how the Maxwellians remade and disseminated Maxwell's theory between the late 1870s and the mid-1890s, we can gain a clearer understanding not just of how the electromagnetic field was understood at the end of the 19th century, but of the collaborative nature of work at the frontiers of physics.

  14. Shear free, twisting Einstein-Maxwell metrics in the Newman-Penrose formalism

    NASA Technical Reports Server (NTRS)

    Lind, R. W.

    1972-01-01

    The problem of finding algebraically special solutions to the vacuum Einstein-Maxwell equations was investigated using a spin coefficient formalism. The general case in which the degenerate null vectors are not hypersurface orthogonal is reduced to a problem of solving five coupled differential equations that are no longer dependent on the affine parameter along the degenerate null directions. It is shown that the most general regular, shear-free, nonradiating solution to these equations is the Kerr-Newman metric.

  15. Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time

    NASA Astrophysics Data System (ADS)

    Benisty, David; Guendelman, E. I.

    2016-09-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.

  16. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    NASA Astrophysics Data System (ADS)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  17. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses

    NASA Technical Reports Server (NTRS)

    Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen

    1991-01-01

    The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.

  18. Lienard--Wiechert fields and general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, E.T.

    1974-01-01

    An analogy is extablished between the Lienard-Weichart solutions of the Maxwell equations and the Robinson-Trautman solutions of the einstein equations by virtue of the fact that a principal null vector field of either the Maxwell or Weyl tensor in each case satisfies the following four conditions: (1) The field is a geodesic field, (2) it has nonvanishing divergence, (3) it is shear free, and (4) it is twist (or curl) free. (auth)

  19. Separation of variables in Maxwell equations in Plebański-Demiański spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel; KubizÅák, David

    2018-05-01

    A new method for separating variables in the Maxwell equations in four- and higher-dimensional Kerr-(A)dS spacetimes proposed recently by Lunin is generalized to any off-shell metric that admits a principal Killing-Yano tensor. The key observation is that Lunin's ansatz for the vector potential can be formulated in a covariant form—in terms of the principal tensor. In particular, focusing on the four-dimensional case we demonstrate separability of Maxwell's equations in the Kerr-NUT-(A)dS and the Plebański-Demiański family of spacetimes. The new method of separation of variables is quite different from the standard approach based on the Newman-Penrose formalism.

  20. Geometric Implications of Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Smith, Felix T.

    2015-03-01

    Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.

  1. Vector solitons for the reduced Maxwell-Bloch equations with variable coefficients in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Chai, Jun; Tian, Bo; Sun, Wen-Rong; Liu, De-Yin

    2018-01-01

    Under investigation in this paper is the reduced Maxwell-Bloch equations with variable coefficients, which describe the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. Hirota method and symbolic computation are applied to solve such equations. By introducing the dependent variable transformations, we give the bilinear forms, vector one-, two- and N-soliton solutions in analytic forms. The types of the vector solitons are analyzed: Only the bright-single-hump solitons can be observed in q and r1 , the soliton in r2 is the bright-double-hump soliton, and there exist three types of solitons in r3 , including the dark-single-hump soliton, dark-double-hump soliton and dark-like-bright soliton, with q as the inhomogeneous electric field, r1 and r2 as the real and imaginary parts of the polarization of the two-level medium, and r3 as the population difference between the ground and excited states. Figures are presented to show the vector soliton solutions. Different types of the interactions between the vector two solitons are presented. In each component, only the overtaking elastic interaction can be observed.

  2. Students' Difficulties with Vector Calculus in Electrodynamics

    ERIC Educational Resources Information Center

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-01-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…

  3. Vector fields in a tight laser focus: comparison of models.

    PubMed

    Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael

    2017-06-26

    We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheviakov, Alexei F., E-mail: chevaikov@math.usask.ca

    Partial differential equations of the form divN=0, N{sub t}+curl M=0 involving two vector functions in R{sup 3} depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R{sup 4}(t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations,more » it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.« less

  5. Einstein-aether theory with a Maxwell field: General formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, Alexander B., E-mail: Alexander.Balakin@kpfu.ru; Lemos, José P.S., E-mail: joselemos@ist.utl.pt

    We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shearmore » and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.« less

  6. A new unified theory of electromagnetic and gravitational interactions

    NASA Astrophysics Data System (ADS)

    Li, Li-Xin

    2016-12-01

    In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.

  7. A Heuristic Potential Theory of Electric and Magnetic Monopoles without Strings.

    ERIC Educational Resources Information Center

    Barker, William A.; Graziani, Frank

    1978-01-01

    Shows how Maxwell's equations can be obtained by starting with a relatively simple pseudoscalar and scalar potential employing only the Lorentz transformation for a four vector (or pseudovector). (GA)

  8. EMPHASIS/Nevada UTDEM user guide. Version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Seidel, David Bruce; Pasik, Michael Francis

    The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest. UTDEM is a general-purpose code for solving Maxwell's equations on arbitrary, unstructured tetrahedral meshes. The geometries and the meshes thereof are limited only by the patience of the user in meshing and by the available computing resources for the solution. UTDEM solves Maxwell's equations using finite-element method (FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions. EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) ismore » a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the effects of free charge are important and need to be treated in a self-consistent manner. This is done by integrating the equations of motion for macroparticles (a macroparticle is an object that represents a large number of real physical particles, all with the same position and momentum) being accelerated by the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a current, which is a source for the fields in Maxwell's equations.« less

  9. Polarization ellipse and Stokes parameters in geometric algebra.

    PubMed

    Santos, Adler G; Sugon, Quirino M; McNamara, Daniel J

    2012-01-01

    In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.

  10. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  11. A modification of Einstein-Schrödinger theory that contains both general relativity and electrodynamics

    NASA Astrophysics Data System (ADS)

    Shifflett, J. A.

    2008-08-01

    We modify the Einstein-Schrödinger theory to include a cosmological constant Λ z which multiplies the symmetric metric, and we show how the theory can be easily coupled to additional fields. The cosmological constant Λ z is assumed to be nearly cancelled by Schrödinger’s cosmological constant Λ b which multiplies the nonsymmetric fundamental tensor, such that the total Λ = Λ z + Λ b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as | Λ z | → ∞. For | Λ z | ~ 1/(Planck length)2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10-16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein-Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. This fixes a problem of the original Einstein-Schrödinger theory, which failed to predict a Lorentz force. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~10-66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory.

  12. Extensions of the Einstein-Schrodinger non-symmetric theory of gravity

    NASA Astrophysics Data System (ADS)

    Shifflett, James A.

    We modify the Einstein-Schrödinger theory to include a cosmological constant L z which multiplies the symmetric metric. The cosmological constant L z is assumed to be nearly cancelled by Schrödinger's cosmological constant L b which multiplies the nonsymmetric fundamental tensor, such that the total L = L z + L b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as |L z | [arrow right] oo. For |L z | ~ 1/(Planck length) 2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10 -16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein- Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~ 10 -66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory. Peri-center advance, deflection of light and time delay of light have a fractional difference of < 10 -56 compared to Einstein-Maxwell theory for worst-case parameters. When a spin-1/2 field is included in the Lagrangian, the theory gives the ordinary Dirac equation, and the charged solution results in fractional shifts of < 10 -50 in Hydrogen atom energy levels. Newman-Penrose methods are used to derive an exact solution of the connection equations, and to show that the charged solution is Petrov type- D like the Reissner-Nordström solution. The Newman-Penrose asymptotically flat [Special characters omitted.] (1/ r 2 ) expansion of the field equations is shown to match Einstein-Maxwell theory. Finally we generalize the theory to non-Abelian fields, and show that a special case of the resulting theory closely approximates Einstein-Weinberg-Salam theory.

  13. Radiation and matter: Electrodynamics postulates and Lorenz gauge

    NASA Astrophysics Data System (ADS)

    Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.

    2016-11-01

    In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.

  14. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  15. Weakly charged generalized Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2017-08-01

    We find an explicit solution of the source free Maxwell equations in a generalized Kerr-NUT-(A)dS spacetime in all dimensions. This solution is obtained as a linear combination of the closed conformal Killing-Yano tensor hab, which is present in such a spacetime, and a derivative of the primary Killing vector, associated with hab. For the vanishing cosmological constant the obtained solution reduces to the Wald's electromagnetic field generated from the primary Killing vector.

  16. Role of nonthermal electron on the dynamics of relativistic electromagnetic soliton in the interaction of laser-plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostampooran, Shabnam; Dorranian, Davoud, E-mail: doran@srbiau.ac.ir

    A system of nonlinear one-dimensional equations of the electron hydrodynamics with Maxwell's equations was developed to describe electromagnetic (EM) solitons in plasma with nonthermal electrons. Equation of vector potential was derived in relativistic regime by implementing the multiple scales technique, and their solitonic answers were introduced. The allowed regions for bright and dark electromagnetic solitons were discussed in detail. Roles of number density of nonthermal electrons, temperature of electrons, and frequency of fast participate of vector potential on the Sagdeev potential and properties of EM soliton were investigated. Results show that with increasing the number of nonthermal electrons, the amplitudemore » of vector potential of bright solitons increases. By increasing the number of nonthermal electrons, dark EM solitons may be changed to bright solitons. Increasing the energy of nonthermal electrons leads to generation of high amplitude solitons.« less

  17. The New Field Quantities and the Poynting Theorem in Material Medium with Magnetic Monopoles

    NASA Astrophysics Data System (ADS)

    Zor, Ömer

    2016-12-01

    The duality transformation was used to define the polarization mechanisms that arise from magnetic monopoles. Then, a dimensional analysis was conducted to describe the displacement and magnetic intensity vectors (constitutive equations) in SI units. Finally, symmetric Maxwell equations in a material medium with new field quantities were introduced. Hence, the Lorentz force and the Poynting theorem were defined with these new field quantities, and many possible definitions of them were constructed.

  18. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  19. Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.

    PubMed

    Alzahrani, Mohammed A; Gauthier, Robert C

    2015-10-05

    Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.

  20. Short-Range Action, Focusing, and Saturation of Nuclear Forces in a Gravitational-Electrodynamic Model of GRT

    NASA Astrophysics Data System (ADS)

    Sukhanova, L. A.; Khlestkov, Yu. A.

    2015-12-01

    An equation for a massive vector field that explains the short-range action of nuclear forces has been obtained via a consistent solution of the Einstein-Maxwell-Lorentz equations in curved spacetime. The nucleus is identified with the throat, whose radius of curvature is adopted as the radius of the nucleus. In this gravitational model the experimentally observed proportionality of the radius of the nucleus to the cubic root of the mass number is obtained.

  1. Using Redundancy To Reduce Errors in Magnetometer Readings

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2004-01-01

    A method of reducing errors in noisy magnetic-field measurements involves exploitation of redundancy in the readings of multiple magnetometers in a cluster. By "redundancy"is meant that the readings are not entirely independent of each other because the relationships among the magnetic-field components that one seeks to measure are governed by the fundamental laws of electromagnetism as expressed by Maxwell's equations. Assuming that the magnetometers are located outside a magnetic material, that the magnetic field is steady or quasi-steady, and that there are no electric currents flowing in or near the magnetometers, the applicable Maxwell 's equations are delta x B = 0 and delta(raised dot) B = 0, where B is the magnetic-flux-density vector. By suitable algebraic manipulation, these equations can be shown to impose three independent constraints on the values of the components of B at the various magnetometer positions. In general, the problem of reducing the errors in noisy measurements is one of finding a set of corrected values that minimize an error function. In the present method, the error function is formulated as (1) the sum of squares of the differences between the corrected and noisy measurement values plus (2) a sum of three terms, each comprising the product of a Lagrange multiplier and one of the three constraints. The partial derivatives of the error function with respect to the corrected magnetic-field component values and the Lagrange multipliers are set equal to zero, leading to a set of equations that can be put into matrix.vector form. The matrix can be inverted to solve for a vector that comprises the corrected magnetic-field component values and the Lagrange multipliers.

  2. Investigation of the Wave Propagation of Vector Modes of Light in a Spherically Symmetric Refractive Index Profile

    NASA Astrophysics Data System (ADS)

    Pozderac, Preston; Leary, Cody

    We investigated the solutions to the Helmholtz equation in the case of a spherically symmetric refractive index using three different methods. The first method involves solving the Helmholtz equation for a step index profile and applying further constraints contained in Maxwell's equations. Utilizing these equations, we can simultaneously solve for the electric and magnetic fields as well as the allowed energies of photons propagating in this system. The second method applies a perturbative correction to these energies, which surfaces when deriving a Helmholtz type equation in a medium with an inhomogeneous refractive index. Applying first order perturbation theory, we examine how the correction term affects the energy of the photon. In the third method, we investigate the effects of the above perturbation upon solutions to the scalar Helmholtz equation, which are separable with respect to its polarization and spatial degrees of freedom. This work provides insights into the vector field structure of a photon guided by a glass microsphere.

  3. How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation

    ERIC Educational Resources Information Center

    Heras, Jose A.

    2009-01-01

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.

  4. From Nonradiating Sources to Directionally Invisible Objects

    NASA Astrophysics Data System (ADS)

    Hurwitz, Elisa

    The goal of this dissertation is to extend the understanding of invisible objects, in particular nonradiating sources and directional nonscattering scatterers. First, variations of null-field nonradiating sources are derived from Maxwell's equations. Next, it is shown how to design a nonscattering scatterer by applying the boundary conditions for nonradiating sources to the scalar wave equation, referred to here as the "field cloak method". This technique is used to demonstrate directionally invisible scatterers for an incident field with one direction of incidence, and the influence of symmetry on the directionality is explored. This technique, when applied to the scalar wave equation, is extended to show that a directionally invisible object may be invisible for multiple directions of incidence simultaneously. This opens the door to the creation of optically switchable, directionally invisible objects which could be implemented in couplers and other novel optical devices. Next, a version of the "field cloak method" is extended to the Maxwell's electro-magnetic vector equations, allowing more flexibility in the variety of directionally invisible objects that can be designed. This thesis concludes with examples of such objects and future applications.

  5. ML 3.1 developer's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-05-01

    ML development was started in 1997 by Ray Tuminaro and Charles Tong. Currently, there are several full- and part-time developers. The kernel of ML is written in ANSI C, and there is a rich C++ interface for Trilinos users and developers. ML can be customized to run geometric and algebraic multigrid; it can solve a scalar or a vector equation (with constant number of equations per grid node), and it can solve a form of Maxwell's equations. For a general introduction to ML and its applications, we refer to the Users Guide [SHT04], and to the ML web site, http://software.sandia.gov/ml.

  6. Generalized Case ``Van Kampen theory for electromagnetic oscillations in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Bairaktaris, F.; Hizanidis, K.; Ram, A. K.

    2017-10-01

    The Case-Van Kampen theory is set up to describe electrostatic oscillations in an unmagnetized plasma. Our generalization to electromagnetic oscillations in magnetized plasma is formulated in the relativistic position-momentum phase space of the particles. The relativistic Vlasov equation includes the ambient, homogeneous, magnetic field, and space-time dependent electromagnetic fields that satisfy Maxwell's equations. The standard linearization technique leads to an equation for the perturbed distribution function in terms of the electromagnetic fields. The eigenvalues and eigenfunctions are obtained from three integrals `` each integral being over two different components of the momentum vector. Results connecting phase velocity, frequency, and wave vector will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium, and by DoE Grant DE-FG02-91ER-54109.

  7. Stability of Horndeski vector-tensor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, Jose Beltrán; Durrer, Ruth; Heisenberg, Lavinia

    2013-10-01

    We study the Horndeski vector-tensor theory that leads to second order equations of motion and contains a non-minimally coupled abelian gauge vector field. This theory is remarkably simple and consists of only 2 terms for the vector field, namely: the standard Maxwell kinetic term and a coupling to the dual Riemann tensor. Furthermore, the vector sector respects the U(1) gauge symmetry and the theory contains only one free parameter, M{sup 2}, that controls the strength of the non-minimal coupling. We explore the theory in a de Sitter spacetime and study the presence of instabilities and show that it corresponds tomore » an attractor solution in the presence of the vector field. We also investigate the cosmological evolution and stability of perturbations in a general FLRW spacetime. We find that a sufficient condition for the absence of ghosts is M{sup 2} > 0. Moreover, we study further constraints coming from imposing the absence of Laplacian instabilities. Finally, we study the stability of the theory in static and spherically symmetric backgrounds (in particular, Schwarzschild and Reissner-Nordström-de Sitter). We find that the theory, quite generally, do have ghosts or Laplacian instabilities in regions of spacetime where the non-minimal interaction dominates over the Maxwell term. We also calculate the propagation speed in these spacetimes and show that superluminality is a quite generic phenomenon in this theory.« less

  8. An analytical theory of a scattering of radio waves on meteoric ionization - II. Solution of the integro-differential equation in case of backscatter

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-12-01

    The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e.g. by the Ondřejov radar.

  9. Vector solution for the mean electromagnetic fields in a layer of random particles

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Seker, S. S.; Levine, D. M.

    1986-01-01

    The mean electromagnetic fields are found in a layer of randomly oriented particles lying over a half space. A matrix-dyadic formulation of Maxwell's equations is employed in conjunction with the Foldy-Lax approximation to obtain equations for the mean fields. A two variable perturbation procedure, valid in the limit of small fractional volume, is then used to derive uncoupled equations for the slowly varying amplitudes of the mean wave. These equations are solved to obtain explicit expressions for the mean electromagnetic fields in the slab region in the general case of arbitrarily oriented particles and arbitrary polarization of the incident radiation. Numerical examples are given for the application to remote sensing of vegetation.

  10. Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell's equations.

    PubMed

    Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S

    2008-10-27

    A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.

  11. Metal-coated magnetic nanoparticles in an optically active medium: A nonreciprocal metamaterial

    NASA Astrophysics Data System (ADS)

    Christofi, Aristi; Stefanou, Nikolaos

    2018-03-01

    We report on the optical response of a nonreciprocal bianisotropic metamaterial, consisting of spherical, metal-coated magnetic nanoparticles embedded in an optically active medium, thus combining gyrotropy, plasmonic resonances, and chirality in a versatile design. The corresponding effective medium is deduced by an appropriate two-step generalized Maxwell-Garnett homogenization scheme. The associated photonic band structure and transmission spectra are obtained through a six-vector formulation of Maxwell equations, which provides an efficient framework for general bianisotropic structures going beyond existing approaches that involve cumbersome nonlinear eigenvalue problems. Our results, analyzed and discussed in the light of group theory, provide evidence that the proposed metamaterial exhibits some remarkable frequency-tunable properties, such as strong, plasmon-enhanced nonreciprocal polarization azimuth rotation and magnetochiral dichroism.

  12. Einstein-Cartan Theory of Gravitation: Kinematical Parameters and Maxwell Equations

    NASA Astrophysics Data System (ADS)

    Katkar, L. N.

    2015-03-01

    In the space-time manifold of Einstein-Cartan Theory (ECT) of gravitation, the expressions for the time-like kinematical parameters are derived and the propagation equation for expansion is obtained.It has been observed that when the spin tensor is u-orthogonal the spin of the gravitating matter has no influence on the propagation equation of expansion while it has influence when it is not u-orthogonal. The usual formula for the curl of gradient of a scalar function is not zero in ECT. So is the case with the divergence of the curl of a vector.Their expressions on the space-time manifold of ECT are derived. A new derivative operator d ∗ is introduced to develop the calculus on space-time manifold of ECT. It is obtained by taking the covariant derivative of an associated tensor of a form with respect to an asymmetric connections. We have used this differential operator to obtain the form of the Maxwell's equations in the ECT of gravitation. Cartan's equations of structure are also derived through the new derivative operator. It has been shown that unlike the consequences of exterior derivative in Einstein space-time, the repetition of d ∗ on a form of any degree is not zero.

  13. Modeling the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Nikolaos K.; Satish, Siddarth; Chu, Jhih-Wei

    2009-12-01

    A multiscale computational method is developed to model the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics (FHD) and molecular dynamics (MD) simulations. To capture the elastic responses that emerge at small length scales, we attach an additional rheological model parallel to the macroscopic constitutive equation of a fluid. The widely used linear Maxwell model is employed as a working choice; other models can be used as well. For a fluid that is Newtonian in the macroscopic limit, this approach results in a parallel Newtonian-Maxwell model. For water, argon, and an ionic liquid, the power spectrum of momentum field autocorrelation functions of the parallel Newtonian-Maxwell model agrees very well with those calculated from all-atom MD simulations. To incorporate thermal fluctuations, we generalize the equations of FHD to work with non-Markovian rheological models and colored noise. The fluctuating stress tensor (white noise) is integrated in time in the same manner as its dissipative counterpart and numerical simulations indicate that this approach accurately preserves the set temperature in a FHD simulation. By mapping position and velocity vectors in the molecular representation onto field variables, we bridge the non-Markovian FHD with atomistic MD simulations. Through this mapping, we quantitatively determine the transport coefficients of the parallel Newtonian-Maxwell model for water and argon from all-atom MD simulations. For both fluids, a significant enhancement in elastic responses is observed as the wave number of hydrodynamic modes is reduced to a few nanometers. The mapping from particle to field representations and the perturbative strategy of developing constitutive equations provide a useful framework for modeling the nanoscale viscoelasticity of fluids.

  14. The discovery of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Everitt, Francis

    2012-02-01

    In January 1865, Maxwell at age 34 wrote a letter to his cousin Charles Cay describing various doings, including his work on the viscosity of gases and a visit from two of the world's leading oculists to inspect the eyes of his dog ``Spice''. He added, ``I have also a paper afloat, with an electromagnetic theory of light, which, till I am convinced to the contrary, I hold to be great guns.'' That paper ``A Dynamical Theory of the Electromagnetic Field'' was his fourth on the subject. It was followed in 1868 by another, and then in 1873 by his massive two volume Treatise on Electricity and Magnetism. Even so, by the time of his death in 1879 as he was beginning a radically revised edition of the Treatise, much remained to be done. We celebrate here the 150^th anniversary of Maxwell's first astonished realization in 1862 of the link between electromagnetism and light. So revolutionary was this that 15 or more years went by before Lorentz, Poynting, FitzGerald, and others came to address it, sometimes with improvements, sometimes not. Not until 1888 did Hertz make the essential experimental discovery of radio waves. What is so remarkable about Maxwell's five papers is that each presents a complete view of the subject radically different from the one before. I shall say something about each, emphasizing in particular Maxwell's most unexpected idea, the displacement current, so vastly more interesting than the accounts of it found in textbooks today. Beyond lie other surprises. The concept of gauge invariance, and the role the vector potential would play in defining the canonical momentum of the electron, both go back to Maxwell. In 1872 came a paper ``On the Mathematical Classification of Physical Quantities'', which stands as an education in itself. Amid much else, there for the first time appears the distinction between axial and polar vectors and those new operational concepts related to quaternion theory: curl, divergence, and gradient.

  15. A Formalism for Covariant Polarized Radiative Transport by Ray Tracing

    NASA Astrophysics Data System (ADS)

    Gammie, Charles F.; Leung, Po Kin

    2012-06-01

    We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N αβ ≡ langa α k a*β k rang, where ak is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k μ∇μ N αβ = 0. We show that this is equivalent to Broderick & Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.

  16. The Covariant Formulation of Maxwell's Equations Expressed in a Form Independent of Specific Units

    ERIC Educational Resources Information Center

    Heras, Jose A.; Baez, G.

    2009-01-01

    The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants alpha, beta and gamma into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving…

  17. Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2004-12-06

    We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase ofmore » the electric field vector components are presented and discussed.« less

  18. Vector spherical quasi-Gaussian vortex beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-02-01

    Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.

  19. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  20. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.

    PubMed

    Acevedo, Ramiro; Lombardini, Richard; Turner, Matthew A; Kinsey, James L; Johnson, Bruce R

    2008-02-14

    The conjugate symmetric Lanczos (CSL) method is introduced for the solution of the time-dependent Schrodinger equation. This remarkably simple and efficient time-domain algorithm is a low-order polynomial expansion of the quantum propagator for time-independent Hamiltonians and derives from the time-reversal symmetry of the Schrodinger equation. The CSL algorithm gives forward solutions by simply complex conjugating backward polynomial expansion coefficients. Interestingly, the expansion coefficients are the same for each uniform time step, a fact that is only spoiled by basis incompleteness and finite precision. This is true for the Krylov basis and, with further investigation, is also found to be true for the Lanczos basis, important for efficient orthogonal projection-based algorithms. The CSL method errors roughly track those of the short iterative Lanczos method while requiring fewer matrix-vector products than the Chebyshev method. With the CSL method, only a few vectors need to be stored at a time, there is no need to estimate the Hamiltonian spectral range, and only matrix-vector and vector-vector products are required. Applications using localized wavelet bases are made to harmonic oscillator and anharmonic Morse oscillator systems as well as electrodynamic pulse propagation using the Hamiltonian form of Maxwell's equations. For gold with a Drude dielectric function, the latter is non-Hermitian, requiring consideration of corrections to the CSL algorithm.

  1. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  2. Symplectic partitioned Runge-Kutta scheme for Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Xiang; Wu, Xian-Liang

    Using the symplectic partitioned Runge-Kutta (PRK) method, we construct a new scheme for approximating the solution to infinite dimensional nonseparable Hamiltonian systems of Maxwell's equations for the first time. The scheme is obtained by discretizing the Maxwell's equations in the time direction based on symplectic PRK method, and then evaluating the equation in the spatial direction with a suitable finite difference approximation. Several numerical examples are presented to verify the efficiency of the scheme.

  3. The origin of spurious solutions in computational electromagnetics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Wu, Jie; Povinelli, L. A.

    1995-01-01

    The origin of spurious solutions in computational electromagnetics, which violate the divergence equations, is deeply rooted in a misconception about the first-order Maxwell's equations and in an incorrect derivation and use of the curl-curl equations. The divergence equations must be always included in the first-order Maxwell's equations to maintain the ellipticity of the system in the space domain and to guarantee the uniqueness of the solution and/or the accuracy of the numerical solutions. The div-curl method and the least-squares method provide rigorous derivation of the equivalent second-order Maxwell's equations and their boundary conditions. The node-based least-squares finite element method (LSFEM) is recommended for solving the first-order full Maxwell equations directly. Examples of the numerical solutions by LSFEM for time-harmonic problems are given to demonstrate that the LSFEM is free of spurious solutions.

  4. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  5. Artificial Neural Network Approaches in Guidance and Control (Les Reseaux Neuroniques Artificiels, Voie a Explorer dans le Domaine du Guidage et du Pilotage)

    DTIC Science & Technology

    1991-09-01

    34 ofetworker eqmpleuoaorreation withbounethat basis vectors (Lawley & Maxwell , 1963). naletwk arn ungd eqatsi wthe boune E It is possible to think of the...passive sonar system IJCNN- signal Aerospace Technology Center, John 89 Washington proceedings Hopkins University) Analysis of hidden Succesful use of...establish the weighted equations and C3 applications interconnmctions of the net and electronic feedback based AUTH: A/CONNELL, JOHN C ., JR. CORP, Naval

  6. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  7. Exact analytical modeling of magnetic vector potential in surface inset permanent magnet DC machines considering magnet segmentation

    NASA Astrophysics Data System (ADS)

    Jabbari, Ali

    2018-01-01

    Surface inset permanent magnet DC machine can be used as an alternative in automation systems due to their high efficiency and robustness. Magnet segmentation is a common technique in order to mitigate pulsating torque components in permanent magnet machines. An accurate computation of air-gap magnetic field distribution is necessary in order to calculate machine performance. An exact analytical method for magnetic vector potential calculation in surface inset permanent magnet machines considering magnet segmentation has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in polar coordinate by using sub-domain method. One of the main contributions of the paper is to derive an expression for the magnetic vector potential in the segmented PM region by using hyperbolic functions. The developed method is applied on the performance computation of two prototype surface inset magnet segmented motors with open circuit and on load conditions. The results of these models are validated through FEM method.

  8. Studies of Coherent Synchrotron Radiation with the Discontinuous Galerkin Method

    NASA Astrophysics Data System (ADS)

    Bizzozero, David A.

    In this thesis, we present methods for integrating Maxwell's equations in Frenet-Serret coordinates in several settings using discontinuous Galerkin (DG) finite element method codes in 1D, 2D, and 3D. We apply these routines to the study of coherent synchrotron radiation, an important topic in accelerator physics. We build upon the published computational work of T. Agoh and D. Zhou in solving Maxwell's equations in the frequency-domain using a paraxial approximation which reduces Maxwell's equations to a Schrodinger-like system. We also evolve Maxwell's equations in the time-domain using a Fourier series decomposition with 2D DG motivated by an experiment performed at the Canadian Light Source. A comparison between theory and experiment has been published (Phys. Rev. Lett. 114, 204801 (2015)). Lastly, we devise a novel approach to integrating Maxwell's equations with 3D DG using a Galilean transformation and demonstrate proof-of-concept. In the above studies, we examine the accuracy, efficiency, and convergence of DG.

  9. Topological features of vector vortex beams perturbed with uniformly polarized light.

    PubMed

    D'Errico, Alessio; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo

    2017-01-12

    Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell's equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbations of unstable optical beams.

  10. Pseudo spectral collocation with Maxwell polynomials for kinetic equations with energy diffusion

    NASA Astrophysics Data System (ADS)

    Sánchez-Vizuet, Tonatiuh; Cerfon, Antoine J.

    2018-02-01

    We study the approximation and stability properties of a recently popularized discretization strategy for the speed variable in kinetic equations, based on pseudo-spectral collocation on a grid defined by the zeros of a non-standard family of orthogonal polynomials called Maxwell polynomials. Taking a one-dimensional equation describing energy diffusion due to Fokker-Planck collisions with a Maxwell-Boltzmann background distribution as the test bench for the performance of the scheme, we find that Maxwell based discretizations outperform other commonly used schemes in most situations, often by orders of magnitude. This provides a strong motivation for their use in high-dimensional gyrokinetic simulations. However, we also show that Maxwell based schemes are subject to a non-modal time stepping instability in their most straightforward implementation, so that special care must be given to the discrete representation of the linear operators in order to benefit from the advantages provided by Maxwell polynomials.

  11. Fierz bilinear formulation of the Maxwell–Dirac equations and symmetry reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglis, Shaun, E-mail: sminglis@utas.edu.au; Jarvis, Peter, E-mail: Peter.Jarvis@utas.edu.au

    We study the Maxwell–Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell–Dirac equations, without any reference to gauge dependent quantities. We showmore » how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell–Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form. - Highlights: • Maxwell–Dirac equations derived in manifestly gauge invariant tensor form. • Invariant scalar and four vector fields for four Poincaré subgroups derived, including two unusual cases. • Symmetry reduction imposed on Maxwell–Dirac equations under example subgroups. • Magnetic monopole arises for spherically symmetric case, consistent with charge quantization condition.« less

  12. Magnetic monopoles, Galilean invariance, and Maxwell's equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, F.S.

    1992-02-01

    Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamicsmore » are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities {ital v}{much lt}{ital c} are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.« less

  13. Stability and Instability of the Sub-extremal Reissner-Nordström Black Hole Interior for the Einstein-Maxwell-Klein-Gordon Equations in Spherical Symmetry

    NASA Astrophysics Data System (ADS)

    Van de Moortel, Maxime

    2018-05-01

    We show non-linear stability and instability results in spherical symmetry for the interior of a charged black hole—approaching a sub-extremal Reissner-Nordström background fast enough—in presence of a massive and charged scalar field, motivated by the strong cosmic censorship conjecture in that setting: 1. Stability We prove that spherically symmetric characteristic initial data to the Einstein-Maxwell-Klein-Gordon equations approaching a Reissner-Nordström background with a sufficiently decaying polynomial decay rate on the event horizon gives rise to a space-time possessing a Cauchy horizon in a neighbourhood of time-like infinity. Moreover, if the decay is even stronger, we prove that the space-time metric admits a continuous extension to the Cauchy horizon. This generalizes the celebrated stability result of Dafermos for Einstein-Maxwell-real-scalar-field in spherical symmetry. 2. Instability We prove that for the class of space-times considered in the stability part, whose scalar field in addition obeys a polynomial averaged- L 2 (consistent) lower bound on the event horizon, the scalar field obeys an integrated lower bound transversally to the Cauchy horizon. As a consequence we prove that the non-degenerate energy is infinite on any null surface crossing the Cauchy horizon and the curvature of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This generalizes an instability result due to Luk and Oh for Einstein-Maxwell-real-scalar-field in spherical symmetry. This instability of the black hole interior can also be viewed as a step towards the resolution of the C 2 strong cosmic censorship conjecture for one-ended asymptotically flat initial data.

  14. Alternative expression of the Bloch wave group velocity in loss-less periodic media using the electromagnetic field energy

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Lambin, Philippe

    2018-01-01

    In periodic optical media, the group velocity is defined as the gradient with respect to wave-vector of the corresponding Bloch mode frequency dispersion curve, forming the photonic band structure. Instead of deducing it from the numerically computed photonic crystal band structure, the group velocity can be calculated directly from the integral of the Poynting vector over the crystal unit cell, the physical meaning of which is immediately perceivable. The related formula, which can be regarded as the application of Hellmann-Feynman theorem to electromagnetism, has been reported previously though without proof. We provide hereafter a full derivation of that formula starting from Maxwell's equations and we discuss its usefulness in photonics.

  15. The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.

    2018-04-01

    The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.

  16. ML 3.0 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-05-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and non-symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  17. ML 3.1 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-10-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the Aztec 2.1 and AztecOO iterative package [16]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and nonsymmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  18. Calculation of normal modes of the closed waveguides in general vector case

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Sevastianov, L. A.; Tiutiunnik, A. A.

    2018-04-01

    The article is devoted to the calculation of normal modes of the closed waveguides with an arbitrary filling ɛ, μ in the system of computer algebra Sage. Maxwell equations in the cylinder are reduced to the system of two bounded Helmholtz equations, the notion of weak solution of this system is given and then this system is investigated as a system of ordinary differential equations. The normal modes of this system are an eigenvectors of a matrix pencil. We suggest to calculate the matrix elements approximately and to truncate the matrix by usual way but further to solve the truncated eigenvalue problem exactly in the field of algebraic numbers. This approach allows to keep the symmetry of the initial problem and in particular the multiplicity of the eigenvalues. In the work would be presented some results of calculations.

  19. General eigenstates of Maxwell's equations in a two-constituent composite medium

    NASA Astrophysics Data System (ADS)

    Bergman, David J.; Farhi, Asaf

    2016-11-01

    Eigenstates of Maxwell's equations in the quasistatic regime were used recently to calculate the response of a Veselago Lens1 to the field produced by a time dependent point electric charge.2, 3 More recently, this approach was extended to calculate the non-quasistatic response of such a lens. This necessitated a calculation of the eigenstates of the full Maxwell equations in a flat slab structure where the electric permittivity ɛ1 of the slab differs from the electric permittivity ɛ2 of its surroundings while the magnetic permeability is equal to 1 everywhere.4 These eigenstates were used to calculate the response of a Veselago Lens to an oscillating point electric dipole source of electromagnetic (EM) waves. A result of these calculations was that, although images with subwavelength resolution are achievable, as first predicted by John Pendry,5 those images appear not at the points predicted by geometric optics. They appear, instead, at points which lie upon the slab surfaces. This is strongly connected to the fact that when ɛ1/ɛ2 = -1 a strong singularity occurs in Maxwell's equations: This value of ɛ1/ɛ2 is a mathemetical accumulation point for the EM eigenvalues.6 Unfortunately, many physicists are unaware of this crucial mathematical property of Maxwell's equations. In this article we describe how the non-quasistatic eigenstates of Maxwell's equations in a composite microstructure can be calculated for general two-constituent microstructures, where both ɛ and μ have different values in the two constituents.

  20. A thick-walled sphere rotating in a uniform magnetic field: The next step to de-spin a space object

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.; Youngquist, Robert C.; Caracciolo, Ryan A.; Peck, Mason; Leve, Frederick A.

    2017-08-01

    Modeling the interaction between a moving conductor and a static magnetic field is critical to understanding the operation of induction motors, eddy current braking, and the dynamics of satellites moving through Earth's magnetic field. Here, we develop the case of a thick-walled sphere rotating in a uniform magnetic field, which is the simplest, non-trivial, magneto-statics problem that leads to complete closed-form expressions for the resulting potentials, fields, and currents. This solution requires knowledge of all of Maxwell's time independent equations, scalar and vector potential equations, and the Lorentz force law. The paper presents four cases and their associated experimental results, making this topic appropriate for an advanced student lab project.

  1. Mechanic-Like Resonance in the Maxwell-Bloch Equations

    ERIC Educational Resources Information Center

    Meziane, Belkacem

    2008-01-01

    We show that, in their unstable regime of operation, the "Maxwell-Bloch" equations that describe light-matter interactions inside a bad-cavity-configured laser carry the same resonance properties as any externally driven mechanic or electric oscillator. This finding demonstrates that the nonlinearly coupled laser equations belong to the same…

  2. Construction of Three Dimensional Solutions for the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Yefet, A.; Turkel, E.

    1998-01-01

    We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

  3. Method of moving frames to solve time-dependent Maxwell's equations on anisotropic curved surfaces: Applications to invisible cloak and ELF propagation

    NASA Astrophysics Data System (ADS)

    Chun, Sehun

    2017-07-01

    Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.

  4. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    ERIC Educational Resources Information Center

    Tweney, Ryan D.

    2011-01-01

    James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…

  5. Extrema of mass, first law of black hole mechanics, and a staticity theorem in Einstein-Maxwell-axion-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    1998-08-01

    Using the ADM formulation of the Einstein-Maxwell axion-dilaton gravity we derive the formulas for the variation of mass and other asymptotic conserved quantities in the theory under consideration. Generalizing this kind of reasoning to the initial data for the manifold with an interior boundary we get the generalized first law of black hole mechanics. We consider an asymptotically flat solution to the Einstein-Maxwell axion-dilaton gravity describing a black hole with a Killing vector field timelike at infinity, the horizon of which comprises a bifurcate Killing horizon with a bifurcate surface. Supposing that the Killing vector field is asymptotically orthogonal to the static hypersurface with boundary S and a compact interior, we find that the solution is static in the exterior world, when the timelike vector field is normal to the horizon and has vanishing electric and axion-electric fields on static slices.

  6. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser tweezers, tractor beams, optical spanners, arbitrary scattering, radiation force, angular momentum, and torque in particle manipulation, and other related topics.

  7. Solutions of the cylindrical nonlinear Maxwell equations.

    PubMed

    Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2012-01-01

    Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.

  8. New Physics of Metamaterials

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Yue

    2014-06-01

    Einstein utilized Lorentz invariance from Maxwell's equations to modify mechanical laws and establish the special theory of relativity. Similarly, we may have a different theory if there exists another covariance of Maxwell's equations. In this paper, we find such a new transformation where Maxwell's equations are still unchanged. Consequently, Veselago's metamaterial and other systems have negative phase velocities without double negative permittivity and permeability can be described by a unified theory. People are interested in the application of metamaterials and negative phase velocities but do not appreciate the magnitude and significance to the spacetime conception of modern physics and philosophy.

  9. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    NASA Astrophysics Data System (ADS)

    Tweney, Ryan D.

    2011-07-01

    James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.

  10. Expansion of Tabulated Scattering Matrices in Generalized Spherical Functions

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Yang, Ping

    2016-01-01

    An efficient way to solve the vector radiative transfer equation for plane-parallel turbid media is to Fourier-decompose it in azimuth. This methodology is typically based on the analytical computation of the Fourier components of the phase matrix and is predicated on the knowledge of the coefficients appearing in the expansion of the normalized scattering matrix in generalized spherical functions. Quite often the expansion coefficients have to be determined from tabulated values of the scattering matrix obtained from measurements or calculated by solving the Maxwell equations. In such cases one needs an efficient and accurate computer procedure converting a tabulated scattering matrix into the corresponding set of expansion coefficients. This short communication summarizes the theoretical basis of this procedure and serves as the user guide to a simple public-domain FORTRAN program.

  11. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  12. From Maxwell's Electrodynamics to Relativity, a Geometric Journey

    NASA Astrophysics Data System (ADS)

    Smith, Felix T.

    2015-05-01

    Since Poincaré and Minkowski recognized ict as a fourth coordinate in a four-space associated with the Lorentz transformation, the occurrence of that imaginary participant in the relativistic four-vector has been a mystery of relativistic dynamics. A reexamination of Maxwell's equations (ME) shows that one of their necessary implications is to bring to light a constraint that distorts the 3-space of our experience from strict Euclidean zero curvature by a time-varying, spatially isotropic term creating a minute curvature Kcurv(t) and therefore a radius of curvature rcurv(t) =Kcurv- 1 / 2 (t). In the light of Michelson-Morley and the Lorentz transformation, this radius must be imaginary, and the geometric curvature K must be negative. From the time dependence of the ME the rate of change of the curvature radius is shown to be drcurv / dt = ic , agreeing exactly with the Hubble expansion. The imaginary magnitude is the radius of curvature; the time itself is not imaginary. Minkowski's space-time is unjustified. Important consequences for the foundations of special relativity follow.

  13. Stochastic Evolution of Augmented Born-Infeld Equations

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.

    2018-06-01

    This paper compares the results of applying a recently developed method of stochastic uncertainty quantification designed for fluid dynamics to the Born-Infeld model of nonlinear electromagnetism. The similarities in the results are striking. Namely, the introduction of Stratonovich cylindrical noise into each of their Hamiltonian formulations introduces stochastic Lie transport into their dynamics in the same form for both theories. Moreover, the resulting stochastic partial differential equations retain their unperturbed form, except for an additional term representing induced Lie transport by the set of divergence-free vector fields associated with the spatial correlations of the cylindrical noise. The explanation for this remarkable similarity lies in the method of construction of the Hamiltonian for the Stratonovich stochastic contribution to the motion in both cases, which is done via pairing spatial correlation eigenvectors for cylindrical noise with the momentum map for the deterministic motion. This momentum map is responsible for the well-known analogy between hydrodynamics and electromagnetism. The momentum map for the Maxwell and Born-Infeld theories of electromagnetism treated here is the 1-form density known as the Poynting vector. Two appendices treat the Hamiltonian structures underlying these results.

  14. Towards a Unified Field Theory for Classical Electrodynamics

    NASA Astrophysics Data System (ADS)

    Benci, Vieri; Fortunato, Donato

    2004-09-01

    In this paper we introduce a model which describes the relation of matter and the electromagnetic field from a unitarian standpoint in the spirit of ideas of Born and Infeld. In this model, based on a semilinear perturbation of Maxwell equations, the particles are finite-energy solitary waves due to the presence of the nonlinearity. In this respect the matter and the electromagnetic field have the same nature. Finite energy means that particles have finite mass and this makes electrodynamics consistent with the special relativity. We analyze the invariants of the motion of the semilinear Maxwell equations (SME) and their static solutions. In the magnetostatic case (i.e., when the electric field E = 0 and the magnetic field H does not depend on time) SME are reduced to the semilinear equation where ∇× denotes the curloperator, f‧ is the gradient of a strictly convex smooth function f:R3→R and A:R3→R3 is the gauge potential related to the magnetic field H (H = ∇× A). Due to the presence of the curl operator, (1) is a strongly degenerate elliptic equation. Moreover, physical considerations impel f to be flat at zero (f‧‧(0)=0) and this fact leads us to study the problem in a functional setting related to the Orlicz space Lp+Lq. The existence of a nontrivial finite- energy solution of (1) is proved under suitable growth conditions on f. The proof is carried out by using a suitable variational framework related to the Hodge splitting of the vector field A.

  15. A Problem and Its Solution Involving Maxwell's Equations and an Inhomogeneous Medium.

    ERIC Educational Resources Information Center

    Williamson, W., Jr.

    1980-01-01

    Maxwell's equation are solved for an inhomogeneous medium which has a coordinate-dependent dielectric function. The problem and its solutions are given in a format which should make it useful as an intermediate or advanced level problem in an electrodynamics course. (Author/SK)

  16. Maxwell-Higgs vortices with internal structure

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Marques, M. A.; Menezes, R.

    2018-05-01

    Vortices are considered in relativistic Maxwell-Higgs systems in interaction with a neutral scalar field. The gauge field interacts with the neutral field via the presence of generalized permeability, and the charged and neutral scalar fields interact in a way dictated by the presence of first order differential equations that solve the equations of motion. The neutral field may be seen as the source field of the vortex, and we study some possibilities, which modify the standard Maxwell-Higgs solution and include internal structure to the vortex.

  17. Multi-Component Diffusion with Application To Computational Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Sutton, Kenneth; Gnoffo, Peter A.

    1998-01-01

    The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.

  18. Adjustable vector Airy light-sheet single optical tweezers: negative radiation forces on a subwavelength spheroid and spin torque reversal

    NASA Astrophysics Data System (ADS)

    Mitri, Farid G.

    2018-01-01

    Generalized solutions of vector Airy light-sheets, adjustable per their derivative order m, are introduced stemming from the Lorenz gauge condition and Maxwell's equations using the angular spectrum decomposition method. The Cartesian components of the incident radiated electric, magnetic and time-averaged Poynting vector fields in free space (excluding evanescent waves) are determined and computed with particular emphasis on the derivative order of the Airy light-sheet and the polarization on the magnetic vector potential forming the beam. Negative transverse time-averaged Poynting vector components can arise, while the longitudinal counterparts are always positive. Moreover, the analysis is extended to compute the optical radiation force and spin torque vector components on a lossless dielectric prolate subwavelength spheroid in the framework of the electric dipole approximation. The results show that negative forces and spin torques sign reversal arise depending on the derivative order of the beam, the polarization of the magnetic vector potential, and the orientation of the subwavelength prolate spheroid in space. The spin torque sign reversal suggests that counter-clockwise or clockwise rotations around the center of mass of the subwavelength spheroid can occur. The results find useful applications in single Airy light-sheet tweezers, particle manipulation, handling, and rotation applications to name a few examples.

  19. Gyrotropic Guiding-Center Fluid Theory for Turbulent Inhomogeneous Magnetized Plasma

    DTIC Science & Technology

    2006-01-01

    this paper, a new fluid theory is given in the guiding-center and gyrotropic approximation which is derivable from the Vlasov-Maxwell equations . The... equations can be solved (1) by using measurements of the low-order velocity moments to specify the initial and boundary conditions. 15. SUBJECT TERMS...Vlasov-Maxwell equations Fokker-Planck operator guiding-center Inhomogeneous, gyrotropic, magnetized plasma 16. SECURITY CLASSIFICATION OF: 17

  20. Periodic and rational solutions of the reduced Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Wei, Jiao; Wang, Xin; Geng, Xianguo

    2018-06-01

    We investigate the reduced Maxwell-Bloch (RMB) equations which describe the propagation of short optical pulses in dielectric materials with resonant non-degenerate transitions. The general Nth-order periodic solutions are provided by means of the Darboux transformation. The Nth-order degenerate periodic and Nth-order rational solutions containing several free parameters with compact determinant representations are derived from two different limiting cases of the obtained general periodic solutions, respectively. Explicit expressions of these solutions from first to second order are presented. Typical nonlinear wave patterns for the four components of the RMB equations such as single-peak, double-peak-double-dip, double-peak and single-dip structures in the second-order rational solutions are shown. This kind of the rational solutions correspond to rogue waves in the reduced Maxwell-Bloch equations.

  1. Propagation of electromagnetic soliton in a spin polarized current driven weak ferromagnetic nanowire

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, V.; Kavitha, L.; Gopi, D.

    2017-11-01

    We investigate the nonlinear spin dynamics of a spin polarized current driven anisotropic ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction (DMI) under the influence of electromagnetic wave (EMW) propagating along the axis of the nanowire. The magnetization dynamics and electromagnetic wave propagation in the ferromagnetic nanowire with weak anti-symmetric interaction is governed by a coupled vector Landau-Lifshitz-Gilbert and Maxwell's equations. These coupled nonlinear vector equations are recasted into the extended derivative nonlinear Schrödinger (EDNLS) equation in the framework of reductive perturbation method. As it is well known, the modulational instability is a precursor for the emergence of localized envelope structures of various kinds, we compute the instability criteria for the weak ferromagnetic nanowire through linear stability analysis. Further, we invoke the homogeneous balance method to construct kink and anti-solitonic like electromagnetic (EM) soliton profiles for the EDNLS equation. We also explore the appreciable effect of the anti-symmetric weak interaction on the magnetization components of the propagating EM soliton. We find that the combination of spin-polarized current and the anti-symmetric DMI have a profound effect on the propagating EMW in a weak ferromagnetic nanowire. Thus, the anti-symmetric DMI in a spin polarized current driven ferromagnetic nanowire supports the lossless propagation of EM solitons, which may have potential applications in magnetic data storage devices.

  2. Analogy between the Navier-Stokes equations and Maxwell's equations: Application to turbulence

    NASA Astrophysics Data System (ADS)

    Marmanis, Haralambos

    1998-06-01

    A new theory of turbulence is initiated, based on the analogy between electromagnetism and turbulent hydrodynamics, for the purpose of describing the dynamical behavior of averaged flow quantities in incompressible fluid flows of high Reynolds numbers. The starting point is the recognition that the vorticity (w=∇×u) and the Lamb vector (l=w×u) should be taken as the kernel of a dynamical theory of turbulence. The governing equations for these fields can be obtained by the Navier-Stokes equations, which underlie the whole evolution. Then whatever parts are not explicitly expressed as a function of w or l only are gathered and treated as source terms. This is done by introducing the concepts of turbulent charge and turbulent current. Thus we are led to a closed set of linear equations for the averaged field quantities. The premise is that the earlier introduced sources will be apt for modeling, in the sense that their distribution will depend only on the geometry and the total energetics of the flow. The dynamics described in the preceding manner is what we call the metafluid dynamics.

  3. Topological Maxwell Metal Bands in a Superconducting Qutrit

    NASA Astrophysics Data System (ADS)

    Tan, Xinsheng; Zhang, Dan-Wei; Liu, Qiang; Xue, Guangming; Yu, Hai-Feng; Zhu, Yan-Qing; Yan, Hui; Zhu, Shi-Liang; Yu, Yang

    2018-03-01

    We experimentally explore the topological Maxwell metal bands by mapping the momentum space of condensed-matter models to the tunable parameter space of superconducting quantum circuits. An exotic band structure that is effectively described by the spin-1 Maxwell equations is imaged. Threefold degenerate points dubbed Maxwell points are observed in the Maxwell metal bands. Moreover, we engineer and observe the topological phase transition from the topological Maxwell metal to a trivial insulator, and report the first experiment to measure the Chern numbers that are higher than one.

  4. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.

    PubMed

    Kaminer, Ido; Nemirovsky, Jonathan; Segev, Mordechai

    2012-08-13

    We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.

  5. Maxwell's second- and third-order equations of transfer for non-Maxwellian gases

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1992-01-01

    Condensed algebraic forms for Maxwell's second- and third-order equations of transfer are developed for the case of molecules described by either elastic hard spheres, inverse-power potentials, or by Bird's variable hard-sphere model. These hardly reduced, yet exact, equations provide a new point of origin, when using the moment method, in seeking approximate solutions in the kinetic theory of gases for molecular models that are physically more realistic than that provided by the Maxwell model. An important by-product of the analysis when using these second- and third-order relations is that a clear mathematical connection develops between Bird's variable hard-sphere model and that for the inverse-power potential.

  6. Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.

  7. Vlasov-Maxwell and Vlasov-Poisson equations as models of a one-dimensional electron plasma

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Cooper, J.

    1983-01-01

    The Vlasov-Maxwell and Vlasov-Poisson systems of equations for a one-dimensional electron plasma are defined and discussed. A method for transforming a solution of one system which is periodic over a bounded or unbounded spatial interval to a similar solution of the other is constructed.

  8. Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes

    NASA Astrophysics Data System (ADS)

    Araneda, Bernardo

    2018-04-01

    We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.

  9. Great moments in kinetic theory: 150 years of Maxwell’s (other) equations

    NASA Astrophysics Data System (ADS)

    Robson, Robert E.; Mehrling, Timon J.; Osterhoff, Jens

    2017-11-01

    In 1867, just two years after laying the foundations of electromagnetism, J. Clerk Maxwell presented a fundamental paper on kinetic gas theory, in which he described the evolution of the gas in terms of certain ‘moments’ of its velocity distribution function. This inspired Ludwig Boltzmann to formulate his famous kinetic equation, from which followed the H-theorem and the connection with entropy. On the occasion of the 150th anniversary of publication of Maxwell's paper, we review the Maxwell-Boltzmann formalism and discuss how its generality and adaptability enable it to play a key role in describing the behaviour of a variety of systems of current interest, in both gaseous and condensed matter, and in modern-day physics and technologies which Maxwell and Boltzmann could not possibly have foreseen. In particular, we illustrate the relevance and applicability of Maxwell's formalism to the dynamic field of plasma-wakefield acceleration.

  10. Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2005-10-31

    We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in ordermore » to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.« less

  11. The Poynting-Stokes Tensor And Radiative Transfer In Turbid Media: The Microphysical Paradigm

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.

    2010-12-01

    This paper solves the long-standing problem of establishing the fundamental physical link between the radiative transfer theory and macroscopic electromagnetics in the case of elastic scattering by a sparse discrete random medium. The radiative transfer equation (RTE) is derived directly from the macroscopic Maxwell equations by computing theoretically the appropriately defined so-called Poynting-Stokes tensor carrying informa-tion on both the direction, magnitude, and polarization characteristics of lo-cal electromagnetic energy flow. Our derivation from first principles shows that to compute the local Poynting vector averaged over a sufficiently long period of time, one can solve the RTE for the direction-dependent specific intensity column vector and then integrate the direction-weighted specific intensity over all directions. Furthermore, we demonstrate that the specific intensity (or specific intensity column vector) can be measured with a well-collimated radiometer (photopolarimeter), which provides the ultimate physical justification for the use of such instruments in radiation-budget and particle-characterization applications. However, the specific intensity cannot be interpreted in phenomenological terms as signifying the amount of elec-tromagnetic energy transported in a given direction per unit area normal to this direction per unit time per unit solid angle. Also, in the case of a densely packed scattering medium the relation of the measurement with a well-collimated radiometer to the time-averaged local Poynting vector re-mains uncertain, and the theoretical modeling of this measurement is likely to require a much more complicated approach than solving an RTE.

  12. Maxwell-Higgs equation on higher dimensional static curved spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulyanto, E-mail: mulyanto37@gmail.com; Akbar, Fiki Taufik, E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby Eka, E-mail: bobby@fi.itb.ac.id

    In this paper we consider a class of solutions of Maxwell-Higgs equation in higher dimensional static curved spacetimes called Schwarzchild de-Sitter spacetimes. We obtain the general form of the electric fields and magnetic fields in background Schwarzchild de-Sitter spacetimes. However, determining the interaction between photons with the Higgs scalar fields is needed further studies.

  13. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  14. Physics of light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doria, R.

    A fourth interpretation for the principle of light invariance is proposed. After Maxwell equations, relativity, Lorentz group, another possibility stands into consider the Lorentz group representations as species. By specie one means fields with same nature under light invariance. For instance, given a ((1/2),(1/2)) representation, instead of just one specific field, we should associate to it the potential fields specie. Thus, starting from such fields specie interpretation the features of a certain potential field A{sub {mu}I} will be determined in terms of its associated fields set {l_brace}A{sub {mu}I}{r_brace}, where I means a diversity index. It says that, the original fieldmore » equation to be searched for a given field description is that one corresponding to the associated group of fields, and not more, for the field being taken isolated. It introduces the meaning of parts enfolded in the whole through whole relativistic equations. There is a more primitive equation to be understood. Instead Maxwell equation this fourth light invariance interpretation is guiding us to a more basic equation describing a fields set {l_brace}A{sub {mu}I}{r_brace}. It will be entitled as Global Maxwell equation. Three steps are necessary for characterizing this Global Maxwell equation. The first one is to derive on abelian terms a generic expression for the fields set {l_brace}A{sub {mu}I}{r_brace}. Further, show the diversity between these associated fields. Prove that every field carries a different quantum number (spin, mass, charges; C, P, T, CPT). The third one is on the photon singularity. Being the light invariance porter, it should be distinguished from others fields. This is done through the group gauge directive symmetry and Noether current. A Global Lorentz force complements the Global Maxwell by introducing three types of force. The first one generalizes the usual Lorentz force while the last two introduce relationships between fields and masses and fields with fields. A Physics of Light is derived. Based on such interpretation relating fields with same Lorentz nature, the electromagnetism is enlarged. The electromagnetic phenomena is not more restricted to Maxwell and electric charge. It englobes Maxwell and produces new types of electromagnetic fields and sectors. It centers the photon at its origin, new aspects as photonic charges and selfinteracting photons are obtained. As a case of this new electromagnetic spectrum one can take the set {l_brace}{gamma}Z{sup 0},W{sup {+-}}{r_brace}. It provides an electromagnetism involving photonic, massive, neutral, electric charged sectors which may antecede the electroweak unification.« less

  15. Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevastianov, L. A., E-mail: sevast@sci.pfu.edu.ru; Egorov, A. A.; Sevastyanov, A. L.

    2013-02-15

    Basic steps in developing an original method of adiabatic modes that makes it possible to solve the direct and inverse problems of simulating and designing three-dimensional multilayered smoothly irregular open waveguide structures are described. A new element in the method is that an approximate solution of Maxwell's equations is made to obey 'inclined' boundary conditions at the interfaces between themedia being considered. These boundary conditions take into account the obliqueness of planes tangent to nonplanar boundaries between the media and lead to new equations for coupled vector quasiwaveguide hybrid adiabatic modes. Solutions of these equations describe the phenomenon of 'entanglement'more » of two linear polarizations of an irregular multilayered waveguide, the appearance of a new mode in an entangled state, and the effect of rotation of the polarization plane of quasiwaveguide modes. The efficiency of the method is demonstrated by considering the example of numerically simulating a thin-film generalized waveguide Lueneburg lens.« less

  16. Self-consistent frequencies of the electron-photon system

    NASA Astrophysics Data System (ADS)

    Hawton, Margaret

    1993-09-01

    The Heisenberg equations describing the dynamics of coupled Fermion photon operators are solved self-consistently. Photon modes, for which ω~=kc, and particlelike Bohr modes with frequencies ωnI~=(En-EI)/ħ are both approximate solutions to the system of equations that results if the current density is the source in the operator Maxwell equations. Current fluctuations associated with the Bohr modes and required by a fluctuation-dissipation theorem are attributed to the point nature of the particle. The interaction energy is given by the Casimir-force-like expression ΔE=1/2ħtsum(ΔωnI+Δωkc) or by the expectation value of 1/2(qcphi-qp^.A^/mc+q2A2/mc2). It is verified that the equal-time momentum-density and vector-potential operators commute if the contributions of both the Bohr modes and vacuum fluctuations are included. Both electromagnetic and Bohr or radiation-reaction modes are found to contribute equally to spontaneous emission and to the Lamb shift.

  17. Algorithm development for Maxwell's equations for computational electromagnetism

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.

    1990-01-01

    A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.

  18. Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.

    PubMed

    Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuchu, E-mail: chenchuchu@lsec.cc.ac.cn; Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn; Zhang, Liying, E-mail: lyzhang@lsec.cc.ac.cn

    Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the correspondingmore » discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.« less

  20. A geometric description of Maxwell field in a Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Jezierski, Jacek; Smołka, Tomasz

    2016-06-01

    We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein-Gordon equation called Fackerell-Ipser equation. Our model is based on conformal Yano-Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.

  1. Communication on SWIPT and EH Using Electromagnetic Behaviour for Power Allocation in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Khan, Sohel Rana; Ajij, Sayyad

    2017-12-01

    This review paper focuses on the basic relations between wireless power transfer, wireless information transfer and combined phenomenon of simultaneous wireless information and power transfer. The authors reviewed and discussed electromagnetic fields behaviour (EMB) for enhancing the power allocation strategies (PAS) in energy harvesting (EH) wireless communication systems. Further, this paper presents relations between Friis transmission equation and Maxwell's equations to be used in propagation models for reduction in specific absorption rate (SAR). This paper provides a review of various methods and concepts reported in earlier works. This paper also reviews Poynting vector and power densities along with boundary conditions for antennas and human body. Finally, this paper explores the usage of electromagnetic behaviour for the possible enhancement in power saving methods for electromagnetic behaviour centered-wireless energy harvesting (EMBC-WEH). At the same time, possibilities of PAS for reduction in SAR are discussed.

  2. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    NASA Astrophysics Data System (ADS)

    Rivera, R.; Villarroel, D.

    2002-10-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.

  3. A finite element beam propagation method for simulation of liquid crystal devices.

    PubMed

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  4. Book Reviews

    NASA Astrophysics Data System (ADS)

    Horner, Joseph L.

    1987-04-01

    Progress in the fields of integrated optics and fiber optics is continuing at a rapid pace. Recognizing this trend, the goal of the author is to provide an introductory textbook on time-harmonic electromagnetic theory, with an emphasis on optical rather than microwave technologies. The book is appropriate for an upper-level undergraduate or graduate course. Each chapter includes examples of problems. The book focuses on several areas of prime importance to intergrated optics. These include dielectric waveguide analysis, couple-mode thoery, Bragg scattering, and prism coupling There is very little coverage of active components such as electro-optic modulators and switches. The author assumes the reader has a working knowledge of vector calculus and is familiar with Maxwell's equations.

  5. Field equations from Killing spinors

    NASA Astrophysics Data System (ADS)

    Açık, Özgür

    2018-02-01

    From the Killing spinor equation and the equations satisfied by their bilinears, we deduce some well-known bosonic and fermionic field equations of mathematical physics. Aside from the trivially satisfied Dirac equation, these relativistic wave equations in curved spacetimes, respectively, are Klein-Gordon, Maxwell, Proca, Duffin-Kemmer-Petiau, Kähler, twistor, and Rarita-Schwinger equations. This result shows that, besides being special kinds of Dirac fermions, Killing fermions can be regarded as physically fundamental. For the Maxwell case, the problem of motion is analysed in a reverse manner with respect to the studies of Einstein-Groemer-Infeld-Hoffmann and Jean Marie Souriau. In the analysis of the gravitino field, a generalised 3-ψ rule is found which is termed the vanishing trace constraint.

  6. L{sup 2}-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Seung-Yeal, E-mail: syha@snu.ac.kr; Xiao, Qinghua, E-mail: pdexqh@hotmail.com; Xiong, Linjie, E-mail: xlj@whu.edu.cn

    2013-12-15

    We present a L{sup 2}-stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L{sup 2}-distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L{sup 2}-stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L{sup 2} stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on themore » L{sup 2}-stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L{sup 2}-stability estimate. This is the first result on the L{sup 2}-stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions.« less

  7. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  8. Modeling the initial mechanical response and yielding behavior of gelled crude oil

    NASA Astrophysics Data System (ADS)

    Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang

    2018-05-01

    The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.

  9. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  10. Geometric calculus-based postulates for the derivation and extension of the Maxwell equations

    NASA Astrophysics Data System (ADS)

    McClellan, Gene E.

    2012-09-01

    Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.

  11. Existence of topological multi-string solutions in Abelian gauge field theories

    NASA Astrophysics Data System (ADS)

    Han, Jongmin; Sohn, Juhee

    2017-11-01

    In this paper, we consider a general form of self-dual equations arising from Abelian gauge field theories coupled with the Einstein equations. By applying the super/subsolution method, we prove that topological multi-string solutions exist for any coupling constant, which improves previously known results. We provide two examples for application: the self-dual Einstein-Maxwell-Higgs model and the gravitational Maxwell gauged O(3) sigma model.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Xiao, Jianyuan; Zhang, Ruili

    Hamiltonian time integrators for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, which produces five exactly solvable subsystems. Each subsystem is a Hamiltonian system equipped with the Morrison-Marsden-Weinstein Poisson bracket. Compositions of the exact solutions provide Poisson structure preserving/Hamiltonian methods of arbitrary high order for the Vlasov-Maxwell equations. They are then accurate and conservative over a long time because of the Poisson-preserving nature.

  13. Unification of force and substance.

    PubMed

    Wilczek, Frank

    2016-08-28

    Maxwell's mature presentation of his equations emphasized the unity of electromagnetism and mechanics, subsuming both as 'dynamical systems'. That intuition of unity has proved both fruitful, as a source of pregnant concepts, and broadly inspiring. A deep aspect of Maxwell's work is its use of redundant potentials, and the associated requirement of gauge symmetry. Those concepts have become central to our present understanding of fundamental physics, but they can appear to be rather formal and esoteric. Here I discuss two things: the physical significance of gauge invariance, in broad terms; and some tantalizing prospects for further unification, building on that concept, that are visible on the horizon today. If those prospects are realized, Maxwell's vision of the unity of field and substance will be brought to a new level.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).

  14. A Nonlinear Gyrokinetic Vlasov-Maxwell System for High-frequency Simulation in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zhang, Wenlu; Lin, Jingbo; Li, Ding; Dong, Chao

    2016-10-01

    A nonlinear gyrokinetic Vlasov equation is derived through the Lie-perturbation method to the Lagrangian and Hamiltonian systems in extanded phase space. The gyrokinetic Maxwell equations are derived in terms of the moments of gyrocenter phase-space distribution through the push-forward and pull-back representations, where the polarization and magnetization effects of gyrocenter are retained. The goal of this work is to construct a global nonlinear gyrokinetic vlasov-maxwell system for high-frequency simulation in toroidal geometry relevent for ion cyclotron range of frequencies (ICRF) waves heating and lower hybrid wave current driven (LHCD). Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.

  15. The azimuthal component of Poynting's vector and the angular momentum of light

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Speirits, Fiona C.; Gilson, Claire R.; Allen, L.; Barnett, Stephen M.

    2015-12-01

    The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms.

  16. Rigorous vector wave propagation for arbitrary flat media

    NASA Astrophysics Data System (ADS)

    Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.

    2017-08-01

    Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 10-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 10-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.

  17. Dielectric and permeability

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1982-01-01

    Using the unabridged Maxwell equations (including vectors D, E and H) new effects in collisionless plasmas are uncovered. In a steady state, it is found that spatially varying energy density of the electric field (E perpendicular) orthogonal to B produces electric current leading, under certain conditions, to the relationship P perpendicular+B(2)/8 pi-epsilon E perpendicular(2)/8 pi = constant, where epsilon is the dielectric constant of the plasma for fields orthogonal to B. In steady state quasi-two-dimensional flows in plasmas, a general relationship between the components of electric field parallel and perpendicular to B is found. These effects are significant in goephysical and astrophysical plasmas. The general conditions for a steady state in collisionless plasma are deduced. With time variations in a plasma, slow compared to ion-gyroperiod, there is a general current, (j*), which includes the well-known polarisation current, given by J*=d/dt (ExM)+(PxB)xB B(-2) where M and P are the magnetization and polarization vectors respectively.

  18. Knotted optical vortices in exact solutions to Maxwell's equations

    NASA Astrophysics Data System (ADS)

    de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk

    2017-05-01

    We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.

  19. Modeling of heat conduction via fractional derivatives

    NASA Astrophysics Data System (ADS)

    Fabrizio, Mauro; Giorgi, Claudio; Morro, Angelo

    2017-09-01

    The modeling of heat conduction is considered by letting the time derivative, in the Cattaneo-Maxwell equation, be replaced by a derivative of fractional order. The purpose of this new approach is to overcome some drawbacks of the Cattaneo-Maxwell equation, for instance possible fluctuations which violate the non-negativity of the absolute temperature. Consistency with thermodynamics is shown to hold for a suitable free energy potential, that is in fact a functional of the summed history of the heat flux, subject to a suitable restriction on the set of admissible histories. Compatibility with wave propagation at a finite speed is investigated in connection with temperature-rate waves. It follows that though, as expected, this is the case for the Cattaneo-Maxwell equation, the model involving the fractional derivative does not allow the propagation at a finite speed. Nevertheless, this new model provides a good description of wave-like profiles in thermal propagation phenomena, whereas Fourier's law does not.

  20. Modeling of Electromagnetic Scattering by Discrete and Discretely Heterogeneous Random Media by Using Numerically Exact Solutions of the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2017-01-01

    In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.

  1. Numerical simulations of electromagnetic scattering by Solar system objects

    NASA Astrophysics Data System (ADS)

    Dlugach, Janna M.

    2016-11-01

    Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.

  2. Two-dimensional fast marching for geometrical optics.

    PubMed

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-03

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

  3. Scalable Preconditioners for Structure Preserving Discretizations of Maxwell Equations in First Order Form

    DOE PAGES

    Phillips, Edward Geoffrey; Shadid, John N.; Cyr, Eric C.

    2018-05-01

    Here, we report multiple physical time-scales can arise in electromagnetic simulations when dissipative effects are introduced through boundary conditions, when currents follow external time-scales, and when material parameters vary spatially. In such scenarios, the time-scales of interest may be much slower than the fastest time-scales supported by the Maxwell equations, therefore making implicit time integration an efficient approach. The use of implicit temporal discretizations results in linear systems in which fast time-scales, which severely constrain the stability of an explicit method, can manifest as so-called stiff modes. This study proposes a new block preconditioner for structure preserving (also termed physicsmore » compatible) discretizations of the Maxwell equations in first order form. The intent of the preconditioner is to enable the efficient solution of multiple-time-scale Maxwell type systems. An additional benefit of the developed preconditioner is that it requires only a traditional multigrid method for its subsolves and compares well against alternative approaches that rely on specialized edge-based multigrid routines that may not be readily available. Lastly, results demonstrate parallel scalability at large electromagnetic wave CFL numbers on a variety of test problems.« less

  4. Scalable Preconditioners for Structure Preserving Discretizations of Maxwell Equations in First Order Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Edward Geoffrey; Shadid, John N.; Cyr, Eric C.

    Here, we report multiple physical time-scales can arise in electromagnetic simulations when dissipative effects are introduced through boundary conditions, when currents follow external time-scales, and when material parameters vary spatially. In such scenarios, the time-scales of interest may be much slower than the fastest time-scales supported by the Maxwell equations, therefore making implicit time integration an efficient approach. The use of implicit temporal discretizations results in linear systems in which fast time-scales, which severely constrain the stability of an explicit method, can manifest as so-called stiff modes. This study proposes a new block preconditioner for structure preserving (also termed physicsmore » compatible) discretizations of the Maxwell equations in first order form. The intent of the preconditioner is to enable the efficient solution of multiple-time-scale Maxwell type systems. An additional benefit of the developed preconditioner is that it requires only a traditional multigrid method for its subsolves and compares well against alternative approaches that rely on specialized edge-based multigrid routines that may not be readily available. Lastly, results demonstrate parallel scalability at large electromagnetic wave CFL numbers on a variety of test problems.« less

  5. Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan

    2017-12-01

    This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.

  6. Hidden in Plain View: The Material Invariance of Maxwell-Hertz-Lorentz Electrodynamics

    NASA Astrophysics Data System (ADS)

    Christov, C. I.

    2006-04-01

    Maxwell accounted for the apparent elastic behavior of the electromagnetic field through augmenting Ampere's law by the so-called displacement current much in the same way that he treated the viscoelasticity of gases. Original Maxwell constitutive relations for both electrodynamics and fluid dynamics were not material invariant, while combin- ing Faraday's law and the Lorentz force makes the first of Maxwell's equation material invariant. Later on, Oldroyd showed how to make a viscoelastic constitutive law mate- rial invariant. The main assumption was that the proper description of a constitutive law must be material invariant. Assuming that the electromagnetic field is a material field, we show here that if the upper convected Oldroyd derivative (related to Lie derivative) is used, the displacement current becomes material invariant. The new formulation ensures that the equation for conser- vation of charge is also material invariant which vindicates the choice of Oldroyd derivative over the standard convec- tive derivative. A material invariant field model is by ne- cessity Galilean invariant. We call the material field (the manifestation of which are the equations of electrodynam- ics the metacontinuum), in order to distinguish it form the standard material continua.

  7. Charged anti-de Sitter BTZ black holes in Maxwell-f(T) gravity

    NASA Astrophysics Data System (ADS)

    Nashed, G. G. L.; Capozziello, S.

    2018-05-01

    Inspired by the Bañados, Teitelboim and Zanelli (BTZ) formalism, we discuss the Maxwell-f(T) gravity in (2 + 1) dimensions. The main task is to derive exact solutions for a special form of f(T) = T + 𝜖T2, with T being the torsion scalar of Weitzenböck geometry. To this end, a triad field is applied to the equations of motion of charged f(T) and sets of circularly symmetric noncharged and charged solutions have been derived. We show that, in the charged case, the monopole-like and the ln terms are linked by a correlative constant despite the known results in teleparallel geometry and its extensions.39 Furthermore, it is possible to show that the event horizon is not identical with the Cauchy horizon due to such a constant. The singularities and the horizons of these black holes are examined: they are new and have no analogue in the literature due to the fact that their curvature singularities are soft. We calculate the energy content of these solutions by using the general vector form of the energy-momentum within the framework of f(T) gravity. Finally, some thermodynamical quantities, like entropy and Hawking temperature, are derived.

  8. Finite-surface method for the Maxwell equations with corner singularities

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Yarrow, Maurice

    1994-01-01

    The finite-surface method for the two-dimensional Maxwell equations in generalized coordinates is extended to treat perfect conductor boundaries with sharp corners. Known singular forms of the grid and the electromagnetic fields in the neighborhood of each corner are used to obtain accurate approximations to the surface and line integrals appearing in the method. Numerical results are presented for a harmonic plane wave incident on a finite flat plate. Comparisons with exact solutions show good agreement.

  9. Spacetimes with Killing tensors. [for Einstein-Maxwell fields with certain spinor indices

    NASA Technical Reports Server (NTRS)

    Hughston, L. P.; Sommers, P.

    1973-01-01

    The characteristics of the Killing equation and the Killing tensor are discussed. A conformal Killing tensor is of interest inasmuch as it gives rise to a quadratic first integral for null geodesic orbits. The Einstein-Maxwell equations are considered together with the Bianchi identity and the conformal Killing tensor. Two examples for the application of the considered relations are presented, giving attention to the charged Kerr solution and the charged C-metric.

  10. Symplectic discretization for spectral element solution of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Zhao, Yanmin; Dai, Guidong; Tang, Yifa; Liu, Qinghuo

    2009-08-01

    Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.

  11. Vector breather-to-soliton transitions and nonlinear wave interactions induced by higher-order effects in an erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang

    2018-06-01

    Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.

  12. Convergence of the Full Compressible Navier-Stokes-Maxwell System to the Incompressible Magnetohydrodynamic Equations in a Bounded Domain II: Global Existence Case

    NASA Astrophysics Data System (ADS)

    Fan, Jishan; Li, Fucai; Nakamura, Gen

    2018-06-01

    In this paper we continue our study on the establishment of uniform estimates of strong solutions with respect to the Mach number and the dielectric constant to the full compressible Navier-Stokes-Maxwell system in a bounded domain Ω \\subset R^3. In Fan et al. (Kinet Relat Models 9:443-453, 2016), the uniform estimates have been obtained for large initial data in a short time interval. Here we shall show that the uniform estimates exist globally if the initial data are small. Based on these uniform estimates, we obtain the convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations for well-prepared initial data.

  13. Exact solutions for coupled Einstein, Dirac, Maxwell, and zero-mass scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, A.C.; Ray, D.

    1987-12-01

    Coupled equations for Einstein, Maxwell, Dirac, and zero-mass scalar fields studied by Krori, Bhattacharya, and Nandi are integrated for plane-symmetric time-independent case. It is shown that solutions do not exist for the plane-symmetric time-dependent case.

  14. A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2001-01-01

    A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.

  15. Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays

    PubMed Central

    Yao, Nan; Yan, Liang; Wang, Tianyi; Wang, Shaoping

    2017-01-01

    The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system’s redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation. PMID:29156577

  16. Far-Field Lorenz-Mie Scattering in an Absorbing Host Medium: Theoretical Formalism and FORTRAN Program

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Yang, Ping

    2018-01-01

    In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenzâ€"Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.

  17. Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays.

    PubMed

    Yao, Nan; Yan, Liang; Wang, Tianyi; Wang, Shaoping

    2017-11-18

    The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system's redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation.

  18. Far-field Lorenz-Mie scattering in an absorbing host medium: Theoretical formalism and FORTRAN program

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Yang, Ping

    2018-01-01

    In this paper we make practical use of the recently developed first-principles approach to electromagnetic scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an actual computational tool for the calculation of pertinent far-field optical observables in the context of the classical Lorenz-Mie theory. The paper summarizes the relevant theoretical formalism, explains various aspects of the corresponding numerical algorithm, specifies the input and output parameters of a FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html, and tabulates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one to solve the following two important problems: (i) simulate theoretically the reading of a remote well-collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small random group of spherical particles; and (ii) compute the single-scattering parameters that enter the vector radiative transfer equation derived directly from the Maxwell equations.

  19. On the existence of the field line solutions of the Einstein-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Vancea, Ion V.

    The main result of this paper is the proof that there are local electric and magnetic field configurations expressed in terms of field lines on an arbitrary hyperbolic manifold. This electromagnetic field is described by (dual) solutions of the Maxwell’s equations of the Einstein-Maxwell theory. These solutions have the following important properties: (i) they are general, in the sense that the knot solutions are particular cases of them and (ii) they reduce to the electromagnetic fields in the field line representation in the flat space-time. Also, we discuss briefly the real representation of these electromagnetic configurations and write down the corresponding Einstein equations.

  20. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  1. Characterization of thunderstorm induced Maxwell current densities in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Baginski, Michael Edward

    1989-01-01

    Middle atmospheric transient Maxwell current densities generated by lightning induced charge perturbations are investigated via a simulation of Maxwell's equations. A time domain finite element analysis is employed for the simulations. The atmosphere is modeled as a region contained within a right circular cylinder with a height of 110 km and radius of 80 km. A composite conductivity profile based on measured data is used when charge perturbations are centered about the vertical axis at altitudes of 6 and 10 km. The simulations indicate that the temporal structure of the Maxwell current density is relatively insensitive to altitude variation within the region considered. It is also shown that the electric field and Maxwell current density are not generally aligned.

  2. Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Huang, Li-Li; Qiao, Zhi-Jun; Chen, Yong

    2018-02-01

    Based on nonlocal symmetry method, localized excitations and interactional solutions are investigated for the reduced Maxwell-Bloch equations. The nonlocal symmetries of the reduced Maxwell-Bloch equations are obtained by the truncated Painleve expansion approach and the Mobious invariant property. The nonlocal symmetries are localized to a prolonged system by introducing suitable auxiliary dependent variables. The extended system can be closed and a novel Lie point symmetry system is constructed. By solving the initial value problems, a new type of finite symmetry transformations is obtained to derive periodic waves, Ma breathers and breathers travelling on the background of periodic line waves. Then rich exact interactional solutions are derived between solitary waves and other waves including cnoidal waves, rational waves, Painleve waves, and periodic waves through similarity reductions. In particular, several new types of localized excitations including rogue waves are found, which stem from the arbitrary function generated in the process of similarity reduction. By computer numerical simulation, the dynamics of these localized excitations and interactional solutions are discussed, which exhibit meaningful structures.

  3. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    PubMed

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  4. Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case

    NASA Astrophysics Data System (ADS)

    Fernández Tío, Julián M.; Dotti, Gustavo

    2017-06-01

    Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014), 10.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F =δ (Fαβ *Fα β) and Q =δ (1/48 Cαβ γ δ *Cα β γ δ), where Cα β γ δ is the Weyl tensor, Fα β is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q . For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.

  5. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    DOE PAGES

    Su, Hongling; Li, Shengtai

    2016-02-03

    In this study, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete versionmore » of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. Finally, we also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.« less

  6. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hongling; Li, Shengtai

    In this study, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete versionmore » of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. Finally, we also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.« less

  7. CSR Fields: Direct Numerical Solution of the Maxwell___s Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novokhatski, A.; /SLAC

    2011-06-22

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particlemore » accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in [1]. Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in [2]. We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields [3].« less

  8. First-Principles Modeling Of Electromagnetic Scattering By Discrete and Discretely Heterogeneous Random Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  9. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.

    PubMed

    Mishchenko, Michael I; Dlugach, Janna M; Yurkin, Maxim A; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R Lee; Travis, Larry D; Yang, Ping; Zakharova, Nadezhda T

    2016-05-16

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ , or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  10. Bianchi class B spacetimes with electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kei

    2012-02-01

    We carry out a thorough analysis on a class of cosmological space-times which admit three spacelike Killing vectors of Bianchi class B and contain electromagnetic fields. Using dynamical system analysis, we show that a family of electro-vacuum plane-wave solutions of the Einstein-Maxwell equations is the stable attractor for expanding universes. Phase dynamics are investigated in detail for particular symmetric models. We integrate the system exactly for some special cases to confirm the qualitative features. Some of the obtained solutions have not been presented previously to the best of our knowledge. Finally, based on those analyses, we discuss the relation between those homogeneous models and perturbations of open Friedmann-Lemaitre-Robertson-Walker universes. We argue that the electro-vacuum plane-wave modes correspond to a certain long-wavelength limit of electromagnetic perturbations.

  11. A note on the Hyper-CR equation, and gauged N = 2 supergravity

    NASA Astrophysics Data System (ADS)

    Dunajski, Maciej; Gutowski, Jan; Sabra, Wafic

    2018-05-01

    We construct a new class of solutions to the dispersionless hyper-CR equation, and show how any solution to this equation gives rise to a supersymmetric Einstein-Maxwell cosmological space-time in (3 + 1)-dimensions.

  12. Global 3-D FDTD Maxwell's-Equations Modeling of Ionospheric Disturbances Associated with Earthquakes Using an Optimized Geodesic Grid

    NASA Astrophysics Data System (ADS)

    Simpson, J. J.; Taflove, A.

    2005-12-01

    We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd. ed. Norwood, MA: Artech House, 2005. [2] M. Hayakawa, K. Ohta, A. P. Nickolaenko, and Y. Ando, "Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan," Ann. Geophysicae, in press. [3] J. J. Simpson and A. Taflove, "3-D FDTD modeling of ULF/ELF propagation within the global Earth-ionosphere cavity using an optimized geodesic grid," Proc. IEEE AP-S International Symposium, Washington, D.C., July 2005.

  13. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less

  14. Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.; Wang, Lu; Madsen, J.

    2009-02-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E ×B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Generalized ordering takes ρi≪ρθi˜LE˜Lp≪R [here ρi is the thermal ion Larmor radius and ρθi=B /(Bθρi)], as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. k⊥ρi˜1 is assumed for generality, and the relative fluctuation amplitudes eδϕ /Ti˜δB/B are kept up to the second order. Extending the electrostatic theory in the presence of high E ×B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pullback transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.

  15. Approximate isotropic cloak for the Maxwell equations

    NASA Astrophysics Data System (ADS)

    Ghosh, Tuhin; Tarikere, Ashwin

    2018-05-01

    We construct a regular isotropic approximate cloak for the Maxwell system of equations. The method of transformation optics has enabled the design of electromagnetic parameters that cloak a region from external observation. However, these constructions are singular and anisotropic, making practical implementation difficult. Thus, regular approximations to these cloaks have been constructed that cloak a given region to any desired degree of accuracy. In this paper, we show how to construct isotropic approximations to these regularized cloaks using homogenization techniques so that one obtains cloaking of arbitrary accuracy with regular and isotropic parameters.

  16. Annual Review of Progress in Applied Computational Electromagnetics (5th), Held in Monterey, California on March 20-24 1989

    DTIC Science & Technology

    1989-01-01

    circuit of the field equations of Maxwell ", Proc IRE, vol 32, Kay 1944, pp 360-367. 3. S. Akhtarzad P.B. Johns ,"Solution of Maxwell’s equations in three...ELFCTROMAGNETICS APPLIED TO INTEGRATED CIRCUIT MICROLITHOGRAPHY AND METROLOGY John C . Mould Jr. & Gregory L Wojc* Welinger Associates, 4410 El Camino Real, Los...1AICROLITHOGRAPHY AND METROLOGY John C . Mould Jr. & Gregory L Wo c * Weldlinger Associates, 4410 El Camino Real. Los Allos, Ca. 94022 1. Pholoreslat

  17. On a remarkable electromagnetic field in the Einstein Universe

    NASA Astrophysics Data System (ADS)

    Kopiński, Jarosław; Natário, José

    2017-06-01

    We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.

  18. The Crank Nicolson Time Integrator for EMPHASIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, Duncan Alisdair Odum; Love, Edward; Kramer, Richard Michael Jack

    2018-03-01

    We investigate the use of implicit time integrators for finite element time domain approxi- mations of Maxwell's equations in vacuum. We discretize Maxwell's equations in time using Crank-Nicolson and in 3D space using compatible finite elements. We solve the system by taking a single step of Newton's method and inverting the Eddy-Current Schur complement allowing for the use of standard preconditioning techniques. This approach also generalizes to more complex material models that can include the Unsplit PML. We present verification results and demonstrate performance at CFL numbers up to 1000.

  19. Particle-like solutions of the Einstein-Dirac-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    1999-08-01

    We consider the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Soliton-like solutions are constructed numerically. The stability and the properties of the ground state solutions are discussed for different values of the electromagnetic coupling constant. We find solutions even when the electromagnetic coupling is so strong that the total interaction is repulsive in the Newtonian limit. Our solutions are regular and well-behaved; this shows that the combined electromagnetic and gravitational self-interaction of the Dirac particles is finite.

  20. Exact models for isotropic matter

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  1. A Generalization of the Einstein-Maxwell Equations

    NASA Astrophysics Data System (ADS)

    Cotton, Fredrick

    2016-03-01

    The proposed modifications of the Einstein-Maxwell equations include: (1) the addition of a scalar term to the electromagnetic side of the equation rather than to the gravitational side, (2) the introduction of a 4-dimensional, nonlinear electromagnetic constitutive tensor and (3) the addition of curvature terms arising from the non-metric components of a general symmetric connection. The scalar term is defined by the condition that a spherically symmetric particle be force-free and mathematically well-behaved everywhere. The constitutive tensor introduces two auxiliary fields which describe the particle structure. The additional curvature terms couple both to particle solutions and to electromagnetic and gravitational wave solutions. http://sites.google.com/site/fwcotton/em-30.pdf

  2. Stefan-Maxwell Relations and Heat Flux with Anisotropic Transport Coefficients for Ionized Gases in a Magnetic Field with Application to the Problem of Ambipolar Diffusion

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2018-01-01

    The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.

  3. Efficient solution of 3D electromagnetic eddy-current problems within the finite volume framework of OpenFOAM

    NASA Astrophysics Data System (ADS)

    Beckstein, Pascal; Galindo, Vladimir; Vukčević, Vuko

    2017-09-01

    Eddy-current problems occur in a wide range of industrial and metallurgical applications where conducting material is processed inductively. Motivated by realising coupled multi-physics simulations, we present a new method for the solution of such problems in the finite volume framework of foam-extend, an extended version of the very popular OpenFOAM software. The numerical procedure involves a semi-coupled multi-mesh approach to solve Maxwell's equations for non-magnetic materials by means of the Coulomb gauged magnetic vector potential A and the electric scalar potential ϕ. The concept is further extended on the basis of the impressed and reduced magnetic vector potential and its usage in accordance with Biot-Savart's law to achieve a very efficient overall modelling even for complex three-dimensional geometries. Moreover, we present a special discretisation scheme to account for possible discontinuities in the electrical conductivity. To complement our numerical method, an extensive validation is completing the paper, which provides insight into the behaviour and the potential of our approach.

  4. Japanese Magsat Team. A: Crustal structure near Japan and its Antarctic Station. B: Electric currents and hydromagnetic waves in the ionosphere and the magnetosphere

    NASA Technical Reports Server (NTRS)

    Fukushima, N.; Maeda, H.; Yukutake, T.; Tanaka, M.; Oshima, S.; Ogawa, K.; Kawamura, M.; Miyzaki, Y.; Uyeda, S.; Kobayashi, K. (Principal Investigator)

    1981-01-01

    Efforts continue in compiling tapes which contain vector and scalar data decimated at an interval of 0.5 sec, together with time and position data. A map of the total force field anomaly around Japan was developed which shows a negative magnetic anomaly in the Okhotsk Sea. Examination of vector residuals from the MGST model shows that the total force perturbation is almost ascribable to the perturbation parallel to the main geomagnetic field and that the contribution from the perturbation transverse to the main field to the total force perturbation is negligibly small. The influences of ionospheric current with equatorial electroject and of the magnetospheric field aligned current on the dawn-dusk asymmetry of daily geomagnetic variations are being considered. The total amount of electric current flowing through the plane of the Magsat orbit loop was calculated by direct application of Maxwell's equation. Results show that the total electric current is 1 to 5 ampheres, and the current direction is either sunward or antisunward.

  5. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    NASA Astrophysics Data System (ADS)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  6. Measuring "c" with an LC Circuit

    ERIC Educational Resources Information Center

    Doran, Patrick; Hawk, William; Siegel, P. B.

    2014-01-01

    Maxwell's discovery of the relation between electricity, magnetism, and light was one of the most important ones in physics. With his added displacement current term, Maxwell showed that the equations of electricity and magnetism produced a radiation solution, electromagnetic (EM) radiation, that traveled with a speed of c=1/v(e0µ0). The…

  7. Comparing Teaching Approaches about Maxwell's Displacement Current

    ERIC Educational Resources Information Center

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-01-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment…

  8. Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.

    2007-01-01

    A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.

  9. Boundary states at reflective moving boundaries

    NASA Astrophysics Data System (ADS)

    Acosta Minoli, Cesar A.; Kopriva, David A.

    2012-06-01

    We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.

  10. A systematic approach to numerical dispersion in Maxwell solvers

    NASA Astrophysics Data System (ADS)

    Blinne, Alexander; Schinkel, David; Kuschel, Stephan; Elkina, Nina; Rykovanov, Sergey G.; Zepf, Matt

    2018-03-01

    The finite-difference time-domain (FDTD) method is a well established method for solving the time evolution of Maxwell's equations. Unfortunately the scheme introduces numerical dispersion and therefore phase and group velocities which deviate from the correct values. The solution to Maxwell's equations in more than one dimension results in non-physical predictions such as numerical dispersion or numerical Cherenkov radiation emitted by a relativistic electron beam propagating in vacuum. Improved solvers, which keep the staggered Yee-type grid for electric and magnetic fields, generally modify the spatial derivative operator in the Maxwell-Faraday equation by increasing the computational stencil. These modified solvers can be characterized by different sets of coefficients, leading to different dispersion properties. In this work we introduce a norm function to rewrite the choice of coefficients into a minimization problem. We solve this problem numerically and show that the minimization procedure leads to phase and group velocities that are considerably closer to c as compared to schemes with manually set coefficients available in the literature. Depending on a specific problem at hand (e.g. electron beam propagation in plasma, high-order harmonic generation from plasma surfaces, etc.), the norm function can be chosen accordingly, for example, to minimize the numerical dispersion in a certain given propagation direction. Particle-in-cell simulations of an electron beam propagating in vacuum using our solver are provided.

  11. Theories of Matter, Space and Time; Classical theories

    NASA Astrophysics Data System (ADS)

    Evans, N.; King, S. F.

    2017-12-01

    This book and its sequel ('Theories of Matter Space and Time: Quantum Theories') are taken from third and fourth year undergraduate Physics courses at Southampton University, UK. The aim of both books is to move beyond the initial courses in classical mechanics, special relativity, electromagnetism, and quantum theory to more sophisticated views of these subjects and their interdependence. The goal is to guide undergraduates through some of the trickier areas of theoretical physics with concise analysis while revealing the key elegance of each subject. The first chapter introduces the key areas of the principle of least action, an alternative treatment of Newtownian dynamics, that provides new understanding of conservation laws. In particular, it shows how the formalism evolved from Fermat's principle of least time in optics. The second introduces special relativity leading quickly to the need and form of four-vectors. It develops four-vectors for all kinematic variables and generalize Newton's second law to the relativistic environment; then returns to the principle of least action for a free relativistic particle. The third chapter presents a review of the integral and differential forms of Maxwell's equations before massaging them to four-vector form so that the Lorentz boost properties of electric and magnetic fields are transparent. Again, it then returns to the action principle to formulate minimal substitution for an electrically charged particle.

  12. Generalized Maxwell equations and charge conservation censorship

    NASA Astrophysics Data System (ADS)

    Modanese, G.

    2017-02-01

    The Aharonov-Bohm electrodynamics is a generalization of Maxwell theory with reduced gauge invariance. It allows to couple the electromagnetic field to a charge which is not locally conserved, and has an additional degree of freedom, the scalar field S = ∂αAα, usually interpreted as a longitudinal wave component. By reformulating the theory in a compact Lagrangian formalism, we are able to eliminate S explicitly from the dynamics and we obtain generalized Maxwell equation with interesting properties: they give ∂μFμν as the (conserved) sum of the (possibly non-conserved) physical current density jν, and a “secondary” current density iν which is a nonlocal function of jν. This implies that any non-conservation of jν is effectively “censored” by the observable field Fμν, and yet it may have real physical consequences. We give examples of stationary solutions which display these properties. Possible applications are to systems where local charge conservation is violated due to anomalies of the Adler-Bell-Jackiw (ABJ) kind or to macroscopic quantum tunnelling with currents which do not satisfy a local continuity equation.

  13. An integral equation-based numerical solver for Taylor states in toroidal geometries

    NASA Astrophysics Data System (ADS)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  15. Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang

    2017-09-01

    The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.

  16. Electrostatic forces in the Poisson-Boltzmann systems

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-09-01

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.

  17. Formulation of the relativistic moment implicit particle-in-cell method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, Koichi; Tronci, Cesare; Zuccaro, Gianluca

    2007-04-15

    A new formulation is presented for the implicit moment method applied to the time-dependent relativistic Vlasov-Maxwell system. The new approach is based on a specific formulation of the implicit moment method that allows us to retain the same formalism that is valid in the classical case despite the formidable complication introduced by the nonlinear nature of the relativistic equations of motion. To demonstrate the validity of the new formulation, an implicit finite difference algorithm is developed to solve the Maxwell's equations and equations of motion. A number of benchmark problems are run: two stream instability, ion acoustic wave damping, Weibelmore » instability, and Poynting flux acceleration. The numerical results are all in agreement with analytical solutions.« less

  18. Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD

    NASA Astrophysics Data System (ADS)

    Salmasi, Mahbod; Potter, Michael

    2018-07-01

    Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.

  19. Particle paths and phase plane for time-dependent similarity solutions of the one-dimensional Vlasov-Maxwell equations

    NASA Technical Reports Server (NTRS)

    Roberts, Dana Aaron; Abraham-Shrauner, Barbara

    1987-01-01

    The phase trajectories of particles in a plasma described by the one-dimensional Vlasov-Maxwell equations are determined qualitatively, analyzing exact general similarity solutions for the cases of temporally damped and growing (sinusoidal or localized) electric fields. The results of numerical integration in both untransformed and Lie-group point-transformed coordinates are presented in extensive graphs and characterized in detail. The implications of the present analysis for the stability of BGK equilibria are explored, and the existence of nonlinear solutions arbitrarily close to and significantly different from the BGK solutions is demonstrated.

  20. A Fourier collocation time domain method for numerically solving Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.

  1. A Non-Dissipative Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Yefet, Amir; Petropoulos, Peter G.

    1999-01-01

    We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

  2. On the symplectic structure of harmonic superspace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachkachi, M.; Saidi, E.H.

    In this paper, the symplectic properties of harmonic superspace are studied. It is shown that Diff(S[sup 2]) is isomorphic to Diff[sub 0](S[sup 3])/Ab(Diff[sub 0](S[sup 3])), where Diff[sub 0](S[sup 3]) is the group of the diffeomorphisms of S[sup 3] preserving the Cartan charge operator D[sup 0] and Ab(Diff[sub 0](S[sup 3])) is its Abelian subgroup generated by the Cartan vectors L[sub 0] = w[sup 0]D[sup 0]. The authors show also that the eigenvalue equation D[sup 0] [lambda](z) = 0 defines a symplectic structure in harmonic superspace, and the authors calculate the corresponding algebra. The general symplectic invariant coupling of the Maxwell prepotentialmore » is constructed in both flat and curved harmonic superspace. Other features are discussed.« less

  3. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; Yoon, P. H., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701

    2015-07-15

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts ofmore » the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizard, Alain J.; Tronci, Cesare

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  5. Consistent hydrodynamic theory of chiral electrons in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2018-03-01

    The complete set of Maxwell's and hydrodynamic equations for the chiral electrons in Weyl semimetals is presented. The formulation of the Euler equation takes into account the explicit breaking of the Galilean invariance by the ion lattice. It is shown that the Chern-Simons (or Bardeen-Zumino) contributions should be added to the electric current and charge densities in Maxwell's equations that provide the information on the separation of Weyl nodes in energy and momentum. On the other hand, these topological contributions do not directly affect the Euler equation and the energy conservation relation for the electron fluid. By making use of the proposed consistent hydrodynamic framework, we show that the Chern-Simons contributions strongly modify the dispersion relations of collective modes in Weyl semimetals. This is reflected, in particular, in the existence of distinctive anomalous Hall waves, which are sustained by the local anomalous Hall currents.

  6. If Maxwell had worked between Ampère and Faraday: An historical fable with a pedagogical moral

    NASA Astrophysics Data System (ADS)

    Jammer, Max; Stachel, John

    1980-01-01

    If one drops the Faraday induction term from Maxwell's equations, they become exactly Galilei invariant. This suggests that if Maxwell had worked between Ampère and Faraday, he could have developed this Galilei-invariant electromagnetic theory so that Faraday's discovery would have confronted physicists with the dilemma: give up the Galileian relativity principle for electromagnetism (ether hypothesis), or modify it (special relativity). This suggests a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galileian relativity principle are introduced before the induction term is discussed.

  7. Maxwell boundary condition and velocity dependent accommodation coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struchtrup, Henning, E-mail: struchtr@uvic.ca

    2013-11-15

    A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.

  8. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.

    PubMed

    Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B

    2008-08-01

    We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.

  9. On a model of electromagnetic field propagation in ferroelectric media

    NASA Astrophysics Data System (ADS)

    Picard, Rainer

    2007-04-01

    The Maxwell system in an anisotropic, inhomogeneous medium with non-linear memory effect produced by a Maxwell type system for the polarization is investigated under low regularity assumptions on data and domain. The particular form of memory in the system is motivated by a model for electromagnetic wave propagation in ferromagnetic materials suggested by Greenberg, MacCamy and Coffman [J.M. Greenberg, R.C. MacCamy, C.V. Coffman, On the long-time behavior of ferroelectric systems, Phys. D 134 (1999) 362-383]. To avoid unnecessary regularity requirements the problem is approached as a system of space-time operator equation in the framework of extrapolation spaces (Sobolev lattices), a theoretical framework developed in [R. Picard, Evolution equations as space-time operator equations, Math. Anal. Appl. 173 (2) (1993) 436-458; R. Picard, Evolution equations as operator equations in lattices of Hilbert spaces, Glasnik Mat. 35 (2000) 111-136]. A solution theory for a large class of ferromagnetic materials confined to an arbitrary open set (with suitably generalized boundary conditions) is obtained.

  10. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  11. Exact simulation of polarized light reflectance by particle deposits

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D. W.

    2015-12-01

    The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.

  12. Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method.

    PubMed

    Dufour, Christian; Cardin, Julien; Debieu, Olivier; Fafin, Alexandre; Gourbilleau, Fabrice

    2011-04-04

    By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng) concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible.

  13. Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method

    PubMed Central

    2011-01-01

    By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng) concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible. PMID:21711829

  14. Topologically massive magnetic monopoles

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Nutku, Y.; Saygili, K.

    2000-10-01

    We show that in the Maxwell-Chern-Simons theory of topologically massive electrodynamics the Dirac string of a monopole becomes a cone in anti-de Sitter space with the opening angle of the cone determined by the topological mass, which in turn is related to the square root of the cosmological constant. This proves to be an example of a physical system, a priori completely unrelated to gravity, which nevertheless requires curved spacetime for its very existence. We extend this result to topologically massive gravity coupled to topologically massive electrodynamics within the framework of the theory of Deser, Jackiw and Templeton. The two-component spinor formalism, which is a Newman-Penrose type approach for three dimensions, is extended to include both the electrodynamical and gravitational topologically massive field equations. Using this formalism exact solutions of the coupled Deser-Jackiw-Templeton and Maxwell-Chern-Simons field equations for a topologically massive monopole are presented. These are homogeneous spaces with conical deficit. Pure Einstein gravity coupled to the Maxwell-Chern-Simons field does not admit such a monopole solution.

  15. The polarization evolution of electromagnetic waves as a diagnostic method for a motional plasma

    NASA Astrophysics Data System (ADS)

    Shahrokhi, Alireza; Mehdian, Hassan; Hajisharifi, Kamal; Hasanbeigi, Ali

    2017-12-01

    The polarization evolution of electromagnetic (EM) radiation propagating through an electron beam-ion channel system is studied in the presence of self-magnetic field. Solving the fluid-Maxwell equations to obtain the medium dielectric tensor, the Stokes vector-Mueller matrix approach is employed to determine the polarization of the launched EM wave at any point in the propagation direction, applying the space-dependent Mueller matrix on the initial polarization vector of the wave at the plasma-vacuum interface. Results show that the polarization evolution of the wave is periodic in space along the beam axis with the specified polarization wavelength. Using the obtained results, a novel diagnostic method based on the polarization evolution of the EM waves is proposed to evaluate the electron beam density and velocity. Moreover, to use the mentioned plasma system as a polarizer, the fraction of the output radiation power transmitted through a motional plasma crossed with the input polarization is calculated. The results of the present investigation will greatly contribute to design a new EM amplifier with fixed polarization or EM polarizer, as well as a new diagnostic approach for the electron beam system where the polarimetric method is employed.

  16. Design and VNA-measurement of coplanar waveguide (CPW) on benzocyclobutene (BCB) at THz frequencies

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Grimault-Jacquin, Anne-Sophie; Zerounian, Nicolas; Aniel, Frédéric

    2014-03-01

    The low permittivity and the low loss tangent of the benzocyclobutene polymer (BCB) offers to coplanar waveguides (CPW) a low dispersive propagation properties at THz frequency. These transmission lines have been designed, modeled with a three dimensional (3D) solver of Maxwell equations based on finite element method (FEM) from 20 to 1000 GHz at various characteristic impedances (Zc). Their dispersion and losses (radiation, conduction and dielectric) have been investigated separately versus the waveguide size, the nature of the substrate (dielectric or semiconductor) to optimize the THz signal propagation. Monomode CPW on BCB numerically designed for various Zc were realized and measured with vector network analyzer (VNA). S-parameters of CPW are de-embedded by optimization of the accesses' model. A good agreement is found between experimental and numerical results with low attenuation constants of 2.7 dB/mm and 3.5 dB/mm at 400 GHz and 500 GHz, respectively.

  17. 3D analysis of eddy current loss in the permanent magnet coupling.

    PubMed

    Zhu, Zina; Meng, Zhuo

    2016-07-01

    This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.

  18. Bilinear Forms and Soliton Solutions for the Reduced Maxwell-Bloch Equations with Variable Coefficients in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Chai, Jun; Tian, Bo; Chai, Han-Peng

    2018-02-01

    Investigation in this paper is given to the reduced Maxwell-Bloch equations with variable coefficients, describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. We apply the Hirota method and symbolic computation to study such equations. With the help of the dependent variable transformations, we present the variable-coefficient-dependent bilinear forms. Then, we construct the one-, two- and N-soliton solutions in analytic forms for them. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, 11471050, the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02

  19. The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations

    NASA Technical Reports Server (NTRS)

    Roberts, D.

    1985-01-01

    The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.

  20. Comment on “Maxwell's equations and electromagnetic Lagrangian density in fractional form” [J. Math. Phys. 53, 033505 (2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabei, Eqab M.; Al-Jamel, A.; Widyan, H.

    In a recent paper, Jaradat et al. [J. Math. Phys. 53, 033505 (2012)] have presented the fractional form of the electromagnetic Lagrangian density within the Riemann-Liouville fractional derivative. They claimed that the Agrawal procedure [O. P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002)] is used to obtain Maxwell's equations in the fractional form, and the Hamilton's equations of motion together with the conserved quantities obtained from fractional Noether's theorem are reported. In this comment, we draw the attention that there are some serious steps of the procedure used in their work are not applicable even though their final resultsmore » are correct. Their work should have been done based on a formulation as reported by Baleanu and Muslih [Phys. Scr. 72, 119 (2005)].« less

  1. Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2016-11-25

    We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.

  2. Three-Dimensional, Ten-Moment, Two-Fluid Simulation of the Solar Wind Interaction with Mercury

    NASA Astrophysics Data System (ADS)

    Dong, C. F.; Wang, L.; Hakim, A.; Bhattacharjee, A.; Germaschewski, K.; DiBraccio, G. A.

    2018-05-01

    We investigate solar wind interaction with Mercury’s magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum, and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations.

  3. Maxwell iteration for the lattice Boltzmann method with diffusive scaling

    NASA Astrophysics Data System (ADS)

    Zhao, Weifeng; Yong, Wen-An

    2017-03-01

    In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

  4. Motion of small bodies in classical field theory

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.

    2010-04-01

    I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body’s composition (and, e.g., black holes are allowed). The worldline “left behind” by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the “Bianchi identity” for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the “monopoles” of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of “chameleon” bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.

  5. Non-Existence of Black Hole Solutionsfor a Spherically Symmetric, Static Einstein-Dirac-Maxwell System

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    We consider for j=1/2, 3/2,... a spherically symmetric, static system of (2j+1) Dirac particles, each having total angular momentum j. The Dirac particles interact via a classical gravitational and electromagnetic field. The Einstein-Dirac-Maxwell equations for this system are derived. It is shown that, under weak regularity conditions on the form of the horizon, the only black hole solutions of the EDM equations are the Reissner-Nordstrom solutions. In other words, the spinors must vanish identically. Applied to the gravitational collapse of a "cloud" of spin-1/2-particles to a black hole, our result indicates that the Dirac particles must eventually disappear inside the event horizon.

  6. Earth Sciences Push Radiative Transfer Theory

    NASA Astrophysics Data System (ADS)

    Davis, Anthony; Mishchenko, Michael

    2009-12-01

    2009 International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics; Saratoga Springs, New York, 4-7 May 2009; The theories of radiative transfer and particle—particularly neutron—transport are grounded in distinctive microscale physics that deals with either optics or particle dynamics. However, it is not practical to track every wave or particle in macroscopic systems, nor do all of these details matter. That is why Newton's laws, which describe individual particles, are replaced by those of Euler, Navier-Stokes, Maxwell, Boltzmann, Gibbs, and others, which describe the collective behavior of vast numbers of particles. And that is why the radiative transfer (RT) equation is used to describe the flow of radiation through geophysical-scale systems, leaving to Maxwell's wave equations only the task of providing the optical properties of the medium, be it air, water, snow, ice, or biomass. Interestingly, particle transport is determined by the linear transport equation, which is mathematically identical to the RT equation, so geophysicists and nuclear scientists are interested in the same mathematics and computational techniques.

  7. Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review

    NASA Astrophysics Data System (ADS)

    Kahnert, Michael

    2016-07-01

    Numerical solution methods for electromagnetic scattering by non-spherical particles comprise a variety of different techniques, which can be traced back to different assumptions and solution strategies applied to the macroscopic Maxwell equations. One can distinguish between time- and frequency-domain methods; further, one can divide numerical techniques into finite-difference methods (which are based on approximating the differential operators), separation-of-variables methods (which are based on expanding the solution in a complete set of functions, thus approximating the fields), and volume integral-equation methods (which are usually solved by discretisation of the target volume and invoking the long-wave approximation in each volume cell). While existing reviews of the topic often tend to have a target audience of program developers and expert users, this tutorial review is intended to accommodate the needs of practitioners as well as novices to the field. The required conciseness is achieved by limiting the presentation to a selection of illustrative methods, and by omitting many technical details that are not essential at a first exposure to the subject. On the other hand, the theoretical basis of numerical methods is explained with little compromises in mathematical rigour; the rationale is that a good grasp of numerical light scattering methods is best achieved by understanding their foundation in Maxwell's theory.

  8. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  9. A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    1993-01-01

    This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.

  10. Republication of: Geometrodynamics in the null case. Exact solutions of the field equations of the general theory of relativity III

    NASA Astrophysics Data System (ADS)

    Jordan, Pascual; Kundt, Wolfgang

    2014-03-01

    This is an English translation of a paper by Pascual Jordan and Wolfgang Kundt, first published in 1961 in the proceedings of the Academy of Sciences and Literature in Mainz (Germany). The original paper was part 3 of a five-part series of articles containing the first summary of knowledge about exact solutions of Einstein's equations found until then. (Parts 1, 2 and 4 of the series have already been reprinted, part 5 will be printed as a Golden Oldie in near future.) This third paper shows how solutions of the Einstein-Maxwell equations with null Maxwell field can be incorporated into the scheme of geometrodynamics. It has been selected by the Editors of General Relativity and Gravitation for republication in the Golden Oldies series of the journal. The republication is accompanied by an editorial note written by Charles Misner.

  11. Electromagnetic energy momentum in dispersive media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbin, T. G.

    2011-01-15

    The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields aremore » monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.« less

  12. Experimental and theoretical developments in the Mochi project

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Vereen, Keon; Lavine, Eric Sander; Carroll, Evan; Card, Alexander; Azuara-Rosales, Manuel; Quinley, Morgan; Yun, Gunsu

    2015-11-01

    The Mochi project investigates the interaction between magnetic fields and plasma flows in cylindrical and toroidal geometries. The configuration is designed to tailor the radial electric field profile with three annular electrodes and allow for shear helical flows in magnetized plasma jets or merging spheromaks. First plasma has been achieved and characterization is in progress with images, magnetic probes, an energy analyzer, an interferometer, a fast ion gauge, and optical and RF spectroscopy. Vector tomography of ion Doppler spectroscopy is progressing with the design of the custom fiber bundle and implementation of the numerical code. The first experiments are investigating the coupling of sausage and kink instabilities, comparing measurements to a new stability criterion and a numerical stability code. A new canonical field theory has been developed to help interpret the dynamics of plasma self-organization. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, that dynamical equations can be re-formulated as a form of Maxwell's equations, and that helicity is conserved only when density gradients are shallow. This work is supported by US DOE Grant DE-SC0010340.

  13. Knots in electromagnetism

    NASA Astrophysics Data System (ADS)

    Arrayás, M.; Bouwmeester, D.; Trueba, J. L.

    2017-01-01

    Maxwell equations in vacuum allow for solutions with a non-trivial topology in the electric and magnetic field line configurations at any given moment in time. One example is a space filling congruence of electric and magnetic field lines forming circles lying on the surfaces of nested tori. In this example the electric, magnetic and Poynting vector fields are orthogonal everywhere. As time evolves the electric and magnetic fields expand and deform without changing the topology and energy, while the Poynting vector structure remains unchanged while propagating with the speed of light. The topology is characterized by the concept of helicity of the field configuration. Helicity is an important fundamental concept and for massless fields it is a conserved quantity under conformal transformations. We will review several methods by which linked and knotted electromagnetic (spin-1) fields can be derived. A first method, introduced by A. Rañada, uses the formulation of the Maxwell equations in terms of differential forms combined with the Hopf map from the three-sphere S3 to the two-sphere S2. A second method is based on spinor and twistor theory developed by R. Penrose in which elementary twistor functions correspond to the family of electromagnetic torus knots. A third method uses the Bateman construction of generating null solutions from complex Euler potentials. And a fourth method uses special conformal transformations, in particular conformal inversion, to generate new linked and knotted field configurations from existing ones. This fourth method is often accompanied by shifting singularities in the field to complex space-time points. Of course the various methods must be closely related to one another although they have been developed largely independently and they suggest different directions in which to expand the study of topologically non-trivial field configurations. It will be shown how the twistor formulation allows for a direct extension to massless fields of other spin values, such as spin-2 fields satisfying the linearized Einstein vacuum equation, and how the formulation by A. Rañada can be extended to fields for which the electric and magnetic fields are not orthogonal everywhere. Underlying the various methods is the fact that electric and magnetic field lines can be described as the level curves of complex functions. Compactification of R3 naturally leads to finite energy solutions because the fields at infinity in all directions should all converge towards zero. An intriguing question that is raised by the finite energy is whether there is a connection to the quantization of the classical electromagnetic field. We will review some issues related to this question. Another interesting question is why the general formulation of topologically non-trivial solutions uses the electric and magnetic fields instead of the electromagnetic vector potentials. This leads to a discussion of the Clebsch representation of the electromagnetic field strength 2-form. Finally, a topic of great interest is the possibility of experimentally generating and investigating linked and knotted field configurations. Since the non-trivial topological field solutions exploit the special conformal symmetry of the underlying vacuum wave-equations it will only be possible to approximate the solutions in an experiment, which necessarily introduces material objects that will break the special conformal symmetry. We will review the research on plasma configurations in which the magnetic field-line configuration approximates plasma torus knots leading to the prediction of topological solitons in plasma.

  14. Notes and Discussion

    ERIC Educational Resources Information Center

    American Journal of Physics, 1978

    1978-01-01

    Describes experiments demonstrating the Josephson effect, single-file diffusion in biological membranes, refractive index of beer, lines of magnetic fields, indexing diffraction patterns, Maxwell's equations, and spherical aberration. (SL)

  15. Commentary: Are Three Waves of Data Sufficient for Assessing Mediation?

    ERIC Educational Resources Information Center

    Reichardt, Charles S.

    2011-01-01

    Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…

  16. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  17. Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.

    PubMed

    Petrov, E Yu; Kudrin, A V

    2010-05-14

    The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.

  18. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  19. Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Farook; Ray, Saibal; Jafry, Abdul Kayum

    2010-11-15

    We extend the Krori-Barua analysis of the static, spherically symmetric, Einstein-Maxwell field equations and consider charged fluid sources with anisotropic stresses. The inclusion of a new variable (tangential pressure) allows the use of a nonlinear, Chaplygin-type equation of state with coefficients fixed by the matching conditions at the boundary of the source. Some physical features are briefly discussed.

  20. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.

    PubMed

    Gültekin, Osman; Sommer, Gerhard; Holzapfel, Gerhard A

    2016-11-01

    This study deals with the viscoelastic constitutive modeling and the respective computational analysis of the human passive myocardium. We start by recapitulating the locally orthotropic inner structure of the human myocardial tissue and model the mechanical response through invariants and structure tensors associated with three orthonormal basis vectors. In accordance with recent experimental findings the ventricular myocardial tissue is assumed to be incompressible, thick-walled, orthotropic and viscoelastic. In particular, one spring element coupled with Maxwell elements in parallel endows the model with viscoelastic features such that four dashpots describe the viscous response due to matrix, fiber, sheet and fiber-sheet fragments. In order to alleviate the numerical obstacles, the strictly incompressible model is altered by decomposing the free-energy function into volumetric-isochoric elastic and isochoric-viscoelastic parts along with the multiplicative split of the deformation gradient which enables the three-field mixed finite element method. The crucial aspect of the viscoelastic formulation is linked to the rate equations of the viscous overstresses resulting from a 3-D analogy of a generalized 1-D Maxwell model. We provide algorithmic updates for second Piola-Kirchhoff stress and elasticity tensors. In the sequel, we address some numerical aspects of the constitutive model by applying it to elastic, cyclic and relaxation test data obtained from biaxial extension and triaxial shear tests whereby we assess the fitting capacity of the model. With the tissue parameters identified, we conduct (elastic and viscoelastic) finite element simulations for an ellipsoidal geometry retrieved from a human specimen.

  1. CFD-ACE+: a CAD system for simulation and modeling of MEMS

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha

    1999-03-01

    Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.

  2. Force, torque, linear momentum, and angular momentum in classical electr odynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-10-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and by the Lorentz force law. Whereas Maxwell's equations relate the fields to their material sources, Poynting's theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell's equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein-Laub (E-L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.

  3. Nonlinear tunneling of bright and dark rogue waves in combined nonlinear Schrödinger and Maxwell-Bloch systems

    NASA Astrophysics Data System (ADS)

    Raju, Thokala Soloman; Pal, Ritu

    2018-05-01

    We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.

  4. Advanced classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided.

  5. Development and Application of Compatible Discretizations of Maxwell's Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Koning, J; Rieben, R

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we havemore » designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.« less

  6. The importance of excluded solvent volume effects in computing hydration free energies.

    PubMed

    Yang, Pei-Kun; Lim, Carmay

    2008-11-27

    Continuum dielectric methods such as the Born equation have been widely used to compute the electrostatic component of the solvation free energy, DeltaG(solv)(elec), because they do not need to include solvent molecules explicitly and are thus far less costly compared to molecular simulations. All of these methods can be derived from Gauss Law of Maxwell's equations, which yields an analytical solution for the solvation free energy, DeltaG(Born), when the solute is spherical. However, in Maxwell's equations, the solvent is assumed to be a structureless continuum, whereas in reality, the near-solute solvent molecules are highly structured unlike far-solute bulk solvent. Since we have recently reformulated Gauss Law of Maxwell's equations to incorporate the near-solute solvent structure by considering excluded solvent volume effects, we have used it in this work to derive an analytical solution for the hydration free energy of an ion. In contrast to continuum solvent models, which assume that the normalized induced solvent electric dipole density P(n) is constant, P(n) mimics that observed from simulations. The analytical formula for the ionic hydration free energy shows that the Born radius, which has been used as an adjustable parameter to fit experimental hydration free energies, is no longer ill defined but is related to the radius and polarizability of the water molecule, the hydration number, and the first peak position of the solute-solvent radial distribution function. The resulting DeltaG(solv)(elec) values are shown to be close to the respective experimental numbers.

  7. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  8. Extending Maxwell's equations for dielectric materials using analytical principles from viscoelasticity based on the fractional calculus

    NASA Astrophysics Data System (ADS)

    Wharmby, Andrew William

    Existing fractional calculus models having a non-empirical basis used to describe constitutive relationships between stress and strain in viscoelastic materials are modified to employ all orders of fractional derivatives between zero and one. Parallels between viscoelastic and dielectric theory are drawn so that these modified fractional calculus based models for viscoelastic materials may be used to describe relationships between electric flux density and electric field intensity in dielectric materials. The resulting fractional calculus based dielectric relaxation model is tested using existing complex permittivity data in the radio-frequency bandwidth of a wide variety of homogeneous materials. The consequences that the application of this newly developed fractional calculus based dielectric relaxation model has on Maxwell's equations are also examined through the effects of dielectric dissipation and dispersion.

  9. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletti, Luigi, E-mail: luigi.barletti@unifi.it

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  10. On the Maxwell-Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems.

    PubMed

    Leonardi, Erminia; Angeli, Celestino

    2010-01-14

    The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients.

  11. Discontinuous Galerkin algorithms for fully kinetic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juno, J.; Hakim, A.; TenBarge, J.

    Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less

  12. Discontinuous Galerkin algorithms for fully kinetic plasmas

    DOE PAGES

    Juno, J.; Hakim, A.; TenBarge, J.; ...

    2017-10-10

    Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less

  13. The Stressing Effect of Electromigration from the Maxwell Stress and a Preliminary Mean-Time-to-Failure Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Peng

    2013-06-01

    As temperature increases, it is suggested that atoms on lattice sites serve as dynamic defects and cause a much more homogeneous distribution of the Maxwell stress throughout the crystal lattice compared with that caused by static defects. Though this stressing effect mostly leads to Joule heating, it also results in distortion of the crystal lattice, which leads to a decrease in the activation energy for atomic diffusion and causes enhancements in the phase growth rates at both interfaces of diffusion couples. Due to this stressing effect, the decrease in the activation energy is proportional to a square term of the current density J. A mean-time-to-failure analysis is performed for failure caused by excessive growth of intermediate phases, and a mean-time-to-failure (MTTF) equation is found. This equation appears similar to Black's equation but with an extra exponential term arising from the stressing effect of the crystal lattice.

  14. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    NASA Astrophysics Data System (ADS)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.

    2017-05-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.

  15. Diffusion constant of slowly rotating black three-brane

    NASA Astrophysics Data System (ADS)

    Amoozad, Z.; Sadeghi, J.

    2018-01-01

    In this paper, we take the slowly rotating black three-brane background and perturb it by introducing a vector gauge field. We find the components of the gauge field through Maxwell equations and Bianchi identities. Using currents and some ansatz we find Fick's first law at long wavelength regime. An interesting result for this non-trivial supergravity background is that the diffusion constant on the stretched horizon which emerges from Fick's first law is a complex constant. The pure imaginary part of the diffusion constant appears because the black three-brane has angular momentum. By taking the static limit of the corresponding black brane the well known diffusion constant will be recovered. On the other hand, from the point of view of the Fick's second law, we have the dispersion relation ω = - iDq2 and we found a damping of hydrodynamical flow in the holographically dual theory. Existence of imaginary term in the diffusion constant introduces an oscillating propagation of the gauge field in the dual field theory.

  16. Research on Radiation Characteristic of Plasma Antenna through FDTD Method

    PubMed Central

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961

  17. Fast synthesis of topographic mask effects based on rigorous solutions

    NASA Astrophysics Data System (ADS)

    Yan, Qiliang; Deng, Zhijie; Shiely, James

    2007-10-01

    Topographic mask effects can no longer be ignored at technology nodes of 45 nm, 32 nm and beyond. As feature sizes become comparable to the mask topographic dimensions and the exposure wavelength, the popular thin mask model breaks down, because the mask transmission no longer follows the layout. A reliable mask transmission function has to be derived from Maxwell equations. Unfortunately, rigorous solutions of Maxwell equations are only manageable for limited field sizes, but impractical for full-chip optical proximity corrections (OPC) due to the prohibitive runtime. Approximation algorithms are in demand to achieve a balance between acceptable computation time and tolerable errors. In this paper, a fast algorithm is proposed and demonstrated to model topographic mask effects for OPC applications. The ProGen Topographic Mask (POTOMAC) model synthesizes the mask transmission functions out of small-sized Maxwell solutions from a finite-difference-in-time-domain (FDTD) engine, an industry leading rigorous simulator of topographic mask effect from SOLID-E. The integral framework presents a seamless solution to the end user. Preliminary results indicate the overhead introduced by POTOMAC is contained within the same order of magnitude in comparison to the thin mask approach.

  18. Spinning particle and gauge theories as integrability conditions

    NASA Astrophysics Data System (ADS)

    Eisenberg, Yeshayahu

    1992-02-01

    Starting from a new four dimensional spinning point particle we obtain new representations of the standard four dimensional gauge field equations in terms of a generalized space (Minkowski + light cone). In terms of this new formulation we define linear systems whose integrability conditions imply the massive Dirac-Maxwell and the Yang-Mills equations. Research supported by the Rothschild Fellowship.

  19. Transmission of electric fields due to distributed cloud charges in the atmosphere-ionosphere system

    NASA Astrophysics Data System (ADS)

    Paul, Suman; De, S. S.; Haldar, D. K.; Guha, G.

    2017-10-01

    The transmission of electric fields in the lower atmosphere by thunder clouds with a suitable charge distribution profile has been modeled. The electromagnetic responses of the atmosphere are presented through Maxwell's equations together with a time-varying source charge distribution. The conductivities are taken to be exponentially graded function of altitude. The radial and vertical electric field components are derived for isotropic, anisotropic and thundercloud regions. The analytical solutions for the total Maxwell's current which flows from the cloud into the ionosphere under DC and quasi-static conditions are obtained for isotropic region. We found that the effect of charge distribution in thunderclouds produced by lightning discharges diminishes rapidly with increasing altitudes. Also, it is found that time to reach Maxwell's currents a maximum is higher for higher altitudes.

  20. First integrals of motion in a gauge covariant framework, Killing-Maxwell system and quantum anomalies

    NASA Astrophysics Data System (ADS)

    Visinescu, M.

    2012-10-01

    Hidden symmetries in a covariant Hamiltonian framework are investigated. The special role of the Stackel-Killing and Killing-Yano tensors is pointed out. The covariant phase-space is extended to include external gauge fields and scalar potentials. We investigate the possibility for a higher-order symmetry to survive when the electromagnetic interactions are taken into account. Aconcrete realization of this possibility is given by the Killing-Maxwell system. The classical conserved quantities do not generally transfer to the quantized systems producing quantum gravitational anomalies. As a rule the conformal extension of the Killing vectors and tensors does not produce symmetry operators for the Klein-Gordon operator.

  1. Anisotropic power-law inflation for a conformal-violating Maxwell model

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.; Kao, W. F.

    2018-05-01

    A set of power-law solutions of a conformal-violating Maxwell model with a non-standard scalar-vector coupling will be shown in this paper. In particular, we are interested in a coupling term of the form X^{2n} F^{μ ν }F_{μ ν } with X denoting the kinetic term of the scalar field. Stability analysis indicates that the new set of anisotropic power-law solutions is unstable during the inflationary phase. The result is consistent with the cosmic no-hair conjecture. We show, however, that a set of stable slowly expanding solutions does exist for a small range of parameters λ and n. Hence a small anisotropy can survive during the slowly expanding phase.

  2. Ideal form of optical plasma lenses

    NASA Astrophysics Data System (ADS)

    Gordon, D. F.; Stamm, A. B.; Hafizi, B.; Johnson, L. A.; Kaganovich, D.; Hubbard, R. F.; Richardson, A. S.; Zhigunov, D.

    2018-06-01

    The canonical form of an optical plasma lens is a parabolic density channel. This form suffers from spherical aberrations, among others. Spherical aberration is partially corrected by adding a quartic term to the radial density profile. Ideal forms which lead to perfect focusing or imaging are obtained. The fields at the focus of a strong lens are computed with high accuracy and efficiency using a combination of eikonal and full Maxwell descriptions of the radiation propagation. The calculations are performed using a new computer propagation code, SeaRay, which is designed to transition between various solution methods as the beam propagates through different spatial regions. The calculations produce the full Maxwell vector fields in the focal region.

  3. Electromagnetic or other directed energy pulse launcher

    DOEpatents

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  4. The element level time domain (ELTD) method for the analysis of nano-optical systems: I. Nondispersive media

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Oswald, Benedikt; Leidenberger, Patrick

    2012-04-01

    We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.

  5. Numerical Study on the Effect of Electrode Polarity on Desulfurization in Direct Current Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Liu, Yu; Wang, Fang; Li, Guangqiang; Li, Baokuan; Qiao, Wenwei

    2017-10-01

    In order to clarify the influence of electrode polarity on desulfurization in direct current (DC) electroslag remelting process, a transient three-dimensional coupled mathematical model has been established. The finite volume method was invoked to simultaneously solve the mass, momentum, energy, and species conservation equations. The Joule heating and Lorentz force were fully coupled through calculating Maxwell's equations with the assistance of the magnetic potential vector. The motion of the metal-slag interface was described by using the volume of fluid approach. An auxiliary metallurgical kinetics module was introduced to determine the thermochemical and the electrochemical reaction rates. A reasonable agreement between the measured data and the simulated results are observed. A longer time and a larger area for the desulfurization can be provided by the metal pool-slag interface when compared with the metal droplet-slag interface. The electrochemical transfer rate at the metal pool-slag interface is positive in the DC reverse polarity (DCRP) remelting, while in the DC straight polarity (DCSP) remelting, the electrochemical transfer rate is negative at this interface. The desulfurization progress in the DCSP remelting thus is fall behind that in the DCRP remelting. The desulfurization rate of the DCRP remelting is around 70 pct and the rate of the DCSP remelting is about 40 pct.

  6. Semi-classical Reissner-Nordstrom model for the structure of charged leptons

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1980-01-01

    The lepton self-mass problem is examined within the framework of the quantum theory of electromagnetism and gravity. Consideration is given to the Reissner-Nordstrom solution to the Einstein-Maxwell classical field equations for an electrically charged mass point, and the WKB theory for a semiclassical system with total energy zero is used to obtain an expression for the Einstein-Maxwell action factor. The condition obtained is found to account for the observed mass values of the three charged leptons, and to be in agreement with the correspondence principle.

  7. Three-dimensional analytic model of the magnetic field for the Chalk River Superconducting Cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.G.; Lee-Whiting, G.E.; Douglas, S.R.

    1994-07-01

    A three-dimensional analytic model of the magnetic field for the TASCC cyclotron that satisfies Maxwell`s equations exactly has been constructed for use with the new differential-algebra orbit-dynamics code. The model includes: (1) the superconducting coils; (2) the saturated iron poles; (3) the partially saturated yoke; (4) the saturated-iron trim rods. Lines of dipole density along the edges of the hills account for the non-uniformities and edge effects and along with three yoke constants constitute the only free parameters.

  8. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.

    1991-08-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  9. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Collier, Richard S.; Mckenna, Paul M.; Perala, Rodney A.

    1991-01-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  10. Exact solution for heat transfer free convection flow of Maxwell nanofluids with graphene nanoparticles

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Zuki Salleh, Mohd; Ismail, Zulkhibri; Khan, Ilyas

    2017-09-01

    This article focuses on the flow of Maxwell nanofluids with graphene nanoparticles over a vertical plate (static) with constant wall temperature. Possessing high thermal conductivity, engine oil is useful to be chosen as base fluid with free convection. The problem is modelled in terms of PDE’s with boundary conditions. Some suitable non-dimensional variables are interposed to transform the governing equations into dimensionless form. The generated equations are solved via Laplace transform technique. Exact solutions are evaluated for velocity and temperature. These solutions are significantly controlled by some parameters involved. Temperature rises with elevation in volume fraction while Velocity decreases with increment in volume fraction. A comparison with previous published results are established and discussed. Moreover, a detailed discussion is made for influence of volume fraction on the flow and heat profile.

  11. Quasimonochromatic exact solutions to Maxwell's equations with finite total energy and arbitrary frequencies in the vacuum.

    PubMed

    Ma, Xiaolu; Thompson, Richard S

    2017-12-01

    We analyze a family of exact finite energy solutions to Maxwell's equations. These solutions are a subset of the modified-power-spectrum solutions found by Ziolkowski [Phys. Rev. A 39, 2005 (1989)10.1103/PhysRevA.39.2005]. There are three characteristic parameters in the solutions: q_{1},q_{2}, and k_{0}. q_{1} and q_{2} are related to the frequency bandwidth of the solution. In the parameter space of k_{0}q_{1}≫1 and k_{0}q_{2}≫1, they represent quasimonochromatic continuous wave fields with the main angular frequency k_{0}c and energy localized in the transverse directions. Under the restriction of q_{1}≪q_{2}, the beam propagates mainly in the +z direction with velocity c and limited diffraction.

  12. Relativistic extension of a charge-conservative finite element solver for time-dependent Maxwell-Vlasov equations

    NASA Astrophysics Data System (ADS)

    Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.

    2018-01-01

    Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.

  13. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    NASA Astrophysics Data System (ADS)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  14. Behavior of asymptotically electro-Λ spacetimes

    NASA Astrophysics Data System (ADS)

    Saw, Vee-Liem

    2017-04-01

    We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .

  15. Quantum kinetic theory of the filamentation instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Haas, F.

    2011-07-15

    The quantum electromagnetic dielectric tensor for a multi-species plasma is re-derived from the gauge-invariant Wigner-Maxwell system and presented under a form very similar to the classical one. The resulting expression is then applied to a quantum kinetic theory of the electromagnetic filamentation instability. Comparison is made with the quantum fluid theory including a Bohm pressure term and with the cold classical plasma result. A number of analytical expressions are derived for the cutoff wave vector, the largest growth rate, and the most unstable wave vector.

  16. A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    NASA Astrophysics Data System (ADS)

    Wen, Dan; Yu, Hongwei; Pan, Qiyuan; Lin, Kai; Qian, Wei-Liang

    2018-05-01

    We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer k. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index k of the background black hole metric, which shows that a larger k makes it harder for the condensation to form. We also observe that the index k affects the conductivity and the gap frequency of the holographic superconductors.

  17. Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries

    NASA Astrophysics Data System (ADS)

    Holst, Michael; Meier, Caleb; Tsogtgerel, G.

    2018-01-01

    In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (Class Quantum Gravity 30:205011, 2013), and Holst et al. (Phys Rev Lett 100(16):161101, 2008, Commun Math Phys 288(2):547-613, 2009), and also on the work of Maxwell (J Hyperbolic Differ Eqs 2(2):521-546, 2005a, Commun Math Phys 253(3):561-583, 2005b, Math Res Lett 16(4):627-645, 2009) and Dain (Class Quantum Gravity 21(2):555-573, 2004), under reasonable assumptions on the data we prove existence of both near- and far-from-constant mean curvature (CMC) solutions for a class of Robin boundary conditions commonly used in the literature for modeling black holes, with a third existence result for CMC appearing as a special case. Dain and Maxwell addressed initial data engineering for space-times that evolve to contain black holes, determining solutions to the conformal formulation on an asymptotically Euclidean manifold in the CMC setting, with interior boundary conditions representing excised interior black hole regions. Holst and Tsogtgerel compiled the interior boundary results covered by Dain and Maxwell, and then developed general interior conditions to model the apparent horizon boundary conditions of Dainand Maxwell for compact manifolds with boundary, and subsequently proved existence of solutions to the Lichnerowicz equation on compact manifolds with such boundary conditions. This paper picks up where Holst and Tsogtgerel left off, addressing the general non-CMC case for compact manifolds with boundary. As in our previous articles, our focus here is again on low regularity data and on the interaction between different types of boundary conditions. While our work here serves primarily to extend the solution theory for the compact with boundary case, we also develop several technical tools that have potential for use for other cases.

  18. Power law inflation with electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xianghui; Isenberg, James, E-mail: isenberg@uoregon.edu

    2013-07-15

    We generalize Ringström’s global future causal stability results (Ringström 2009) [11] for certain expanding cosmological solutions of the Einstein-scalar field equations to solutions of the Einstein–Maxwell-scalar field system. In particular, after noting that the power law inflationary spacetimes (M{sup n+1},g{sup -hat}, ϕ{sup -hat}) considered by Ringström (2009) in [11] are solutions of the Einstein–Maxwell-scalar field system (with exponential potential) as well as of the Einstein-scalar field system (with the same exponential potential), we consider (nonlinear) perturbations of initial data sets of these spacetimes which include electromagnetic perturbations as well as gravitational and scalar perturbations. We show that if (as inmore » Ringström (2009) [11]) we focus on pairs of relatively scaled open sets U{sub R{sub 0}}⊂U{sub 4R{sub 0}} on an initial slice of (M{sup n+1},g{sup -hat}), and if we choose a set of perturbed data which on U{sub 4R{sub 0}} is sufficiently close to that of (M{sup n+1},g{sup -hat},ϕ{sup -hat}, A{sup -hat} = 0), then in the maximal globally hyperbolic spacetime development (M{sup n+1},g,ϕ,A) of this data via the Einstein–Maxwell-scalar field equations, all causal geodesics emanating from U{sub R{sub 0}} are future complete (just as in (M{sup n+1},g{sup -hat})). We also verify that, in a certain sense, the future asymptotic behavior of the fields in the spacetime developments of the perturbed data sets does not differ significantly from the future asymptotic behavior of (M{sup n+1},g{sup -hat}, ϕ{sup -hat}, A{sup -hat} = 0). -- Highlights: •We prove stability of expanding solutions of the Einstein–Maxwell-scalar field equations. •All nearby solutions are geodesically complete. •The topology of the initial slice is irrelevant to our stability results.« less

  19. Electromagnetic momentum and the energy–momentum tensor in a linear medium with magnetic and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crenshaw, Michael E., E-mail: michael.e.crenshaw4.civ@mail.mil

    2014-04-15

    In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derivemore » electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.« less

  20. OPTICS. Quantum spin Hall effect of light.

    PubMed

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.

  1. Why history matters: Ab initio rederivation of Fresnel equations confirms microscopic theory of refractive index

    NASA Astrophysics Data System (ADS)

    Starke, R.; Schober, G. A. H.

    2018-03-01

    We provide a systematic theoretical, experimental, and historical critique of the standard derivation of Fresnel's equations, which shows in particular that these well-established equations actually contradict the traditional, macroscopic approach to electrodynamics in media. Subsequently, we give a rederivation of Fresnel's equations which is exclusively based on the microscopic Maxwell equations and hence in accordance with modern first-principles materials physics. In particular, as a main outcome of this analysis being of a more general interest, we propose the most general boundary conditions on electric and magnetic fields which are valid on the microscopic level.

  2. Hidden role of Maxwell superalgebras in the free differential algebras of D = 4 and D = 11 supergravity

    NASA Astrophysics Data System (ADS)

    Ravera, Lucrezia

    2018-03-01

    The purpose of this paper is to show that the so-called Maxwell superalgebra in four dimensions, which naturally involves the presence of a nilpotent fermionic generator, can be interpreted as a hidden superalgebra underlying N=1, {D}=4 supergravity extended to include a 2-form gauge potential associated to a 2-index antisymmetric tensor. In this scenario, the theory is appropriately discussed in the context of Free Differential Algebras (an extension of the Maurer-Cartan equations to involve higher-degree differential forms). The study is then extended to the Free Differential Algebra describing D = 11 supergravity, showing that, also in this case, there exists a super-Maxwell algebra underlying the theory. The same extra spinors dual to the nilpotent fermionic generators whose presence is crucial for writing a supersymmetric extension of the Maxwell algebras, both in the D = 4 and in the D = 11 case, turn out to be fundamental ingredients also to reproduce the D = 4 and D = 11 Free Differential Algebras on ordinary superspace, whose basis is given by the supervielbein. The analysis of the gauge structure of the supersymmetric Free Differential Algebras is carried on taking into account the gauge transformations from the hidden supergroup-manifold associated with the Maxwell superalgebras.

  3. Towards Perfectly Absorbing Boundary Conditions for Euler Equations

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Hu, Fang Q.; Hussaini, M. Yousuff

    1997-01-01

    In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.

  4. Reviews Equipment: LabQuest 2 Equipment: Rubens' Tube Equipment: Ripple Strobe Tank Book: God and the Atom Book: Magnificent Principia, Exploring Isaac Newton's Masterpiece Book: Talking Science: Language, Learning, and Values Classroom Video: Maxwell's Equations Book: Exploring Quantum Physics Through Hands-on Projects Web Watch

    NASA Astrophysics Data System (ADS)

    2013-11-01

    WE RECOMMEND LabQuest 2 New logger now includes mobile data sharing Rubens' Tube Sturdy Rubens' tube ramps up the beat Ripple Strobe Tank Portable ripple tank makes waves in and out of the lab God and the Atom Expertly told story of the influence of atomism Maxwell's Equations Video stands the test of time Exploring Quantum Physics Through Hands-on Projects Mixture of theory and experiment hits the spot WORTH A LOOK Magnificent Principia, Exploring Isaac Newton's Masterpiece The tricky task of summarizing Newton's iconic work Talking Science: Language, Learning, and Values Interesting book tackles communication in the classroom WEB WATCH Interactive website plans a trip to Mars ... documentary peers into telescopes ... films consider the density of water

  5. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy

    NASA Astrophysics Data System (ADS)

    Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M.

    2018-03-01

    The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs) with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs) with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.

  6. Resonant optical pulses on a continuous-wave background in two-level active media

    NASA Astrophysics Data System (ADS)

    Li, Sitai; Biondini, Gino; Kovačič, Gregor; Gabitov, Ildar

    2018-01-01

    We present exact N-soliton optical pulses riding on a continuous-wave (c.w.) beam that propagate through and interact with a two-level active optical medium. Their representation is derived via an appropriate generalization of the inverse scattering transform for the corresponding Maxwell-Bloch equations. We describe the single-soliton solutions in detail and classify them into several distinct families. In addition to the analogues of traveling-wave soliton pulses that arise in the absence of a c.w. beam, we obtain breather-like structures, periodic pulse-trains and rogue-wave-type (i.e., rational) pulses, whose existence is directly due to the presence of the c.w. beam. These soliton solutions are the analogues for Maxwell-Bloch systems of the four classical solution types of the focusing nonlinear Schrödinger equation with non-zero background, although the physical behavior of the corresponding solutions is quite different.

  7. Perspective: Optical measurement of feature dimensions and shapes by scatterometry

    NASA Astrophysics Data System (ADS)

    Diebold, Alain C.; Antonelli, Andy; Keller, Nick

    2018-05-01

    The use of optical scattering to measure feature shape and dimensions, scatterometry, is now routine during semiconductor manufacturing. Scatterometry iteratively improves an optical model structure using simulations that are compared to experimental data from an ellipsometer. These simulations are done using the rigorous coupled wave analysis for solving Maxwell's equations. In this article, we describe the Mueller matrix spectroscopic ellipsometry based scatterometry. Next, the rigorous coupled wave analysis for Maxwell's equations is presented. Following this, several example measurements are described as they apply to specific process steps in the fabrication of gate-all-around (GAA) transistor structures. First, simulations of measurement sensitivity for the inner spacer etch back step of horizontal GAA transistor processing are described. Next, the simulated metrology sensitivity for sacrificial (dummy) amorphous silicon etch back step of vertical GAA transistor processing is discussed. Finally, we present the application of plasmonically active test structures for improving the sensitivity of the measurement of metal linewidths.

  8. A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

    NASA Astrophysics Data System (ADS)

    Li, Jie; Huang, Houxu; Wang, Mingyang

    2017-03-01

    In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha ( p- α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.

  9. Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver

    DOE PAGES

    Vincenti, H.; Vay, J. -L.

    2015-11-22

    Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less

  10. Macroscopic response in active nonlinear photonic crystals.

    PubMed

    Alagappan, Gandhi; John, Sajeev; Li, Er Ping

    2013-09-15

    We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.

  11. Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems

    DOE PAGES

    Chen, Qiang; Qin, Hong; Liu, Jian; ...

    2017-08-24

    An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. Here, this new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.

  12. Particle production of vector fields: Scale invariance is attractive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, Jacques M.; Dimopoulos, Konstantinos

    2011-01-15

    In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of perturbations for the components of a vector field, massive or not, whose kinetic function (and mass) is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation weakly anisotropic. The above two characteristics of the attractor solution can source (independently or combined together) significant statisticalmore » anisotropy in the curvature perturbation, which may well be observable in the near future.« less

  13. Bopp-Podolsky black holes and the no-hair theorem

    NASA Astrophysics Data System (ADS)

    Cuzinatto, R. R.; de Melo, C. A. M.; Medeiros, L. G.; Pimentel, B. M.; Pompeia, P. J.

    2018-01-01

    Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekenstein's method. It is shown that the solutions split up into two parts, namely a non-homogeneous (asymptotically massless) regime and a homogeneous (asymptotically massive) sector which is null outside the event horizon. In addition, in the simplest approach to Bopp-Podolsky black holes, the non-homogeneous solutions are found to be Maxwell's solutions leading to a Reissner-Nordström black hole. It is also demonstrated that the only exterior solution consistent with the weak and null energy conditions is the Maxwell one. Thus, in the light of the energy conditions, it is concluded that only Maxwell modes propagate outside the horizon and, therefore, the no-hair theorem is satisfied in the case of Bopp-Podolsky fields in spherically symmetric space-times.

  14. Generalized Courant-Snyder Theory and Kapchinskij-Vladimirskij Distribution For High-intensity Beams In A Coupled Transverse Focusing Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong QIn, Ronald Davidson

    2011-07-18

    The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.« less

  15. Generalized Courant-Snyder theory and Kapchinskij-Vladimirskij distribution for high-intensity beams in a coupled transverse focusing lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026; Davidson, Ronald C.

    2011-05-15

    The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in an uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation and reduces beam pulsation.« less

  16. Angular momentum and torque described with the complex octonion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Zi-Hua, E-mail: xmuwzh@xmu.edu.cn

    2014-08-15

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field andmore » of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.« less

  17. Development and application of discontinuous Galerkin method for the solution of two-dimensional Maxwell equations

    NASA Astrophysics Data System (ADS)

    Wong, See-Cheuk

    We inhabit an environment of electromagnetic (EM) waves. The waves within the EM spectrum---whether light, radio, or microwaves---all obey the same physical laws. A band in the spectrum is designated to the microwave frequencies (30MHz--300GHz), at which radar systems operate. The precise modeling of the scattered EM-ields about a target, as well as the numerical prediction of the radar return is the crux of the computational electromagnetics (CEM) problems. The signature or return from a target observed by radar is commonly provided in the form of radar cross section (RCS). Incidentally, the efforts in the reduction of such return forms the basis of stealth aircraft design. The object of this dissertation is to extend Discontinuous Galerkin (DG) method to solve numerically the Maxwell equations for scatterings from perfect electric conductor (PEC) objects. The governing equations are derived by writing the Maxwell equations in conservation-law form for scattered field quantities. The transverse magnetic (TM) and the transverse electric (TE) waveforms of the Maxwell equations are considered. A finite-element scheme is developed with proper representations for the electric and magnetic fluxes at a cell interface to account for variations in properties, in both space and time. A characteristic sub-path integration process, known as the "Riemann solver" is involved. An explicit Runge-Kutta Discontinuous Galerkin (RKDG) upwind scheme, which is fourth-order accurate in time and second-order in space, is employed to solve the TM and TE equations. Arbitrary cross-sectioned bodies are modeled, around which computational grids using random triangulation are generated. The RKDG method, in its development stage, was constructed and studied for solving hyperbolic conservation equations numerically. It was later extended to multidimensional nonlinear systems of conservation laws. The algorithms are described, including the formulations and treatments to the numerical fluxes, degrees of freedom, boundary conditions, and other implementation issues. The computational solution amounts to a near-field solution in form of contour plot and one extending from the scatterer to a far-field boundary located a few wavelengths away. Near-field to far-field transformation utilizing the Green's function is performed to obtain the bistatic radar cross section information. Results are presented for scatterings from a series of two-dimensional objects, including circular and square cylinders, ogive and NACA airfoils. Also, scatterings from more complex geometries such as cylindrical and rectangular cavitations are simulated. Exact solutions for selected cases are compared to the computational results and demonstrate excellent accuracy and efficiency in the RKDG calculations. In the whole, its ease and flexibility to incorporate the characteristic-based schemes for the flux integrals between cell interfaces, and the compact formulation allowing direct application to the boundary elements without modification are some of the admired features of the DG method.

  18. A Leap-Frog Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations in Metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J., Waters, J. W., Machorro, E. A.

    2012-06-01

    Numerical simulation of metamaterials play a very important role in the design of invisibility cloak, and sub-wavelength imaging. In this paper, we propose a leap-frog discontinuous Galerkin method to solve the time-dependent Maxwell’s equations in metamaterials. Conditional stability and error estimates are proved for the scheme. The proposed algorithm is implemented and numerical results supporting the analysis are provided.

  19. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  20. A viscoelastic higher-order beam finite element

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Tressler, Alexander

    1996-01-01

    A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.

  1. Electromagnetic unification of matter and force fields

    NASA Astrophysics Data System (ADS)

    John, Sarah

    2004-05-01

    Special relativity and quantum mechanics are descriptive of electromagnetic propagation in waveguides, with mass analogous to the cutoff frequency of a waveguide mode [S.John, Bull.Am.Phys.Soc. vol.39,no.2,1254 (1994)]. It is further postulated herein that all spin 1/2 matter (necessarily massive) and spin 1 force fields have their origin in the electromagnetic fields E and B. This concept is not new. Majorana, among others have obtained electromagnetic representations of Dirac-like equations valid for the zero-mass case. Here, the spinor representation of the Maxwell equations, as given by Sallhofer, is extended to oscillatory fields with propagation constant m to obtain, in the absence of charge and current densities, the coupled equation (M. hatp + β E)ψ = 0 , where M = diag[ M σ, M^* σ ] , β = offdiag[I,I] , ψ ^ = i ^dag ( σ. B0 ( p), σ. E_0(p)), and M=m+ip, with the energy-mass relation given by E^2 = M M . Further, it is shown that the interaction term of QED is a direct consequence of including the sources and currents of Maxwell equations. Qualitative field patterns for spin 1/2 and spin 1 states, such as the electron, neutrino, magnetic monopole, quarks, photon, and massive gauge bosons are suggested.

  2. Metamaterials for Miniaturization of Optical Components

    DTIC Science & Technology

    2014-09-24

    elementary EM fields are exactly the Maxwell equations with proper conserved currents; (iii) a free charge moves uniformly preserving up to the...Disordered Systems -- A Conference in Honor of Leonid Pastur , Hagen, Germany, Some Mathematical Problems in a Neoclassical Theory of Electric Charges

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, H.; Vay, J. -L.

    Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less

  4. Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations

    NASA Astrophysics Data System (ADS)

    Corato-Zanarella, Mateus; Zamboni-Rached, Michel

    2016-11-01

    Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case, with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for a scalar FW, and the vectorial solutions are built after it via the use of Maxwell's equations. The results show that the field components and the longitudinal component of the time-averaged Poynting vector closely follow the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to parameters variations.

  5. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  6. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE PAGES

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik; ...

    2015-01-15

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  7. Fourth-Order Conservative Vlasov-Maxwell Solver for Cartesian and Cylindrical Phase Space Coordinates

    NASA Astrophysics Data System (ADS)

    Vogman, Genia

    Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space coordinates present a new development in the field of computational plasma physics. A fourth-order finite-volume method for solving the Vlasov-Maxwell equation system is presented first for Cartesian and then for cylindrical phase space coordinates. Special attention is given to the treatment of the discrete primary variables and to the quadrature rule for evaluating the surface and line integrals that appear in the governing equations. The finite-volume treatment of conducting wall and axis boundaries is particularly nuanced when it comes to phase space coordinates, and is described in detail. In addition to the mechanics of each part of the finite-volume discretization in the two different coordinate systems, the complete algorithm is also presented. The Cartesian coordinate discretization is applied to several well-known test problems. Since even linear analysis of kinetic theory governing equations is complicated on account of velocity being an independent coordinate, few analytic or semi-analytic predictions exist. Benchmarks are particularly scarce for configurations that have magnetic fields and involve more than two phase space dimensions. Ensuring that simulations are true to the physics thus presents a difficulty in the development of robust numerical methods. The research described in this dissertation addresses this challenge through the development of more complete physics-based benchmarks based on the Dory-Guest-Harris instability. The instability is a special case of perpendicularly-propagating kinetic electrostatic waves in a warm uniformly magnetized plasma. A complete derivation of the closed-form linear theory dispersion relation for the instability is presented. The electric field growth rates and oscillation frequencies specified by the dispersion relation provide concrete measures against which simulation results can be quantitatively compared. Furthermore, a specialized form of perturbation is shown to strongly excite the fastest growing mode. The fourth-order finite-volume algorithm is benchmarked against the instability, and is demonstrated to have good convergence properties and close agreement with theoretical growth rate and oscillation frequency predictions. The Dory-Guest-Harris instability benchmark extends the scope of standard test problems by providing a substantive means of validating continuum kinetic simulations of warm magnetized plasmas in higher-dimensional 3D ( x,vx,vy) phase space. The linear theory analysis, initial conditions, algorithm description, and comparisons between theoretical predictions and simulation results are presented. The cylindrical coordinate finite-volume discretization is applied to model axisymmetric systems. Since mitigating the prohibitive computational cost of simulating six dimensions is another challenge in phase space simulations, the development of a robust means of exploiting symmetry is a major advance when it comes to numerically solving the Vlasov-Maxwell equation system. The discretization is applied to a uniform distribution function to assess the nature of the singularity at the axis, and is demonstrated to converge at fourth-order accuracy. The numerical method is then applied to simulate electrostatic ion confinement in an axisymmetric Z-pinch configuration. To the author's knowledge this presents the first instance of a conservative finite-volume discretization of the cylindrical coordinate Vlasov equation. The computational framework for the Vlasov-Maxwell solver is described, and an outlook for future research is presented.

  8. (2+1)-Dimensional charged black holes with scalar hair in Einstein-Power-Maxwell Theory

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zou, De-Cheng

    2017-06-01

    In (2+1)-dimensional AdS spacetime, we obtain new exact black hole solutions, including two different models (power parameter k=1 and k≠1), in the Einstein-Power-Maxwell (EPM) theory with nonminimally coupled scalar field. For the charged hairy black hole with k≠1, we find that the solution contains a curvature singularity at the origin and is nonconformally flat. The horizon structures are identified, which indicates the physically acceptable lower bound of mass in according to the existence of black hole solutions. Later, the null geodesic equations for photon around this charged hairy black hole are also discussed in detail.

  9. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Nikolai; Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder; Scheid, Claire

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numericalmore » modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of Maxwell's equations coupled to a linearized non-local dispersion model relevant to plasmonics. While the method is presented in the general 3D case, numerical results are given for 2D simulation settings.« less

  10. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    NASA Astrophysics Data System (ADS)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder on both the passive cavity and active lasers, where the latter show a general increase in the pump threshold for cavity lengths greater than N =7 , and a reduction in the nominal cavity mode volume for increasing amounts of disorder.

  11. Rotating electrical machines: Poynting flow

    NASA Astrophysics Data System (ADS)

    Donaghy-Spargo, C.

    2017-09-01

    This paper presents a complementary approach to the traditional Lorentz and Faraday approaches that are typically adopted in the classroom when teaching the fundamentals of electrical machines—motors and generators. The approach adopted is based upon the Poynting vector, which illustrates the ‘flow’ of electromagnetic energy. It is shown through simple vector analysis that the energy-flux density flow approach can provide insight into the operation of electrical machines and it is also shown that the results are in agreement with conventional Maxwell stress-based theory. The advantage of this approach is its complementary completion of the physical picture regarding the electromechanical energy conversion process—it is also a means of maintaining student interest in this subject and as an unconventional application of the Poynting vector during normal study of electromagnetism.

  12. Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.

    PubMed

    Zhang, Yongliang; Shi, Lina; Xie, Changqing

    2016-07-01

    We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames.

  13. Graphene-clad tapered fiber: effective nonlinearity and propagation losses.

    PubMed

    Gorbach, A V; Marini, A; Skryabin, D V

    2013-12-15

    We derive a pulse propagation equation for a graphene-clad optical fiber, treating the optical response of the graphene and nonlinearity of the dielectric fiber core as perturbations in asymptotic expansion of Maxwell equations. We analyze the effective nonlinear and attenuation coefficients due to the graphene layer. Based on the recent experimental measurements of the nonlinear graphene conductivity, we predict considerable enhancement of the effective nonlinearity for subwavelength fiber core diameters.

  14. Comparison with CLPX II airborne data using DMRT model

    USGS Publications Warehouse

    Xu, X.; Liang, D.; Andreadis, K.M.; Tsang, L.; Josberger, E.G.

    2009-01-01

    In this paper, we considered a physical-based model which use numerical solution of Maxwell Equations in three-dimensional simulations and apply into Dense Media Radiative Theory (DMRT). The model is validated in two specific dataset from the second Cold Land Processes Experiment (CLPX II) at Alaska and Colorado. The data were all obtain by the Ku-band (13.95GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). Snow is a densely packed media. To take into account the collective scattering and incoherent scattering, analytical Quasi-Crystalline Approximation (QCA) and Numerical Maxwell Equation Method of 3-D simulation (NMM3D) are used to calculate the extinction coefficient and phase matrix. DMRT equations were solved by iterative solution up to 2nd order for the case of small optical thickness and full multiple scattering solution by decomposing the diffuse intensities into Fourier series was used when optical thickness exceed unity. It was shown that the model predictions agree with the field experiment not only co-polarization but also cross-polarization. For Alaska region, the input snow structure data was obtain by the in situ ground observations, while for Colorado region, we combined the VIC model to get the snow profile. ??2009 IEEE.

  15. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    PubMed

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  16. AN FDTD ALGORITHM WITH PERFECTLY MATCHED LAYERS FOR CONDUCTIVE MEDIA. (R825225)

    EPA Science Inventory

    We extend Berenger's perfectly matched layers (PML) to conductive media. A finite-difference-time-domain (FDTD) algorithm with PML as an absorbing boundary condition is developed for solutions of Maxwell's equations in inhomogeneous, conductive media. For a perfectly matched laye...

  17. The Coupling of Gravity to Spin and Electromagnetism

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    The coupled Einstein-Dirac-Maxwell equations are considered for a static, spherically symmetric system of two fermions in a singlet spinor state. Stable soliton-like solutions are shown to exist, and we discuss the regularizing effect of gravity from a Feynman diagram point of view.

  18. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  19. Equation of State of Structured Matter at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Yasutake, N.; Tatsumi, T.

    We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.

  20. Maxwell+TDDFT multiscale method for light propagation in thin-film semiconductor

    NASA Astrophysics Data System (ADS)

    Uemoto, Mitsuharu; Yabana, Kazuhiro

    First-principles time-dependent density functional theory (TDDFT) has been a powerful tool to describe light-matter interactions and widely used to describe electronic excitations and linear and nonlinear optical properties of molecules and solids. We have been developing a novel multiscale modeling to describe a propagation of light pulse in a macroscopic medium combining TDDFT and Maxwell equations. In the method, the finite-difference time-domain (FDTD)-like electromagnetism (EM) calculation is carried out in a macroscopic grid. At each grid point, the time-dependent Kohn-Sham equation is solved in real time. In the presentation, we show applications of this method to the 1D/2D propagations of femtosecond laser pulses through a thin-film semiconductor. This work was supported in part by MEXT as a social and scientific priority issue (Creation of new functional devices and high-performance materials to support next-generation industries; CDMSI) to be tackled by using post-K computer.

  1. Capsize of polarization in dilute photonic crystals.

    PubMed

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  2. Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leblond, Herve; Kremer, David; Mihalache, Dumitru

    2010-03-15

    By using a reductive perturbation method, we derive from Maxwell-Bloch equations a cubic generalized Kadomtsev-Petviashvili equation for ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media without the use of the slowly varying envelope approximation. We calculate the collapse threshold for the propagation of few-cycle spatiotemporal pulses described by the generic cubic generalized Kadomtsev-Petviashvili equation by a direct numerical method and compare it to analytic results based on a rigorous virial theorem. Besides, typical evolution of the spectrum (integrated over the transverse spatial coordinate) is given and a strongly asymmetric spectral broadening of ultrashort spatiotemporal pulses during collapse is evidenced.

  3. Is Electromagnetic Gravity Control Possible?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Jose G.; Torr, Douglas G.

    2004-02-04

    We study the interplay of Einstein's Gravitation (GR) and Maxwell's Electromagnetism, where the distribution of energy-momentum is not presently known (The Feynman Lectures, Vol 2, Chapter 27, section 4). As Feynman himself stated, one might in principle use Einstein's equations of GR to find such a distribution. GR (born in 1915) presently uses the Levi-Civita connection, LCC (the LCC was born two years after GR as a new concept, and not just as the pre-existing Christoffel symbols that represent it). Around 1927, Einstein proposed for physics an alternative to the LCC that constitutes a far more sensible and powerful affinemore » enrichment of metric Riemannian geometry. It is called teleparallelism (TP). Its Finslerian version (i.e. in the space-time-velocity arena) permits an unequivocal identification of the EM field as a geometric quantity. This in turn permits one to identify a completely geometric set of Einstein equations from curvature equations. From their right hand side, one may obtain the actual distribution of EM energy-momentum. It is consistent with Maxwell's equations, since these also are implied by the equations of structure of TP. We find that the so-far-unknown terms in this distribution amount to a total differential and do not, therefore, alter the value of the total EM energy-momentum. And yet these extra terms are at macroscopic distances enormously larger than the standard quadratic terms. This allows for the generation of measurable gravitational fields by EM fields. We thus answer affirmatively the question of the title.« less

  4. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  5. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE PAGES

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2017-09-28

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  6. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    NASA Astrophysics Data System (ADS)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  7. Time-domain analysis of planar microstrip devices using a generalized Yee-algorithm based on unstructured grids

    NASA Technical Reports Server (NTRS)

    Gedney, Stephen D.; Lansing, Faiza

    1993-01-01

    The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.

  8. A Review of Tensors and Tensor Signal Processing

    NASA Astrophysics Data System (ADS)

    Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.

    Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.

  9. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals.

    PubMed

    Skrdla, Peter J; Robertson, Rebecca T

    2005-06-02

    Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.

  10. On Dipole Moment of Impurity Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Konobeeva, N. N.; Ten, A. V.; Belonenko, M. B.

    2017-04-01

    Propagation of a two-dimensional electromagnetic pulse in an array of semiconductor carbon nanotubes with impurities is investigated. The parameters of dipole moments of impurities are determined. The Maxwell equation and the equation of motion for dipole polarization are jointly solved. The dynamics of the electromagnetic pulse is examined as a function of the dipole moment. It is shown that taking polarization into account does not have a substantial effect on the propagation process, but alters the optical pulse shape.

  11. Lectures on gravitation

    NASA Astrophysics Data System (ADS)

    Das, Ashok

    1. Basics of geometry and relativity. 1.1. Two dimensional geometry. 1.2. Inertial and gravitational masses. 1.3. Relativity -- 2. Relativistic dynamics. 2.1. Relativistic point particle. 2.2. Current and charge densities. 2.3. Maxwell's equations in the presence of sources. 2.4. Motion of a charged particle in EM field. 2.5. Energy-momentum tensor. 2.6. Angular momentum -- 3. Principle of general covariance. 3.1. Principle of equivalence. 3.2. Principle of general covariance. 3.3. Tensor densities -- 4. Affine connection and covariant derivative. 4.1. Parallel transport of a vector. 4.2. Christoffel symbol. 4.3. Covariant derivative of contravariant tensors. 4.4. Metric compatibility. 4.5. Covariant derivative of covariant and mixed tensors. 4.6. Electromagnetic analogy. 4.7. Gradient, divergence and curl -- 5. Geodesic equation. 5.1. Covariant differentiation along a curve. 5.2. Curvature from derivatives. 5.3. Parallel transport along a closed curve. 5.4. Geodesic equation. 5.5. Derivation of geodesic equation from a Lagrangian -- 6. Applications of the geodesic equation. 6.1. Geodesic as representing gravitational effect. 6.2. Rotating coordinate system and the Coriolis force. 6.3. Gravitational red shift. 6.4. Twin paradox and general covariance. 6.5. Other equations in the presence of gravitation -- 7. Curvature tensor and Einstein's equation. 7.1. Curvilinear coordinates versus gravitational field. 7.2. Definition of an inertial coordinate frame. 7.3. Geodesic deviation. 7.4. Properties of the curvature tensor. 7.5. Einstein's equation. 7.6. Cosmological constant. 7.7. Initial value problem. 7.8. Einstein's equation from an action -- 8. Schwarzschild solution. 8.1. Line element. 8.2. Connection. 8.3. Solution of the Einstein equation. 8.4. Properties of the Schwarzschild solution. 8.5. Isotropic coordinates -- 9. Tests of general relativity. 9.1. Radar echo experiment. 9.2. Motion of a particle in a Schwarzschild background. 9.3. Motion of light rays in a Schwarzschild background. 9.4. Perihelion advance of Mercury -- 10. Black holes. 10.1. Singularities of the metric. 10.2. Singularities of the Schwarzschild metric. 10.3. Black holes -- 11. Cosmological models and the big bang theory. 11.1. Homogeneity and isotropy. 11.2. Different models of the universe. 11.3. Hubble's law. 11.4. Evolution equation. 11.5. Big bang theory and blackbody radiation.

  12. THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)

    EPA Science Inventory

    A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...

  13. Killing-Yano tensors in spaces admitting a hypersurface orthogonal Killing vector

    NASA Astrophysics Data System (ADS)

    Garfinkle, David; Glass, E. N.

    2013-03-01

    Methods are presented for finding Killing-Yano tensors, conformal Killing-Yano tensors, and conformal Killing vectors in spacetimes with a hypersurface orthogonal Killing vector. These methods are similar to a method developed by the authors for finding Killing tensors. In all cases one decomposes both the tensor and the equation it satisfies into pieces along the Killing vector and pieces orthogonal to the Killing vector. Solving the separate equations that result from this decomposition requires less computing than integrating the original equation. In each case, examples are given to illustrate the method.

  14. Integral transformation solution of free-space cylindrical vector beams and prediction of modified Bessel-Gaussian vector beams.

    PubMed

    Li, Chun-Fang

    2007-12-15

    A unified description of free-space cylindrical vector beams is presented that is an integral transformation solution to the vector Helmholtz equation and the transversality condition. In the paraxial condition, this solution not only includes the known J(1) Bessel-Gaussian vector beam and the axisymmetric Laguerre-Gaussian vector beam that were obtained by solving the paraxial wave equations but also predicts two kinds of vector beam, called a modified Bessel-Gaussian vector beam.

  15. Energy conservation and H theorem for the Enskog-Vlasov equation

    NASA Astrophysics Data System (ADS)

    Benilov, E. S.; Benilov, M. S.

    2018-06-01

    The Enskog-Vlasov (EV) equation is a widely used semiphenomenological model of gas-liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.

  16. A new visco-elasto-plastic model via time-space fractional derivative

    NASA Astrophysics Data System (ADS)

    Hei, X.; Chen, W.; Pang, G.; Xiao, R.; Zhang, C.

    2018-02-01

    To characterize the visco-elasto-plastic behavior of metals and alloys we propose a new constitutive equation based on a time-space fractional derivative. The rheological representative of the model can be analogous to that of the Bingham-Maxwell model, while the dashpot element and sliding friction element are replaced by the corresponding fractional elements. The model is applied to describe the constant strain rate, stress relaxation and creep tests of different metals and alloys. The results suggest that the proposed simple model can describe the main characteristics of the experimental observations. More importantly, the model can also provide more accurate predictions than the classic Bingham-Maxwell model and the Bingham-Norton model.

  17. Cohomogeneity-one solutions in Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Lim, Yen-Kheng

    2017-05-01

    The field equations for Einstein-Maxwell-dilaton gravity in D dimensions are reduced to an effective one-dimensional system under the influence of exponential potentials. Various cases where exact solutions can be found are explored. With this procedure, we present interesting solutions such as a one-parameter generalization of the dilaton-Melvin spacetime and a three-parameter solution that interpolates between the Reissner-Nordström and Bertotti-Robinson solutions. This procedure also allows simple, alternative derivations of known solutions such as the Lifshitz spacetime and the planar anti-de Sitter naked singularity. In the latter case, the metric is cast in a simpler form which reveals the presence of an additional curvature singularity.

  18. TORO II: A finite element computer program for nonlinear quasi-static problems in electromagnetics: Part 1, Theoretical background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, D.K.

    The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.

  19. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  20. Non-linear duality invariant partially massless models?

    DOE PAGES

    Cherney, D.; Deser, S.; Waldron, A.; ...

    2015-12-15

    We present manifestly duality invariant, non-linear, equations of motion for maximal depth, partially massless higher spins. These are based on a first order, Maxwell-like formulation of the known partially massless systems. Lastly, our models mimic Dirac–Born–Infeld theory but it is unclear whether they are Lagrangian.

  1. Light Bending by a Coulomb Field and the Aichelburg-Sexl Ultraboost

    ERIC Educational Resources Information Center

    Kozyulin, M. V.; Silagadze, Z. K.

    2011-01-01

    Gravitational light deflection, predicted by general relativity, is a fascinating phenomenon with numerous important applications in astronomy, astrophysics and cosmology. At first sight, there is no analogous effect in electrodynamics because Maxwell's equations are linear and, therefore, a photon does not interact with the electromagnetic field…

  2. Magneto-hydrodynamical model for plasma

    NASA Astrophysics Data System (ADS)

    Liu, Ruikuan; Yang, Jiayan

    2017-10-01

    Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.

  3. Thermal Equilibrium Between Radiation and Matter: A Lead to the Maxwell-Boltzmann and Planck Distributions

    NASA Technical Reports Server (NTRS)

    Lanyi, Gabor E.

    2003-01-01

    This viewgraph presentation reviews the 1901 work in Planck's constant and blackbody radiation law and the 1916 Einstein rederivation of the blackbody radiation law. It also reviews Wien's law. It also presents equations that demonstrate the thermal balance between radiation and matter.

  4. Combined active and passive microwave remote sensing of vegetated surfaces at l-band

    USDA-ARS?s Scientific Manuscript database

    In previous work the distorted Born approximation (DBA) of volume scattering was combined with the numerical solutions of Maxwell equations (NMM3D) for a rough surface to calculate the radar backscattering coefficient for the Soil Moisture Active Passive (SMAP) mission. The model results were valida...

  5. A vectorized Poisson solver over a spherical shell and its application to the quasi-geostrophic omega-equation

    NASA Technical Reports Server (NTRS)

    Mullenmeister, Paul

    1988-01-01

    The quasi-geostrophic omega-equation in flux form is developed as an example of a Poisson problem over a spherical shell. Solutions of this equation are obtained by applying a two-parameter Chebyshev solver in vector layout for CDC 200 series computers. The performance of this vectorized algorithm greatly exceeds the performance of its scalar analog. The algorithm generates solutions of the omega-equation which are compared with the omega fields calculated with the aid of the mass continuity equation.

  6. Fundamental Physical Basis for Maxwell-Heaviside Gravitomagnetism

    NASA Astrophysics Data System (ADS)

    Nyambuya, Golden Gadzirayi

    2015-08-01

    Gravitomagnetism is universally and formally recognised in contemporary physics as being the linear first-order approximation of Einstein's field equations emerging from the General Theory of Relativity (GTR). Herein, we argue that, as has been done by others in the past, gravitomagnetism can be viewed as a fully-fledged independent theory of gravitomagnetism that can be divorced from Professor Einstein's GTR. The gravitomagnetic theory whose exposition we give herein is exactly envisioned by Professor Maxwell and Dr. Heaviside. The once speculative Maxwell-Heaviside Gravitomagnetic theory now finds full justification as a fully fledged theory from Professor José Hera's Existence Theorem which states that all that is needed for there to exist the four Max-well-type field equations is that a mass-current conservation law be obeyed. Our contribution in the present work, if any, is that we demonstrate conclusively that like electromagnetism, the gravitomagnetic phenomenon leads to the prediction of gravitomagnetic waves that travel at the speed of light. Further, we argue that for the gravitational phenomenon, apart from the Newtonian gravitational potential, there are four more potentials and these operate concurrently with the Newtonian potential. At the end of it, it is seen that the present work sets the stage for a very interesting investigation of several gravitational anomalies such as the ponderous Pioneer Anomaly, the vexing Flyby Anomalies, the mysterious Anomalous Rotation Curves of Spiral Galaxies and as well, the possibility of the generation of stellar magnetic fields by rotating gravitational masses.

  7. Double absorbing boundaries for finite-difference time-domain electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu

    We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.

  8. Low Altitude Near-the-Horizon Propagation: A Comparison Between RPO and M-Layer

    DTIC Science & Technology

    1993-12-01

    scaling based on the assumption that a single mode contributes to the complete field strength (Ref. 31, output from M-Layer [Ref. 4, 5] in the over-the...PE. The parabolic equation approximation to the Maxwell wave equations is developed under the optical assumption that the operating frequency is so...profile data are specified (an array) capm zim profile data (modified index of refraction; an array) (a) RPO: from I to n/evs; M-Layer from 0 to nzlayr

  9. Non-singular spacetimes with a negative cosmological constant: IV. Stationary black hole solutions with matter fields

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Delay, Erwann; Klinger, Paul

    2018-02-01

    We use an elliptic system of equations with complex coefficients for a set of complex-valued tensor fields as a tool to construct infinite-dimensional families of non-singular stationary black holes, real-valued Lorentzian solutions of the Einstein–Maxwell-dilaton-scalar fields-Yang–Mills–Higgs–Chern–Simons-f(R) equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.

  10. Superconductor in a weak static gravitational field

    NASA Astrophysics Data System (ADS)

    Ummarino, Giovanni Alberto; Gallerati, Antonio

    2017-08-01

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T_ {c} superconductor with a classical low-T_ {c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field.

  11. Behaviour of charged collapsing fluids after hydrostatic equilibrium in R^n gravity

    NASA Astrophysics Data System (ADS)

    Kausar, Hafiza Rizwana

    2017-06-01

    The purpose of this paper is to study the transport equation and its coupling with the Maxwell equation in the framework of R^n gravity. Using Müller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables appear in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star.

  12. Vector curvaton with varying kinetic function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Wagstaff, Jacques M.

    2010-01-15

    A new model realization of the vector curvaton paradigm is presented and analyzed. The model consists of a single massive Abelian vector field, with a Maxwell-type kinetic term. By assuming that the kinetic function and the mass of the vector field are appropriately varying during inflation, it is shown that a scale-invariant spectrum of superhorizon perturbations can be generated. These perturbations can contribute to the curvature perturbation of the Universe. If the vector field remains light at the end of inflation it is found that it can generate substantial statistical anisotropy in the spectrum and bispectrum of the curvature perturbation.more » In this case the non-Gaussianity in the curvature perturbation is predominantly anisotropic, which will be a testable prediction in the near future. If, on the other hand, the vector field is heavy at the end of inflation then it is demonstrated that particle production is approximately isotropic and the vector field alone can give rise to the curvature perturbation, without directly involving any fundamental scalar field. The parameter space for both possibilities is shown to be substantial. Finally, toy models are presented which show that the desired variation of the mass and kinetic function of the vector field can be realistically obtained, without unnatural tunings, in the context of supergravity or superstrings.« less

  13. Scalable direct Vlasov solver with discontinuous Galerkin method on unstructured mesh.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J.; Ostroumov, P. N.; Mustapha, B.

    2010-12-01

    This paper presents the development of parallel direct Vlasov solvers with discontinuous Galerkin (DG) method for beam and plasma simulations in four dimensions. Both physical and velocity spaces are in two dimesions (2P2V) with unstructured mesh. Contrary to the standard particle-in-cell (PIC) approach for kinetic space plasma simulations, i.e., solving Vlasov-Maxwell equations, direct method has been used in this paper. There are several benefits to solving a Vlasov equation directly, such as avoiding noise associated with a finite number of particles and the capability to capture fine structure in the plasma. The most challanging part of a direct Vlasov solvermore » comes from higher dimensions, as the computational cost increases as N{sup 2d}, where d is the dimension of the physical space. Recently, due to the fast development of supercomputers, the possibility has become more realistic. Many efforts have been made to solve Vlasov equations in low dimensions before; now more interest has focused on higher dimensions. Different numerical methods have been tried so far, such as the finite difference method, Fourier Spectral method, finite volume method, and spectral element method. This paper is based on our previous efforts to use the DG method. The DG method has been proven to be very successful in solving Maxwell equations, and this paper is our first effort in applying the DG method to Vlasov equations. DG has shown several advantages, such as local mass matrix, strong stability, and easy parallelization. These are particularly suitable for Vlasov equations. Domain decomposition in high dimensions has been used for parallelization; these include a highly scalable parallel two-dimensional Poisson solver. Benchmark results have been shown and simulation results will be reported.« less

  14. Slip and barodiffusion phenomena in slow flows of a gas mixture

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.

    2017-03-01

    The slip and barodiffusion problems for the slow flows of a gas mixture are investigated on the basis of the linearized moment equations following from the Boltzmann equation. We restrict ourselves to the set of the third-order moment equations and state two general relations (resembling conservation equations) for the moments of the distribution function similar to the conditions used by Loyalka [S. K. Loyalka, Phys. Fluids 14, 2291 (1971), 10.1063/1.1693331] in his approximation method (the modified Maxwell method). The expressions for the macroscopic velocities of the gas mixture species, the partial viscous stress tensors, and the reduced heat fluxes for the stationary slow flow of a gas mixture in the semi-infinite space over a plane wall are obtained as a result of the exact solution of the linearized moment equations in the 10- and 13-moment approximations. The general expression for the slip velocity and the simple and accurate expressions for the viscous, thermal, diffusion slip, and baroslip coefficients, which are given in terms of the basic transport coefficients, are derived by using the modified Maxwell method. The solutions of moment equations are also used for investigation of the flow and diffusion of a gas mixture in a channel formed by two infinite parallel plates. A fundamental result is that the barodiffusion factor in the cross-section-averaged expression for the diffusion flux contains contributions associated with the viscous transfer of momentum in the gas mixture and the effect of the Knudsen layer. Our study revealed that the barodiffusion factor is equal to the diffusion slip coefficient (correct to the opposite sign). This result is consistent with the Onsager's reciprocity relations for kinetic coefficients following from nonequilibrium thermodynamics of the discontinuous systems.

  15. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    NASA Astrophysics Data System (ADS)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  16. Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation.

    PubMed

    Mansuripur, Masud

    2012-05-11

    The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics.

  17. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academymore » of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.« less

  18. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    NASA Astrophysics Data System (ADS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.

  19. Fradkin-Bacry-Ruegg-Souriau perihelion vector for Gorringe-Leach equations

    NASA Astrophysics Data System (ADS)

    Grandati, Yves; Bérard, Alain; Mohrbach, Hervé

    2010-02-01

    We show that every generalized Gorringe-Leach equation admits an associated Fradkin-Bacry-Ruegg-Souriau’s vector which, in general, is only a piecewise conserved quantity. In the case of dualizable generalized Gorringe-Leach equations, which include the case of conservative motions in central power law potentials, the image sets of the FBRS vectors for dual classes are dual images of each other.

  20. Flux vector splitting of the inviscid equations with application to finite difference methods

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Warming, R. F.

    1979-01-01

    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.

  1. Testing Theoretical Models of Magnetic Damping Using an Air Track

    ERIC Educational Resources Information Center

    Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.

    2008-01-01

    Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…

  2. The Role of Angular Momentum in the Construction of Electromagnetic Multipolar Fields

    ERIC Educational Resources Information Center

    Tischler, Nora; Zambrana-Puyalto, Xavier; Molina-Terriza, Gabriel

    2012-01-01

    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions…

  3. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    ERIC Educational Resources Information Center

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-01-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…

  4. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  5. Numerical investigation of the dynamics of Janus magnetic particles in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, Hui Eun; Kim, Kyoungbeom; Ma, Tae Yeong; Kang, Tae Gon

    2017-02-01

    We investigated the rotational dynamics of Janus magnetic particles suspended in a viscous liquid, in the presence of an externally applied rotating magnetic field. A previously developed two-dimensional direct simulation method, based on the finite element method and a fictitious domain method, is employed to solve the magnetic particulate flow. As for the magnetic problem, the two Maxwell equations are converted to a differential equation using the magnetic potential. The magnetic forces acting on the particles are treated by a Maxwell stress tensor formulation, enabling us to consider the magnetic interactions among the particles without any approximation. The dynamics of a single particle in the rotating field is studied to elucidate the effect of the Mason number and the magnetic susceptibility on the particle motions. Then, we extended our interest to a two-particle problem, focusing on the effect of the initial configuration of the particles on the particle motions. In three-particle interaction problems, the particle dynamics and the fluid flow induced by the particle motions are significantly affected by the particle configuration and the orientation of each particle.

  6. An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.

    2014-10-01

    A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension (Chen et al., 2011). The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation to Maxwell's equations, which avoids radiative noise issues by ordering out the light wave. An implicit, orbit-averaged, time-space-centered finite difference scheme is employed in both the 1D Darwin field equations (in potential form) and the 1D-3V particle orbit equations to produce a discrete system that remains exactly charge- and energy-conserving. Furthermore, enabled by the implicit Darwin equations, exact conservation of the canonical momentum per particle in any ignorable direction is enforced via a suitable scattering rule for the magnetic field. We have developed a simple preconditioner that targets electrostatic waves and skin currents, and allows us to employ time steps O(√{mi /me } c /veT) larger than the explicit CFL. Several 1D numerical experiments demonstrate the accuracy, performance, and conservation properties of the algorithm. In particular, the scheme is shown to be second-order accurate, and CPU speedups of more than three orders of magnitude vs. an explicit Vlasov-Maxwell solver are demonstrated in the "cold" plasma regime (where kλD ≪ 1).

  7. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang, E-mail: liang.wang@unh.edu; Germaschewski, K.; Hakim, Ammar H.

    2015-01-15

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically andmore » numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.« less

  8. Delayed feedback control in quantum transport.

    PubMed

    Emary, Clive

    2013-09-28

    Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.

  9. Electrodynamic multiple-scattering method for the simulation of optical trapping atop periodic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-07-01

    We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.

  10. Holographic P -wave superconductors in 1 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Alkac, Gokhan; Chakrabortty, Shankhadeep; Chaturvedi, Pankaj

    2017-10-01

    We study (1 +1 )-dimensional P -wave holographic superconductors described by three- dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of AdS3/CFT2 correspondence. In the probe limit, where the backreaction of matter fields is neglected, we show that there is a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled (1 +1 )-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate which breaks spontaneously both the U (1 ) and S O (1 ,1 ) symmetries. We numerically compute both the free energy and the ac conductivity for the superconducting phase of the boundary field theory. Our numerical computations clearly establish that the superconducting phase of the boundary theory is favorable to the normal phase, and the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.

  11. Scalar/Vector potential formulation for compressible viscous unsteady flows

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1985-01-01

    A scalar/vector potential formulation for unsteady viscous compressible flows is presented. The scalar/vector potential formulation is based on the classical Helmholtz decomposition of any vector field into the sum of an irrotational and a solenoidal field. The formulation is derived from fundamental principles of mechanics and thermodynamics. The governing equations for the scalar potential and vector potential are obtained, without restrictive assumptions on either the equation of state or the constitutive relations or the stress tensor and the heat flux vector.

  12. Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method

    NASA Technical Reports Server (NTRS)

    Chander, R.

    1990-01-01

    The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.

  13. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.

    PubMed

    Zhao, Shan

    2011-08-15

    This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America

  14. Multiparticle dynamics in an expanding universe

    NASA Astrophysics Data System (ADS)

    Anderson, James L.

    1995-11-01

    Approximate equations of motion for multiparticle systems in an expanding Einstein-deSitter universe are derived from the Einstein-Maxwell field equations using the Einstein-Infeld-Hoffmann surface integral method. At the Newtonian level of approximation one finds that, in comoving coordinates, both the Newtonian gravitational and Coulomb interactions in these equations are multiplied by the inverse third power of the scale factor R(t) appearing in the Einstein-deSitter field and they acquire a cosmic ``drag'' term. Nevertheless, both the period and luminosity size of bound two-body systems whose period is small compared to the Hubble time are found to be independent of t.

  15. Phase-space methods for the spin dynamics in condensed matter systems

    PubMed Central

    Hurst, Jérôme; Manfredi, Giovanni

    2017-01-01

    Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903

  16. Fractional-order difference equations for physical lattices and some applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2015-10-15

    Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less

  17. Diffusion of Charged Species in Liquids

    NASA Astrophysics Data System (ADS)

    Del Río, J. A.; Whitaker, S.

    2016-11-01

    In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.

  18. Diffusion of Charged Species in Liquids.

    PubMed

    Del Río, J A; Whitaker, S

    2016-11-04

    In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.

  19. Diffusion of Charged Species in Liquids

    PubMed Central

    del Río, J. A.; Whitaker, S.

    2016-01-01

    In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases. PMID:27811959

  20. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    PubMed Central

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2018-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies. PMID:29657355

  1. The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.

  2. Chiral dynamos and magnetogenesis induced by torsionful Maxwell-Chern Simons electrodynamics

    NASA Astrophysics Data System (ADS)

    de Andrade, L. C. Garcia

    2018-03-01

    Recently chiral anomalous currents have been investigated by Boyarsky et al. and Brandenburg et al. with respect to applications to the early universe. In this paper we show that these magnetic field anomalies, which can give rise to dynamo magnetic field amplification can also be linked to spacetime torsion through the use of a chemical potential and Maxwell electrodynamics with torsion firstly proposed by de Sabbata and Gasperini. When the axial torsion is constant this electrodynamics acquires the form of a Maxwell-Chern-Simmons (MCS) equations where the chiral current appears naturally and the zero component of torsion plays the role of a chemical potential, while the other components play the role of anisotropic conductivity. The chiral dynamo equation in torsionful spacetime is derived here from MSC electrodynamics. Here we have used a recently derived a torsion LV bound of T0˜ {10^{-26}} GeV and the constraint that this chiral magnetic field is a seed for galactic dynamo. This estimate is weaker than the one obtained from the chiral battery seed of ˜ {10^{30}} G without making use of Cartan torsion. The torsion obtained here was derived at 500 pc coherence scale. When a chiral MF is forced to seed a galactic dynamo one obtains a yet weaker MF, of the order of B˜ {10^{12}} G, which is the value of a MF at nucleosynthesis. By the use of chiral dynamo equations from parity-violating torsion one obtains a seed field of B˜ {10^{27}} G, which is a much stronger MF closer to the one obtained by making use of chiral batteries. Chiral vortical currents in non-Riemannian spacetimes derived in Riemannian spaces previously by Flaschi and Fukushima are extended to include minimal coupling with torsion. The present universe yields B˜ {10^{-24}} G, still sufficient to seed galactic dynamos.

  3. ‘…a paper …I hold to be great guns’: a commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’

    PubMed Central

    Longair, Malcolm

    2015-01-01

    Maxwell's great paper of 1865 established his dynamical theory of the electromagnetic field. The origins of the paper lay in his earlier papers of 1856, in which he began the mathematical elaboration of Faraday's researches into electromagnetism, and of 1861–1862, in which the displacement current was introduced. These earlier works were based upon mechanical analogies. In the paper of 1865, the focus shifts to the role of the fields themselves as a description of electromagnetic phenomena. The somewhat artificial mechanical models by which he had arrived at his field equations a few years earlier were stripped away. Maxwell's introduction of the concept of fields to explain physical phenomena provided the essential link between the mechanical world of Newtonian physics and the theory of fields, as elaborated by Einstein and others, which lies at the heart of twentieth and twenty-first century physics. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750155

  4. Comparing Teaching Approaches About Maxwell's Displacement Current

    NASA Astrophysics Data System (ADS)

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-08-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment relationship). Despite the consensus among physics educators concerning the relevance of the topic, there are many possible ways to interpret and justify the need for the displacement current term. With the goal of understanding the didactical transposition of this topic more deeply, we investigate three of its domains: (1) The historical development of Maxwell's reasoning; (2) Different approaches to justify the term insertion in physics textbooks; and (3) Four lectures devoted to introduce the topic in undergraduate level given by four different professors. By reflecting on the differences between these three domains, significant evidence for the knowledge transformation caused by the didactization of this episode is provided. The main purpose of this comparative analysis is to assist physics educators in developing an epistemological surveillance regarding the teaching and learning of the displacement current.

  5. Homoclinic snaking in the discrete Swift-Hohenberg equation

    NASA Astrophysics Data System (ADS)

    Kusdiantara, R.; Susanto, H.

    2017-12-01

    We consider the discrete Swift-Hohenberg equation with cubic and quintic nonlinearity, obtained from discretizing the spatial derivatives of the Swift-Hohenberg equation using central finite differences. We investigate the discretization effect on the bifurcation behavior, where we identify three regions of the coupling parameter, i.e., strong, weak, and intermediate coupling. Within the regions, the discrete Swift-Hohenberg equation behaves either similarly or differently from the continuum limit. In the intermediate coupling region, multiple Maxwell points can occur for the periodic solutions and may cause irregular snaking and isolas. Numerical continuation is used to obtain and analyze localized and periodic solutions for each case. Theoretical analysis for the snaking and stability of the corresponding solutions is provided in the weak coupling region.

  6. Localization of intense electromagnetic waves in a relativistically hot plasma.

    PubMed

    Shukla, P K; Eliasson, B

    2005-02-18

    We consider nonlinear interactions between intense short electromagnetic waves (EMWs) and a relativistically hot electron plasma that supports relativistic electron holes (REHs). It is shown that such EMW-REH interactions are governed by a coupled nonlinear system of equations composed of a nonlinear Schro dinger equation describing the dynamics of the EMWs and the Poisson-relativistic Vlasov system describing the dynamics of driven REHs. The present nonlinear system of equations admits both a linearly trapped discrete number of eigenmodes of the EMWs in a quasistationary REH and a modification of the REH by large-amplitude trapped EMWs. Computer simulations of the relativistic Vlasov and Maxwell-Poisson system of equations show complex interactions between REHs loaded with localized EMWs.

  7. Quantum mechanics of a photon

    NASA Astrophysics Data System (ADS)

    Babaei, Hassan; Mostafazadeh, Ali

    2017-08-01

    A first-quantized free photon is a complex massless vector field A =(Aμ ) whose field strength satisfies Maxwell's equations in vacuum. We construct the Hilbert space H of the photon by endowing the vector space of the fields A in the temporal-Coulomb gauge with a positive-definite and relativistically invariant inner product. We give an explicit expression for this inner product, identify the Hamiltonian for the photon with the generator of time translations in H , determine the operators representing the momentum and the helicity of the photon, and introduce a chirality operator whose eigenfunctions correspond to fields having a definite sign of energy. We also construct a position operator for the photon whose components commute with each other and with the chirality and helicity operators. This allows for the construction of the localized states of the photon with a definite sign of energy and helicity. We derive an explicit formula for the latter and compute the corresponding electric and magnetic fields. These turn out to diverge not just at the point where the photon is localized but on a plane containing this point. We identify the axis normal to this plane with an associated symmetry axis and show that each choice of this axis specifies a particular position operator, a corresponding position basis, and a position representation of the quantum mechanics of a photon. In particular, we examine the position wave functions determined by such a position basis, elucidate their relationship with the Riemann-Silberstein and Landau-Peierls wave functions, and give an explicit formula for the probability density of the spatial localization of the photon.

  8. The generalized formula for angular velocity vector of the moving coordinate system

    NASA Astrophysics Data System (ADS)

    Ermolin, Vladislav S.; Vlasova, Tatyana V.

    2018-05-01

    There are various ways for introducing the concept of the instantaneous angular velocity vector. In this paper we propose a method based on introducing of this concept by construction of the solution for the system of kinematic equations. These equations connect the function vectors defining the motion of the basis, and their derivatives. Necessary and sufficient conditions for the existence and uniqueness of the solution of this system are established. The instantaneous angular velocity vector is a solution of the algebraic system of equations. It is built explicitly. The derived formulas for the angular velocity vector generalize the earlier results, both for a basis of an affine oblique coordinate system and for an orthonormal basis.

  9. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  10. Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli

    2018-05-01

    Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.

  11. Radiation Boundary Conditions for Maxwell’s Equations: A Review of Accurate Time-Domain Formulations

    DTIC Science & Technology

    2007-01-01

    conditions have only been constructed for the case ne = 0. Lastly we note that exact reflection formulas have recently been derived by Diaz and Joly [20, 21...SIAM J. Numer. Anal. 41 (2003), 287–305. 6. E. Bécache and P. Joly , On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations...Computational Wave Propagation (M. Ainsworth, P. Davies, D. Duncan, P. Martin , and B. Rynne, eds.), Springer-Verlag, 2003, pp. 43–82. 13. O. Bruno and D. Hoch

  12. Theory of EMP Coupling in the Source Region

    DTIC Science & Technology

    1980-02-28

    ploblem rot discussed in the present report is the effect: of breakdown in air (e.g., rnuclear lightning) and in the soil on coupled currents . There are...LIST OF TABLES 8 CHAPTER 1--INTRODUCTION AND BASIC EQUATIONS 9 1.1 INTRODUCTION 9 1.2 MAXWELL’S EQUATIONS 10 1.3 SOURCE -’ND CONDUCTION CURRENTS 13 1.4...3.3 THE COMPTON CURRENT 32 3.4 THE AIR CONDUCTIVITY 33 3.5 SCALING WITH DISTANCE 38 3.6 THE RADIAL E FOR SPHERICAL SYMMETRY 38 3.7 FIELDS GENERATED BY

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashraf, M. Bilal, E-mail: bilalashraf-qau@yahoo.com; Hayat, T.; Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589

    Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.

  14. Alfven waves associated with long cylindrical satellites

    NASA Technical Reports Server (NTRS)

    Venkataraman, N. S.; Gustafson, W. A.

    1973-01-01

    The Alfven wave excited by a long cylindrical satellite moving with a constant velocity at an angle relative to a uniform magnetic field has been calculated. Assuming a plasma with infinite conductivity, the linearized momentum equation and Maxwell's equations are applied to a cylindrical satellite carrying a variable current. The induced magnetic field is determined, and it is shown that the Alfven disturbance zone is of limited extent, depending on the satellite shape. The wave drag coefficient is calculated and shown to be small compared to the induction drag coefficient at all altitudes considered.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Băloi, Mihaela-Andreea, E-mail: mihaela.baloi88@e-uvt.ro; Crucean, Cosmin

    The production of fermions in dipolar electric fields on de Sitter universe is studied. The amplitude and probability of pair production are computed using the exact solution of the Dirac equation in de Sitter spacetime. The form of the dipolar fields is established using the conformal invariance of the Maxwell equations. We obtain that the momentum conservation law is broken in the process of pair production in dipolar electric fields. Also we establish that there are nonvanishing probabilities for processes in which the helicity is conserved/nonconserved. The Minkowski limit is recovered when the expansion factor becomes zero.

  16. Lie-Hamilton systems on the plane: Properties, classification and applications

    NASA Astrophysics Data System (ADS)

    Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.

    2015-04-01

    We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.

  17. Four possible types of pulses for self-induced transparency

    NASA Technical Reports Server (NTRS)

    Lee, C. T.

    1974-01-01

    Four types of steady-state solutions were derived for the coupled Maxwell-Bloch equations which describe highly intense pulse propagation in a resonant medium. Essential in the derivation procedures is the replacement of the usual slowly varying envelope approximation with an alternative procedure, the omission of possible nonresonant losses, and the assumption that the relaxation times are infinite.

  18. Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole

    ERIC Educational Resources Information Center

    Leung, P. T.

    2008-01-01

    The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…

  19. Field and energy relations in continuum electrodynamics.

    PubMed

    Crenshaw, Michael E

    2005-09-01

    The bare, or fundamental, electric and magnetic fields in a linear medium are identified. Through the energy relations for the bare fields, the electric permittivity is shown to combine the effects of the enhanced energy density and the polarization reaction field. The macroscopic Maxwell equations are modified to be consistent with the constitutive relations for the bare fields.

  20. Electrodynamics, Differential Forms and the Method of Images

    ERIC Educational Resources Information Center

    Low, Robert J.

    2011-01-01

    This paper gives a brief description of how Maxwell's equations are expressed in the language of differential forms and use this to provide an elegant demonstration of how the method of images (well known in electrostatics) also works for electrodynamics in the presence of an infinite plane conducting boundary. The paper should be accessible to an…

  1. Electrodynamics; Problems and solutions

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina C.; Schrecengost, Zachariah S.

    2018-05-01

    This book of problems and solutions is a natural continuation of Ilie and Schrecengost's first book Electromagnetism: Problems and Solutions. Aimed towards students who would like to work independently on more electrodynamics problems in order to deepen their understanding and problem-solving skills, this book discusses main concepts and techniques related to Maxwell's equations, conservation laws, electromagnetic waves, potentials and fields, and radiation.

  2. Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.

  3. Combined active and passive microwave remote sensing of soil moisture for vegetated surfaces at L-band

    USDA-ARS?s Scientific Manuscript database

    The distorted Born approximation (DBA) combined with the numerical solutions of Maxwell equations (NMM3D) has been used for the radar backscattering model for the SMAP mission. The models for vegetated surfaces such as wheat, grass, soybean and corn have been validated with the Soil Moisture Active ...

  4. Particular transcendent solution of the Ernst system generalized on n fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaute, B.; Marcilhacy, G.

    A particular solution, a function of a particular form of the fifth Painleve transcendent, of the Ernst system generalized to n fields is determined, which characterizes both the stationary axially symmetric fields, the solution of the Einstein (n-1) Maxwell equations, and one class of axially symmetric static self-dual SU(n+1) Yang--Mills fields.

  5. Can There Be Massive Photons? A Pedagogical Glance at the Origin of Mass

    ERIC Educational Resources Information Center

    Robles, P.; Claro, F.

    2012-01-01

    Among the most startling experiences a student encounters is learning that, unlike electrons and other elementary particles, photons have no mass. Under certain circumstances, however, the light quantum behaves as if it did have a finite mass. Starting from Maxwell's equations, we discuss how this arises when light interacts with a charged plasma,…

  6. BOOK REVIEW: A Student's Guide to Einstein's Major Papers A Student's Guide to Einstein's Major Papers

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2013-12-01

    The core of this volume is formed by four chapters (2-5) with detailed reconstructions of the arguments and derivations in four of Einstein's most important papers, the three main papers of his annus mirabilis 1905 (on the light quantum, Brownian motion, and special relativity) and his first systematic exposition of general relativity of 1916. The derivations are given in sufficient detail and in sufficiently modernized notation (without any serious distortion of the originals) for an undergraduate physics major to read and understand them with far less effort than it would take him or her to understand (English translations of) Einstein's original papers. Each of these four papers is accompanied by a detailed introduction, which covers the conceptual development of the relevant field prior to Einstein's contribution to it and corrects some of the myths surrounding these papers that still have not been fully eradicated among physicists. (One quibble: though Kennedy correctly points out that the goal of the light quantum paper was not to explain the photoelectric effect, it is also not quite right to say that 'it was written to explain the Wien region of blackbody radiation' (p. xv). Einstein used this explanatory feat as the central argument for his light quantum hypothesis.) These four chapters then are the most valuable part of the volume. They could be used, independently of one another, but preferably in conjunction with Einstein's original texts, in courses on quantum mechanics, statistical mechanics, electrodynamics, and general relativity, respectively, to add a historical component to such courses. As a historian of science embedded in a physics department who is regularly called upon to give guest lectures in such courses on the history of their subjects, I can highly recommend the volume for this purpose. However, I would not adopt this volume as (one of) the central text(s) for a course on the history of modern physics. For one thing, chapter 1, which in just 26 pages (not counting six pages of notes and references) covers everything from Copernicus, Galileo, Kepler and Newton to Maxwell and Lorentz to Einstein's early biography to a cardboard version of Popper versus Kuhn, is too superficial to be useful for such a course. To a lesser extent, this is also true for chapter 6, which compresses the development of quantum theory after Einstein's 1905 paper into 20 pages (plus seven pages of notes and references) and for chapter 7, a brief epilogue. However, this is not my main worry. One could easily supplement or even replace the bookends of the volume with other richer sources and use this volume mainly for its excellent detailed commentaries on some Einstein classics in the four chapters in between. My more serious reservation about the use of the volume as a whole in a history of physics course, ironically, comes from the exact same feature that made me whole-heartedly recommend its core chapters for physics courses. This is especially true for the chapters on special and general relativity. How useful is it for a student to go through, in as much detail as this volume provides, the Lorentz transformation of Maxwell's equations in vector form? I can see how a student in an E&M class (with a section on special relativity) might benefit from this exercise. The clumsiness of the calculations in vector form by Lorentz and Einstein could help a student encountering Maxwell's equations in tensor form for the first time appreciate the advantages of the latter formalism. Similarly, it would be useful for a student in a GR class to go through the basics of tensor calculus in the old-fashioned but not inelegant mathematical introduction of Einstein's 1916 review article on general relativity. This could reinforce mastery of material that a student in a GR class will have to learn anyway (though Einstein's presentation of the mathematics of both special and general relativity in The Meaning of Relativity would seem to be more suitable for these purposes). It is not so clear what benefit a student in a history of physics course rather than a E&M course or a GR course would derive from the exhaustive coverage of the papers on special and general relativity in this volume. In the case of the history of special relativity, it would seem to make sense to leave out the details of the Lorentz transformation of Maxwell's equations to make room for a discussion, even if only qualitatively, of Minkowski's four-dimensional formalism and Minkowski diagrams. In the case of the history of general relativity, coverage of tensor calculus could profitably be curtailed to make room for discussion of how Einstein found his field equations or how GR failed to make all motion relative. Chapter 3 on Brownian motion also contains its share of detailed calculations that may be useful for students in a class on Stat Mech but not for those in a class on history of physics. Chapter 2 on the light quantum paper does not suffer from this problem. However, whereas the other three papers covered in detail in the volume can serve as representative of Einstein's broader efforts in those fields, the light quantum paper is only the first in a series of remarkable contributions that Einstein made to early quantum theory. Several of these contributions (specific heat, wave-particle duality, stimulated emission, Bose--Einstein statistics) are covered very briefly in chapter 6. I would have liked to see a presentation of Einstein's 1917 derivation of the Planck law for the spectral distribution of black-body radiation with the famous A and B coefficients as detailed and as easy to follow as many less important derivations in the chapters on relativity and Brownian motion. This derivation is much easier yet much more illuminating than, say, the original proofs of the Lorentz invariance of Maxwell's equations. I hope the author will consider such changes in emphasis for a second edition, for his reconstructions and commentaries certainly do open up these four classic Einstein papers to interested undergraduates in physics and other disciplines in ways that the scholarly literature on Einstein does not.

  7. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    PubMed Central

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  8. On electromagnetic forming processes in finitely strained solids: Theory and examples

    NASA Astrophysics Data System (ADS)

    Thomas, J. D.; Triantafyllidis, N.

    2009-08-01

    The process of electromagnetic forming (EMF) is a high velocity manufacturing technique that uses electromagnetic (Lorentz) body forces to shape sheet metal parts. EMF holds several advantages over conventional forming techniques: speed, repeatability, one-sided tooling, and most importantly considerable ductility increase in several metals. Current modeling techniques for EMF processes are not based on coupled variational principles to simultaneously account for electromagnetic and mechanical effects. Typically, separate solutions to the electromagnetic (Maxwell) and motion (Newton) equations are combined in staggered or lock-step methods, sequentially solving the mechanical and electromagnetic problems. The present work addresses these issues by introducing a fully coupled Lagrangian (reference configuration) least-action variational principle, involving magnetic flux and electric potentials and the displacement field as independent variables. The corresponding Euler-Lagrange equations are Maxwell's and Newton's equations in the reference configuration, which are shown to coincide with their current configuration counterparts obtained independently by a direct approach. The general theory is subsequently simplified for EMF processes by considering the eddy current approximation. Next, an application is presented for axisymmetric EMF problems. It is shown that the proposed variational principle forms the basis of a variational integration numerical scheme that provides an efficient staggered solution algorithm. As an illustration a number of such processes are simulated, inspired by recent experiments of freely expanding uncoated and polyurea-coated aluminum tubes.

  9. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  10. Black holes in an expanding universe.

    PubMed

    Gibbons, Gary W; Maeda, Kei-ichi

    2010-04-02

    An exact solution representing black holes in an expanding universe is found. The black holes are maximally charged and the universe is expanding with arbitrary equation of state (P = w rho with -1 < or = for all w < or = 1). It is an exact solution of the Einstein-scalar-Maxwell system, in which we have two Maxwell-type U(1) fields coupled to the scalar field. The potential of the scalar field is an exponential. We find a regular horizon, which depends on one parameter [the ratio of the energy density of U(1) fields to that of the scalar field]. The horizon is static because of the balance on the horizon between gravitational attractive force and U(1) repulsive force acting on the scalar field. We also calculate the black hole temperature.

  11. Magnetic Dissipation in Asymmetric Strong Guide 3D Simulations: Examples of Magnetic Diffusion and Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).

  12. Anisotropic charged generalized polytropic models

    NASA Astrophysics Data System (ADS)

    Nasim, A.; Azam, M.

    2018-06-01

    In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.

  13. Variance reduction through robust design of boundary conditions for stochastic hyperbolic systems of equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordström, Jan, E-mail: jan.nordstrom@liu.se; Wahlsten, Markus, E-mail: markus.wahlsten@liu.se

    We consider a hyperbolic system with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions give different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analytical and numerical estimates of the variance of the solution are presented. As an application, we study the effect of this technique on Maxwell's equations as well as on a subsonic outflow boundary for themore » Euler equations.« less

  14. Bounded Error Schemes for the Wave Equation on Complex Domains

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Ditkowski, Adi; Yefet, Amir

    1998-01-01

    This paper considers the application of the method of boundary penalty terms ("SAT") to the numerical solution of the wave equation on complex shapes with Dirichlet boundary conditions. A theory is developed, in a semi-discrete setting, that allows the use of a Cartesian grid on complex geometries, yet maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving the solution of Maxwell's equations inside a 2-D circular wave-guide demonstrates the efficacy of this method in comparison to others (e.g. the staggered Yee scheme) - we achieve a decrease of two orders of magnitude in the level of the L2-error.

  15. Fractional Diffusion Analysis of the Electromagnetic Field In Fractured Media Part II: 2.5-D Approach

    NASA Astrophysics Data System (ADS)

    Ge, J.; Everett, M. E.; Weiss, C. J.

    2012-12-01

    A 2.5D finite difference (FD) frequency-domain modeling algorithm based on the theory of fractional diffusion of electromagnetic (EM) fields generated by a loop source lying above a fractured geological medium is addressed in this paper. The presence of fractures in the subsurface, usually containing highly conductive pore fluids, gives rise to spatially hierarchical flow paths of induced EM eddy currents. The diffusion of EM eddy currents in such formations is anomalous, generalizing the classical Gaussian process described by the conventional Maxwell equations. Based on the continuous time random walk (CTRW) theory, the diffusion of EM eddy currents in a rough medium is governed by the fractional Maxwell equations. Here, we model the EM response of a 2D subsurface containing fractured zones, with a 3D loop source, which results the so-called 2.5D model geometry. The governing equation in the frequency domain is converted using Fourier transform into k domain along the strike direction (along which the model conductivity doesn't vary). The resulting equation system is solved by the multifrontal massively parallel solver (MUMPS). The data obtained is then converted back to spatial domain and the time domain. We find excellent agreement between the FD and analytic solutions for a rough halfspace model. Then FD solutions are calculated for a 2D fault zone model with variable conductivity and roughness. We compare the results with responses from several classical models and explore the relationship between the roughness and the spatial density of the fracture distribution.

  16. Reply to "Comment on 'Defocusing complex short-pulse equation and its multi-dark-soliton solution' ".

    PubMed

    Feng, Bao-Feng; Ling, Liming; Zhu, Zuonong

    2017-08-01

    Our paper [Phys. Rev. E 93, 052227 (2016)PREHBM2470-004510.1103/PhysRevE.93.052227], proposing an integrable model for the propagation of ultrashort pulses, has recently received a Comment by Youssoufa et al. [Phys. Rev. E 96, 026201 (2017)10.1103/PhysRevE.96.026201] about a possible flaw in its derivation. We point out that their claim is incorrect since we have stated explicitly that a term is neglected to derive our model equation in our paper. Furthermore, the integrable model is validated by comparing with the normalized Maxwell equation and other known integrable models. Moreover, we show that a similar approximation has to be performed in deriving the same integrable equation as explained in the Comment.

  17. Elliptic Painlevé equations from next-nearest-neighbor translations on the E_8^{(1)} lattice

    NASA Astrophysics Data System (ADS)

    Joshi, Nalini; Nakazono, Nobutaka

    2017-07-01

    The well known elliptic discrete Painlevé equation of Sakai is constructed by a standard translation on the E_8(1) lattice, given by nearest neighbor vectors. In this paper, we give a new elliptic discrete Painlevé equation obtained by translations along next-nearest-neighbor vectors. This equation is a generic (8-parameter) version of a 2-parameter elliptic difference equation found by reduction from Adler’s partial difference equation, the so-called Q4 equation. We also provide a projective reduction of the well known equation of Sakai.

  18. Navier-Stokes dynamics on a differential one-form

    NASA Astrophysics Data System (ADS)

    Story, Troy L.

    2006-11-01

    After transforming the Navier-Stokes dynamic equation into a characteristic differential one-form on an odd-dimensional differentiable manifold, exterior calculus is used to construct a pair of differential equations and tangent vector(vortex vector) characteristic of Hamiltonian geometry. A solution to the Navier-Stokes dynamic equation is then obtained by solving this pair of equations for the position x^k and the conjugate to the position bk as functions of time. The solution bk is shown to be divergence-free by contracting the differential 3-form corresponding to the divergence of the gradient of the velocity with a triple of tangent vectors, implying constraints on two of the tangent vectors for the system. Analysis of the solution bk shows it is bounded since it remains finite as | x^k | ->,, and is physically reasonable since the square of the gradient of the principal function is bounded. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian is obtained.

  19. Summer Study Program in Geophysical Fluid Dynamics - The Influence of Convection on Large-Scale Circulations - 1988

    DTIC Science & Technology

    1989-07-01

    the vector of the body force." lo., ,P /’P l> 16 __ __ _ __ ___P . 19 U In the first lecture we define the buoyancy force, develop a simplified...force and l’is a unit vector along the motion vector . Integrating Bernoulli’s law over a closed loop one gets: I also [ C by integrating along the...convection. It is conveiient to write these equations as evolution equations for a atate vector U(x, z, t) where x is the horizontal coordinate vector

  20. Advanced Research into Moving Target Imaging Using Multistatic Radar

    DTIC Science & Technology

    2009-12-01

    1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188...11 C. TEO BENG KOON WILLIAM’S WORK..................................................12 III. DATA ANALYSIS... principles of electromagnetic and radar theory rely on the Maxwell’s equations. Radar theory is a practical expansion of the fundamental theory of

  1. The "c" Equivalence Principle and the Correct form of Writing Maxwell's Equations

    ERIC Educational Resources Information Center

    Heras, Jose A.

    2010-01-01

    It is well known that the speed [image omitted] is obtained in the process of defining SI units via action-at-a-distance forces, like the force between two static charges and the force between two long and parallel currents. The speed c[subscript u] is then physically different from the observed speed of propagation c associated with…

  2. Effects of Heat Source/Sink and Chemical Reaction on MHD Maxwell Nanofluid Flow Over a Convectively Heated Exponentially Stretching Sheet Using Homotopy Analysis Method

    NASA Astrophysics Data System (ADS)

    Sravanthi, C. S.; Gorla, R. S. R.

    2018-02-01

    The aim of this paper is to study the effects of chemical reaction and heat source/sink on a steady MHD (magnetohydrodynamic) two-dimensional mixed convective boundary layer flow of a Maxwell nanofluid over a porous exponentially stretching sheet in the presence of suction/blowing. Convective boundary conditions of temperature and nanoparticle concentration are employed in the formulation. Similarity transformations are used to convert the governing partial differential equations into non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique, namely: the homotopy analysis method (HAM). Expressions for velocity, temperature and nanoparticle concentration fields are developed in series form. Convergence of the constructed solution is verified. A comparison is made with the available results in the literature and our results are in very good agreement with the known results. The obtained results are presented through graphs for several sets of values of the parameters and salient features of the solutions are analyzed. Numerical values of the local skin-friction, Nusselt number and nanoparticle Sherwood number are computed and analyzed.

  3. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    PubMed

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.

  4. Electromagnetic optimisation of a 2.45 GHz microwave plasma source operated at atmospheric pressure and designed for hydrogen production

    NASA Astrophysics Data System (ADS)

    Miotk, R.; Jasiński, M.; Mizeraczyk, J.

    2018-03-01

    This paper presents the partial electromagnetic optimisation of a 2.45 GHz cylindrical-type microwave plasma source (MPS) operated at atmospheric pressure. The presented device is designed for hydrogen production from liquid fuels, e.g. hydrocarbons and alcohols. Due to industrial requirements regarding low costs for hydrogen produced in this way, previous testing indicated that improvements were required to the electromagnetic performance of the MPS. The MPS has a duct discontinuity region, which is a result of the cylindrical structure located within the device. The microwave plasma is generated in this discontinuity region. Rigorous analysis of the region requires solving a set of Maxwell equations, which is burdensome for complicated structures. Furthermore, the presence of the microwave plasma increases the complexity of this task. To avoid calculating the complex Maxwell equations, we suggest the use of the equivalent circuit method. This work is based upon the idea of using a Weissfloch circuit to characterize the area of the duct discontinuity and the plasma. The resulting MPS equivalent circuit allowed the calculation of a capacitive metallic diaphragm, through which an improvement in the electromagnetic performance of the plasma source was obtained.

  5. Newton to Einstein — dust to dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas, E-mail: michael.kopp@physik.lmu.de, E-mail: cora.uhlemann@physik.lmu.de, E-mail: thomas.haugg@physik.lmu.de

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show thatmore » this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.« less

  6. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.

  7. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate.

    PubMed

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L C C

    2017-03-15

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  8. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    NASA Astrophysics Data System (ADS)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-03-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  9. Fermionic reaction coordinates and their application to an autonomous Maxwell demon in the strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Strasberg, Philipp; Schaller, Gernot; Schmidt, Thomas L.; Esposito, Massimiliano

    2018-05-01

    We establish a theoretical method which goes beyond the weak-coupling and Markovian approximations while remaining intuitive, using a quantum master equation in a larger Hilbert space. The method is applicable to all impurity Hamiltonians tunnel coupled to one (or multiple) baths of free fermions. The accuracy of the method is in principle not limited by the system-bath coupling strength, but rather by the shape of the spectral density and it is especially suited to study situations far away from the wide-band limit. In analogy to the bosonic case, we call it the fermionic reaction coordinate mapping. As an application, we consider a thermoelectric device made of two Coulomb-coupled quantum dots. We pay particular attention to the regime where this device operates as an autonomous Maxwell demon shoveling electrons against the voltage bias thanks to information. Contrary to previous studies, we do not rely on a Markovian weak-coupling description. Our numerical findings reveal that in the regime of strong coupling and non-Markovianity, the Maxwell demon is often doomed to disappear except in a narrow parameter regime of small power output.

  10. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    PubMed Central

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-01-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186

  11. A generalization of the Becker model in linear viscoelasticity: creep, relaxation and internal friction

    NASA Astrophysics Data System (ADS)

    Mainardi, Francesco; Masina, Enrico; Spada, Giorgio

    2018-02-01

    We present a new rheological model depending on a real parameter ν \\in [0,1], which reduces to the Maxwell body for ν =0 and to the Becker body for ν =1. The corresponding creep law is expressed in an integral form in which the exponential function of the Becker model is replaced and generalized by a Mittag-Leffler function of order ν . Then the corresponding non-dimensional creep function and its rate are studied as functions of time for different values of ν in order to visualize the transition from the classical Maxwell body to the Becker body. Based on the hereditary theory of linear viscoelasticity, we also approximate the relaxation function by solving numerically a Volterra integral equation of the second kind. In turn, the relaxation function is shown versus time for different values of ν to visualize again the transition from the classical Maxwell body to the Becker body. Furthermore, we provide a full characterization of the new model by computing, in addition to the creep and relaxation functions, the so-called specific dissipation Q^{-1} as a function of frequency, which is of particular relevance for geophysical applications.

  12. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-12-15

    We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), andmore » (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.« less

  13. Symmetry operators and decoupled equations for linear fields on black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Araneda, Bernardo

    2017-02-01

    In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2  +  2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.

  14. Minimal Cohomological Model of a Scalar Field on a Riemannian Manifold

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. V.

    2018-04-01

    Lagrangians of the field-theory model of a scalar field are considered as 4-forms on a Riemannian manifold. The model is constructed on the basis of the Hodge inner product, this latter being an analog of the scalar product of two functions. Including the basis fields in the action of the terms with tetrads makes it possible to reproduce the Klein-Gordon equation and the Maxwell equations, and also the Einstein-Hilbert action. We conjecture that the principle of construction of the Lagrangians as 4-forms can give a criterion restricting possible forms of the field-theory models.

  15. Classical and Quantum Thermal Physics

    NASA Astrophysics Data System (ADS)

    Prasad, R.

    2016-11-01

    List of figures; List of tables; Preface; Acknowledgement; Dedication; 1. The kinetic theory of gases; 2. Ideal to real gas, viscosity, conductivity and diffusion; 3. Thermodynamics: definitions and Zeroth law; 4. First Law of Thermodynamics and some of its applications; 5. Second Law of Thermodynamics and some of its applications; 6. TdS equations and their applications; 7. Thermodynamic functions, potentials, Maxwell equations, the Third Law and equilibrium; 8. Some applications of thermodynamics to problems of physics and engineering; 9. Application of thermodynamics to chemical reactions; 10. Quantum thermodynamics; 11. Some applications of quantum thermodynamics; 12. Introduction to the thermodynamics of irreversible processes; Index.

  16. A Closely Coupled Experimental and Numerical Approach for Hypersonic and High Enthalpy Flow Investigations Utilising the HEG Shock Tunnel and the DLR TAU Code

    DTIC Science & Technology

    2010-04-01

    factorization scheme (Lower-Upper Symmetric Gauss- Seidel ) can be used for time integration. Additional convergence acceleration is achieved by the...of the full Stefan -Maxwell equations. The diffusive mass flux of species S is computed according to: for 1 for jS S S Sm j jm S j eS jd S S S j j j...approximate factorization scheme (Lower-Upper Symmetric Gauss- Seidel ). For steady state problems, equation (69) reduces to R=0 because ddU t

  17. Robinson-Trautman solutions to Einstein's equations

    NASA Astrophysics Data System (ADS)

    Davidson, William

    2017-02-01

    Solutions to Einstein's equations in the form of a Robinson-Trautman metric are presented. In particular, we derive a pure radiation solution which is non-stationary and involves a mass m, The resulting spacetime is of Petrov Type II A special selection of parametric values throws up the feature of the particle `rocket', a Type D metric. A suitable transformation of the complex coordinates allows the metrics to be expressed in real form. A modification, by setting m to zero, of the Type II metric thereby converting it to Type III, is then shown to admit a null Einstein-Maxwell electromagnetic field.

  18. Numerical study of signal propagation in corrugated coaxial cables

    DOE PAGES

    Li, Jichun; Machorro, Eric A.; Shields, Sidney

    2017-01-01

    Our article focuses on high-fidelity modeling of signal propagation in corrugated coaxial cables. Taking advantage of the axisymmetry, the authors reduce the 3-D problem to a 2-D problem by solving time-dependent Maxwell's equations in cylindrical coordinates.They then develop a nodal discontinuous Galerkin method for solving their model equations. We prove stability and error analysis for the semi-discrete scheme. We we present our numerical results, we demonstrate that our algorithm not only converges as our theoretical analysis predicts, but it is also very effective in solving a variety of signal propagation problems in practical corrugated coaxial cables.

  19. Principles of Discrete Time Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2014-04-01

    1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.

  20. Reaction formulation for radiation and scattering from plates, corner reflectors and dielectric-coated cylinders

    NASA Technical Reports Server (NTRS)

    Wang, N. N.

    1974-01-01

    The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.

  1. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common in industrial environments (borehole casing, pipes, railroad tracks). Present efforts are oriented toward calculating the EM responses of these objects via a First Born Approximation approach. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations

    NASA Technical Reports Server (NTRS)

    Shiuhong, Lui; Xu, Jun

    1999-01-01

    Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.

  3. Concircular vector fields on Lorentzian manifold of Bianchi type-I spacetimes

    NASA Astrophysics Data System (ADS)

    Mahmood, Amjad; Ali, Ahmad T.; Khan, Suhail

    2018-04-01

    Our aim in this paper is to obtain concircular vector fields (CVFs) on the Lorentzian manifold of Bianchi type-I spacetimes. For this purpose, two different sets of coupled partial differential equations comprising ten equations each are obtained. The first ten equations, known as conformal Killing equations are solved completely and components of conformal Killing vector fields (CKVFs) are obtained in different possible cases. These CKVFs are then substituted into second set of ten differential equations to obtain CVFs. It comes out that Bianchi type-I spacetimes admit four-, five-, six-, seven- or 15-dimensional CVFs for particular choices of the metric functions. In many cases, the CKVFs of a particular metric are same as CVFs while there exists few cases where proper CKVFs are not CVFs.

  4. Propagation of an ultra-short, intense laser in a relativistic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlapmore » with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.« less

  5. Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds

    NASA Astrophysics Data System (ADS)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-06-01

    We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".

  6. Turbulent fluid motion 2: Scalars, vectors, and tensors

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1991-01-01

    The author shows that the sum or difference of two vectors is a vector. Similarly the sum of any two tensors of the same order is a tensor of that order. No meaning is attached to the sum of tensors of different orders, say u(sub i) + u(sub ij); that is not a tensor. In general, an equation containing tensors has meaning only if all the terms in the equation are tensors of the same order, and if the same unrepeated subscripts appear in all the terms. These facts will be used in obtaining appropriate equations for fluid turbulence. With the foregoing background, the derivation of appropriate continuum equations for turbulence should be straightforward.

  7. Infinite-Dimensional Symmetry Algebras as a Help Toward Solutions of the Self-Dual Field Equations with One Killing Vector

    NASA Astrophysics Data System (ADS)

    Finley, Daniel; McIver, John K.

    2002-12-01

    The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.

  8. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.

  9. Electromagnetic angular momentum in quasi-static conditions

    NASA Astrophysics Data System (ADS)

    Jiménez, J. L.; Campos, I.; E Roa-Neri, J. A.

    2017-07-01

    The correct definition of electromagnetic momentum in matter, either Abraham’s g A = (1/4πc) (E × H), or Minkowski’s g M = (1/4πc) (D × B) has been a theme of controversy for a century. Therefore, we can find those who favor one or the other of these proposals. We present here an alternative view, considering that both of the aforementioned equations are equivalent since they pertain to different balance equations derived from the macroscopic Maxwell equations. This is done through their application to a device proposed by Lai in 1980, and recovering his results. Advanced undergraduate and graduate students can find in this work an introduction to a controversial issue and an alternative point of view about it.

  10. Electromagnetic nonlinear gyrokinetics with polarization drift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duthoit, F.-X.; Hahm, T. S., E-mail: tshahm@snu.ac.kr; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen,more » Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.« less

  11. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  12. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  13. Topological magnetoelectric effects in microwave far-field radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R.

    2016-07-21

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of themore » free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.« less

  14. Model of formation of droplets during electric arc surfacing of functional coatings

    NASA Astrophysics Data System (ADS)

    Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.

    2016-01-01

    The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.

  15. Microscopic Lagrangian description of warm plasmas. I - Linear wave propagation. II - Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1977-01-01

    It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.

  16. Killing vector fields in three dimensions: a method to solve massive gravity field equations

    NASA Astrophysics Data System (ADS)

    Gürses, Metin

    2010-10-01

    Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.

  17. Automated Synthetic Scene Generation

    DTIC Science & Technology

    2014-07-01

    Using the Beard-Maxwell BRDF model , the BRDF from Equations (3.3) and (3.4) is composed of specular, diffuse, and volumetric terms such that x y zSun... models help organizations developing new remote sensing instruments anticipate sensor performance by enabling the ability to create synthetic imagery...for proposed sensor before a sensor is built. One of the largest challenges in modeling realistic synthetic imagery, however, is generating the

  18. Novel Metamaterial Blueprints and Elements for Electromagnetic Applications

    NASA Astrophysics Data System (ADS)

    Odabasi, Hayrettin

    In the first part of this dissertation, we explore the metric invariance of Maxwell's equations to design metamaterial blueprints for three novel electromagnetic devices. The metric invariance of Maxwell's equations here means that the effects of an (hypothetical) distortion of the background spatial domain on the electromagnetic fields can be mimicked by properly chosen material constitutive tensors. The exploitation of such feature of Maxwell's equations to derive metamaterial devices has been denoted as `transformation optics' (TO). The first device proposed here consists of metamaterial blueprints of waveguide claddings for (waveguide) miniaturization. These claddings provide a precise control of mode distribution and frequency cut-off. The proposed claddings are distinct from conventional dielectric loadings as the former do not support hybrid modes and are impedance-matched to free-space. We next derive a class of metamaterial blueprints designed for low-profile antenna applications, whereby a simple spatial transformation is used to yield uniaxial metamaterial substrate with electrical height higher than its physical height and surface waves are not supported, which is an advantage for patch antenna applications. We consider the radiation from horizontal wire and patch antennas in the presence of such substrates. Fundamental characteristics such as return loss and radiation pattern of the antennas are investigated in detail. Finally, transformation optics is also applied to design cylindrical impedance-matched absorbers. In this case, we employ a complex-valued transformation optics approach (in the Fourier domain) as opposed to the conventional real-valued approach. A connection of such structures with perfectly matched layers and recently proposed optical pseudo black-hole devices is made. In the second part of this dissertation, we move from the derivation of metamaterial blueprints to the application of pre-defined unit-cell metamaterial structures for miniaturization purposes. We first employ electric-field-coupled (ELC) resonators and complementary electric-field-coupled (CELC) resonators to design a new class of electrically small antennas. Since electric-field coupled resonators were recently proposed in the literature to obtain negative permittivity response, we next propose ELC resonators as a new type of waveguide loadings to provide mode control and waveguide miniaturization.

  19. Forces Associated with Nonlinear Nonholonomic Constraint Equations

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Hodges, Dewey H.

    2010-01-01

    A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.

  20. Equation for wave processes in inhomogeneous moving media and functional solution of the acoustic tomography problem based on it

    NASA Astrophysics Data System (ADS)

    Rumyantseva, O. D.; Shurup, A. S.

    2017-01-01

    The paper considers the derivation of the wave equation and Helmholtz equation for solving the tomographic problem of reconstruction combined scalar-vector inhomogeneities describing perturbations of the sound velocity and absorption, the vector field of flows, and perturbations of the density of the medium. Restrictive conditions under which the obtained equations are meaningful are analyzed. Results of numerical simulation of the two-dimensional functional-analytical Novikov-Agaltsov algorithm for reconstructing the flow velocity using the the obtained Helmholtz equation are presented.

  1. Primer vector theory applied to the linear relative-motion equations. [for N-impulse space trajectory optimization

    NASA Technical Reports Server (NTRS)

    Jezewski, D.

    1980-01-01

    Prime vector theory is used in analyzing a set of linear relative-motion equations - the Clohessy-Wiltshire (C/W) equations - to determine the criteria and necessary conditions for an optimal N-impulse trajectory. The analysis develops the analytical criteria for improving a solution by: (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of: (1) fixed-end conditions, two impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized renezvous problem.

  2. Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.

    2013-07-01

    Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.

  3. Boundary Quantum Knizhnik-Zamolodchikov Equations and Bethe Vectors

    NASA Astrophysics Data System (ADS)

    Reshetikhin, Nicolai; Stokman, Jasper; Vlaar, Bart

    2015-06-01

    Solutions to boundary quantum Knizhnik-Zamolodchikov equations are constructed as bilateral sums involving "off-shell" Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of is involved. We also consider their rational and classical degenerations.

  4. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    NASA Astrophysics Data System (ADS)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  5. Calculation of biochemical net reactions and pathways by using matrix operations.

    PubMed Central

    Alberty, R A

    1996-01-01

    Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633

  6. Internally electrodynamic particle model: Its experimental basis and its predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less

  7. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    PubMed

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  8. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers

    PubMed Central

    Li, Jing; Wu, Xiaoping

    2011-01-01

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam. PMID:21997083

  9. A brief perspective on computational electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachman, A.

    1996-06-01

    There is a growing interest in many quarters in acquiring the ability to predict all manner of electromagnetic (EM) effects. These effects include radar scattering attributes of objects (airplanes, missles, tanks, ships, etc.); the mutal interference of a multitude of antennas on board a single aircraft or ship; the performance of integrated circuits (IC); the propagation of waves (radio and radar) over long distances with the help of hindrance of complicated tomography and ionospheric/atmospheric ducting; and the propagation of pulses through dispersive media (soil, treetops, or concrete) to detect pollutants or hidden targets, or to assess the health of runways.more » All of the above require extensive computation and, despite the fact that Maxwell`s equations are linear in all these cases, codes do not exist which will do the job in a timely and error-controlled manner. This report briefly discusses how this can be rectified. 16 refs.« less

  10. Multirate Particle-in-Cell Time Integration Techniques of Vlasov-Maxwell Equations for Collisionless Kinetic Plasma Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guangye; Chacon, Luis; Knoll, Dana Alan

    2015-07-31

    A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω peΔt >>1, and Δx >> λ D), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylovmore » (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.« less

  11. Tikekar superdense stars in electric fields

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  12. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.

    PubMed

    Rubab, Khansa; Mustafa, M

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.

  13. Constrained multibody system dynamics: An automated approach

    NASA Technical Reports Server (NTRS)

    Kamman, J. W.; Huston, R. L.

    1982-01-01

    The governing equations for constrained multibody systems are formulated in a manner suitable for their automated, numerical development and solution. The closed loop problem of multibody chain systems is addressed. The governing equations are developed by modifying dynamical equations obtained from Lagrange's form of d'Alembert's principle. The modifications is based upon a solution of the constraint equations obtained through a zero eigenvalues theorem, is a contraction of the dynamical equations. For a system with n-generalized coordinates and m-constraint equations, the coefficients in the constraint equations may be viewed as constraint vectors in n-dimensional space. In this setting the system itself is free to move in the n-m directions which are orthogonal to the constraint vectors.

  14. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method.

    PubMed

    Yamaguchi, Takashi; Hinata, Takashi

    2007-09-03

    The time-average energy density of the optical near-field generated around a metallic sphere is computed using the finite-difference time-domain method. To check the accuracy, the numerical results are compared with the rigorous solutions by Mie theory. The Lorentz-Drude model, which is coupled with Maxwell's equation via motion equations of an electron, is applied to simulate the dispersion relation of metallic materials. The distributions of the optical near-filed generated around a metallic hemisphere and a metallic spheroid are also computed, and strong optical near-fields are obtained at the rim of them.

  15. Time-dependent phase shift of a retrieved pulse in off-resonant electromagnetically-induced-transparency-based light storage

    NASA Astrophysics Data System (ADS)

    Maynard, M.-A.; Bouchez, R.; Lugani, J.; Bretenaker, F.; Goldfarb, F.; Brion, E.

    2015-11-01

    We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in electromagnetically-induced-transparency storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-photon resonance and provide numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the experimental results.

  16. Evaluation of Time Domain EM Coupling Techniques. Volume II.

    DTIC Science & Technology

    1980-08-01

    tool for the analysis of elec- tromangetic coupling and shielding problems: the finite-difference, time-domain (FD- TD ) solution of Maxwell’s equations...The objective of the program was to evaluate the suitability of the FD- TD method to determine the amount of electromagnetic coupling through an...specific questfiowwere addressed during this program: 1. Can the FD- TD method accurately model electromagnetic coupling into a conducting structure for

  17. Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegoraro, F.

    2015-11-15

    Generalisations of the relativistic ideal Ohm's law are presented that include specific dynamical features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas are identified where these generalisations allow for the definition of generalised electromagnetic fields that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey the same set of homogeneous Maxwell's equations.

  18. Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space

    NASA Astrophysics Data System (ADS)

    Crisford, Toby; Santos, Jorge E.

    2017-05-01

    We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.

  19. Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space.

    PubMed

    Crisford, Toby; Santos, Jorge E

    2017-05-05

    We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.

  20. Field quantization and squeezed states generation in resonators with time-dependent parameters

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Klimov, A. B.; Nikonov, D. E.

    1992-01-01

    The problem of electromagnetic field quantization is usually considered in textbooks under the assumption that the field occupies some empty box. The case when a nonuniform time-dependent dielectric medium is confined in some space region with time-dependent boundaries is studied. The basis of the subsequent consideration is the system of Maxwell's equations in linear passive time-dependent dielectric and magnetic medium without sources.

  1. General Relativity Exactly Described by Use of Newton's Laws within a Curved Geometry

    NASA Astrophysics Data System (ADS)

    Savickas, David

    2014-03-01

    The connection between general relativity and Newtonian mechanics is shown to be much closer than generally recognized. When Newton's second law is written in a curved geometry by using the physical components of a vector as defined in tensor calculus, and by replacing distance within the momentum's velocity by the vector metric ds in a curved geometry, the second law can then be easily shown to be exactly identical to the geodesic equation of motion occurring in general relativity. By using a time whose vector direction is constant, as similarly occurs in Newtonian mechanics, this equation can be separated into two equations one of which is a curved three-dimensional equation of motion and the other is an equation for energy. For the gravitational field of an isolated particle, they yield the Schwarzschild equations. They can be used to describe gravitation for any array of masses for which the Newtonian gravitational potential is known, and is applied here to describe motion in the gravitational field of a thin mass-rod.

  2. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part I, second-order FVTD schemes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Taflove, Allen; Garain, Sudip; Montecinos, Gino

    2017-11-01

    While classic finite-difference time-domain (FDTD) solutions of Maxwell's equations have served the computational electrodynamics (CED) community very well, formulations based on Godunov methodology have begun to show advantages. We argue that the formulations presented so far are such that FDTD schemes and Godunov-based schemes each have their own unique advantages. However, there is currently not a single formulation that systematically integrates the strengths of both these major strains of development. While an early glimpse of such a formulation was offered in Balsara et al. [16], that paper focused on electrodynamics in plasma. Here, we present a synthesis that integrates the strengths of both FDTD and Godunov-based schemes into a robust single formulation for CED in material media. Three advances make this synthesis possible. First, from the FDTD method, we retain (but somewhat modify) a spatial staggering strategy for the primal variables. This provides a beneficial constraint preservation for the electric displacement and magnetic induction vector fields via reconstruction methods that were initially developed in some of the first author's papers for numerical magnetohydrodynamics (MHD). Second, from the Godunov method, we retain the idea of upwinding, except that this idea, too, has to be significantly modified to use the multi-dimensionally upwinded Riemann solvers developed by the first author. Third, we draw upon recent advances in arbitrary derivatives in space and time (ADER) time-stepping by the first author and his colleagues. We use the ADER predictor step to endow our method with sub-cell resolving capabilities so that the method can be stiffly stable and resolve significant sub-cell variation in the material properties within a zone. Overall, in this paper, we report a new scheme for numerically solving Maxwell's equations in material media, with special attention paid to a second-order-accurate formulation. Several numerical examples are presented to show that the proposed technique works. Because of its sub-cell resolving ability, the new method retains second-order accuracy even when material permeability and permittivity vary by an order-of-magnitude over just one or two zones. Furthermore, because the new method is also unconditionally stable in the presence of stiff source terms (i.e., in problems involving giant conductivity variations), it can handle several orders-of-magnitude variation in material conductivity over just one or two zones without any reduction of the time-step. Consequently, the CFL depends only on the propagation speed of light in the medium being studied.

  3. Fast online inverse scattering with Reduced Basis Method (RBM) for a 3D phase grating with specific line roughness

    NASA Astrophysics Data System (ADS)

    Kleemann, Bernd H.; Kurz, Julian; Hetzler, Jochen; Pomplun, Jan; Burger, Sven; Zschiedrich, Lin; Schmidt, Frank

    2011-05-01

    Finite element methods (FEM) for the rigorous electromagnetic solution of Maxwell's equations are known to be very accurate. They possess a high convergence rate for the determination of near field and far field quantities of scattering and diffraction processes of light with structures having feature sizes in the range of the light wavelength. We are using FEM software for 3D scatterometric diffraction calculations allowing the application of a brilliant and extremely fast solution method: the reduced basis method (RBM). The RBM constructs a reduced model of the scattering problem from precalculated snapshot solutions, guided self-adaptively by an error estimator. Using RBM, we achieve an efficiency accuracy of about 10-4 compared to the direct problem with only 35 precalculated snapshots being the reduced basis dimension. This speeds up the calculation of diffraction amplitudes by a factor of about 1000 compared to the conventional solution of Maxwell's equations by FEM. This allows us to reconstruct the three geometrical parameters of our phase grating from "measured" scattering data in a 3D parameter manifold online in a minute having the full FEM accuracy available. Additionally, also a sensitivity analysis or the choice of robust measuring strategies, for example, can be done online in a few minutes.

  4. Lorentz invariance violation and charge (non)conservation: A general theoretical frame for extensions of the Maxwell equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laemmerzahl, Claus; Macias, Alfredo; Mueller, Holger

    2005-01-15

    All quantum gravity approaches lead to small modifications in the standard laws of physics which in most cases lead to violations of Lorentz invariance. One particular example is the extended standard model (SME). Here, a general phenomenological approach for extensions of the Maxwell equations is presented which turns out to be more general than the SME and which covers charge nonconservation (CNC), too. The new Lorentz invariance violating terms cannot be probed by optical experiments but need, instead, the exploration of the electromagnetic field created by a point charge or a magnetic dipole. Some scalar tensor theories and higher dimensionalmore » brane theories predict CNC in four dimensions and some models violating special relativity have been shown to be connected with CNC. Its relation to the Einstein Equivalence Principle has been discussed. Because of this upcoming interest, the experimental status of electric charge conservation is reviewed. Up to now there seem to exist no unique tests of charge conservation. CNC is related to the precession of polarization, to a modification of the 1/r-Coulomb potential, and to a time dependence of the fine structure constant. This gives the opportunity to describe a dedicated search for CNC.« less

  5. Thermodynamics of new black hole solutions in the Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    In the present work, thermodynamics of the new black hole solutions to the four-dimensional Einstein-Maxwell-dilaton gravity theory have been studied. The dilaton potential, as the solution to the scalar field equations, has been constructed out by a linear combination of three Liouville-type potentials. Three new classes of charged dilatonic black hole solutions, as the exact solutions to the coupled equations of gravitational, electromagnetic and scalar fields, have been introduced. The conserved charge and mass of the new black holes have been calculated by utilizing Gauss's electric law and Abbott-Deser mass proposal, respectively. Also, the temperature, entropy and the electric potential of these new classes of charged dilatonic black holes have been calculated, making use of the geometrical approaches. Through a Smarr-type mass formula, the intensive parameters of the black holes have been calculated and validity of the first law of black hole thermodynamics has been confirmed. A thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. The heat capacity of the new black holes has been calculated and the points of type one- and type two-phase transitions as well as the ranges at which the new charged dilatonic black holes are locally stable have been determined, precisely.

  6. Robust multiscale field-only formulation of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission of electromagnetic waves at surfaces of arbitrary curvature. Implementation details are illustrated with scattering by multiple perfect electric conductors as well as dielectric bodies with complex geometries and composition.

  7. Modifying Poisson equation for near-solute dielectric polarization and solvation free energy

    NASA Astrophysics Data System (ADS)

    Yang, Pei-Kun

    2016-06-01

    The dielectric polarization P is important for calculating the stability of protein conformation and the binding affinity of protein-protein/ligand interactions and for exploring the nonthermal effect of an external electric field on biomolecules. P was decomposed into the product of the electric dipole moment per molecule p; bulk solvent density Nbulk; and relative solvent molecular density g. For a molecular solute, 4πr2p(r) oscillates with the distance r to the solute, and g(r) has a large peak in the near-solute region, as observed in molecular dynamics (MD) simulations. Herein, the Poisson equation was modified for computing p based on the modified Gauss's law of Maxwell's equations, and the potential of the mean force was used for computing g. For one or two charged atoms in a water cluster, the solvation free energies of the solutes obtained by these equations were similar to those obtained from MD simulations.

  8. Millimeter Wave Generation by Relativistic Electron Beams.

    DTIC Science & Technology

    1984-12-01

    frequency and wave vector matching relations for influence of various nonlinear effects on this instability is this four-wave interaction require...following coupled mode equations _ 6 = 6 _ (14)-- v vx (14) ." .’ for the lower hybrid sidebands: v - V 2 - The x component of the resultant vector equation...involves a purely growing modte, a four-wave interaction plitoces is analysed, including a u ap ti wave- vector up-shifted and ilown-shiftes upper

  9. On a `time' reparametrization in relativistic electrodynamics with travelling waves

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano

    2018-01-01

    We briefly report on our method [23] of simplifying the equations of motion of charged particles in an electromagnetic (EM) field that is the sum of a plane travelling wave and a static part; it is based on changes of the dependent variables and the independent one (light-like coordinate ξ instead of time t). We sketch its application to a few cases of extreme laser-induced accelerations, both in vacuum and in plane problems at the vacuum-plasma interface, where we are able to reduce the system of the (Lorentz-Maxwell and continuity) partial differential equations into a family of decoupled systems of Hamilton equations in 1 dimension. Since Fourier analysis plays no role, the method can be applied to all kind of travelling waves, ranging from almost monochromatic to socalled "impulses".

  10. Why do Electrons with "Anomalous Energies" appear in High-Pressure Gas Discharges?

    NASA Astrophysics Data System (ADS)

    Kozyrev, Andrey; Kozhevnikov, Vasily; Semeniuk, Natalia

    2018-01-01

    Experimental studies connected with runaway electron beams generation convincingly shows the existence of electrons with energies above the maximum voltage applied to the discharge gap. Such electrons are also known as electrons with "anomalous energies". We explain the presence of runaway electrons having so-called "anomalous energies" according to physical kinetics principles, namely, we describe the total ensemble of electrons with the distribution function. Its evolution obeys Boltzmann kinetic equation. The dynamics of self-consistent electromagnetic field is taken into the account by adding complete Maxwell's equation set to the resulting system of equations. The electrodynamic mechanism of the interaction of electrons with a travelling-wave electric field is analyzed in details. It is responsible for the appearance of electrons with high energies in real discharges.

  11. A charged membrane paradigm at large D

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sayantani; Mandlik, Mangesh; Minwalla, Shiraz; Thakur, Somyadip

    2016-04-01

    We study the effective dynamics of black hole horizons in Einstein-Maxwell theory in a large number of spacetime dimensions D. We demonstrate that horizon dynamics may be recast as a well posed initial value problem for the motion of a codimension one non gravitational membrane moving in flat space. The dynamical degrees of freedom of this membrane are its shape, charge density and a divergence free velocity field. We determine the equations that govern membrane dynamics at leading order in the large D expansion. Our derivation of the membrane equations assumes that the solution preserves an SO( D - p - 2) isometry with p held fixed as D is taken to infinity. However we are able to cast our final membrane equations into a completely geometric form that makes no reference to this symmetry algebra.

  12. A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrie, Michael; Shadwick, B. A.

    2016-01-04

    Here, we present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Juttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviors that do not exist in the non relativistic case.more » The numerical study of the relativistic two-stream instability completes the set of benchmarking tests.« less

  13. A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrié, Michael, E-mail: mcarrie2@unl.edu; Shadwick, B. A., E-mail: shadwick@mailaps.org

    2016-01-15

    We present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Jüttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviours that do not exist in the nonrelativistic case. The numericalmore » study of the relativistic two-stream instability completes the set of benchmarking tests.« less

  14. Calculation of induced voltages on overhead lines caused by inclined lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakakibara, A.

    1989-01-01

    Equations to calculate the inducing scalar and vector potentials produced by inclined return strokes are shown. Equations are also shown for calculating the induced voltages on overhead lines where horizontal components of inducing vector potential exist. The adequacy of the calculation method is demonstrated by field experiments. Using these equations, induced voltages on overhead lines are calculated for a variety of directions of return strokes.

  15. Simple vector bundles on a nodal Weierstrass cubic and quasi-trigonometric solutions of the classical Yang-Baxter equation

    NASA Astrophysics Data System (ADS)

    Burban, Igor; Galinat, Lennart; Stolin, Alexander

    2017-11-01

    In this paper we study the combinatorics of quasi-trigonometric solutions of the classical Yang-Baxter equation, arising from simple vector bundles on a nodal Weierstraß cubic. Dedicated to the memory of Petr Petrovich Kulish.

  16. Magnetic Control of Convection in Electrically Nonconducting Fluids

    NASA Technical Reports Server (NTRS)

    Huang, Jie; Gray, Donald D.; Edwards, Boyd F.

    1999-01-01

    Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.

  17. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru

    2017-11-01

    This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2  +  1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2  +  1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.

  18. Bright-type and dark-type vector solitons of the (2 + 1)-dimensional spatially modulated quintic nonlinear Schrödinger equation in nonlinear optics and Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Yu; Jiang, Li-Hong

    2018-03-01

    We study a (2 + 1) -dimensional N -coupled quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.

  19. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  20. Progressive wave expansions and open boundary problems

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Hariharan, S. I.

    1995-01-01

    In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.

Top