Zhang, Wenli; Solanki, Manish; Müther, Nadine; Ebel, Melanie; Wang, Jichang; Sun, Chuanbo; Izsvak, Zsuzsanna; Ehrhardt, Anja
2013-01-01
Recombinant adeno-associated viral (AAV) vectors have been shown to be one of the most promising vectors for therapeutic gene delivery because they can induce efficient and long-term transduction in non-dividing cells with negligible side-effects. However, as AAV vectors mostly remain episomal, vector genomes and transgene expression are lost in dividing cells. Therefore, to stably transduce cells, we developed a novel AAV/transposase hybrid-vector. To facilitate SB-mediated transposition from the rAAV genome, we established a system in which one AAV vector contains the transposon with the gene of interest and the second vector delivers the hyperactive Sleeping Beauty (SB) transposase SB100X. Human cells were infected with the AAV-transposon vector and the transposase was provided in trans either by transient and stable plasmid transfection or by AAV vector transduction. We found that groups which received the hyperactive transposase SB100X showed significantly increased colony forming numbers indicating enhanced integration efficiencies. Furthermore, we found that transgene copy numbers in transduced cells were dose-dependent and that predominantly SB transposase-mediated transposition contributed to stabilization of the transgene. Based on a plasmid rescue strategy and a linear-amplification mediated PCR (LAM-PCR) protocol we analysed the SB100X-mediated integration profile after transposition from the AAV vector. A total of 1840 integration events were identified which revealed a close to random integration profile. In summary, we show for the first time that AAV vectors can serve as template for SB transposase mediated somatic integration. We developed the first prototype of this hybrid-vector system which with further improvements may be explored for treatment of diseases which originate from rapidly dividing cells. PMID:24116154
Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao
2016-03-01
Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications. © FASEB.
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Geisler, Anja; Schön, Christian; Größl, Tobias; Pinkert, Sandra; Stein, Elisabeth A; Kurreck, Jens; Vetter, Roland; Fechner, Henry
2013-01-01
Insertion of completely complementary microRNA (miR) target sites (miRTS) into a transgene has been shown to be a valuable approach to specifically repress transgene expression in non-targeted tissues. miR-122TS have been successfully used to silence transgene expression in the liver following systemic application of cardiotropic adeno-associated virus (AAV) 9 vectors. For miR-206–mediated skeletal muscle-specific silencing of miR-206TS–bearing AAV9 vectors, however, we found this approach failed due to the expression of another member (miR-1) of the same miR family in heart tissue, the intended target. We introduced single-nucleotide substitutions into the miR-206TS and searched for those which prevented miR-1–mediated cardiac repression. Several mutated miR-206TS (m206TS), in particular m206TS-3G, were resistant to miR-1, but remained fully sensitive to miR-206. All these variants had mismatches in the seed region of the miR/m206TS duplex in common. Furthermore, we found that some m206TS, containing mismatches within the seed region or within the 3′ portion of the miR-206, even enhanced the miR-206– mediated transgene repression. In vivo expression of m206TS-3G– and miR-122TS–containing transgene of systemically applied AAV9 vectors was strongly repressed in both skeletal muscle and the liver but remained high in the heart. Thus, site-directed mutagenesis of miRTS provides a new strategy to differentiate transgene de-targeting of related miRs. PMID:23439498
Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D
2016-01-01
Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P < 0.04). Furthermore, transgene integration has been confirmed by sequencing in the majority of the mice treated with both vectors. Targeted alleles were 4.6-fold more common in livers of mice with GSD Ia, as compared with normal littermates, at 8 months following vector administration (P < 0.02). This suggests a selective advantage for vector-transduced hepatocytes following ZFN-mediated integration of the G6Pase vector. A short-term experiment also showed that 3-month-old mice receiving the ZFN had significantly-improved biochemical correction, in comparison with mice that received the donor vector alone. These data suggest that the use of ZFNs to drive integration of G6Pase at a safe harbor locus might improve vector persistence and efficacy, and lower mortality in GSD Ia. PMID:26865405
Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.
2017-01-01
We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072
Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin
2016-01-01
Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.
Capowski, Elizabeth E; Schneider, Bernard L; Ebert, Allison D; Seehus, Corey R; Szulc, Jolanta; Zufferey, Romain; Aebischer, Patrick; Svendsen, Clive N
2007-07-30
Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.
Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A
2015-11-01
Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.
Pastor, Marie; Johnen, Sandra; Harmening, Nina; Quiviger, Mickäel; Pailloux, Julie; Kropp, Martina; Walter, Peter; Ivics, Zoltán; Izsvák, Zsuzsanna; Thumann, Gabriele; Scherman, Daniel; Marie, Corinne
2018-06-01
The anti-angiogenic and neurogenic pigment epithelium-derived factor (PEDF) demonstrated a potency to control choroidal neovascularization in age-related macular degeneration (AMD) patients. The goal of the present study was the development of an efficient and safe technique to integrate, ex vivo, the PEDF gene into retinal pigment epithelial (RPE) cells for later transplantation to the subretinal space of AMD patients to allow continuous PEDF secretion in the vicinity of the affected macula. Because successful gene therapy approaches require efficient gene delivery and stable gene expression, we used the antibiotic-free pFAR4 mini-plasmid vector to deliver the hyperactive Sleeping Beauty transposon system, which mediates transgene integration into the genome of host cells. In an initial study, lipofection-mediated co-transfection of HeLa cells with the SB100X transposase gene and a reporter marker delivered by pFAR4 showed a 2-fold higher level of genetically modified cells than when using the pT2 vectors. Similarly, with the pFAR4 constructs, electroporation-mediated transfection of primary human RPE cells led to 2.4-fold higher secretion of recombinant PEDF protein, which was still maintained 8 months after transfection. Thus, our results show that the pFAR4 plasmid is a superior vector for the delivery and integration of transgenes into eukaryotic cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Xiong, Yehui; Zeng, Hongmei; Zhang, Yuliang; Xu, Dawei; Qiu, Dewen
2013-01-01
RNA interference (RNAi) caused by exogenous double-stranded RNA (dsRNA) has developed into a powerful technique in functional genomics, and to date it is widely used to down-regulate crucial physiology-related genes to control pest insects. A molt-regulating transcription factor gene, HaHR3, of cotton bollworm (Helicoverpa armigera) was selected as the target gene. Four different fragments covering the coding sequence (CDS) of HaHR3 were cloned into vector L4440 to express dsRNAs in Escherichia coli. The most effective silencing fragment was then cloned into a plant over-expression vector to express a hairpin RNA (hpRNA) in transgenic tobacco (Nicotiana tabacum). When H. armigera larvae were fed the E. coli or transgenic plants, the HaHR3 mRNA and protein levels dramatically decreased, resulting developmental deformity and larval lethality. The results demonstrate that both recombinant bacteria and transgenic plants could induce HaHR3 silence to disrupt H. armigera development, transgenic plant-mediated RNAi is emerging as a powerful approach for controlling insect pests. PMID:23630449
Applications of lentiviral vectors in molecular imaging.
Chatterjee, Sushmita; De, Abhijit
2014-06-01
Molecular imaging provides the ability of simultaneous visual and quantitative estimation of long term gene expression directly from living organisms. To reveal the kinetics of gene expression by imaging method, often sustained expression of the transgene is required. Lentiviral vectors have been extensively used over last fifteen years for delivery of a transgene in a wide variety of cell types. Lentiviral vectors have the well known advantages such as sustained transgene delivery through stable integration into the host genome, the capability of infecting non-dividing and dividing cells, broad tissue tropism, a reasonably large carrying capacity for delivering therapeutic and reporter gene combinations. Additionally, they do not express viral proteins during transduction, have a potentially safe integration site profile, and a relatively easy system for vector manipulation and infective viral particle production. As a result, lentiviral vector mediated therapeutic and imaging reporter gene delivery to various target organs holds promise for the future treatment. In this review, we have conducted a brief survey of important lentiviral vector developments in diverse biomedical fields including reproductive biology.
Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.
Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A
2018-05-16
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Taura, Kojiro; Yamamoto, Yuzo; Nakajima, Akio; Hata, Koichiro; Uchinami, Hiroshi; Yonezawa, Kei; Hatano, Etsuro; Nishino, Norikazu; Yamaoka, Yoshio
2004-05-01
Histone deacetylase inhibitors (HDIs) are known to enhance adenovirus (Ad)-mediated transgene expression. Recently, novel HDIs, including cyclic hydroxamic-acid-containing peptide 31 (CHAP31) and FR901228 (FK228), have been developed. The effects of these two novel HDIs on Ad-transduced or endogenous gene expression were investigated. Acetylation of core histones and the expression of the coxsackie and adenovirus receptor (CAR) in HDI-treated cells were examined using Western blot and a quantitative reverse transcription polymerase chain reaction (TaqMan RT-PCR), respectively. Their in vivo effect on adenoviral gene expression was investigated in BALB/c mice. Both compounds enhanced and prolonged Ad-mediated beta-galactosidase expression more effectively than did trichostatin A, a classic HDI. The same effect was observed in Ad-transduced heat shock protein 72 (HSP72), but not in hyperthermia-induced endogenous expression of HSP72, suggesting that the effect is specific for transduced gene expression. Hyperacetylation of core histones induced by HDIs was considered responsible for the augmentative effects of gene expression. Intravenous administration of either CHAP31 or FR901228 enhanced beta-galactosidase expression in mice infected with AdLacZ. CHAP31 and FR901228 amplified Ad-mediated transgene expression. The enhancement of transgene expression by HDIs may result in fewer vector doses for necessary gene expression, helping to alleviate disadvantages caused by Ad vectors. This could be a useful tool in overcoming current limitations of gene therapy using adenovirus vectors. Copyright 2004 John Wiley & Sons, Ltd.
A new double right border binary vector for producing marker-free transgenic plants
2013-01-01
Background Once a transgenic plant is developed, the selectable marker gene (SMG) becomes unnecessary in the plant. In fact, the continued presence of the SMG in the transgenic plant may cause unexpected pleiotropic effects as well as environmental or biosafety issues. Several methods for removal of SMGs that have been reported remain inaccessible due to protection by patents, while development of new ones is expensive and cost prohibitive. Here, we describe the development of a new vector for producing marker-free plants by simply adapting an ordinary binary vector to the double right border (DRB) vector design using conventional cloning procedures. Findings We developed the DRB vector pMarkfree5.0 by placing the bar gene (representing genes of interest) between two copies of T-DNA right border sequences. The β-glucuronidase (gus) and nptII genes (representing the selectable marker gene) were cloned next followed by one copy of the left border sequence. When tested in a model species (tobacco), this vector system enabled the generation of 55.6% kanamycin-resistant plants by Agrobacterium-mediated transformation. The frequency of cotransformation of the nptII and bar transgenes using the vector was 66.7%. Using the leaf bleach and Basta assays, we confirmed that the nptII and bar transgenes were coexpressed and segregated independently in the transgenic plants. This enable separation of the transgenes in plants cotransformed using pMarkfree5.0. Conclusions The results suggest that the DRB system developed here is a practical and effective approach for separation of gene(s) of interest from a SMG and production of SMG-free plants. Therefore this system could be instrumental in production of “clean” plants containing genes of agronomic importance. PMID:24207020
Rothermel, Markus; Brunert, Daniela; Zabawa, Christine; Díaz-Quesada, Marta; Wachowiak, Matt
2013-09-18
Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.
Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.
Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo
2014-01-01
A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.
Gene Transfer into Rat Brain Using Adenoviral Vectors
Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.
2010-01-01
Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657
Fu, Chunxiang; Hernandez, Timothy; Zhou, Chuanen; Wang, Zeng-Yu
2015-01-01
Alfalfa (Medicago sativa L.) is a high-quality forage crop widely grown throughout the world. This chapter describes an efficient protocol that allows for the generation of large number of transgenic alfalfa plants by sonication-assisted Agrobacterium-mediated transformation. Binary vectors carrying different selectable marker genes that confer resistance to phosphinothricin (bar), kanamycin (npt II), or hygromycin (hph) were used to generate transgenic alfalfa plants. Intact trifoliates collected from clonally propagated plants in the greenhouse were sterilized with bleach and then inoculated with Agrobacterium strain EHA105. More than 80 % of infected leaf pieces could produce rooted transgenic plants in 4-5 months after Agrobacterium-mediated transformation.
Häcker, Irina; Harrell Ii, Robert A; Eichner, Gerrit; Pilitt, Kristina L; O'Brochta, David A; Handler, Alfred M; Schetelig, Marc F
2017-03-07
Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting.
HIV-derived vectors for gene therapy targeting dendritic cells.
Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella
2013-01-01
Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.
Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S
1996-07-15
Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.
Lobo, N F; Hua-Van, A; Li, X; Nolen, B M; Fraser, M J
2002-04-01
Mosquito-vectored diseases such as yellow fever and dengue fever continue to have a substantial impact on human populations world-wide. Novel strategies for control of these mosquito vectored diseases can arise through the development of reliable systems for genetic manipulation of the insect vector. A piggyBac vector marked with the Drosophila melanogaster cinnabar (cn) gene was used to transform the white-eyed khw strain of Aedes aegypti. Microinjection of preblastoderm embryos resulted in four families of cinnabar transformed insects. An overall transformation frequency of 4%, with a range of 0% to as high as 13% for individual experiments, was achieved when using a heat-shock induced transposase providing helper plasmid. Southern hybridizations indicated multiple insertion events in three of four transgenic lines, while the presence of duplicated target TTAA sites at either ends of individual insertions confirmed characteristic piggyBac transposition events in these three transgenic lines. The transgenic phenotype has remained stable for more than twenty generations. The transformations effected using the piggyBac element establish the potential of this element as a germ-line transformation vector for Aedine mosquitoes.
Carnes, Aaron E.; Luke, Jeremy M.; Vincent, Justin M.; Anderson, Sheryl; Schukar, Angela; Hodgson, Clague P.; Williams, James A.
2010-01-01
Background For safety considerations, regulatory agencies recommend elimination of antibiotic resistance markers and nonessential sequences from plasmid DNA-based gene medicines. In the present study we analyzed antibiotic-free (AF) vector design criteria impacting bacterial production and mammalian transgene expression. Methods Both CMV-HTLV-I R RNA Pol II promoter (protein transgene) and murine U6 RNA Pol III promoter (RNA transgene) vector designs were studied. Plasmid production yield was assessed through inducible fed-batch fermentation. RNA Pol II-directed EGFP and RNA Pol III-directed RNA expression were quantified by fluorometry and quantitative real-time polymerase chain reaction (RT-PCR), respectively, after transfection of human HEK293 cells. Results Sucrose-selectable minimalized protein and therapeutic RNA expression vector designs that combined an RNA-based AF selection with highly productive fermentation manufacturing (>1,000 mg/L plasmid DNA) and high level in vivo expression of encoded products were identified. The AF selectable marker was also successfully applied to convert existing kanamycin-resistant DNA vaccine plasmids gWIZ and pVAX1 into AF vectors, demonstrating a general utility for retrofitting existing vectors. A minimum vector size for high yield plasmid fermentation was identified. A strategy for stable fermentation of plasmid dimers with improved vector potency and fermentation yields up to 1,740 mg/L was developed. Conclusions We report the development of potent high yield AF gene medicine expression vectors for protein or RNA (e.g. short hairpin RNA or microRNA) products. These AF expression vectors were optimized to exceed a newly identified size threshold for high copy plasmid replication and direct higher transgene expression levels than alternative vectors. PMID:20806425
Crosby, Catherine M; Barry, Michael A
2017-02-18
Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed "single cycle" Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ad's ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.
Yamazaki, M; Son, L; Hayashi, T; Morita, N; Asamizu, T; Mourakoshi, I; Saito, K
1996-01-01
Transgenic herbicide-resistant Scoparia dulcis plants were obtained by using an Ri binary vector system. The chimeric bar gene encoding phosphinothricin acetyltransferase flanked by the promoter for cauliflower mosaic virus 35S RNA and the terminal sequence for nopaline synthase was introduced in the plant genome by Agrobacterium-mediated transformation by means of scratching young plants. Hairy roots resistant to bialaphos were selected and plantlets (R0) were regenerated. Progenies (S1) were obtained by self-fertilization. The transgenic state was confirmed by DNA-blot hybridization and assaying of neomycin phosphotransferase II. Expression of the bar gene in the transgenic R0 and S1 progenies was indicated by the activity of phosphinothricin acetyltransferase. Transgenic plants accumulated scopadulcic acid B, a specific secondary metabolite of S. dulcis, in amounts of 15-60% compared with that in normal plants. The transgenic plants and progenies showed resistant trait towards bialaphos and phosphinothricin. These results suggest that an Ri binary system is one of the useful tools for the transformation of medicinal plants for which a regeneration protocol has not been established.
CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.
Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun
2014-09-05
Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. Copyright © 2014 Xue et al.
Herzog, Katja; Flachowsky, Henryk; Deising, Holger B; Hanke, Magda-Viola
2012-04-25
Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene. Copyright © 2012 Elsevier B.V. All rights reserved.
Ehrhardt, Anja; Xu, Hui; Huang, Zan; Engler, Jeffrey A; Kay, Mark A
2005-05-01
In this study we performed a head-to-head comparison of the integrase phiC31 derived from a Streptomyces phage and the Sleeping Beauty (SB) transposase, a member of the TC1/mariner superfamily of transposable elements. Mouse liver was cotransfused with a vector containing our most robust human coagulation factor IX expression cassette and the appropriate recombinase recognition site and either a phiC31- or a SB transposase-expressing vector. To analyze transgene persistence and to prove somatic integration in vivo we induced cell cycling of mouse hepatocytes and found that the transgene expression levels dropped by only 16 to 21% and 56 to 66% in mice that received phiC31 and SB, respectively. Notably, no difference in the toxicity profile was detected in mice treated with either recombinase. Moreover we observed that with the integrase-mediated gene transfer, transgene expression levels were dependent on the remaining noncoding vector sequences, which also integrate into the host genome. Further analyses of a hot spot of integration after phiC31-mediated integration revealed small chromosomal deletions at the target site and that the recombination process was not dependent on the orientation in which the phiC31 recognition site attached to the pseudo-recognition sites in the host genome. Coupled together with ongoing improvements in both systems this study suggests that both nonviral vector systems will have important roles in achieving stable gene transfer in vivo.
Gene Delivery Strategies to Promote Spinal Cord Repair
Walthers, Christopher M; Seidlits, Stephanie K
2015-01-01
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed. PMID:25922572
Gui, Tao; Zhang, Meiling; Chen, Jianwen; Zhang, Yuanliang; Zhou, Naru; Zhang, Yu; Tao, Jia; Sui, Liucai; Li, Yunsheng; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2012-08-01
A vector expressing human lysozyme (pBC1-hLYZ-GFP-Neo) was evaluated for gene and protein expression following liposome-mediated transformation of C-127 mouse mammary cancer cells. Cultures of G418-resistant clones were harvested 24-72 h after induction with prolactin, insulin and hydrocortisone. Target gene expression was analyzed by RT-PCR and Western blot and recombinant human lysozyme (rhLYZ) bacteriostatic activity was also evaluated. The hLYZ gene was correctly transcribed and translated in C-127 cells and hLYZ inhibited gram-positive bacterial growth, indicating the potential of this expression vector for development of a mammary gland bioreactor in goats. Guanzhong dairy goat skin fibroblasts transfected with pBC1-hLYZ-GFP-Neo were used to construct a goat embryo transgenically expressing rhLYZ by somatic nuclear transplantation with a blastocyst rate of 9.0 ± 2.8 %. These data establish the basis for cultivation of mastitis-resistant hLYZ transgenic goats.
Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.
Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James
2008-04-11
The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.
Assaying the Stability and Inactivation of AAV Serotype 1 Vectors
Howard, Douglas B.; Harvey, Brandon K.
2017-01-01
Adeno-associated virus (AAV) vectors are a commonplace tool for gene delivery ranging from cell culture to human gene therapy. One feature that makes AAV a desirable vector is its stability, in regard to both the duration of transgene expression and retention of infectivity as a viral particle. This study examined the stability of AAV serotype 1 (AAV1) vectors under different conditions. First, transducibility after storage at 4°C decreased 20% over 7 weeks. Over 10 freeze–thaw cycles, the resulting transduction efficiency became variable at 60–120% of a single thaw. Using small stainless steel slugs to mimic a biosafety cabinet or metal lab bench surface, it was found that an AAV1 vector can be reconstituted after 6 days of storage at room temperature. The stability of AAV is a desired feature, but effective decontamination procedures must be available for safety and experimental integrity. Multiple disinfectants commonly used in the laboratory for ability to inactivate an AAV1 vector were tested, and it was found that autoclaving, 0.25% peracetic acid, iodine, or 10% Clorox bleach completely prevented AAV-mediated transgene expression. These data suggest that peracetic acid should be used for inactivating AAV1 vectors on metal-based surfaces or instruments in order to avoid inadvertent transgene expression in human cells or cross-contamination of instruments. PMID:28192678
Zhang, Wenli; Muck-Hausl, Martin; Wang, Jichang; Sun, Chuanbo; Gebbing, Maren; Miskey, Csaba; Ivics, Zoltan; Izsvak, Zsuzsanna; Ehrhardt, Anja
2013-01-01
We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models. PMID:24124483
Qiao, Junhua; Oumard, André; Wegloehner, Wolfgang; Bode, Juergen
2009-07-24
Site-specific recombinases have revolutionized the systematic generation of transgenic cell lines and embryonic stem cells/animals and will ultimately also reveal their potential in the genetic modification of induced pluripotent stem cells. Introduced in 1994, our Flp recombinase-mediated cassette exchange strategy permits the exchange of a target cassette for a cassette with the gene of interest, introduced as a part of an exchange vector. The process is "clean" in the sense that it does not co-introduce prokaryotic vector parts; neither does it leave behind a selection marker. Stringent selection principles provide master cell lines permitting subsequent recombinase-mediated cassette exchange cycles in the absence of a drug selection and with a considerable efficiency (approximately 10%). Exemplified by Chinese hamster ovary cells, the strategy proves to be successful even for cell lines with an unstable genotype.
Bandeira, Vanessa S; Tomás, Hélio A; Alici, Evren; Carrondo, Manuel J T; Coroadinha, Ana S
2017-04-01
Gammaretrovirus and lentivirus are the preferred viral vectors to genetically modify T and natural killer cells to be used in immune cell therapies. The transduction efficiency of hematopoietic and T cells is more efficient using gibbon ape leukemia virus (GaLV) pseudotyping. In this context gammaretroviral vector producer cells offer competitive higher titers than transient lentiviral vectors productions. The main aim of this work was to identify the key parameters governing GaLV-pseudotyped gammaretroviral vector productivity in stable producer cells, using a retroviral vector expression cassette enabling positive (facilitating cell enrichment) and negative cell selection (allowing cell elimination). The retroviral vector contains a thymidine kinase suicide gene fused with a ouabain-resistant Na + ,K + -ATPase gene, a potential safer and faster marker. The establishment of retroviral vector producer cells is traditionally performed by randomly integrating the retroviral vector expression cassette codifying the transgene. More recently, recombinase-mediated cassette exchange methodologies have been introduced to achieve targeted integration. Herein we compared random and targeted integration of the retroviral vector transgene construct. Two retroviral producer cell lines, 293 OuaS and 293 FlexOuaS, were generated by random and targeted integration, respectively, producing high titers (on the order of 10 7 infectious particles·ml -1 ). Results showed that the retroviral vector transgene cassette is the key retroviral vector component determining the viral titers notwithstanding, single-copy integration is sufficient to provide high titers. The expression levels of the three retroviral constructs (gag-pol, GaLV env, and retroviral vector transgene) were analyzed. Although gag-pol and GaLV env gene expression levels should surpass a minimal threshold, we found that relatively modest expression levels of these two expression cassettes are required. Their levels of expression should not be maximized. We concluded, to establish a high producer retroviral vector cell line only the expression level of the genomic retroviral RNA, that is, the retroviral vector transgene cassette, should be maximized, both through (1) the optimization of its design (i.e., genetic elements composition) and (2) the selection of high expressing chromosomal locus for its integration. The use of methodologies identifying and promoting integration into high-expression loci, as targeted integration or high-throughput screening are in this perspective highly valuable.
A simple and reliable multi-gene transformation method for switchgrass.
Ogawa, Yoichi; Shirakawa, Makoto; Koumoto, Yasuko; Honda, Masaho; Asami, Yuki; Kondo, Yasuhiro; Hara-Nishimura, Ikuko
2014-07-01
A simple and reliable Agrobacterium -mediated transformation method was developed for switchgrass. Using this method, many transgenic plants carrying multiple genes-of-interest could be produced without untransformed escape. Switchgrass (Panicum virgatum L.) is a promising biomass crop for bioenergy. To obtain transgenic switchgrass plants carrying a multi-gene trait in a simple manner, an Agrobacterium-mediated transformation method was established by constructing a Gateway-based binary vector, optimizing transformation conditions and developing a novel selection method. A MultiRound Gateway-compatible destination binary vector carrying the bar selectable marker gene, pHKGB110, was constructed to introduce multiple genes of interest in a single transformation. Two reporter gene expression cassettes, GUSPlus and gfp, were constructed independently on two entry vectors and then introduced into a single T-DNA region of pHKGB110 via sequential LR reactions. Agrobacterium tumefaciens EHA101 carrying the resultant binary vector pHKGB112 and caryopsis-derived compact embryogenic calli were used for transformation experiments. Prolonged cocultivation for 7 days followed by cultivation on media containing meropenem improved transformation efficiency without overgrowth of Agrobacterium, which was, however, not inhibited by cefotaxime or Timentin. In addition, untransformed escape shoots were completely eliminated during the rooting stage by direct dipping the putatively transformed shoots into the herbicide Basta solution for a few seconds, designated as the 'herbicide dipping method'. It was also demonstrated that more than 90 % of the bar-positive transformants carried both reporters delivered from pHKGB112. This simple and reliable transformation method, which incorporates a new selection technique and the use of a MultiRound Gateway-based binary vector, would be suitable for producing a large number of transgenic lines carrying multiple genes.
Jang, Gun-Hyuk; Jeong, Yeun-Ik; Hwang, In-Sung; Jeong, Yeon-woo; Kim, Yu-Kyung; Shin, Taeyoung; Kim, Nam-Hyung; Hyun, Sang-Hwan; Jeung, Eui-Bae; Hwang, Woo-Suk
2013-01-01
The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT) using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR) when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT) and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC) were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC) compared with the human umbilical vein endothelial cells (HUVEC). Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative for the generation of transgenic large animals with multiple genetic modifications. PMID:23704897
Helper-Dependent Adenoviral Vectors.
Rosewell, Amanda; Vetrini, Francesco; Ng, Philip
2011-10-29
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Helper-Dependent Adenoviral Vectors
Rosewell, Amanda; Vetrini, Francesco; Ng, Philip
2012-01-01
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227
Vega, Juan M; Yu, Weichang; Han, Fangpu; Kato, Akio; Peters, Eric M; Zhang, Zhanyuan J; Birchler, James A
2008-04-01
The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.
Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan
2017-09-15
Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.
Adenovirus-Associated Virus Vector–Mediated Gene Transfer in Hemophilia B
Nathwani, Amit C.; Tuddenham, Edward G.D.; Rangarajan, Savita; Rosales, Cecilia; McIntosh, Jenny; Linch, David C.; Chowdary, Pratima; Riddell, Anne; Pie, Arnulfo Jaquilmac; Harrington, Chris; O’Beirne, James; Smith, Keith; Pasi, John; Glader, Bertil; Rustagi, Pradip; Ng, Catherine Y.C.; Kay, Mark A.; Zhou, Junfang; Spence, Yunyu; Morton, Christopher L.; Allay, James; Coleman, John; Sleep, Susan; Cunningham, John M.; Srivastava, Deokumar; Basner-Tschakarjan, Etiena; Mingozzi, Federico; High, Katherine A.; Gray, John T.; Reiss, Ulrike M.; Nienhuis, Arthur W.; Davidoff, Andrew M.
2012-01-01
BACKGROUND Hemophilia B, an X-linked disorder, is ideally suited for gene therapy. We investigated the use of a new gene therapy in patients with the disorder. METHODS We infused a single dose of a serotype-8–pseudotyped, self-complementary adenovirus-associated virus (AAV) vector expressing a codon-optimized human factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco) in a peripheral vein in six patients with severe hemophilia B (FIX activity, <1% of normal values). Study participants were enrolled sequentially in one of three cohorts (given a high, intermediate, or low dose of vector), with two participants in each group. Vector was administered without immunosuppressive therapy, and participants were followed for 6 to 16 months. RESULTS AAV-mediated expression of FIX at 2 to 11% of normal levels was observed in all participants. Four of the six discontinued FIX prophylaxis and remained free of spontaneous hemorrhage; in the other two, the interval between prophylactic injections was increased. Of the two participants who received the high dose of vector, one had a transient, asymptomatic elevation of serum aminotransferase levels, which was associated with the detection of AAV8-capsid–specific T cells in the peripheral blood; the other had a slight increase in liver-enzyme levels, the cause of which was less clear. Each of these two participants received a short course of glucocorticoid therapy, which rapidly normalized aminotransferase levels and maintained FIX levels in the range of 3 to 11% of normal values. CONCLUSIONS Peripheral-vein infusion of scAAV2/8-LP1-hFIXco resulted in FIX transgene expression at levels sufficient to improve the bleeding phenotype, with few side effects. Although immune-mediated clearance of AAV-transduced hepatocytes remains a concern, this process may be controlled with a short course of glucocorticoids without loss of transgene expression. (Funded by the Medical Research Council and others; ClinicalTrials.gov number, NCT00979238.) PMID:22149959
NASA Astrophysics Data System (ADS)
Yu, Yuan; Tong, Qi; Li, Zhongxia; Tian, Jinhai; Wang, Yizhi; Su, Feng; Wang, Yongsheng; Liu, Jun; Zhang, Yong
2014-02-01
PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.
Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong
2015-01-01
Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551
Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong
2015-01-01
Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. © 2015 American Society of Plant Biologists. All Rights Reserved.
Yang, Ching-Fu; Chen, Kuan-Chun; Cheng, Ying-Hui; Raja, Joseph A. J.; Huang, Ya-Ling; Chien, Wan-Chu; Yeh, Shyi-Dong
2014-01-01
Global threats of ssDNA geminivirus and ss(-)RNA tospovirus on crops necessitate the development of transgenic resistance. Here, we constructed a two-T DNA vector carrying a hairpin of the intergenic region (IGR) of Ageratum yellow vein virus (AYVV), residing in an intron inserted in an untranslatable nucleocapsid protein (NP) fragment of Melon yellow spot virus (MYSV). Transgenic tobacco lines highly resistant to AYVV and MYSV were generated. Accumulation of 24-nt siRNA, higher methylation levels on the IGR promoters of the transgene, and suppression of IGR promoter activity of invading AYVV indicate that AYVV resistance is mediated by transcriptional gene silencing. Lack of NP transcript and accumulation of corresponding siRNAs indicate that MYSV resistance is mediated through post-transcriptional gene silencing. Marker-free progenies with concurrent resistance to both AYVV and MYSV, stably inherited as dominant nuclear traits, were obtained. Hence, we provide a novel way for concurrent control of noxious DNA and RNA viruses with less biosafety concerns. PMID:25030413
Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis
Chakraborty, Syandan; Ji, HaYeun; Chen, Jack; Gersbach, Charles A.; Leong, Kam W.
2014-01-01
Transgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed “cut-and-paste” mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency. However, prolonged expression of transposase can become a potential source of genotoxic effects due to uncontrolled transposition of the integrated transgene from one chromosomal locus to another. In this study we propose a vector design to decrease post-transposition expression of transposase and to eliminate the cells that have residual transposase expression. We design a single plasmid construct that combines the transposase and the transpositioning transgene element to share a single polyA sequence for termination. Consequently, the separation of the transposase element from the polyA sequence after transposition leads to its deactivation. We also co-express Herpes Simplex Virus thymidine kinase (HSV-tk) with the transposase. Therefore, cells having residual transposase expression can be eliminated by the administration of ganciclovir. We demonstrate the utility of this combination transposon system by integrating and expressing a model therapeutic gene, human coagulation Factor IX, in HEK293T cells. PMID:25492703
Ramsingh, Arlene I.; Gray, Steven J.; Reilly, Andrew; Koday, Michael; Bratt, Debbie; Koday, Merika Treants; Murnane, Robert; Hu, Yuhui; Messer, Anne
2018-01-01
A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics. PMID:29874260
Long-term effects of systemic gene therapy in a canine model of myotubular myopathy.
Elverman, Matthew; Goddard, Melissa A; Mack, David; Snyder, Jessica M; Lawlor, Michael W; Meng, Hui; Beggs, Alan H; Buj-Bello, Ana; Poulard, Karine; Marsh, Anthony P; Grange, Robert W; Kelly, Valerie E; Childers, Martin K
2017-11-01
X-linked myotubular myopathy (XLMTM), a devastating pediatric disease caused by the absence of the protein myotubularin, results from mutations in the MTM1 gene. While there is no cure for XLMTM, we previously reported effects of MTM1 gene therapy using adeno-associated virus (AAV) vector on muscle weakness and pathology in MTM1-mutant dogs. Here, we followed 2 AAV-infused dogs over 4 years. We evaluated gait, strength, respiration, neurological function, muscle pathology, AAV vector copy number (VCN), and transgene expression. Four years following AAV-mediated gene therapy, gait, respiratory performance, neurological function and pathology in AAV-infused XLMTM dogs remained comparable to their healthy littermate controls despite a decline in VCN and muscle strength. AAV-mediated gene transfer of MTM1 in young XLMTM dogs results in long-term expression of myotubularin transgene with normal muscular performance and neurological function in the absence of muscle pathology. These findings support a clinical trial in patients. Muscle Nerve 56: 943-953, 2017. © 2017 Wiley Periodicals, Inc.
Rothermel, Markus; Brunert, Daniela; Zabawa, Christine; Díaz-Quesada, Marta
2013-01-01
Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors—in particular, recombinant adeno-associated viral vectors (rAAVs)—have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested—in particular, though not exclusively, Cre-dependent vectors—showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal. PMID:24048849
Transgene autoexcision in switchgrass pollen mediated by the Bxb1 recombinase
2014-01-01
Background Switchgrass (Panicum virgatum L.) has a great potential as a platform for the production of biobased plastics, chemicals and energy mainly because of its high biomass yield on marginal land and low agricultural inputs. During the last decade, there has been increased interest in the genetic improvement of this crop through transgenic approaches. Since switchgrass, like most perennial grasses, is exclusively cross pollinating and poorly domesticated, preventing the dispersal of transgenic pollen into the environment is a critical requisite for the commercial deployment of this important biomass crop. In this study, the feasibility of controlling pollen-mediated gene flow in transgenic switchgrass using the large serine site-specific recombinase Bxb1 has been investigated. Results A novel approach utilizing co-transformation of two separate vectors was used to test the functionality of the Bxb1/att recombination system in switchgrass. In addition, two promoters with high pollen-specific activity were identified and thoroughly characterized prior to their introduction into a test vector explicitly designed for both autoexcision and quantitative analyses of recombination events. Our strategy for developmentally programmed precise excision of the recombinase and marker genes in switchgrass pollen resulted in the generation of transgene-excised progeny. The autoexcision efficiencies were in the range of 22-42% depending on the transformation event and assay used. Conclusion The results presented here mark an important milestone towards the establishment of a reliable biocontainment system for switchgrass which will facilitate the development of this crop as a biorefinery feedstock through advanced biotechnological approaches. PMID:25148894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira
2012-01-06
Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors,more » therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.« less
Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.
Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D
2018-02-28
The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT (BAC) -Cre and ChAT (IRES) -Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors. Copyright © 2018 the authors 0270-6474/18/382177-12$15.00/0.
Liao, J; Wei, Q; Fan, J; Zou, Y; Song, D; Liu, J; Liu, F; Ma, C; Hu, X; Li, L; Yu, Y; Qu, X; Chen, L; Yu, X; Zhang, Z; Zhao, C; Zeng, Z; Zhang, R; Yan, S; Wu, T; Wu, X; Shu, Y; Lei, J; Li, Y; Zhang, W; Wang, J; Reid, R R; Lee, M J; Huang, W; Wolf, J M; He, T-C; Wang, J
2017-06-01
Retroviral vectors including lentiviral vectors are commonly used tools to stably express transgenes or RNA molecules in mammalian cells. Their utilities are roughly divided into two categories, stable overexpression of transgenes and RNA molecules, which requires maximal transduction efficiency, or functional selection with retrovirus (RV)-based libraries, which takes advantage of retroviral superinfection resistance. However, the dynamic features of RV-mediated transduction are not well characterized. Here, we engineered two murine stem cell virus-based retroviral vectors expressing dual fluorescence proteins and antibiotic markers, and analyzed virion production efficiency and virion stability, dynamic infectivity and superinfection resistance in different cell types, and strategies to improve transduction efficiency. We found that the highest virion production occurred between 60 and 72 h after transfection. The stability of the collected virion supernatant decreased by >60% after 3 days in storage. We found that RV infectivity varied drastically in the tested human cancer lines, while low transduction efficiency was partially overcome with increased virus titer, prolonged infection duration and/or repeated infections. Furthermore, we demonstrated that RV receptors PIT1 and PIT2 were lowly expressed in the analyzed cells, and that PIT1 and/or PIT2 overexpression significantly improved transduction efficiency in certain cell lines. Thus, our findings provide resourceful information for the optimal conditions of retroviral-mediated gene delivery.
Shi, L; Fan, J Q; Hu, C G; Luo, J; Yao, J L
2012-02-03
The establishment of high-efficiency Agrobacterium-mediated transformation techniques could improve the production of Dioscorea zingiberensis, a medicinal species with a high diosgenin content. We co-cultivated embryogenic calli induced from mature seeds with A. tumefaciens strain EHA105. A binary vector, pCAMBIA1381, which contains the gfp and hpt genes under the control of the ubiquitin promoter and the CaMV 35S promoter, respectively, was used for transformation. Pre-culture, basic medium, acetosyringone, and bacterial density were evaluated to establish the most efficient protocol. The optimal conditions consisted of MS medium without CaCl(2) for pre- and co-cultivation, three days for pre-culture, addition of 200 μM AS, and an OD(600) of 0.5. The transgenic plants grown under selection were confirmed by PCR analysis and Southern blot analysis. This protocol produced transgenic D. zingiberensis plants in seven months, with a transformation efficiency of 6%.
Translational Data from Adeno-Associated Virus-Mediated Gene Therapy of Hemophilia B in Dogs
Whitford, Margaret H.; Arruda, Valder R.; Stedman, Hansell H.; Kay, Mark A.; High, Katherine A.
2015-01-01
Abstract Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (<1% FIX) provide well-characterized phenotypes and genotypes in which a species-specific transgene can be expressed in a mixed genetic background. Correction of the hemophilic coagulopathy by sustained expression of FIX, reduction of bleeding events, and a comprehensive assessment of the humoral and cell-mediated immune responses to the expressed transgene and recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches. PMID:25675273
Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs.
Nichols, Timothy C; Whitford, Margaret H; Arruda, Valder R; Stedman, Hansell H; Kay, Mark A; High, Katherine A
2015-03-01
Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (<1% FIX) provide well-characterized phenotypes and genotypes in which a species-specific transgene can be expressed in a mixed genetic background. Correction of the hemophilic coagulopathy by sustained expression of FIX, reduction of bleeding events, and a comprehensive assessment of the humoral and cell-mediated immune responses to the expressed transgene and recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches.
Maize transformation technology development for commercial event generation.
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.
Maize transformation technology development for commercial event generation
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170
Camargo, F D; Huey-Louie, D A; Finn, A V; Sassani, A B; Cozen, A E; Moriwaki, H; Schneider, D B; Agah, R; Dichek, D A
2000-11-01
The utility of adenoviral vectors is limited by immune responses to adenoviral antigens. We sought to develop immune-competent mice in which the immune response to adenoviral antigens was selectively absent. To do so, we generated mice that were transgenic for a replication-defective vector. Adenoviral antigens might be seen as self-antigens by these mice, and the mice could exhibit immunologic tolerance after postnatal exposure to adenoviral vectors. In addition, characterization of these mice could reveal potential consequences of germline transmission of an adenoviral vector, as might occur in a gene therapy trial. Injection of a "null" (not containing a transgene) E1, E3-deleted vector genome into mouse zygotes yielded five founders that were capable of transmitting the vector genome. Among offspring of these mice, transgenic pups were significantly underrepresented: 108 of 255 pups (42%) were transgenic (P<0.02 versus expected frequency of 50%). Postnatal transgenic mice, however, had no apparent abnormalities. Persistence of an adenoviral vector after intravenous injection was equivalent in livers of transgenic mice and their nontransgenic littermates. Transgenic and nontransgenic mice also had equivalent humoral and cellular immune responses to adenoviral vector injection. Mice that are transgenic for an E1, E3-deleted adenoviral genome can be easily generated; however, they are not tolerant of adenovirus. Moreover, germline transmission of an adenoviral vector genome does not prevent generation of a robust immune response after exposure to adenoviral antigens.
Kaufmann, Kerstin B.; Brendel, Christian; Suerth, Julia D.; Mueller-Kuller, Uta; Chen-Wichmann, Linping; Schwäble, Joachim; Pahujani, Shweta; Kunkel, Hana; Schambach, Axel; Baum, Christopher; Grez, Manuel
2013-01-01
Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1α short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91phox) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders. PMID:23207695
Ghanbari Safari, Maryam; Baesi, Kazem; Hosseinkhani, Saman
2017-03-01
MicroRNAs are small noncoding RNAs that regulate gene expression by repressing translation of target cellular transcripts. Increasing evidences indicate that miRNAs have different expression profiles and play crucial roles in numerous cellular processes. Delivery and expression of transgenes for cancer therapy must be specific for tumors to avoid killing of healthy tissues. Many investigators have shown that transgene expression can be suppressed in normal cells using vectors that are responsive to microRNA regulation. To overcome this problem, miR-145 that exhibits downregulation in many types of cancer cells was chosen for posttranscriptional regulatory systems mediated by microRNAs. In this study, a psiCHECK-145T vector carrying four tandem copies of target sequences of miR-145 into 3'-UTR of the Renilla luciferase gene was constructed. Renilla luciferase activity from the psiCHECK-145T vector was 57% lower in MCF10A cells with high miR-145 expression as compared to a control condition. Additionally, overexpression of miR-145 in MCF-7 cells with low expression level of miR-145 showed more than 76% reduction in the Renilla luciferase activity from the psiCHECK-145T vector. Inclusion of miR-145 target sequences into the 3'-UTR of the Renilla luciferase gene is a feasible strategy for restricting transgene expression in a breast cancer cell line while sparing a breast normal cell line. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Kim, Mi-Young; Kim, Tae-Geum; Yang, Moon-Sik
2017-04-01
Actinobacillus pleuropneumoniae is a major etiological agent that is responsible for swine pleuropneumonia, a highly contagious respiratory infection that causes severe economic losses in the swine production industry. ApxIIA is one of the virulence factors in A. pleuropneumoniae and has been considered as a candidate for developing a vaccine against the bacterial infection. A gene encoding an ApxIIA fragment (amino acids 439-801) was modified based on a plant-optimized codon and constructed into a plant expression vector under the control of a promoter and the 3' UTR of the rice amylase 3D gene. The plant expression vector was introduced into rice embryogenic callus (Oryza sativa L. cv. Dongjin) via particle bombardment-mediated transformation. The integration and transcription of the ApxIIA 439-801 gene were confirmed by using genomic DNA PCR amplification and Northern blot analysis, respectively. The synthesis of ApxIIA 439-801 antigen protein in transgenic rice callus was confirmed by western blot analysis. The concentration of antigen protein in lyophilized samples of transgenic rice callus was 250 μg/g. Immunizing mice with protein extracts from transgenic plants intranasally elicited secretory IgA. These results demonstrate the feasibility of using a transgenic plant to elicit immune responses against A. pleuropneumoniae. Copyright © 2017 Elsevier Inc. All rights reserved.
Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice.
Tadokoro, Takahiro; Miyanohara, Atsushi; Navarro, Michael; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Marsala, Silvia; Platoshyn, Oleksandr; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Lukacova, Nada; Bimbova, Katarina; Marsala, Martin
2017-07-13
The successful development of a subpial adeno-associated virus 9 (AAV9) vector delivery technique in adult rats and pigs has been reported on previously. Using subpially-placed polyethylene catheters (PE-10 or PE-5) for AAV9 delivery, potent transgene expression through the spinal parenchyma (white and gray matter) in subpially-injected spinal segments has been demonstrated. Because of the wide range of transgenic mouse models of neurodegenerative diseases, there is a strong desire for the development of a potent central nervous system (CNS)-targeted vector delivery technique in adult mice. Accordingly, the present study describes the development of a spinal subpial vector delivery device and technique to permit safe and effective spinal AAV9 delivery in adult C57BL/6J mice. In spinally immobilized and anesthetized mice, the pia mater (cervical 1 and lumbar 1-2 spinal segmental level) was incised with a sharp 34 G needle using an XYZ manipulator. A second XYZ manipulator was then used to advance a blunt 36G needle into the lumbar and/or cervical subpial space. The AAV9 vector (3-5 µL; 1.2 x 10 13 genome copies (gc)) encoding green fluorescent protein (GFP) was then injected subpially. After injections, neurological function (motor and sensory) was assessed periodically, and animals were perfusion-fixed 14 days after AAV9 delivery with 4% paraformaldehyde. Analysis of horizontal or transverse spinal cord sections showed transgene expression throughout the entire spinal cord, in both gray and white matter. In addition, intense retrogradely-mediated GFP expression was seen in the descending motor axons and neurons in the motor cortex, nucleus ruber, and formatio reticularis. No neurological dysfunction was noted in any animals. These data show that the subpial vector delivery technique can successfully be used in adult mice, without causing procedure-related spinal cord injury, and is associated with highly potent transgene expression throughout the spinal neuraxis.
Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin
2015-01-01
The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications. PMID:26670247
Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin
2015-12-08
The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications.
Simmons, Michael J; Haley, Kevin J; Grimes, Craig D; Raymond, John D; Fong, Joseph C L
2002-01-01
Fusions between the Drosophila hsp70 promoter and three different incomplete P elements, KP, SP, and BP1, were inserted into the Drosophila genome by means of hobo transformation vectors and the resulting transgenic stocks were tested for repression of P-element transposase activity. Only the H(hsp/KP) transgenes repressed transposase activity, and the degree of repression was comparable to that of a naturally occurring KP element. The KP transgenes repressed transposase activity both with and without heat-shock treatments. Both the KP element and H(hsp/KP) transgenes repressed the transposase activity encoded by the modified P element in the P(ry(+), Delta2-3)99B transgene more effectively than that encoded by the complete P element in the H(hsp/CP)2 transgene even though the P(ry(+), Delta2-3)99B transgene was the stronger transposase source. Repression of both transposase sources appeared to be due to a zygotic effect of the KP element or transgene. There was no evidence for repression by a strictly maternal effect; nor was there any evidence for enhancement of KP repression by the joint maternal transmission of H(hsp/KP) and H(hsp/CP) transgenes. These results are consistent with the idea that KP-mediated repression of P-element activity involves a KP-repressor polypeptide that is not maternally transmitted and that KP-mediated repression is not strengthened by the 66-kD repressor produced by complete P elements through alternate splicing of their RNA. PMID:12019235
Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S
2015-06-22
There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred.
Raji, Jennifer A; Frame, Bronwyn; Little, Daniel; Santoso, Tri Joko; Wang, Kan
2018-01-01
Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell's ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10-14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T 0 callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16-21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.
Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.
Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia
2014-01-01
The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2.
Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential
Sargent, R. Geoffrey; Kim, Soya
2011-01-01
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933
Xie, Zicong; Pang, Daxin; Wang, Kankan; Li, Mengjing; Guo, Nannan; Yuan, Hongming; Li, Jianing; Zou, Xiaodong; Jiao, Huping; Ouyang, Hongsheng; Li, Zhanjun; Tang, Xiaochun
2017-06-08
Genetically modified pigs have important roles in agriculture and biomedicine. However, genome-specific knock-in techniques in pigs are still in their infancy and optimal strategies have not been extensively investigated. In this study, we performed electroporation to introduce a targeting donor vector (a non-linearized vector that did not contain a promoter or selectable marker) into Porcine Foetal Fibroblasts (PFFs) along with a CRISPR/Cas9 vector. After optimization, the efficiency of the EGFP site-specific knock-in could reach up to 29.6% at the pRosa26 locus in PFFs. Next, we used the EGFP reporter PFFs to address two key conditions in the process of achieving transgenic pigs, the limiting dilution method and the strategy to evaluate the safety and feasibility of the knock-in locus. This study demonstrates that we establish an efficient procedures for the exogenous gene knock-in technique and creates a platform to efficiently generate promoter-less and selectable marker-free transgenic PFFs through the CRISPR/Cas9 system. This study should contribute to the generation of promoter-less and selectable marker-free transgenic pigs and it may provide insights into sophisticated site-specific genome engineering techniques for additional species.
Zeng, Lingbing; Planelles, Vicente; Sui, Ziye; Gartner, Suzanne; Maggirwar, Sanjay B.; Dewhurst, Stephen; Ye, Linbai; Nerurkar, Vivek R.; Yanagihara, Richard; Lu, Yuanan
2010-01-01
Background Human monocytes play an important role in mediating human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS), and monocytes-derived macrophages (MDM) represent a major viral reservoir within the brain and other target organs. Current gene transduction of MDM is hindered by a limited efficiency. In this study we established a lentiviral vector-based technique for improved gene transfer into human MDM cultures in vitro and demonstrated significant protection of transduced MDM from super-infection with wild-type HIV-1. Methods HIV-1-based lentiviral vector stocks were prepared in 293T cells by the established calcium phosphate transfection method. Human monocytes were isolated from donors' blood by Ficoll-Paque separation and cultured in vitro. To establish an effective technique for vector-mediated gene transfer, primary cultures of human MDM were transduced at varying multiplicities of infection (MOI) and at a range of time points following initial isolation of cells (time-in-culture). Transduced cells were then examined for transgene (green fluorescent protein (GFP)) expression by fluorescent microscopy and reverse transcription polymerase chain reaction (RT-PCR). These cultures were then exposed to wild-type HIV-1, and viral replication was quantitated by p24 assay; production of neurotoxic effector molecules by the transduced MDM was also examined, using indicator neurons. Results We have demonstrated that primary human MDM could be efficiently transduced (>50%) with concentrated HIV-1-based defective lentiviral vectors (DLV). Furthermore, DLV-mediated gene transduction was stable, and the transduced cells exhibited no apparent difference from normal MDM in terms of their morphology, viability and neurotoxin secretion. Challenge of DLV-transduced MDM cultures with HIV-1Ba-L revealed a 4- to 5-fold reduction in viral replication, as measured by p24 antigen production. This effect was associated with the mobilization of the GFP-expressing DLV construct by the wild-type virus. Conclusions These data demonstrate the inhibition of HIV-1 replication in primary MDM, by a DLV vector that lacks any anti-HIV-1 transgene. These findings lay the initial groundwork for future studies on the ability of DLV-modified monocytes to introduce anti-HIV-1 genes into the CNS. Lentiviral vector-mediated gene delivery to the CNS by monocytes/macrophages is a promising, emerging strategy for treating neuro-AIDS. PMID:16142830
Human HLA-Ev (147) Expression in Transgenic Animals.
Matsuura, R; Maeda, A; Sakai, R; Eguchi, H; Lo, P-C; Hasuwa, H; Ikawa, M; Nakahata, K; Zenitani, M; Yamamichi, T; Umeda, S; Deguchi, K; Okuyama, H; Miyagawa, S
2016-05-01
In our previous study, we reported on the development of substituting S147C for HLA-E as a useful gene tool for xenotransplantation. In this study we exchanged the codon of HLA-Ev (147), checked its function, and established a line of transgenic mice. A new construct, a codon exchanging human HLA-Ev (147) + IRES + human beta 2-microgloblin, was established. The construct was subcloned into pCXN2 (the chick beta-actin promoter and cytomegalovirus enhancer) vector. Natural killer cell- and macrophage-mediated cytotoxicities were performed using the established the pig endothelial cell (PEC) line with the new gene. Transgenic mice with it were next produced using a micro-injection method. The expression of the molecule on PECs was confirmed by the transfection of the plasmid. The established molecules on PECs functioned well in regulating natural killer cell-mediated cytotoxicity and macrophage-mediated cytotoxicity. We have also successfully generated several lines of transgenic mice with this plasmid. The expression of HLA-Ev (147) in each mouse organ was confirmed by assessing the mRNA. The chick beta-actin promoter and cytomegalovirus enhancer resulted in a relatively broad expression of the gene in each organ, and a strong expression in the cases of the heart and lung. A synthetic HLA-Ev (147) gene with a codon usage optimized to a mammalian system represents a critical factor in the development of transgenic animals for xenotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Thyagarajan, Bhaskar; Scheyhing, Kelly; Xue, Haipeng; Fontes, Andrew; Chesnut, Jon; Rao, Mahendra; Lakshmipathy, Uma
2009-03-01
Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration. To overcome this issue, site-specific integration methods mediated by integrase, adeno-associated virus or via homologous recombination have been used to generate stable human embryonic stem cell (hESC) lines. In this study, we describe a vector that is maintained episomally in hESCs. The vector used in this study is based on components derived from the Epstein-Barr virus, containing the Epstein-Barr virus nuclear antigen 1 expression cassette and the OriP origin of replication. The vector also expresses the drug-resistance marker gene hygromycin, which allows for selection and long-term maintenance of cells harboring the plasmid. Using this vector system, we show sustained expression of green fluorescent protein in undifferentiated hESCs and their differentiating embryoid bodies. In addition, the stable hESC clones show comparable expression with and without drug selection. Consistent with this observation, bulk-transfected adipose tissue-derived mesenchymal stem cells showed persistent marker gene expression as they differentiate into adipocytes, osteoblasts and chondroblasts. Episomal vectors offer a fast and efficient method to create hESC reporter lines, which in turn allows one to test the effect of overexpression of various genes on stem cell growth, proliferation and differentiation.
Konishi, Hirosato; Yamane, Hisakazu; Maeshima, Masayoshi; Komatsu, Setsuko
2004-12-01
Fructose-bisphosphate aldolase is a glycolytic enzyme whose activity increases in rice roots treated with gibberellin (GA). To investigate the relationship between aldolase and root growth, GA-induced root aldolase was characterized. GA3 promoted an increase in aldolase accumulation when 0.1 microM GA3 was added exogenously to rice roots. Aldolase accumulated abundantly in roots, especially in the apical region. To examine the effect of aldolase function on root growth, transgenic rice plants expressing antisense aldolase were constructed. Root growth of aldolase-antisense transgenic rice was repressed compared with that of the vector control transgenic rice. Although aldolase activity increased by 25% in vector control rice roots treated with 0.1 microM GA3, FBPA activity increased very little by 0.1 microM GA3 treatment in the root of aldolase-antisense transgenic rice. Furthermore, aldolase co-immunoprecipitated with antibodies against vacuolar H+ -ATPase in rice roots. In the root of OsCDPK13-antisense transgenic rice, aldolase did not accumulate even after treatment with GA3. These results suggest that the activation of glycolytic pathway function accelerates root growth and that GA3-induced root aldolase may be modulated through OsCDPK13. Aldolase physically associates with vacuolar H-ATPase in roots and may regulate the vacuolar H-ATPase mediated control of cell elongation that determines root length.
Kuball, Jürgen; Wen, Shu Fen; Leissner, Joachim; Atkins, Derek; Meinhardt, Patricia; Quijano, Erlinda; Engler, Heidrun; Hutchins, Beth; Maneval, Daniel C; Grace, Michael J; Fritz, Mary Ann; Störkel, Stefan; Thüroff, Joachim W; Huber, Christoph; Schuler, Martin
2002-02-15
To study safety, feasibility, and biologic activity of adenovirus-mediated p53 gene transfer in patients with bladder cancer. Twelve patients with histologically confirmed bladder cancer scheduled for cystectomy were treated on day 1 with a single intratumoral injection of SCH 58500 (rAd/p53) at cystoscopy at one dose level (7.5 x 10(11) particles) or a single intravesical instillation of SCH 58500 with a transduction-enhancing agent (Big CHAP) at three dose levels (7.5 x 10(11) to 7.5 x 10(13) particles). Cystectomies were performed in 11 patients on day 3, and transgene expression, vector distribution, and biologic markers of transgene activity were assessed by molecular and immunohistochemical methods in tumors and normal bladder samples. Specific transgene expression was detected in tissues from seven of eight assessable patients treated with intravesical instillation of SCH 58500 but in none of three assessable patients treated with intratumoral injection of SCH 58500. Induction of RNA and protein expression of the p53 target gene p21/WAF1 was demonstrated in samples from patients treated with SCH 58500 instillation at higher dose levels. Distribution studies after intravesical instillation of SCH 58500 revealed both high transduction efficacy and vector penetration throughout the whole urothelium and into submucosal tumor cells. No dose-limiting toxicity was observed, and side effects were local and of transient nature. Intravesical instillation of SCH 58500 combined with a transduction-enhancing agent is safe, feasible, and biologically active in patients with bladder cancer. Studies to evaluate the clinical efficacy of this treatment in patients with localized high-risk bladder cancer are warranted.
USDA-ARS?s Scientific Manuscript database
The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses affecting plants worldwide. Using RNA interference (RNAi) to downregulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus dise...
Xu, Yong-Nan; Uhm, Sang-Jun; Koo, Bon-Chul; Kwon, Mo-Sun; Roh, Ji-Yeol; Yang, Jung-Seok; Choi, Hyun-Yong; Heo, Young-Tae; Cui, Xiang-Shun; Yoon, Joon-Ho; Ko, Dae-Hwan; Kim, Teoan; Kim, Nam-Hyung
2013-01-20
The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins. Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer, but these approaches have been largely ineffective; however, a third approach, lentivirus-mediated transgenesis, has successfully produced transgenic livestock. In this study, we generated transgenic (TG) Korean native cattle using perivitelline space injection of viral vectors, which expressed enhanced green fluorescent protein (EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) carrying EGFP were injected into the perivitelline space of MII oocytes. EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group (47.5%±2.2% v.s. 22.9%±2.9%). Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers. Ten heifers were successfully impregnated and delivered 10 healthy calves. All of these calves expressed EGFP as detected by in vivo imaging, PCR and Southern blotting. In addition, we established an EGFP-expressing cell line from TG calves, which was followed by nuclear transfer (NT). Recloned 8-cell embryos also expressed EGFP, and there were no differences in the rates of fusion, cleavage and development between cells derived from TG and non-TG calves, which were subsequently used for NT. These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle. Moreover, our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells. Copyright © 2013. Published by Elsevier Ltd.
Retrovirus-based vectors for transient and permanent cell modification.
Schott, Juliane W; Hoffmann, Dirk; Schambach, Axel
2015-10-01
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K
2015-02-01
Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.
Gene Delivery to Adipose Tissue Using Transcriptionally Targeted rAAV8 Vectors
Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian
2014-01-01
In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A – a lipid-droplet-associated protein – resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo. PMID:25551639
[HSV-1 based vector mediated IL-1Rα gene for knee osteoarthritis in rabbits].
Wu, Yi; Li, Jianming; Kong, Ying; Chen, Ding; Liu, Bo; Wang, Wanchun
2013-06-01
To investigate the effect and mechanism of herpes simplex virus type 1 (HSV-1) based vector mediated interlukin-1 receptor antagonist (IL-1Rα) gene for knee osteoarthritis in rabbits. HSV-1 vectors containing IL-1Rα genes were constructed and injected into the joint space of the osteoarthritis knee in rabbits for 4 weeks. The rabbits were sacrificed, and the knees were lavaged, dissected and the effect of transgene expression was analyzed. Levels of IL-1Rα and IL-1 expression in the recovered lavage fluids were measured with a cytokine ELISA kit. Cartilage from the lesion areas of medial femoral condyle and synovium were observed with hematoxylin and eosin (cartilage and synovium) and toluidine blue (cartilage). The blank control group was injected pHSV-LacZ vector into rabbit knees. Intra-articular delivery of pHSV-IL-1Rα-LacZ resulted in a significant inhibition of IL-1 level and cartilage degradation compared with those in the blank control group (P<0.05). pHSV-LacZ is an ideal vector to mediate intra-articular gene delivery in the rabbit model of osteoarthritis. Continuous intra-articular expression of IL-1Rα can treat knee osteoarthritis by inhibiting IL-1.
Hayashita-Kinoh, Hiromi; Yugeta, Naoko; Okada, Hironori; Nitahara-Kasahara, Yuko; Chiyo, Tomoko; Okada, Takashi; Takeda, Shin'ichi
2015-01-01
Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype. PMID:25586688
CHAPARIAN, Shahram; ABDULAHNEJAD, Ahad; RASHIDI, Farzad; TOGHYANI, Majid; GHEISARI, Abbasali; EGHBALSAIED, Shahin
2016-01-01
DNA uptake in the post-acrosomal region of the spermatozoa takes place exclusively in immotile spermatozoa that are naturally unable to fertilize eggs. The present study aimed to assess whether passive transmission of non-viral vectors to the surrounding areas of chicken embryos could be an alternate mechanism in chicken sperm-mediated gene transfer. First, the presence of nucleases in rooster seminal plasma was evaluated. Semen ejaculates from five roosters were centrifuged and the supernatant was incubated with pBL2 for 1 h. A robust nuclease cocktail was detected in the rooster semen. To overcome these nucleases, plasmid-TransIT combinations were incubated with semen for 1 h. Incubation of exogenous DNA in the lipoplex structure could considerably bypass the semen nuclease effect. Then, intravaginal insemination of 1 × 109 sperm mixed with lipoplexes (40 µg pBL2:40 µl TransIT) was carried out in 15 virgin hens. Neither the epithelial tissue from the inseminated female reproductive tracts nor the produced embryos following artificial insemination showed the transgene. To remove any bias in the transgene transmission possibility, the plasmid-TransIT admixture was directly injected in close vicinity of the embryos in newly laid eggs. Nonetheless, none of the produced fetuses or chicks carried the transgene. In conclusion, the results of the present study revealed a nuclease admixture in rooster seminal plasma, and passive/active transmission of the non-viral vector into close vicinity of the chicken embryo was inefficient for producing transgenic chicks. PMID:26935324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauzey-Amato, Jacqueline M.; Dai, Ziyu
2000-11-01
Optimization of the transgene expression system is one of the critical steps for the high level production of heterologous proteins in plants, where the promoter is a key component regulating transgene expression. In this study, the activity of the rpL34 promoter was analyzed in transgenic tobacco (Nicotiana tabacum) NTI calli. A DNA fragment containing the rpL34 promoter and the reporter gene B-D-glucuronidase (GUS) were cloned into binary vector pZD427 to generate the transgene expression vector pZD428. The insertion was verified by enzyme restriction digestion and agarose gel electrophoresis analyses. The DNA fragment containing the rpL34 promoter and GUS reporter genemore » was then integrated into the tobacco genomes via Agrobacterium funiefaciens-mediated NT suspension cell transformation. The transformed CaNi were induced on Murashige and Skoog (MS) plates containing proper amounts of 2,4-D, cefotoxime, and kanamycin. Two hundred and sixty transformed calli were harvested for GUS activity and protein concentration measurements. GUS activity analyses revealed the specific activity up to 278,358 units per milligram total soluble protein. The GUS activity under the control of the rpL34 promoter is much higher than that under the control of the cauliflower mosaic virus 35S promoter, a commonly used promoter in plant biology. These results suggest that the rpL34 promoter is one of the most active promoters that can be used for heterologous protein production in calli and suspension cells.« less
Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo
2016-05-01
Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Construction and characterization of liposomal magnetofection system in pig kidney cells].
Chen, Wenjie; Cui, Haixin; Zhao, Xiang; Cui, Jinhui; Wang, Yan; Sun, Changjiao
2014-06-01
Magnetic nano gene vector is one of the non-viral gene vectors, modified by functional group to bind cationic transfect reagents. Coupling magnetofection with the universal lipofection we developed a novel somatic cell transfection method as the so-called liposomal magnetofection (LMF). This approach is potential to provide somatic cell cloning with stable genetic cell lines to cultivate transgenic animals. In order to construct such liposomal magnetic gene vectors complexes system, we used nano magnetic gene vector to combine with liposomal cationic transfect reagents by molecular self-assembly. This vectors system successfully carried exogenous gene and then transfected animal somatic cells. Here, we conducted atomic force microscopy (AFM), zeta potential-diameter analysis and other characterization experiments to investegate the size distribution and morphology of magnetic nanoparticles, the way of the vectors to load and concentrate DNA molecules. Our data reveal that, the LMF of Pig Kidney cells exhibited higher transfection efficiency comparing with the transfection mediated by the commercial lipofectamine2000. Moreover, LMF method overcomes the constraint of transient expression mediated by lipofection. Meanwhile, MTT assay showed low cytotoxicity of LMF. Hence, LMF is a feasible, low cytotoxic and effective method of cell transfection.
Ye, Xing-Guo; Qin, Hua
2007-01-01
Obtaining marker-free plants with high efficiency will benefit the environmental release of transgenic crops. To achieve this point, a binary vector pNB35SVIP1 with three T-DNAs was constructed by using several mediate plasmids, in which one copy of bar gene expression cassette and two copies of VIP1 gene expression cassette were included. EHA101 Agrobacterium strain harboring the final construct was applied to transform soybean (Glycine max) cotyledon nodes. Through 2 - 3 months regeneration and selection on 3 - 5mg/L glufosinate containing medium, transgenic soybean plants were confirmed to be obtained at 0.83% - 3.16%, and co-transformation efficiency of both gene in the same individual reached up to 86.4%, based on southern blot test. By the analysis of PCR, southern blot and northern blot combining with leaf painting of herbicide in T1 progenies, 41 plants were confirmed to be eliminated of bar gene with the frequency of 7.6% . Among the T1 populations tested, the loss of the alien genes happened in 22.7% lines, the silence of bar gene took place in 27.3% lines, and VIP1 gene silence existed in 37.1% marker-free plants. The result also suggested that the plasmid with three T-DNAs might be an ideal vector to generate maker-free genetic modified organism.
RNAi Mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.).
Patade, Vikas Yadav; Khatri, Deepti; Kumar, Kamal; Grover, Atul; Kumari, Maya; Gupta, Sanjay Mohan; Kumar, Devender; Nasim, Mohammed
2014-07-01
Curcin, a type I ribosomal inhibiting protein-RIP, encoded by curcin precursor gene, is a phytotoxin present in Jatropha (Jatropha curcas L.). Here, we report designing of RNAi construct for the curcin precursor gene and further its genetic transformation of Jatropha to reduce its transcript expression. Curcin precursor gene was first cloned from Jatropha strain DARL-2 and part of the gene sequence was cloned in sense and antisense orientation separated by an intron sequence in plant expression binary vector pRI101 AN. The construction of the RNAi vector was confirmed by double digestion and nucleotide sequencing. The vector was then mobilized into Agrobacterium tumefaciens strain GV 3101 and used for tissue culture independent in planta transformation protocol optimized for Jatropha. Germinating seeds were injured with a needle before infection with Agrobacterium and then transferred to sterilized sand medium. The seedlings were grown for 90 days and genomic DNA was isolated from leaves for transgenic confirmation based on real time PCR with NPT II specific dual labeled probe. Result of the transgenic confirmation analysis revealed presence of the gene silencing construct in ten out of 30 tested seedlings. Further, quantitative transcript expression analysis of the curcin precursor gene revealed reduction in the transcript abundance by more than 98% to undetectable level. The transgenic plants are being grown in containment for further studies on reduction in curcin protein content in Jatropha seeds.
Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L
2016-03-01
Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies.
Okamoto, Kenichi W.; Gould, Fred; Lloyd, Alun L.
2016-01-01
Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences—consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies. PMID:26962871
Kawabe, Yoshinori; Komatsu, Shinya; Komatsu, Shodai; Murakami, Mai; Ito, Akira; Sakuma, Tetsushi; Nakamura, Takahiro; Yamamoto, Takashi; Kamihira, Masamichi
2018-05-01
Chinese hamster ovary (CHO) cells have been used as host cells for the production of pharmaceutical proteins. For the high and stable production of target proteins, the transgene should be integrated into a suitable genomic locus of host cells. Here, we generated knock-in CHO cells, in which transgene cassettes without a vector backbone sequence were integrated into the hprt locus of the CHO genome using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) systems. We investigated the efficiency of targeted knock-in of transgenes using these systems. As a practical example, we generated knock-in CHO cells producing an scFv-Fc antibody using the CRIS-PITCh system mediated by microhomology sequences for targeting. We found that the CRIS-PITCh system can facilitate targeted knock-in for CHO cell engineering. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Izawati, Abang Masli Dayang; Masani, Mat Yunus Abdul; Ismanizan, Ismail; Parveez, Ghulam Kadir Ahmad
2015-01-01
DOGR1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOGR1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l-1 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOGR1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOGR1 gene and 2-DOG for regenerating transgenic oil palm. PMID:26442041
Choi, Kimyung; Shim, Joohyun; Ko, Nayoung; Eom, Heejong; Kim, Jiho; Lee, Jeong-Woong; Jin, Dong-Il; Kim, Hyunil
2017-04-01
Production of transgenic pigs for use as xenotransplant donors is a solution to the severe shortage of human organs for transplantation. The first barrier to successful xenotransplantation is hyperacute rejection, a rapid, massive humoral immune response directed against the pig carbohydrate GGTA1 epitope. Platelet activation, adherence, and clumping, all major features of thrombotic microangiopathy, are inevitable results of immune-mediated transplant rejection. Human CD39 rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. In this study, we developed a vector-based strategy for ablation of GGTA1 function and concurrent expression of human CD39 (hCD39). An hCD39 expression cassette was constructed to target exon 4 of GGTA1. We established heterozygous GGTA1 knock-out cell lines expressing hCD39 from pig ear fibroblasts for somatic cell nuclear transfer (SCNT). We also described production of heterozygous GGTA1 knock-out piglets expressing hCD39 and analyzed expression and function of the transgene. Human CD39 was expressed in heart, kidney and aorta. Human CD39 knock-in heterozygous ear fibroblast from transgenic cloned pigs, but not in non-transgenic pig's cells. Expression of GGTA1 gene was lower in the knock-in heterozygous ear fibroblast from transgenic pigs compared to the non-transgenic pig's cell. The peripheral blood mononuclear cells (PBMC) from the transgenic pigs were more resistant to lysis by pooled complement-preserved normal human serum than that from wild type (WT) pig. Accordingly, GGTA1 mutated piglets expressing hCD39 will provide a new organ source for xenotransplantation research.
Transduction of rat pancreatic islets with pseudotyped adeno-associated virus vectors
Craig, Anthony T; Gavrilova, Oksana; Dwyer, Nancy K; Jou, William; Pack, Stephanie; Liu, Eric; Pechhold, Klaus; Schmidt, Michael; McAlister, Victor J; Chiorini, John A; Blanchette-Mackie, E Joan; Harlan, David M; Owens, Roland A
2009-01-01
Background Pancreatic islet transplantation is a promising treatment for type I diabetes mellitus, but current immunosuppressive strategies do not consistently provide long-term survival of transplanted islets. We are therefore investigating the use of adeno-associated viruses (AAVs) as gene therapy vectors to transduce rat islets with immunosuppressive genes prior to transplantation into diabetic mice. Results We compared the transduction efficiency of AAV2 vectors with an AAV2 capsid (AAV2/2) to AAV2 vectors pseudotyped with AAV5 (AAV2/5), AAV8 (AAV2/8) or bovine adeno-associated virus (BAAV) capsids, or an AAV2 capsid with an insertion of the low density lipoprotein receptor ligand from apolipoprotein E (AAV2apoE), on cultured islets, in the presence of helper adenovirus infection to speed expression of a GFP transgene. Confocal microscopy and flow cytometry were used. The AAV2/5 vector was superior to AAV2/2 and AAV2/8 in rat islets. Flow cytometry indicated AAV2/5-mediated gene expression in approximately 9% of rat islet cells and almost 12% of insulin-positive cells. The AAV2/8 vector had a higher dependence on the helper virus multiplicity of infection than the AAV 2/5 vector. In addition, the BAAV and AAV2apoE vectors were superior to AAV2/2 for transducing rat islets. Rat islets (300 per mouse) transduced with an AAV2/5 vector harboring the immunosuppressive transgene, tgfβ1, retain the ability to correct hyperglycemia when transplanted into immune-deficient diabetic mice. Conclusion AAV2/5 vectors may therefore be useful for pre-treating donor islets prior to transplantation. PMID:19450275
Transgene manipulation in zebrafish by using recombinases.
Dong, Jie; Stuart, Gary W
2004-01-01
Although much remains to be done, our results to date suggest that efficient and precise genome engineering in zebrafish will be possible in the future by using Cre recombinase and SB transposase in combination with their respective target sites. In this study, we provide the first evidence that Cre recombinase can mediate effective site-specific deletion of transgenes in zebrafish. We found that the efficiency of target site utilization could approach 100%, independent of whether the target site was provided transiently by injection or stably within an integrated transgene. Microinjection of Cre mRNA appeared to be slightly more effective for this purpose than microinjection of Cre-expressing plasmid DNA. Our work has not yet progressed to the point where SB-mediated mobilization of our transgene constructs would be observed. However, a recent report has demonstrated that SB can enhance transgenesis rates sixfold over conventional methods by efficiently mediating multiple single-copy insertion of transgenes into the zebrafish genome (Davidson et al., 2003). Therefore, it seems likely that a combined system should eventually allow both SB-mediated transgene mobilization and Cre-mediated transgene modification. Our goal is to validate methods for the precise reengineering of the zebrafish genome by using a combination of Cre-loxP and SB transposon systems. These methods can be used to delete, replace, or mobilize large pieces of DNA or to modify the genome only when and where required by the investigator. For example, it should be possible to deliver particular RNAi genes to well-expressed chromosomal loci and then exchange them easily with alternative RNAi genes for the specific suppression of alternative targets. As a nonviral vector for gene therapy, the transposon component allows for the possibility of highly efficient integration, whereas the Cre-loxP component can target the integration and/or exchange of foreign DNA into specific sites within the genome. The specificity and efficiency of this system also make it ideal for applications in which precise genome modifications are required (e.g., stock improvement). Future work should establish whether alternative recombination systems (e.g., phiC31 integrase) can improve the utility of this system. After the fish system is fully established, it would be interesting to explore its application to genome engineering in other organisms.
Biolistic- and Agrobacterium-mediated transformation protocols for wheat.
Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László
2012-01-01
After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.
RNAi-mediated down-regulation of SHATTERPROOF gene in transgenic oilseed rape.
Kord, Hadis; Shakib, Ali Mohammad; Daneshvar, Mohammad Hossein; Azadi, Pejman; Bayat, Vahid; Mashayekhi, Mohsen; Zarea, Mahboobeh; Seifi, Alireza; Ahmad-Raji, Mana
2015-06-01
Oilseed rape is one of the important oil plants. Pod shattering is one of the problems in oilseed rape production especially in regions with dry conditions. One of the important genes in Brassica pod opening is SHATTERPROOF1 (SHP1). Down-regulation of BnSHP1 expression by RNAi can increase resistance to pod shattering. A 470 bp of the BnSHP1 cDNA sequence constructed in an RNAi-silencing vector was transferred to oilseed rape cv. SLM046. Molecular analysis of T2 transgenic plants by RT-PCR and Real-time PCR showed that expression of the BnSHP alleles was highly decreased in comparison with control plants. Morphologically, transgenic plants were normal and produced seeds at greenhouse conditions. At ripening, stage pods failed to shatter, and a finger pressure was needed for pod opening.
A modular toolset for recombination transgenesis and neurogenetic analysis of Drosophila.
Wang, Ji-Wu; Beck, Erin S; McCabe, Brian D
2012-01-01
Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues.
Impact of age and vector construct on striatal and nigral transgene expression
Polinski, Nicole K; Manfredsson, Fredric P; Benskey, Matthew J; Fischer, D Luke; Kemp, Christopher J; Steece-Collier, Kathy; Sandoval, Ivette M; Paumier, Katrina L; Sortwell, Caryl E
2016-01-01
Therapeutic protein delivery using viral vectors has shown promise in preclinical models of Parkinson’s disease (PD) but clinical trial success remains elusive. This may partially be due to a failure to include advanced age as a covariate despite aging being the primary risk factor for PD. We investigated transgene expression following intracerebral injections of recombinant adeno-associated virus pseudotypes 2/2 (rAAV2/2), 2/5 (rAAV2/5), 2/9 (rAAV2/9), and lentivirus (LV) expressing green fluorescent protein (GFP) in aged versus young adult rats. Both rAAV2/2 and rAAV2/5 yielded lower GFP expression following injection to either the aged substantia nigra or striatum. rAAV2/9-mediated GFP expression was deficient in the aged striatonigral system but displayed identical transgene expression between ages in the nigrostriatal system. Young and aged rats displayed equivalent GFP levels following LV injection to the striatonigral system but LV-delivered GFP was deficient in delivering GFP to the aged nigrostriatal system. Notably, age-related transgene expression deficiencies revealed by protein quantitation were poorly predicted by GFP-immunoreactive cell counts. Further, in situ hybridization for the viral CβA promoter revealed surprisingly limited tropism for astrocytes compared to neurons. Our results demonstrate that aging is a critical covariate to consider when designing gene therapy approaches for PD. PMID:27933309
Chen, B W; Xiao, Y F; Li, J J; Liu, H L; Qin, Z H; Gai, Y; Jiang, X N
2016-12-02
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in lignin biosynthesis. The genus Eucalyptus belongs to the family Myrtaceae, which is the main cultivated species in China. Eucalyptus urophylla GLU4 (GLU4) is widely grown in Guangxi. It is preferred for pulping because of its excellent cellulose content and fiber length. Based on GLU4 and CAD gene expression, a Eucalyptus variety low in lignin content should be obtained using transgenic technology, which could reduce the cost of pulp and improve the pulping rate, and have favorable prospects for application. However, the role and function of CAD in GLU4 is still unclear. In the present study, EuCAD was cloned from GLU4 and identified using bioinformatic tools. Subsequently, in order to evaluate its impact on lignin synthesis, a full-length EuCAD RNAi vector was constructed, and transgenic tobacco was obtained via Agrobacterium-mediated transformation. A significant decrease in CAD expression and lignin content in transgenic tobacco demonstrated a key role for EuCAD in lignin biosynthesis and established a regulatory role for RNAi. In our study, the direct molecular basis of EuCAD expression was determined, and the potential regulatory effects of this RNAi vector on lignin biosynthesis in E. urophylla GLU4 were demonstrated. Our results provide a theoretical basis for the study of lignin biosynthesis in Eucalyptus.
Jeong, Young-Hee; Kim, Yeong Ji; Kim, Eun Young; Kim, Se Eun; Kim, Jiwoo; Park, Min Jee; Lee, Hong-Gu; Park, Se Pill; Kang, Man-Jong
2016-06-01
Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland, and this approach is one of the most important methods for agricultural and biomedical applications. However, expression and secretion of a protein varies because transgenes are integrated at random sites in the genome. In addition, distal enhancers are very important for transcriptional gene regulation and tissue-specific gene expression. Development of a vector system regulated accurately in the genome is needed to improve production of therapeutic proteins. The objective of this study was to develop a knock-in system for expression of human fibroblast growth factor 2 (FGF2) in the bovine β-casein gene locus. The F2A sequence was fused to the human FGF2 gene and inserted into exon 3 of the β-casein gene. We detected expression of human FGF2 mRNA in the HC11 mouse mammary epithelial cells by RT-PCR and human FGF2 protein in the culture media using western blot analysis when the knock-in vector was introduced. We transfected the knock-in vector into bovine ear fibroblasts and produced knock-in fibroblasts using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Moreover, the CRISPR/Cas9 system was more efficient than conventional methods. In addition, we produced knock-in blastocysts by somatic cell nuclear transfer using the knock-in fibroblasts. Our knock-in fibroblasts may help to create cloned embryos for development of transgenic dairy cattle expressing human FGF2 protein in the mammary gland via the expression system of the bovine β-casein gene.
An efficient Foxtail mosaic virus vector system with reduced environmental risk
2010-01-01
Background Plant viral vectors offer high-yield expression of pharmaceutical and commercially important proteins with a minimum of cost and preparation time. The use of Agrobacterium tumefaciens has been introduced to deliver the viral vector as a transgene to each plant cell via a simple, nonsterile infiltration technique called "agroinoculation". With agroinoculation, a full length, systemically moving virus is no longer necessary for excellent protein yield, since the viral transgene is transcribed and replicates in every infiltrated cell. Viral genes may therefore be deleted to decrease the potential for accidental spread and persistence of the viral vector in the environment. Results In this study, both the coat protein (CP) and triple gene block (TGB) genetic segments were eliminated from Foxtail mosaic virus to create the "FECT" vector series, comprising a deletion of 29% of the genome. This viral vector is highly crippled and expresses little or no marker gene within the inoculated leaf. However, when co-agroinoculated with a silencing suppressor (p19 or HcPro), FECT expressed GFP at 40% total soluble protein in the tobacco host, Nicotiana benthamiana. The modified FoMV vector retained the full-length replicase ORF, the TGB1 subgenomic RNA leader sequence and either 0, 22 or 40 bases of TGB1 ORF (in vectors FECT0, FECT22 and FECT40, respectively). As well as N. benthamiana, infection of legumes was demonstrated. Despite many attempts, expression of GFP via syringe agroinoculation of various grass species was very low, reflecting the low Agrobacterium-mediated transformation rate of monocots. Conclusions The FECT/40 vector expresses foreign genes at a very high level, and yet has a greatly reduced biohazard potential. It can form no virions and can effectively replicate only in a plant with suppressed silencing. PMID:21162736
Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm
2012-01-01
DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5'-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells.
Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O.; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm
2012-01-01
DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5′-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells. PMID:23110238
Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke
2009-11-01
Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.
Pineapple [Ananas comosus (L.) Merr].
Gangopadhyay, Gaurab; Mukherjee, Kalyan K
2015-01-01
The efficacy of Agrobacterium-mediated pineapple transformation technique has been improved (mean percentage of transgenic micro-shoots regenerated from initial callus explants up to 20.6%) using a novel encapsulation-based, antibiotic selection procedure. The detailed protocol using a standard plant transformation vector (pCAMBIA1304) as reported in an 'elite' Indian variety (Queen) of pineapple [Ananas comosus (L.) Merr] can be applied to other varieties of pineapple for introgression of target genes.
Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan
2015-01-01
Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.
Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase
Puzzo, Francesco; Colella, Pasqualina; Biferi, Maria G.; Bali, Deeksha; Paulk, Nicole K.; Vidal, Patrice; Collaud, Fanny; Simon-Sola, Marcelo; Charles, Severine; Hardet, Romain; Leborgne, Christian; Meliani, Amine; Cohen-Tannoudji, Mathilde; Astord, Stephanie; Gjata, Bernard; Sellier, Pauline; van Wittenberghe, Laetitia; Vignaud, Alban; Boisgerault, Florence; Barkats, Martine; Laforet, Pascal; Kay, Mark A.; Koeberl, Dwight D.; Ronzitti, Giuseppe; Mingozzi, Federico
2018-01-01
Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa−/−) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa−/− mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector–mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease. PMID:29187643
2017-01-01
ABSTRACT Strong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in “enhancerless” self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into the LMO2 gene and then measuring LMO2 expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay, LMO2 expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required. IMPORTANCE Understanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy. PMID:29046446
A Modular Toolset for Recombination Transgenesis and Neurogenetic Analysis of Drosophila
Wang, Ji-Wu; Beck, Erin S.; McCabe, Brian D.
2012-01-01
Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues. PMID:22848718
Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi
2012-01-01
Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521
Petit, Nicolas; Dorgham, Karim; Levacher, Béatrice; Burlion, Aude; Gorochov, Guy; Marodon, Gilles
2014-08-01
Numerous strategies targeting early and late steps of the HIV life cycle have been proposed for gene therapy. However, targeting viral and host determinants of HIV entry is the only strategy that would prevent viral DNA-mediated CD4(+) cell death while diminishing the possibility for the virus to escape. To this end, we devised a bicistronic lentiviral vector expressing the membrane-bound form of the T20 fusion inhibitor, referred to as the C46 peptide, and a CCR5 superagonist, modified to sequester CCR5 away from the cell surface, referred to as the P2-CCL5 intrakine. We tested the effects of the vector on HIV infection and replication, using the human CEMR5 cell line expressing CD4 and CCR5, and primary human T cells. Transduced cells expressed the C46 peptide, detected with the 2F5 monoclonal antibody by flow cytometry. Expression of the P2-CCL5 intrakine correlates with lower levels of cell surface CCR5. Complete protection against HIV infection could be observed in cells expressing the protective transgenes. Importantly, we show that the combination of the transgenes was more potent than either transgene alone, showing the interest of expressing two entry inhibitors to inhibit HIV infection. Last, genetically modified cells possessed a selective advantage over nonmodified cells on HIV challenge in vitro, showing that modified cells were protected from HIV-induced cell death. Our results demonstrate that lentiviral vectors coexpressing the T20 fusion inhibitor and the P2-CCL5 intrakine represent promising tools for HIV gene therapy.
Lu, Ying; McNearney, Terry A; Wilson, Steven P; Yeomans, David C; Westlund, Karin N
2008-03-01
This study assessed enkephalin expression induced by intra-articular application of recombinant, enkephalin-encoding herpes virus (HSV-1) and the impact of expression on nociceptive behaviours and synovial lining inflammation in arthritic rats. Replication-conditional HSV-1 recombinant vectors with cDNA encoding preproenkephalin (HSV-ENK), or control transgene beta-galactosidase cDNA (HSV-beta-gal; control) were injected into knee joints with complete Freund's adjuvant (CFA). Joint temperatures, circumferences and nociceptive behaviours were monitored on days 0, 7, 14 and 21 post CFA and vector treatments. Lumbar (L4-6) dorsal root ganglia (DRG) and spinal cords were immunostained for met-enkephalin (met-ENK), beta-gal, HSV-1 proteins and Fos. Joint tissues were immunostained for met-ENK, HSV-1 proteins, and inflammatory mediators Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) and cyclo-oxygenase-2, or stained with haematoxylin and eosin for histopathology. Compared to exuberant synovial hypertrophy and inflammatory cell infiltration seen in arthritic rats treated with CFA only or CFA and HSV-beta-gal, the CFA- and HSV-ENK-treated arthritic rats had: (i) striking preservation of synovial membrane cytoarchitecture with minimal inflammatory cell infiltrates; (ii) significantly improved nociceptive behavioural responses to mechanical and thermal stimuli; (iii) normalized Fos staining in lumbar dorsal horn; and (iv) significantly increased met-ENK staining in ipsilateral synovial tissue, lumbar DRG and spinal cord. The HSV-1 and transgene product expression were confined to ipsilateral lumbar DRG (HSV-1, met-ENK, beta-gal). Only transgene product (met-ENK and beta-gal) was seen in lumbar spinal cord sections. Targeted delivery of enkephalin-encoding HSV-1 vector generated safe, sustained opioid-induced analgesia with protective anti-inflammatory blunting in rat inflammatory arthritis.
Suerth, Julia D; Maetzig, Tobias; Brugman, Martijn H; Heinz, Niels; Appelt, Jens-Uwe; Kaufmann, Kerstin B; Schmidt, Manfred; Grez, Manuel; Modlich, Ute; Baum, Christopher; Schambach, Axel
2012-01-01
Comparative integrome analyses have highlighted alpharetroviral vectors with a relatively neutral, and thus favorable, integration spectrum. However, previous studies used alpharetroviral vectors harboring viral coding sequences and intact long-terminal repeats (LTRs). We recently developed self-inactivating (SIN) alpharetroviral vectors with an advanced split-packaging design. In a murine bone marrow (BM) transplantation model we now compared alpharetroviral, gammaretroviral, and lentiviral SIN vectors and showed that all vectors transduced hematopoietic stem cells (HSCs), leading to comparable, sustained multilineage transgene expression in primary and secondary transplanted mice. Alpharetroviral integrations were decreased near transcription start sites, CpG islands, and potential cancer genes compared with gammaretroviral, and decreased in genes compared with lentiviral integrations. Analyzing the transcriptome and intragenic integrations in engrafting cells, we observed stronger correlations between in-gene integration targeting and transcriptional activity for gammaretroviral and lentiviral vectors than for alpharetroviral vectors. Importantly, the relatively “extragenic” alpharetroviral integration pattern still supported long-term transgene expression upon serial transplantation. Furthermore, sensitive genotoxicity studies revealed a decreased immortalization incidence compared with gammaretroviral and lentiviral SIN vectors. We conclude that alpharetroviral SIN vectors have a favorable integration pattern which lowers the risk of insertional mutagenesis while supporting long-term transgene expression in the progeny of transplanted HSCs. PMID:22334016
Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B; Grillone, Teresa; Giovannone, Emilia D; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A S; Bond, Heather M; Mesuraca, Maria; Morrone, Giovanni
2014-01-01
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.
Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung.
Martini, Sabrina V; Silva, Adriana L; Ferreira, Debora; Rabelo, Rafael; Ornellas, Felipe M; Gomes, Karina; Rocco, Patricia R M; Petrs-Silva, Hilda; Morales, Marcelo M
2016-01-01
Adeno-associated virus (AAV) vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Eighteen C57BL/6 mice were randomly assigned into three groups: (1) a control group (CTRL) animals underwent intratracheal (i.t.) instillation of saline, (2) the wild-type AAV9 group (WT-AAV9, 1010 vg), and (3) the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg), which received (i.t.) self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP). Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30%) compared with their wild-type counterparts, without eliciting an inflammatory response. Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy. © 2016 The Author(s) Published by S. Karger AG, Basel.
Park, Nam Il; Park, Jee Hee; Park, Sang Un
2012-02-01
Angelica gigas is a medicinal plant that produces pyranocoumarins, including decursin (D) and decursinol angelate (DA), which have neuroprotective, anticancer, and antiandrogenic effects. In this study, the coumarin biosynthetic pathway was engineered to increase the production of DA. Specifically, a vector was constructed which contained the A. gigas phenylalanine ammonia-lyase (AgPAL) and cinnamate 4-hydroxylase (AgC4H) genes that were driven by the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic hairy roots that overexpressed AgPAL or AgC4H genes were obtained by using an Agrobacterium rhizogenes-mediated transformation system. Among them, only AgC4H-transgenic hairy root lines produced more DA than control transgenic hairy root lines. The enhanced gene expression corresponded to elevated C4H activities. This study showed the importance of C4H in the production of DA in A. gigas hairy root culture.
Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.
2018-01-01
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380
Matsuzaki, Yasunori; Oue, Miho; Hirai, Hirokazu
2014-02-15
Certain inherited progressive neurodegenerative disorders, such as spinocerebellar ataxia (SCA), affect neurons in large areas of the central nervous system (CNS). The selective expression of disease-causing and therapeutic genes in susceptible regions and cell types is critical for the generation of animal models and development of gene therapies for these diseases. Previous studies have demonstrated the advantages of the short synapsin I (SynI) promoter (0.5 kb) as a neuron-specific promoter for robust transgene expression. However, the short SynI promoter has also shown some promoter activity in glia and a lack of transgene expression in significant areas of the CNS. New methods: To improve the SynI promoter, we used a SynI promoter that is twice as long (1.0 kb) as the short SynI promoter and incorporated a minimal CMV (minCMV) sequence. We observed that the 1.0 kb rat SynI promoter with minCMV [rSynI(1.0)-minCMV] exhibited robust promoter strength, excellent neuronal specificity and wide-ranging transgene expression throughout the CNS. Comparison with existing methods: Compared with the two previously reported short (0.5 kb) promoters, the new promoter was superior with respect to neuronal specificity and more efficiently transduced neurons. Moreover, transgenic mice expressing the mutant protein ATXN1[Q98], which causes SCA type 1 (SCA1), under the control of the rSynI(1.0)-minCMV promoter showed robust transgene expression specifically in neurons throughout the CNS and exhibited progressive ataxia. rSynI(1.0)-minCMV drives robust and neuron-specific transgene expression throughout the CNS and is therefore useful for viral vector-mediated neuron-specific gene delivery and generation of neuron-specific transgenic animals. Copyright © 2013 Elsevier B.V. All rights reserved.
Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny
2012-01-01
Abstract Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (p<0.05). However, vector administration 1 hr, 1 day, or 3 days after perflubron exposure was not different from either nebulized saline with vector or vector alone and a 60-min exposure to nebulized perflubron is required. In parallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression. PMID:22568624
Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain
Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A.; Song, Juan
2016-01-01
Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design. PMID:27699236
Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses.
Crosby, Catherine M; Matchett, William E; Anguiano-Zarate, Stephanie S; Parks, Christopher A; Weaver, Eric A; Pease, Larry R; Webby, Richard J; Barry, Michael A
2017-01-15
Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors. Copyright © 2017 Crosby et al.
Kis, András; Tholt, Gergely; Ivanics, Milán; Várallyay, Éva; Jenes, Barnabás; Havelda, Zoltán
2016-04-01
Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect-mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off-target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12-15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect-mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process. © 2015 BSPP and John Wiley & Sons Ltd.
Song, Guo-qing; Sink, Kenneth C; Walworth, Aaron E; Cook, Meridith A; Allison, Richard F; Lang, Gregory A
2013-08-01
Prunus necrotic ringspot virus (PNRSV) is a major pollen-disseminated ilarvirus that adversely affects many Prunus species. In this study, an RNA interference (RNAi) vector pART27-PNRSV containing an inverted repeat (IR) region of PNRSV was transformed into two hybrid (triploid) cherry rootstocks, 'Gisela 6' (GI 148-1) and 'Gisela 7'(GI 148-8)', which are tolerant and sensitive, respectively, to PNRSV infection. One year after inoculation with PNRSV plus Prune Dwarf Virus, nontransgenic 'Gisela 6' exhibited no symptoms but a significant PNRSV titre, while the transgenic 'Gisela 6' had no symptoms and minimal PNRSV titre. The nontransgenic 'Gisela 7' trees died, while the transgenic 'Gisela 7' trees survived. These results demonstrate the RNAi strategy is useful for developing viral resistance in fruit rootstocks, and such transgenic rootstocks may have potential to enhance production of standard, nongenetically modified fruit varieties while avoiding concerns about transgene flow and exogenous protein production that are inherent for transformed fruiting genotypes. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G.; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B.; Grillone, Teresa; Giovannone, Emilia D.; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A. S.; Bond, Heather M.; Mesuraca, Maria; Morrone, Giovanni
2014-01-01
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells. PMID:25502183
Tabachnick, Walter J
2003-09-01
The completion of the Anopheles gambiae Giles genome sequencing project is a milestone toward developing more effective strategies in reducing the impact of malaria and other vector borne diseases. The successes in developing transgenic approaches using mosquitoes have provided another essential new tool for further progress in basic vector genetics and the goal of disease control. The use of transgenic approaches to develop refractory mosquitoes is also possible. The ability to use genome sequence to identify genes, and transgenic approaches to construct refractory mosquitoes, has provided the opportunity that with the future development of an appropriate genetic drive system, refractory transgenes can be released into vector populations leading to nontransmitting mosquitoes. An. gambiae populations incapable of transmitting malaria. This compelling strategy will be very difficult to achieve and will require a broad substantial research program for success. The fundamental information that is required on genome structure, gene function and environmental effects on genetic expression are largely unknown. The ability to predict gene effects on phenotype is rudimentary, particularly in natural populations. As a result, the release of a refractory transgene into natural mosquito populations is imprecise and there is little ability to predict unintended consequences. The new genetic tools at hand provide opportunities to address an array of important issues, many of which can have immediate impact on the effectiveness of a host of strategies to control vector borne disease. Transgenic release approaches represent only one strategy that should be pursued. A balanced research program is required.
Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines.
Crosby, Catherine M; Nehete, Pramod; Sastry, K Jagannadha; Barry, Michael A
2015-01-01
Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered "single-cycle" adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase than SC-Ad6, it does not elicit comparable levels of anti-GFP antibodies in permissive hamsters. When tested in the larger rhesus macaque model, SC-Ad6 induces higher transgene-specific antibody and T cell responses. Together, these data suggest that SC-Ad6 could be a more effective platform for developing vaccines against more relevant antigens. This could be especially beneficial for developing vaccines for pathogens for which traditional replication-defective adenovirus vectors have not been effective. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ceasar, S Antony; Ignacimuthu, S
2011-09-01
A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM L: -cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R(1) progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R(1) progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Li; Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL; Genetics Institute, University of Florida College of Medicine, Gainesville, FL
2008-11-25
We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, theirmore » transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by {approx} 68% and {approx} 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.« less
Weber, K; Mock, U; Petrowitz, B; Bartsch, U; Fehse, B
2010-04-01
Vector-encoded fluorescent proteins (FPs) facilitate unambiguous identification or sorting of gene-modified cells by fluorescence-activated cell sorting (FACS). Exploiting this feature, we have recently developed lentiviral gene ontology (LeGO) vectors (www.LentiGO-Vectors.de) for multi-gene analysis in different target cells. In this study, we extend the LeGO principle by introducing 10 different drug-selectable FPs created by fusing one of the five selection marker (protecting against blasticidin, hygromycin, neomycin, puromycin and zeocin) and one of the five FP genes (Cerulean, eGFP, Venus, dTomato and mCherry). All tested fusion proteins allowed both fluorescence-mediated detection and drug-mediated selection of LeGO-transduced cells. Newly generated codon-optimized hygromycin- and neomycin-resistance genes showed improved expression as compared with their ancestors. New LeGO constructs were produced at titers >10(6) per ml (for non-concentrated supernatants). We show efficient combinatorial marking and selection of various cells, including mesenchymal stem cells, simultaneously transduced with different LeGO constructs. Inclusion of the cytomegalovirus early enhancer/chicken beta-actin promoter into LeGO vectors facilitated robust transgene expression in and selection of neural stem cells and their differentiated progeny. We suppose that the new drug-selectable markers combining advantages of FACS and drug selection are well suited for numerous applications and vector systems. Their inclusion into LeGO vectors opens new possibilities for (stem) cell tracking and functional multi-gene analysis.
Li, Cuiping; Dong, Weihua; Zhang, Xingguo
2015-05-01
To explore the influence of low light on the synthesis of carotenoids, chlorophyll and the adaptability of transgenic plants with tomato Solanum lycopersicon L. GGPS2 gene, we constructed a vector containing a GGPS2 gene with green fluorescent protein (GFP) as report gene under the control of a cauliflower mosaic virus 35S promoter and introduced it into tobacco Nicotiana tabacum L. cv. Wisconsin 38 by Agrobacterium tumefaciens-mediated transformation. PCR analysis of the DNA from kanamycin resistant tobacco indicated that the transgenic tobacco containing the nptII gene, SlaGGPS2 gene and without contamination of Agrobacterium. We also detected the root tip of kanamycin resistant tobacco showing characteristic fluorescence. The contents of carotenoid, chlorophyll and photosynthesis of transgenic tobacco increased in comparison with wild tobacco after low light treatment. In addition, leaf mass per unit area, total dry weight, ratio of root to shoot in transgenic tobacco were all higher than that of the wild tobacco, which proved that the transgenic tobacco could increase the accumulation of biomass and promote it transport to root. The transgenic tobacco with SlaGGPS2 gene can increase the contents of carotenoid, chlorophyll, enhance the photosynthetic rate, promote the biomass accumulation and its distribution to root. Hence, the transgenic tobacco with SlaGGPS2 gene had increased low light tolerance and the SlaGGPS2 gene maybe can be used in other crops.
Hammond, Sean L.; Leek, Ashley N.; Richman, Evan H.
2017-01-01
The non-pathogenic parvovirus, adeno-associated virus (AAV), is an efficient vector for transgene expression in vivo and shows promise for treatment of brain disorders in clinical trials. Currently, there are more than 100 AAV serotypes identified that differ in the binding capacity of capsid proteins to specific cell surface receptors that can transduce different cell types and brain regions in the CNS. In the current study, multiple AAV serotypes expressing a GFP reporter (AAV1, AAV2/1, AAVDJ, AAV8, AAVDJ8, AAV9, AAVDJ9) were screened for their infectivity in both primary murine astrocyte and neuronal cell cultures. AAV2/1, AAVDJ8 and AAV9 were selected for further investigation of their tropism throughout different brain regions and cell types. Each AAV was administered to P0-neonatal mice via intracerebroventricular injections (ICV). Brains were then systematically analyzed for GFP expression at 3 or 6 weeks post-infection in various regions, including the olfactory bulb, striatum, cortex, hippocampus, substantia nigra (SN) and cerebellum. Cell counting data revealed that AAV2/1 infections were more prevalent in the cortical layers but penetrated to the midbrain less than AAVDJ8 and AAV9. Additionally, there were differences in the persistence of viral transgene expression amongst the three serotypes examined in vivo at 3 and 6 weeks post-infection. Because AAV-mediated transgene expression is of interest in neurodegenerative diseases such as Parkinson’s Disease, we examined the SN with microscopy techniques, such as CLARITY tissue transmutation, to identify AAV serotypes that resulted in optimal transgene expression in either astrocytes or dopaminergic neurons. AAVDJ8 displayed more tropism in astrocytes compared to AAV9 in the SN region. We conclude that ICV injection results in lasting expression of virally encoded transgene when using AAV vectors and that specific AAV serotypes are required to selectively deliver transgenes of interest to different brain regions in both astrocytes and neurons. PMID:29244806
Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima
2017-07-01
Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans.
Morral, Núria; O’Neal, Wanda; Rice, Karen; Leland, Michele; Kaplan, Johanne; Piedra, Pedro A.; Zhou, Heshan; Parks, Robin J.; Velji, Rizwan; Aguilar-Córdova, Estuardo; Wadsworth, Samuel; Graham, Frank L.; Kochanek, Stefan; Carey, K. Dee; Beaudet, Arthur L.
1999-01-01
The efficiency of first-generation adenoviral vectors as gene delivery tools is often limited by the short duration of transgene expression, which can be related to immune responses and to toxic effects of viral proteins. In addition, readministration is usually ineffective unless the animals are immunocompromised or a different adenovirus serotype is used. Recently, adenoviral vectors devoid of all viral coding sequences (helper-dependent or gutless vectors) have been developed to avoid expression of viral proteins. In mice, liver-directed gene transfer with AdSTK109, a helper-dependent adenoviral (Ad) vector containing the human α1-antitrypsin (hAAT) gene, resulted in sustained expression for longer than 10 months with negligible toxicity to the liver. In the present report, we have examined the duration of expression of AdSTK109 in the liver of baboons and compared it to first-generation vectors expressing hAAT. Transgene expression was limited to approximately 3–5 months with the first-generation vectors. In contrast, administration of AdSTK109 resulted in transgene expression for longer than a year in two of three baboons. We have also investigated the feasibility of circumventing the humoral response to the virus by sequential administration of vectors of different serotypes. We found that the ineffectiveness of readministration due to the humoral response to an Ad5 first-generation vector was overcome by use of an Ad2-based vector expressing hAAT. These data suggest that long-term expression of transgenes should be possible by combining the reduced immunogenicity and toxicity of helper-dependent vectors with sequential delivery of vectors of different serotypes. PMID:10536005
Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus.
Kawazu, Yoichi; Fujiyama, Ryoi; Imanishi, Shunsuke; Fukuoka, Hiroyuki; Yamaguchi, Hirotaka; Matsumoto, Satoru
2016-10-01
Lettuce big-vein disease caused by Mirafiori lettuce big-vein virus (MLBVV) is found in major lettuce production areas worldwide, but highly resistant cultivars have not yet been developed. To produce MLBVV-resistant marker-free transgenic lettuce that would have a transgene with a promoter and terminator of lettuce origin, we constructed a two T-DNA binary vector, in which the first T-DNA contained the selectable marker gene neomycin phosphotransferase II, and the second T-DNA contained the lettuce ubiquitin gene promoter and terminator and inverted repeats of the coat protein (CP) gene of MLBVV. This vector was introduced into lettuce cultivars 'Watson' and 'Fuyuhikari' by Agrobacterium tumefaciens-mediated transformation. Regenerated plants (T0 generation) that were CP gene-positive by PCR analysis were self-pollinated, and 312 T1 lines were analyzed for resistance to MLBVV. Virus-negative plants were checked for the CP gene and the marker gene, and nine lines were obtained which were marker-free and resistant to MLBVV. Southern blot analysis showed that three of the nine lines had two copies of the CP gene, whereas six lines had a single copy and were used for further analysis. Small interfering RNAs, which are indicative of RNA silencing, were detected in all six lines. MLBVV infection was inhibited in all six lines in resistance tests performed in a growth chamber and a greenhouse, resulting in a high degree of resistance to lettuce big-vein disease. Transgenic lettuce lines produced in this study could be used as resistant cultivars or parental lines for breeding.
Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2013-12-01
Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.
Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju
2007-10-01
A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.
SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice.
Lee, In Hye; Jung, Yu-Jin; Cho, Yong Gu; Nou, Ill Sup; Huq, Md Amdadul; Nogoy, Franz Marielle; Kang, Kwon-Kyoo
2017-01-01
Human LL-37 is a multifunctional antimicrobial peptide of cathelicidin family. It has been shown in recent studies that it can serve as a host's defense against influenza A virus. We now demonstrate in this study how signal peptide LL-37 (SP-LL-37) can be used in rice resistance against bacterial leaf blight and blast. We synthesized LL-37 peptide and subcloned in a recombinant pPZP vector with pGD1 as promoter. SP-LL-37 was introduced into rice plants by Agrobacterium mediated transformation. Stable expression of SP-LL-37 in transgenic rice plants was confirmed by RT-PCR and ELISA analyses. Subcellular localization of SP-LL-37-GFP fusion protein showed evidently in intercellular space. Our data on testing for resistance to bacterial leaf blight and blast revealed that the transgenic lines are highly resistant compared to its wildtype. Our results suggest that LL-37 can be further explored to improve wide-spectrum resistance to biotic stress in rice.
Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery
2011-01-01
Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin. PMID:21255430
Barcia, Carlos; Gerdes, Christian; Xiong, Wei-Dong; Thomas, Clare E.; Liu, Chunyan; Kroeger, Kurt M.; Castro, Maria G.; Lowenstein, Pedro R.
2007-01-01
First-generation adenovirus can be engineered with powerful promoters to drive expression of therapeutic transgenes. Numerous clinical trials for glioblastoma multiforme using first generation adenoviral vectors have either been performed or are ongoing, including an ongoing, Phase III, multicenter trial in Europe and Israel (Ark Therapeutics, Inc.). Although in the absence of anti-adenovirus immune responses expression in the brain lasts 6–18 months, systemic infection with adenovirus induces immune responses that inhibit dramatically therapeutic transgene expression from first generation adenoviral vectors, thus, potentially compromising therapeutic efficacy. Here, we show evidence of an immunization threshold for the dose that generates an immune response strong enough to eliminate transgene expression from the CNS. For the systemic immunization to eliminate transgene expression from the brain, ≥1 × 107 infectious units (iu) of adenovirus need to be used as immunogen. Furthermore, this immune response eliminates >90% of transgene expression from 1 × 107–1 × 10³ iu of vector injected into the striatum 60 days earlier. Importantly, elimination of transgene expression is independent of the nature of the promoter that drives transgene expression and is accompanied by brain infiltration of CD8+ T cells and macrophages. In conclusion, once the threshold for systemic immunization (i.e. 1 × 107 iu) is crossed, the immune response eliminates transgene expression by >90% even from brains that receive as little as 1000 iu of adenoviral vectors, independently of the type of promoter that drives expression. PMID:18084640
Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie
2013-01-01
The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.
Thomas, Michael A.; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A.; Venzon, David; Robert-Guroff, Marjorie
2013-01-01
The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector. PMID:24143187
Chaudhury, Arindam; Kongchan, Natee; Gengler, Jon P.; Mohanty, Vakul; Christiansen, Audrey E.; Fachini, Joseph M.; Martin, James F.; Neilson, Joel R.
2014-01-01
Regulation of messenger ribonucleic acid (mRNA) subcellular localization, stability and translation is a central aspect of gene expression. Much of this control is mediated via recognition of mRNA 3′ untranslated regions (UTRs) by microRNAs (miRNAs) and RNA-binding proteins. The gold standard approach to assess the regulation imparted by a transcript's 3′ UTR is to fuse the UTR to a reporter coding sequence and assess the relative expression of this reporter as compared to a control. Yet, transient transfection approaches or the use of highly active viral promoter elements may overwhelm a cell's post-transcriptional regulatory machinery in this context. To circumvent this issue, we have developed and validated a novel, scalable piggyBac-based vector for analysis of 3′ UTR-mediated regulation in vitro and in vivo. The vector delivers three independent transcription units to the target genome—a selection cassette, a turboGFP control reporter and an experimental reporter expressed under the control of a 3′ UTR of interest. The pBUTR (piggyBac-based 3′ UnTranslated Region reporter) vector performs robustly as a siRNA/miRNA sensor, in established in vitro models of post-transcriptional regulation, and in both arrayed and pooled screening approaches. The vector is robustly expressed as a transgene during murine embryogenesis, highlighting its potential usefulness for revealing post-transcriptional regulation in an in vivo setting. PMID:24753411
Harth, Jacquelyn E.; Ferrari, Matthew J.; Tooker, John F.; Stephenson, Andrew G.
2018-01-01
Few studies have examined the combined effect of multiple parasites on host fitness. Previous work in the Cucurbita pepo pathosystem indicates that infection with Zucchini yellow mosaic virus (ZYMV) reduces exposure to a second insect-vectored parasite (Erwinia tracheiphila). In this study, we performed two large-scale field experiments employing wild gourds (Cucurbita pepo ssp. texana), including plants with a highly introgressed transgene conferring resistance to ZYMV, to examine the interaction of ZYMV and powdery mildew, a common fungal disease. We found that ZYMV-infected plants are more resistant to powdery mildew (i.e., less likely to experience powdery mildew infection and when infected with powdery mildew, have reduced severity of powdery mildew symptoms). As a consequence, during widespread viral epidemics, proportionally more transgenic plants get powdery mildew than non-transgenic plants, potentially mitigating the benefits of the transgene. A greenhouse study using ZYMV-inoculated and non-inoculated controls (non-transgenic plants) revealed that ZYMV-infected plants were more resistant to powdery mildew than controls, suggesting that the transgene itself had no direct effect on the powdery mildew resistance in our field study. Additionally, we found evidence of elevated levels of salicylic acid, a phytohormone that mediates anti-pathogen defenses, in ZYMV-infected plants, suggesting that viral infection induces a plant immune response (systemic acquired resistance), thereby reducing plant susceptibility to powdery mildew infection.
Xu, Li; Ye, Rongjian; Zheng, Yusheng; Wang, Zhekui; Zhou, Peng; Lin, Yongjun; Li, Dongdong
2010-09-01
As one of the key tropical crops, coconut (Cocos nucifera L.) is a member of the monocotyledonous family Aracaceae (Palmaceae). In this study, we amplified the upstream region of an endosperm-specific expression gene, Lysophosphatidyl acyltransferase (LPAAT), from the coconut genomic DNA by chromosome walking. In this sequence, we found several types of promoter-related elements including TATA-box, CAAT-box and Skn1-motif. In order to further examine its function, three different 5'-deletion fragments were inserted into pBI101.3, a plant expression vector harboring the LPAAT upstream sequence, leading to pBI101.3-L1, pBI101.3-L2 and pBI101.3-L3, respectively. We obtained transgenic plants of rice by Agrobacterium-mediated callus transformation and plant regeneration and detected the expression of gus gene by histochemical staining and fluorometric determination. We found that gus gene driven by the three deletion fragments was specifically expressed in the endosperm of rice seeds, but not in the empty vector of pBI101.3 and other tissues. The highest expression level of GUS was at 15 DAF in pBI101.3-L3 and pBI101.3-L2 transgenic lines, while the same level was detected at 10 DAF in pBI101.3-L1. The expression driven by the whole fragment was up to 1.76- and 2.8-fold higher than those driven by the -817 bp and -453 bp upstream fragments, and 10.7-fold higher than that driven by the vector without the promoter. Taken together, our results strongly suggest that these promoter fragments from coconut have a significant potential in genetically improving endosperm in main crops.
Nishimura, Ken; Ohtaka, Manami; Takada, Hitomi; Kurisaki, Akira; Tran, Nhi Vo Kieu; Tran, Yen Thi Hai; Hisatake, Koji; Sano, Masayuki; Nakanishi, Mahito
2017-08-01
Transgene-free induced pluripotent stem cells (iPSCs) are valuable for both basic research and potential clinical applications. We previously reported that a replication-defective and persistent Sendai virus (SeVdp) vector harboring four reprogramming factors (SeVdp-iPS) can efficiently induce generation of transgene-free iPSCs. This vector can express all four factors stably and simultaneously without chromosomal integration and can be eliminated completely from reprogrammed cells by suppressing vector-derived RNA-dependent RNA polymerase. Here, we describe an improved SeVdp-iPS vector (SeVdp(KOSM)302L) that is automatically erased in response to microRNA-302 (miR-302), uniquely expressed in pluripotent stem cells (PSCs). Gene expression and genome replication of the SeVdp-302L vector, which contains miRNA-302a target sequences at the 3' untranslated region of L mRNA, are strongly suppressed in PSCs. Consequently, SeVdp(KOSM)302L induces expression of reprogramming factors in somatic cells, while it is automatically erased from cells successfully reprogrammed to express miR-302. As this vector can reprogram somatic cells into transgene-free iPSCs without the aid of exogenous short interfering RNA (siRNA), the results we present here demonstrate that this vector may become an invaluable tool for the generation of human iPSCs for future clinical applications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Buchlis, George; Podsakoff, Gregory M; Radu, Antonetta; Hawk, Sarah M; Flake, Alan W; Mingozzi, Federico; High, Katherine A
2012-03-29
In previous work we transferred a human factor IX-encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer.
Buchlis, George; Podsakoff, Gregory M.; Radu, Antonetta; Hawk, Sarah M.; Flake, Alan W.; Mingozzi, Federico
2012-01-01
In previous work we transferred a human factor IX–encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer. PMID:22271447
Large Animal Models for Foamy Virus Vector Gene Therapy
Trobridge, Grant D.; Horn, Peter A.; Beard, Brian C.; Kiem, Hans-Peter
2012-01-01
Foamy virus (FV) vectors have shown great promise for hematopoietic stem cell (HSC) gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit. PMID:23223198
Sasu, Miruna A; Ferrari, Matthew J; Du, Daolin; Winsor, James A; Stephenson, Andrew G
2009-11-10
Virus-resistant transgenic squash are grown throughout the United States and much of Mexico and it is likely that the virus-resistant transgene (VRT) has been introduced to wild populations repeatedly. The evolutionary fate of any resistance gene in wild populations and its environmental impacts depend upon trade-offs between the costs and benefits of the resistance gene. In a 3-year field study using a wild gourd and transgenic and nontransgenic introgressives, we measured the effects of the transgene on fitness, on herbivory by cucumber beetles, on the incidence of mosaic viruses, and on the incidence of bacterial wilt disease (a fatal disease vectored by cucumber beetles). In each year, the first incidence of zucchini yellow mosaic virus occurred in mid-July and spread rapidly through the susceptible plants. We found that the transgenic plants had greater reproduction through both male and female function than the susceptible plants, indicating that the VRT has a direct fitness benefit for wild gourds under the conditions of our study. Moreover, the VRT had no effect on resistance to cucumber beetles or the incidence of wilt disease before the spread of the virus. However, as the virus spread through the fields, the cucumber beetles became increasingly concentrated upon the healthy (mostly transgenic) plants, which increased exposure to and the incidence of wilt disease on the transgenic plants. This indirect cost of the VRT (mediated by a nontarget herbivore and pathogen) mitigated the overall beneficial effect of the VRT on fitness.
Sasu, Miruna A.; Ferrari, Matthew J.; Du, Daolin; Winsor, James A.; Stephenson, Andrew G.
2009-01-01
Virus-resistant transgenic squash are grown throughout the United States and much of Mexico and it is likely that the virus-resistant transgene (VRT) has been introduced to wild populations repeatedly. The evolutionary fate of any resistance gene in wild populations and its environmental impacts depend upon trade-offs between the costs and benefits of the resistance gene. In a 3-year field study using a wild gourd and transgenic and nontransgenic introgressives, we measured the effects of the transgene on fitness, on herbivory by cucumber beetles, on the incidence of mosaic viruses, and on the incidence of bacterial wilt disease (a fatal disease vectored by cucumber beetles). In each year, the first incidence of zucchini yellow mosaic virus occurred in mid-July and spread rapidly through the susceptible plants. We found that the transgenic plants had greater reproduction through both male and female function than the susceptible plants, indicating that the VRT has a direct fitness benefit for wild gourds under the conditions of our study. Moreover, the VRT had no effect on resistance to cucumber beetles or the incidence of wilt disease before the spread of the virus. However, as the virus spread through the fields, the cucumber beetles became increasingly concentrated upon the healthy (mostly transgenic) plants, which increased exposure to and the incidence of wilt disease on the transgenic plants. This indirect cost of the VRT (mediated by a nontarget herbivore and pathogen) mitigated the overall beneficial effect of the VRT on fitness. PMID:19858473
High-frequency transformation of Lobelia erinus L. by Agrobacterium-mediated gene transfer.
Tsugawa, H; Kagami, T; Suzuki, M
2004-05-01
A highly efficient transformation procedure was developed for Lobelia erinus. Leaf or cotyledon discs were inoculated with Agrobacterium tumefaciens strain EHA105 harboring the binary vector plasmid pIG121Hm, which contains a beta-glucuronidase gene with an intron as a reporter gene and both the neomycin phosphotransferase II and hygromycin phosphotransferase genes as selectable markers. The hygromycin-resistant calli produced on the selection medium were transferred to MS medium supplemented with 0.5 mg/l benzyladenine and 0.2 mg/l indole-3-acetic acid for regeneration of adventitious shoots. Transgenic plants were obtained as a result of the high regeneration rate of the transformed calli, which was as high as 83%. In contrast, no transgenic plant was obtained by the procedure of direct shoot formation following inoculation with A. tumefaciens. Transgenic plants flowered 3-4 months after transformation. Integration of the transgenes was detected using PCR and Southern blot analysis, which revealed that one to several copies were integrated into the genomes of the host plants. The transformation frequency at the stage of whole plants was very high--45% per inoculated disc. Copyright 2004 Springer-Verlag
AAVPG: A vigilant vector where transgene expression is induced by p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.
2013-12-15
Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 foldmore » increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.« less
Toward Brain Tumor Gene Therapy Using Multipotent Mesenchymal Stromal Cell Vectors
Bexell, Daniel; Scheding, Stefan; Bengzon, Johan
2010-01-01
Gene therapy of solid cancers has been severely restricted by the limited distribution of vectors within tumors. However, cellular vectors have emerged as an effective migratory system for gene delivery to invasive cancers. Implanted and injected multipotent mesenchymal stromal cells (MSCs) have shown tropism for several types of primary tumors and metastases. This capacity of MSCs forms the basis for their use as a gene vector system in neoplasms. Here, we review the tumor-directed migratory potential of MSCs, mechanisms of the migration, and the choice of therapeutic transgenes, with a focus on malignant gliomas as a model system for invasive and highly vascularized tumors. We examine recent findings demonstrating that MSCs share many characteristics with pericytes and that implanted MSCs localize primarily to perivascular niches within tumors, which might have therapeutic implications. The use of MSC vectors in cancer gene therapy raises concerns, however, including a possible MSC contribution to tumor stroma and vasculature, MSC-mediated antitumor immune suppression, and the potential malignant transformation of cultured MSCs. Nonetheless, we highlight the novel prospects of MSC-based tumor therapy, which appears to be a promising approach. PMID:20407426
The impact of dissociation on transposon-mediated disease control strategies.
Marshall, John M
2008-03-01
Vector-borne diseases such as malaria and dengue fever continue to be a major health concern through much of the world. The emergence of chloroquine-resistant strains of malaria and insecticide-resistant mosquitoes emphasize the need for novel methods of disease control. Recently, there has been much interest in the use of transposable elements to drive resistance genes into vector populations as a means of disease control. One concern that must be addressed before a release is performed is the potential loss of linkage between a transposable element and a resistance gene. Transposable elements such as P and hobo have been shown to produce internal deletion derivatives at a significant rate, and there is concern that a similar process could lead to loss of the resistance gene from the drive system following a transgenic release. Additionally, transposable elements such as Himar1 have been shown to transpose significantly more frequently when free of exogenous DNA. Here, we show that any transposon-mediated gene drive strategy must have an exceptionally low rate of dissociation if it is to be effective. Additionally, the resistance gene must confer a large selective advantage to the vector to surmount the effects of a moderate dissociation rate and transpositional handicap.
Gray, Steven J; Foti, Stacey B; Schwartz, Joel W; Bachaboina, Lavanya; Taylor-Blake, Bonnie; Coleman, Jennifer; Ehlers, Michael D; Zylka, Mark J; McCown, Thomas J; Samulski, R Jude
2011-09-01
With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.
A Recessive Pollination Control System for Wheat Based on Intein-Mediated Protein Splicing.
Gils, Mario
2017-01-01
A transgene-expression system for wheat that relies on the complementation of inactive precursor protein fragments through a split-intein system is described. The N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from Synechocystis sp. and transformed into wheat plants. Upon translation, both barnase fragments are assembled by an autocatalytic intein-mediated trans-splicing reaction, thus forming a cytotoxic enzyme. This chapter focuses on the use of introns and flexible polypeptide linkers to foster the expression of a split-barnase expression system in plants. The methods and protocols that were employed with the objective to test the effects of such genetic elements on transgene expression and to find the optimal design of expression vectors for use in wheat are provided. Split-inteins can be used to form an agriculturally important trait (male sterility) in wheat plants. The use of this principle for the production of hybrid wheat seed is described. The suggested toolbox will hopefully be a valuable contribution to future optimization strategies in this commercially important crop.
Heikura, Tommi; Nieminen, Tiina; Roschier, Miia M; Karvinen, Henna; Kaikkonen, Minna U; Mähönen, Anssi J; Lesch, Hanna P; Rissanen, Tuomas T; Laitinen, Olli H; Airenne, Kari J; Ylä-Herttuala, Seppo
2012-01-01
Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy. However, the expression is transient and repeated gene transfers with the same vector are inefficient due to immune responses. Different baculoviral vectors pseudotyped with or without vesicular stomatitis virus glycoprotein (VSV-G) and/or carrying woodchuck hepatitis virus post-transcriptional regulatory element (Wpre) were tested both in vitro and in vivo. VEGF-D(ΔNΔC) was used as therapeutic transgene and lacZ as a control. In vivo efficacy was evaluated as capillary enlargement and transgene expression in New Zealand White (NZW) rabbit skeletal muscle. A statistically significant capillary enlargement was detected 6 days after gene transfer in transduced areas compared to the control gene transfers with baculovirus and adenovirus encoding β-galactosidase (lacZ). Substantially improved gene transfer efficiency was achieved with a modified baculovirus pseudotyped with VSV-G and carrying Wpre. Dose escalation experiments revealed that either too large volume or too many virus particles caused inflammation and necrosis in the target tissue, whereas 10(9) plaque forming units injected in multiple aliquots resulted in transgene expression with only mild immune reactions. We show the first evidence of biologically significant baculoviral gene transfer in skeletal muscle of NZW rabbits using VEGF-D(ΔNΔC) as a therapeutic transgene. Copyright © 2012 John Wiley & Sons, Ltd.
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells.
Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G; Martin, Francisco
2016-11-17
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells
Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G.; Martin, Francisco
2016-01-01
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny. PMID:27853296
Brunetti, Dario; Perota, Andrea; Lagutina, Irina; Colleoni, Silvia; Duchi, Roberto; Calabrese, Fiorella; Seveso, Michela; Cozzi, Emanuele; Lazzari, Giovanna; Lucchini, Franco; Galli, Cesare
2008-12-01
The pig represents the xenogeneic donor of choice for future organ transplantation in humans for anatomical and physiological reasons. However, to bypass several immunological barriers, strong and stable human genes expression must occur in the pig's organs. In this study we created transgenic pigs using in vitro transfection of cultured cells combined with somatic cell nuclear transfer (SCNT) to evaluate the ubiquitous transgene expression driven by pCAGGS vector in presence of different selectors. pCAGGS confirmed to be a very effective vector for ubiquitous transgene expression, irrespective of the selector that was used. Green fluorescent protein (GFP) expression observed in transfected fibroblasts was also maintained after nuclear transfer, through pre- and postimplantation development, at birth and during adulthood. Germ line transmission without silencing of the transgene was demonstrated. The ubiquitous expression of GFP was clearly confirmed in several tissues including endothelial cells, thus making it a suitable vector for the expression of multiple genes relevant to xenotransplantation where tissue specificity is not required. Finally cotransfection of green and red fluorescence protein transgenes was performed in fibroblasts and after nuclear transfer blastocysts expressing both fluorescent proteins were obtained.
The dynamics of long-term transgene expression in engrafted neural stem cells.
Lee, Jean-Pyo; Tsai, David J; In Park, Kook; Harvey, Alan R; Snyder, Evan Y
2009-07-01
To assess the dynamics and confounding variables that influence transgene expression in neural stem cells (NSCs), we generated distinct NSC clones from the same pool of cells, carrying the same reporter gene transcribed from the same promoter, transduced by the same retroviral vector, and transplanted similarly at the same differentiation state, at the same time and location, into the brains of newborn mouse littermates, and monitored in parallel for over a year in vivo (without immunosuppression). Therefore, the sole variables were transgene chromosomal insertion site and copy number. We then adapted and optimized a technique that tests, at the single cell level, persistence of stem cell-mediated transgene expression in vivo based on correlating the presence of the transgene in a given NSC's nucleus (by fluorescence in situ hybridization [FISH]) with the frequency of that transgene's product within the same cell (by combined immunohistochemistry [IHC]). Under the above-stated conditions, insertion site is likely the most contributory variable dictating transgene downregulation in an NSC after 3 months in vivo. We also observed that this obstacle could be effectively and safely counteracted by simple serial infections (as few as three) inserting redundant copies of the transgene into the prospective donor NSC. (The preservation of normal growth control mechanisms and an absence of tumorigenic potential can be readily screened and ensured ex vivo prior to transplantation.) The combined FISH/IHC strategy employed here for monitoring the dynamics of transgene expression at the single cell level in vivo may be used for other types of therapeutic and housekeeping genes in endogenous and exogenous stem cells of many organs and lineages. Copyright 2009 Wiley-Liss, Inc.
Ultrasound enhances retrovirus-mediated gene transfer.
Naka, Toshio; Sakoda, Tsuyoshi; Doi, Takashi; Tsujino, Takeshi; Masuyama, Tohru; Kawashima, Seinosuke; Iwasaki, Tadaaki; Ohyanagi, Mitsumasa
2007-01-01
Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus-mediated gene transfer efficiency. Retrovirus-mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with beta-galactosidase (beta-Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm(2) to 4.0 watts/cm(2)) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated. Below 1.0 watts/cm(2) and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm(2) of an ultrasound resulted in significant increases in retrovirus-mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6-fold, 4.8-fold, 2.3-fold, and 3.2-fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, beta-Gal activities were also increased by the retrovirus with ultrasound exposure in these cells. Adjunctive ultrasound exposure was associated with enhanced retrovirus-mediated transgene expression in vitro. Ultrasound associated local gene therapy has potential for not only plasmid-DNA-, but also retrovirus-mediated gene transfer.
Genetic transformation of Begonia tuberhybrida by Ri rol genes.
Kiyokawa, S; Kikuchi, Y; Kamada, H; Harada, H
1996-04-01
We have developed an Agrobacterium -mediated transformation system for commercial Begonia species. The leaf explants of Begonia semperflorens, Begonia x hiemalis and B. tuberhybrida were inoculated with Agrobacterium tumefaciens LBA4404 harboring a binary vector pBI121 which contains rolA, B and C genes of an agropine type Ri plasmid (pRiA4b). Kanamycin resistant shoots of B. tuberhybrida were obtained on MS agar medium supplemented with 0.1 mg/l NAA, 0.5 mg/l BA, 500 mg/l claforan and 100 mg/l kanamycin. These shoots exhibited GUS activity and Southern analysis showed a single copy insertion into the genome. When the transgenic plants were transferred to soil, they displayed the phenotype specific to the transgenic plants by A. rhizogenes such as dwarfness, delay of flowering, and wrinkled leaves and petals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Weihong; Wu Jianqing; Zhong Li
2006-09-30
We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency ofmore » conventional AAV vectors by {approx}25-fold in WT MEFs, but only by {approx}4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency {approx}23-fold in WT MEFs, but only {approx}4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, {approx}59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only {approx}28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.« less
Hanawa, Hideki; Yamamoto, Motoko; Zhao, Huifen; Shimada, Takashi; Persons, Derek A
2009-01-01
Hematopoietic cell gene therapy using retroviral vectors has achieved success in clinical trials. However, safety issues regarding vector insertional mutagenesis have emerged. In two different trials, vector insertion resulted in the transcriptional activation of proto-oncogenes. One strategy for potentially diminishing vector insertional mutagenesis is through the use of self-inactivating lentiviral vectors containing the 1.2-kb insulator element derived from the chicken β-globin locus. However, use of this element can dramatically decrease both vector titer and transgene expression, thereby compromising its practical use. Here, we studied lentiviral vectors containing either the full-length 1.2-kb insulator or the smaller 0.25-kb core element in both orientations in the partially deleted long-terminal repeat. We show that use of the 0.25-kb core insulator rescued vector titer by alleviating a postentry block to reverse transcription associated with the 1.2-kb element. In addition, in an orientation-dependent manner, the 0.25-kb core element significantly increased transgene expression from an internal promoter due to improved transcriptional termination. This element also demonstrated barrier activity, reducing variability of expression due to position effects. As it is known that the 0.25-kb core insulator has enhancer-blocking activity, this particular insulated lentiviral vector design may be useful for clinical application. PMID:19223867
Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu
2010-09-01
The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.
Alquézar, Berta; Volpe, Haroldo Xavier Linhares; Magnani, Rodrigo Facchini; de Miranda, Marcelo Pedreira; Santos, Mateus Almeida; Wulff, Nelson Arno; Bento, Jose Mauricio Simões; Parra, José Roberto Postali; Bouwmeester, Harro; Peña, Leandro
2017-07-17
Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately connected with dispersal and feeding of the insect vector Diaphorina citri, oligophagous on rutaceous host plants. Effective control of this psyllid is an important component in successful HLB management programs. Volatiles released from the non-host guava have been shown to be repellent to the psyllid and to inhibit its response to citrus odour. By analysing VOC emission from guava we identified one volatile compound, (E)-β-caryophyllene, which at certain doses exerts a repellent effect on D. citri. Non-host plant rejection mediated by (E)-β-caryophyllene is demonstrated here by using Arabidopsis over-expression and knock-out lines. For the first time, results indicate that genetically engineered Arabidopsis plants with modified emission of VOCs can alter the behaviour of D. citri. This study shows that transgenic plants with an inherent ability to release (E)-β-caryophyllene can potentially be used in new protection strategies of citrus trees against HLB.
Wu, Yong; Gao, Tieli; Wang, Xiaolin; Hu, Youjin; Hu, Xuyun; Hu, Zhiqing; Pang, Jialun; Li, Zhuo; Xue, Jinfeng; Feng, Mai; Wu, Lingqian; Liang, Desheng
2014-03-28
Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus. Copyright © 2014 Elsevier Inc. All rights reserved.
Gene transfer to the cerebellum.
Louboutin, Jean-Pierre; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S
2010-12-01
There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo. Using a rSV40 vector carrying human immunodeficiency virus (HIV)-Nef with a C-terminal FLAG epitope, we characterized the distribution, duration, and cell types transduced. Rats received test and control vectors by stereotaxic injection into the cerebellum. Transgene expression was assessed 1, 2, and 4 weeks later by immunostaining of serial brain sections. FLAG epitope-expressing cells were seen, at all times after vector administration, principally detected in the Purkinje cells of the cerebellum, identified as immunopositive for calbindin. Occasional microglial cells were tranduced; transgene expression was not detected in astrocytes or oligodendrocytes. No inflammatory or other reaction was detected at any time. Thus, SV40-derived vectors can deliver effective, safe, and durable transgene expression to the cerebellum.
Enhanced gene disruption by programmable nucleases delivered by a minicircle vector.
Dad, A-B K; Ramakrishna, S; Song, M; Kim, H
2014-11-01
Targeted genetic modification using programmable nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) is of great value in biomedical research, medicine and biotechnology. Minicircle vectors, which lack extraneous bacterial sequences, have several advantages over conventional plasmids for transgene delivery. Here, for the first time, we delivered programmable nucleases into human cells using transient transfection of a minicircle vector and compared the results with those obtained using a conventional plasmid. Surrogate reporter assays and T7 endonuclease analyses revealed that cells in the minicircle vector group displayed significantly higher mutation frequencies at the target sites than those in the conventional plasmid group. Quantitative PCR and reverse transcription-PCR showed higher vector copy number and programmable nuclease transcript levels, respectively, in 293T cells after minicircle versus conventional plasmid vector transfection. In addition, tryphan blue staining and flow cytometry after annexin V and propidium iodide staining showed that cell viability was also significantly higher in the minicircle group than in the conventional plasmid group. Taken together, our results show that gene disruption using minicircle vector-mediated delivery of ZFNs and TALENs is a more efficient, safer and less toxic method than using a conventional plasmid, and indicate that the minicircle vector could serve as an advanced delivery method for programmable nucleases.
Boisgérault, Florence; Mingozzi, Federico
2015-01-01
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors. PMID:26122097
Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti.
Kokoza, V; Ahmed, A; Cho, W L; Jasinskiene, N; James, A A; Raikhel, A
2000-08-01
Progress in molecular genetics makes possible the development of alternative disease control strategies that target the competence of mosquitoes to transmit pathogens. We tested the regulatory region of the vitellogenin (Vg) gene of Aedes aegypti for its ability to express potential antipathogen factors in transgenic mosquitoes. Hermes-mediated transformation was used to integrate a 2.1-kb Vg-promoter fragment driving the expression of the Defensin A (DefA) coding region, one of the major insect immune factors. PCR amplification of genomic DNA and Southern blot analyses, carried out through the ninth generation, showed that the Vg-DefA transgene insertion was stable. The Vg-DefA transgene was strongly activated in the fat body by a blood meal. The mRNA levels reached a maximum at 24-h postblood meal, corresponding to the peak expression time of the endogenous Vg gene. High levels of transgenic defensin were accumulated in the hemolymph of bloodfed female mosquitoes, persisting for 20-22 days after a single blood feeding. Purified transgenic defensin showed antibacterial activity comparable to that of defensin isolated from bacterially challenged control mosquitoes. Thus, we have been able to engineer the genetically stable transgenic mosquito with an element of systemic immunity, which is activated through the blood meal-triggered cascade rather than by infection. This work represents a significant step toward the development of molecular genetic approaches to the control of vector competence in pathogen transmission.
Vajhala, Chakravarthy S K; Sadumpati, Vijaya Kumar; Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao
2013-01-01
Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.
Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao
2013-01-01
Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1–2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects. PMID:24023750
Haut, Larissa H; Gill, Amanda L; Kurupati, Raj K; Bian, Ang; Li, Yan; Giles-Davis, Wynetta; Xiang, Zhiquan; Zhou, Xiang Yang; Ertl, Hildegund C J
2016-10-01
Adenovirus (Ad) is used extensively for construction of viral vectors, most commonly with deletion in its E1 and/or E3 genomic regions. Previously, our attempts to insert envelope proteins (Env) of HIV-1 into such vectors based on chimpanzee-derived Ad (AdC) viruses were thwarted. Here, we describe that genetic instability of an E1- and E3-deleted AdC vector of serotype C6 expressing Env of HIV-1 can be overcome by reinsertion of E3 sequences with anti-apoptotic activities. This partial E3 deletion presumably delays premature death of HEK-293 packaging cell lines due to Env-induced cell apoptosis. The same partial E3 deletion also allows for the generation of stable glycoprotein 140 (gp140)- and gp160-expressing Ad vectors based on AdC7, a distinct AdC serotype. Env-expressing AdC vectors containing the partial E3 deletion are genetically stable upon serial cell culture passaging, produce yields comparable to those of other AdC vectors, and induce transgene product-specific antibody responses in mice. A partial E3 deletion thereby allows expansion of the repertoire of transgenes that can be expressed by Ad vectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.
In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less
Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; ...
2016-05-24
In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less
Biodegradable DNA Nanoparticles that Provide Widespread Gene Delivery in the Brain
Mastorakos, Panagiotis; Song, Eric; Zhang, Clark; Berry, Sneha; Park, Hee Won; Kim, Young Eun; Park, Jong Sung; Lee, Seulki; Suk, Jung Soo; Hanes, Justin
2016-01-01
Successful gene therapy of neurological disorders is predicated on achieving widespread and uniform transgene expression throughout the affected disease area in the brain. However, conventional gene vectors preferentially travel through low-resistance perivascular spaces and/or are confined to the administration site even with the aid of a pressure-driven flow provided by convection-enhanced delivery. Biodegradable DNA nanoparticles offer a safe gene delivery platform devoid of adverse effects associated with virus-based or synthetic non-biodegradable systems. Using a state-of-the-art biodegradable polymer, poly(β-amino ester), we engineered colloidally stable sub-100 nm DNA nanoparticles coated with a non-adhesive polyethylene glycol corona that are able to avoid the adhesive and steric hindrances imposed by the extracellular matrix. Following convection enhanced delivery, these brain-penetrating nanoparticles were able to homogeneously distribute throughout the rodent striatum and mediate widespread and high-level transgene expression. These nanoparticles provide a biodegradable DNA nanoparticle platform enabling uniform transgene expression patterns in vivo and hold promise for the treatment of neurological diseases. PMID:26680637
Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera.
Ghosh, Gourab; Ganguly, Shreeparna; Purohit, Arnab; Chaudhuri, Rituparna Kundu; Das, Sampa; Chakraborti, Dipankar
2017-07-01
Independent transgenic pigeonpea events were developed using two cry genes. Transgenic Cry2Aa-pigeonpea was established for the first time. Selected transgenic events demonstrated 100% mortality of Helicoverpa armigera in successive generations. Lepidopteran insect Helicoverpa armigera is the major yield constraint of food legume pigeonpea. The present study was aimed to develop H. armigera-resistant transgenic pigeonpea, selected on the basis of transgene expression and phenotyping. Agrobacterium tumefaciens-mediated transformation of embryonic axis explants of pigeonpea cv UPAS 120 was performed using two separate binary vectors carrying synthetic Bacillus thuringiensis insecticidal crystal protein genes, cry1Ac and cry2Aa. T 0 transformants were selected on the basis of PCR and protein expression profile. T 1 events were exclusively selected on the basis of expression and monogenic character for cry, validated through Western and Southern blot analyses, respectively. Independently transformed 12 Cry1Ac and 11 Cry2Aa single-copy events were developed. The level of Cry-protein expression in T 1 transgenic events was 0.140-0.175% of total soluble protein. Expressed Cry1Ac and Cry2Aa proteins in transgenic pigeonpea exhibited significant weight loss of second-fourth instar larvae of H. armigera and ultimately 80-100% mortality in detached leaf bioassay. Selected Cry-transgenic pigeonpea events, established at T 2 generation, inherited insect-resistant phenotype. Immunohistofluorescence localization in T 3 plants demonstrated constitutive accumulation of Cry1Ac and Cry2Aa in leaf tissues of respective transgenic events. This study is the first report of transgenic pigeonpea development, where stable integration, effective expression and biological activity of two Cry proteins were demonstrated in subsequent three generations (T 0 , T 1, and T 2 ). These studies will contribute to biotechnological breeding programmes of pigeonpea for its genetic improvement.
Huang, Ting-Kuo; Falk, Bryce W; Dandekar, Abhaya M; McDonald, Karen A
2018-05-24
We have previously demonstrated that the inducible plant viral vector (CMViva) in transgenic plant cell cultures can significantly improve the productivity of extracellular functional recombinant human alpha-1-antiryspin (rAAT) compared with either a common plant constitutive promoter ( Cauliflower mosaic virus (CaMV) 35S) or a chemically inducible promoter (estrogen receptor-based XVE) system. For a transgenic plant host system, however, viral or transgene-induced post-transcriptional gene silencing (PTGS) has been identified as a host response mechanism that may dramatically reduce the expression of a foreign gene. Previous studies have suggested that viral gene silencing suppressors encoded by a virus can block or interfere with the pathways of transgene-induced PTGS in plant cells. In this study, the capability of nine different viral gene silencing suppressors were evaluated for improving the production of rAAT protein in transgenic plant cell cultures (CMViva, XVE or 35S system) using an Agrobacterium -mediated transient expression co-cultivation process in which transgenic plant cells and recombinant Agrobacterium carrying the viral gene silencing suppressor were grown together in suspension cultures. Through the co-cultivation process, the impacts of gene silencing suppressors on the rAAT production were elucidated, and promising gene silencing suppressors were identified. Furthermore, the combinations of gene silencing suppressors were optimized using design of experiments methodology. The results have shown that in transgenic CMViva cell cultures, the functional rAAT as a percentage of total soluble protein is increased 5.7 fold with the expression of P19, and 17.2 fold with the co-expression of CP, P19 and P24.
NASA Technical Reports Server (NTRS)
Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.;
2001-01-01
Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.
Genetically modified pigs produced with a nonviral episomal vector
Manzini, Stefano; Vargiolu, Alessia; Stehle, Isa M; Bacci, Maria Laura; Cerrito, Maria Grazia; Giovannoni, Roberto; Zannoni, Augusta; Bianco, Maria Rosaria; Forni, Monica; Donini, Pierluigi; Papa, Michele; Lipps, Hans J; Lavitrano, Marialuisa
2006-01-01
Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy. PMID:17101993
Biosafety challenges for use of lentiviral vectors in gene therapy.
Rothe, Michael; Modlich, Ute; Schambach, Axel
2013-12-01
Lentiviral vectors are promising tools for the genetic modification of cells in biomedical research and gene therapy. Their use in recent clinical trials for the treatment of adrenoleukodystrophy, β-thalassemia, Wiskott-Aldrich- Syndrome and metachromatic leukodystrophy underlined their efficacy for therapies especially in case of hereditary diseases. In comparison to gammaretroviral LTR-driven vectors, which were employed in the first clinical trials, lentiviral vectors present with some favorable features like the ability to transduce also non-dividing cells and a potentially safer insertion profile. However, genetic modification with viral vectors in general and stable integration of the therapeutic gene into the host cell genome bear concerns with respect to different levels of personal or environmental safety. Among them, insertional mutagenesis by enhancer mediated dysregulation of neighboring genes or aberrant splicing is still the biggest concern. However, also risks like immunogenicity of vector particles, the phenotoxicity of the transgene and potential vertical or horizontal transmission by replication competent retroviruses need to be taken into account. This review will give an overview on biosafety aspects that are relevant to the use of lentiviral vectors for genetic modification and gene therapy. Furthermore, assay systems aiming at evaluating biosafety in preclinical settings and recent promising clinical trials including efforts of monitoring of patients after gene therapy will be discussed.
Assessment of RNAi-induced silencing in banana (Musa spp.).
Dang, Tuong Vi T; Windelinckx, Saskia; Henry, Isabelle M; De Coninck, Barbara; Cammue, Bruno P A; Swennen, Rony; Remy, Serge
2014-09-18
In plants, RNA- based gene silencing mediated by small RNAs functions at the transcriptional or post-transcriptional level to negatively regulate target genes, repetitive sequences, viral RNAs and/or transposon elements. Post-transcriptional gene silencing (PTGS) or the RNA interference (RNAi) approach has been achieved in a wide range of plant species for inhibiting the expression of target genes by generating double-stranded RNA (dsRNA). However, to our knowledge, successful RNAi-application to knock-down endogenous genes has not been reported in the important staple food crop banana. Using embryogenic cell suspension (ECS) transformed with ß-glucuronidase (GUS) as a model system, we assessed silencing of gusAINT using three intron-spliced hairpin RNA (ihpRNA) constructs containing gusAINT sequences of 299-nt, 26-nt and 19-nt, respectively. Their silencing potential was analysed in 2 different experimental set-ups. In the first, Agrobacterium-mediated co-transformation of banana ECS with a gusAINT containing vector and an ihpRNA construct resulted in a significantly reduced GUS enzyme activity 6-8 days after co-cultivation with either the 299-nt and 19-nt ihpRNA vectors. In the second approach, these ihpRNA constructs were transferred to stable GUS-expressing ECS and their silencing potential was evaluated in the regenerated in vitro plants. In comparison to control plants, transgenic plants transformed with the 299-nt gusAINT targeting sequence showed a 4.5 fold down-regulated gusA mRNA expression level, while GUS enzyme activity was reduced by 9 fold. Histochemical staining of plant tissues confirmed these findings. Northern blotting used to detect the expression of siRNA in the 299-nt ihpRNA vector transgenic in vitro plants revealed a negative relationship between siRNA expression and GUS enzyme activity. In contrast, no reduction in GUS activity or GUS mRNA expression occurred in the regenerated lines transformed with either of the two gusAINT oligo target sequences (26-nt and 19-nt). RNAi-induced silencing was achieved in banana, both at transient and stable level, resulting in significant reduction of gene expression and enzyme activity. The success of silencing was dependent on the targeted region of the target gene. The successful generation of transgenic ECS for second transformation with (an)other construct(s) can be of value for functional genomics research in banana.
USDA-ARS?s Scientific Manuscript database
Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...
Jatropha (Jatropha curcas L.).
Maravi, Devendra Kumar; Mazumdar, Purabi; Alam, Shamsher; Goud, Vaibhav V; Sahoo, Lingaraj
2015-01-01
The seed oil of Jatropha (Jatropha curcas L.) as a source of biodiesel fuel is gaining worldwide importance. Commercial-scale exploration of Jatropha has not succeeded due to low and unstable seed yield in semiarid lands unsuitable for the food production and infestation to diseases. Genetic engineering is promising to improve various agronomic traits in Jatropha and to understand the molecular functions of key Jatropha genes for molecular breeding. We describe a protocol routinely followed in our laboratory for stable and efficient Agrobacterium tumefaciens-mediated transformation of Jatropha using cotyledonary leaf as explants. The 4-day-old explants are infected with Agrobacterium tumefaciens strain EHA105 harboring pBI121 plant binary vector, which contains nptII as plant selectable marker and gus as reporter. The putative transformed plants are selected on kanamycin, and stable integration of transgene(s) is confirmed by histochemical GUS assay, polymerase chain reaction, and Southern hybridization.
Jin, Chuan; Fotaki, Grammatiki; Ramachandran, Mohanraj; Nilsson, Berith; Essand, Magnus; Yu, Di
2016-07-01
Chimeric antigen receptor (CAR) T-cell therapy is a new successful treatment for refractory B-cell leukemia. Successful therapeutic outcome depends on long-term expression of CAR transgene in T cells, which is achieved by delivering transgene using integrating gamma retrovirus (RV) or lentivirus (LV). However, uncontrolled RV/LV integration in host cell genomes has the potential risk of causing insertional mutagenesis. Herein, we describe a novel episomal long-term cell engineering method using non-integrating lentiviral (NILV) vector containing a scaffold/matrix attachment region (S/MAR) element, for either expression of transgenes or silencing of target genes. The insertional events of this vector into the genome of host cells are below detection level. CD19 CAR T cells engineered with a NILV-S/MAR vector have similar levels of CAR expression as T cells engineered with an integrating LV vector, even after numerous rounds of cell division. NILV-S/MAR-engineered CD19 CAR T cells exhibited similar cytotoxic capacity upon CD19(+) target cell recognition as LV-engineered T cells and are as effective in controlling tumor growth in vivo We propose that NILV-S/MAR vectors are superior to current options as they enable long-term transgene expression without the risk of insertional mutagenesis and genotoxicity. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Kemppainen, Minna J.; Pardo, Alejandro G.
2010-01-01
Summary pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two‐step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300‐based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium‐mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T‐DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65–76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T‐DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T‐DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol‐1,4,5‐triphosphate 5‐phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other homobasidiomycetes, group of fungi currently lacking molecular tools for RNA silencing. PMID:21255319
NASA Astrophysics Data System (ADS)
Sauter, Bernhard V.; Martinet, Olivier; Zhang, Wei-Jian; Mandeli, John; Woo, Savio L. C.
2000-04-01
Inhibition of angiogenesis has been shown to be an effective strategy in cancer therapy in mice. However, its widespread application has been hampered by difficulties in the large-scale production of the antiangiogenic proteins. This limitation may be resolved by in vivo delivery and expression of the antiangiogenic genes. We have constructed a recombinant adenovirus that expresses murine endostatin that is biologically active both in vitro, as determined in endothelial cell proliferation assays, and in vivo, by suppression of angiogenesis induced by vascular endothelial growth factor 165. Persistent high serum levels of endostatin (605-1740 ng/ml; mean, 936 ng/ml) were achieved after systemic administration of the vector to nude mice, which resulted in significant reduction of the growth rates and the volumes of JC breast carcinoma and Lewis lung carcinoma (P < 0.001 and P < 0.05, respectively). In addition, the endostatin vector treatment completely prevented the formation of pulmonary micrometastases in Lewis lung carcinoma (P = 0.0001). Immunohistochemical staining of the tumors demonstrated a decreased number of blood vessels in the treatment group versus the controls. In conclusion, the present study clearly demonstrates the potential of vector-mediated antiangiogenic gene therapy as a component in cancer therapy.
Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine
2012-01-01
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082
Fishbein, Ilia; Forbes, Scott P.; Chorny, Michael; Connolly, Jeanne M.; Adamo, Richard F.; Corrales, Ricardo; Alferiev, Ivan S.; Levy, Robert J.
2013-01-01
The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolysable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37°C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolysable cross-linkers with structure-specific release kinetics. PMID:23777912
An efficient transgenic system by TA cloning vectors and RNAi for C. elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gengyo-Ando, Keiko; CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012; Yoshina, Sawako
2006-11-03
In the nematode, transgenic analyses have been performed by microinjection of DNA from various sources into the syncytium gonad. To expedite these transgenic analyses, we solved two potential problems in this work. First, we constructed an efficient TA-cloning vector system which is useful for any promoter. By amplifying the genomic DNA fragments which contain regulatory sequences with or without the coding region, we could easily construct plasmids expressing fluorescent protein fusion without considering restriction sites. We could dissect motor neurons with three colors in a single animal. Second, we used feeding RNAi to isolate transgenic strains which express lag-2::venus fusionmore » gene. We found that the fusion protein is toxic when ectopically expressed in embryos but is functional to rescue a loss of function mutant in the lag-2 gene. Thus, the transgenic system described here should be useful to examine the protein function in the nematode.« less
Kamijho, Yuki; Shiozaki, Yayoi; Sakurai, Eiki; Hanaoka, Kazunori; Watanabe, Daisuke
2014-01-01
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments. PMID:24586938
NASA Astrophysics Data System (ADS)
Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping
2008-08-01
To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.
Improved animal models for testing gene therapy for atherosclerosis.
Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A
2014-04-01
Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long-term therapy from vascular endothelium without accelerating atherosclerotic disease.
Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V
2014-01-01
To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.
Ma, Wenqin; Li, Baozheng; Ling, Chen; Jayandharan, Giridhara R.; Byrne, Barry J.
2011-01-01
Abstract We have recently shown that co-administration of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors with self-complementary (sc) AAV2-protein phosphatase 5 (PP5) vectors leads to a significant increase in the transduction efficiency of ssAAV2 vectors in human cells in vitro as well as in murine hepatocytes in vivo. In the present study, this strategy has been further optimized by generating a mixed population of ssAAV2-EGFP and scAAV2-PP5 vectors at a 10:1 ratio to achieve enhanced green fluorescent protein (EGFP) transgene expression at approximately 5- to 10-fold higher efficiency, both in vitro and in vivo. This simple coproduction method should be adaptable to any ssAAV serotype vector containing transgene cassettes that are too large to be encapsidated in scAAV vectors. PMID:21219084
Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.
Podsakoff, G; Wong, K K; Chatterjee, S
1994-01-01
Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells. Images PMID:8057446
Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.
Podsakoff, G; Wong, K K; Chatterjee, S
1994-09-01
Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells.
Geminivirus vectors for high-level expression of foreign proteins in plant cells.
Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S
2003-02-20
Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.
Saini, Ravi Prakash; Raman, Venkat; Dhandapani, Gurusamy; Malhotra, Era Vaidya; Sreevathsa, Rohini; Kumar, Polumetla Ananda; Sharma, Tilak R; Pattanayak, Debasis
2018-01-01
The polyphagous insect-pest, Helicoverpa armigera, is a serious threat to a number of economically important crops. Chemical application and/or cultivation of Bt transgenic crops are the two strategies available now for insect-pest management. However, environmental pollution and long-term sustainability are major concerns against these two options. RNAi is now considered as a promising technology to complement Bt to tackle insect-pests menace. In this study, we report host-delivered silencing of HaAce1 gene, encoding the predominant isoform of H. armigera acetylcholinesterase, by an artificial microRNA, HaAce1-amiR1. Arabidopsis pre-miRNA164b was modified by replacing miR164b/miR164b* sequences with HaAce1-amiR1/HaAce1-amiR1* sequences. The recombinant HaAce1-preamiRNA1 was put under the control of CaMV 35S promoter and NOS terminator of plant binary vector pBI121, and the resultant vector cassette was used for tobacco transformation. Two transgenic tobacco lines expressing HaAce1-amiR1 was used for detached leaf insect feeding bioassays. Larval mortality of 25% and adult deformity of 20% were observed in transgenic treated insect group over that control tobacco treated insect group. The reduction in the steady-state level of HaAce1 mRNA was 70-80% in the defective adults compared to control. Our results demonstrate promise for host-delivered amiRNA-mediated silencing of HaAce1 gene for H. armigera management.
Garg, Bharti; Gill, Sarvajeet S.; Biswas, Dipul K.; Sahoo, Ranjan K.; Kunchge, Nandkumar S.; Tuteja, Renu; Tuteja, Narendra
2017-01-01
To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis. PMID:28392794
Pradhan, Subrata; Chakraborty, Anirban; Sikdar, Narattam; Chakraborty, Saikat; Bhattacharyya, Jagannath; Mitra, Joy; Manna, Anulina; Dutta Gupta, Snehasish; Sen, Soumitra Kumar
2016-10-01
Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice. For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.
Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes.
Gargul, Joanna Maria; Mibus, Heiko; Serek, Margrethe
2015-01-01
The establishment of alternative methods to chemical treatments for growth retardation and pathogen protection in ornamental plant production has become a major goal in recent breeding programmes. This study evaluates the effect of manipulating MAP kinase 4 nuclear substrate 1 (MKS1) expression in Kalanchoë blossfeldiana and Petunia hybrida. The Arabidopsis thaliana MKS1 gene was overexpressed in both species via Agrobacterium-mediated transformation, resulting in dwarfed phenotypes and delayed flowering in both species and increased tolerance to Pseudomonas syringae pv. tomato in transgenic Petunia plants. The lengths of the stems and internodes were decreased, while the number of nodes in the transgenic plants was similar to that of the control plants in both species. The transgenic Kalanchoë flowers had an increased anthocyanin concentration, and the length of the inflorescence stem was decreased. The morphology of transgenic Petunia flowers was not altered. The results of the Pseudomonas syringae tolerance test showed that Petunia plants with one copy of the transgene reacted similarly to the nontransgenic control plants; however, plants with four copies of the transgene exhibited considerably higher tolerance to bacterial attack. Transgene integration and expression was determined by Southern blot hybridization and RT-PCR analyses. MKS1 in wild-type Petunia plants was down-regulated through a virus-induced gene silencing (VIGS) method using tobacco rattle virus vectors. There were no significant phenotypic differences between the plants with silenced MKS1 genes and the controls. The relative concentration of the MKS1 transcript in VIGS-treated plants was estimated by quantitative RT-PCR. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Fukuzawa, Noriho; Ishihara, Takeaki; Itchoda, Noriko; Tabayashi, Noriko; Kataoka, Chiwa; Masuta, Chikara; Matsumura, Takeshi
2011-01-01
A plant viral vector has the potential to efficiently produce recombinant proteins at a low cost in a short period. Although recombinant proteins can be also produced by transgenic plants, a plant viral vector, if available, may be more convenient when urgent scale-up in production is needed. However, it is difficult to use a viral vector in open fields because of the risk of escape to the environment. In this study, we constructed a novel viral vector system using a movement-defective Cucumber mosaic virus (CMV) vector, which is theoretically localized in the inoculated cells but infects systemically only with the aid of the transgenic helper plant that complements viral movement, diminishing the risk of viral proliferation. Interestingly, the helper plant systemically infected with the vector gave strong cross-protection against challenge inoculation with wild-type CMVs. Using CMV strains belonging to two discrete CMV groups (subgroups I and II), we also improved the system to prevent recombination between the vector and the transgene transcript in the helper plant. We here demonstrate the expression of an anti-dioxin single chain variable fragment (DxscFv) and interleukin-1 receptor antagonist (IL1-Ra) in Nicotiana benthamiana by this viral vector confinement system, which is applicable for many useful high-quality recombinant proteins. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.
Zhao, Dongyan; Song, Guo-qing
2014-12-01
Small interfering RNAs (siRNAs) are silencing signals in plants. Virus-resistant transgenic rootstocks developed through siRNA-mediated gene silencing may enhance virus resistance of nontransgenic scions via siRNAs transported from the transgenic rootstocks. However, convincing evidence of rootstock-to-scion movement of siRNAs of exogenous genes in woody plants is still lacking. To determine whether exogenous siRNAs can be transferred, nontransgenic sweet cherry (scions) was grafted on transgenic cherry rootstocks (TRs), which was transformed with an RNA interference (RNAi) vector expressing short hairpin RNAs of the genomic RNA3 of Prunus necrotic ringspot virus (PNRSV-hpRNA). Small RNA sequencing was conducted using bud tissues of TRs and those of grafted (rootstock/scion) trees, locating at about 1.2 m above the graft unions. Comparison of the siRNA profiles revealed that the PNRSV-hpRNA was efficient in producing siRNAs and eliminating PNRSV in the TRs. Furthermore, our study confirmed, for the first time, the long-distance (1.2 m) transfer of PNRSV-hpRNA-derived siRNAs from the transgenic rootstock to the nontransgenic scion in woody plants. Inoculation of nontransgenic scions with PNRSV revealed that the transferred siRNAs enhanced PNRSV resistance of the scions grafted on the TRs. Collectively, these findings provide the foundation for 'using transgenic rootstocks to produce products of nontransgenic scions in fruit trees'. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo
2013-01-01
Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462
Foamy virus–mediated gene transfer to canine repopulating cells
Kiem, Hans-Peter; Allen, James; Trobridge, Grant; Olson, Erik; Keyser, Kirsten; Peterson, Laura; Russell, David W.
2007-01-01
Foamy virus (FV) vectors are particularly attractive gene-transfer vectors for stem-cell gene therapy because they form a stable transduction intermediate in quiescent cells and can efficiently transduce hematopoietic stem cells. Here, we studied the use of FV vectors to transduce long-term hematopoietic repopulating cells in the dog, a clinically relevant large animal model. Mobilized canine peripheral blood (PB) CD34+ cells were transduced with an enhanced green fluorescent protein (EGFP)–expressing FV vector in an 18-hour transduction protocol. All 3 dogs studied had rapid neutrophil engraftment to greater than 500/μL with a median of 10 days. Transgene expression was detected in all cell lineages (B cells, T cells, granulocytes, red blood cells, and platelets), indicating multilineage engraftment of transduced cells. Up to 19% of blood cells were EGFP+, and this was confirmed at the DNA level by real-time polymerase chain reaction (PCR) and Southern blot analysis. These transduction rates were higher than the best results we obtained previously with lentiviral vectors in a similar transduction protocol. Integration site analysis also demonstrated polyclonal repopulation and the transduction of multipotential hematopoietic repopulating cells. These data suggest that FV vectors should be useful for stem-cell gene therapy, particularly for applications in which short transduction protocols are critical. PMID:16968897
Darwish, Nader Ahmed; Khan, Raham Sher; Ntui, Valentine Otang; Nakamura, Ikuo; Mii, Masahiro
2014-03-01
Marker-free transgenic eggplants, exhibiting enhanced resistance to Alternaria solani , can be generated on plant growth regulators (PGRs)- and antibiotic-free MS medium employing the multi-auto-transformation (MAT) vector, pMAT21 - wasabi defensin , wherein isopentenyl transferase ( ipt ) gene is used as a positive selection marker. Use of the selection marker genes conferring antibiotic or herbicide resistance in transgenic plants has been considered a serious problem for environment and the public. Multi-auto-transformation (MAT) vector system has been one of the tools to excise the selection marker gene and produce marker-free transgenic plants. Ipt gene was used as a selection marker gene. Wasabi defensin gene, isolated from Wasabia japonica (a Japanese horseradish which has been a potential source of antimicrobial proteins), was used as a gene of interest. Wasabi defensin gene was cloned from the binary vector, pEKH-WD, to an ipt-type MAT vector, pMAT21, by gateway cloning technology and transferred to Agrobacterium tumefaciens strain EHA105. Infected cotyledon explants of eggplant were cultured on PGRs- and antibiotic-free MS medium. Extreme shooty phenotype/ipt shoots were produced by the explants infected with the pMAT21-wasabi defensin (WD). The same PGRs- and antibiotic-free MS medium was used in subcultures of the ipt shoots. Subsequently, morphologically normal shoots emerged from the Ipt shoots. Molecular analyses of genomic DNA from transgenic plants confirmed the integration of the WD gene and excision of the selection marker (ipt gene). Expression of the WD gene was confirmed by RT-PCR and Northern blot analyses. In vitro whole plant and detached leaf assay of the marker-free transgenic plants exhibited enhanced resistance against Alternaria solani.
Germline Transformation of Drosophila Virilis Mediated by the Transposable Element Hobo
Lozovskaya, E. R.; Nurminsky, D. I.; Hartl, D. L.; Sullivan, D. T.
1996-01-01
A laboratory strain of Drosophila virilis was genetically transformed with a hobo vector carrying the miniwhite cassette using a helper plasmid with an hsp70-driven hobo transposase-coding sequence. The rate of transformation was 0.5% per fertile G0 animal. Three transgenic insertions were cloned and characterized and found to be authentic hobo insertions. These results, together with the known wide-spread distribution of hobo in diverse insect species, suggest that hobo and related transposable elements may be of considerable utility in the germline transformation of insects other than D. melanogaster. PMID:8770594
Serova, Irina A; Dvoryanchikov, Gennady A; Andreeva, Ludmila E; Burkov, Ivan A; Dias, Luciene P B; Battulin, Nariman R; Smirnov, Alexander V; Serov, Oleg L
2012-06-01
A new expression vector containing the 1,944 bp 5'-flanking regulatory region together with exon 1 and intron 1 of the goat alpha-S1-casein gene (CSN1S1), the full-sized human granulocyte colony-stimulating factor gene (hGCSF) and the 3'-flanking sequence of the bovine CSN1S1, was created. The vector DNA was used for generation of four mouse transgenic lines. The transgene was integrated into chromosomes 8 and 12 of two founders as 2 and 5 copies, respectively. Tissue-specific secretion of hG-CSF into the milk of transgenic mice was in the range of 19-40 μg/ml. RT-PCR analysis of various tissues of the transgenic mice demonstrated that expression of hGCSF was detected in only the mammary gland in the progeny of all founders. Moreover, cells were shown to be positive for hG-CSF by immunofluorescent analysis in the mammary glands but not in any other tissues. There were no signs of mosaic expression in the mammary gland. Trace amounts of hG-CSF were detected in the serum of females of two transgenic lines during lactation only. However, no transgenic mice showed any changes in hematopoiesis based on the number of granulocytes in blood. Immunoblotting of hG-CSF in the milk of transgenic mice revealed two forms, presumably the glycosylated and non-glycosylated forms. The hematopoietic activity of hG-CSF in the milk of transgenic females is comparable to that of recombinant G-CSF. In general, the data obtained in this study show that the new expression vector is able to provide correct tissue-specific expression of hG-CSF with high biological activity in transgenic mice.
Hwang, Seon-Ung; Eun, Kiyoung; Yoon, Junchul David; Kim, Hyunggee; Hyun, Sang-Hwan
2018-05-31
Transgenic (TG) pigs are important in biomedical research and are used in disease modeling, pharmaceutical toxicity testing, and regenerative medicine. In this study, we constructed two vector systems by using the promoter of the pig glial fibrillary acidic protein ( pGFAP ) gene, which is an astrocyte cell marker. We established donor TG fibroblasts with pGFAP-CreER T2 /LCMV-EGFP LoxP and evaluated the effect of the transgenes on TG-somatic cell nuclear transfer (SCNT) embryo development. Cleavage rates were not significantly different between control and transgene-donor groups. Embryo transfer was performed thrice just before ovulation of the surrogate sows. One sow delivered 5 TG piglets at 115 days after pregnancy. Polymerase chain reaction (PCR) analysis with genomic DNA isolated from skin tissues of TG pigs revealed that all 5 TG pigs had the transgenes. EGFP expression in all organs tested was confirmed by immunofluorescence staining and PCR. Real-time PCR analysis showed that pGFAP promoter-driven Cre fused to the mutated human ligand-binding domain of the estrogen receptor ( CreER T2 ) mRNA was highly expressed in the cerebrum. Semi-nested PCR analysis revealed that CreER T2 -mediated recombination was induced in cerebrum and cerebellum but not in skin. Thus, we successfully generated a TG pig with a 4-hydroxytamoxifen (TM)-inducible pGFAP-CreER T2 /EGFP LoxP recombination system via SCNT.
High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.
Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca
2015-01-01
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.
Yang, Li; Hu, Chunhua; Li, Na; Zhang, Jiayin; Yan, Jiawen; Deng, Ziniu
2011-01-01
The COOH terminal of pthA encoding three nuclear localizing signals (NLS) was amplified by polymerase chain reaction (PCR) from the plasmid of Xanthomonas axonopodis pv. citri, the pathogen of citrus canker disease. Then the sense and antisense strands of the nls were cloned into pBI121 vector. pthA-nls driven by the CaMV35 s promoter was transferred into sweet orange via Agrobacterium -mediated transformation. Successful integration was confirmed by PCR and Southern blotting, and 12 sense-nls (nls (+)) and 9 antisense-nls (nls (-)) transgenic clones were obtained. The expression of nls fragment was analyzed by RT-PCR, Real time q-PCR and Western blotting, in which the specific NLS protein was detected only in nls (+) transgenic clones. In an in vitro assay, when pin-puncture inoculation was performed with 2.5 × 10(7) cfu/ml of bacterial solution, the nls (+) transgenic clones showed no typical lesion development, while typical symptoms were observed in the wild types and the nls (-) transgenic clones. In vivo assay results indicated that the nls (+) transgenic clones showed less disease incidence, in comparison with the wild types and the nls (-) transgenic clones, when pin-puncture inoculation was performed with 10(4)-10(5) cfu/ml. The minimum disease incidence was 23.3% for 'Sucarri' sweet orange and 33.3% for 'Bingtang' sweet orange. When 10(4)-10(7) cfu/ml of pathogen was spray inoculated, the nls (+) transgenic clones did not show any symptom, and even the concentration raised to 10(9) cfu/ml, the disease incidence was 20-80%, while the wild types and the nls (-) transgenic clones had 100% disease development with whatever concentration of inoculum. Two transgenic clones were confirmed to be resistant to citrus canker disease in the repeated inoculation. The results suggested that the transformation of nls sense strands may offer an effective way to acquire resistance to citrus canker disease.
Wang, Xiaohui; Ha, Tuanzhu; Zou, Jianghuan; Ren, Danyang; Liu, Li; Zhang, Xia; Kalbfleisch, John; Gao, Xiang; Williams, David; Li, Chuanfu
2014-01-01
Aims The present study examined the role of microRNA-125b (miR-125b) in myocardial ischaemia/reperfusion (I/R) injury. We constructed lentivirus-expressing miR-125b (LmiR-125b) and developed transgenic mice with overexpression of miR-125b. Methods and results LmiR-125b was transfected into mouse hearts through the right common carotid artery. Lentivirus vector (LmiR-Con) served as vector control. Untreated mice served as I/R control. Sham operation served as sham control. Seven days after transfection, the hearts were subjected to ischaemia (45 min) followed by reperfusion (4 h). Myocardial infarct size was analysed by 2,3,5-triphenyltetrazolium chloride staining. In separate experiments, hearts were subjected to ischaemia (45 min) followed by reperfusion for up to 7 days. Cardiac function was measured by echocardiography before, as well as 3 and 7 days after myocardial I/R. Increased expression of miR-125b significantly decreased I/R-induced myocardial infarct size by 60% and prevented I/R-induced decreases in ejection fraction (EF%) and fractional shortening (%FS). Transgenic mice with overexpression of miR-125b also showed the protection against myocardial I/R injury. Increased expression of miR-125b attenuated I/R-induced myocardial apoptosis and caspase-3/7 and -8 activities. Western blot showed that increased expression of miR-125b suppresses p53 and Bak1 expression in the myocardium. In addition, transfection of LmiR-125b decreased the levels of TNF receptor-associated factor 6 (TRAF6) and prevented I/R-induced NF-κB activation. Conclusion miR-125 protects the myocardium from I/R injury by preventing p53-mediated apoptotic signalling and suppressing TRAF6-mediated NF-κB activation. PMID:24576954
Wang, Xiaohui; Ha, Tuanzhu; Zou, Jianghuan; Ren, Danyang; Liu, Li; Zhang, Xia; Kalbfleisch, John; Gao, Xiang; Williams, David; Li, Chuanfu
2014-06-01
The present study examined the role of microRNA-125b (miR-125b) in myocardial ischaemia/reperfusion (I/R) injury. We constructed lentivirus-expressing miR-125b (LmiR-125b) and developed transgenic mice with overexpression of miR-125b. LmiR-125b was transfected into mouse hearts through the right common carotid artery. Lentivirus vector (LmiR-Con) served as vector control. Untreated mice served as I/R control. Sham operation served as sham control. Seven days after transfection, the hearts were subjected to ischaemia (45 min) followed by reperfusion (4 h). Myocardial infarct size was analysed by 2,3,5-triphenyltetrazolium chloride staining. In separate experiments, hearts were subjected to ischaemia (45 min) followed by reperfusion for up to 7 days. Cardiac function was measured by echocardiography before, as well as 3 and 7 days after myocardial I/R. Increased expression of miR-125b significantly decreased I/R-induced myocardial infarct size by 60% and prevented I/R-induced decreases in ejection fraction (EF%) and fractional shortening (%FS). Transgenic mice with overexpression of miR-125b also showed the protection against myocardial I/R injury. Increased expression of miR-125b attenuated I/R-induced myocardial apoptosis and caspase-3/7 and -8 activities. Western blot showed that increased expression of miR-125b suppresses p53 and Bak1 expression in the myocardium. In addition, transfection of LmiR-125b decreased the levels of TNF receptor-associated factor 6 (TRAF6) and prevented I/R-induced NF-κB activation. miR-125 protects the myocardium from I/R injury by preventing p53-mediated apoptotic signalling and suppressing TRAF6-mediated NF-κB activation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong
2014-11-01
Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.
Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong
2014-01-01
Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5′ arm and 3′ arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands. PMID:25358326
Shao, Wenwei; Earley, Lauriel F; Chai, Zheng; Chen, Xiaojing; Sun, Junjiang; He, Ting; Deng, Meng; Hirsch, Matthew L; Ting, Jenny; Samulski, R Jude; Li, Chengwen
2018-06-21
Data from clinical trials for hemophilia B using adeno-associated virus (AAV) vectors have demonstrated decreased transgenic coagulation factor IX (hFIX) expression 6-10 weeks after administration of a high vector dose. While it is likely that capsid-specific cytotoxic T lymphocytes eliminate vector-transduced hepatocytes, thereby resulting in decreased hFIX, this observation is not intuitively consistent with restored hFIX levels following prednisone application. Although the innate immune response is immediately activated following AAV vector infection via TLR pathways, no studies exist regarding the role of the innate immune response at later time points after AAV vector transduction. Herein, activation of the innate immune response in cell lines, primary human hepatocytes, and hepatocytes in a human chimeric mouse model was observed at later time points following AAV vector transduction. Mechanistic analysis demonstrated that the double-stranded RNA (dsRNA) sensor MDA5 was necessary for innate immune response activation and that transient knockdown of MDA5, or MAVS, decreased IFN-β expression while increasing transgene production in AAV-transduced cells. These results both highlight the role of the dsRNA-triggered innate immune response in therapeutic transgene expression at later time points following AAV transduction and facilitate the execution of effective strategies to block the dsRNA innate immune response in future clinical trials.
Umei, Tomohiko C; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Kurotsu, Shota; Tamura, Fumiya; Osakabe, Rina; Tani, Hidenori; Nara, Kaori; Miyoshi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2017-08-19
Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.
Umei, Tomohiko C.; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Kurotsu, Shota; Tamura, Fumiya; Osakabe, Rina; Tani, Hidenori; Nara, Kaori; Miyoshi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2017-01-01
Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming. PMID:28825623
Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina
2012-09-07
Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Brough, Rachel; Papanastasiou, Antigoni M; Porter, Andrew CG
2007-01-01
Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes. PMID:17493262
Shepelev, Mikhail V; Korobko, Elena V; Vinogradova, Tatiana V; Kopantsev, Eugene P; Korobko, Igor V
2013-03-04
Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.
Mohamad, Osama; Faulkner, Ben; Chen, Dongdong; Yu, Shan Ping; Wei, Ling
2013-01-01
Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS) cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation. In addition, the creation of vector-free and transgene-free human iPS (hiPS) cells provides a new generation of stem cells with a reduced risk of tumor formation that was associated with the random integration of viral vectors seen with previous techniques. However, the potential use of these cells in the treatment of ischemic stroke has not been explored. In the present investigation, we examined the neuronal differentiation of vector-free and transgene-free hiPS cells and the transplantation of hiPS cell-derived neural progenitor cells (hiPS-NPCs) in an ischemic stroke model in mice. Vector-free hiPS cells were maintained in feeder-free and serum-free conditions and differentiated into functional neurons in vitro using a newly developed differentiation protocol. Twenty eight days after transplantation in stroke mice, hiPS-NPCs showed mature neuronal markers in vivo. No tumor formation was seen up to 12 months after transplantation. Transplantation of hiPS-NPCs restored neurovascular coupling, increased trophic support and promoted behavioral recovery after stroke. These data suggest that using vector-free and transgene-free hiPS cells in stem cell therapy are safe and efficacious in enhancing recovery after focal ischemic stroke in mice. PMID:23717557
The Ars insulator facilitates I-SceI meganuclease-mediated transgenesis in the sea urchin embryo.
Ochiai, Hiroshi; Sakamoto, Naoaki; Suzuki, Kenichi; Akasaka, Koji; Yamamoto, Takashi
2008-09-01
For the efficient generation of transgenic sea urchins, we have adopted an I-SceI meganuclease-mediated transgenesis method. Several types of promoter-GFP gene constructs flanked by two I-SceI recognition sequences were co-injected with I-SceI into sea urchin fertilized eggs. Using cell-lineage-specific promoter constructs, the frequency of transgene expression was elevated, and their level of mozaicism was reduced. The addition of the Ars insulator sequence, which is known to block the enhancer activity and protect transgenes from position effects, led to a reduction in ectopic transgene expression and an elevation of transgene expression frequency in this I-SceI-mediated system. However, the magnitude of the effects of the Ars insulator was dependent upon the promoter constructs. QPCR analysis also showed that the Ars insulator increases the transgene copy number. These results suggest that the I-SceI-mediated method using the Ars insulator is advantageous for transgenesis in the sea urchin embryo.
The prospect of gene therapy for prostate cancer: update on theory and status.
Koeneman, K S; Hsieh, J T
2001-09-01
Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.
De Groote, Philippe; Grootjans, Sasker; Lippens, Saskia; Eichperger, Chantal; Leurs, Kirsten; Kahr, Irene; Tanghe, Giel; Bruggeman, Inge; De Schamphelaire, Wouter; Urwyler, Corinne; Vandenabeele, Peter; Haustraete, Jurgen; Declercq, Wim
2016-01-01
In contrast to most common gene delivery techniques, lentiviral vectors allow targeting of almost any mammalian cell type, even non-dividing cells, and they stably integrate in the genome. Therefore, these vectors are a very powerful tool for biomedical research. Here we report the generation of a versatile new set of 22 lentiviral vectors with broad applicability in multiple research areas. In contrast to previous systems, our platform provides a choice between constitutive and/or conditional expression and six different C-terminal fusions. Furthermore, two compatible selection markers enable the easy derivation of stable cell lines co-expressing differently tagged transgenes in a constitutive or inducible manner. We show that all of the vector features are functional and that they contribute to transgene overexpression in proof-of-principle experiments.
Ghosh, Prithwi; Sen, Senjuti; Chakraborty, Joydeep; Das, Sampa
2016-03-01
Rice sheath blight, caused by Rhizoctonia solani is one of the most devastating diseases of rice. It is associated with significant reduction in rice productivity worldwide. A mutant variant of mannose binding Allium sativum leaf agglutinin (mASAL) was previously reported to exhibit strong antifungal activity against R. solani. In this study, the mASAL gene has been evaluated for its in planta antifungal activity in rice plants. mASAL was cloned into pCAMBIA1301 binary vector under the control of CaMV35S promoter. It was expressed in an elite indica rice cv. IR64 by employing Agrobacterium tumefaciens-mediated transformation. Molecular analyses of transgenic plants confirmed the presence and stable integration of mASAL gene. Immunohistofluorescence analysis of various tissue sections of plant parts clearly indicated the constitutive expression of mASAL. The segregation pattern of mASAL transgene was observed in T1 progenies in a 3:1 Mendelian ratio. The expression of mASAL was confirmed in T0 and T1 plants through western blot analysis followed by ELISA. In planta bioassay of transgenic lines against R. solani exhibited an average of 55 % reduction in sheath blight percentage disease index (PDI). The present study opens up the possibility of engineering rice plants with the antifungal gene mASAL, conferring resistance to sheath blight.
Shen, Jin-Song; Meng, Xing-Li; Yokoo, Takashi; Sakurai, Ken; Watabe, Kazuhiko; Ohashi, Toya; Eto, Yoshikatsu
2005-05-01
Brain-directed prenatal gene therapy may benefit some lysosomal storage diseases that affect the central nervous system (CNS) before birth. Our previous study showed that intrauterine introduction of recombinant adenoviruses into cerebral ventricles results in efficient gene transfer to the CNS in the mouse. However, transgene expression decreased with time due to the non-integrative property of adenoviral vectors. In this study, in order to obtain permanent gene transduction, we investigated the feasibility of retrovirus-mediated in utero gene transduction. Concentrated retrovirus encoding the LacZ gene was injected into the cerebral ventricles of the embryos of normal and twitcher mice (a murine model of Krabbe disease) at embryonic day 12. The distribution and maintenance of the transgene expression in the recipient brain were analyzed histochemically, biochemically and by the quantitative polymerase chain reaction method pre- and postnatally. Efficient and highly persistent gene transduction to the brain was achieved both in normal and the twitcher mouse. Transduced neurons, astrocytes and oligodendrocytes were distributed throughout the brain. The transduced LacZ gene, its transcript and protein expression in the brain were maintained for 14 months without decrement. In addition, gene transduction to multiple tissues other than the brain was also detected at low levels. This study suggests that brain-directed in utero gene transfer using retrovirus vector may be beneficial to the treatment of lysosomal storage diseases with severe brain damage early in life, such as Krabbe disease. Copyright (c) 2005 John Wiley & Sons, Ltd.
Mathison, Megumi; Singh, Vivek P; Gersch, Robert P; Ramirez, Maricela O; Cooney, Austin; Kaminsky, Stephen M; Chiuchiolo, Maria J; Nasser, Ahmed; Yang, Jianchang; Crystal, Ronald G; Rosengart, Todd K
2014-10-01
The in situ reprogramming of cardiac fibroblasts into induced cardiomyocytes by the administration of gene transfer vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) has been shown to improve ventricular function in myocardial infarction models. The efficacy of this strategy could, however, be limited by the need for fibroblast targets to be infected 3 times--once by each of the 3 transgene vectors. We hypothesized that a polycistronic "triplet" vector encoding all 3 transgenes would enhance postinfarct ventricular function compared with use of "singlet" vectors. After validation of the polycistronic vector expression in vitro, adult male Fischer 344 rats (n=6) underwent coronary ligation with or without intramyocardial administration of an adenovirus encoding all 3 major vascular endothelial growth factor (VEGF) isoforms (AdVEGF-All6A positive), followed 3 weeks later by the administration to AdVEGF-All6A-positive treated rats of singlet lentivirus encoding G, M, or T (1×10(5) transducing units each) or the same total dose of a GMT "triplet" lentivirus vector. Western blots demonstrated that triplet and singlet vectors yielded equivalent GMT transgene expression, and fluorescence activated cell sorting demonstrated that triplet vectors were nearly twice as potent as singlet vectors in generating induced cardiomyocytes from cardiac fibroblasts. Echocardiography demonstrated that GMT triplet vectors were more effective than the 3 combined singlet vectors in enhancing ventricular function from postinfarct baselines (triplet, 37%±10%; singlet, 13%±7%; negative control, 9%±5%; P<.05). These data have confirmed that the in situ administration of G, M, and T induces postinfarct ventricular functional improvement and that GMT polycistronic vectors enhance the efficacy of this strategy. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Ban, Hiroshi; Nishishita, Naoki; Fusaki, Noemi; Tabata, Toshiaki; Saeki, Koichi; Shikamura, Masayuki; Takada, Nozomi; Inoue, Makoto; Hasegawa, Mamoru; Kawamata, Shin; Nishikawa, Shin-Ichi
2011-01-01
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. PMID:21821793
Tolmachov, Oleg E
2015-01-01
Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo are then attracted to and internalized into the intended target cells via the expressed cognate strongly binding extra-cellular receptor, causing escalation of gene transfer into these cells and increasing the copy number of the therapeutic gene expression modules. Such self-focusing swarms of gene vectors can be either homogeneous, with 'scout' and 'therapeutic' members of the swarm being structurally identical, or, alternatively, heterogeneous (split), with 'scout' and 'therapeutic' members of the swarm being structurally specialized. It is hoped that the proposed self-focusing cell-targeted gene vector swarms with receptor-mediated intra-swarm signalling could be particularly effective in 'top-up' gene delivery scenarios, achieving high-level and sustained expression of therapeutic transgenes that are prone to shut-down through degradation and silencing. Crucially, in contrast to low-precision 'general location' vector guidance by diffusible chemo-attractants, ear-marking non-diffusible receptors can provide high-accuracy targeting of therapeutic vector particles to the specific cell, which has undergone a 'successful cell-specific hit' by a 'scout' vector particle. Opportunities for cell targeting could be expanded, since in the proposed model of self-focusing it could be possible to probe a broad selection of intra-cellular determinants of cell-specificity and not just to rely exclusively on extra-cellular markers of cell-specificity. By employing such self-focusing gene vectors for the improvement of cell-targeted delivery of therapeutic genes, e.g., in cancer therapy or gene addition therapy of recessive genetic diseases, it could be possible to broaden a leeway for the reduction of the vector load and, consequently, to minimize undesired vector cytotoxicity, immune reactions, and the risk of inadvertent genetic modification of germline cells in genetic treatment in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.
Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization
Maxfield, Lori F.; Abbink, Peter; Stephenson, Kathryn E.; Borducchi, Erica N.; Ng'ang'a, David; Kirilova, Marinela M.; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank
2015-01-01
Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. PMID:26376928
Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization.
Maxfield, Lori F; Abbink, Peter; Stephenson, Kathryn E; Borducchi, Erica N; Ng'ang'a, David; Kirilova, Marinela M; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank; Barouch, Dan H
2015-11-01
Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. Copyright © 2015, Maxfield et al.
Transgenic cotton: from biotransformation methods to agricultural application.
Zhang, Baohong
2013-01-01
Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease-resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cotton are the two dominant transgenic cottons in the transgenic cotton market.
Rustagi, Anjana; Jain, Shalu; Kumar, Deepak; Shekhar, Shashi; Jain, Mukesh; Bhat, Vishnu; Sarin, Neera Bhalla
2015-01-01
Bananas and plantains (Musa spp. L.) are important subsistence crops and premium export commodity in several countries, and susceptible to a wide range of environmental and biotic stress conditions. Here, we report efficient, rapid, and reproducible Agrobacterium-mediated transformation and regeneration of an Indian niche cultivar of banana [M. acuminata cv. Matti (AA)]. Apical meristem-derived highly proliferative multiple shoot clump (MSC) explants were transformed with the Agrobacterium strain EHA105 harboring a binary vector pCAMBIA-1301 carrying hptII and uidA. Sequential agro-infiltration (10 min, 400 mmHg), infection (additional 35 min, Agrobacterium density A 600 = 0.8) and co-cultivation (18 h) regimen in 100 µM acetosyringone containing liquid medium were critical factors yielding high transformation efficiency (~81 %) corroborated by transient GUS expression assay. Stable transgenic events were recovered following two cycles of meristem initiation and selection on hygromycin containing medium. Histochemical GUS assay in several tissues of transgenic plants and molecular analyses confirmed stable integration and expression of transgene. The protocol described here allowed recovery of well-established putative transgenic plantlets in as little as 5 months. The transgenic banana plants could be readily acclimatized under greenhouse conditions, and were phenotypically similar to the wild-type untransformed control plants (WT). Transgenic plants overexpressing Salinity-Induced Pathogenesis-Related class 10 protein gene from Arachis hypogaea (AhSIPR10) in banana cv. Matti (AA) showed better photosynthetic efficiency and less membrane damage (P < 0.05) in the presence of NaCl and mannitol in comparison to WT plants suggesting the role of AhSIPR10 in better tolerance of salt stress and drought conditions.
Kim, Dohyang; Nam, Yu Hwa; Cui, Xiang-Shun; Kim, Nam-Hyung
2018-01-01
The transgenic chicken has been considered as a prospective bioreactor for large-scale production of costly pharmaceutical proteins. In the present study, we report successful generation of transgenic hens that lay eggs containing a high concentration of human erythropoietin (hEPO) in the ovalbumin. Using a feline immunodeficiency virus (FIV)-based pseudotyped lentivirus vector enveloped with G glycoproteins of the vesicular stomatitis virus, the replication-defective vector virus carrying the hEPO gene under the control of the chicken ovalbumin promoter was microinjected to the subgerminal cavity of freshly laid chicken eggs (stage X). Stable germline transmission of the hEPO transgene to the G1 progeny, which were non-mosaic and hemizygous for the hEPO gene under the ovalbumin promoter, was confirmed by mating of a G0 rooster with non-transgenic hens. Quantitative analysis of hEPO in the egg whites and in the blood samples taken from G1 transgenic chickens showed 4,810 ~ 6,600 IU/ml (40.1 ~ 55.0 μg/ml) and almost no detectable concentration, respectively, indicating tightly regulated oviduct-specific expression of the hEPO transgene. In terms of biological activity, there was no difference between the recombinant hEPO contained in the transgenic egg white and the commercially available counterpart, in vitro. We suggest that these results imply an important step toward efficient production of human cytokines from a transgenic animal bioreactor. PMID:29847554
Pan, Li; Zhang, Yong-Guang; Wang, Yong-Lu; Wang, Bao-Qin; Xie, Qing-Ge
2006-10-01
The plant constitutive expression vector pBin438/VP1 for VP1 gene of foot-and-mouth disease virus strain O/ China/99 was constructed. Mediated with Agrobacterium tumefaciens GV3101 harboring pBin438/VP1, VP1 gene was transferred into cotyledons of tomato. After selected by Kanamysin, sixty resistant lines were obtained. The integration and transcription of the VP1 gene in transformed plants was detected by PCR and RT-PCR. After being detected by sandwich-ELISA assays, about 40% transformed plants confirmed to express the recombinant protein. The leave extracts of two positive lines were respectively emulsified in Freund's adjuvant and guinea pigs were intramuscular inoculation at days 0, 15 and 30d. According to the sera antibody levels and the protection of the vaccinated guinea pigs against challenge with 100ID50 FMDV, probed into the immunogenicity of the target protein expressed in transgenic plants. Experimental results showed that the plant expression vector was successfully constructed. PCR and RT-PCR analyses confirmed VP1 gene was transformed into tomato plants and got expression at the transcription levels. The expressed VP1 protein of FMDV, which was identified by ELISA and Western blot, can be specifically recognized by polyclonal antibodies against FMDV. Indirect-ELISA antibody titers reached 1:64 twenty-one days after the third inoculation. In the challenge test, the protection against FMDV challenge in two groups was 80% and 40% respectively. The immunization test in guinea pigs indicated that the expression product of transgenic tomato plants had immunogenicity and could effectively induce the specific antibodies against FMDV.
Progress of cereal transformation technology mediated by Agrobacterium tumefaciens.
Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko
2014-01-01
Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens.
Du, Qian; Yang, Xiangdong; Zhang, Jinhua; Zhong, Xiaofang; Kim, Kyung Seok; Yang, Jing; Xing, Guojie; Li, Xiaoyu; Jiang, Zhaoyuan; Li, Qiyun; Dong, Yingshan; Pan, Hongyu
2018-06-01
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T 2 -T 4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.
Single Cell-Based Vector Tracing in Patients with ADA-SCID Treated with Stem Cell Gene Therapy.
Igarashi, Yuka; Uchiyama, Toru; Minegishi, Tomoko; Takahashi, Sirirat; Watanabe, Nobuyuki; Kawai, Toshinao; Yamada, Masafumi; Ariga, Tadashi; Onodera, Masafumi
2017-09-15
Clinical improvement in stem cell gene therapy (SCGT) for primary immunodeficiencies depends on the engraftment levels of genetically corrected cells, and tracing the transgene in each hematopoietic lineage is therefore extremely important in evaluating the efficacy of SCGT. We established a single cell-based droplet digital PCR (sc-ddPCR) method consisting of the encapsulation of a single cell into each droplet, followed by emulsion PCR with primers and probes specific for the transgene. A fluorescent signal in a droplet indicates the presence of a single cell carrying the target gene in its genome, and this system can clearly determine the ratio of transgene-positive cells in the entire population at the genomic level. Using sc-ddPCR, we analyzed the engraftment of vector-transduced cells in two patients with severe combined immunodeficiency (SCID) who were treated with SCGT. Sufficient engraftment of the transduced cells was limited to the T cell lineage in peripheral blood (PB), and a small percentage of CD34 + cells exhibited vector integration in bone marrow, indicating that the transgene-positive cells in PB might have differentiated from a small population of stem cells or lineage-restricted precursor cells. sc-ddPCR is a simplified and powerful tool for the detailed assessment of transgene-positive cell distribution in patients treated with SCGT.
Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences
Yu, Junying; Hu, Kejin; Smuga-Otto, Kim; Tian, Shulan; Stewart, Ron; Slukvin, Igor I.; Thomson, James A.
2009-01-01
Reprogramming differentiated human cells to induced pluripotent stem (iPS) cells has applications in basic biology, drug development, and transplantation. Human iPS cell derivation previously required vectors that integrate into the genome, which can create mutations and limit the utility of the cells in both research and clinical applications. Here we describe the derivation of human iPS cells using non-integrating episomal vectors. After removal of the episome, iPS cells completely free of vector and transgene sequences are derived that are similar to human embryonic stem (ES) cells in proliferative and developmental potential. These results demonstrate that reprogramming human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors, and removes one obstacle to the clinical application of human iPS cells. PMID:19325077
Song, Zuowei; Zhang, Mengyao; Xue, Renyu; Cao, Guangli; Gong, Chengliang
2014-05-01
In previous studies, we reported that the blood glucose levels of mice with type I diabetes mellitus (TIDM) was reduced with orally administered silk gland powder from silkworms transgenic for human insulin-like growth factor-I (hIGF-I). However, potential safety hazards could not be eliminated because the transgenic silk gland powder contained heterologous DNA, including the green fluorescent protein (gfp) and neomycin resistance (neo) genes. These shortcomings might be overcome if the recombinant hIGF-I were secreted into the sericin layer of the cocoon. In this study, silkworm eggs were transfected with a novel piggyBac transposon vector, pigA3GFP-serHS-hIGF-I-neo, containing the neo, gfp, and hIGF-I genes controlled by the sericin-1 (ser-1) promoter with the signal peptide DNA sequence of the fibrin heavy chain (Fib-H) and a helper plasmid containing the piggyBac transposase sequence under the control of the Bombyx mori actin 3 (A3) promoter, using sperm-mediated gene transfer to generate the transformed silkworms. The hIGF-I content estimated by enzyme-linked immunosorbent assay was approximately 162.7 ng/g. To estimate the biological activity of the expressed hIGF-I, streptozotocin-induced TIDM mice were orally administered sericin from the transgenic silkworm. The blood glucose levels of the mice were significantly reduced, suggesting that the extract from the transgenic hIGF-I silkworm cocoons can be used as an orally administered drug. Copyright © 2014 Elsevier Ltd. All rights reserved.
High-throughput analysis of T-DNA location and structure using sequence capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less
High-throughput analysis of T-DNA location and structure using sequence capture
Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; ...
2015-10-07
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less
Saha, Prasenjit; Majumder, Pralay; Dutta, Indrajit; Ray, Tui; Roy, S C; Das, Sampa
2006-05-01
Mannose binding Allium sativum leaf agglutinin (ASAL) has been shown to be antifeedant and insecticidal against sap-sucking insects. In the present investigation, ASAL coding sequence was expressed under the control of CaMV35S promoter in a chimeric gene cassette containing plant selection marker, hpt and gusA reporter gene of pCAMBIA1301 binary vector in an elite indica rice cv. IR64. Many fertile transgenic plants were generated using scutellar calli as initial explants through Agrobacterium-mediated transformation technology. GUS activity was observed in selected calli and in mature plants. Transformation frequency was calculated to be approximately 12.1%+/-0.351 (mean +/- SE). Southern blot analyses revealed the integration of ASAL gene into rice genome with a predominant single copy insertion. Transgene localization was detected on chromosomes of transformed plants using PRINS and C-PRINS techniques. Northern and western blot analyses determined the expression of transgene in transformed lines. ELISA analyses estimated ASAL expression up to 0.72 and 0.67% of total soluble protein in T0 and T1 plants, respectively. Survival and fecundity of brown planthopper and green leafhopper were reduced to 36% (P < 0.01), 32% (P < 0.05) and 40.5, 29.5% (P < 0.001), respectively, when tested on selected plants in comparison to control plants. Specific binding of expressed ASAL to receptor proteins of insect gut was analysed. Analysis of T1 progenies confirmed the inheritance of the transgenes. Thus, ASAL promises to be a potential component in insect resistance rice breeding programme.
Generation of a Kupffer Cell-evading Adenovirus for Systemic and Liver-directed Gene Transfer
Khare, Reeti; May, Shannon M; Vetrini, Francesco; Weaver, Eric A; Palmer, Donna; Rosewell, Amanda; Grove, Nathan; Ng, Philip; Barry, Michael A
2011-01-01
As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated >10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies. PMID:21505422
Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer.
Khare, Reeti; May, Shannon M; Vetrini, Francesco; Weaver, Eric A; Palmer, Donna; Rosewell, Amanda; Grove, Nathan; Ng, Philip; Barry, Michael A
2011-07-01
As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated >10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies.
Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G
2015-01-01
Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.
Li, Chengwen; Xiao, Pingjie; Gray, Steven James; Weinberg, Marc Scott; Samulski, R Jude
2011-08-23
Molecular knockdown of disease proteins and restoration of wild-type activity represent a promising but challenging strategy for the treatment of diseases that result from the accumulation of misfolded proteins (i.e., Huntington disease, amyotrophic lateral sclerosis, and α-1 antitrypsin deficiency). In this study we used alpha-1 antitrypsin (AAT) deficiency with the piZZ mutant phenotype as a model system to evaluate the efficiency of gene-delivery approaches that both silence the piZZ transcript (e.g., shRNA) and restore circulating wild-type AAT expression from resistant codon-optimized AAT (AAT-opt) transgene cassette using adeno-associated virus (AAV) vector delivery. After systemic injection of a self-complimentary AAV serotype 8 (scAAV8) vector encoding shRNA in piZZ transgenic mice, both mutant AAT mRNA in the liver and defected serum protein level were inhibited by 95%, whereas liver pathology, as monitored by dPAS and fibrosis staining, reversed. To restore blood AAT levels in AAV8/shRNA-treated mice, several strategies to restore functional AAT levels were tested, including using AAV AAT-opt transgene cassettes targeted to muscle and liver, or combination vectors carrying piZZ shRNA and AAT-opt transgenes separately, or a single bicistronic AAV vector. With these molecular approaches, we observed over 90% knockdown of mutant AAT with a 13- to 30-fold increase of circulating wild-type AAT protein from the shRNA-resistant AAT-opt cassette. The molecular approaches applied in this study can simultaneously prevent liver pathology and restore blood AAT concentration in AAT deficiencies. Based on these observations, similar gene-therapy strategies could be considered for any diseases caused by accumulation of misfolded proteins.
Transcriptional silencing of a transgene by RNAi in the soma of C. elegans.
Grishok, Alla; Sinskey, Jina L; Sharp, Phillip A
2005-03-15
The silencing of transgene expression at the level of transcription in the soma of Caenorhabditis elegans through an RNAi-dependent pathway has not been previously characterized. Most gene silencing due to RNAi in C. elegans occurs at the post-transcriptional level. We observed transcriptional silencing when worms containing the elt-2::gfp/LacZ transgene were fed RNA produced from the commonly used L4440 vector. The transgene and the vector share plasmid backbone sequences. This transgene silencing depends on multiple RNAi pathway genes, including dcr-1, rde-1, rde-4, and rrf-1. Unlike post-transcriptional gene silencing in worms, elt-2::gfp/LacZ silencing is dependent on the PAZ-PIWI protein Alg-1 and on the HP1 homolog Hpl-2. The latter is a chromatin silencing factor, and expression of the transgene is inhibited at the level of intron-containing precursor mRNA. This inhibition is accompanied by a decrease in the acetylation of histones associated with the transgene. This transcriptional silencing in the soma can be distinguished from transgene silencing in the germline by its inability to be transmitted across generations and its dependence on the rde-1 gene. We therefore define this type of silencing as RNAi-induced Transcriptional Gene Silencing (RNAi-TGS). Additional chromatin-modifying components affecting RNAi-TGS were identified in a candidate RNAi screen.
Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning
2012-01-01
As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species. PMID:23185606
Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L
2010-08-01
Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.
Qi, Jing; Dong, Zhen; Zhang, Yu-Xing
2015-12-01
The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit.
Aalbers, Caroline J.; Bevaart, Lisette; Loiler, Scott; de Cortie, Karin; Wright, J. Fraser; Mingozzi, Federico; Tak, Paul P.; Vervoordeldonk, Margriet J.
2015-01-01
Introduction Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02). Methods The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model. Results Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks. Conclusions These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA. PMID:26107769
Aalbers, Caroline J; Bevaart, Lisette; Loiler, Scott; de Cortie, Karin; Wright, J Fraser; Mingozzi, Federico; Tak, Paul P; Vervoordeldonk, Margriet J
2015-01-01
Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02). The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model. Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks. These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA.
Bogani, Patrizia; Spiriti, Maria Michela; Lazzarano, Stefano; Arcangeli, Annarosa; Buiatti, Marcello; Minunni, Maria
2011-11-01
The World Anti-Doping Agency fears the use of gene doping to enhance athletic performances. Thus, a bioanalytical approach based on end point PCR for detecting markers' of transgenesis traceability was developed. A few sequences from two different vectors using an animal model were selected and traced in different tissues and at different times. In particular, enhanced green fluorescent protein gene and a construct-specific new marker were targeted in the analysis. To make the developed detection approach open to future routine doping analysis, matrices such as urine and tears as well blood were also tested. This study will have impact in evaluating the vector transgenes traceability for the detection of a gene doping event by non-invasive sampling.
Almarza, Elena; Río, Paula; Meza, Nestor W; Aldea, Montserrat; Agirre, Xabier; Guenechea, Guillermo; Segovia, José C; Bueren, Juan A
2007-08-01
Recent published data have shown the efficacy of gene therapy treatments of certain monogenic diseases. Risks of insertional oncogenesis, however, indicate the necessity of developing new vectors with weaker or cell-restricted promoters to minimize the trans-activation activity of integrated proviruses. We have inserted the proximal promoter of the vav proto-oncogene into self-inactivating lentiviral vectors (vav-LVs) and investigated the expression pattern and therapeutic efficacy of these vectors. Compared with other LVs frequently used in gene therapy, vav-LVs mediated a weak, though homogeneous and stable, expression in in vitro-cultured cells. Transplantation experiments using transduced mouse bone marrow and human CD34(+) cells confirmed the stable activity of the promoter in vivo. To investigate whether the weak activity of this promoter was compatible with a therapeutic effect, a LV expressing the Fanconi anemia A (FANCA) gene was constructed (vav-FANCA LV). Although this vector induced a low expression of FANCA, compared to the expression induced by a LV harboring the spleen focus-forming virus (SFFV) promoter, the two vectors corrected the phenotype of cells from a patient with FA-A with the same efficacy. We propose that self-inactivating vectors harboring weak promoters, such as the vav promoter, will improve the safety of gene therapy and will be of particular interest for the treatment of diseases where a high expression of the transgene is not required.
Maeda, Akira; Kawamura, Takuji; Ueno, Takehisa; Usui, Noriaki; Eguchi, Hiroshi; Miyagawa, Shuji
2013-12-01
Macrophages participate in xenogenic rejection and represent a major biological obstacle to successful xenotransplantation. The signal inhibitory regulatory protein α (SIRPα) receptor was reported to be a negative regulator of macrophage phagocytic activity via interaction with CD47, its ligand. Because a majority of human macrophages express the inhibitory receptor CD94/NKG2A, which binds specifically to the human leukocyte antigen (HLA)-E and contains immunoreceptor tyrosine-based inhibition motifs (ITIMs), the inhibitory function of HLA class I molecules, HLA-E, on macrophage-mediated cytolysis was examined. The suppressive effect against proinflammatory cytokine production by macrophages was also examined. Complementary DNA (cDNA) of HLA-E, and CD47 were prepared and transfected into swine endothelial cells (SEC). The expression of the modified genes was evaluated by flow cytometry and macrophage-mediated cytolysis was assessed using in vitro generated macrophages. Transgenic expression of HLA-E significantly suppressed the macrophage-mediated cytotoxicity. HLA-E transgenic expression demonstrated a significant suppression equivalent to CD47 transgenic expression. Furthermore, transgenic HLA-E suppressed the production of pro-inflammatory cytokines by inflammatory macrophages. These results indicate that generating transgenic HLA-E pigs might protect porcine grafts from, not only NK cytotoxicity, but also macrophage-mediated cytotoxicity. © 2013 Elsevier B.V. All rights reserved.
A Simple And Rapid Minicircle DNA Vector Manufacturing System
Kay, Mark A; He, Cheng-Yi; Chen, Zhi-Ying
2010-01-01
Minicircle DNA vectors consisting of a circular expression cassette devoid of the bacterial plasmid DNA backbone provides several advantages including sustained transgene expression in quiescent cells/tissues. Their use has been limited by labor-intensive production. We report on a strategy for making multiple genetic modifications in E.coli to construct a producer strain that stably expresses a set of inducible minicircle-assembly enzymes, the øC31-integrase and I-SceI homing-endonuclease. This bacterial strain is capable of producing highly purified minicircle yields in the same time frame as routine plasmid DNA. It is now feasible for minicircle DNA vectors to replace routine plasmids in mammalian transgene expression studies. PMID:21102455
The Lambda Select cII Mutation Detection System.
Besaratinia, Ahmad; Tommasi, Stella
2018-04-26
A number of transgenic animal models and mutation detection systems have been developed for mutagenicity testing of carcinogens in mammalian cells. Of these, transgenic mice and the Lambda (λ) Select cII Mutation Detection System have been employed for mutagenicity experiments by many research groups worldwide. Here, we describe a detailed protocol for the Lambda Select cII mutation assay, which can be applied to cultured cells of transgenic mice/rats or the corresponding animals treated with a chemical/physical agent of interest. The protocol consists of the following steps: (1) isolation of genomic DNA from the cells or organs/tissues of transgenic animals treated in vitro or in vivo, respectively, with a test compound; (2) recovery of the lambda shuttle vector carrying a mutational reporter gene (i.e., cII transgene) from the genomic DNA; (3) packaging of the rescued vectors into infectious bacteriophages; (4) infecting a host bacteria and culturing under selective conditions to allow propagation of the induced cII mutations; and (5) scoring the cII-mutants and DNA sequence analysis to determine the cII mutant frequency and mutation spectrum, respectively.
Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.
Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G
2008-12-01
With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.
Walsh, David P; Murphy, Robert D; Panarella, Angela; Raftery, Rosanne M; Cavanagh, Brenton; Simpson, Jeremy C; O'Brien, Fergal J; Heise, Andreas; Cryan, Sally-Ann
2018-05-07
The field of tissue engineering is increasingly recognizing that gene therapy can be employed for modulating in vivo cellular response thereby guiding tissue regeneration. However, the field lacks a versatile and biocompatible gene delivery platform capable of efficiently delivering transgenes to mesenchymal stem cells (MSCs), a cell type often refractory to transfection. Herein, we describe the extensive and systematic exploration of three architectural variations of star-shaped poly(l-lysine) polypeptide (star-PLL) with varying number and length of poly(l-lysine) arms as potential nonviral gene delivery vectors for MSCs. We demonstrate that star-PLL vectors are capable of self-assembling with pDNA to form stable, cationic nanomedicines. Utilizing high content screening, live cell imaging, and mechanistic uptake studies we confirm the intracellular delivery of pDNA by star-PLLs to MSCs is a rapid process, which likely proceeds via a clathrin-independent mechanism. We identify a star-PLL composition with 64 poly(l-lysine) arms and five l-lysine subunits per arm as a particularly efficient vector that is capable of delivering both reporter genes and the therapeutic transgenes bone morphogenetic protein-2 and vascular endothelial growth factor to MSCs. This composition facilitated a 1000-fold increase in transgene expression in MSCs compared to its linear analogue, linear poly(l-lysine). Furthermore, it demonstrated comparable transgene expression to the widely used vector polyethylenimine using a lower pDNA dose with significantly less cytotoxicity. Overall, this study illustrates the ability of the star-PLL vectors to facilitate efficient, nontoxic nucleic acid delivery to MSCs thereby functioning as an innovative nanomedicine platform for tissue engineering applications.
Hen, Gideon; Yosefi, Sara; Shinder, Dmitry; Or, Adi; Mygdal, Sivan; Condiotti, Reba; Galun, Eithan; Bor, Amir; Sela-Donenfeld, Dalit; Friedman-Einat, Miriam
2012-01-01
The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides. PMID:22606269
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekine, Shuichi; Ito, Konomi; Watanabe, Haruna
Patients with long-lasting hepatitis C virus (HCV) infection are at major risk of hepatocellular carcinoma (HCC). Iron accumulation in the livers of these patients is thought to exacerbate conditions of oxidative stress. Transgenic mice that express the HCV core protein develop HCC after the steatosis stage and produce an excess of hepatic reactive oxygen species (ROS). The overproduction of ROS in the liver is the net result of HCV core protein-induced dysfunction of the mitochondrial respiratory chain. This study examined the impact of ferric nitrilacetic acid (Fe-NTA)-mediated iron overload on mitochondrial damage and ROS production in HCV core protein-expressing HepG2more » (human HCC) cells (Hep39b cells). A decrease in mitochondrial membrane potential and ROS production were observed following Fe-NTA treatment. After continuous exposure to Fe-NTA for six days, cell toxicity was observed in Hep39b cells, but not in mock (vector-transfected) HepG2 cells. Moreover, mitochondrial iron ({sup 59}Fe) uptake was increased in the livers of HCV core protein-expressing transgenic mice. This increase in mitochondrial iron uptake was inhibited by Ru360, a mitochondrial Ca{sup 2+} uniporter inhibitor. Furthermore, the Fe-NTA-induced augmentation of mitochondrial dysfunction, ROS production, and cell toxicity were also inhibited by Ru360 in Hep39b cells. Taken together, these results indicate that Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates hepatocyte toxicity caused by the HCV core protein. - Highlights: • Iron accumulation in the livers of patients with hepatitis C virus (HCV) infection is thought to exacerbate oxidative stress. • The impact of iron overload on mitochondrial damage and ROS production in HCV core protein-expressing cells were examined. • Mitochondrial iron uptake was increased in the livers of HCV core protein-expressing transgenic mice. • Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates hepatocyte toxicity caused by the HCV core protein.« less
De Miranda, Briana R; Rocha, Emily M; Bai, Qing; El Ayadi, Amina; Hinkle, David; Burton, Edward A; Timothy Greenamyre, J
2018-07-01
DJ-1 is a redox-sensitive protein with several putative functions important in mitochondrial physiology, protein transcription, proteasome regulation, and chaperone activity. High levels of DJ-1 immunoreactivity are reported in astrocytes surrounding pathology associated with idiopathic Parkinson's disease, possibly reflecting the glial response to oxidative damage. Previous studies showed that astrocytic over-expression of DJ-1 in vitro prevented oxidative stress and mitochondrial dysfunction in primary neurons. Based on these observations, we developed a pseudotyped lentiviral gene transfer vector with specific tropism for CNS astrocytes in vivo to overexpress human DJ-1 protein in astroglial cells. Following vector delivery to the substantia nigra and striatum of adult Lewis rats, the DJ-1 transgene was expressed robustly and specifically within astrocytes. There was no observable transgene expression in neurons or other glial cell types. Three weeks after vector infusion, animals were exposed to rotenone to induce Parkinson's disease-like pathology, including loss of dopaminergic neurons, accumulation of endogenous α-synuclein, and neuroinflammation. Animals over-expressing hDJ-1 in astrocytes were protected from rotenone-induced neurodegeneration, and displayed a marked reduction in neuronal oxidative stress and microglial activation. In addition, α-synuclein accumulation and phosphorylation were decreased within substantia nigra dopaminergic neurons in DJ-1-transduced animals, and expression of LAMP-2A, a marker of chaperone mediated autophagy, was increased. Together, these data indicate that astrocyte-specific overexpression of hDJ-1 protects neighboring neurons against multiple pathologic features of Parkinson's disease and provides the first direct evidence in vivo of a cell non-autonomous neuroprotective function of astroglial DJ-1. Copyright © 2018 Elsevier Inc. All rights reserved.
An Efficient Electroporation Protocol for the Genetic Modification of Mammalian Cells
Chicaybam, Leonardo; Barcelos, Camila; Peixoto, Barbara; Carneiro, Mayra; Limia, Cintia Gomez; Redondo, Patrícia; Lira, Carla; Paraguassú-Braga, Flávio; Vasconcelos, Zilton Farias Meira De; Barros, Luciana; Bonamino, Martin Hernán
2017-01-01
Genetic modification of cell lines and primary cells is an expensive and cumbersome approach, often involving the use of viral vectors. Electroporation using square-wave generating devices, like Lonza’s Nucleofector, is a widely used option, but the costs associated with the acquisition of electroporation kits and the transient transgene expression might hamper the utility of this methodology. In the present work, we show that our in-house developed buffers, termed Chicabuffers, can be efficiently used to electroporate cell lines and primary cells from murine and human origin. Using the Nucleofector II device, we electroporated 14 different cell lines and also primary cells, like mesenchymal stem cells and cord blood CD34+, providing optimized protocols for each of them. Moreover, when combined with sleeping beauty-based transposon system, long-term transgene expression could be achieved in all types of cells tested. Transgene expression was stable and did not interfere with CD34+ differentiation to committed progenitors. We also show that these buffers can be used in CRISPR-mediated editing of PDCD1 gene locus in 293T and human peripheral blood mononuclear cells. The optimized protocols reported in this study provide a suitable and cost-effective platform for the genetic modification of cells, facilitating the widespread adoption of this technology. PMID:28168187
Efficient and heritable transformation of Phalaenopsis orchids.
Hsing, Hong-Xian; Lin, Yi-Jyun; Tong, Chii-Gong; Li, Min-Jeng; Chen, Yun-Jin; Ko, Swee-Suak
2016-12-01
Phalaenopsis orchid (Phal. orchid) is visually attractive and it is important economic floriculture species. Phal. orchids have many unique biological features. However, investigation of these features and validation on their biological functions are limited due to the lack of an efficient transformation method. We developed a heritable and efficient Agrobacterium- mediated transformation using protocorms derived from tetraploid or diploid Phal. orchids. A T-DNA vector construct containing eGFP driven by ubiquitin promoter was subjected to transformation. An approximate 1.2-5.2 % transformation rate was achieved. Genomic PCR confirmed that hygromycin selection marker, HptII gene and target gene eGFP were integrated into the orchid genome. Southern blotting indicated a low T-DNA insertion number in the orchid genome of the transformants. Western blot confirmed the expression of eGFP protein in the transgenic orchids. Furthermore, the GFP signal was detected in the transgenic orchids under microscopy. After backcrossing the pollinia of the transgenic plants to four different Phal. orchid varieties, the BC1 progenies showed hygromycin resistance and all surviving BC1 seedlings were HptII positive in PCR and expressed GFP protein as shown by western blot. This study demonstrated a stable transformation system was generated for Phal. orchids. This useful transformation protocol enables functional genomics studies and molecular breeding.
Uchida, Naoya; Hargrove, Phillip W.; Lap, Coen J.; Evans, Molly E.; Phang, Oswald; Bonifacino, Aylin C.; Krouse, Allen E.; Metzger, Mark E.; Nguyen, Anh-Dao; Hsieh, Matthew M.; Wolfsberg, Tyra G.; Donahue, Robert E.; Persons, Derek A.; Tisdale, John F.
2012-01-01
Human immunodeficiency virus type 1 (HIV1) vectors poorly transduce rhesus hematopoietic cells due to species-specific restriction factors, including the tripartite motif-containing 5 isoformα (TRIM5α) which targets the HIV1 capsid. We previously developed a chimeric HIV1 (χHIV) vector system wherein the vector genome is packaged with the simian immunodeficiency virus (SIV) capsid for efficient transduction of both rhesus and human CD34+ cells. To evaluate whether χHIV vectors could efficiently transduce rhesus hematopoietic repopulating cells, we performed a competitive repopulation assay in rhesus macaques, in which half of the CD34+ cells were transduced with standard SIV vectors and the other half with χHIV vectors. As compared with SIV vectors, χHIV vectors achieved higher vector integration, and the transgene expression rates were two- to threefold higher in granulocytes and red blood cells and equivalent in lymphocytes and platelets for 2 years. A recipient of χHIV vector-only transduced cells reached up to 40% of transgene expression rates in granulocytes and lymphocytes and 20% in red blood cells. Similar to HIV1 and SIV vectors, χHIV vector frequently integrated into gene regions, especially into introns. In summary, our χHIV vector demonstrated efficient transduction for rhesus long-term repopulating cells, comparable with SIV vectors. This χHIV vector should allow preclinical testing of HIV1-based therapeutic vectors in large animal models. PMID:22871664
Bińka, Agnieszka; Orczyk, Wacław; Nadolska-Orczyk, Anna
2012-02-01
The influence of two binary vector systems, pGreen and pCAMBIA, on the Agrobacterium-mediated transformation ability of wheat and triticale was studied. Both vectors carried selection cassettes with bar or nptII driven by different promoters. Two cultivars of wheat, Kontesa and Torka, and one cultivar of triticale, Wanad, were tested. The transformation rates for the wheat cultivars ranged from 0.00 to 3.58% and from 0.00 to 6.79% for triticale. The best values for wheat were 3.58% for Kontesa and 3.14% for Torka, and these were obtained after transformation with the pGreen vector carrying the nptII selection gene under the control of 35S promoter. In the case of the bar selection system, the best transformation rates were, respectively, 1.46 and 1.79%. Such rates were obtained when the 35S::bar cassette was carried by the pCAMBIA vector; they were significantly lower with the pGreen vector. The triticale cultivar Wanad had its highest transformation rate after transformation with nptII driven by 35S in pCAMBIA. The bar selection system for the same triticale cultivar was better when the gene was driven by nos and the selection cassette was carried by pGreen. The integration of the transgenes was confirmed with at least three pairs of specific starters amplifying the fragments of nptII, bar, or gus. The expression of selection genes, measured by reverse transcriptase polymerase chain reaction (RT-PCR) in relation to the actin gene, was low, ranging from 0.00 to 0.63 for nptII and from 0.00 to 0.33 for bar. The highest relative transcript accumulation was observed for nptII driven by 35S and expressed in Kontesa that had been transformed with pGreen.
Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.
2017-01-01
A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818
Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells
Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki
2016-01-01
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328
GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing.
Sidorenko, Lyudmila V; Lee, Tzuu-Fen; Woosley, Aaron; Moskal, William A; Bevan, Scott A; Merlo, P Ann Owens; Walsh, Terence A; Wang, Xiujuan; Weaver, Staci; Glancy, Todd P; Wang, PoHao; Yang, Xiaozeng; Sriram, Shreedharan; Meyers, Blake C
2017-11-01
The molecular basis of transgene susceptibility to silencing is poorly characterized in plants; thus, we evaluated several transgene design parameters as means to reduce heritable transgene silencing. Analyses of Arabidopsis plants with transgenes encoding a microalgal polyunsaturated fatty acid (PUFA) synthase revealed that small RNA (sRNA)-mediated silencing, combined with the use of repetitive regulatory elements, led to aggressive transposon-like silencing of canola-biased PUFA synthase transgenes. Diversifying regulatory sequences and using native microalgal coding sequences (CDSs) with higher GC content improved transgene expression and resulted in a remarkable trans-generational stability via reduced accumulation of sRNAs and DNA methylation. Further experiments in maize with transgenes individually expressing three crystal (Cry) proteins from Bacillus thuringiensis (Bt) tested the impact of CDS recoding using different codon bias tables. Transgenes with higher GC content exhibited increased transcript and protein accumulation. These results demonstrate that the sequence composition of transgene CDSs can directly impact silencing, providing design strategies for increasing transgene expression levels and reducing risks of heritable loss of transgene expression.
Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang
2016-01-01
Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance, and characterized the transgene insertion, transmission and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favourable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition. PMID:27565868
Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression
Lisowski, Leszek; Lau, Ashley; Wang, Zhongya; Zhang, Yue; Zhang, Feijie; Grompe, Markus; Kay, Mark A
2012-01-01
Although recombinant adeno-associated virus (rAAV) vectors are proving to be efficacious in clinical trials, the episomal character of the delivered transgene restricts their effectiveness to use in quiescent tissues, and may not provide lifelong expression. In contrast, integrating vectors enhance the risk of insertional mutagenesis. In an attempt to overcome both of these limitations, we created new rAAV-rDNA vectors, with an expression cassette flanked by ribosomal DNA (rDNA) sequences capable of homologous recombination into genomic rDNA. We show that after in vivo delivery the rAAV-rDNA vectors integrated into the genomic rDNA locus 8–13 times more frequently than control vectors, providing an estimate that 23–39% of the integrations were specific to the rDNA locus. Moreover, a rAAV-rDNA vector containing a human factor IX (hFIX) expression cassette resulted in sustained therapeutic levels of serum hFIX even after repeated manipulations to induce liver regeneration. Because of the relative safety of integration in the rDNA locus, these vectors expand the usage of rAAV for therapeutics requiring long-term gene transfer into dividing cells. PMID:22990671
Nyaboga, Evans; Tripathi, Jaindra N.; Manoharan, Rajesh; Tripathi, Leena
2014-01-01
Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3–4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important crop. PMID:25309562
Diversity and conservation in maize pollen: Phenotypes and transcripts
In addition to its crucial role in seed production, pollen serves as a vector for gene flow between plant populations. Recently, pollen was identified as a mechanism for introduction of transgenes into non-transgenic populations. To investigate the genetic basis for pollen fitn...
Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.D.; Bender, M.A.; Harris, E.A.S.
1988-11-01
Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less
The LAM-PCR Method to Sequence LV Integration Sites.
Wang, Wei; Bartholomae, Cynthia C; Gabriel, Richard; Deichmann, Annette; Schmidt, Manfred
2016-01-01
Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.
Progress of cereal transformation technology mediated by Agrobacterium tumefaciens
Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko
2014-01-01
Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens. PMID:25426132
CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean.
Cai, Yupeng; Chen, Li; Liu, Xiujie; Guo, Chen; Sun, Shi; Wu, Cunxiang; Jiang, Bingjun; Han, Tianfu; Hou, Wensheng
2018-01-01
Flowering is an indication of the transition from vegetative growth to reproductive growth and has considerable effects on the life cycle of soya bean (Glycine max). In this study, we employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of GmFT2a, an integrator in the photoperiod flowering pathway in soya bean. The soya bean cultivar Jack was transformed with three sgRNA/Cas9 vectors targeting different sites of endogenous GmFT2a via Agrobacterium tumefaciens-mediated transformation. Site-directed mutations were observed at all targeted sites by DNA sequencing analysis. T1-generation soya bean plants homozygous for null alleles of GmFT2a frameshift mutated by a 1-bp insertion or short deletion exhibited late flowering under natural conditions (summer) in Beijing, China (N39°58', E116°20'). We also found that the targeted mutagenesis was stably heritable in the following T2 generation, and the homozygous GmFT2a mutants exhibited late flowering under both long-day and short-day conditions. We identified some 'transgene-clean' soya bean plants that were homozygous for null alleles of endogenous GmFT2a and without any transgenic element from the T1 and T2 generations. These 'transgene-clean' mutants of GmFT2a may provide materials for more in-depth research of GmFT2a functions and the molecular mechanism of photoperiod responses in soya bean. They will also contribute to soya bean breeding and regional introduction. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Zou, Junhuang; Luo, Ling; Shen, Zuolian; Chiodo, Vince A.; Ambati, Balamurali K.; Hauswirth, William W.
2011-01-01
Purpose. Whirlin is the causative gene for Usher syndrome type IID (USH2D), a condition manifested as both retinitis pigmentosa and congenital deafness. Mutations in this gene cause disruption of the USH2 protein complex composed of USH2A and VLGR1 at the periciliary membrane complex (PMC) in photoreceptors. In this study, the adeno-associated virus (AAV)-mediated whirlin replacement was evaluated as a treatment option. Methods. Murine whirlin cDNA driven by the human rhodopsin kinase promoter (hRK) was packaged as an AAV2/5 vector and delivered into the whirlin knockout retina through subretinal injection. The efficiency, efficacy, and safety of this treatment were examined using immunofluorescent staining, confocal imaging, immunoelectron microscopy, Western blot analysis, histologic analysis, and electroretinogram. Results. The AAV-mediated whirlin expression started at two weeks, reached its maximum level at 10 weeks, and lasted up to six months post injection. The transgenic whirlin product had a molecular size and an expression level comparable to the wild-type. It was distributed at the PMC in both rod and cone photoreceptors from the central to peripheral retina. Importantly, the transgenic whirlin restored the cellular localization and expression level of both USH2A and VLGR1 and did not cause defects in the retinal histology and function in the whirlin knockout mouse. Conclusions. Whirlin transgene recruits USH2A and VLGR1 to the PMC and is sufficient for the formation of the USH2 protein complex in photoreceptors. The combined hRK and AAV gene delivery system could be an effective gene therapy approach to treat retinal degeneration in USH2D patients. PMID:21212183
Greig, Jenny A; Peng, Hui; Ohlstein, Jason; Medina-Jaszek, C Angelica; Ahonkhai, Omua; Mentzinger, Anne; Grant, Rebecca L; Roy, Soumitra; Chen, Shu-Jen; Bell, Peter; Tretiakova, Anna P; Wilson, James M
2014-01-01
Intramuscular (IM) administration of adeno-associated viral (AAV) vectors has entered the early stages of clinical development with some success, including the first approved gene therapy product in the West called Glybera. In preparation for broader clinical development of IM AAV vector gene therapy, we conducted detailed pre-clinical studies in mice and macaques evaluating aspects of delivery that could affect performance. We found that following IM administration of AAV8 vectors in mice, a portion of the vector reached the liver and hepatic gene expression contributed significantly to total expression of secreted transgenes. The contribution from liver could be controlled by altering injection volume and by the use of traditional (promoter) and non-traditional (tissue-specific microRNA target sites) expression control elements. Hepatic distribution of vector following IM injection was also noted in rhesus macaques. These pre-clinical data on AAV delivery should inform safe and efficient development of future AAV products.
Design and construction of targeted AAVP vectors for mammalian cell transduction.
Hajitou, Amin; Rangel, Roberto; Trepel, Martin; Soghomonyan, Suren; Gelovani, Juri G; Alauddin, Mian M; Pasqualini, Renata; Arap, Wadih
2007-01-01
Bacteriophage (phage) evolved as bacterial viruses, but can be adapted to transduce mammalian cells through ligand-directed targeting to a specific receptor. We have recently reported a new generation of hybrid prokaryotic-eukaryotic vectors, which are chimeras of genetic cis-elements of recombinant adeno-associated virus and phage (termed AAVP). This protocol describes the design and construction of ligand-directed AAVP vectors, production of AAVP particles and the methodology to transduce mammalian cells in vitro and to target tissues in vivo after systemic administration. Targeted AAVP particles are made in a two-step process. First, a ligand peptide of choice is displayed on the coat protein to generate a targeted backbone phage vector. Then, a recombinant AAV carrying a mammalian transgene cassette is inserted into an intergenomic region. High-titer suspensions (approximately 10(10)-10(11) transducing units per microl) can be produced within 3 days after vector construction. Transgene expression by targeted AAVP usually reaches maximum levels within 1 week.
Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B
Nathwani, A.C.; Reiss, U.M.; Tuddenham, E.G.D.; Rosales, C.; Chowdary, P.; McIntosh, J.; Della Peruta, M.; Lheriteau, E.; Patel, N.; Raj, D.; Riddell, A.; Pie, J.; Rangarajan, S.; Bevan, D.; Recht, M.; Shen, Y.-M.; Halka, K.G.; Basner-Tschakarjan, E.; Mingozzi, F.; High, K.A.; Allay, J.; Kay, M.A.; Ng, C.Y.C.; Zhou, J.; Cancio, M.; Morton, C.L.; Gray, J.T.; Srivastava, D.; Nienhuis, A.W.; Davidoff, A.M.
2014-01-01
BACKGROUND In patients with severe hemophilia B, gene therapy that is mediated by a novel self-complementary adeno-associated virus serotype 8 (AAV8) vector has been shown to raise factor IX levels for periods of up to 16 months. We wanted to determine the durability of transgene expression, the vector dose–response relationship, and the level of persistent or late toxicity. METHODS We evaluated the stability of transgene expression and long-term safety in 10 patients with severe hemophilia B: 6 patients who had been enrolled in an initial phase 1 dose-escalation trial, with 2 patients each receiving a low, intermediate, or high dose, and 4 additional patients who received the high dose (2×1012 vector genomes per kilogram of body weight). The patients subsequently underwent extensive clinical and laboratory monitoring. RESULTS A single intravenous infusion of vector in all 10 patients with severe hemophilia B resulted in a dose-dependent increase in circulating factor IX to a level that was 1 to 6% of the normal value over a median period of 3.2 years, with observation ongoing. In the high-dose group, a consistent increase in the factor IX level to a mean (±SD) of 5.1±1.7% was observed in all 6 patients, which resulted in a reduction of more than 90% in both bleeding episodes and the use of prophylactic factor IX concentrate. A transient increase in the mean alanine aminotransferase level to 86 IU per liter (range, 36 to 202) occurred between week 7 and week 10 in 4 of the 6 patients in the high-dose group but resolved over a median of 5 days (range, 2 to 35) after prednisolone treatment. CONCLUSIONS In 10 patients with severe hemophilia B, the infusion of a single dose of AAV8 vector resulted in long-term therapeutic factor IX expression associated with clinical improvement. With a follow-up period of up to 3 years, no late toxic effects from the therapy were reported. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00979238.) PMID:25409372
Adapting rice anther culture to gene transformation and RNA interference.
Chen, Caiyan; Xiao, Han; Zhang, Wenli; Wang, Aiju; Xia, Zhihui; Li, Xiaobing; Zhai, Wenxue; Cheng, Zhukuan; Zhu, Lihuang
2006-10-01
Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.
Zhang, Gui-Yun; Liu, Ru-Ru; Xu, Geng; Zhang, Peng; Li, Yin; Tang, Ke-Xuan; Liang, Guo-Hua; Liu, Qiao-Quan
2013-02-01
Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The α-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. γ-tocopherol methyltransferase (γ-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of γ- and δ-isomers to α- and β-isomers. In present study, the Arabidopsis γ-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the α-/γ-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the γ-isomers were converted to α-isomers, especially the γ- and δ-tocotrienol levels were dramatically decreased. As a result, the α-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the α-tocotrienol content. The results showed that the α-/γ-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on α-tocopherol level, which may reflect the fact that γ-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign γ-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world's most important food crops.
A novel intranuclear RNA vector system for long-term stem cell modification
Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo
2015-01-01
Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671
NASA Astrophysics Data System (ADS)
Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard
Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.
MicroRNA Silencing Improves the Tumor Specificity of Adenoviral Transgene Expression
Card, Paul B.; Hogg, Richard T.; del Alcazar, Carlos Gil
2012-01-01
Adenoviral technology has been thoroughly evaluated for delivering genetic material to tumor tissue and the surrounding microenvironment. Almost any gene can be cloned into an adenovirus (Ad) vector, which when combined with strong, constitutively active promoters permit up to a million-fold amplification of the transgene in a single adenoviral particle, thus facilitating their use in cancer therapy and imaging. However, widespread infection of the liver and other non-targeted tissues by Ad vectors is a substantial problem that often results in significant liver inflammation and hepatotoxicity at doses required to achieve efficient tumor transduction. miR-122 is a highly expressed liver-specific microRNA that provides a unique opportunity for down-regulating adenoviral transgene expression in liver tissue. The binding of endogenous miRNAs to complementary miRNA targeting elements (miRTs) incorporated into the 3′ untranslated region of adenoviral transgenes interferes with message stability and/or protein translation, and miRT elements against miR-122 (miRT-122) can selectively reduce adenoviral transgene expression in the liver. Previous studies using miR-122-based regulation, with and without other types of transcriptional targeting, have yielded promising preliminary results. However, investigations to date evaluating miRT-122 elements for improving tumor specificity have used either non-tumor bearing animals or direct intratumoral injection as the mode of delivery. In the present study, we confirmed the ability of miRT-122 sequences to selectively down-regulate adenoviral luciferase expression in the liver in vitro and in vivo, and show that this strategy can improve tumor specific transgene expression in a HT1080 human fibrosarcoma model. Rapid growth and the inefficient flow of blood through tumor neovasculature often results in profound hypoxia, which provides additional opportunities for targeting solid tumors and their microenvironment using vectors incorporating hypoxia-responsive promoters to drive transgene expression. We therefore employed a combinatorial approach using miRT-122 elements with hypoxia-responsive transcriptional targeting to further improve the tumor specific expression of an adenoviral reporter gene. Results from this investigation reveal that miRT122 elements alone decrease off-target liver expression and improve tumor specificity of adenoviral vectors. Furthermore, increased tumor specificity can be achieved by combining miRT-122 elements with hypoxia-responsive promoters. PMID:22555510
Jayashree, R; Nazeem, P A; Rekha, K; Sreelatha, S; Thulaseedharan, A; Krishnakumar, R; Kala, R G; Vineetha, M; Leda, P; Jinu, U; Venkatachalam, P
2018-06-01
Natural rubber (cis-1, 4-polyisoprene) is being produced from bark laticifer cells of Hevea brasiliensis and the popular high latex yielding Indian rubber clones are easily prone to onset of tapping panel dryness syndrome (TPD) which is considered as a physiological syndrome affecting latex production either partially or completely. This report describes an efficient protocol for development of transgenic rubber plants by over-expression of 3-hydroxy 3-methylglutaryl Co-enzyme A reductase 1 (hmgr1) gene which is considered as rate limiting factor for latex biosynthesis via Agrobacterium-mediated transformation. The pBIB plasmid vector containing hmgr1 gene cloned under the control of a super-promoter was used for genetic transformation using embryogenic callus. Putatively transgenic cell lines were obtained on selection medium and produced plantlets with 44% regeneration efficiency. Transgene integration was confirmed by PCR amplification of 1.8 kb hmgr1 and 0.6 kb hpt genes from all putatively transformed callus lines as well as transgenic plants. Southern blot analysis showed the stable integration and presence of transgene in the transgenic plants. Over expression of hmgr1 transgene was determined by Northern blot hybridization, semi-quantitative PCR and real-time PCR (qRT-PCR) analysis. Accumulation of hmgr1 mRNA transcripts was more abundant in transgenic plants than control. Increased level of photosynthetic pigments, protein contents and HMGR enzyme activity was also noticed in transgenic plants over control. Interestingly, the latex yield was significantly enhanced in all transgenic plants compared to the control. The qRT-PCR results exhibit that the hmgr1 mRNA transcript levels was 160-fold more abundance in transgenic plants over untransformed control. These results altogether suggest that there is a positive correlation between latex yield and accumulation of mRNA transcripts level as well as HMGR enzyme activity in transgenic rubber plants. It is presumed that there is a possibility for enhanced level of latex biosynthesis in transgenic plants as the level of mRNA transcripts and HMGR enzyme activity is directly correlated with latex yield in rubber tree. Further, the present results clearly suggest that the quantification of HMGR enzyme activity in young seedlings will be highly beneficial for early selection of high latex yielding plants in rubber breeding programs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Virally mediated gene manipulation in the adult CNS
Edry, Efrat; Lamprecht, Raphael; Wagner, Shlomo; Rosenblum, Kobi
2011-01-01
Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics—recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV) systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance. PMID:22207836
Forsayeth, John; Mirek, Hanna; Munson, Keith; Bringas, John; Pivirotto, Phil; McBride, Jodi L; Davidson, Beverly L.; Bankiewicz, Krystof S.
2009-01-01
Abstract We used convection-enhanced delivery (CED) to characterize gene delivery mediated by adeno-associated virus type 1 (AAV1) by tracking expression of hrGFP (humanized green fluorescent protein from Renilla reniformis) into the striatum, basal forebrain, and corona radiata of monkey brain. Four cynomolgus monkeys received single infusions into corona radiata, putamen, and caudate. The other group (n = 4) received infusions into basal forebrain. Thirty days after infusion animals were killed and their brains were processed for immunohisto-chemical evaluation. Volumetric analysis of GFP-positive brain areas was performed. AAV1-hrGFP infusions resulted in approximately 550, 700, and 73 mm3 coverage after infusion into corona radiata, striatum, and basal forebrain, respectively. Aside from targeted regions, other brain structures also showed GFP signal (internal and external globus pallidus, subthalamic nucleus), supporting the idea that AAV1 is actively trafficked to regions distal from the infusion site. In addition to neuronal transduction, a significant nonneuronal cell population was transduced by AAV1 vector; for example, oligodendrocytes in corona radiata and astrocytes in the striatum. We observed a strong humoral and cell-mediated response against AAV1-hrGFP in transduced monkeys irrespective of the anatomic location of the infusion, as evidenced by induction of circulating anti-AAV1 and anti-hrGFP antibodies, as well as infiltration of CD4+ lymphocytes and upregulation of MHC-II in regions infused with vector. We conclude that transduction of antigen-presenting cells within the CNS is a likely cause of this response and that caution is warranted when foreign transgenes are used as reporters in gene therapy studies with vectors with broader tropism than AAV2. PMID:19292604
Valdor, Markus; Wagner, Anke; Röhrs, Viola; Berg, Johanna; Fechner, Henry; Schröder, Wolfgang; Tzschentke, Thomas M; Bahrenberg, Gregor; Christoph, Thomas; Kurreck, Jens
2018-01-01
Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.
Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao
2008-01-01
Background Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which ~21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Results Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. Conclusion In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic effects, imparted appreciable resistance against three major sap-sucking insects. Our results amply demonstrate that transgenic indica rice harbouring asal exhibit surpassing resistance against BPH, GLH and WBPH insects. The prototypic asal transgenic rice lines appear promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding. PMID:18854007
Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao
2008-10-14
Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which approximately 21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic effects, imparted appreciable resistance against three major sap-sucking insects. Our results amply demonstrate that transgenic indica rice harbouring asal exhibit surpassing resistance against BPH, GLH and WBPH insects. The prototypic asal transgenic rice lines appear promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding.
Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids
Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas
2016-01-01
Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration—at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then—through a variety of mechanisms—result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction. PMID:26757051
Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates
Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M
2015-01-01
The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy. PMID:26022732
Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates.
Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M
2015-08-01
The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.
Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H
2014-07-01
Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.
Optimal control of malaria: combining vector interventions and drug therapies.
Khamis, Doran; El Mouden, Claire; Kura, Klodeta; Bonsall, Michael B
2018-04-24
The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Studies of Transgenic Mosquitoes in Disease-Endemic Countries: Preparation of Containment Facilities
Mutunga, James Mutuku; Diabaté, Abdoulaye; Namountougou, Moussa; Coulibaly, Mamadou B.; Sylla, Lakamy; Kayondo, Jonathan; Balyesima, Victor; Clark, Lorna; Benedict, Mark Q.; Raymond, Peter
2018-01-01
Abstract Novel approaches to area-wide control of vector species offer promise as additional tools in the fight against vectored diseases. Evaluation of transgenic insect strains aimed at field population control in disease-endemic countries may involve international partnerships and should be done in a stepwise approach, starting with studies in containment facilities. The preparations of both new-build and renovated facilities are described, including working with local and national regulations regarding land use, construction, and biosafety requirements, as well as international guidance to fill any gaps in regulation. The examples given are for containment categorization at Arthropod Containment Level 2 for initial facility design, classification of wastes, and precautions during shipping. Specific lessons were derived from preparations to evaluate transgenic (non-gene drive) mosquitoes in West and East African countries. Documented procedures and the use of a non-transgenic training strain for trial shipments and culturing were used to develop competence and confidence among the African facility staff, and along the chain of custody for transport. This practical description is offered to support other research consortia or institutions preparing containment facilities and operating procedures in conditions where research on transgenic insects is at an early stage. PMID:29337662
Quinlan, M Megan; Mutunga, James Mutuku; Diabaté, Abdoulaye; Namountougou, Moussa; Coulibaly, Mamadou B; Sylla, Lakamy; Kayondo, Jonathan; Balyesima, Victor; Clark, Lorna; Benedict, Mark Q; Raymond, Peter
2018-01-01
Novel approaches to area-wide control of vector species offer promise as additional tools in the fight against vectored diseases. Evaluation of transgenic insect strains aimed at field population control in disease-endemic countries may involve international partnerships and should be done in a stepwise approach, starting with studies in containment facilities. The preparations of both new-build and renovated facilities are described, including working with local and national regulations regarding land use, construction, and biosafety requirements, as well as international guidance to fill any gaps in regulation. The examples given are for containment categorization at Arthropod Containment Level 2 for initial facility design, classification of wastes, and precautions during shipping. Specific lessons were derived from preparations to evaluate transgenic (non-gene drive) mosquitoes in West and East African countries. Documented procedures and the use of a non-transgenic training strain for trial shipments and culturing were used to develop competence and confidence among the African facility staff, and along the chain of custody for transport. This practical description is offered to support other research consortia or institutions preparing containment facilities and operating procedures in conditions where research on transgenic insects is at an early stage.
Ma, Lei; Zhu, Fugui; Li, Zhenwei; Zhang, Jianfu; Li, Xin; Dong, Jiangli; Wang, Tao
2015-01-01
The deterioration of rice grain reduces the quality of rice, resulting in serious economic losses for farmers. Lipoxygenases (LOXs) catalyze the dioxygenation of polyunsaturated fatty acids with at least one cis,cis-1,4-pentadiene to form hydroperoxide, which is a major factor influencing seed longevity and viability. Recently, genome editing, an essential tool employed in reverse genetics, has been used experimentally to investigate basic plant biology or to modify crop plants for the improvement of important agricultural traits. In this study, we performed targeted mutagenesis in rice using transcription activator-like effector nucleases (TALENs) to improve seed storability. A modified ligation-independent cloning method (LIC) was employed to allow for the quick and efficient directional insertion of TALEN monomer modules into destination vectors used in plants. We demonstrated the feasibility and flexibility of the technology by developing a set of modular vectors for genome editing. After construction and validation, the TALEN pairs were used to create stable transgenic rice lines via Agrobacterium-mediated transformation. One heterozygous mutant (4%) was recovered from 25 transgenic NPTII-resistant lines, and the mutation was transmitted to the next generation. Further molecular and protein level experiments verified LOX3 deficiency and demonstrated the improvement of seed storability. Our work provides a flexible genome editing tool for improving important agronomic traits, as well as direct evidence that Lox3 has only a limited impact on seed longevity.
Li, Zhenwei; Zhang, Jianfu; Li, Xin; Dong, Jiangli; Wang, Tao
2015-01-01
The deterioration of rice grain reduces the quality of rice, resulting in serious economic losses for farmers. Lipoxygenases (LOXs) catalyze the dioxygenation of polyunsaturated fatty acids with at least one cis,cis-1,4-pentadiene to form hydroperoxide, which is a major factor influencing seed longevity and viability. Recently, genome editing, an essential tool employed in reverse genetics, has been used experimentally to investigate basic plant biology or to modify crop plants for the improvement of important agricultural traits. In this study, we performed targeted mutagenesis in rice using transcription activator-like effector nucleases (TALENs) to improve seed storability. A modified ligation-independent cloning method (LIC) was employed to allow for the quick and efficient directional insertion of TALEN monomer modules into destination vectors used in plants. We demonstrated the feasibility and flexibility of the technology by developing a set of modular vectors for genome editing. After construction and validation, the TALEN pairs were used to create stable transgenic rice lines via Agrobacterium-mediated transformation. One heterozygous mutant (4%) was recovered from 25 transgenic NPTII-resistant lines, and the mutation was transmitted to the next generation. Further molecular and protein level experiments verified LOX3 deficiency and demonstrated the improvement of seed storability. Our work provides a flexible genome editing tool for improving important agronomic traits, as well as direct evidence that Lox3 has only a limited impact on seed longevity. PMID:26641666
An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong
2012-12-01
We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.
Zhang, Tiejun; Chao, Yuehui; Kang, Junmei; Ding, Wang; Yang, Qingchuan
2013-07-01
Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.
Sun, Wei-Hong; Wang, Yong; He, Hua-Gang; Li, Xue; Song, Wan; Du, Bin; Meng, Qing-Wei
2013-07-01
Ascorbate peroxidases are directly involved in reactive oxygen species (ROS) scavenging by reducing hydrogen peroxide to water. The tomato thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco. RNA gel blot analysis confirmed that StAPX in tomato leaves was induced by methylviologen-mediated oxidative stress. The sense transgenic seedlings exhibited higher tAPX activity than that of the wild type (WT) plants under oxidative stress conditions, while the antisense seedlings exhibited lower tAPX activity. Lower APX activities of antisense transgenic seedlings caused higher malondialdehyde contents and relative electrical conductivity. The sense transgenic seedlings with higher tAPX activity maintained higher chlorophyll content and showed the importance of tAPX in maintaining the optimal chloroplast development under methylviologen stress conditions, whereas the antisense lines maintained lower chlorophyll content than WT seedlings. Results indicated that the over-expression of StAPX enhanced tolerance to methylviologen-mediated oxidative stress in sense transgenic tobacco early seedlings, whereas the suppression of StAPX in antisense transgenic seedlings showed high sensitivity to oxidative stress.
Chakkaramakkil Verghese, Santhosh; Goloviznina, Natalya A; Kurre, Peter
2016-11-19
Fanconi anemia (FA) is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC)-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV) particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.
He, Hongbin; Ding, Fangrong; Yang, Hongjun; Cheng, Lei; Liu, Wenhao; Zhong, Jifeng; Dai, Yunping; Li, Guangpeng; He, Chengqiang; Yu, Li; Li, Jianbin
2012-01-01
Background Although it is known that RNA interference (RNAi) targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV), it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge. Principal Finding Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2), VP3 (RNAi-VP3), or VP4 (RNAi-VP4) of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h. Conclusion RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV. PMID:22905125
Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.
2001-01-01
Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351
Hammer, Diana; Wild, Jens; Ludwig, Christine; Asbach, Benedikt; Notka, Frank; Wagner, Ralf
2008-06-01
Trans-dominant human immunodeficiency virus type 1 (HIV-1) Gag derivatives have been shown to efficiently inhibit late steps of HIV-1 replication in vitro by interfering with Gag precursor assembly, thus ranking among the interesting candidates for gene therapy approaches. However, efficient antiviral activities of corresponding transgenes are likely to be counteracted in particular by cell-mediated host immune responses toward the transgene-expressing cells. To decrease this potential immunogenicity, a 24-amino acid Gly-Ala (GA) stretch derived from Epstein-Barr virus nuclear antigen-1 (EBNA1) and known to overcome proteasomal degradation was fused to a trans-dominant Gag variant (sgD1). To determine the capacity of this fusion polypeptide to repress viral replication, PM-1 cells were transduced with sgD1 and GAsgD1 transgenes, using retroviral gene transfer. Challenge of stably transfected permissive cell lines with various viral strains indicated that N-terminal GA fusion even enhanced the inhibitory properties of sgD1. Further studies revealed that the GA stretch increased protein stability by blocking proteasomal degradation of Gag proteins. Immunization of BALB/c mice with a DNA vaccine vector expressing sgD1 induced substantial Gag-specific immune responses that were, however, clearly diminished in the presence of GA. Furthermore, recognition of cells expressing the GA-fused transgene by CD8(+) T cells was drastically reduced, both in vitro and in vivo, resulting in prolonged survival of the transduced cells in recipient mice.
The distribution of cotransformed transgenes in particle bombardment-mediated transformed wheat
USDA-ARS?s Scientific Manuscript database
Although particle bombardment is the predominant method of foreign DNA direct transfer, whether transgene is integrated randomly into the genome has not been determined. In this study, we identified the distribution of transgene loci in 45 transgenic wheat (Triticum aestivum L.) lines containing c...
[New advances in animal transgenic technology].
Sun, Zhen-Hong; Miao, Xiang-Yang; Zhu, Rui-Liang
2010-06-01
Animal transgenic technology is one of the fastest growing biotechnology in the 21st century. It is used to integrate foreign genes into the animal genome by genetic engineering technology so that foreign genes can be expressed and inherited to the offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors on preparation of transgenic animals. A variety of transgenic techniques are available, each of which has its own advantages and disadvantages and still needs further study because of unresolved technical and safety issues. With the in-depth research, the transgenic technology will have broad application prospects in the fields of exploration of gene function, animal genetic improvement, bioreactor, animal disease models, organ transplantation and so on. This article reviews the recently developed animal gene transfer techniques, including germline stem cell mediated method to improve the efficiency, gene targeting to improve the accuracy, RNA interference (RNAi)-mediated gene silencing technology, and the induced pluripotent stem cells (iPS) transgenic technology. The new transgenic techniques can provide a better platform for the study of trans-genic animals and promote the development of medical sciences, livestock production, and other fields.
Recent advances in the development of new transgenic animal technology.
Miao, Xiangyang
2013-03-01
Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.
[Construction of transgenic tobacco expressing popW and analysis of its biological phenotype].
Wang, Cui; Liu, Hongxia; Cao, Jing; Wang, Chao; Guo, Jianhua
2014-04-01
In a previous study, we cloned popW from Ralstonia solanacearum strain ZJ3721, coding PopW, a new harpin protein. The procaryotically expressed PopW can induce resistance to Tobacco mosaic virus (TMV), enhance growth and improve quality of tobacco, when sprayed onto tobacco leaves. Here, we constructed an expression vector pB- popW by cloning popW into the bionary vector pBI121 and transformed it into Agrobacterium tumefaciens strain EHA105 via freeze-thaw method. Tobacco (Nicotiana tobacum cv. Xanthi nc.) transformation was conducted by infection of tobacco leaf discs with recombinant A. tumefaciens. After screening on MS medium containing kanamycin, PCR and RT-PCR analysis, 21 T3 lines were identified as positive transgenic. Genomic intergration and expression of the transferred gene were determined by PCR and RT-PCR. And GUS staining analysis indicated that the protein expressed in transgenic tobacco was bioactive and exhibited different expression levels among lines. Disease bioassays showed that the transgenic tobacco had enhanced resistance to TMV with biocontrol efficiency up to 54.25%. Transgenic tobacco also exhibited enhanced plant growth, the root length of 15 d old seedlings was 1.7 times longer than that of wild type tobacco. 60 d after transplanting to pots, the height, fresh weight and dry weight of transgenic tobacco were 1.4, 1.7, 1.8 times larger than that of wild type tobacco, respectively.
Winbanks, Catherine E; Beyer, Claudia; Qian, Hongwei; Gregorevic, Paul
2012-01-01
Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.
Yum, Soo-Young; Lee, Song-Jeon; Park, Sin-Gi; Shin, In-Gang; Hahn, Sang-Eun; Choi, Woo-Jae; Kim, Hee-Soo; Kim, Hyeong-Jong; Bae, Seong-Hun; Lee, Je-Hyeong; Moon, Joo-Yeong; Lee, Woo-Sung; Lee, Ji-Hyun; Lee, Choong-Il; Kim, Seong-Jin; Jang, Goo
2018-05-23
Transposon-mediated, non-viral gene delivery is a powerful tool for generating stable cell lines and transgenic animals. However, as multi-copy insertion is the preferred integration pattern, there is the potential for uncontrolled changes in endogenous gene expression and detrimental effects in cells or animals. Our group has previously reported on the generation of several transgenic cattle by using microinjection of the Sleeping Beauty (SB) and PiggyBac (PB) transposons and seeks to explore the long-term effects of this technology on cattle. Transgenic cattle, one female (SNU-SB-1) and one male (SNU-PB-1), reached over 36 months of age with no significant health issues and normal blood parameters. The detection of transgene integration and fluorescent signal in oocytes and sperm suggested the capacity for germline transmission in both of the founder animals. After natural breeding, the founder transgenic cow delivered a male calf and secreted milk containing fluorescent transgenic proteins. The calf expressed green fluorescent protein in primary cells from ear skin, with no significant change in overall genomic stability and blood parameters. Three sites of transgene integration were identified by next-generation sequencing of the calf's genome. Overall, these data demonstrate that transposon-mediated transgenesis can be applied to cattle without being detrimental to their long-term genomic stability or general health. We further suggest that this technology may be usefully applied in other fields, such as the generation of transgenic animal models.
Adenovirus-based genetic vaccines for biodefense.
Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G
2005-02-01
The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.
Ishizaki, Kimitsune; Chiyoda, Shota; Yamato, Katsuyuki T; Kohchi, Takayuki
2008-07-01
Agrobacterium-mediated transformation has not been practical in pteridophytes, bryophytes and algae to date, although it is commonly used in model plants including Arabidopsis and rice. Here we present a rapid Agrobacterium-mediated transformation system for the haploid liverwort Marchantia polymorpha L. using immature thalli developed from spores. Hundreds of hygromycin-resistant plants per sporangium were obtained by co-cultivation of immature thalli with Agrobacterium carrying the binary vector that contains a reporter, the beta-glucuronidase (GUS) gene with an intron, and a selection marker, the hygromycin phosphotransferase (hpt) gene. In this system, individual gemmae, which arise asexually from single initial cells, were analyzed as isogenic transformants. GUS activity staining showed that all hygromycin-resistant plants examined expressed the GUS transgene in planta. DNA analyses verified random integration of 1-5 copies of the intact T-DNA between the right and the left borders into the M. polymorpha genome. The efficient and rapid Agrobacterium-mediated transformation of M. polymorpha should provide molecular techniques to facilitate comparative genomics, taking advantage of this unique model plant that retains many features of the common ancestor of land plants.
Sobrevilla-Navarro, Ana Alondra; Sandoval-Rodríguez, Ana; García-Bañuelos, Jesús Javier; Armendariz-Borunda, Juan; Salazar-Montes, Adriana María
2018-04-01
Adenoviruses are the most common vectors used in clinical trials of gene therapy. In 2017, 21.2% of clinical trials used rAds as vectors. Systemic administration of rAds results in high tropism in the liver. Interferon types α and β are the major antiviral cytokines which orchestrate the host's immune response against rAd, limiting therapeutic gene expression and preventing subsequent vector administration. siRNA is small double-strand RNAs that temporally inhibit the expression of a specific gene. The aim is to evaluate the effect of IFN-α blocking by a specific siRNA on Ad-GFP transduction and on transgene expression in Huh7 cells in culture. Huh7 cells were cultured in DMEM and transfected with 70 nM of siRNA-IFN-α. Six hours later, the cells were exposed to 1 × 10 9 vp/ml of rAd-GFP for 24 h. Expression of IFN-α, TNF-α and the PKR gene was determined by RT-qPCR. Percentage of transduction was analyzed by flow cytometry and by qPCR. GFP expression was determined by western blot. 70 nM of siRNA-IFN-α inhibited 96% of IFN-α and 65% of TNF-α gene expression compared to an irrelevant siRNA. Percentage of transduction and transgene expression increased in these cells compared to an irrelevant siRNA. Inhibition of IFN-α expression by siRNA-IFN-α enabled a higher level of transduction and transgene expression GFP, highlighting the role of IFN-α in the elimination of adenovirus in transduced cells and thus suggesting that its inhibition could be an important strategy for gene therapy in clinical trials using adenovirus as a vector directed to liver diseases.
Riabov, V.; Tretyakova, I.; Alexander, R. B.; Pushko, P.; Klyushnenkova, E. N.
2015-01-01
The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1*1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8+ T cells (19.6±7.4%) produced IFNγ in response to the immunodominant peptide PSA65–73. In the blood of vaccinated mice, 18.4±4.1% of CD8+ T cells were PSA-specific as determined by the staining with H-2Db/PSA65–73 dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8 T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer. PMID:26319744
Copy number determination of genetically-modified hematopoietic stem cells.
Schuesler, Todd; Reeves, Lilith; Kalle, Christof von; Grassman, Elke
2009-01-01
Human gene transfer with gammaretroviral, murine leukemia virus (MLV) based vectors has been shown to effectively insert and express transgene sequences at a level of therapeutic benefit. However, there are numerous reports of disruption of the normal cellular processes caused by the viral insertion, even of replication deficient gammaretroviral vectors. Current gammaretroviral and lentiviral vectors do not control the site of insertion into the genome, hence, the possibility of disruption of the target cell genome. Risk related to viral insertions is linked to the number of insertions of the transgene into the cellular DNA, as has been demonstrated for replication competent and replication deficient retroviruses in experiments. At high number of insertions per cell, cell transformation due to vector induced activation of proto-oncogenes is more likely to occur, in particular since more than one transforming event is needed for oncogenesis. Thus, determination of the vector copy number in bulk transduced populations, individual colony forming units, and tissue from the recipient of the transduced cells is an increasingly important safety assay and has become a standard, though not straightforward assay, since the inception of quantitative PCR.
Insulated piggyBac vectors for insect transgenesis
Sarkar, Abhimanyu; Atapattu, Asela; Belikoff, Esther J; Heinrich, Jörg C; Li, Xuelei; Horn, Carsten; Wimmer, Ernst A; Scott, Maxwell J
2006-01-01
Background Germ-line transformation of insects is now a widely used method for analyzing gene function and for the development of genetically modified strains suitable for pest control programs. The most widely used transposable element for the germ-line transformation of insects is piggyBac. The site of integration of the transgene can influence gene expression due to the effects of nearby transcription enhancers or silent heterochromatic regions. Position effects can be minimized by flanking a transgene with insulator elements. The scs/scs' and gypsy insulators from Drosophila melanogaster as well as the chicken β-globin HS4 insulator function in both Drosophila and mammalian cells. Results To minimize position effects we have created a set of piggyBac transformation vectors that contain either the scs/scs', gypsy or chicken β-globin HS4 insulators. The vectors contain either fluorescent protein or eye color marker genes and have been successfully used for germ-line transformation of Drosophila melanogaster. A set of the scs/scs' vectors contains the coral reef fluorescent protein marker genes AmCyan, ZsGreen and DsRed that have not been optimized for translation in human cells. These marker genes are controlled by a combined GMR-3xP3 enhancer/promoter that gives particularly strong expression in the eyes. This is also the first report of the use of the ZsGreen and AmCyan reef fluorescent proteins as transformation markers in insects. Conclusion The insulated piggyBac vectors should protect transgenes against position effects and thus facilitate fine control of gene expression in a wide spectrum of insect species. These vectors may also be used for transgenesis in other invertebrate species. PMID:16776846
Labenski, Verena; Suerth, Julia D; Barczak, Elke; Heckl, Dirk; Levy, Camille; Bernadin, Ornellie; Charpentier, Emmanuelle; Williams, David A; Fehse, Boris; Verhoeyen, Els; Schambach, Axel
2016-08-01
Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Suppression of Arabidopsis genes by terminator-less transgene constructs
USDA-ARS?s Scientific Manuscript database
Transgene-mediated gene silencing is an important biotechnological and research tool. There are several RNAi-mediated techniques available for silencing genes in plants. The basis of all these techniques is to generate double stranded RNA precursors in the cell, which are recognized by the cellula...
Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H
2010-11-15
Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.
Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M.; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G.; Scholler, John; Levine, Bruce L.; Albelda, Steven M.; June, Carl H.
2010-01-01
Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CARs). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week post electroporation. Multiple injections of RNA CAR electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(−/−) mice. Dramatic tumor reduction also occurred when the pre-existing intraperitoneal human-derived tumors, that had been growing in vivo for over 50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes demonstrating that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. PMID:20926399
Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer.
Feng, Xiujing; Cao, Shaoxian; Wang, Huili; Meng, Chunhua; Li, Jingxin; Jiang, Jin; Qian, Yong; Su, Lei; He, Qiang; Zhang, Qingxiao
2015-02-01
Production of human α-lactalbumin (hα-LA) transgenic cloned dairy goats has great potential in improving the nutritional value and perhaps increasing the yield of dairy goat milk. Here, a mammary-specific expression vector 5A, harboring goat β-lactoglobulin (βLG) promoter, the hα-LA gene, neo(r) and EGFP dual markers, was constructed. Then, it was effectively transfected into goat mammary epithelial cells (GMECs) and the expression of hα-LA was investigated. Both the hα-LA transcript and protein were detected in the transfected GMECs after the induction of hormonal signals. In addition, the 5A vector was introduced into dairy goat fetal fibroblasts (transfection efficiency ≈60-70%) to prepare competent transgenic donor cells. A total of 121 transgenic fibroblast clones were isolated by 96-well cell culture plates and screened with nested-PCR amplification and EGFP fluorescence. After being frozen for 8 months, the transgenic cells still showed high viabilities, verifying their ability as donor cells. Dairy goat cloned embryos were produced from these hα-LA transgenic donor cells by somatic cell nuclear transfer (SCNT), and the rates of fusion, cleavage, and the development to blastocyst stages were 81.8, 84.4, and 20.0%, respectively. A total of 726 reconstructed embryos derived from the transgenic cells were transferred to 74 recipients and pregnancy was confirmed at 90 days in 12 goats. Of six female kids born, two carried hα-LA and the hα-LA protein was detected in their milk. This study provides an effective system to prepare SCNT donor cells and transgenic animals for human recombinant proteins.
Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo
Hjelm, BE; Grunseich, C; Gowing, G; Avalos, P; Tian, J; Shelley, BC; Mooney, M; Narwani, K; Shi, Y; Svendsen, CN; Wolfe, JH; Fischbeck, KH; Pierson, TM
2016-01-01
Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone’s ability to cross the blood–brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders. PMID:26863047
Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell'Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean
2008-03-01
We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.
Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell’Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean
2010-01-01
We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 × 1010 vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations. PMID:18209734
Vranckx, Lenard S.; Demeulemeester, Jonas; Debyser, Zeger
2016-01-01
The capacity to integrate transgenes into the host cell genome makes retroviral vectors an interesting tool for gene therapy. Although stable insertion resulted in successful correction of several monogenic disorders, it also accounts for insertional mutagenesis, a major setback in otherwise successful clinical gene therapy trials due to leukemia development in a subset of treated patients. Despite improvements in vector design, their use is still not risk-free. Lentiviral vector (LV) integration is directed into active transcription units by LEDGF/p75, a host-cell protein co-opted by the viral integrase. We engineered LEDGF/p75-based hybrid tethers in an effort to elicit a more random integration pattern to increase biosafety, and potentially reduce proto-oncogene activation. We therefore truncated LEDGF/p75 by deleting the N-terminal chromatin-reading PWWP-domain, and replaced this domain with alternative pan-chromatin binding peptides. Expression of these LEDGF-hybrids in LEDGF-depleted cells efficiently rescued LV transduction and resulted in LV integrations that distributed more randomly throughout the host-cell genome. In addition, when considering safe harbor criteria, LV integration sites for these LEDGF-hybrids distributed more safely compared to LEDGF/p75-mediated integration in wild-type cells. This approach should be broadly applicable to introduce therapeutic or suicide genes for cell therapy, such as patient-specific iPS cells. PMID:27788138
Horizontal gene transfer does not occur between sFat-1 transgenic pigs and nontransgenic pigs.
Tang, M X; Zheng, X M; Hou, J; Qian, L L; Jiang, S W; Cui, W T; Li, K
2013-03-01
We previously generated and characterized synthesized fatty acid desaturase-1 (sFat-1) transgenic pigs that had increased concentrations of ω-3 unsaturated fatty acid in their meat. The objective was to assess whether the inserted foreign gene in sFat-1 transgenic pigs was able to transfer and integrate into the genome of nontransgenic pigs by suckling or mating. Tests for suckling-mediated horizontal gene transfer (HGT) included sFat-1 transgenic sows nursing nontransgenic piglets and sFat-1 transgenic piglets suckling nontransgenic sows. Tests for mating-mediated HGT were performed by male sFat-1 transgenic pigs mated with nontransgenic females and female sFat-1 transgenic pigs mated with nontransgenic males. Polymerase chain reaction was used to detect the sFat-1 gene fragment in various tissues sampled from nontransgenic pigs. The foreign target gene sFat-1 was not detected in the genomic DNA of various tissues and organs sampled from nontransgenic pigs. Therefore, we concluded that HGT from transgenic pigs to wild type pigs via suckling or mating was unlikely. Copyright © 2013 Elsevier Inc. All rights reserved.
Cui, Hongguang; Wang, Aiming
2017-03-01
RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Will, Elke; Bailey, Jeff; Schuesler, Todd; Modlich, Ute; Balcik, Brenden; Burzynski, Ben; Witte, David; Layh-Schmitt, Gerlinde; Rudolph, Cornelia; Schlegelberger, Brigitte; von Kalle, Christof; Baum, Christopher; Sorrentino, Brian P; Wagner, Lars M; Kelly, Patrick; Reeves, Lilith; Williams, David A
2007-04-01
Although retroviral vectors are one of the most widely used vehicles for gene transfer, there is no uniformly accepted pre-clinical model defined to assess their safety, in particular their risk related to insertional mutagenesis. In the murine pre-clinical study presented here, 40 test and 10 control mice were transplanted with ex vivo manipulated bone marrow cells to assess the long-term effects of the transduction of hematopoietic cells with the retroviral vector MSCV-MGMT(P140K)wc. Test mice had significant gene marking 8-12 months post-transplantation with an average of 0.93 vector copies per cell and 41.5% of peripheral blood cells expressing the transgene MGMT(P140K), thus confirming persistent vector expression. Unexpectedly, six test mice developed malignant lymphoma. No vector was detected in the tumor cells of five animals with malignancies, indicating that the malignancies were not caused by insertional mutagenesis or MGMT(P140K) expression. Mice from a concurrent study with a different transgene also revealed additional cases of vector-negative lymphomas of host origin. We conclude that the background tumor formation in this mouse model complicates safety determination of retroviral vectors and propose an improved study design that we predict will increase the relevance and accuracy of interpretation of pre-clinical mouse studies.
Liu, Wencheng; Zhao, Lingzhi; Blackman, Brittany; Parmar, Mayur; Wong, Man Ying; Woo, Thomas; Yu, Fangmin; Chiuchiolo, Maria J; Sondhi, Dolan; Kaminsky, Stephen M; Crystal, Ronald G; Paul, Steven M
2016-12-07
Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using AAV vectors to deliver antibodies like PHF1 directly to brain may constitute a novel approach to treating various neurodegenerative disorders, such as FTD and Alzheimer's disease. Copyright © 2016 the authors 0270-6474/16/3612425-11$15.00/0.
Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn.
Tacket, Carol O; Pasetti, Marcela F; Edelman, Robert; Howard, John A; Streatfield, Stephen
2004-10-22
Previous clinical studies have demonstrated the feasibility of using edible transgenic plants to deliver protective antigens as new oral vaccines. Transgenic corn is particularly attractive for this purpose since the recombinant antigen is stable and homogeneous, and corn can be formulated in several edible forms without destroying the cloned antigen. Transgenic corn expressing 1 mg of LT-B of Escherichia coli without buffer was fed to adult volunteers in three doses, each consisting of 2.1 g of plant material. Seven (78%) of nine volunteers developed rises in both serum IgG anti-LT and numbers of specific antibody secreting cells after vaccination. Four (44%) of nine volunteers also developed stool IgA. Transgenic plants represent a new vector for oral vaccine antigens.
2013-01-01
Background Molecular markers allow rapid identification of biologically important germplasm/s having desired character. Previously we have reported a genotype specific molecular marker, Balco1128 [GenBank ID EU258678] of Bambusa balcooa containing an ORF (375 bp) having high similarity with receptor like cytoplasmic kinase of Arabidopsis and Oryza. Balco1128 was found to be associated only with bamboo genotypes endowed with high cellulose and low lignin contents of fibers. Under the above backdrop, it was necessitated to characterize this genetic marker for better understanding of its biological significance in context of superior quality fiber development. Results The full length cDNA (3342 bp) of BbKst, a serine-threonine protein kinase was isolated from B. balcooa comprising of six LRR domains at the N-terminal end and a kinase domain at the C-terminal end. Bacteria-expressed BbKst-kinase domain (3339 bp long) showed Mg2+ dependent kinase activity at pH 7.0, 28°C. Bioinformatics study followed by phospho-amino analysis further confirmed that BbKst-kinase belongs to the serine/threonine protein kinase family. Transcript analysis of the BbKst gene following RNA slot blot hybridization and qPCR revealed higher expression of BbKst during initiation and elongation stages of fiber development. Tissue specific expression studies showed much higher expression of BbKst transcript in stems and internodes of B. balcooa than in leaves and rhizomes. Southern analysis revealed single copy insertion of BbKst in most of the Agrobacterium mediated transgenic tobacco plants. Real-time PCR detected 150-200 fold enhanced expression of BbKst in different T1 tobacco lines than that of the vector transformed plants. Heterologous expression of BbKst under control of 35S promoter in transgenic tobacco showed high cellulose deposition in the xylem fibers. Number of xylary fibers was higher in transgenic T0 and T1 plants than that of empty-vector transformed tobacco plants offering enhanced mechanical strength to the transgenic plants, which was also substantiated by their strong upright phenotypes, significantly higher cellulose contents, flexibility coefficient, slenderness ratio, and lower Runkel ratio of the fibers. Conclusions This finding clearly demonstrated that BbKst gene (GenBank ID JQ432560) encodes a serine/threonine protein kinase. BbKst induced higher cellulose deposition/synthesis in transgenic tobacco plants, an important attribute of fiber quality bestowing additional strength to the plant. PMID:24015925
Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu
2014-01-01
The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121
Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu
2014-01-01
The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.
Melo, Luis G; Agrawal, Reitu; Zhang, Lunan; Rezvani, Mojgan; Mangi, Abeel A; Ehsan, Afshin; Griese, Daniel P; Dell'Acqua, Giorgio; Mann, Michael J; Oyama, Junichi; Yet, Shaw-Fang; Layne, Matthew D; Perrella, Mark A; Dzau, Victor J
2002-02-05
Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury. Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1beta protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death. This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel "pre-event" gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.
Mathison, Megumi; Singh, Vivek P; Chiuchiolo, Maria J; Sanagasetti, Deepthi; Mao, Yun; Patel, Vivekkumar B; Yang, Jianchang; Kaminsky, Stephen M; Crystal, Ronald G; Rosengart, Todd K
2017-02-01
The reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells improves ventricular function in myocardial infarction models. Only integrating persistent expression vectors have thus far been used to induce reprogramming, potentially limiting its clinical applicability. We therefore tested the reprogramming potential of nonintegrating, acute expression adenoviral (Ad) vectors. Ad or lentivirus vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) were validated in vitro. Sprague-Dawley rats then underwent coronary ligation and Ad-mediated administration of vascular endothelial growth factor to generate infarct prevascularization. Three weeks later, animals received Ad or lentivirus encoding G, M, or T (AdGMT or LentiGMT) or an equivalent dose of a null vector (n = 11, 10, and 10, respectively). Outcomes were analyzed by echocardiography, magnetic resonance imaging, and histology. Ad and lentivirus vectors provided equivalent G, M, and T expression in vitro. AdGMT and LentiGMT both likewise induced expression of the cardiomyocyte marker cardiac troponin T in approximately 6% of cardiac fibroblasts versus <1% cardiac troponin T expression in AdNull (adenoviral vector that does not encode a transgene)-treated cells. Infarcted myocardium that had been treated with AdGMT likewise demonstrated greater density of cells expressing the cardiomyocyte marker beta myosin heavy chain 7 compared with AdNull-treated animals. Echocardiography demonstrated that AdGMT and LentiGMT both increased ejection fraction compared with AdNull (AdGMT: 21% ± 3%, LentiGMT: 14% ± 5%, AdNull: -0.4% ± 2%; P < .05). Ad vectors are at least as effective as lentiviral vectors in inducing cardiac fibroblast transdifferentiation into induced cardiomyocyte-like cells and improving cardiac function in postinfarct rat hearts. Short-term expression Ad vectors may represent an important means to induce cardiac cellular reprogramming in humans. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Zhao, Xueyan; Yang, Qiang; Zhao, Kewei; Jiang, Chao; Ren, Dongren; Xu, Pan; He, Xiaofang; Liao, Rongrong; Jiang, Kai; Ma, Junwu; Xiao, Shijun; Ren, Jun; Xing, Yuyun
2016-07-01
In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive F1 piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive F1 boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive F1 sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. cDNA sequencing and western blot indicated that the exogenous BMPR1B CDS was successfully expressed in host pigs. The transgenic pigs showed normal litter size performance. However, no significant differences in litter size were found between transgene-positive and negative sows. Our study provides new insight into producing cloned transgenic livestock related to reproductive traits.
Labbé, Geneviève M. C.; Nimmo, Derric D.; Alphey, Luke
2010-01-01
Background The Asian tiger mosquito, Aedes albopictus (Skuse), is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. Methodology/Principal Findings Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2–3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2–6%. Conclusions/Significance Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies. PMID:20808959
Akbari, Omar S; Chen, Chun-Hong; Marshall, John M; Huang, Haixia; Antoshechkin, Igor; Hay, Bruce A
2014-12-19
Insects act as vectors for diseases of plants, animals, and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression.
Liu, Changhong; Liu, Wei; Lu, Xuzhong; Chen, Wei; Yang, Jianbo; Zheng, Lei
2014-06-15
Crop-to-crop transgene flow may affect the seed purity of non-transgenic rice varieties, resulting in unwanted biosafety consequences. The feasibility of a rapid and nondestructive determination of transgenic rice seeds from its non-transgenic counterparts was examined by using multispectral imaging system combined with chemometric data analysis. Principal component analysis (PCA), partial least squares discriminant analysis (PLSDA), least squares-support vector machines (LS-SVM), and PCA-back propagation neural network (PCA-BPNN) methods were applied to classify rice seeds according to their genetic origins. The results demonstrated that clear differences between non-transgenic and transgenic rice seeds could be easily visualized with the nondestructive determination method developed through this study and an excellent classification (up to 100% with LS-SVM model) can be achieved. It is concluded that multispectral imaging together with chemometric data analysis is a promising technique to identify transgenic rice seeds with high efficiency, providing bright prospects for future applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The Mexican fruit fly, Anastrepha ludens, is a highly significant agricultural pest species that has been genetically transformed with a piggyBac¬-based transposon vector system using independent vector and transposase helper plasmids. Estimated germ-line transformation frequencies were approximate...
Transformation of Lesquerella fendleri with the new binary vector pGPro4-35S
USDA-ARS?s Scientific Manuscript database
Crop genetic engineering requires the use of various promoters to control the expression of introduced transgenes. Some of the binary vectors currently available for promoter characterization in dicotyledonous plants have pitfalls due to their construction, such as containing a selectable marker ca...
Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf
2014-01-01
Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin architecture and degradation of the proliferating cells’ genomic DNA. The proliferating stem cells, but not the differentiating ones, were effectively induced to die. Conclusion Herein, we describe attaining the proof-of-concept for the strategy, whereby transgenic expression of the genetically engineered human recombinant DNases in proliferating and directed differentiation resisting stem cells leads to their death. This novel strategy reduces the risk of iatrogenic neoplasms in stem cell therapy. PMID:25045589
One- and two-photon states for quantum information
NASA Astrophysics Data System (ADS)
Peters, Nicholas A.
To find expression stability among transgenic lines, the Recombinase Mediated Transgene Integration (RMTI) technology using the Cre/ lox-mediated site-specific gene integration system was used. The objectives were to develop an efficient method of site-specific transgene integration and to test the effectiveness of this method by assaying transgene expression in the RMTI lines. The RMTI technology allows the precise integration of a transgene in a previously placed target genomic location containing a lox site. The efficiency of CRE-mediated site-specific integration in rice by particle bombardment was found to vary from 3 to 28% in nine different experiments. Some hemizygous site-specific integration plants that were derived from homozygous target locus were found to undergo CRE-mediated reversion of the integration locus. No reversion was observed in callus; however, reverting cells may have been excluded due to selection pressure. The expression of the transgene gus was studied in all 40 callus lines, 12 regenerated T0 plants and the T1 and T2 progenies of 5 lines. The isogenic SC lines had an average expression level based on the activity of beta-glucuronidase of 158 +/- 9 units/mg protein (mean +/- SEM; n=3; variance within SC lines are expressed as standard error of the mean SEM) indicating a significantly higher level of expression, as compared to MC lines that had a much lower expression level 44 +/- 8 units/mg protein (mean +/- SEM; n=3) and the imprecise lines that had 22 +/- 8 units/mg protein (mean +/- SEM; n=3). Transgene expression in the callus cells of precise single copy lines varied by ˜3 fold, whereas that in multi-copy lines varied by ˜30 fold. Furthermore, precise single copy lines, on an average, contained ˜3.5 fold higher expression than multi-copy lines. Transgene expression in the plants of precise single-copy lines was highly variable, which was found to be due to the loss of the integration because of CRE-mediated reversion in the locus. (Abstract shortened by UMI.)
Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L
2013-01-01
Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.
Placenta Growth Factor in Diabetic Wound Healing
Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa
2006-01-01
Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476
Generation of a Hypomorphic Model of Propionic Acidemia Amenable to Gene Therapy Testing
Guenzel, Adam J; Hofherr, Sean E; Hillestad, Matthew; Barry, Mary; Weaver, Eric; Venezia, Sarah; Kraus, Jan P; Matern, Dietrich; Barry, Michael A
2013-01-01
Propionic acidemia (PA) is a recessive genetic disease that results in an inability to metabolize certain amino acids and odd-chain fatty acids. Current treatment involves restricting consumption of these substrates or liver transplantation. Deletion of the Pcca gene in mice mimics the most severe forms of the human disease. Pcca− mice die within 36 hours of birth, making it difficult to test intravenous systemic therapies in them. We generated an adult hypomorphic model of PA in Pcca− mice using a transgene bearing an A138T mutant of the human PCCA protein. Pcca−/−(A138T) mice have 2% of wild-type PCC activity, survive to adulthood, and have elevations in propionyl-carnitine, methylcitrate, glycine, alanine, lysine, ammonia, and markers associated with cardiomyopathy similar to those in patients with PA. This adult model allowed gene therapy testing by intravenous injection with adenovirus serotype 5 (Ad5) and adeno-associated virus 2/8 (AAV8) vectors. Ad5-mediated more rapid increases in PCCA protein and propionyl-CoA carboxylase (PCC) activity in the liver than AAV8 and both vectors reduced propionylcarnitine and methylcitrate levels. Phenotypic correction was transient with first generation Ad whereas AAV8-mediated long-lasting effects. These data suggest that this PA model may be a useful platform for optimizing systemic intravenous therapies for PA. PMID:23648696
Jiang, J G; Shen, G F; Li, J; Qiao, C; Xiao, B; Yan, H; Wang, D W; Xiao, X
2017-03-01
Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.
Gouiaa, Sandra; Khoudi, Habib
2015-09-01
Potassium (K) deficiency is a worldwide problem. Thus, the K biofortification of crops is needed to enhance human nutrition. Tomato represents an ideal candidate for such biofortification programs thanks to its widespread distribution and its easy growth on a commercial scale. However, although tomato is moderately tolerant to abiotic stresses, the crop losses due to salinity can be severe. In this study, we generated transgenic tomato plants over-expressing a Na(+)-K(+)/H(+) exchanger gene (TNHXS1), singly or with H(+)-pyrophosphatase (H(+)-PPiase) gene using a bicistronic construct. Transgenic tomato lines co-expressing both genes (LNV) significantly showed higher salinity tolerance than the wild-type (WT) plans or those expressing the TNHXS1 gene alone (LN). Indeed, under salt stress conditions, double transgenic plants produced higher biomass and retained more chlorophyll and catalase (CAT) activity. In addition, they showed earlier flowering and produced more fruits. To address K deficiencies in humans, an increase of 50% in K content of vegetable products was proposed. In this study, ion content analysis revealed that, under salt stress, fruits from double transgenic plants accumulated 5 times more potassium and 9 times less sodium than WT counterparts. Interestingly, the ionomic analysis of tomato fruits also revealed that LNV had a distinct profile compared to WT and to LN plants. Indeed, LNV fruits accumulated less Fe(2+), Ca(2+), Mg(2+) and Zn(2+), but more Mn(2+). This study demonstrates the effectiveness of bicistronic constructs as an important tool for the enhancement of biofortification and salt stress tolerance in crops. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transgene delivery to endothelial cultures derived from porcine carotid artery ex vivo.
Andoh, J; Sawyer, B; Szewczyk, K; Nortley, M; Rossetti, T; Loftus, I M; Yáñez-Muñoz, R J; Hainsworth, A H
2013-10-01
Carotid artery disease is a widespread cause of morbidity and mortality. Porcine models of vascular disease are well established in vivo, but existing endothelial systems in vitro (e.g. human umbilical vein endothelial cells, rat aortic endothelial cultures) poorly reflect carotid endothelium. A reliable in vitro assay would improve design of in vivo experiments and allow reduction and refinement of animal use. This study aimed (1) to develop ex vivo endothelial cultures from porcine carotid and (2) to test whether these were suitable for lentivector-mediated transgene delivery. Surplus carotid arteries were harvested from young adult female Large White pigs within 10 min post-mortem. Small sectors of carotid artery wall (approximately 4 mm×4 mm squares) were immobilised in a stable gel matrix. Cultures were exposed to HIV-derived lentivector (LV) encoding a reporter transgene or the equivalent integration-deficient vector (IDLV). After 7-14 days in vitro, cultures were fixed and labelled histochemically. Thread-like multicellular outgrowths were observed that were positive for endothelial cell markers (CD31, VEGFR2, von Willebrand factor). A minority of cells co-labelled for smooth muscle markers. Sensitivity to cytotoxic agents (paclitaxel, cycloheximide, staurosporine) was comparable to that in cell cultures, indicating that the gel matrix permits diffusive access of small pharmacological molecules. Transgene-expressing cells were more abundant following exposure to LV than IDLV (4.7, 0.1% of cells, respectively). In conclusion, ex vivo adult porcine carotid artery produced endothelial cell outgrowths that were effectively transduced by LV. This system will facilitate translation of novel therapies to clinical trials, with reduction and refinement of in vivo experiments.
Shi, Bingbo; Ding, Qiang; He, Xiaolin; Zhu, Haijing; Niu, Yiyuan; Cai, Bei; Cai, Jiao; Lei, Anming; Kang, Danju; Yan, Hailong; Ma, Baohua; Wang, Xiaolong; Qu, Lei; Chen, Yulin
2017-02-01
Increasing cashmere yield is one of the vital aims of cashmere goats breeding. Compared to traditional breeding methods, transgenic technology is more efficient and the piggyBac (PB) transposon system has been widely applied to generate transgenic animals. For the present study, donor fibroblasts were stably transfected via a PB donor vector containing the coding sequence of cashmere goat thymosin beta-4 (Tβ4) and driven by a hair follicle-specific promoter, the keratin-associated protein 6.1 (KAP6.1) promoter. To obtain genetically modified cells as nuclear donors, we co-transfected donor vectors into fetal fibroblasts of cashmere goats. Five transgenic cashmere goats were generated following somatic cell nuclear transfer (SCNT). Via determination of the copy numbers and integration sites, the Tβ4 gene was successfully inserted into the goat genome. Histological examination of skin tissue revealed that Tβ4-overexpressing, transgenic goats had a higher secondary to primary hair follicle (S/P) ratio compared to wild type goats. This indicates that Tβ4-overexpressing goats possess increased numbers of secondary hair follicles (SHF). Our results indicate that Tβ4-overexpression in cashmere goats could be a feasible strategy to increase cashmere yield.
Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model
Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.
2017-01-01
Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626
Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model.
Simão, D; Pinto, C; Fernandes, P; Peddie, C J; Piersanti, S; Collinson, L M; Salinas, S; Saggio, I; Schiavo, G; Kremer, E J; Brito, C; Alves, P M
2016-01-01
Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in preclinical tests. For clinical translation, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, whereas human adenovirus type 5 (HAdV5) showed increased tropism toward glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity.
Optimization of Retinal Gene Therapy for X-Linked Retinitis Pigmentosa Due to RPGR Mutations.
Beltran, William A; Cideciyan, Artur V; Boye, Shannon E; Ye, Guo-Jie; Iwabe, Simone; Dufour, Valerie L; Marinho, Luis Felipe; Swider, Malgorzata; Kosyk, Mychajlo S; Sha, Jin; Boye, Sanford L; Peterson, James J; Witherspoon, C Douglas; Alexander, John J; Ying, Gui-Shuang; Shearman, Mark S; Chulay, Jeffrey D; Hauswirth, William W; Gamlin, Paul D; Jacobson, Samuel G; Aguirre, Gustavo D
2017-08-02
X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is an early onset and severe cause of blindness. Successful proof-of-concept studies in a canine model have recently shown that development of a corrective gene therapy for RPGR-XLRP may now be an attainable goal. In preparation for a future clinical trial, we have here optimized the therapeutic AAV vector construct by showing that GRK1 (rather than IRBP) is a more efficient promoter for targeting gene expression to both rods and cones in non-human primates. Two transgenes were used in RPGR mutant (XLPRA2) dogs under the control of the GRK1 promoter. First was the previously developed stabilized human RPGR (hRPGRstb). Second was a new full-length stabilized and codon-optimized human RPGR (hRPGRco). Long-term (>2 years) studies with an AAV2/5 vector carrying hRPGRstb under control of the GRK1 promoter showed rescue of rods and cones from degeneration and retention of vision. Shorter term (3 months) studies demonstrated comparable preservation of photoreceptors in canine eyes treated with an AAV2/5 vector carrying either transgene under the control of the GRK1 promoter. These results provide the critical molecular components (GRK1 promoter, hRPGRco transgene) to now construct a therapeutic viral vector optimized for RPGR-XLRP patients. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana
2017-04-11
The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Stoneham, Charlotte A.; Hollinshead, Michael; Hajitou, Amin
2012-01-01
Adeno-associated virus/phage (AAVP) is a gene delivery vector constructed as a hybrid between adeno-associated virus and filamentous phage. Tumor targeting following systemic administration has previously been demonstrated in several in vivo cancer models, with tumor specificity achieved through display of an αv integrin-targeting ligand on the capsid. However, high titers of AAVP are required for transduction of large numbers of mammalian cells. This study is the first to investigate the mechanisms involved in entry and intracellular trafficking of AAVP. Using a combination of flow cytometry, confocal, and electron microscopy techniques, together with pharmacological agents, RNAi and dominant negative mutants, we have demonstrated that targeted AAVP endocytosis is both dynamin and clathrin-dependent. Following entry, the majority of AAVP particles are sequestered by the endosomal-lysosomal degradative pathway. Finally, we have demonstrated that disruption of this pathway leads to improved transgene expression by AAVP, thus demonstrating that escape from the late endosomes/lysosomes is a critical step for improving gene delivery by AAVP. These findings have important implications for the rational design of improved AAVP and RGD-targeted vectors. PMID:22915587
Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene.
Shimizu, Masami; Kimura, Tetsuya; Koyama, Takayoshi; Suzuki, Katsuhisa; Ogawa, Naoto; Miyashita, Kiyotaka; Sakka, Kazuo; Ohmiya, Kunio
2002-08-01
The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.
USDA-ARS?s Scientific Manuscript database
Increased use of genetically engineered crops in agriculture has raised concerns over pollinator-mediated gene flow between transgenic and conventional agricultural varieties. This study evaluated whether contracted migratory beekeeping practices influence transgenic pollen flow among spatially iso...
Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q
2015-12-21
The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion.
Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang
2016-10-01
The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.
Rapid and efficient gene delivery into the adult mouse brain via focal electroporation
Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko
2016-01-01
In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903
Werner, Stefan; Breus, Oksana; Symonenko, Yuri; Marillonnet, Sylvestre; Gleba, Yuri
2011-01-01
We describe here a unique ethanol-inducible process for expression of recombinant proteins in transgenic plants. The process is based on inducible release of viral RNA replicons from stably integrated DNA proreplicons. A simple treatment with ethanol releases the replicon leading to RNA amplification and high-level protein production. To achieve tight control of replicon activation and spread in the uninduced state, the viral vector has been deconstructed, and its two components, the replicon and the cell-to-cell movement protein, have each been placed separately under the control of an inducible promoter. Transgenic Nicotiana benthamiana plants incorporating this double-inducible system demonstrate negligible background expression, high (over 0.5 × 104-fold) induction multiples, and high absolute levels of protein expression upon induction (up to 4.3 mg/g fresh biomass). The process can be easily scaled up, supports expression of practically important recombinant proteins, and thus can be directly used for industrial manufacturing. PMID:21825158
RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice.
Ahmed, Mohamed M S; Bian, Shiquan; Wang, Muyue; Zhao, Jing; Zhang, Bingwei; Liu, Qiaoquan; Zhang, Changquan; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu
2017-04-01
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Development of resistant varieties by using conventional breeding methods is limited, as germplasm with high level of resistance to RBSDV have not yet been found. One of the most promising methods to confer resistance against RBSDV is the use of RNA interference (RNAi) technology. RBSDV non-structural protein P7-2, encoded by S7-2 gene, is a potential F-box protein and involved in the plant-virus interaction through the ubiquitination pathway. P8, encoded by S8 gene, is the minor core protein that possesses potent active transcriptional repression activity. In this study, we transformed rice calli using a mini-twin T-DNA vector harboring RNAi constructs of the RBSDV genes S7-2 or S8, and obtained plants harboring the target gene constructs and the selectable marker gene, hygromycin phosphotransferase (HPT). From the offspring of these transgenic plants, we obtained selectable marker (HPT gene)-free plants. Homozygous T 5 transgenic lines which harbored either S7-2-RNAi or S8-RNAi exhibited high level resistance against RBSDV under field infection pressure from indigenous viruliferous small brown planthoppers. Thus, our results showed that RNA interference with the expression of S7-2 or S8 genes seemed an effective way to induce high level resistance in rice against RBSD disease.
Regulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy.
Kawata, Daisuke; Wu, Zetang
2017-09-15
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating complication associated with drug treatment of cancer for which there are no effective strategies of prevention or treatment. In this study, we examined the effect of intermittent expression of neurotophin-3 (NT-3) or interleukin-10 (IL-10) from replication-defective herpes simplex virus (HSV)-based regulatable vectors delivered by subcutaneous inoculation to the dorsal root ganglion (DRG) on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet)-on-based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency-associated promoter 2 (LAP-2), and expression of the transgene was controlled by doxycycline (DOX). We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg) once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.
De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications.
Katona, Robert L
2015-02-01
Mammalian artificial chromosomes (MACs) are non-integrating, autonomously replicating natural chromosome-based vectors that may carry a vast amount of genetic material, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in target cells. Satellite-DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian and plant species. These artificially generated accessory chromosomes are composed of predictable DNA sequences, and they contain defined genetic information. SATACs have already passed a number of obstacles crucial to their further development as gene therapy vectors, including large-scale purification, transfer of purified artificial chromosomes into different cells and embryos, generation of transgenic animals and germline transmission with purified SATACs, and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals. SATACs could be used in cell therapy protocols. For these methods, the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells.
Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A
2011-11-29
Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.
Khattak, Shahryar; Murawala, Prayag; Andreas, Heino; Kappert, Verena; Schuez, Maritta; Sandoval-Guzmán, Tatiana; Crawford, Karen; Tanaka, Elly M
2014-03-01
The axolotl (Mexican salamander, Ambystoma mexicanum) has become a very useful model organism for studying limb and spinal cord regeneration because of its high regenerative capacity. Here we present a protocol for successfully mating and breeding axolotls in the laboratory throughout the year, for metamorphosing axolotls by a single i.p. injection and for axolotl transgenesis using I-SceI meganuclease and the mini Tol2 transposon system. Tol2-mediated transgenesis provides different features and advantages compared with I-SceI-mediated transgenesis, and it can result in more than 30% of animals expressing the transgene throughout their bodies so that they can be directly used for experimentation. By using Tol2-mediated transgenesis, experiments can be performed within weeks (e.g., 5-6 weeks for obtaining 2-3-cm-long larvae) without the need to establish germline transgenic lines (which take 12-18 months). In addition, we describe here tamoxifen-induced Cre-mediated recombination in transgenic axolotls.
Carbonell, Alberto; Fahlgren, Noah; Mitchell, Skyler; ...
2015-05-20
Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distalmore » stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific. Finally, significance Statement A series of amiRNA vectors based on Oryza sativa MIR390 (OsMIR390) precursor were developed for simple, cost-effective and large-scale synthesis of amiRNA constructs to silence genes in monocots. Unexpectedly, amiRNAs produced from chimeric OsMIR390-based precursors including Arabidopsis thaliana MIR390a distal stem-loop sequences accumulated elevated levels of highly effective and specific amiRNAs in transgenic Brachypodium distachyon plants.« less
Gilbert, Rénald; Guilbault, Claire; Gagnon, David; Bernier, Alice; Bourget, Lucie; Elahi, Seyyed Mehdy; Kamen, Amine; Massie, Bernard
2014-11-01
E1-deleted adenovirus vectors (AdV) are important gene transfer vehicles for gene therapy and vaccination. Amplification of AdV must take place in cells that express the adenovirus E1A and E1B genes. Sequence homology between AdV and the E1 genes integrated within the complementing cells should be minimal to reduce the odds of generating replication-competent adenovirus (RCA). The present study describes the establishment of AdV complementing cells constructed by stable transfection of the minimal E1A and E1B genes into human lung carcinoma (A549). Because some transgene products can be cytotoxic, the cells were engineered to stably express the repressor of the cumate-switch (CymR) to silence transgene transcription during vector growth. For regulatory compliance and to facilitate the scale-up, the resulting complementing cells (SF-BMAdR) were adapted to serum-free suspension culture. The best clone of SF-BMAdR produced AdV carrying an innocuous transgene to the same level as 293 cells, but titers were better for AdV carrying transgene for a cytotoxic product. Elevated titers were maintained for at least two months in suspension culture in the absence of selective agent and the cells did not produce RCA. Because of their advantageous properties, SF-BMAdR cells should become an important tool for developing large-scale production processes of AdV for research and clinical applications. Copyright © 2014. Published by Elsevier B.V.
Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Mathur, Ajay Kumar; Shanker, Karuna
2015-01-01
Transgenic Catharanthus roseus plants (transgenic Dhawal [DT] and transgenic Nirmal [NT]) obtained from the Agrobacterium tumefaciens and Agrobacterium rhizognenes-mediated transformations, respectively, have been maintained in vitro for 5 years. Plants were studied at regular intervals for various parameters such as plant height, leaf size, multiplication rate, alkaloid profile and presence of marker genes. DT plant gradually lost the GUS gene expression and it was not detected in the fifth year while NT plant demonstrated the presence of genes rolA, rolB and rolC even in the fifth year, indicating the more stable nature of Ri transgene. Vindoline content in the DT was two times more than in non-transformed control plants. Alkaloid and tryptophan profiles were almost constant during the 5 years. The cluster analysis revealed that the DT plant is more close to the control Nirmal plant followed by NT plant.
Shri, Manju; Rai, Arti; Verma, Pankaj Kumar; Misra, Prashant; Dubey, Sonali; Kumar, Smita; Verma, Sikha; Gautam, Neelam; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis
2013-04-01
Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of L-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm = 0.5-0.8) promoted the highest frequency of transformation (83.04 %) in medium containing L-cysteine (400 mg l(-1)). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of L-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.
Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian
2017-01-01
Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.
Harro, Clayton D; Robertson, Michael N; Lally, Michelle A; O'Neill, Lori D; Edupuganti, Srilatha; Goepfert, Paul A; Mulligan, Mark J; Priddy, Frances H; Dubey, Sheri A; Kierstead, Lisa S; Sun, Xiao; Casimiro, Danilo R; DiNubile, Mark J; Shiver, John W; Leavitt, Randi Y; Mehrotra, Devan V
2009-01-01
Vaccines inducing pathogen-specific cell-mediated immunity are being developed using attenuated adenoviral (Ad) vectors. We report the results of two independent Phase I trials of similar replication-deficient Ad5 vaccines containing a near-consensus HIV-1 clade B gag transgene. Healthy HIV-uninfected adults were enrolled in two separate, multicenter, dose-escalating, blinded, placebo-controlled studies to assess the safety and immunogenicity of a three-dose homologous regimen of Ad5 and MRKAd5 HIV-1 gag vaccines given on day 1, week 4, and week 26. Adverse events were collected for 29 days following each intradeltoid injection. The primary immunogenicity endpoint was the proportion of subjects with a positive unfractionated Gag-specific IFN-gamma ELISPOT response measured 4 weeks after the last dose (week 30). Analyses were performed after combining data for each dose group from both protocols, stratifying by baseline Ad5 titers. Overall, 252 subjects were randomized to receive either vaccine or placebo, including 229 subjects (91%) who completed the study through week 30. Tolerability and immunogenicity did not appear to differ between the Ad5 and MRKAd5 vaccines. The frequency of injection-site reactions was dose dependent. Systemic adverse events were also dose dependent and more frequent in subjects with baseline Ad5 titers <200 versus > or =200, especially after the first dose. The percent of ELISPOT responders and the ELISPOT geometric means overall were significantly higher for all four vaccine doses studied compared to placebo, and were generally higher in vaccine recipients with baseline Ad5 titers <200 versus > or = 200. Ad5 titers increased after vaccination in a dose-dependent fashion. Both Ad5-vectored HIV-1 vaccines were generally well tolerated and induced cell-mediated immune responses against HIV Gag-peptides in the majority of healthy adults with baseline Ad5 titers <200. Preexistent and/or vaccine-induced immunity to the Ad5 vector may dampen the CMI response to HIV Gag.
Robertson, Michael N.; Lally, Michelle A.; O'Neill, Lori D.; Edupuganti, Srilatha; Goepfert, Paul A.; Mulligan, Mark J.; Priddy, Frances H.; Dubey, Sheri A.; Kierstead, Lisa S.; Sun, Xiao; Casimiro, Danilo R.; DiNubile, Mark J.; Shiver, John W.; Leavitt, Randi Y.; Mehrotra, Devan V.
2009-01-01
Abstract Vaccines inducing pathogen-specific cell-mediated immunity are being developed using attenuated adenoviral (Ad) vectors. We report the results of two independent Phase I trials of similar replication-deficient Ad5 vaccines containing a near-consensus HIV-1 clade B gag transgene. Healthy HIV-uninfected adults were enrolled in two separate, multicenter, dose-escalating, blinded, placebo-controlled studies to assess the safety and immunogenicity of a three-dose homologous regimen of Ad5 and MRKAd5 HIV-1 gag vaccines given on day 1, week 4, and week 26. Adverse events were collected for 29 days following each intradeltoid injection. The primary immunogenicity endpoint was the proportion of subjects with a positive unfractionated Gag-specific IFN-γ ELISPOT response measured 4 weeks after the last dose (week 30). Analyses were performed after combining data for each dose group from both protocols, stratifying by baseline Ad5 titers. Overall, 252 subjects were randomized to receive either vaccine or placebo, including 229 subjects (91%) who completed the study through week 30. Tolerability and immunogenicity did not appear to differ between the Ad5 and MRKAd5 vaccines. The frequency of injection-site reactions was dose dependent. Systemic adverse events were also dose dependent and more frequent in subjects with baseline Ad5 titers <200 versus ≥200, especially after the first dose. The percent of ELISPOT responders and the ELISPOT geometric means overall were significantly higher for all four vaccine doses studied compared to placebo, and were generally higher in vaccine recipients with baseline Ad5 titers <200 versus ≥200. Ad5 titers increased after vaccination in a dose-dependent fashion. Both Ad5-vectored HIV-1 vaccines were generally well tolerated and induced cell-mediated immune responses against HIV Gag-peptides in the majority of healthy adults with baseline Ad5 titers <200. Preexistent and/or vaccine-induced immunity to the Ad5 vector may dampen the CMI response to HIV Gag. PMID:19108693
Orlovskis, Zigmunds; Hogenhout, Saskia A.
2016-01-01
Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117
Campbell, Samuel; Suwan, Keittisak; Waramit, Sajee; Aboagye, Eric Ofori; Hajitou, Amin
2018-04-21
The previously developed adeno-associated virus/phage (AAVP) vector, a hybrid between M13 bacteriophage (phage) viruses that infect bacteria only and human Adeno-Associated Virus (AAV), is a promising tool in targeted gene therapy against cancer. AAVP can be administered systemically and made tissue specific through the use of ligand-directed targeting. Cancer cells and tumor-associated blood vessels overexpress the α ν integrin receptors, which are involved in tumor angiogenesis and tumor invasion. AAVP is targeted to these integrins via a double cyclic RGD4C ligand displayed on the phage capsid. Nevertheless, there remain significant host-defense hurdles to the use of AAVP in targeted gene delivery and subsequently in gene therapy. We previously reported that histone deacetylation in cancer constitutes a barrier to AAVP. Herein, to improve AAVP-mediated gene delivery to cancer cells, we combined the vector with selective adjuvant chemicals that inhibit specific histone deacetylases (HDAC). We examined the effects of the HDAC inhibitor C1A that mainly targets HDAC6 and compared this to sodium butyrate, a pan-HDAC inhibitor with broad spectrum HDAC inhibition. We tested the effects on melanoma, known for HDAC6 up-regulation, and compared this side by side with a normal human kidney HEK293 cell line. Varying concentrations were tested to determine cytotoxic levels as well as effects on AAVP gene delivery. We report that the HDAC inhibitor C1A increased AAVP-mediated transgene expression by up to ~9-fold. These findings indicate that selective HDAC inhibition is a promising adjuvant treatment for increasing the therapeutic value of AAVP.
Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi
2017-01-01
ABSTRACT The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer (http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively. PMID:28453368
Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi
2017-05-04
The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.
An efficient and rapid transgenic pollen screening and detection method using flow cytometry.
Moon, Hong S; Eda, Shigetoshi; Saxton, Arnold M; Ow, David W; Stewart, C Neal
2011-01-01
Assaying for transgenic pollen, a major vector of transgene flow, provides valuable information and essential data for the study of gene flow and assessing the effectiveness of transgene containment. Most studies have employed microscopic screening methods or progeny analyses to estimate the frequency of transgenic pollen. However, these methods are time-consuming and laborious when large numbers of pollen grains must be analyzed to look for rare transgenic pollen grains. Thus, there is an urgent need for the development of a simple, rapid, and high throughput analysis method for transgenic pollen analysis. In this study, our objective was to determine the accuracy of using flow cytometry technology for transgenic pollen quantification in practical application where transgenic pollen is not frequent. A suspension of non-transgenic tobacco pollen was spiked with a known amount of verified transgenic tobacco pollen synthesizing low or high amounts of green fluorescent protein (GFP). The flow cytometric method detected approximately 75% and 100% of pollen grains synthesizing low and high amounts of GFP, respectively. The method is rapid, as it is able to count 5000 pollen grains per minute-long run. Our data indicate that this flow cytometric method is useful to study gene flow and assessment of transgene containment.
Kumar, Santosh; Jin, Mengyao; Weemhoff, James L
2013-01-01
There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920
Aronovich, Elena L; Hyland, Kendra A; Hall, Bryan C; Bell, Jason B; Olson, Erik R; Rusten, Myra Urness; Hunter, David W; Ellinwood, N Matthew; McIvor, R Scott; Hackett, Perry B
2017-07-01
The non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and β-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion. This study reports that immunosuppression of dogs with gadolinium chloride (GdCl 3 ) prolonged the presence of cSEAP in the circulation up to 5.5 months after a single vector infusion. Transgene expression declined gradually but appeared to stabilize after about 2 months at approximately fourfold baseline level. Durability of transgenic protein expression in the plasma was inversely associated with transient increase of liver enzymes alanine transaminase and aspartate transaminase in response to the plasmid delivery procedure, which suggests a deleterious effect of hepatocellular toxicity on transgene expression. GdCl 3 treatment was ineffective for repeat vector infusions. In parallel studies, dogs were infused with potentially therapeutic transposons. Activities of transgenic IDUA and GUSB in plasma peaked at 50-350% of wildtype, but in the absence of immunosuppression lasted only a few days. Transposition was detectable by excision assay only when the most efficient transposase, SB100X, was used. Dogs infused with transposons encoding canine clotting factor IX (cFIX) were treated with GdCl 3 and showed expression profiles similar to those in cSEAP-infused dogs, with expression peaking at 40% wt (2 μg/mL). It is concluded that GdCl 3 can support extended transgene expression after hydrodynamic introduction of SB transposons in dogs, but that alternative regimens will be required to achieve therapeutic levels of transgene products.
Gasanov, N B; Toshchakov, S V; Georgiev, P G; Maksimenko, O G
2015-01-01
Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production.
Hajitou, Amin
2010-01-01
Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Bi, Rui-Ming; Jia, Hai-Yan; Feng, De-Shun; Wang, Hong-Gang
2006-05-01
The transgenic wheat of improved resistance to the storage pest was production. We have introduced the cowpea trypsin inhibitor gene (CpTI) into cultured embryonic callus cells of immature embryos of wheat elite line by Agrobacterium-mediated method. Independent plantlets were obtained from the kanamycin-resistant calli after screening. PCR and real time PCR analysis, PCR-Southern and Southern blot hybridization indicated that there were 3 transgenic plants viz. transformed- I, II and III (T- I, T-II and T-III). The transformation frequencies were obviously affected by Agrobacterium concentration, the infection duration and transformation treatment. The segregations of CpTI in the transgenic wheat progenies were not easily to be elucidated, and some transgenic wheat lines (T- I and T-III) showed Mendelian segregations. The determinations of insect resistance to the stored grain insect of wheat viz. the grain moth (Sitotroga cerealella Olivier) indicated that the 3 transgenic wheat progeny seeds moth-resistance was improved significantly. The seed moth-eaten ratio of T- I, T-II, T-III and nontransformed control was 19.8%, 21.9%, 32.9% and 58.3% respectively. 3 transgenic wheat T1 PCR-positive plants revealed that the 3 transgenic lines had excellent agronomic traits. They supplied good germplasm resource of insect-resistance for wheat genetic improvement.
Tao, Chenyu; Yang, Yalan; Li, Xunbi; Zheng, Xinmin; Ren, Hongyan; Li, Kui; Zhou, Rong
2016-07-01
Genetically modified (GM) livestock have the potential to contribute to improving the environment and human health, with consumption of fewer resources and reduced waste production. However, the transgene process also poses risks. The safety assessment and control of transgenic animal products have drawn wide attention, and the relevant regulations and technology are being developed. Quick testing technology plays a significant role in on-site and customs sampling. Nowadays, loop-mediated isothermal amplification (LAMP) was widely applied in nucleic acid analysis because of its simplicity, rapidity, high efficiency and specificity. In this study, a specific, sensitive detection system for detecting sFAT-1 transgenic pigs was designed. A set of six primers including two loop primers was designed for the target sequence. The DNA samples were amplified in less than 1 h at the optimized temperature and detecting by both Nephelometer LA-320c and unaided eyes directly adding calcein. The detection limit of sFAT-1 LAMP was as low as 1.26 ng/μL. Furthermore, blind tests of transgenic and non-transgenic DNA samples were all correctly detected. Hence, the results in this study demonstrated that LAMP is a very useful tool for transgenic detection.
DNA encoding for plant digalactosyldiacylglycerol galactosyltransferase and methods of use
Benning, Christoph; Doermann, Peter
2003-11-04
The cDNA encoding digalactosyldiacylglycerol galactosyltransferase (DGD1) is provided. The deduced amino acid sequence is also provided. Methods of making and using DGD1 to screen for new herbicides and alter a plant's leaf lipid composition are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors.
Zhang, Jingxu; Kang, Ye; Valverde, Bernal E; Dai, Weimin; Song, Xiaoling; Qiang, Sheng
2018-06-05
Pollen-mediated herbicide-resistance transgene flow occurs bidirectionally between transgenic cultivated rice and weedy rice. The potential risk of weedy traits introgressing into hybrid rice is underestimated and poorly understood. Two of each glufosinate-resistant transgenic rice varieties and hybrid rice (F1) and their succeeding generations (F2-F4) were planted for three years in weedy-rice-free field plots adjacent to experimental weedy-rice fields. Weedy-rice-like (feral) plants, both glufosinate-resistant and with red-pericarp seed, were initially found only among the F3 generations of the two glufosinate-resistant transgenic hybrid rice. The composite fitness (an index based on eight productivity and weediness traits) of the feral progeny was significantly higher than that of glufosinate-resistant transgenic hybrid rice (the original female parent of feral progeny) under common monoculture garden conditions. Hybrid rice progeny segregated into individuals of variable height and extended flowering. Hybrid rice F2 generations had higher outcrossing rates by pollen reception (0.96%-1.65%) than their progenitors (0.07%-0.98%). Herbicide-resistant weedy rice can rapidly arise by pollen-mediated gene flow from weedy to transgenic hybrid rice. Their segregating pollen-receptive progeny pose greater agro-ecological risk than transgenic varieties. The safety assessment and management regulations for transgenic hybrid rice should take into account the risk of bidirectional gene flow.
Defining the Role of Alpha-Synuclein in Enteric Dysfunction in Parkinsons Disease
2017-10-01
direction. o What were the major goals of the project? Animal use approvals – accomplished pre-funding Vector production - 1st round of vector...August 2017. 100% Complete Vector injections. We injected all animals for the long-term survival group as well as additional subjects for shorter...time points. However, as noted below, the transgene expression seen in these animals was below that which was expected/intended. Thus, we are currently
Colbert, M C; Linney, E; LaMantia, A S
1993-01-01
We have assessed whether retinoic acid (RA) comes from local sources or is available widely to activate gene expression in embryos. We used an RA-responsive indicator cell line, L-C2A5, to localize RA sources. In these cells, an RA-sensitive promoter/lacZ reporter construct used previously by us to produce indicator transgenic mice is induced globally by RA in medium or locally by RA released at physiological concentrations (1 nM) from AG-1X2 resin beads. Furthermore, the cells are differentially responsive to the 9-cis and all-trans isomers of RA at low concentrations. Indicator transgenic mice with the same promoter/reporter construct were used to identify regions of RA-mediated gene activation. There are distinct domains of lacZ expression in the cervical and lumbar spinal cords of embryonic indicator mice. This pattern might reflect localized RA sources or restricted spatial and temporal expression of RA receptors, binding proteins, or other factors. To resolve this issue we compared the pattern of transgene activation in indicator cell monolayers cocultured with normal embryonic spinal cords with that in transgenic spinal cords. The explants induced reporter gene expression in L-C2A5 monolayers in a pattern identical to that in transgenic mice: alar regions of the cervical and lumbar cord were positive whereas those in the thoracic and sacral regions were not. We conclude that restricted sources of RA in the developing spinal cord mediate the local activation of RA-inducible genes. Thus, region-specific gene activation in embryos can be mediated by precisely localized sources of inductive molecules like RA. Images Fig. 1 Fig. 2 Fig. 3 PMID:8341670
Kung, Yi-Jung; Bau, Huey-Jiunn; Wu, Yi-Ling; Huang, Chiung-Huei; Chen, Tsui-Miao; Yeh, Shyi-Dong
2009-11-01
During the field tests of coat protein (CP)-transgenic papaya lines resistant to Papaya ringspot virus (PRSV), another Potyvirus sp., Papaya leaf-distortion mosaic virus (PLDMV), appeared as an emerging threat to the transgenic papaya. In this investigation, an untranslatable chimeric construct containing the truncated CP coding region of the PLDMV P-TW-WF isolate and the truncated CP coding region with the complete 3' untranslated region of PRSV YK isolate was transferred into papaya (Carica papaya cv. Thailand) via Agrobacterium-mediated transformation to generate transgenic plants with resistance to PLDMV and PRSV. Seventy-five transgenic lines were obtained and challenged with PRSV YK or PLDMV P-TW-WF by mechanical inoculation under greenhouse conditions. Thirty-eight transgenic lines showing no symptoms 1 month after inoculation were regarded as highly resistant lines. Southern and Northern analyses revealed that four weakly resistant lines have one or two inserts of the construct and accumulate detectable amounts of transgene transcript, whereas nine resistant lines contain two or three inserts without significant accumulation of transgene transcript. The results indicated that double virus resistance in transgenic lines resulted from double or more copies of the insert through the mechanism of RNA-mediated posttranscriptional gene silencing. Furthermore, three of nine resistant lines showed high levels of resistance to heterologous PRSV strains originating from Hawaii, Thailand, and Mexico. Our transgenic lines have great potential for controlling a number of PRSV strains and PLDMV in Taiwan and elsewhere.
Petersen, Björn; Ramackers, Wolf; Lucas-Hahn, Andrea; Lemme, Erika; Hassel, Petra; Queisser, Anna-Lisa; Herrmann, Doris; Barg-Kues, Brigitte; Carnwath, Joseph W; Klose, Johannes; Tiede, Andreas; Friedrich, Lars; Baars, Wiebke; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner
2011-01-01
The major immunological hurdle to successful porcine-to-human xenotransplantation is the acute vascular rejection (AVR), characterized by endothelial cell (EC) activation and perturbation of coagulation. Heme oxygenase-1 (HO-1) and its derivatives have anti-apoptotic, anti-inflammatory effects and protect against reactive oxygen species, rendering HO-1 a promising molecule to control AVR. Here, we report the production and characterization of pigs transgenic for human heme oxygenase-1 (hHO-1) and demonstrate significant protection in porcine kidneys against xenograft rejection in ex vivo perfusion with human blood and transgenic porcine aortic endothelial cells (PAEC) in a TNF-α-mediated apoptosis assay. Transgenic and non-transgenic PAEC were tested in a TNF-α-mediated apoptosis assay. Expression of adhesion molecules (ICAM-1, VCAM-1, and E-selectin) was measured by real-time PCR. hHO-1 transgenic porcine kidneys were perfused with pooled and diluted human AB blood in an ex vivo perfusion circuit. MHC class-II up-regulation after induction with IFN-γ was compared between wild-type and hHO-1 transgenic PAEC. Cloned hHO-1 transgenic pigs expressed hHO-1 in heart, kidney, liver, and in cultured ECs and fibroblasts. hHO-1 transgenic PAEC were protected against TNF-α-mediated apoptosis. Real-time PCR revealed reduced expression of adhesion molecules like ICAM-1, VCAM-1, and E-selectin. These effects could be abrogated by the incubation of transgenic PAECs with the specific HO-1 inhibitor zinc protoporphorine IX (Zn(II)PPIX, 20 μm). IFN-γ induced up-regulation of MHC class-II molecules was significantly reduced in PAECs from hHO-1 transgenic pigs. hHO-1 transgenic porcine kidneys could successfully be perfused with diluted human AB-pooled blood for a maximum of 240 min (with and without C1 inh), while in wild-type kidneys, blood flow ceased after ∼60 min. Elevated levels of d-Dimer and TAT were detected, but no significant consumption of fibrinogen and antithrombin was determined. Microthrombi could not be detected histologically. These results are encouraging and warrant further studies on the biological function of heme oxygenase-I expression in hHO-1 transgenic pigs in the context of xenotransplantation. © 2011 John Wiley & Sons A/S.
USDA-ARS?s Scientific Manuscript database
The utility of transgenic plants for both experimental and practical agronomic purposes is highly dependent on stable, predictable, and heritable expression of the introduced genes. This requirement is frequently unfulfilled, and transgenes are frequently subject to silencing. Studies of the charact...
USDA-ARS?s Scientific Manuscript database
Site-specific recombination technologies are powerful new tools for the manipulation of genomic DNA in insects that can improve transgenesis strategies such as targeting transgene insertions, allowing transgene cassette exchange and DNA mobilization for transgene stabilization. However, understandin...
Gene Technology for Papaya Ringspot Virus Disease Management
Azad, Md. Abul Kalam; Sidik, Nik Marzuki
2014-01-01
Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research. PMID:24757435
Gene technology for papaya ringspot virus disease management.
Azad, Md Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki
2014-01-01
Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.
Wubben, Martin J; Callahan, Franklin E; Velten, Jeff; Burke, John J; Jenkins, Johnie N
2015-02-01
Transgene-based analysis of the MIC-3 gene provides the first report of a cotton gene having a direct role in mediating cotton resistance to root-knot nematode. Major quantitative trait loci have been mapped to Upland cotton (Gossypium hirsutum L.) chromosomes 11 and 14 that govern the highly resistant phenotype in response to infection by root-knot nematode (RKN; Meloidogyne incognita); however, nearly nothing is known regarding the underlying molecular determinants of this RKN-resistant phenotype. Multiple lines of circumstantial evidence have strongly suggested that the MIC (Meloidogyne Induced Cotton) gene family plays an integral role in mediating cotton resistance to RKN. In this report, we demonstrate that overexpression of MIC-3 in the RKN-susceptible genetic background Coker 312 reduces RKN egg production by ca. 60-75 % compared to non-transgenic controls and transgene-null sibling lines. MIC-3 transcript and protein overexpression were confirmed in root tissues of multiple independent transgenic lines with each line showing a similar level of increased resistance to RKN. In contrast to RKN fecundity, transgenic lines showed RKN-induced root galling similar to the susceptible controls. In addition, we determined that this effect of MIC-3 overexpression was specific to RKN as no effect was observed on reniform nematode (Rotylenchulus reniformis) reproduction. Transgenic lines did not show obvious alterations in growth, morphology, flowering, or fiber quality traits. Gene expression analyses showed that MIC-3 transcript levels in uninfected transgenic roots exceeded levels observed in RKN-infected roots of naturally resistant plants and that overexpression did not alter the regulation of native MIC genes in the genome. These results are the first report describing a direct role for a specific gene family in mediating cotton resistance to a plant-parasitic nematode.
Ford, Kathryn L.; Baumgartner, Kendra; Henricot, Béatrice; Bailey, Andy M.; Foster, Gary D.
2016-01-01
Armillaria mellea is a significant pathogen that causes Armillaria root disease on numerous hosts in forests, gardens and agricultural environments worldwide. Using a yeast-adapted pCAMBIA0380 Agrobacterium vector, we have constructed a series of vectors for transformation of A. mellea, assembled using yeast-based recombination methods. These have been designed to allow easy exchange of promoters and inclusion of introns. The vectors were first tested by transformation into basidiomycete Clitopilus passeckerianus to ascertain vector functionality then used to transform A. mellea. We show that heterologous promoters from the basidiomycetes Agaricus bisporus and Phanerochaete chrysosporium that were used successfully to control the hygromycin resistance cassette were not able to support expression of mRFP or GFP in A. mellea. The endogenous A. mellea gpd promoter delivered efficient expression, and we show that inclusion of an intron was also required for transgene expression. GFP and mRFP expression was stable in mycelia and fluorescence was visible in transgenic fruiting bodies and GFP was detectable in planta. Use of these vectors has been successful in giving expression of the fluorescent proteins GFP and mRFP in A. mellea, providing an additional molecular tool for this pathogen. PMID:27384974
2013-01-01
Introduction The development of an appropriate procedure for lentiviral gene transduction into keratinocyte stem cells is crucial for stem cell biology and regenerative medicine for genetic disorders of the skin. However, there is little information available on the efficiency of lentiviral transduction into human keratinocyte stem/progenitor cells and the effects of gene transduction procedures on growth potential of the stem cells by systematic assessment. Methods In this study, we explored the conditions for efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with a lentiviral vector, by using the culture of keratinocytes on a feeder layer of 3 T3 mouse fibroblasts. The gene transduction and expansion of keratinocytes carrying a transgene were analyzed by Western blotting, quantitative PCR, and flow cytometry. Results Polybrene (hexadiamine bromide) markedly enhanced the efficiency of lentiviral gene transduction, but negatively affected the maintenance of the keratinocyte stem/progenitor cells at a concentration higher than 5 μg/ml. Rho-assiciated kinase (ROCK) inhibitor Y-27632, a small molecule which enhanced keratinocyte proliferation, significantly interfered with the lentiviral transduction into cultured human keratinocytes. However, a suitable combination of polybrene and Y-27632 effectively expanded keratinocytes carrying a transgene. Conclusions This study provides information for effective expansion of cultured human keratinocyte stem/progenitor cells carrying a transgene. This point is particularly significant for the application of genetically modified keratinocyte stem/progenitor stem cells in regenerative medicine. PMID:24406242
Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi
2017-08-01
Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M
2014-08-01
Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.
Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor
Jindra, Marek; Uhlirova, Mirka; Charles, Jean-Philippe; Smykal, Vlastimil; Hill, Ronald J.
2015-01-01
Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology. PMID:26161662
Akbari, Omar S.; Chen, Chun-Hong; Marshall, John M.; Huang, Haixia; Antoshechkin, Igor; Hay, Bruce A.
2013-01-01
Insects act as vectors for diseases of plants, animals and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression. PMID:23654248
Tsuchida, K
2008-07-01
Gene-targeted therapies, such as adeno-associated viral vector (AAV)-mediated gene therapy and cell-mediated therapy using myogenic stem cells, are hopeful molecular strategies for muscular dystrophy. In addition, drug therapies based on the pathophysiology of muscular dystrophy patients are desirable. Multidisciplinary approaches to drug design would offer promising therapeutic strategies. Myostatin, a member of the transforming growth factor-beta superfamily, is predominantly produced by skeletal muscle and negatively regulates the growth and differentiation of cells of the skeletal muscle lineage. Myostatin inhibition would increase the skeletal muscle mass and prevent muscle degeneration, regardless of the type of muscular dystrophy. Myostatin inhibitors include myostatin antibodies, myostatin propeptide, follistatin and follistatin-related protein. Although follistatin possesses potent myostatin-inhibiting activity, it works as an efficient inhibitor of activins. Unlike myostatin, activins regulate the growth and differentiation of nearly all cell types, including cells of the gonads, pituitary gland and skeletal muscle. We have developed a myostatin-specific inhibitor derived from follistatin, designated FS I-I. Transgenic mice expressing this myostatin-inhibiting peptide under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. mdx mice were crossed with FS I-I transgenic mice and any improvement of the pathological signs was investigated. The resulting mdx/FS I-I mice exhibited increased skeletal muscle mass and reduced cell infiltration in muscles. Muscle strength was also recovered in mdx/FS I-I mice. Our data indicate that myostatin inhibition by this follistatin-derived peptide has therapeutic potential for muscular dystrophy.
Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.
Tufail, Yusuf; Cook, Daniela; Fourgeaud, Lawrence; Powers, Colin J; Merten, Katharina; Clark, Charles L; Hoffman, Elizabeth; Ngo, Alexander; Sekiguchi, Kohei J; O'Shea, Clodagh C; Lemke, Greg; Nimmerjahn, Axel
2017-02-08
Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled. Copyright © 2017 Elsevier Inc. All rights reserved.
Computer-Assisted Transgenesis of Caenorhabditis elegans for Deep Phenotyping
Gilleland, Cody L.; Falls, Adam T.; Noraky, James; Heiman, Maxwell G.; Yanik, Mehmet F.
2015-01-01
A major goal in the study of human diseases is to assign functions to genes or genetic variants. The model organism Caenorhabditis elegans provides a powerful tool because homologs of many human genes are identifiable, and large collections of genetic vectors and mutant strains are available. However, the delivery of such vector libraries into mutant strains remains a long-standing experimental bottleneck for phenotypic analysis. Here, we present a computer-assisted microinjection platform to streamline the production of transgenic C. elegans with multiple vectors for deep phenotyping. Briefly, animals are immobilized in a temperature-sensitive hydrogel using a standard multiwell platform. Microinjections are then performed under control of an automated microscope using precision robotics driven by customized computer vision algorithms. We demonstrate utility by phenotyping the morphology of 12 neuronal classes in six mutant backgrounds using combinations of neuron-type-specific fluorescent reporters. This technology can industrialize the assignment of in vivo gene function by enabling large-scale transgenic engineering. PMID:26163188
Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C
2016-12-01
Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO 2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35 S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO 2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v /F m ) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.
Development of nonhuman adenoviruses as vaccine vectors
Bangari, Dinesh S.; Mittal, Suresh K.
2006-01-01
Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination. PMID:16297508
Ahrens, Hellen E; Petersen, Björn; Ramackers, Wolf; Petkov, Stoyan; Herrmann, Doris; Hauschild-Quintern, Janet; Lucas-Hahn, Andrea; Hassel, Petra; Ziegler, Maren; Baars, Wiebke; Bergmann, Sabine; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner
2015-07-01
Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a (51)Chromium release assay and by ex vivo kidney perfusions with human blood. Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation.
Ahrens, Hellen E.; Petersen, Björn; Ramackers, Wolf; Petkov, Stoyan; Herrmann, Doris; Hauschild-Quintern, Janet; Lucas-Hahn, Andrea; Hassel, Petra; Ziegler, Maren; Baars, Wiebke; Bergmann, Sabine; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner
2015-01-01
Background Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. Methods The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a 51Chromium release assay and by ex vivo kidney perfusions with human blood. Results Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. Conclusions Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation. PMID:27500225
Rossi, Lorenzo; Borghi, Monica; Yang, Jinfen; Xie, De-Yu
2017-08-01
Isoprene (2-methyl-1,3-butadiene) is a hemiterpene molecule. It has been estimated that the plant kingdom emits 500-750 million tons of isoprene in the environment, half of which results from tropical broadleaf trees and the remainder from shrubs. Camelina (Camelina sativa (L.) Crantz) is an emerging bioenergy plant for biodiesel. In this study, we characterized isoprene formation following a diurnal/nocturnal cycle in wild-type Camelina plants. To understand the potential effects of isoprene emission on this herbaceous plant, a gray poplar Populus×canescens isoprene synthase gene (PcISPS) was overexpressed in Camelina. Transgenic plants showed increased isoprene production, and the emissions were characterized by a diurnal/nocturnal cycle. Measurements of the expression of six genes of the plastidial 2-C-methyl-d-erythriol-4-phosphate (MEP) pathway revealed that the expression patterns of three key genes were associated with isoprene formation dynamics in the three genotypic plants. Conversely, dissimilar gene expression levels existed in different genotypes, indicating that dynamics and variations occurred among plants. Moreover, transgenic plants grew shorter and developed smaller leaves than the wild-type and empty vector control transgenic plants. Photosynthetic analysis showed that the CO 2 assimilation rate, intracellular CO 2 concentration, mesophyll conductance and contents of chlorophylls a and b were similar among PcISPS transgenic, empty-vector control transgenic, and wild-type plants, indicating that the transgene did not negatively affect photosynthesis. Based on these results, we suggest that the reduced biomass was likely a trade-off consequence of the increased isoprene emission. Copyright © 2017 Elsevier GmbH. All rights reserved.
Establishment and characterization of CAG/EGFP transgenic rabbit line.
Takahashi, Ri-ichi; Kuramochi, Takashi; Aoyagi, Kazuki; Hashimoto, Shu; Miyoshi, Ichiro; Kasai, Noriyuki; Hakamata, Yoji; Kobayashi, Eiji; Ueda, Masatsugu
2007-02-01
Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP fluorescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.
Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob
2009-01-01
Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915
Expansion of the gateway multisite recombination cloning toolkit.
Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven
2013-01-01
Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.
Expansion of the Gateway MultiSite Recombination Cloning Toolkit
Shearin, Harold K.; Dvarishkis, Alisa R.; Kozeluh, Craig D.; Stowers, R. Steven
2013-01-01
Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters. PMID:24204935
Unger, Mark D; Pleticha, Josef; Heilmann, Lukas F; Newman, Laura K; Maus, Timothy P; Beutler, Andreas S
2018-05-25
Intrathecal interleukin-10 delivered by plasmid or viral gene vectors has been proposed for clinical testing because it is effective for chronic pain in rodents, a potential therapeutic for various human diseases, and was found to be non-toxic in dogs, when the human interleukin-10 ortholog was tested. However, recent studies in swine testing porcine interleukin-10 demonstrated fatal neurotoxicity. To deliver vector-encoded human interleukin-10 in swine, measure expression of the transgene in cerebrospinal fluid, and monitor animals for signs of neurotoxicity. Human interleukin-10 levels peaked 2 weeks after vector administration followed by a rapid decline that occurred concomitant with the emergence of anti-human interleukin-10 antibodies in the cerebrospinal fluid and serum. Animals remained neurologically healthy throughout the study period. This study suggests that swine are not idiosyncratically sensitive to intrathecal interleukin-10 because, recapitulating previous reports in dogs, they suffered no clinical neurotoxicity from the human ortholog. These results strongly infer that toxicity of intrathecal interleukin-10 in large animal models was previously overlooked because of a species mismatch between transgene and host. The present study further suggests that swine were protected from interleukin-10 by a humoral immune response against the xenogeneic cytokine. Future safety studies of interleukin-10 or related therapeutics may require syngeneic large animal models. This article is protected by copyright. All rights reserved.
Development of disease-resistant marker-free tomato by R/RS site-specific recombination.
Khan, Raham Sher; Nakamura, Ikuo; Mii, Masahiro
2011-06-01
The selection marker genes, imparting antibiotic or herbicide resistance, in the final transgenics have been criticized by the public and considered a hindrance in their commercialization. Multi-auto-transformation (MAT) vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators (PGRs). In the study reported here, isopentenyltransferase (ipt) gene was used as a selection marker and wasabi defensin (WD) gene, isolated from Wasabia japonica as a target gene. WD was cloned from the binary vector, pEKH-WD to an ipt-type MAT vector, pMAT21 by gateway cloning and transferred to Agrobacterium tumefaciens strain EHA105. Infected cotyledons of tomato cv. Reiyo were cultured on PGR- and antibiotic-free MS medium. Adventitious shoots were developed by the explants infected with the pMAT21/wasabi defensin. The same PGR- and antibiotic-free MS medium was used in subcultures of the adventitious shoot lines (ASLs) to produce ipt and normal shoots. Approximately, 6 months after infection morphologically normal shoots were produced. Molecular analyses of the developed shoots confirmed the integration of gene of interest (WD) and excision of the selection marker (ipt). Expression of WD was confirmed by Northern blot and Western blot analyses. The marker-free transgenic plants exhibited enhanced resistance against Botrytis cinerea (gray mold), Alternaria solani (early blight), Fusarium oxysporum (Fusarium wilt) and Erysiphe lycopersici (powdery mildew).
Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal
2014-01-01
We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709
[Efficient packaging retrovirus and construction of transgenic chicken technical platform].
Man, Chaolai; Zhang, Qing; Chen, Yan; Zhu, Dahai
2007-10-01
Transgenic chicken and oviduct bioreactor are growing to be one of the hotspot of scientific study in the field of biology. The most successful method of producing transgenic chicken is pseudotyped retrovirus vector system, but no one has reported the production of transgenic chicken by retrovirus system recently in our country. In order to accelerate our study in this field, we introduced the relevant technical methods such as packaging retrovirus and vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped retrovirus, optimizing the conditions of packaging retrovirus, concentrating VSV-G pseudotyped retrovirus, helper virus assays, and microinjection of retrovirus. Furthermore, we successfully conducted in vivo study for detecting the marker gene EGFP of chicken embryo as well as in vitro study for detecting that gene of chicken embryo myoblast (CFM), thus we have provided an applied technical platform for studies of transgenic chicken in the future.
Efficacy and site-specificity of adenoviral vector integration mediated by the phage φC31 integrase.
Robert, Marc-André; Zeng, Yue; Raymond, Benoît; Desfossé, Laurie; Mairey, Emilie; Tremblay, Jacques P; Massie, Bernard; Gilbert, Rénald
2012-12-01
Adenoviral vectors deleted of all their viral genes (helper-dependent [HD]) are efficient gene-transfer vehicles. Because transgene expression is rapidly lost in actively dividing cells, we investigated the feasibility of using phage φC31 integrase (φC31-Int) to integrate an HD carrying an attB site and the puromycin resistance gene into human cells (HeLa) and murine myoblasts (C2C12) by co-infection with a second HD-expressing φC31-Int. Because the HD genome is linear, we also investigated whether its circularization, through expression of Cre using a third HD, affects integration. Efficacy and specificity were determined by scoring the number of puromycin-resistant colonies and by sequencing integration sites. Unexpectedly, circularization of HD was unnecessary and it even reduced the integration efficacy. The maximum integration efficacy achieved was 0.5% in HeLa cells and 0.1% in C2C12 myoblasts. Up to 76% of the integration events occurred at pseudo attP sites and previously characterized hotspots were found. A small (two- to three-fold) increase in the number of γ-H2AX positive foci, accompanied by no noticeable change in γ-H2AX expression, indicated the low genotoxicity of φC31-Int. In conclusion, integration of HD mediated by φC31-Int is an attractive alternative to engineer cells, because it permits site-specific integration of large DNA fragments with low genotoxicity.
Functional role of the N-terminal domain of ΔFosB in response to stress and drugs of abuse.
Ohnishi, Y N; Ohnishi, Y H; Vialou, V; Mouzon, E; LaPlant, Q; Nishi, A; Nestler, E J
2015-01-22
Previous work has implicated the transcription factor, ΔFosB, acting in the nucleus accumbens, in mediating the pro-rewarding effects of drugs of abuse such as cocaine as well as in mediating resilience to chronic social stress. However, the transgenic and viral gene transfer models used to establish these ΔFosB phenotypes express, in addition to ΔFosB, an alternative translation product of ΔFosB mRNA, termed Δ2ΔFosB, which lacks the N-terminal 78 aa present in ΔFosB. To study the possible contribution of Δ2ΔFosB to these drug and stress phenotypes, we prepared a viral vector that overexpresses a point mutant form of ΔFosB mRNA which cannot undergo alternative translation as well as a vector that overexpresses Δ2ΔFosB alone. Our results show that the mutant form of ΔFosB, when overexpressed in the nucleus accumbens, reproduces the enhancement of reward and of resilience seen with our earlier models, with no effects seen for Δ2ΔFosB. Overexpression of full length FosB, the other major product of the FosB gene, also has no effect. These findings confirm the unique role of ΔFosB in the nucleus accumbens in controlling responses to drugs of abuse and stress. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Evaluation of different photosensitizers for use in photochemical gene transfection.
Prasmickaite, L; Høgset, A; Berg, K
2001-04-01
Many potentially therapeutic macromolecules, e.g. transgenes used in gene therapy, are taken into the cells by endocytosis, and have to be liberated from endocytic vesicles in order to express a therapeutic function. To achieve this we have developed a new technology, named photochemical internalization (PCI), based on photochemical reactions inducing rupture of endocytic vesicles. The aim of this study was to clarify which properties of photosensitizers are important for obtaining the PCI effect improving gene transfection. The photochemical effect on transfection of human melanoma THX cells has been studied employing photosensitizers with different physicochemical properties and using two gene delivery vectors: the cationic polypeptide polylysine and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Photochemical treatment by photosensitizers that do not localize in endocytic vesicles (tetra[3-hydroxyphenyl]porphyrin and 5-aminolevulinic acid-induced protoporphyrin IX) do not stimulate transfection, irrespective of the gene delivery vector. In contrast, photosensitizers localized in endocytic vesicles stimulate polylysine-mediated transfection, and amphiphilic photosensitizers (disulfonated aluminium phthalocyanine [AlPcS2a] and meso-tetraphenylporphynes) show the strongest positive effect, inducing approximately 10-fold increase in transfection efficiency. In contrast, DOTAP-mediated transfection is inhibited by all photochemical treatments irrespective of the photosensitizer used. Neither AlPcS2a nor Photofrin affects the uptake of the transfecting DNA over the plasma membrane, therefore photochemical permeabilization of endocytic vesicles seems to be the most likely mechanism responsible for the positive PCI effect on gene transfection.
Expression and affinity purification of recombinant proteins from plants
NASA Technical Reports Server (NTRS)
Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun
2002-01-01
With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).
Discovery of Cationic Polymers for Non-viral Gene Delivery using Combinatorial Approaches
Barua, Sutapa; Ramos, James; Potta, Thrimoorthy; Taylor, David; Huang, Huang-Chiao; Montanez, Gabriela; Rege, Kaushal
2015-01-01
Gene therapy is an attractive treatment option for diseases of genetic origin, including several cancers and cardiovascular diseases. While viruses are effective vectors for delivering exogenous genes to cells, concerns related to insertional mutagenesis, immunogenicity, lack of tropism, decay and high production costs necessitate the discovery of non-viral methods. Significant efforts have been focused on cationic polymers as non-viral alternatives for gene delivery. Recent studies have employed combinatorial syntheses and parallel screening methods for enhancing the efficacy of gene delivery, biocompatibility of the delivery vehicle, and overcoming cellular level barriers as they relate to polymer-mediated transgene uptake, transport, transcription, and expression. This review summarizes and discusses recent advances in combinatorial syntheses and parallel screening of cationic polymer libraries for the discovery of efficient and safe gene delivery systems. PMID:21843141
USDA-ARS?s Scientific Manuscript database
We report the stable genetic transformation of the Queensland fruit fly Bactrocera tryoni using a piggyBac vector marked with either the fluorescent protein DsRed or EGFP.A transformation frequency of 5–10% was obtained.Inheritance of the transgenes has remained stable over eight generations despite...
Methods of treating Parkinson's disease using viral vectors
Bankiewicz, Krys; Cunningham, Janet
2012-11-13
Methods of delivering viral vectors, particularly recombinant AAV virions, to the central nervous system (CNS) are provided for the treatment of CNS disorders, particularly those disorders which involve the neurotransmitter dopamine. The methods entail providing rAAV virions that comprise a transgene encoding aromatic amino acid decarboxylase (AADC) and administering the virions to the brain of a mammal using a non-manual pump.
Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Bruder, Joseph T.; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.
2004-01-01
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the β-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing β-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to β-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-β-galactosidase antibody levels following vector administration. However, cellular responses to β-galactosidase were significantly enhanced, with the frequency of CD4+ as well as the CD8+ β-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing β-galactosidase: BALB/c mice implanted with the CT26 syngeneic β-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines. PMID:14963160
Gaj, Thomas; Staahl, Brett T; Rodrigues, Gonçalo M C; Limsirichai, Prajit; Ekman, Freja K; Doudna, Jennifer A; Schaffer, David V
2017-06-20
Realizing the full potential of genome editing requires the development of efficient and broadly applicable methods for delivering programmable nucleases and donor templates for homology-directed repair (HDR). The RNA-guided Cas9 endonuclease can be introduced into cells as a purified protein in complex with a single guide RNA (sgRNA). Such ribonucleoproteins (RNPs) can facilitate the high-fidelity introduction of single-base substitutions via HDR following co-delivery with a single-stranded DNA oligonucleotide. However, combining RNPs with transgene-containing donor templates for targeted gene addition has proven challenging, which in turn has limited the capabilities of the RNP-mediated genome editing toolbox. Here, we demonstrate that combining RNP delivery with naturally recombinogenic adeno-associated virus (AAV) donor vectors enables site-specific gene insertion by homology-directed genome editing. Compared to conventional plasmid-based expression vectors and donor templates, we show that combining RNP and AAV donor delivery increases the efficiency of gene addition by up to 12-fold, enabling the creation of lineage reporters that can be used to track the conversion of striatal neurons from human fibroblasts in real time. These results thus illustrate the potential for unifying nuclease protein delivery with AAV donor vectors for homology-directed genome editing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Drummond, Eleanor S.; Muhling, Jill; Martins, Ralph N.; Wijaya, Linda K.; Ehlert, Erich M.; Harvey, Alan R.
2013-01-01
Accumulation of beta amyloid (Aβ) in the brain is a primary feature of Alzheimer’s disease (AD) but the exact molecular mechanisms by which Aβ exerts its toxic actions are not yet entirely clear. We documented pathological changes 3 and 6 months after localised injection of recombinant, bi-cistronic adeno-associated viral vectors (rAAV2) expressing human Aβ40-GFP, Aβ42-GFP, C100-GFP or C100V717F-GFP into the hippocampus and cerebellum of 8 week old male mice. Injection of all rAAV2 vectors resulted in wide-spread transduction within the hippocampus and cerebellum, as shown by expression of transgene mRNA and GFP protein. Despite the lack of accumulation of Aβ protein after injection with AAV vectors, injection of rAAV2-Aβ42-GFP and rAAV2- C100V717F-GFP into the hippocampus resulted in significantly increased microgliosis and altered permeability of the blood brain barrier, the latter revealed by high levels of immunoglobulin G (IgG) around the injection site and the presence of IgG positive cells. In comparison, injection of rAAV2-Aβ40-GFP and rAAV2-C100-GFP into the hippocampus resulted in substantially less neuropathology. Injection of rAAV2 vectors into the cerebellum resulted in similar types of pathological changes, but to a lesser degree. The use of viral vectors to express different types of Aβ and C100 is a powerful technique with which to examine the direct in vivo consequences of Aβ expression in different regions of the mature nervous system and will allow experimentation and analysis of pathological AD-like changes in a broader range of species other than mouse. PMID:23516609
Khan, Raham Sher; Darwish, Nader Ahmed; Khattak, Bushra; Ntui, Valentine Otang; Kong, Kynet; Shimomae, Kazuki; Nakamura, Ikuo; Mii, Masahiro
2014-09-01
Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations.
Smith, Tracey L; Yuan, Ziqiang; Cardó-Vila, Marina; Sanchez Claros, Carmen; Adem, Asha; Cui, Min-Hui; Branch, Craig A; Gelovani, Juri G; Libutti, Steven K; Sidman, Richard L; Pasqualini, Renata; Arap, Wadih
2016-03-01
Patients with inoperable or unresectable pancreatic neuroendocrine tumors (NETs) have limited treatment options. These rare human tumors often express somatostatin receptors (SSTRs) and thus are clinically responsive to certain relatively stable somatostatin analogs, such as octreotide. Unfortunately, however, this tumor response is generally short-lived. Here we designed a hybrid adeno-associated virus and phage (AAVP) vector displaying biologically active octreotide on the viral surface for ligand-directed delivery, cell internalization, and transduction of an apoptosis-promoting tumor necrosis factor (TNF) transgene specifically to NETs. These functional attributes of AAVP-TNF particles displaying the octreotide peptide motif (termed Oct-AAVP-TNF) were confirmed in vitro, in SSTR type 2-expressing NET cells, and in vivo using cohorts of pancreatic NET-bearing Men1 tumor-suppressor gene KO mice, a transgenic model of functioning (i.e., insulin-secreting) tumors that genetically and clinically recapitulates the human disease. Finally, preclinical imaging and therapeutic experiments with pancreatic NET-bearing mice demonstrated that Oct-AAVP-TNF lowered tumor metabolism and insulin secretion, reduced tumor size, and improved mouse survival. Taken together, these proof-of-concept results establish Oct-AAVP-TNF as a strong therapeutic candidate for patients with NETs of the pancreas. More broadly, the demonstration that a known, short, biologically active motif can direct tumor targeting and receptor-mediated internalization of AAVP particles may streamline the potential utility of myriad other short peptide motifs and provide a blueprint for therapeutic applications in a variety of cancers and perhaps many nonmalignant diseases as well.
Cancer-specific transgene expression mediated by systemic injection of nanoparticles.
Chisholm, Edward J; Vassaux, Georges; Martin-Duque, Pilar; Chevre, Raphael; Lambert, Olivier; Pitard, Bruno; Merron, Andrew; Weeks, Mark; Burnet, Jerome; Peerlinck, Inge; Dai, Ming-Shen; Alusi, Ghassan; Mather, Stephen J; Bolton, Katherine; Uchegbu, Ijeoma F; Schatzlein, Andreas G; Baril, Patrick
2009-03-15
The lack of safe and efficient systemic gene delivery vectors has largely reduced the potential of gene therapy in the clinic. Previously, we have reported that polypropylenimine dendrimer PPIG3/DNA nanoparticles are capable of tumor transfection upon systemic administration in tumor-bearing mice. To be safely applicable in the clinic, it is crucial to investigate the colloidal stability of nanoparticles and to monitor the exact biodistribution of gene transfer in the whole body of the live subject. Our biophysical characterization shows that dendrimers, when complexed with DNA, are capable of forming spontaneously in solution a supramolecular assembly that possesses all the features required to diffuse in experimental tumors through the enhanced permeability and retention effect. We show that these nanoparticles are of sizes ranging from 33 to 286 nm depending on the DNA concentration, with a colloidal stable and well-organized fingerprint-like structure in which DNA molecules are condensed with an even periodicity of 2.8 nm. Whole-body nuclear imaging using small-animal nano-single-photon emission computed tomography/computer tomography scanner and the human Na/I symporter (NIS) as reporter gene shows unique and highly specific tumor targeting with no detection of gene transfer in any of the other tissues of tumor-bearing mice. Tumor-selective transgene expression was confirmed by quantitative reverse transcription-PCR at autopsy of scanned animals, whereas genomic PCR showed that the tumor sites are the predominant sites of nanoparticle accumulation. Considering that NIS imaging of transgene expression has been recently validated in humans, our data highlight the potential of these nanoparticles as a new formulation for cancer gene therapy.
Ramos-Mejía, Verónica; Montes, Rosa; Bueno, Clara; Ayllón, Verónica; Real, Pedro J.; Rodríguez, René; Menendez, Pablo
2012-01-01
Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation. PMID:22545141
[Nuclear transfer of goat somatic cells transgenic for human lactoferrin].
Li, Lan; Shen, Wei; Pan, Qing-Yu; Min, Ling-Jiang; Sun, Yu-Jiang; Fang, Yong-Wei; Deng, Ji-Xian; Pan, Qing-Jie
2006-12-01
Transgenic animal mammary gland bioreactors are being used to produce recombinant proteins with appropriate post-translational modifications, and nuclear transfer of transgenic somatic cells is a more powerful method to produce mammary gland bioreactor. Here we describe efficient gene transfer and nuclear transfer in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene, and the endogenous start condon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer, and some of reconstructed embryos could develop to blastocyst in vitro.
Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.
Zhang, Wan-Jun; Wang, Tao
2015-05-01
Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong
2013-01-01
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst non-transgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764
Sandhu, Sukhpreet; Blount, Ann R; Quesenberry, Kenneth H; Altpeter, Fredy
2010-09-01
Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar 'Argentine' is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5-3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.
Liu, Chenxi; Wang, Liqin; Li, Wenrong; Zhang, Xuemei; Tian, Yongzhi; Zhang, Ning; He, Sangang; Chen, Tong; Huang, Juncheng; Liu, Mingjun
2013-01-01
Background Low efficiency of gene transfer and silence of transgene expression are the critical factors hampering the development of transgenic livestock. Recently, transfer of recombinant lentivirus has been demonstrated to be an efficient transgene delivery method in various animals. However, the lentiviral transgenesis and the methylation status of transgene in sheep have not been well addressed. Methodology/Principle Findings EGFP transgenic sheep were generated by injecting recombinant lentivirus into zygotes. Of the 13 lambs born, 8 carried the EGFP transgene, and its chromosomal integration was identified in all tested tissues. Western blotting showed that GFP was expressed in all transgenic founders and their various tissues. Analysis of CpG methylation status of CMV promoter by bisulfate sequencing unraveled remarkable variation of methylation levels in transgenic sheep. The average methylation levels ranged from 37.6% to 79.1% in the transgenic individuals and 34.7% to 83% in the tested tissues. Correlative analysis of methylation status with GFP expression revealed that the GFP expression level was inversely correlated with methylation density. The similar phenomenon was also observed in tested tissues. Transgene integration determined by Southern blotting presented multiple integrants ranging from 2 to 6 copies in the genome of transgenic sheep. Conclusions/Significance Injection of lentiviral transgene into zygotes could be a promising efficient gene delivery system to generate transgenic sheep and achieved widespread transgene expression. The promoter of integrants transferred by lentiviral vector was subjected to dramatic alteration of methylation status and the transgene expression level was inversely correlative with promoter methylation density. Our work illustrated for the first time that generation of transgenic sheep by injecting recombinant lentivirus into zygote could be an efficient tool to improve sheep performance by genetic modification. PMID:23382924
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonsalves, C.; Xue, B.; Yepes, M.
1994-03-01
A single regeneration procedure using cotyledon examples effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens or microprojectile bombardment methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), [beta]-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 [mu]m 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg[center dot]liter[sup [minus]1] and carbenicillin (Cb) at 500more » mg[center dot]liter[sup [minus]1]. The authors' comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R[sub 0] plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes.« less
ADVANCES IN SALIVARY GLAND GENE THERAPY – ORAL AND SYSTEMIC IMPLICATIONS
Baum, Bruce J.; Alevizos, Ilias; Chiorini, John A.; Cotrim, Ana P.; Zheng, Changyu
2016-01-01
Introduction Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. Areas covered There are two major disorders affecting salivary glands; radiation damage following treatment for head and neck cancers and Sjögren’s syndrome. Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. Expert opinion Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on Sjögren’s syndrome suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding of how secretory proteins are sorted. Future studies will likely employ ultrasound assisted and pseudotyped adenoassociated viral vector-mediated gene. PMID:26149284
Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis.
Lu, Gang; Zou, Qingcheng; Guo, Deping; Zhuang, Xiaoying; Yu, Xiaolin; Xiang, Xun; Cao, Jiashu
2007-09-01
Phytoene synthase (PSY), as a key regulatory enzyme for carotene biosynthesis, plays an important role in regulating color formation in many species. In the present study, a protocol was developed for the transformation of Narcissus tazzeta var chinensis using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pCAMBIA1301 plasmid which contained an antisense phytoene synthase gene, a reporter beta-glucuronidase gene and a selectable marker hygromycin phosphotransferase gene. Effects of some factors on efficiency of transformation and regeneration were examined. Preculture of the explants for 6 days before inoculation enhanced the transient GUS expression. The addition of acetosyringone (AS) at 100 micromol l(-1) for inoculation and a period of 3 days co-cultivation yielded efficient transient GUS expression. Transformants were obtained through selection on MS medium containing 5 mg l(-1) 6-benzylaminopurine (BA), 0.1 mg l(-1)alpha-naphthalene acetic acid (NAA) and 40 mg l(-1) hygromycin. The transformation frequency was 1.24% based on PCR analysis of gus gene. One or two copies of transgene were demonstrated in different transformations by Southern blotting analyses. Northern blotting results confirmed that the transcription of the endogenous psy gene in transgenic plants was inhibited or silenced. The method reported here provides new opportunities for improvement of quality traits of Narcissus tazzeta via genetic transformation.
Direct and long-term detection of gene doping in conventional blood samples.
Beiter, T; Zimmermann, M; Fragasso, A; Hudemann, J; Niess, A M; Bitzer, M; Lauer, U M; Simon, P
2011-03-01
The misuse of somatic gene therapy for the purpose of enhancing athletic performance is perceived as a coming threat to the world of sports and categorized as 'gene doping'. This article describes a direct detection approach for gene doping that gives a clear yes-or-no answer based on the presence or absence of transgenic DNA in peripheral blood samples. By exploiting a priming strategy to specifically amplify intronless DNA sequences, we developed PCR protocols allowing the detection of very small amounts of transgenic DNA in genomic DNA samples to screen for six prime candidate genes. Our detection strategy was verified in a mouse model, giving positive signals from minute amounts (20 μl) of blood samples for up to 56 days following intramuscular adeno-associated virus-mediated gene transfer, one of the most likely candidate vector systems to be misused for gene doping. To make our detection strategy amenable for routine testing, we implemented a robust sample preparation and processing protocol that allows cost-efficient analysis of small human blood volumes (200 μl) with high specificity and reproducibility. The practicability and reliability of our detection strategy was validated by a screening approach including 327 blood samples taken from professional and recreational athletes under field conditions.
Poly(β-amino amine) cross-linked PEIs as highly efficient gene vectors.
Deng, Ji-Zhe; Sun, Yun-Xia; Wang, Hui-Yuan; Li, Cao; Huang, Fu-Wei; Cheng, Si-Xue; Zhuo, Ren-Xi; Zhang, Xian-Zheng
2011-05-01
To increase the release of DNA into the cytoplasm and further improve transgene expression of nucleic acid novel polymeric gene carriers were prepared which would be biodegradable under the reducing conditions in the cytoplasm. Disulfide-containing poly(β-amino amine)s were first synthesized and then used to cross-link low molecular weight polyethyleneimine (1800 Da) through Michael addition to obtain SS-PBAA-PEIs as the final gene carriers. The physicochemical characteristics of SS-PBAA-PEI/DNA complexes were characterized. In vitro transfection mediated by the SS-PBAA-PEIs under serum conditions was carried out. Cell uptake of the gene delivery systems was observed by confocal laser scanning microscopy. The results of the physicochemical characterisation demonstrated that the SS-PBAA-PEIs could efficiently condense DNA. In vitro transfection under serum conditions showed that SS-PBAA-PEIs had comparable or even higher transfection efficiencies than 25 kDa PEI. And SS-PBAA-PEIs showed much lower cytotoxicity compared with 25 kDa PEI. In summary, the SS-PBAA-PEIs possess great potential as non-viral gene vectors and exhibit high transfection efficiency under serum conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Small silencing RNAs: state-of-the-art.
Grimm, Dirk
2009-07-25
Over just a single decade, we have witnessed the rapid maturation of the field of RNA interference - the sequence-specific gene silencing mediated by small double-stranded RNAs - directly from its infancy into adulthood. With exciting data currently emerging from first clinical trials, it is now more likely than ever that RNAi drugs will soon provide another potent class of agents in our battle against infectious and genetic diseases. Accelerating this process and adding to RNAi's promise is our steadily expanding arsenal of innovative RNAi-based experimental tools and clinically applicable technologies. This article will critically review a selection of relevant recent advances in RNAi therapeutics, from novel asymmetric or bi-functional siRNA designs, deliberate use of small RNAs to regulate nuclear transcription, engineering of potent adeno-associated viral vectors for shRNA expression, exploitation of endogenous miRNAs to control transgene expression or vector tropism, to elegant attempts to inhibit cellular miRNAs involved in human disease. This review will also present cautionary notes on the potential risks inherent to in vivo RNAi applications, before discussing the latest surprising findings on circulating miRNAs in human body fluids, and concluding with an outlook into the possible future of RNAi as an increasingly powerful biomedical tool.
Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A
2016-10-01
Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Hui; Le, Thang; Chang, Tiffany T J; Habib, Aisha; Wu, Steven; Shen, Fanxia; Young, William L; Su, Hua; Liu, Jialing
2011-10-01
Apart from its role in axon guidance, netrin-1 is also known to be pro-angiogenic. The aim of this study is to determine whether adeno-associated viral (AAV) mediated overexpression of netrin-1 improves post-stroke neurovascular structure and recovery of function. AAV-Netrin-1 or AAV-LacZ of 1×10(10) genome copies each was injected medial and posterior to ischemic lesion at one hour following reperfusion using the distal middle cerebral artery occlusion (MCAO) method. Quantitative RT-PCR revealed that the expression of netrin-1 transgene began as early as one day and increased dramatically about 3 weeks following vector injection. Western blot analysis and confocal microscopy suggested that both the endogenous and transduced netrin-1 were expressed in the neurons of the peri-infarct cortex after MCAO. AAV-mediated netrin-1 overexpression significantly increased vascular density in the peri-infarct cortex and promoted the migration of immature neurons into the peri-infarct white matter, but it did not significantly reduce infarct size. Netrin-1 overexpression also enhanced post-stroke locomotor activity, improved exploratory behavior, and reduced ischemia-induced motor asymmetry in forelimb usage. However, it had little effect on post-stroke spatial learning and memory. Our results suggest that AAV mediated netrin-1 overexpression improves peri-infarct vascular density and post stroke motor function. Published by Elsevier Inc.
Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System.
Dong, Zhanqi; Dong, Feifan; Yu, Xinbo; Huang, Liang; Jiang, Yaming; Hu, Zhigang; Chen, Peng; Lu, Cheng; Pan, Minhui
2018-01-01
The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 ( ie-1 ) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.
Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System
Dong, Zhanqi; Dong, Feifan; Yu, Xinbo; Huang, Liang; Jiang, Yaming; Hu, Zhigang; Chen, Peng; Lu, Cheng; Pan, Minhui
2018-01-01
The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 (ie-1) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment. PMID:29503634
TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis.
Wu, Haibo; Wang, Yongsheng; Zhang, Yan; Yang, Mingqi; Lv, Jiaxing; Liu, Jun; Zhang, Yong
2015-03-31
Transcription activator-like effector nuclease (TALEN)-mediated genome modification has been applied successfully to create transgenic animals in various species, such as mouse, pig, and even monkey. However, transgenic cattle with gene knockin have yet to be created using TALENs. Here, we report site-specific knockin of the transcription activator-like effector (TALE) nickase-mediated SP110 nuclear body protein gene (SP110) via homologous recombination to produce tuberculosis-resistant cattle. In vitro and in vivo challenge and transmission experiments proved that the transgenic cattle are able to control the growth and multiplication of Mycobacterium bovis, turn on the apoptotic pathway of cell death instead of necrosis after infection, and efficiently resist the low dose of M. bovis transmitted from tuberculous cattle in nature. In this study, we developed TALE nickases to modify the genome of Holstein-Friesian cattle, thereby engineering a heritable genome modification that facilitates resistance to tuberculosis.
TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis
Wu, Haibo; Wang, Yongsheng; Zhang, Yan; Yang, Mingqi; Lv, Jiaxing; Liu, Jun; Zhang, Yong
2015-01-01
Transcription activator-like effector nuclease (TALEN)-mediated genome modification has been applied successfully to create transgenic animals in various species, such as mouse, pig, and even monkey. However, transgenic cattle with gene knockin have yet to be created using TALENs. Here, we report site-specific knockin of the transcription activator-like effector (TALE) nickase-mediated SP110 nuclear body protein gene (SP110) via homologous recombination to produce tuberculosis-resistant cattle. In vitro and in vivo challenge and transmission experiments proved that the transgenic cattle are able to control the growth and multiplication of Mycobacterium bovis, turn on the apoptotic pathway of cell death instead of necrosis after infection, and efficiently resist the low dose of M. bovis transmitted from tuberculous cattle in nature. In this study, we developed TALE nickases to modify the genome of Holstein–Friesian cattle, thereby engineering a heritable genome modification that facilitates resistance to tuberculosis. PMID:25733846
Lutzko, Carolyn; Senadheera, Dinithi; Skelton, Dianne; Petersen, Denise; Kohn, Donald B.
2003-01-01
In the present studies we developed lentivirus vectors with regulated, consistent transgene expression in B lymphocytes by incorporating the immunoglobulin heavy chain enhancer (Eμ) with and without associated matrix attachment regions (EμMAR) into lentivirus vectors. Incorporation of these fragments upstream of phosphoglycerate kinase (PGK) or cytomegalovirus promoters resulted in a two- to threefold increase in enhanced green fluorescent protein (EGFP) mean fluorescence intensity (MFI) in B-lymphoid but not T-lymphoid, myeloid, fibroblast, or carcinoma cell lines. A 1-log increase in EGFP expression was observed in B-lymphoid cells (but not myeloid cells) differentiated from human CD34+ progenitors in vitro transduced with Eμ- and EμMAR-containing lentivectors. Lastly, we evaluated the expression from the EμMAR element in mice 2 to 24 weeks posttransplant with transduced hematopoietic stem cells. In mice receiving vectors with the Eμ and EμMAR elements upstream of the PGK promoter, there was a 2- to 10-fold increase in EGFP expression in B cells (but not other cell types). Evaluation of the coefficient of variation of expression among different cell types demonstrated that consistent, position-independent transgene expression was observed exclusively in B cells transduced with the EμMAR-containing vector and not other cells types or vectors. Proviral genomes with the EμMAR element had increased chromatin accessibility, which likely contributed to the position independence of expression in B lymphocytes. In summary, incorporation of the EμMAR element in lentivirus vectors resulted in enhanced, position-independent expression in primary B lymphocytes. These vectors provide a useful tool for the study of B-lymphocyte biology and the development of gene therapy for disorders affecting B lymphocytes, such as immune deficiencies. PMID:12805432
Herzog, Roland W; Fields, Paul A; Arruda, Valder R; Brubaker, Jeff O; Armstrong, Elina; McClintock, Darryl; Bellinger, Dwight A; Couto, Linda B; Nichols, Timothy C; High, Katherine A
2002-07-20
Intramuscular injection of an adeno-associated virus (AAV) vector has resulted in vector dose-dependent, stable expression of canine factor IX (cF.IX) in hemophilia B dogs with an F.IX missense mutation (Herzog et al., Nat. Med. 1999;5:56-63). The use of a species-specific transgene allowed us to study risks and characteristics of antibody formation against the therapeutic transgene product. We analyzed seven dogs that had been injected at a single time point at multiple intramuscular sites with varying vector doses (dose per kilogram, dose per animal, dose per site). Comparison of individual animals suggests an increased likelihood of inhibitory anti-cF.IX (inhibitor) development with increased vector doses, with dose per site showing the strongest correlation with the risk of inhibitor formation. In six of seven animals, such immune responses were either absent or transient, and therefore did not prevent sustained systemic expression of cF.IX. Transient inhibitory/neutralizing anti-cF.IX responses occurred at vector doses of 2 x 10(12)/site, whereas a 6-fold higher dose resulted in a longer lasting, higher titer inhibitor. Anti-cF.IX was efficiently blocked in an eighth animal that was injected with a high vector dose per site, but in addition received transient immune suppression. Inhibitor formation was characterized by synthesis of two IgG subclasses and in vitro proliferation of lymphocytes to cF.IX antigen, indicating a helper T cell-dependent mechanism. Anti-cF.IX formation is likely influenced by the extent of local antigen presentation and may be avoided by limited vector doses or by transient immune modulation.
Tao, Ke; Frisch, Janina; Rey-Rico, Ana; Venkatesan, Jagadeesh K; Schmitt, Gertrud; Madry, Henning; Lin, Jianhao; Cucchiarini, Magali
2016-02-01
Articular cartilage has a limited potential for self-healing. Transplantation of genetically modified progenitor cells like bone marrow-derived mesenchymal stem cells (MSCs) is an attractive strategy to improve the intrinsic repair capacities of damaged articular cartilage. In this study, we examined the potential benefits of co-overexpressing the pleiotropic transformation growth factor beta (TGF-β) with the cartilage-specific transcription factor SOX9 via gene transfer with recombinant adeno-associated virus (rAAV) vectors upon the biological activities of human MSCs (hMSCs). Freshly isolated hMSCs were transduced over time with separate rAAV vectors carrying either TGF-β or sox9 in chondrogenically-induced aggregate cultures to evaluate the efficacy and duration of transgene expression and to monitor the effects of rAAV-mediated genetic modification upon the cellular activities (proliferation, matrix synthesis) and chondrogenic differentiation potency compared with control conditions (lacZ treatment, sequential transductions). Significant, prolonged TGF-β/sox9 co-overexpression was achieved in chondrogenically-induced hMSCs upon co-transduction via rAAV for up to 21 days, leading to enhanced proliferative, biosynthetic, and chondrogenic activities relative to control treatments, especially when co-applying the candidate vectors at the highest vector doses tested. Optimal co-administration of TGF-β with sox9 also advantageously reduced hypertrophic differentiation of the cells in the conditions applied here. The present findings demonstrate the possibility of modifying MSCs by combined therapeutic gene transfer as potent future strategies for implantation in clinically relevant animal models of cartilage defects in vivo.
Genetic engineering of stem cells for enhanced therapy.
Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara
2013-01-01
Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.
Lebas, Benoît; Galley, Julien; Renaud-Gabardos, Edith; Pujol, Françoise; Lenfant, Françoise; Garmy-Susini, Barbara; Chaufour, Xavier; Prats, Anne-Catherine
2017-04-01
Critical leg ischemia (CLI) represents the ultimate stage of peripheral arterial disease. Despite current surgery advances, patients with CLI have limited therapeutic options. Therapeutic angiogenesis thus appears as a powerful approach, aiming to stimulate vessel formation by angiogenic molecules administration. In this context, combined gene therapy has been proved to be the most efficient. The present study aims to compare, in a preclinical mouse model, the therapeutic benefit of a combination of 2 angiogenic factors fibroblast growth factor 2 (FGF2) and Cyr61 using plasmid and viral vectors, able to generate short- or long-term transgene expression in the leg, respectively. Two therapeutic genes, FGF2 and Cyr61, were introduced into internal ribosome entry site-based expression vectors (FGFiCyr) allowing co-expression of the 2 transgenes. The proangiogenic plasmid pC-FGFiCyr was assessed by intramuscular administration followed by electrotransfer into ischemic legs. To generate long-term transgene expression, the FGFiCyr bicistronic cassette was introduced into an adenoassociated virus-derived vector (rAAV). The rAAV treatment was performed either before or immediately after surgery. Therapeutic effects were analyzed by laser Doppler imaging, clinical score, and angiography. The plasmid pC-FGFiCyr improved revascularization, reperfusion, and clinical score. Surprisingly, when AAV-FGFiCyr was injected 21 or 28 days before surgery, the proangiogenic rAAV was drastically deleterious on all measured parameters. In contrast, when administrated shortly after surgery, AAV-FGFiCyr generated therapeutic benefits, with a significantly better clinical score than after treatment with the plasmid. Therapeutic effects of the angiogenic combination FGF2-Cyr61 is observed with short-term transgene expression, but the treatment is significantly more efficient when a long-term expression viral vector is used. However, the rAAV-FGFiCyr generated therapeutic benefit only when injected in an ischemic leg, whereas the same dose of rAAV exhibited deleterious effects when administrated to healthy animals. These data may contribute to the understanding of the moderate success of proangiogenic treatments in CLI gene therapy clinical assays. Copyright © 2016 Elsevier Inc. All rights reserved.
Barley Transformation Using Agrobacterium-Mediated Techniques
NASA Astrophysics Data System (ADS)
Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.
Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.
Millwood, Reginald; Nageswara-Rao, Madhugiri; Ye, Rongjian; Terry-Emert, Ellie; Johnson, Chelsea R; Hanson, Micaha; Burris, Jason N; Kwit, Charles; Stewart, C Neal
2017-05-02
Switchgrass is C 4 perennial grass species that is being developed as a cellulosic bioenergy feedstock. It is wind-pollinated and considered to be an obligate outcrosser. Genetic engineering has been used to alter cell walls for more facile bioprocessing and biofuel yield. Gene flow from transgenic cultivars would likely be of regulatory concern. In this study we investigated pollen-mediated gene flow from transgenic to nontransgenic switchgrass in a 3-year field experiment performed in Oliver Springs, Tennessee, U.S.A. using a modified Nelder wheel design. The planted area (0.6 ha) contained sexually compatible pollen source and pollen receptor switchgrass plants. One hundred clonal switchgrass 'Alamo' plants transgenic for an orange-fluorescent protein (OFP) and hygromycin resistance were used as the pollen source; whole plants, including pollen, were orange-fluorescent. To assess pollen movement, pollen traps were placed at 10 m intervals from the pollen-source plot in the four cardinal directions extending to 20 m, 30 m, 30 m, and 100 m to the north, south, west, and east, respectively. To assess pollination rates, nontransgenic 'Alamo 2' switchgrass clones were planted in pairs adjacent to pollen traps. In the eastward direction there was a 98% decrease in OFP pollen grains from 10 to 100 m from the pollen-source plot (Poisson regression, F1,8 = 288.38, P < 0.0001). At the end of the second and third year, 1,820 F 1 seeds were collected from pollen recipient-plots of which 962 (52.9%) germinated and analyzed for their transgenic status. Transgenic progeny production detected in each pollen-recipient plot decreased with increased distance from the edge of the transgenic plot (Poisson regression, F1,15 = 12.98, P < 0.003). The frequency of transgenic progeny detected in the eastward plots (the direction of the prevailing wind) ranged from 79.2% at 10 m to 9.3% at 100 m. In these experiments we found transgenic pollen movement and hybridization rates to be inversely associated with distance. However, these data suggest pollen-mediated gene flow is likely to occur up to, at least, 100 m. This study gives baseline data useful to determine isolation distances and other management practices should transgenic switchgrass be grown commercially in relevant environments.
Sum, Chi Hong; Nafissi, Nafiseh; Slavcev, Roderick A.; Wettig, Shawn
2015-01-01
In combination with novel linear covalently closed (LCC) DNA minivectors, referred to as DNA ministrings, a gemini surfactant-based synthetic vector for gene delivery has been shown to exhibit enhanced delivery and bioavailability while offering a heightened safety profile. Due to topological differences from conventional circular covalently closed (CCC) plasmid DNA vectors, the linear topology of LCC DNA ministrings may present differences with regards to DNA interaction and the physicochemical properties influencing DNA-surfactant interactions in the formulation of lipoplexed particles. In this study, N,N-bis(dimethylhexadecyl)-α,ω-propanediammonium(16-3-16)gemini-based synthetic vectors, incorporating either CCC plasmid or LCC DNA ministrings, were characterized and compared with respect to particle size, zeta potential, DNA encapsulation, DNase sensitivity, and in vitro transgene delivery efficacy. Through comparative analysis, differences between CCC plasmid DNA and LCC DNA ministrings led to variations in the physical properties of the resulting lipoplexes after complexation with 16-3-16 gemini surfactants. Despite the size disparities between the plasmid DNA vectors (CCC) and DNA ministrings (LCC), differences in DNA topology resulted in the generation of lipoplexes of comparable particle sizes. The capacity for ministring (LCC) derived lipoplexes to undergo complete counterion release during lipoplex formation contributed to improved DNA encapsulation, protection from DNase degradation, and in vitro transgene delivery. PMID:26561857
Dan, Yinghui; Baxter, Aaron; Zhang, Song; Pantazis, Christopher J; Veilleux, Richard E
2010-08-09
Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system has the advantages of 1) efficient, simple and rapid regeneration and transformation (with no need for sterilization or a greenhouse to grow stock plants), 2) flexibility (available all the time) for in vitro manipulation, 3) uniform and desirable green tissue explants for both nuclear and plastid transformation using Agrobacterium-mediated and biolistics methods, 4) no somaclonal variation and 5) resolution of necrosis of Agrobacterium-inoculated tissues.
Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha
2013-01-01
Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases. PMID:23646175
Schmetterer, Klaus G; Haiderer, Daniela; Leb-Reichl, Victoria M; Neunkirchner, Alina; Jahn-Schmid, Beatrice; Küng, Hans J; Schuch, Karina; Steinberger, Peter; Bohle, Barbara; Pickl, Winfried F
2011-01-01
Regulatory T (Treg) cells establish and maintain tolerance to self-antigens and many foreign antigens, such as allergens, by suppressing effector T-cell proliferation and function. We have previously shown that human T-cell receptor (TCR) αβ-chains specific for allergen-derived epitopes confer allergen specificity on peripheral blood T cells of individuals with and without allergy. To study the feasibility of generating allergen-specific human Treg cells by retroviral transduction of a transcription unit encoding forkhead box protein 3 (FOXP3) and allergen-specific TCR αβ-chains. cDNAs encoding the α and β-chains of a Bet v 1(142-153)-specific TCR (TCR alpha variable region 6/TCR beta variable region 20) and human FOXP3 were linked via picornaviral 2A sequences and expressed as single translational unit from an internal ribosomal entry site-green fluorescence protein-containing retroviral vector. Retrovirally transduced peripheral blood T cells were tested for expression of transgenes, Treg phenotype, and regulatory capacity toward allergen-specific effector T cells. Transduced T cells displayed a Treg phenotype with clear-cut upregulation of CD25, CD39, and cytotoxic T-lymphocyte antigen 4. The transduced cells were hyporesponsive in cytokine production and secretion and, like naturally occurring Treg cells, did not proliferate after antigen-specific or antigen-mimetic stimulation. However, proliferation was inducible upon exposure to exogenous IL-2. In coculture experiments, TRAV6(+)TRBV20(+)FOXP3(+) transgenic T cells, unlike FOXP3(+) single transgenic T cells or naturally occurring Treg cells, highly significantly suppressed T cell cytokine production and proliferation of corresponding allergen-specific effector T cells in an allergen-specific, dose-dependent manner. We demonstrate a transgenic approach to engineer human allergen-specific Treg cells that exert their regulatory function in an activation-dependent manner. Customized Treg cells might become useful for tolerance induction therapies in individuals with allergic and other immune-mediated diseases. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M
2013-02-28
In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.
Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946
Li, Xiao; Zhang, Shuang-shuang; Ma, Jun-xia; Guo, Guang-yan; Zhang, Xue-yong; Liu, Xu; Bi, Cai-li
2015-05-01
TaUBA functions as a negative regulator of salt and drought stress response in transgenic Arabidopsis, either the UBA domain or the zinc finger domain is crucial for TaUBA's function. TaUBA (DQ211935), which is a UBA domain-containing protein in wheat, was cloned and functionally characterized. Southern blot suggested that TaUBA is a low copy gene in common wheat. qRT-PCR assay showed that the expression of TaUBA was strongly induced by salt and drought stress. When suffering from drought and salt stresses, lower proline content and much higher MDA content in the TaUBA overexpressors were observed than those of the wild-type control, suggesting TaUBA may function as a negative regulator of salt and drought stress response in plants. To study whether the UBA domain or the zinc finger domain affects the function of TaUBA, TaUBAΔUBA (deletion of UBA domain) and TaUBA-M (Cys464Gly and Cys467Gly) overexpression vectors were constructed and transformed into Arabidopsis. Upon drought and salt stresses, the TaUBAΔUBA-and TaUBA-M-overexpressed plants accumulated much more proline and lower MDA than the wild-type control, the TaUBA-overexpressors lost water more quickly than TaUBAΔUBA-and TaUBA-M-overexpressed plants as well as the wild-type control, suggesting that overexpression of TaUBAΔUBA or TaUBA-M improved the drought and salt tolerance of transgenic Arabidopsis plants and the possibility of ubiquitination role in the regulation of osmolyte synthesis and oxidative stress responses in mediating stress tolerance. qRT-PCR assay of stress-related genes in transgenic plants upon drought and salt stresses suggested that TaUBA may function through down-regulating some stress related-transcription factors and by regulating P5CSs to cope with osmotic stress.
Ellul, P; Ríos, G; Atarés, A; Roig, L A; Serrano, R; Moreno, V
2003-08-01
An optimised Agrobacterium-mediated gene transfer protocol was developed in order to obtain watermelon transgenic plants [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Transformation efficiencies ranged from 2.8% to 5.3%, depending on the cultivar. The method was applied to obtain genetically engineered watermelon plants expressing the Saccharomyces cerevisiae HAL1 gene related to salt tolerance. In order to enhance its constitutive expression in plants, the HAL1 gene was cloned in a pBiN19 plasmid under control of the 35S promoter with a double enhancer sequence from the cauliflower mosaic virus and the RNA4 leader sequence of the alfalfa mosaic virus. This vector was introduced into Agrobacterium tumefaciens strain LBA4404 for further inoculation of watermelon half-cotyledon explants. The introduction of both the neomycin phosphotransferase II and HAL1 genes was assessed in primary transformants (TG1) by polymerase chain reaction analysis and Southern hybridisation. The expression of the HAL1 gene was determined by Northern analysis, and the diploid level of transgenic plants was confirmed by flow cytometry. The presence of the selectable marker gene in the expected Mendelian ratios was demonstrated in TG2 progenies. The TG2 kanamycin-resistant plantlets elongated better and produced new roots and leaves in culture media supplemented with NaCl compared with the control. Salt tolerance was confirmed in a semi-hydroponic system (EC=6 dS m(-1)) on the basis of the higher growth performance of homozygous TG3 lines with respect to their respective azygous control lines without the transgene. The halotolerance observed confirmed the inheritance of the trait and supports the potential usefulness of the HAL1 gene of S. cerevisiae as a molecular tool for genetic engineering of salt-stress protection in other crop species.
Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.
Generation and Characterization of Human Heme Oxygenase-1 Transgenic Pigs
Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J.; Kim, Hyunil; Surh, Charles D.; Lee, Byeong-Chun; Ahn, Curie
2012-01-01
Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation. PMID:23071605
Generation and characterization of human heme oxygenase-1 transgenic pigs.
Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie
2012-01-01
Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.
Nambeesan, Savithri; AbuQamar, Synan; Laluk, Kristin; Mattoo, Autar K.; Mickelbart, Michael V.; Ferruzzi, Mario G.; Mengiste, Tesfaye; Handa, Avtar K.
2012-01-01
Transgenic tomato (Solanum lycopersicum) lines overexpressing yeast spermidine synthase (ySpdSyn), an enzyme involved in polyamine (PA) biosynthesis, were developed. These transgenic lines accumulate higher levels of spermidine (Spd) than the wild-type plants and were examined for responses to the fungal necrotrophs Botrytis cinerea and Alternaria solani, bacterial pathogen Pseudomonas syringae pv tomato DC3000, and larvae of the chewing insect tobacco hornworm (Manduca sexta). The Spd-accumulating transgenic tomato lines were more susceptible to B. cinerea than the wild-type plants; however, responses to A. solani, P. syringae, or M. sexta were similar to the wild-type plants. Exogenous application of ethylene precursors, S-adenosyl-Met and 1-aminocyclopropane-1-carboxylic acid, or PA biosynthesis inhibitors reversed the response of the transgenic plants to B. cinerea. The increased susceptibility of the ySpdSyn transgenic tomato to B. cinerea was associated with down-regulation of gene transcripts involved in ethylene biosynthesis and signaling. These data suggest that PA-mediated susceptibility to B. cinerea is linked to interference with the functions of ethylene in plant defense. PMID:22128140
Lu, Xiao-Hong
2009-01-01
Basal ganglia neurodegenerative disorders, such as Parkinson's disease (PD) and Huntington's disease (HD), are characterized by not only spectrum of motor deficits, ranging form hypokinesia to hyperkinesia, but also emotional, cognitive, and psychiatric manifestations. The symptoms and pathogenic mechanism of these disorders should be viewed as dysfunctions of specific cortico-subcortical neurocircuits. Transgenic approaches using large genomic inserts, such as bacterial artificial chromosome (BAC)-mediated transgenesis, due to its capacity to propagate large-size genomic DNA and faithful production of endogenous-like gene expression pattern/lever, have provided an ideal basis for the generation of transgenic mice as model for basal ganglia neurodegenerative disorders, as well as the functional and structural analysis of neurocircuits. In this chapter, the basic concepts and practical approaches about application of BAC transgenic system are introduced. Existent major BAC transgenic mouse models for PD and HD are evaluated according to their construct, face, and predicative validity. Finally, considerations, possible solutions, and future perspectives of using BAC transgenic approach to study basal ganglia neurodegenerative disorders are discussed.
Masani, Mat Yunus Abdul; Noll, Gundula A; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.
Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection
Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306
Watakabe, Ikuko; Hashimoto, Hisashi; Kimura, Yukiko; Yokoi, Saori; Naruse, Kiyoshi; Higashijima, Shin-Ichi
2018-01-01
Medaka ( Oryzias latipes ) is a popular animal model used in vertebrate genetic analysis. Recently, an efficient (~ 30%) knock-in system via non-homologous end joining (NHEJ) was established in zebrafish using the CRISPR/Cas9 system. If the same technique were applicable in medaka, it would greatly expand the usefulness of this model organism. The question of the applicability of CRISPR/Cas9 in medaka, however, has yet to be addressed. We report the highly efficient generation of knock-in transgenic medaka via non-homologous end joining (NHEJ). Donor plasmid containing a heat-shock promoter and a reporter gene was co-injected with a short guide RNA (sgRNA) targeted for genome digestion, an sgRNA targeted for donor plasmid digestion, and Cas9 mRNA. Broad transgene expression in the expression domain of a target gene was observed in approximately 25% of injected embryos. By raising these animals, we established stable knock-in transgenic fish with several different constructs for five genetic loci, obtaining transgenic founders at efficiencies of > 50% for all five loci. Further, we show that the method is useful for obtaining mutant alleles. In the experiments where transgene integrations were targeted between the transcription start site and the initiation methionine, the resultant transgenic fish became mutant alleles. With its simplicity, design flexibility, and high efficiency, we propose that CRISPR/Cas9-mediated knock-in via NHEJ will become a standard method for the generation of transgenic and mutant medaka.
Mena-Enriquez, Mayra; Flores-Contreras, Lucia; Armendáriz-Borunda, Juan
2012-01-01
Viral vectors based on adeno-associated virus (AAV) are widely used in gene therapy protocols, because they have characteristics that make them valuable for the treatment of genetic and chronic degenerative diseases. AAV2 serotype had been the best characterized to date. However, the AAV vectors developed from other serotypes is of special interest, since they have organ-specific tropism which increases their potential for transgene delivery to target cells for performing their therapeutic effects. This article summarizes AAV generalities, methods for their production and purification. It also discusses the use of these vectors in vitro, in vivo and their application in gene therapy clinical trials.
Sanders, Matthew; Maddelein, Wendy; Depicker, Anna; Van Montagu, Marc; Cornelissen, Marc; Jacobs, John
2002-11-01
Post-transcriptional gene silencing (PTGS) is characterized by the accumulation of short interfering RNAs that are proposed to mediate sequence-specific degradation of cognate and secondary target mRNAs. In plants, it is unclear to what extent endogenous genes contribute to this process. Here, we address the role of the endogenous target genes in transgene-mediated PTGS of beta-1,3-glucanases in tobacco. We found that mRNA sequences of the endogenous glucanase glb gene with varying degrees of homology to the Nicotiana plumbaginifolia gn1 transgene are targeted by the silencing machinery, although less efficiently than corresponding transgene regions. Importantly, we show that endogene-specific nucleotides in the glb sequence provide specificity to the silencing process. Consistent with this finding, small sense and antisense 21- to 23-nucleotide RNAs homologous to the endogenous glb gene were detected. Combined, these data demonstrate that a co-suppressed endogenous glucan ase gene is involved in signal amplification and selection of homologous targets, and show that endogenous genes can actively participate in PTGS in plants. The findings are introduced as a further sophistication of the post-transciptional silencing model.
Mach, Jennifer M [Chicago, IL; Zieler, Helge [Del Mar, CA; Jin, RongGuan [Chesterfield, MO; Keith, Kevin [Three Forks, MT; Copenhaver, Gregory P [Chapel Hill, NC; Preuss, Daphne [Chicago, IL
2011-08-02
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Mach,; Jennifer M. , Zieler; Helge, Jin [Del Mar, CA; RongGuan, Keith [Chesterfield, MO; Kevin, Copenhaver [Three Forks, MT; Gregory P. , Preuss; Daphne, [Chicago, IL
2011-11-22
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne
2006-10-10
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Mach, Jennifer [Chicago, IL; Zieler, Helge [Chicago, IL; Jin, James [Chicago, IL; Keith, Kevin [Chicago, IL; Copenhaver, Gregory [Chapel Hill, NC; Preuss, Daphne [Chicago, IL
2006-06-26
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Mach, Jennifer [Chicago, IL; Zieler, Helge [Chicago, IL; Jin, RongGuan [Chicago, IL; Keith, Kevin [Chicago, IL; Copenhaver, Gregory [Chapel Hill, NC; Preuss, Daphne [Chicago, IL
2007-06-05
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G
2018-04-01
Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.
Overexpression of host plant urease in transgenic silkworms.
Jiang, Liang; Huang, Chunlin; Sun, Qiang; Guo, Huizhen; Peng, Zhengwen; Dang, Yinghui; Liu, Weiqiang; Xing, Dongxu; Xu, Guowen; Zhao, Ping; Xia, Qingyou
2015-06-01
Bombyx mori and mulberry constitute a model of insect-host plant interactions. Urease hydrolyzes urea to ammonia and is important for the nitrogen metabolism of silkworms because ammonia is assimilated into silk protein. Silkworms do not synthesize urease and acquire it from mulberry leaves. We synthesized the artificial DNA sequence ureas using the codon bias of B. mori to encode the signal peptide and mulberry urease protein. A transgenic vector that overexpresses ure-as under control of the silkworm midgut-specific P2 promoter was constructed. Transgenic silkworms were created via embryo microinjection. RT-PCR results showed that urease was expressed during the larval stage and qPCR revealed the expression only in the midgut of transgenic lines. Urea concentration in the midgut and hemolymph of transgenic silkworms was significantly lower than in a nontransgenic line when silkworms were fed an artificial diet. Analysis of the daily body weight and food conversion efficiency of the fourth and fifth instar larvae and economic characteristics indicated no differences between transgenic silkworms and the nontransgenic line. These results suggested that overexpression of host plant urease promoted nitrogen metabolism in silkworms.
Expression of a model gene in prostate cancer cells lentivirally transduced in vitro and in vivo.
Bastide, C; Maroc, N; Bladou, F; Hassoun, J; Maitland, N; Mannoni, P; Bagnis, C
2003-01-01
In a preclinical model for prostate cancer gene therapy, we have tested lentiviral vectors as a practical possibility for the transfer and long-term expression of the EGFP gene both in vitro and in vivo. The human prostate cancer cell lines DU145 and PC3 were transduced using experimental conditions which permitted analysis of the expression from a single proviral vector per cell. The transduced cells stably expressed the EGFP transgene for 4 months. After injection of the transduced cell populations into Nod-SCID mice a decrease in EGFP was only observed in a minority of cases, while the majority of tumors maintained transgene expression at in vitro levels. In vivo injection of viral vector preparations directly into pre-established subcutaneous or orthotopic tumor masses, obtained by implantation of untransduced PC3 and DU145 cells led to a high transduction efficiency. While the efficiency of direct intratumoral transduction was proportional to the dose of virus injected, the results indicated some technical limitations inherent in these approaches to prostate cancer gene therapy.
NASA Astrophysics Data System (ADS)
Hu, Xiaohua; Lang, Wenhui; Liu, Wei; Xu, Xue; Yang, Jianbo; Zheng, Lei
2017-08-01
Terahertz (THz) spectroscopy technique has been researched and developed for rapid and non-destructive detection of food safety and quality due to its low-energy and non-ionizing characteristics. The objective of this study was to develop a flexible identification model to discriminate transgenic and non-transgenic rice seeds based on terahertz (THz) spectroscopy. To extract THz spectral features and reduce the feature dimension, sparse representation (SR) is employed in this work. A sufficient sparsity level is selected to train the sparse coding of the THz data, and the random forest (RF) method is then applied to obtain a discrimination model. The results show that there exist differences between transgenic and non-transgenic rice seeds in THz spectral band and, comparing with Least squares support vector machines (LS-SVM) method, SR-RF is a better model for discrimination (accuracy is 95% in prediction set, 100% in calibration set, respectively). The conclusion is that SR may be more useful in the application of THz spectroscopy to reduce dimension and the SR-RF provides a new, effective, and flexible method for detection and identification of transgenic and non-transgenic rice seeds with THz spectral system.
Garrels, Wiebke; Mátés, Lajos; Holler, Stephanie; Dalda, Anna; Taylor, Ulrike; Petersen, Björn; Niemann, Heiner; Izsvák, Zsuzsanna; Ivics, Zoltán; Kues, Wilfried A.
2011-01-01
Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases. PMID:21897845
Liu, Feng; Wang, Xiao-Dong; Zhao, Yi-Ying; Li, Yan-Jun; Liu, Yong-Chang; Sun, Jie
2015-01-01
Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests. PMID:25552931
Helper-dependent adenoviral vectors for liver-directed gene therapy
Brunetti-Pierri, Nicola; Ng, Philip
2011-01-01
Helper-dependent adenoviral (HDAd) vectors devoid of all viral-coding sequences are promising non-integrating vectors for liver-directed gene therapy because they have a large cloning capacity, can efficiently transduce a wide variety of cell types from various species independent of the cell cycle and can result in long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd for liver-directed gene therapy is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration resulting in acute toxicity, the severity of which is dependent on vector dose. Intense efforts have been focused on elucidating the factors involved in this acute response and various strategies have been investigated to improve the therapeutic index of HDAd vectors. These strategies have yielded encouraging results with the potential for clinical translation. PMID:21470977
Kimura, Tetsuya; Nakao, Akihide; Murata, Sachiko; Kobayashi, Yasuyuki; Tanaka, Yuji; Shibahara, Kenta; Kawazu, Tetsu; Nakagawa, Tsuyoshi
2013-01-01
We developed the Gateway recycling cloning system, which allows multiple linking of expression cassettes by multiple rounds of the Gateway LR reaction. Employing this system, the recycling donor vector pRED419 was subjected to the first LR reaction with an attR1-attR2 type destination vector. Then conversion vector pCON was subjected to an LR reaction to restore the attR1-attR2 site on the destination vector for the next cloning cycle. By repetition of these two simple steps, we linked four expression cassettes of a reporter gene in Gateway binary vector pGWB1, introduced the constructs into tobacco BY-2 cells, and observed the expression of transgenes.
Adenoviral Vector Immunity: Its Implications and circumvention strategies
Ahi, Yadvinder S.; Bangari, Dinesh S.; Mittal, Suresh K.
2014-01-01
Adenoviral (Ad) vectors have emerged as a promising gene delivery platform for a variety of therapeutic and vaccine purposes during last two decades. However, the presence of preexisting Ad immunity and the rapid development of Ad vector immunity still pose significant challenges to the clinical use of these vectors. Innate inflammatory response following Ad vector administration may lead to systemic toxicity, drastically limit vector transduction efficiency and significantly abbreviate the duration of transgene expression. Currently, a number of approaches are being extensively pursued to overcome these drawbacks by strategies that target either the host or the Ad vector. In addition, significant progress has been made in the development of novel Ad vectors based on less prevalent human Ad serotypes and nonhuman Ad. This review provides an update on our current understanding of immune responses to Ad vectors and delineates various approaches for eluding Ad vector immunity. Approaches targeting the host and those targeting the vector are discussed in light of their promises and limitations. PMID:21453277